

PLUM POINT ENERGY STATION

GROUNDWATER MONITORING AND CORRECTIVE ACTION 2022 ANNUAL REPORT

PREPARED IN COMPLIANCE WITH THE EPA FINAL RULE FOR THE DISPOSAL OF COAL COMBUSTION RESIDUALS TITLE 40 OF THE CODE OF FEDERAL REGULATIONS, PART 257

JANUARY 25, 2023

PLUM POINT ENERGY STATION

GROUNDWATER MONITORING AND CORRECTIVE ACTION 2022 ANNUAL REPORT

Prepared for

Plum Point Services Company, LLC Plum Point Energy Station 2732 South County Road 623 Osceola, AR 72370

Prepared by

FTN Associates, Ltd. 3 Innwood Circle, Suite 220 Little Rock, AR 72211

FTN No. R14590-2764-001

January 25, 2023

EXECUTIVE SUMMARY

Plum Point Services Company, LLC (PPSC), operates a landfill for the disposal of coal combustion residuals (CCRs) at the Plum Point Energy Station located near Osceola, Arkansas. The landfill is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals rule, promulgated at Title 40 of the Code of Federal Regulations (40 CFR), Part 257, and published on April 17, 2015. Landfills regulated by this rule are required to implement and maintain a groundwater monitoring program to determine if the CCR landfill is impacting groundwater quality at the facility's compliance boundary. For this purpose, semiannual groundwater detection monitoring is required. This report presents results from semiannual detection monitoring events performed during 2022 in accordance with 40 CFR Part 257.

The landfill's groundwater monitoring program uses a certified monitoring well network comprised of ten monitoring wells (FTN Associates, Ltd. [FTN] 2017a). Groundwater sample collection is performed in accordance with the landfill's groundwater sampling and analysis plan (FTN 2017b) and data are evaluated in accordance with the landfill's certified statistical analysis plan (FTN 2017c).

FTN was contracted to sample groundwater and statistically evaluate the data from the semiannual monitoring events performed during 2022. Results from these events are summarized as follows:

- 1. Detection monitoring was performed during April and October 2022 for the first and second half of 2022 monitoring periods, respectively. Groundwater samples from each event were submitted to a third-party Arkansas-licensed laboratory for analysis of the appendix III list of parameters, excluding pH, which is field-measured.
- 2. The direction of groundwater flow varied between the first and second half of 2022 monitoring events. The April 2022 and October 2022 potentiometric surface maps show groundwater flow generally to the south and to the east-northeast, respectively, across the active landfill cells.
- 3. Of the appendix III parameters evaluated, only fluoride has an EPA-promulgated maximum contaminant level (MCL). None of the measured values in groundwater exceeded the MCL for fluoride.

i

- 4. Time-series plots and box-and-whiskers diagrams show variability across the well network for the following appendix III parameters: calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). The remaining appendix III parameters, boron and pH, show relatively similar values across all wells, with measured boron being below the laboratory RDL for the period of record at all wells.
- 5. As discussed in the 2021 groundwater monitoring and corrective action report, statistical evaluation of the second half of 2021 data set identified confirmed statistically significant increases (SSIs) for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117. PPSC completed a successful alternate source demonstration (ASD) in response to the SSIs in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on April 5, 2022, and is included with this report in accordance with §257.94(e)(2). Based on the successful ASD, PPSC continued with detection monitoring in the first half of 2022 in accordance with §257.94.
- 6. Statistical evaluation of the first half of 2022 data set identified confirmed SSIs for calcium, sulfate, and TDS at MW-117. PPSC completed a successful ASD in response to the SSIs in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on September 27, 2022, and is included with this report in accordance with §257.94(e)(2). Based on the successful ASD, PPSC continued with detection monitoring in the second half of 2022 accordance with §257.94.
- 7. Statistical evaluation of the second half of 2022 data set identified a confirmed SSI for sulfate at MW-117. PPSC completed a successful ASD in response to the SSI in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on January 25, 2023, and is included with this report in accordance with §257.94(e)(2). Based on the successful ASD, PPSC will continue with detection monitoring in the first half of 2023 accordance with §257.94.

TABLE OF CONTENTS

EXEC	UTIVE	SUMM	IARYi					
1.0	BACK	GROU	ND 1-1					
	1.1	Sampl	ing Area 1-1					
	1.2	2 Operational History						
	1.3	Region	nal Hydrogeology 1-4					
	1.4	Site H	ydrogeology 1-5					
	1.5	Genera	al Groundwater Quality					
2.0	MONI	TORIN	G NETWORK AND SCHEDULE					
	2.1	Monite	pring Well Network					
	2.2	Netwo	rk Improvements During 2022 2-3					
	2.3	Sampl	ing Schedule2-3					
	2.4	Monite	oring Well Operation and Maintenance					
	2.5	Sampling Methodology2-						
	2.6	Labora	tory Analyses2-4					
3.0	DATA	PRES	ENTATION					
	3.1	Water	Level Data					
		3.1.1	Water Level Measurements and Hydrograph					
		3.1.2	Direction of Groundwater Flow					
		3.1.3	Rate of Groundwater Flow					
	3.2	Field-I	Measured Water Quality Data					
	3.3	Labora	atory Analytical Data					
	3.4	Quality	y Assurance and Quality Control					
		3.4.1	Review of Laboratory Quality Control Samples					
		3.4.2	Review of Field Quality Control Samples					
4.0	STATI	ISTICA	L EVALUATION					
	4.1	Statist	cal Program Design					
		4.1.1	Statistical Approach					
		4.1.2	Site-Wide False Positive Rate					
		4.1.3	Statistical Power					

TABLE OF CONTENTS (CONTINUED)

	4.2	Explo	ratory Data Analysis	4-4
		4.2.1	Time-Series Plots and Box-and-Whiskers Diagrams	4-4
		4.2.2	Identification of Outliers	4-4
	4.3	Statist	ical Evaluation Results	4-5
		4.3.1	Intrawell Prediction Limit Analysis, First Half of 2022	4-5
		4.3.2	Mann-Kendall/Theil-Sen Trend Line Test, First Half of 2022	4-6
		4.3.3	Intrawell Prediction Limit Analysis, Second Half of 2022	4-6
		4.3.4	Mann-Kendall Test/Theil-Sen Trend Line, Second Half of 2022	4-7
5.0	CONC	CLUSIC	DNS	5-1
6.0	REFE	RENCE	ES	6-1

LIST OF APPENDICES

APPENDIX A:	Field Sampling Forms
APPENDIX B:	Laboratory Reports
APPENDIX C:	Water Elevation Data and Hydrographs
APPENDIX D:	Appendix III Groundwater Quality Historical Database
APPENDIX E:	Background Data Sets Used for Statistics
APPENDIX F:	Exploratory Data Analysis Plots
APPENDIX G:	Statistical Evaluation Results
APPENDIX H:	Alternate Source Demonstrations

LIST OF TABLES

Table 2.1	Summary of well construction details	
Table 2.2	Appendix III parameters for groundwater detection monitoring	
Table 3.1	Water level data	
Table 3.2	Field-measured water quality data	
Table 3.3	Summary of appendix III results, first half of 2022	
Table 3.4	Summary of appendix III results, second half of 2022	
Table 4.1	Values used to determine test alpha and power curve	
Table 4.2	Summary of statistically significant results, intrawell prediction limit analysis, first half of 2022	4-6
Table 4.3	Summary of statistically significant results, intrawell prediction limit analysis, second half of 2022	4-7

LIST OF FIGURES

Figure 1.1	Location map, Plum Point Energy Station	
Figure 1.2	Vicinity map, Plum Point Energy Station	1-3
Figure 1.3	Landfill layout map, Plum Point Energy Station landfill	1-6
Figure 1.4	Physiographic location, Plum Point Energy Station	1-7
Figure 2.1	Monitoring well locations, Plum Point Energy Station	
Figure 3.1	Potentiometric surface, April 4, 2022	
Figure 3.2	Potentiometric surface, October 3, 2022	
Figure 4.1	ERPC versus landfill power curve for detection monitoring	

1.0 BACKGROUND

Plum Point Services Company, LLC (PPSC), operates a landfill for the disposal of coal combustion residuals (CCRs) at the Plum Point Energy Station in Mississippi County, Arkansas. The plant and landfill are located approximately 2 miles south of the city of Osceola, as shown on Figure 1.1. The landfill is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals rule, promulgated at Title 40 of the Code of Federal Regulations (40 CFR), Part 257, and published on April 17, 2015. The regulation, referred to hereafter as the CCR rule, requires regulated landfills to implement and maintain a groundwater monitoring program to determine if the CCR landfill is impacting groundwater quality at the facility's compliance boundary. For this purpose, groundwater detection monitoring is required on a semiannual frequency. A groundwater sampling program that meets the requirements of the CCR rule was implemented by PPSC during 2015, and the first semiannual detection monitoring event was performed at the landfill during the second half of 2017.

FTN Associates, Ltd. (FTN), was contracted to sample groundwater and statistically evaluate the data from the semiannual monitoring events performed during 2022. This report presents the results of groundwater sampling and the associated statistical evaluations, and is intended to satisfy the reporting requirements of §257.90(e)(1) through (5). The following sections provide a brief description of the sampling area, operational history of the plant and landfill, regional and site-specific hydrogeological setting, and general regional and site groundwater quality.

1.1 Sampling Area

The landfill area encompasses approximately 245 acres located approximately 1 mile west of the Mississippi River and 2 miles south of Osceola, Arkansas. The landfill is bordered by Arkansas Highway 239 to the east, Arkansas Highway 198 to the south, and the BNSF rail line to the west. Beyond these features and immediately north of the landfill are agricultural fields, and topography is relatively flat. A vicinity map of Plum Point Energy Station and the landfill is provided as Figure 1.2.

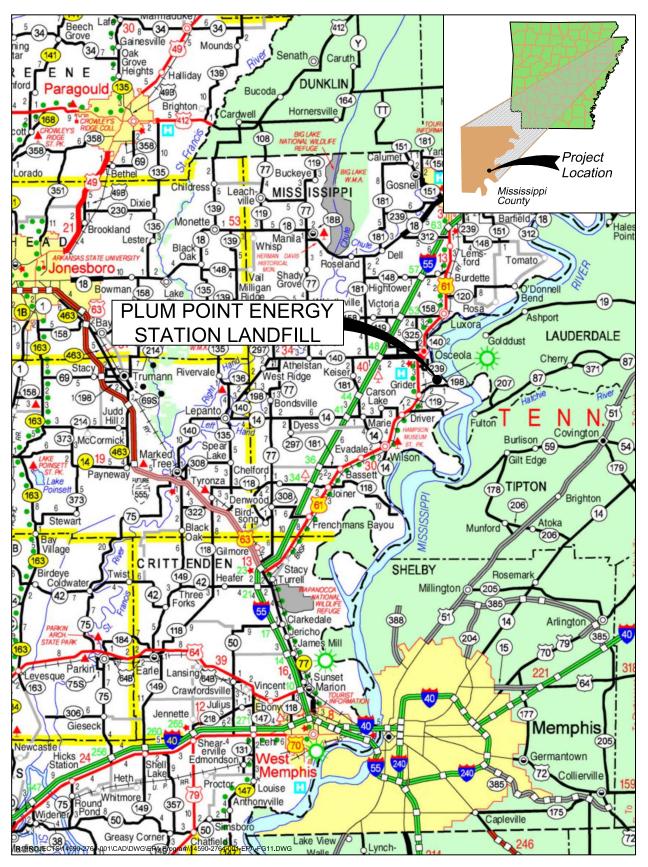


Figure 1.1. Location map, Plum Point Energy Station.

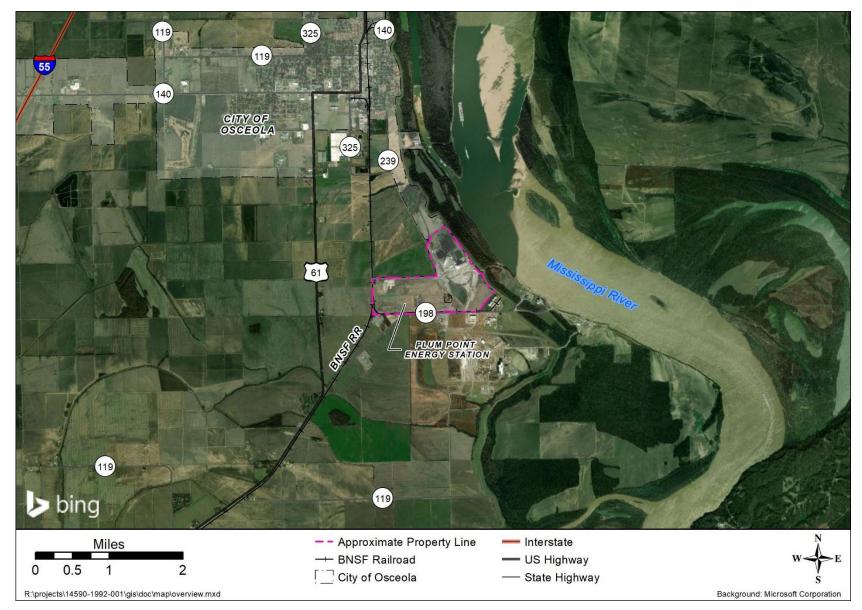


Figure 1.2. Vicinity map, Plum Point Energy Station.

1.2 Operational History

The plant has been in operation since 2010 and generates electricity through the combustion of coal. Approximately 500,000 tons of CCR material is produced and deposited in the landfill each year. The landfill is permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1 and became active during March 2010. The landfill currently has two active disposal cells, cells 1 and 3, which are shown on Figure 1.3. The combined area of the two active CCR disposal cells is approximately 30 acres.

Groundwater detection monitoring was initiated at the landfill in November 2007, in accordance with Arkansas Pollution Control and Ecology Commission (APCEC) Rule No. 22 requirements. The landfill's groundwater monitoring system was expanded and designed to conform to the requirements of the CCR rule. The groundwater monitoring network was certified by FTN in October 2017 (FTN 2017a). Details regarding the certified groundwater monitoring network are provided in Section 2.0 and in the landfill groundwater monitoring network certification report (FTN 2017a).

1.3 Regional Hydrogeology

The landfill is located in the Mississippi Alluvial Plain physiographic region, as shown on Figure 1.4. The region was formed by the deposits of the Mississippi River and its tributaries and is generally flat-lying (Cushing, Boswell, & Hosman 1964). The uppermost aquifer in the region is the Mississippi River Valley alluvial aquifer (hereafter referred to as the alluvial aquifer). The alluvial aquifer is comprised of unconsolidated Quaternary-age alluvial and terrace deposit sands and gravels that generally grade upward to clays and silts, which form a semi-confining to confining layer over much of the aquifer. Regionally, the alluvium reaches depths of 100 ft to 200 ft below ground surface (bgs) (Ryling 1960; Cushing, Boswell, & Hosman 1964). Beneath the alluvial aquifer is a lower confining unit, described as the Tertiary-aged Jackson-Claiborne clay in older publications (Broom & Lyford 1981; Peterson, Broom, & Bush 1985); however, more recent publications indicate that sediments of the lower confining unit belong to the Tertiary-aged middle Claiborne confining unit (Hart, Clark, & Bolyard 2008). The regional direction of groundwater flow is toward the southwest (Schrader 2015, Rodgers & Whaling 2020).

1.4 Site Hydrogeology

A detailed site investigation was performed in 2001 as part of the DEQ permit application for the landfill. The findings from the investigation were submitted to DEQ by Genesis Environmental Consulting, Inc. (GEC), in a geotechnical and hydrogeological investigation (GHI) report (GEC 2001). Findings from the GHI indicated that the confining unit above the alluvial aquifer ranges from 0 ft to over 30 ft thick, with an average thickness of 15 ft at the site. Confining unit soils are comprised of brown to grey clay, silty clay, and sandy clays. Underlying the confining unit are fine- to coarse-grained sands of the alluvial aquifer, with fine- to coarse-grained gravel encountered at depth. Based on one deep boring, completed to a depth of 200 ft below ground surface (bgs), the coarse-grained aquifer materials reach a depth of 190 ft bgs in the vicinity of the landfill.

Laboratory geotechnical testing of confining unit soils indicate a vertical permeability of 4.8×10^{-6} centimeters per second (cm/s) based on the geometric mean of reported test results (GEC 2001). Field results from one aquifer pumping test and multiple aquifer slug tests indicate that the uppermost alluvial aquifer has an average hydraulic conductivity of 1.09×10^{-2} cm/s (GEC 2001). The GHI reported an effective porosity for the aquifer of 27% (GEC 2001), which agrees with published values ranging from 10% to 30% for similar aquifer materials (EPA 1998, Yu et al. 2015).

The direction of groundwater flow at the landfill is variable and changes from eastward to westward on a seasonal basis (FTN 2017a). The direction of flow is influenced by the river stage of the adjacent Mississippi River (Kresse et al. 2014).

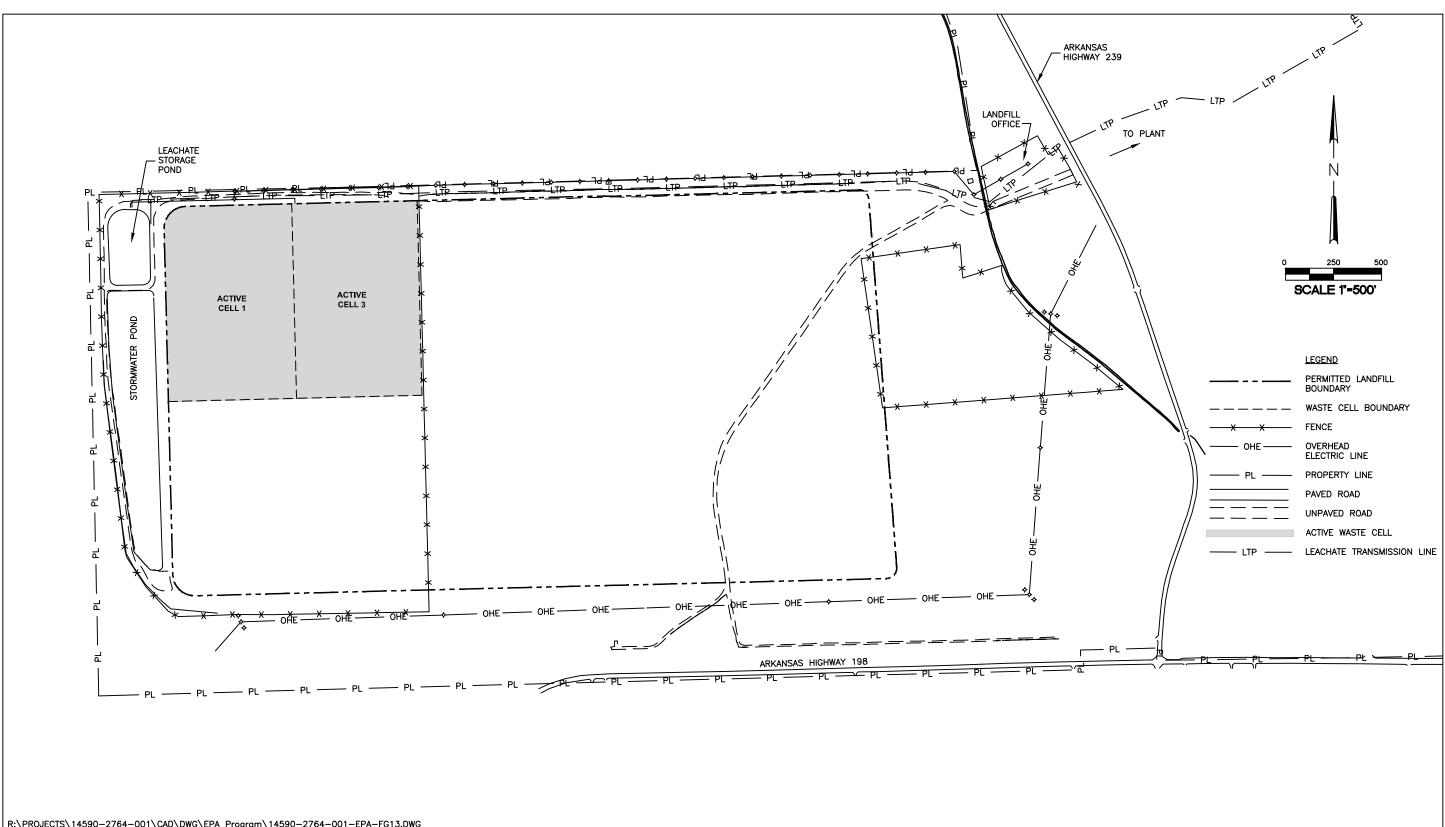


Figure 1.3. Landfill layout map, Plum Point Energy Station.

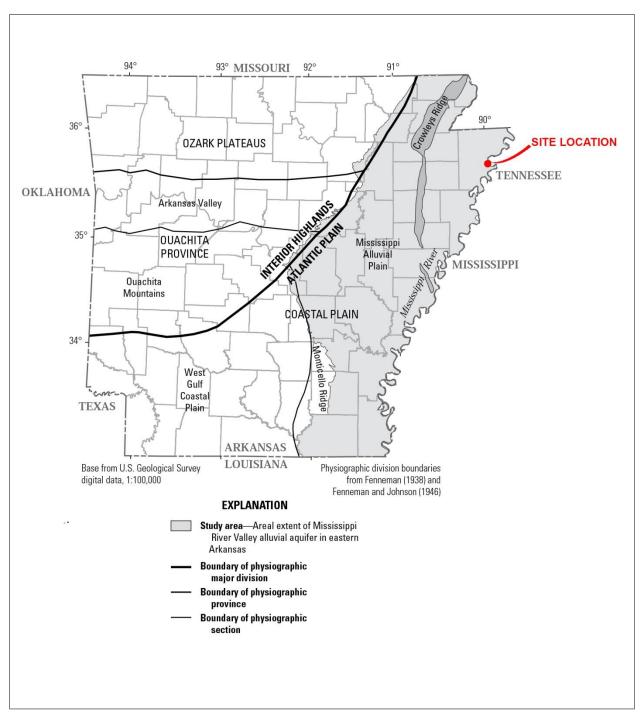


Figure 1.4. Physiographic location, Plum Point Energy Station (adapted from Schrader 2015).

1.5 General Groundwater Quality

Regionally, groundwater in the alluvial aquifer is a calcium-bicarbonate water type with sodium, magnesium, chloride, sulfate, silica, and iron comprising the majority of the remaining dissolved ions (Kresse et al. 2014). Elevated concentrations of trace metals including iron, manganese, and arsenic are ubiquitous in the alluvial aquifer and thought to be elevated due to the presence of carbonaceous material within the aquifer that drives redox-sensitive parameters to dissolve in groundwater (Kresse & Fazio 2003, Gonthier 2003, Kresse & Clark 2008, Welch et al. 2009, Kresse et al. 2014). Concentrations of most parameters vary widely both laterally and vertically in the aquifer (Kresse et al. 2014). Groundwater at the top of the aquifer is generally influenced by the quality of natural recharge (e.g., precipitation and surface waterbodies) and anthropogenic activity. Conversely, groundwater quality at the base of the aquifer is influenced heavily by the underlying confining formation (Kresse et al. 2014).

2.0 MONITORING NETWORK AND SCHEDULE

The following sections describe the certified monitoring well network, changes made to the network during 2022, sampling schedule, network maintenance, sampling methodology, and required laboratory analyses.

2.1 Monitoring Well Network

The certified groundwater monitoring network for the CCR rule includes the 10 monitoring wells shown on Figure 2.1. The wells are constructed of 2-inch, schedule 40 polyvinyl chloride (PVC) pipe, with 10-ft slotted well screens. A summary of well construction details is included in Table 2.1 and is based on available well installation and survey records (FTN 2017a).

Well Number	Well Installation Date	Ground Surface Elevation (ft NAVD ^[a])	Measuring Point Elevation ^(b) (ft NAVD)	Total Depth (ft below measuring point)	Screened Interval (ft NAVD)
MW-101	4/9/2001	239.4	242.75	33.6	219.2-209.2
MW-102	4/9/2001	240.5	243.99	30.2	223.8-213.8
MW-103	9/26/2007	240.5	243.25	32.8	220.5-210.5
MW-108	4/11/2001	241.8	245.11	32.4	222.7-212.7
MW-113	4/07/2009	241.5	244.63	35.9	223.7-208.7
MW-115	9/25/2007	240.4	243.55	33.0	220.6-210.7
MW-116	6/23/2015	239.3	243.97	31.9	222.5-212.5
MW-117	6/24/2015	239.4	242.53	34.2	218.5-208.5
MW-118	6/24/2015	238.0	241.23	31.4	220.2-210.2
MW-119	10/6/2016	243.6	246.53	35.4	221.5-211.5

Table 2.1. Summary of well construction details.

Notes:

a. North American Vertical Datum of 1988.

b. Measuring point is the surveyed and marked point on the top of casing (TOC) of each monitoring well.

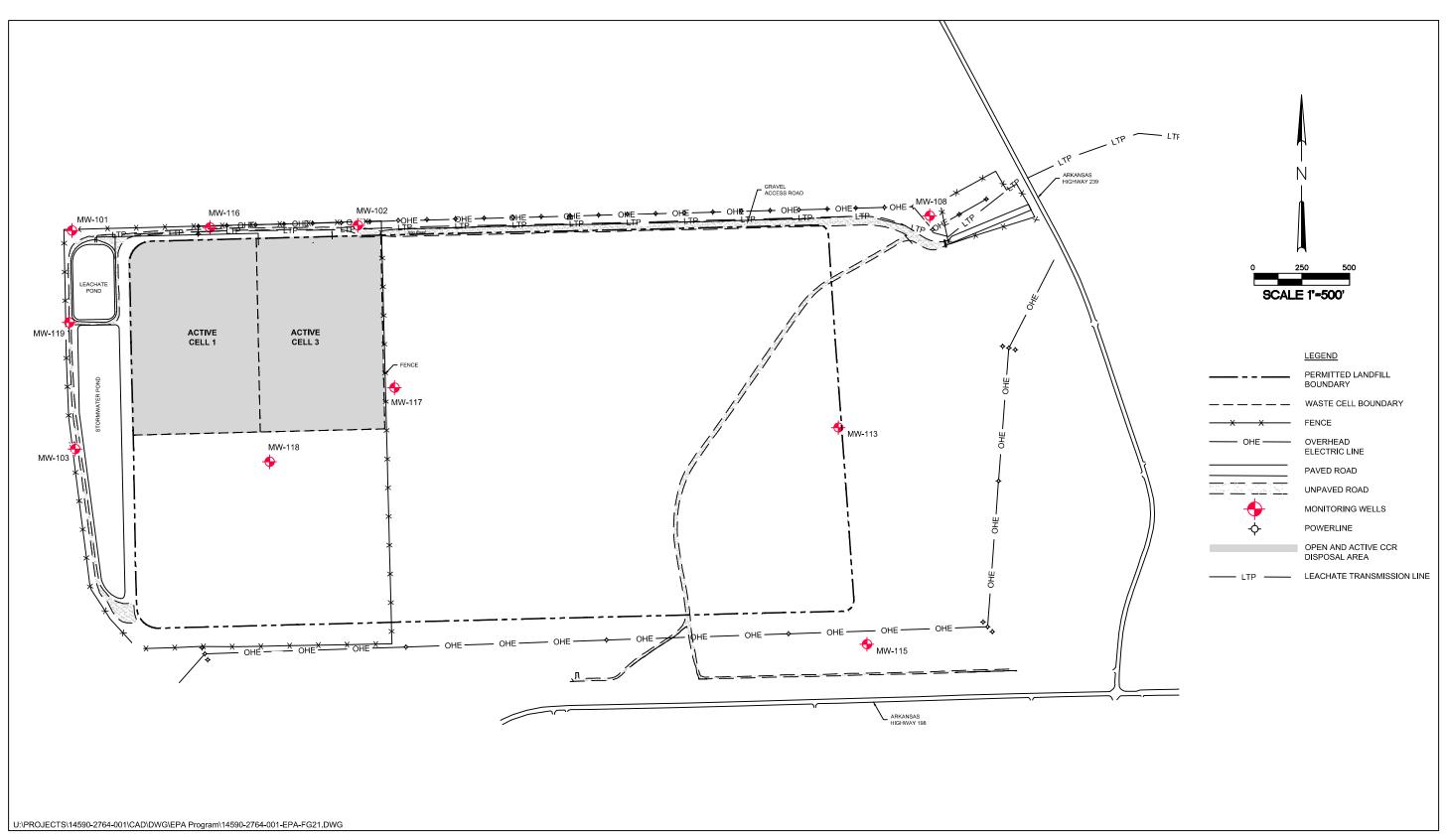


Figure 2.1. Monitoring well locations, Plum Point Energy Station.

Each monitoring well is screened in the alluvial aquifer, the uppermost aquifer in the vicinity of the landfill. The direction of groundwater flow beneath the site is seasonally variable. As a result, there is not a hydraulically upgradient location with respect to cells 1 and 3. As allowed by §257.91(a)(1), the groundwater program utilizes wells for background water quality that are not hydraulically upgradient of the CCR management area. Monitoring wells MW-108, MW-113, and MW-115 (Figure 2.1) are used for this purpose because they are positioned outside the potential zone of impact from cells 1 and 3. The rationale for this is based on the age of the landfill, the estimated maximum rate of groundwater flow, and the distance of MW-108, MW-113, and MW-115 from the CCR management area (FTN 2017a).

2.2 Network Improvements During 2022

All of the 10 monitoring wells in the certified network were installed prior to 2022. No new wells were installed and none of the existing wells were altered or abandoned during 2022.

2.3 Sampling Schedule

In accordance with the CCR rule and the landfill's groundwater sampling and analysis plan (GWSAP), detection monitoring is scheduled to occur semiannually. The first half 2022 detection monitoring event was conducted during April 2022, with verification sampling performed during June 2022. The second half 2022 detection monitoring event was conducted during October 2022, with verification sampling performed during December 2022 and January 2023. During the December 2022 event, one of the wells scheduled to be sampled (MW-108) had an insufficient quantity of water, and as such, the well was rescheduled for verification sampling during January 2023.

Detection monitoring for the 2023 monitoring year is tentatively scheduled for April and October 2023.

2.4 Monitoring Well Operation and Maintenance

The integrity of each monitoring well was inspected prior to commencement of groundwater sampling activities. Well casing, concrete pads, and bollards were inspected for any

indications of damage and dedicated sampling equipment was assessed for visible damage. Noted damages and recommended repairs, if any, were communicated to PPSC.

2.5 Sampling Methodology

To ensure that monitoring results are an accurate representation of groundwater quality, sample collection follows the guidelines for sample collection, preservation, shipment, chain-of-custody (COC) control, and quality control outlined in the landfill's GWSAP (FTN 2017b). Groundwater sample collection during the 2022 monitoring events was performed in accordance with the landfill's GWSAP and EPA guidelines (Puls & Barcelona 1996). Groundwater was sampled with a Geopump Peristaltic Series II Pump and linear low-density polyethylene tubing. Field parameters were measured during purging and sampling using a Hach 2100P portable turbidity meter and a handheld YSI MPS 556 or YSI ProPlus multiparameter instrument fitted with a flow-through cell. Field sampling forms for the 2022 monitoring events are provided in Appendix A.

2.6 Laboratory Analyses

Samples collected for each detection monitoring event are required to be analyzed for the 40 CFR Part 257 appendix III list of parameters provided in Table 2.2. Pace Analytical National (Pace), of Mt. Juliet, Tennessee, provided laboratory services during the detection monitoring period. Samples were analyzed in accordance with EPA's *Test Methods for Evaluating Solid Waste Physical/Chemical Methods* (SW-846) (EPA 1986b), or equivalent, and guidelines established by EPA. Laboratory reports from Pace are included in Appendix B.

Appendix III to Part 257 – Parameters for Detection Monitoring					
Boron	Sulfate				
Calcium	Total dissolved solids (TDS)				
Chloride	pH (field-measured)				
Fluoride					

Table 2.2. Appendix III parameters for groundwater detection monitoring.

3.0 DATA PRESENTATION

This section presents the data collected during the 2022 monitoring events. Water level data are presented in Section 3.1, field-measured groundwater quality data are presented in Section 3.2, laboratory analytical data are presented in Section 3.3, and a review of quality assurance and quality control (QA/QC) measures is presented in Section 3.4.

3.1 Water Level Data

This section presents groundwater level measurements and groundwater flow characteristics determined from these measurements.

3.1.1 Water Level Measurements and Hydrograph

Static water levels were measured in all 10 monitoring wells prior to conducting any sampling activities for the April and October detection monitoring events. Water levels were measured using a Solinst 101 water level meter on April 4, 2022, and October 3, 2022, for the first and second half 2022 monitoring periods, respectively. Depth to water was measured to the nearest 0.01 ft from the measuring point (MP) located on the top of casing (TOC) of each well and recorded on the field water level data sheets included in Appendix A. Field water level measurements are tabulated in Table 3.1.

Hydrographs depicting water level elevations over time are included in Appendix C. As shown on the hydrograph, within-well water levels fluctuated seasonally as much as ± 25 ft over the period of record for the CCR rule program.

		April 4	4, 2022	October	: 3, 2022
	MP Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Well ID	(ft NAVD88)	(ft below MP)	(ft NAVD88)	(ft below MP)	(ft NAVD88)
MW-101	242.75	16.64	226.11	22.41	220.34
MW-102	243.99	18.18	225.81	25.50	218.49
MW-103	243.25	17.96	225.29	23.39	219.86
MW-108	245.11	18.14	226.97	29.99	215.12
MW-113	244.63	18.63	226.00	28.47	216.16
MW-115	243.55	17.66	225.89	27.28	216.27
MW-116	243.97	18.61	225.36	24.96	219.01
MW-117	242.53	17.31	225.22	24.01	218.52
MW-118	241.23	16.20	225.03	22.06	219.17
MW-119	246.53	20.20	226.33	26.21	220.32

Table 3.1. Water level data.

3.1.2 Direction of Groundwater Flow

Depth-to-water measurements were converted to feet NAVD88 and used to construct the potentiometric surface maps shown on Figures 3.1 and 3.2 (figures are included at the end of Section 3.0). As shown on Figure 3.1, groundwater flow was variable across the active landfill during the April 2022 monitoring event; however, the direction of flow across the active landfill area was generally toward the south. As shown on Figure 3.2, groundwater flow beneath the active landfill area was generally to the east-northeast during the October 2022 monitoring event.

3.1.3 Rate of Groundwater Flow

The rate of groundwater flow beneath the landfill is estimated based on Darcy's law, modified to account for the open space available for groundwater flow within the aquifer. The resulting equation used to estimate the average linear groundwater velocity, or rate of flow, is shown below (Kuo 1999):

$$V_x = K/n_e(dh/dl)$$

Where: $V_x =$ linear velocity, K = hydraulic conductivity, $n_e =$ effective porosity, and dh/dl = hydraulic gradient. The hydraulic conductivity (K) and the effective porosity (n_e) of the alluvial aquifer are 1.09×10^{-2} cm/sec and 27%, respectively, based on previous reports (GEC 2001). The hydraulic gradient (dh/dl) is calculated using water level elevations that most closely represent the flow line from upgradient to downgradient across cells 1 and 3. The hydraulic gradient was estimated to be 1.1×10^{-3} ft/ft during April 2022 and 1.2×10^{-3} ft/ft during October 2022 using the potentiometric surface maps shown on Figures 3.1 and 3.2, respectively. Based on these values, V_x was calculated to be approximately 44 ft/year during April 2022 and 49 ft/year during October 2022. The estimated flow rate for October 2022 is above historically reported values, which typically range from approximately 10 to 40 ft/year. The elevated V_x value is likely caused by regional increased groundwater loss to the adjacent Mississippi River. Data reported by the US Army Corps of Engineers show record low river gauge levels at Osceola, Arkansas, during October 2022 (https://rivergages.mvr.usace.army.mil).

3.2 Field-Measured Water Quality Data

Groundwater sampling records for the 2022 monitoring events are included in Appendix A. Field-measured water quality parameters from the 2022 monitoring events are summarized in Table 3.2. A review of the field quality control samples is provided in Section 3.4.

As discussed in Section 4.3.3, a number of pH values recorded during the October 2022 event were abnormally low compared to historical values. After review of the calibration forms and discussions with field personnel, it was found that the pH sensor on the multi-parameter probe malfunctioned, causing lower than normal pH readings at MW-108 and MW-119. As such, these values were rejected from the historical database due to equipment failure and flagged with an "R" in Appendix D and in Table 3.2.

	-	Conductivity	pH	Temperature	Turbidity
Well	Date	(µmhos/cm)	(su)	(C)	(NTU)
First Half 20	022 Monitoring E	vent, April 202	22		
MW-101	4/7/2022	531	6.8	16.5	2.9
MW-102	4/6/2022	574	6.6	16.7	3.4
MW-103	4/7/2022	380	6.8	16.5	9.5
MW-108	4/5/2022	725	6.8	18.5	4.0
MW-113	4/5/2022	476	6.6	17.7	4.4
MW-115	4/5/2022	534	6.7	17.4	2.3
MW-116	4/6/2022	478	6.9	16.3	2.6
MW-117	4/6/2022	487	6.5	16.4	2.2
MW-118	4/7/2022	437	6.6	16.2	2.2
MW-119	4/7/2022	548	6.6	17.6	2.4
First Half 20	22 Verification S	ampling Even	t, June 2022		
MW-117	6/20/2022	586	5.8	20.3	5.9
Second Half	2022 Monitoring	Event, Octobe	er 2022		
MW-101	10/5/2022	501	6.2	18.7	2.0
MW-102	10/5/2022	526	6.3	20.7	2.7
MW-103	10/5/2022	375	6.3	19.6	9.1
MW-108	10/4/2022	690	6.2 R	21.5	3.0
MW-113	10/4/2022	447	6.5	20.4	2.5
MW-115	10/3/2022	618	6.7	18.6	2.3
MW-116	10/5/2022	447	6.2	19.6	2.5
MW-117	10/5/2022	410	5.7	18.5	1.9
MW-118	10/5/2022	414	6.1	17.6	2.4
MW-119	10/5/2022	549	6.2 R	19.5	2.7
Second Half	2022 Verification	n Sampling Ev	ent, December 2	022 and Januar	y 2023
MW-108	1/11/2023	708	6.8	19.5	3.1
MW-119	12/16/2022	595	6.9	16.8	2.1

Table 3.2. Field-measured water quality data.

"R" flag indicates that the value has been rejected from the historical database due to laboratory, statistical, or equipment error.

3.3 Laboratory Analytical Data

Laboratory reports for sampling performed during the 2022 monitoring periods are included in Appendix B. A review of laboratory QC information is provided in Section 3.4. Reported values along with field-measured pH are summarized in Tables 3.3 and 3.4 for the first and second half of 2022 monitoring periods, respectively. EPA-promulgated maximum contaminant levels (MCLs) are shown for comparison purposes. Of the appendix III parameters listed in Tables 3.3 and 3.4, fluoride is the only parameter with an established MCL. As shown in Tables 3.3 and 3.4, none of the measured levels for fluoride were above the MCL of 4 mg/L. Data from these monitoring events are compiled in the landfill's historical groundwater database for appendix III parameters, included as Appendix D.

Well ID	Date Collected	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	pH (su)
First Half 20	22 Detectio	n Monitoring,	, April 2022					
MW-101	4/7/2022	0.0597 J	105	0.848 J	0.228	7.63	388	6.8
MW-102	4/6/2022	0.0838 J	110	1.91	0.142 J	79.0	442	6.6
MW-103	4/7/2022	0.0552 J	71.6	0.926 J	0.128 J	7.84	278	6.8
MW-108	4/5/2022	0.132 J	151	1.38	0.138 J	24.0	478	6.8
MW-113	4/5/2022	0.0747 J	81.8	1.32	0.0846 J	5.70	326	6.6
MW-115	4/5/2022	0.0424 J	102	0.976 J	0.165	4.95 J	374	6.7
MW-116	4/6/2022	0.0842 J	81.4	2.64	0.132 J	55.6	338	6.9
MW-117	4/6/2022	0.0738 J	93.1	0.875 J	0.0916 J	9.03	341	6.5
MW-118	4/7/2022	0.0573 J	85.2	0.926 J	0.129 J	17.6	320	6.6
MW-119	4/7/2022	0.0670 J	107	1.82	0.195	37.1	397	6.6
First Half 20	22 Verifica	tion Sampling	, June 2022					
MW-117	6/20/2022		92.2			9.63	318	5.8
Quality Con	trol Sample	es						
MW-117 DUP ^(a)	4/6/2022	0.0721 J	92.9	1.06	0.0925 J	9.31	344	
EPA EB ^(a)	4/7/2022	< 0.200	<1.00	<1.00	< 0.150	< 5.00	<10.0	
MW-117 DUP ^(b)	6/20/2022		92.2			9.65	314	
EPA EB-1 ^(b)	6/20/2022		<1.00			< 5.00	<10.0	
EPA MCL					4			

Table 3.3. Summary of appendix III results, first half of 2022.

Notes:

"J" flag indicates that the analyte was detected at a level below the laboratory RDL; therefore the value is an estimate.

a. Duplicate sample and field equipment rinsate blank collected during the April sampling event.

b. Duplicate sample and field equipment rinsate blank collected during the June sampling event.

Well ID	Date Collected	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	pH (su)	
Second Ha	Second Half 2022 Detection Monitoring, October 2022								
MW-101	10/5/2022	0.0526 J	110	0.860 J	0.258	7.93	388	6.2	
MW-102	10/5/2022	0.0769 J	116	2.45	0.174	93.4	439	6.3	
MW-103	10/5/2022	0.0727 J	79.8	0.949 J	0.188	11.8	285	6.3	
MW-108	10/4/2022	0.0941 J	138	1.24	0.164	17.0	471	6.2 R	
MW-113	10/4/2022	0.0747 J	73.1	0.709 J	0.0828 J	4.02 J	291	6.5	
MW-115	10/3/2022	0.0370 J	109	0.742 J	0.208	3.68 J	377	6.7	
MW-116	10/5/2022	0.0867 J	94.1	4.14	0.194	57.1	360	6.2	
MW-117	10/5/2022	0.0725 J	88.0	0.953 J	0.122 J	10.3	311	5.7	
MW-118	10/5/2022	0.0628 J	87.5	1.31	0.124 J	19.7	329	6.1	
MW-119	10/5/2022	0.0671 J	119	1.98	0.230	46.2	444	6.2 R	
Second Ha	lf 2022 Verif	ication Samp	oling, Dece	ember 2022 a	and January	2023			
MW-108	1/11/2023							6.8	
MW-119	12/16/2022							6.9	
Quality Co	Quality Control Samples ^(a)								
MW-117 DUP ^(b)	10/5/2022	0.0821 J	87.2	0.928 J	0.0981 J	10.2	316		
EPA EB ^(b)	10/5/2022	< 0.200	<1.00	<1.00	< 0.150	< 5.00	<10.0		
EPA	MCL				4				

Notes:

"J" flag indicates that the analyte was detected at a level below the laboratory RDL; therefore the value is an estimate. "R" flag indicates that the value has been rejected from the historical database due to laboratory, statistical, or equipment error.

a. The December 2022 and January 2023 sampling events did not include a duplicate sample or field equipment rinsate blank because the parameter being sampled for (pH) is a field parameter, and field parameters are not collected for quality control samples.

b. Duplicate sample and field equipment rinsate blank collected during the October sampling event.

3.4 Quality Assurance and Quality Control

A review of laboratory and field QA/QC measures is presented below.

3.4.1 Review of Laboratory Quality Control Samples

Based on a review of the data quality documentation provided by Pace in Appendix B, samples were received by the laboratory in good condition, properly preserved, at the correct temperature, and were analyzed within holding times. The overall quality of the data relative to the contaminants of concern was acceptable and generally met method-specific requirements for precision and accuracy.

3.4.2 Review of Field Quality Control Samples

The GWSAP requires a minimum of one duplicate sample and one equipment rinsate blank to be collected per sampling event, or one per 20 groundwater samples collected. Each type of QA/QC sample is described below.

- Field duplicates are two separate samples taken from the same well and collected as close to each other in time as practical. The relative percent difference (RPD) is calculated for parameters where the reported levels in the duplicate pairs are at least five times the laboratory RDL and where neither result is qualified or suspected of contamination. If RPD values are ≤20%, then level of precision associated with the sampling and analytical methods is considered acceptable.
- Field equipment rinsate blanks are prepared by pouring deionized water over decontaminated sampling equipment. Results from these samples are used to verify that proper protocols for equipment decontamination were followed in the field. When a detection occurs above the RDL in a field quality control blank, detections of that parameter in groundwater samples are flagged with a "B" in the historical database. Groundwater samples with detections in associated laboratory quality control blanks are flagged according to laboratory procedures. EPA guidance (1986) recommends that detections in quality control blanks not be used to correct groundwater data.

All QA/QC samples collected during 2022 were handled in the same manner as groundwater samples with respect to sample collection, packaging, shipping, preservation, and COC procedures. A summary of the QA/QC evaluation is provided below:

- Calculated RPDs were below the quality control limit of 20% for all duplicate pairs evaluated, indicating that field methods produced samples with an acceptable level of reproducibility.
- Results for the equipment rinsate blanks were all below their respective laboratory RDLs, indicating field decontamination methods were effective.

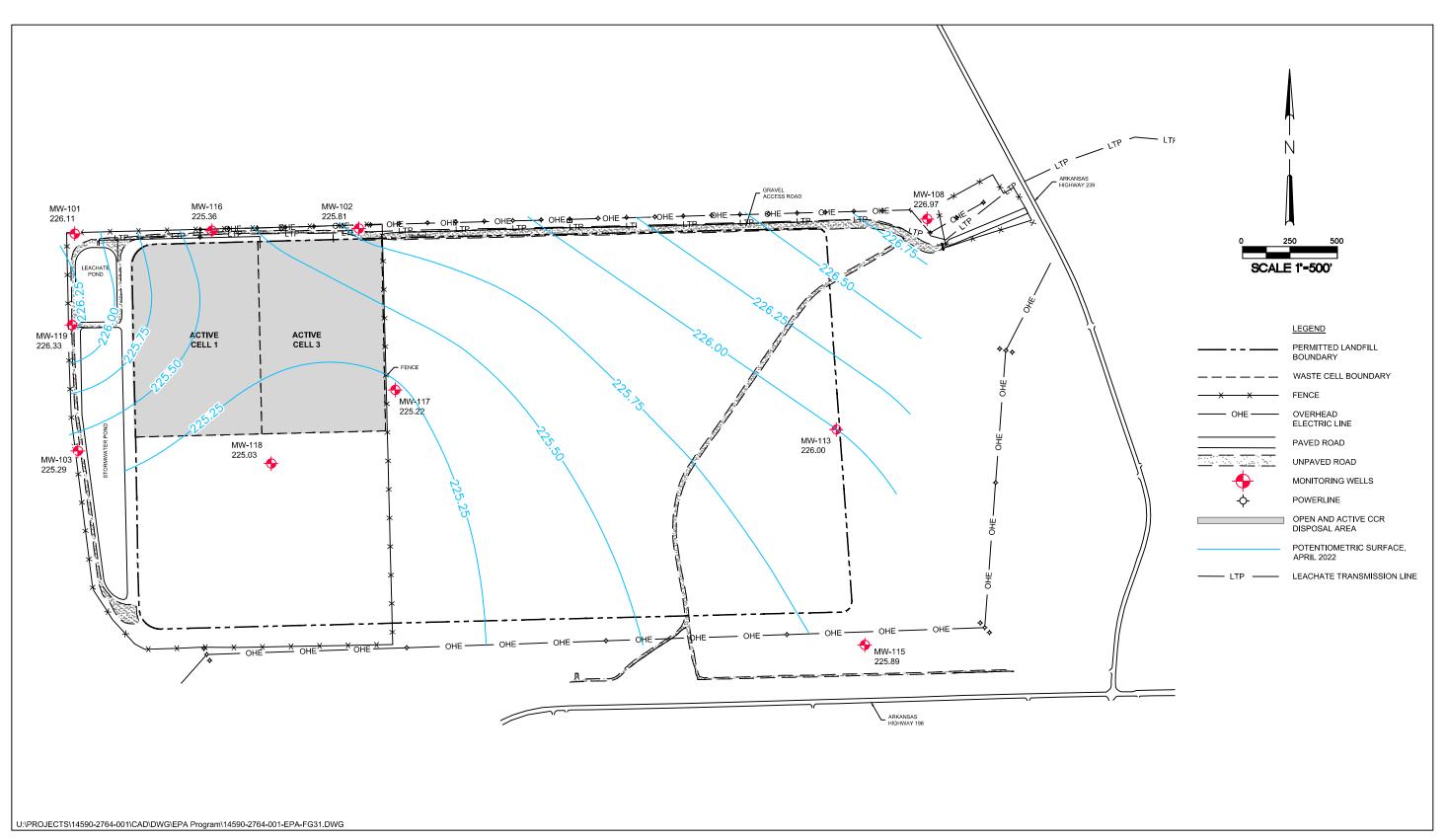


Figure 3.1. Potentiometric surface, April 4, 2022.

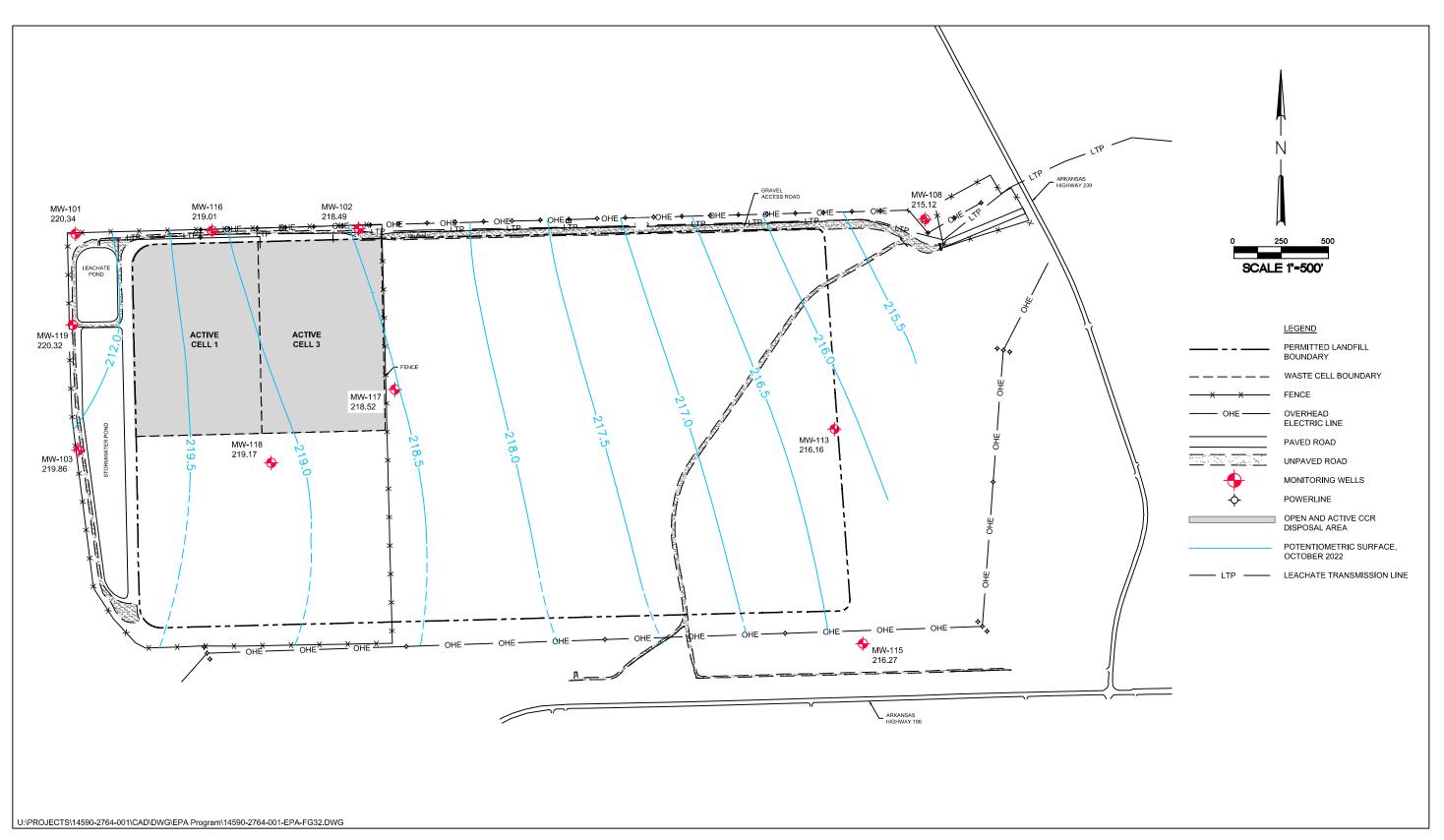


Figure 3.2. Potentiometric surface, October 3, 2022.

4.0 STATISTICAL EVALUATION

This section describes the statistical approach and evaluation of the detection monitoring data collected during 2022. Groundwater quality data were evaluated using the statistical software *Sanitas version 9.6*. Statistical analyses of the data were performed in accordance with the landfill's SAP.

4.1 Statistical Program Design

4.1.1 Statistical Approach

The statistical approach for groundwater monitoring at the landfill is described in the facility's SAP and adheres to recommendations in EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance*, released in March 2009 (Unified Guidance). Groundwater quality data collected for detection monitoring are evaluated with either an intrawell prediction limit combined with a "1 of 2" retesting strategy or with the Mann-Kendall/Sen's Slope test for trends. The technical basis for selecting these tests is discussed in the facility's SAP. Each test and its appropriate application is briefly discussed below.

A prediction limit tests for the likelihood that a new monitoring value (compliance value) comes from the same population as background data. Prediction limit analysis combined with retesting (verification sampling) is effective at reducing a monitoring program's site-wide false positive rate (SWFPR) and improving the statistical power of the monitoring program. The prediction limit test requires a minimum of 8 to 10 background values that are statistically independent and that exhibit stationarity. Retesting, or verification sampling, is performed if an initial sampling result exceeds a prediction limit. The "1 of 2" retesting strategy requires one verification sample be obtained within the same monitoring period as the initial sample. If the measured value in the verification sample also exceeds the prediction limit, then a statistically significant increase (SSI) (or statistically significant decrease [SSD] in the case of pH) is declared.

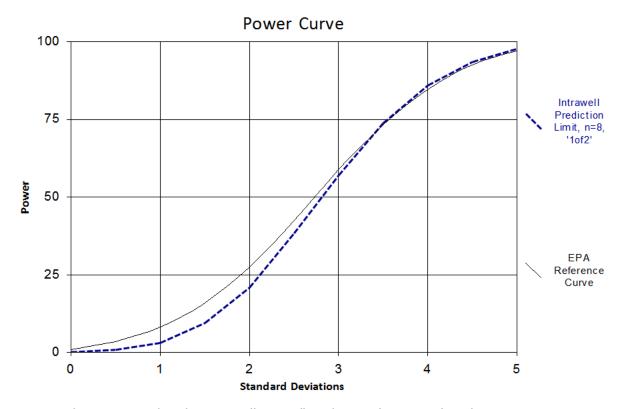
If data characteristics do not meet the requirements for a prediction limit test, the well-parameter pair is tested using the Mann-Kendall/Sen's Slope test for trends, as recommended by the Unified Guidance. If a statistically significant increasing trend (or statistically significant decreasing trend in the case of pH) is indicated, then this is evidence of possible deteriorating groundwater quality. While there is no explicit retesting strategy for the Mann-Kendall/Sen's Slope test (as there is for prediction limits), retesting can be applied (Cameron 2015).

Background data sets were updated, where applicable, prior to the first half of 2022 monitoring period. Results of the evaluation are summarized in Appendix E.

4.1.2 Site-Wide False Positive Rate

The Unified Guidance recommends that detection monitoring programs have adequate statistical power and an SWFPR (alpha) value of 10% over a one-year period of testing. As a result, the semiannual SWFPR is fixed at 5%. The magnitude of the per-test alpha will vary depending on how many statistical tests are required per semiannual evaluation. Input values used to determine the per-test alpha for intrawell prediction limit analyses, combined with a "1 of 2" retesting strategy are listed in Table 4.1.

Certified Well Network					
Statistical Test	Intrawell Prediction Limit				
Number of Compliance Wells (w)	7				
Minimum Background Sample Size (n)	8				
Number of Constituents (c)	6				
Resample Strategy	1 of 2				
Semiannual SWFPR	0.05				


Table 4.1. Values used to determine test alpha and power curve.

4.1.3 Statistical Power

Statistical power is inversely related to the SWFPR and is an estimate of the rate at which false negative results will occur. To gauge statistical power, the Unified Guidance recommends the use of the EPA Reference Power Curve (ERPC) to estimate the ability of any individual test

to identify an SSI or SSD above background. Any single statistical test should have the ability to detect an SSI or SSD 55% to 60% of the time at three standard deviations (3σ) above background and 80% to 85% of the time at 4σ above background. Input values for the detection monitoring program's power curve are listed in Table 4.1 and discussed below.

Figure 4.1 depicts the power curve for the well network plotted against the ERPC. This curve shows that any single test is expected to detect SSIs or SSDs approximately 57% of the time at levels 3σ above background and 87% of the time at levels 4σ above background. Given this comparison, the statistical power of the landfill's detection monitoring program exceeds EPA recommendations.

Sanitas[™] v.9.6.23 Sanitas software licensed to FTN Associates. UG

kappa = 2.841, based on 7 compliance wells and 6 constituents, evaluated semi-annually (this report reflects annual total).

Figure 4.1. ERPC versus landfill power curve for detection monitoring.

4.2 Exploratory Data Analysis

Exploratory data analysis (EDA) includes viewing data graphically to identify apparent trends or excursions from normal ranges. To accomplish this, period-of-record data were screened using time-series plots, box-and-whiskers diagrams, and outlier tests. Time-series plots are used to visualize changes in data over time. Box-and-whiskers diagrams provide a graphic depiction of the mean, median, minimum, maximum, and interquartile range of a data set to assist with visualizing the variation in groundwater quality within and across wells. Outlier tests help identify values that are extremely different from other values in a given data set. Section 4.2.1 summarizes observations made from time-series and box-and-whiskers diagrams. Evaluation for the presence of outliers is discussed in Section 4.2.2. The graphical plots from the EDA evaluation are included in Appendix F.

4.2.1 Time-Series Plots and Box-and-Whiskers Diagrams

The following observations are based on a review of the time-series plots and box-and-whiskers diagrams (Appendix F):

- Calcium, chloride, fluoride, sulfate, and TDS values are variable across the network.
- Measured pH and boron are generally similar across the well network, with measured levels of boron being below the laboratory RDL for the period of record at all wells.

4.2.2 Identification of Outliers

Period-of-record data for statistically evaluated wells were evaluated to identify possible outliers in the April and October 2022 data sets (Appendix F). Dixon's outlier test was applied to data sets with a normal distribution, or to populations that could be mathematically transformed so they have a normal distribution. For data sets that did not have a normal distribution, the non-parametric Tukey's outlier screening was applied. Plots are included in Appendix F. Outlier testing identified one outlier in the April 2022 data set: TDS at MW-101 was statistically low compared to the period-of-record data set. No statistically significant outliers were identified in the October 2022 data set.

4.3 Statistical Evaluation Results

Groundwater quality data from the 2022 monitoring periods were statistically evaluated if they were detected at or above the laboratory RDL. Results detected below the RDL but above a method detection limit ("trace" values) are estimated values and therefore are not statistically evaluated. Trace values are flagged with a "J" in the laboratory reports provided in Appendix B and in the historical database included in Appendix D. Statistical analyses are not performed on nondetect data, which are flagged with a "U" in the laboratory reports (Appendix B) and represented in the historical database as less than (<) the RDL value for the method used (Appendix D).

4.3.1 Intrawell Prediction Limit Analysis, First Half of 2022

In accordance with 257.93(h), intrawell prediction limit analyses were performed on all detected appendix III parameters, except as noted in Section 4.3.2, using the background data sets identified in Appendix E. Results from the first half of 2022 monitoring period are summarized in Table 4.2 and graphical plots of the evaluation are included in Appendix G.

As shown in Table 4.2, a previously confirmed SSI was identified for sulfate at MW-117 and unverified¹ SSIs were identified for calcium and TDS at MW-117. Measurements for all other well-parameter pairs were below calculated intrawell prediction limits. In accordance with the facility's SAP and "1 of 2" retesting strategy, verification sampling was performed during June 2022 for the unverified SSIs. Sulfate at MW-117 was also resampled because the April 2022 value was very close to the calculated prediction limit. As shown in Table 4.2, verification sampling results confirmed all three SSIs.

¹ Prior confirmed SSIs for calcium and TDS at MW-117 have been identified; however, the SSIs were based on older prediction limits that are no longer applicable. Therefore, these SSIs are considered unverified with respect to their current prediction limits.

Parameter	Well	Prediction Limit (mg/L)	April 2022 Result (mg/L)	June 2022 Verification Result (mg/L)	SSI Confirmed?
Calcium	MW-117	92.01	93.1	92.2	Yes
Sulfate	MW-117	8.048	9.03	9.63	Yes*
TDS	MW-117	315.8	341	318	Yes

Table 4.2.Summary of statistically significant results, intrawell prediction limit analysis,
first half of 2022.

*Previously confirmed.

In response to the confirmed SSIs for calcium, sulfate, and TDS at MW-117 identified during the first half of 2022 detection monitoring period, PPSC completed a successful alternate source demonstration (ASD) in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on September 27, 2022, and is included with this report (Appendix H) as required by §257.94(e)(2). Based on the successful ASD, the facility continued with detection monitoring in accordance with §257.94.

4.3.2 Mann-Kendall/Theil-Sen Trend Line Test, First Half of 2022

Well-parameter pairs tested for compliance using the Mann-Kendall/Theil-Sen trend line test due to significant trends in background data sets are identified in Table E.2 of Appendix E. Period-of-record data for each well-parameter pair were analyzed and test plots are included in Appendix G. The evaluation did not identify any statistically significant increasing trends in the period-of-record data sets.

4.3.3 Intrawell Prediction Limit Analysis, Second Half of 2022

In accordance with 257.93(h), intrawell prediction limit analyses were performed on all detected appendix III parameters, except as noted in Section 4.3.4, using the background data sets identified in Appendix E. Results from the second half of 2022 monitoring period are summarized in Table 4.3 and graphical plots of the evaluation are included in Appendix G.

As shown in Table 4.3, a previously confirmed SSI for sulfate at MW-117 was identified along with unverified SSDs for pH at MW-108 and MW-119. As discussed in Section 3.2, the

SSDs for pH were caused by equipment failure and the data have been flagged as rejected in the historical database. Measurements for all other well-parameter pairs were below calculated intrawell prediction limits.

In accordance with the facility's SAP and "1 of 2" retesting strategy, verification sampling was performed during December 2022 and January 2023 for the unverified SSDs at compliance well MW-119 and background well MW-108, respectively. As shown in Table 4.3, verification sampling results disconfirmed the SSDs at each well.

Table 4.3.Summary of statistically significant results, intrawell prediction limit analysis,
second half of 2022.

Parameter	Well	Prediction Limit (mg/L)	October 2022 Result (mg/L)	December 2022/ January 2023 Verification Result (mg/L)	SSI Confirmed?
pН	MW-108	6.3	6.2 R	6.8	No
pН	MW-119	6.3	6.2 R	6.9	No
Sulfate	MW-117	8.048	10.3	NA*	Yes*

Notes:

"R" flag indicates that the value has been rejected from the historical database due to laboratory, statistical, or equipment error. *SSI was previously confirmed; verification sampling was not performed.

In response to the confirmed SSI for sulfate at MW-117 identified during the second half of 2022 monitoring period, PPSC completed a successful ASD in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on January 25, 2023, and is included with this report (Appendix H) as required by §257.94(e)(2). Based on the successful ASD, the facility will continue with detection monitoring in accordance with §257.94.

4.3.4 Mann-Kendall Test/Theil-Sen Trend Line, Second Half of 2022

Well-parameter pairs tested for compliance using the Mann-Kendall/Theil-Sen trend line test due to significant trends in background data sets are identified in Table E.2 of Appendix E. Period-of-record data for each well-parameter pair were analyzed and test plots are included in Appendix G. The evaluation did not identify any statistically significant increasing trends in the period-of-record data sets.

5.0 CONCLUSIONS

The following recommendations and conclusions are based on a review of data for the landfill from the 2022 monitoring period:

- 1. The direction of groundwater flow at the landfill is seasonally variable. Groundwater flow was variable across the active landfill during the April 2022 monitoring event; however, the direction of flow across the active landfill area was generally toward the south. Groundwater flow beneath the active landfill area was generally to the east-northeast during the October 2022 monitoring event.
- 2. Of the parameters evaluated, only fluoride has an EPA-promulgated MCL. None of the reported values in groundwater were measured above the MCL for fluoride.
- 3. Time-series plots and box-and-whiskers diagrams show variability across the well network for calcium, chloride, fluoride, sulfate, and TDS. Values for boron and pH are relatively similar across all wells, with measured levels of boron being below the laboratory RDL for the period of record at all wells.
- 4. A comparison of the statistical power curve for the detection monitoring program to the EPA Reference Power Curve indicates that the detection rates for SSIs and SSDs meet EPA recommendations.
- 5. As discussed in the 2021 groundwater monitoring and corrective action report, statistical evaluation of the second half of 2021 data set identified confirmed SSIs for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117. PPSC completed a successful ASD in response to the SSIs in accordance with \$257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on April 5, 2022, and is included with this report in accordance with \$257.94(e)(2). Based on the successful ASD, PPSC continued with detection monitoring during the first half of 2022 in accordance with \$257.94.
- 6. Statistical evaluation of the first half of 2022 data set identified confirmed SSIs for calcium, sulfate, and TDS at MW-117. A successful ASD was completed for the SSIs on September 27, 2022, and is included with this report in accordance with §257.94(e)(2). The facility continued with detection monitoring during the second half of 2022 in accordance with §257.94.
- 7. Statistical evaluation of the second half of 2022 data set identified a confirmed SSI for sulfate at MW-117. A successful ASD was completed for the SSI on January 25, 2023, and is included with this report in accordance with §257.94(e)(2). The facility will continue with detection monitoring during the first half of 2023 in accordance with §257.94.

6.0 REFERENCES

- Broom, M.E., and F.P. Lyford. 1981. Alluvial Aquifer of the Cache and St. Francis River Basins, Northeastern Arkansas [Open-File Report 81-476]. Little Rock, AR: US Geological Survey in cooperation with the Arkansas Geological Commission. 48 p. <u>https://doi.org/10.3133/ofr81476</u>.
- EPA [Environmental Protection Agency]. 1986. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. Dublin, OH: National Water Well Association.

—. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water [EPA/600/R-98/128]. Washington, DC: US Environmental Protection Agency, Office of Research and Development. 248 pp.

- FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill . Little Rock, AR: FTN Associates, Ltd.
 - ———. 2017b. *Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- ———. 2017c. *Statistical Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- GEC [Genesis Environmental Consulting, Inc.]. 2001. *Geotechnical and Hydrogeological Investigation, Plum Point Energy Station, July 2001* [DEQ DIN 14702]. Little Rock, AR: Genesis Environmental Consulting, Inc.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*. New York: John Wiley & Sons, Inc.
- Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 2003-4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.
- Hart, R.M., B.R. Clark, & S.E. Bolyard. 2008. Digital Surfaces and Thicknesses of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS) [Scientific Investigations Report 2008-5098]. Reston, VA: US Department of the Interior, US Geological Survey, Ground-Water Resources Program. 33 p. <u>https://doi.org/10.3133/sir20085098</u>.

- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman,
 A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [Scientific Investigations Report 2014–5149].
 Prepared in cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp. <u>http://dx.doi.org/10.3133/sir20145149</u>.
- Kuo, J. 2009. *Practical Design Calculations for Groundwater and Soil Remediation*. Boca Raton, FL: Lewis Publishers.
- Peterson, J.C., M.E. Broom, and W.V. Bush. 1985. *Geohydrologic Units of the Gulf Coastal Plain in Arkansas* [USGS Water Resources Investigations Report 85-4116]. Little Rock, AR: US Geological Survey in cooperation with the Arkansas Department of Pollution Control and Ecology and the Arkansas Geological Commission. 20 p.
- Pugh, A.L., P.W. Westerfield, and D.T. Poynter. 1997. *Thickness of the Quaternary Alluvial and Terrace Deposits Comprising the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas* [USGS Water Resources Investigations Report 97-4049]. Little Rock, AR: US Geological Survey in cooperation with the Arkansas Geological Commission. 1 plate.
- Puls, R.W., and M.J. Barcelona. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures [EPA 540/S-95/504]. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- Rodgers, K.D., and A.R. Whaling. 2020. Water Levels and Selected Water-Quality Conditions in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2014 [Scientific Investigations Report 2020-5123]. Prepared in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey. Reston, VA: US Geological Survey.
- Ryling, R.W. 1960. *Ground-water Potential of Mississippi County, Arkansas* [Water Resources Circular No. 7]. Little Rock, AR: Arkansas Geological and Conservation Commission in cooperation with the US Geological Survey. 87 p.
- Sanitas Technologies. 2018. Sanitas User Guide, Version 9.6. Loveland, CO: Sanitas Technologies.
- Schrader, T.P. 2015. Water Levels and Water Quality in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2012 [Scientific Investigations Report 2015-5059].
 Reston, VA: US Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey.

- Welch, H.L., J.A. Kingsbury, W.T. Roland, and R.C. Seanor. 2009. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004 [Scientific Investigations Report 2009-5091]. Reston, VA: National Water-Quality Assessment Program, US Geological Survey.
- Yu, C., S. Kamboj, C. Wang, and J. Cheng. 2015. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures [ANL/EVS/TM-14/4]. Argonne, IL: US Department of Energy, Argonne National Laboratory, Environmental Science Division.

Field Sampling Forms

First Half 2022 Sampling Event

Groundwater Level Data Sheet

	Energy Station lwater Service onditions:	n R143 es EPA Mea	ect Number: 590-2764-001 Program suring Device: nst 101		Investiga Michael (Page 1 of 1
Well ID	Date	Time	Depth to Water (feet below TOC)			Damages/Repair	s	
MW-101	4/4/2022	1427	16.64	Damaged wel	lards	Damaged TOC Damaged lock Unkept vegetation		Lacks visibility Lacks access See GW sample record
MW-102	4/4/2022	1434	18.18	Damaged well Damaged bol Damaged equ	ll pad/casing lards	Damaged TOC Damaged lock Unkept vegetation		Lacks visibility Lacks access See GW sample record
MW-103	4/4/2022	1416	17.96	Damaged well Damaged bol Damaged equ	lards	Damaged TOC Damaged lock Unkept vegetation		Lacks visibility Lacks access See GW sample record
MW-108	4/4/2022	1329	18.14	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-113	4/4/2022	1329	18.63	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-115	4/4/2022	1324	17.66	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-116	4/4/2022	1506	18.61	 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-117	4/4/2022	1521	17.31	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-118	4/4/2022	1458	16.20	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-119	4/4/2022	1422	20.20	 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged well Damaged bol Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record

Facility:	Plum P	oint E	nergy Sta	tion	S	ite ID:	MV	V-101		Sa	mpler:	Ν	Aichael C	Clayton	
Project Numb	er: R	14590-	2764-001	(EPA)	Γ	Date:	4/7/2	2022		Sa	mpler Orgar	nization	FTN A	ssociates	, Ltd.
Site Description	on														
Weather:	р	artly c	oudy		Air	Temp. (°F):	59	Wiı	nd:		wes	t at 20 m	ph	
Site type:	XX / 11			XX 7 11		l casing	materi	al:	Wel	ll di	ameter		inches	2	Well
Monitorin			xtraction	Well		PVC Steel		,	Tota	al d	epth from T	C	feet		locked?
Dewaterin			oring			ron					•				₽Yes
Other:						Other:		<i>'</i>	ТО	C be	elow/above g	ground	feet		□No
Damages/repa	airs neede	ed:													
Water Level I															
Measuring poi		otion:		Wate	er level	meter:		otech/Ko ron Dipp)' Geote Solin		k 200' Oth	or:	
North rim o				Pre	-purge	Pre-	purge	Dur		-1	Purge	Aft		<u>.</u>	
Other:					nitial		mation				end	samp		Rema	arks
Date	m	n/dd/y	y	4/4	/2022	4/7/	2022	4/7/2	2022	2	4/7/2022	4/7/2	022		
Time		-hour		1	427	13	300	13	13		1334	134	2		
Depth to Wate					6.64	16	.80	16.	80		16.79	16.7	79		
Product/Thick	iness LN	IAPL/D	NAPL fe	et											
Field Data															
Field data met		-		1000 0				escriptio	n:			Ba	iler desc		
YSI ProPlu YSI MPS 5			Hach 2 HF Scie				Perist Bladd		edia	cate	ed / portab	le 1 🗆		ble polye ble Teflor	
Other:	50		Other:	intille 1	urorun			ersible	cur	cuic			Disposal		n
Purge depth	feet		Well g	oes dry	during	purging	: 🗌 Y	es 🔽	No						
Casing vol.	gallons		= [tota	l depth ((feet) –	depth to	water	(feet)] >	< [ir	nter	nal diameter	of well	(inches)]	$ ^2 \times 0.040$	08
Time	24-hour	1305	1310	1315	1320	1325	1330							Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	220	220	220	220	220	220								
pН	su	7.4	6.7	6.7	6.8	6.8	6.8								
Temp.	°C	16.6	16.7	16.7	16.7	16.6	16.5								
Conductivity	µS/cm	532	535	533	533	531	531								
DO	mg/L	1.8	0.6	0.5	0.4	0.4	0.4								
ORP	mV	127.5	_	67.3	70.2	75.1	76.3								
Turbidity	NTU	5.9	4.0	2.7	3.2	2.8	2.9								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data															
Samp	ole ID		Date		ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-101			4/7/202		340	3		0							
EPA EB			4/7/202	2 1	415	3		0							
Sampler's Nat	me (print)	· ·	N	lichael	Claytor	<u>ו</u>		Sample	r Si	gna	ture:	trar	nscribed l	by HLF	

Facility:	Plun	n Point l	Energy Sta	tion	S	ite ID:	MV	W-102	S	ampler:	N	Michael C	layton	
Project Numb	ber:	R14590	-2764-00	I (EPA)	D	Date:	4/6/2	2022	S	ampler Organ	nization	: FTN A	ssociates	, Ltd.
Site Descripti	on													
Weather:		cloudy	/rainy		Air	Temp. (°F):	55	Wind:	:	nor	th at 9 m	ph	
Site type:		_			Wel	l casing	materi	al:	Well d	liameter		inches	2	Well
Monitorir Productio			Extraction Borehole	Well	I I	PVC		-	Total	depth from T	00	feet		locked?
Dewaterin			Spring			Steel ron		-	10141			leet		₽ Yes
Other:	-					Other:			TOC b	pelow/above g	ground	feet		No
Damages/rep	airs nee	eded:						1					1	
Water Level	Data													
Measuring po				Wat	er level	meter:		otech/K						
Mark/notch		C		Pre	-purge	Dre_	UHe purge	ron Dip	per-1 ring	✓ Solin Purge	st 101 Aft	Oth	er:	
Other:					nitial		mation		ging	end	samp		Rema	arks
Date		mm/dd/	уу	4/4	4/2022	4/6/	2022	4/6/	2022	4/6/2022	4/6/2	022		
Date Init/dd/yy 4/4/2022 4/6/2022 1/6/2022 <														
		feet		1	8.18	18	.00	18	.40	18.40	18.4	40		
Product/Thick	iness	LNAPL/	DNAPL fe	et										
Field Data														
Field data me				1000 5	1 · 1·			escriptio	on:			ailer desc		.1 1
YSI ProPlu ✓ YSI MPS 5			Hach 2 HF Sci				Perist		dedicat	ed /portab		Disposal Disposal		
Other:	.50		Other:		urorun			ersible	acaicat			Disposal		
Purge depth	feet		Well g	oes dry	during	purging	: 🗌 Y	es 🔽	No					
Casing vol.	gallon	s	= [tota	l depth	(feet) –	depth to	water	(feet)]	× [inte	rnal diameter	of well	(inches)]	$ ^2 \times 0.040$	08
Time	24-hou	ır 141	5 1420	1425	1430	1435	1440	1445	145	0			Rema	rks
Purge vol.	gallon	s												
Purge rate	mL/m			190	190	190	190	190	190					
рН	su	6.9		6.3	6.4	6.4	6.5	6.6	6.6					
Temp.	°C	16.		16.5	16.5	16.5	16.6	16.6						
Conductivity	μS/cm			576	576	575	575	575	574					
DO	mg/L	1.3		0.8	0.8	0.7	0.7	0.7	0.7					
ORP Truch i ditar	mV	69.		111.4	107.2	107.4	102.3	-						
Turbidity Color/tint	NTU	3.4 clea		3.6 clear	2.8 clear	3.1 clear	3.5 clear	3.8 clear	3.4					
Odor		non		none	none	none	none	none						
L		non		none	none	none	none	none	поп	C				
Sample Data			_				.		-			_		
	ole ID		Date			# Conta	iners	# Filter	red		R	emarks		
MW-102			4/6/202	2 1	500	3		0						
)				[
Sampler's Na	me (pri	nt):	Ν	Aichael	Claytor	1		Sample	er Sign	ature:	trai	nscribed l	ov HLF	

Facility:	Plum	Point Er	nergy Sta	ation	2	Site ID:	M١	W-103		Sam	pler:	Ν	Michael	l Clayton	
Project Numb	ber: F	R14590-2	2764-00	1 (EPA	A) 1	Date:	4/7/2	2022		Sam	pler Orgar	nization	: FTN	Associate	s, Ltd.
Site Descripti	on														
Weather:					Air	Temp. (°F):		Wii	nd:					
Site type:	XX 7 11		•	XX 7 11		ll casing	materi	al:	Wel	l diar	neter		inches	s 2	Well
Monitorir Productio			ctraction	well		PVC Steel		-	Tota	al den	th from T	C	feet		locked?
Dewaterin			oring			Iron		ŀ		-					Y es
Other:						Other:			TO	C belo	ow/above §	ground	feet		No
Damages/rep	airs need	ed:													
Water Level															
Measuring po				Wa	ater leve	l meter:		otech/K ron Dip			Geote	ech/Kec st 101	k 200' □Ot	ther:	
North rim o		·		Р	re-purge	Pre-	purge	-	ring	-	Purge	Aft			
Other:					initial		mation	-	ging		end	samp		Ren	narks
Date		m/dd/y	Y	4	/4/2022		2022		2022	2 4	4/7/2022	4/7/2			
Time		4-hour			1416		110		31		1142	115			
Depth to Wate Product/Thick		et	NIADI C.		17.96	Γ7	.98	Γ	.98		17.98	17.9	98		
Product/ I nick	tness L	NAPL/D	NAPL fe	et											
Field Data													.1 1	• .•	
Field data met		V	Hach 2	100P ⁻	Furbidin		ump de Perist	escriptional tic	on:			Ba		scription: sable poly	ethylene
YSI MPS 5]HF Scie			meter	Bladd	ler [dedi	cated	/ portab	le]	Dispos	sable Tefle	on
Other:	-		Other:					ersible	1				Dispos	sable PVC	
Purge depth	feet		-			purging		les 🔽	-			6 11		22 0.0	
Casing vol.	gallons	1115	1	l depti			water 1140		$\times [11]$	iterna	l diameter	of well	(inches		
Time Purge vol.	24-hour gallons	1115	1120	1123	5 1130	1135	1140							Rem	arks
Purge rate	mL/mir	200	200	200	200	200	200								
pH	su	7.3	6.7	6.6	6.7	6.8	6.8								
Temp.	°C	16.4	16.2	16.3		16.3	16.5								
Conductivity	µS/cm	381	381	380	381	380	380								
DO	mg/L	3.1	2.0	1.9	1.7	1.6	1.6								
ORP	mV	109.2	102.7	103.4	4 97.3	85.3	87.5								
Turbidity	NTU	11.0	16.1	13.7	13.3	11.7	9.5								
Color/tint		clear	clear	clear	clear	clear	clear		_						
Odor		none	none	none	none	none	none								
Sample Data				<u>.</u>											
										emarks					
MW-103			4/7/202	2	1150	3		0							
Comm12-2T		ы.	•	<i>C</i> .1	1.01			Carrie	<u>.</u> .						
Sampler's Na	me (prin	t):	Ν	lichae	el Clayto	n		Sample	er Sı	gnatu	re:	trai	nscribed	d by HLF	

Facility:	Plun	n Point I	Energy S	ation		Si	ite ID:	MV	<i>W</i> -108		Sar	mpler:	Ν	Michae	l Cl	layton	
Project Numb	ber:	R14590)-2764-00)1 (EF	PA)	D	ate:	4/5/	2022		Sar	mpler Orgar	nization	: FTN	As	sociates,	Ltd.
Site Descripti	on																
Weather:		partly	cloudy			Air 7	Гетр. ('	°F):	66	Wi	nd:		eas	st at 2 r	npł	ı	
Site type:	*** 11			*** 1			l casing	materi	al:	We	ll dia	ameter		inche	es	2	Well
Monitorir Productio			Extractio Borehole	n Wel	1	P P	VC teel			Tot	al de	pth from T	C	feet			locked?
Dewaterin			Spring				ron					-			-		✔ Yes
☐ Other:						C	Other:			TO	C be	low/above §	ground	feet			□No
Damages/rep	airs nee	eded:															
Water Level											4.0.0		1 /77				
Measuring po				V	Vater l	evel	meter:		otech/k ron Dip			' ☐Geote ✓Solin		k 200' □O		r.	
North rim o		C			Pre-pu	rge	Pre-	purge		ring	1	Purge	Aft		- the		
Other:					initia			matior		ging		end	samp	ling		Rema	arks
Date		mm/dd/			4/4/20		-	2022		2022	2	4/5/2022	4/5/2				
Time		24-hour			132		_	250	-	313	_	1332	134				
Depth to Wate		feet			18.1	4	18	3.07	18	3.07		18.07	18.0	07			
Product/Thick	iness	LNAPL/	DNAPL f	eet													
Field Data													<u> </u>				
Field data mer			✔ Hach	2100P	Turbi	dime		ump de Perist	escripti	on:				ailer de		iption: le polyet	hvlene
✓ YSI MPS 5			HF Sc					Bladd	ler [cated	d / 🗌 portab				le Tefloi	
Other:	1		Other:						ersible					Dispo	sabl	le PVC	
Purge depth	feet				•		purging										
Casing vol.	gallon			-	r		-	r	T T	r		al diameter	of well	(inche	:s)] ²		
Time	24-hou		5 1300	130	05 13	310	1315	1320	1325	5 1	330					Rema	rks
Purge vol.	gallon		240	24	0 0	10	240	240	240		10						
Purge rate	mL/m			24 6.		40 5.5	240 6.6	240 6.7	240 6.8		240 6.8						
рН Temp.	su °C	7.1		18		8.7	0.0	0.7 18.9	18.9		8.5						
Conductivity	μS/cm			73		8.7 27	729	727	724		725						
DO	mg/L	2.8		1.		.5	1.4	1.3	1.2	_	1.2						
ORP	mV	123		98		5.3	83.2	73.6		_	/0.4						
Turbidity	NTU	3.0		3.		l.1	3.4	2.9	3.4	_	4.0						
Color/tint		clea	r clear	cle	ar cl	ear	clear	clear	clea	r c	lear						
Odor		non	e none	noi	ne ne	one	none	none	none	e n	one						
Sample Data																	
Samp	ole ID		Date		Time	2	# Conta	iners	# Filte	red			R	emarks	3		
MW-108			4/5/20	22	1340)	3		0								
/															<u> </u>		
Sampler's Na	me (pri	nt):		Micha	ael Cla	yton	l I		Sampl	er Si	gnat	ture:	trai	nscribe	d b	y HLF	

Facility:	Plun	n Point	Energy	Stati	on	S	ite ID:	M	W-113	S	Sampler:	-	Micha	el C	layton	
Project Numb	ber:	R1459)-2764-(001	(EPA)	Γ	Date:	4/5/	2022	S	Sampler Or	ganizatior	n: FTN	N As	ssociates,	, Ltd.
Site Descripti	on															
Weather:		partly	cloudy			Air	Temp. (°F):	64	Wind	:	ea	st at 7	mpl	h	
Site type:						Wel	l casing	materi	al:	Well	diameter		inch	es	2	Well
Monitorir Productio			Extracti Borehol		Vell		PVC		-	Total	depth from	тос	feet			locked?
Dewaterin			Spring	C			Steel ron		-	Total	deptil from	100	icet		<u> </u>	₽ Yes
☐ Other:							Other:			TOC	below/abov	ve ground	feet			No
Damages/rep	airs nee	eded:														
Water Level	Data															
Measuring po					Wat	er level	meter:		otech/K			otech/Keo linst 101		, Othe	- 44	
North rim o		i.			Pre	-purge	Pre-	Durge	ron Dip	ring	Purge	Af			я.	
Other:						nitial		matior		ging	end	samp			Rema	arks
Date		mm/dd/	′уу		4/4	4/2022	4/5/	2022	4/5/	2022	4/5/2022	2 4/5/2	2022			
Time		24-hou	•		-	1329		35		203	1223		34			
Depth to Wate		feet				8.63	18	.55	18	.55	18.55	18.	.55			
Product/Thick	iness	LNAPL	DNAPL	feet												
Field Data																
Field data mer			✓ Hach	210		rbidim		ump de Perist	escriptio	on:		В			ription: ble polyet	thylong
✓ YSI MPS 5						Turbidir				dedica	ted / por	table]			ole Tefloi	
Other:			Othe	r:				Subm	ersible				Dispo	osab	ole PVC	
Purge depth	feet			-	•	-	purging		les 🗸	-					<u></u>	
Casing vol.	gallon		1					r			ernal diame	ter of wel	l (inch	es)]		
Time	24-ho		0 114	5	1150	1155	1200	1205	1210	121	5 1220				Rema	rks
Purge vol.	gallon		0 00		220	220	1(0	1(0	1.00	10	0 1(0					
Purge rate	mL/m	in 22 7.			220 5.8	220 5.7	160 6.1	160 6.2	160 6.4	16 6.5						
pH Temp.	su ℃	18.			5.8 17.5	5.7 17.4	17.6	0.2 17.6	17.6							
Conductivity	μS/cm				480	480	479	478	477	47						
DO	mg/L	1.9			0.7	0.6	0.4	0.3	0.3	0.3						
ORP	mV	150			114.1	108.2	96.4	84.5	79.6							
Turbidity	NTU	9.9	9 4.1		3.6	11.9	2.5	7.1	3.7	5.8	3 4.4					
Color/tint		cle	ar clea	r	clear	clear	clear	clear	clear	clea	ar clear					
Odor		nor	ne nor	e	none	none	none	none	none	nor	ne none					
Sample Data																
Samp	ole ID		Da	e	Т	ime	# Conta	iners	# Filte	red		R	Remark	s		
MW-113			4/5/2	022	1	230	3		0							
						~			~							
Sampler's Na	me (pri	nt):		Mi	chael	Clayton	1		Sampl	er Sigr	nature:	tra	inscrib	ed b	oy HLF	

Facility:	Plum F	oint E	nergy Sta	tion	S	ite ID:	M١	W-115		Sampler	:	Ν	Michael (Clayton	
Project Numb	ber: R	14590-	2764-001	(EPA)	Γ	Date:	4/5/2	2022		Sampler	Orgai	nization	: FTN A	ssociates	, Ltd.
Site Descripti	on														
Weather:		clou	dy		Air	Temp. (°F):	57	Wind	d:		northe	east at 10	mph	
Site type:		_			Wel	l casing	materi	al:	Well	diamete	r		inches	2	Well
Monitorir Productio			xtraction orehole	Well	VI	PVC		F	Total	depth f	rom Ti	00	feet	-	locked?
Dewaterin			pring			Steel fron		-	Total				Icel		✔ Yes
Other:	-					Other:			TOC	below/a	bove g	ground	feet		□No
Damages/rep	airs neede	ed:													
Water Level	Data														
Measuring po		otion:		Wat	er level	meter:						ech/Kec			
Mark/notch				Dro	-purge	Dro	He: purge	ron Dip	per-1 ring	l' <u>ľ</u> Pu	_	st 101 Aft	Oth	er:	
Other:					itial		mation		ging		nd	samp		Rem	arks
Date	m	m/dd/y	у	4/4	/2022	4/5/	2022	4/5/	2022	4/5/2	2022	4/5/2	022		
Time	24	-hour		1	324	10	020	10)52	11	03	111	8		
Depth to Wate	er fee	et		1	7.66	17	.79	17	.82	17.	.82	17.8	82		
Product/Thick	aness LN	JAPL/C	NAPL fe	et											
Field Data															
Field data me			7					escriptio	on:			Ba	ailer desc		
YSI ProPlu ✓ YSI MPS 5			Hach 21 HF Scie				Perist		dedics	ated /	nortak			ble polye ble Teflo	
Other:	.50		Other:	intilic 1	uroiun			ersible	ucuica		portac		Disposa		11
Purge depth	feet		Well g	oes dry	during	purging	: 🗌)	les 🔽	No						
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [int	ernal dia	ameter	of well	(inches)	$]^2 \times 0.040$	08
Time	24-hour	1025	1030	1035	1040	1045	1050	1055	11	00				Rema	ırks
Purge vol.	gallons														
Purge rate	mL/min	170	170	170	170	170	170	170	17						
pН	su	7.2	6.8	6.4	6.5	6.5	6.5	6.6	6.						
Temp.	°C	17.2		17.0	17.0	17.1	17.2	17.3	17						
Conductivity	μS/cm	538	542	538	536	535	534	533	53						
DO	mg/L	1.0	0.6	0.5	0.4	0.4	0.4	0.4	0.						
ORP	mV	106.5		100.2	98.9	92.4	85.3	83.4	_						
Turbidity	NTU	4.2 clear	2.5	3.0 clear	2.8 clear	2.7 clear	2.9	3.3	2. cle						
Color/tint Odor		none		none	none	none	clear none		-						
<u> </u>		none	none	lione	none	none	none	none	110	lic					
Sample Data					<u>.</u> г		. 1								
-	ole ID		Date		ime	# Conta	iners	# Filter	red			Re	emarks		
MW-115			4/5/2022	2 1	115	3		0							
J L															
Sampler's Na	me (print)):	Ν	lichael	Clavtor	n		Sample	er Sig	nature:		trar	nscribed	bv HLF	

Facility:	Plun	n Point I	Energy	Stati	on	S	ite ID:	MV	<i>N</i> -116		San	npler:	N	Michael (Clayton	
Project Numb	ber:	R14590)-2764-	-001	(EPA)	Ι	Date:	4/6/	2022		San	npler Orga	nization	: FTN A	ssociates	, Ltd.
Site Descripti	on															
Weather:		clo	udy			Air	Temp. (°F):	57	Wir	nd:		nor	th at 9 m	ph	
Site type:							ll casing	materi	al:	Wel	ll dia	meter		inches	2	Well
Monitorir Productio			Extract Boreho		Vell		PVC			Tote	al de	pth from T	00	feet		locked?
Dewaterin			Spring				Steel Iron			100	ur uc		00			✓ Yes
☐ Other:							Other:			TOC	C bel	low/above	ground	feet		No
Damages/rep	airs nee	ded:													4	4
Water Level	Data				1											
Measuring po					Wate	er level	meter:						ech/Kec	k 200' D0th		
North rim o		C			Pre	-purge	Pre-	DHe purge	ron Dip	ring		Solii Purge	Aft		er:	
Other:						nitial		matior		ging		end	samp		Rem	arks
Date	1	mm/dd/	уу		4/4	/2022	4/6/	2022	4/6/	2022	2	4/6/2022	4/6/2	022		
Time		24-hour	•		1	506	15	520	1:	557		1607	162	24		
Depth to Wate		feet			_	8.61	18	8.50	18	8.50		18.50	18.	50		
Product/Thick	iness	LNAPL/	'DNAPI	L feet												
Field Data																
Field data me		-		1 010					escripti	on:				ailer desc		.1 .1
			✓ Hac			rbidim urbidii		Perist		dedia	cated	l / porta			ble polye ble Teflo	
Other:	50		Oth		tine 1	urorun			ersible		cutet			Disposa		
Purge depth	feet		We	ell goo	es dry	during	purging	: 🗆 Y	les 🔽	No						
Casing vol.	gallon	s	= [t	total o	lepth ((feet) -	depth to	o water	(feet)]	× [in	ntern	al diamete	r of well	(inches)	$]^2 \times 0.040$	08
Time	24-hou	ır 152	5 15	30	1535	1540	1545	1550	1555	5 10	600	1605			Rema	ırks
Purge vol.	gallon	s														
Purge rate	mL/mi				200	200	200	200	200	_	200	200				
pН	su	7.0			6.6	6.7	6.8	6.8	6.9		5.8	6.9				
Temp.	°C	16.			16.0	16.2	16.1	16.5	16.2		6.3	16.3				
Conductivity	μS/cm				471	474	475	475	477	_	177	478				
DO	mg/L	3.0			2.8	2.7	2.7	2.6	2.5		2.5	2.5				
ORP Truch i ditar	mV	109			115.0	99.0	99.1	97.5	92.0	_	2.1	91.0				
Turbidity Color/tint	NTU	5.2 clea			3.1 clear	3.8 clear	3.5 clear	3.3 clear	3.3 clear	-	4.0 lear	2.6 clear				
Odor		non			none	none	none	none			one	none				
<u> </u>		non		lic	none	none	none	none	non		one	none				
Sample Data			_		<u> </u>	. 1				-						
	ole ID			ate		ime	# Conta	iners	# Filte	red			R	emarks		
MW-116			4/6/2	2022		620	3		0							
)																
Sampler's Na	me (pri	nt):		Mi	chael	Clayto	n		Sampl	er Si	gnat	ure:	trai	nscribed	by HLF	

Facility:	Plum	Point F	nergy Sta	ution	S	ite ID:	M	W-117		Sampler	,	N	Michael C	lavton	
Project Numl			-2764-00			Date:		2022		-				ssociates	, Ltd.
Site Descripti				<u> </u>	I					1	U				
Weather:	011	cloudy	/rainv		Air	Temp. (°F):	55	Wind	l:		nor	th at 8 m	oh	
Site type:			J			l casing				diameter	r	-	inches	2	Well
Monitorir Productio			Extraction Borehole	Well	V I	PVC						00			locked?
			pring			Steel ron		-	Total	depth fr	om I		feet		✔ Yes
Other:	C		1 0			Other:			TOC	below/a	bove	ground	feet		No
Damages/rep	airs need	led:						1						1	.1
Water Level	Data														
Measuring po				Wat	er level	meter:		otech/K ron Dip				ech/Kec st 101	k 200' D0th	or:	
North rim o		_		Pre	-purge	Pre-	purge	· ·	ring	Pur	-	Aft		.	
Other:					nitial		mation		ging	en		samp		Rema	arks
Date		nm/dd/y	/y		4/2022		2022		2022	4/6/2		4/6/2			
Time 24-hour 1521 1225 1252 Depth to Water feet 17.31 17.14 17.14										130		132			
					7.31	17	.14	17	.14	17.	14	17.	14		
Product/Thick	tiness L	NAPL/I	ONAPL fe	et											
Field Data						<u> </u>									
Field data me		G	Hach 2	100P T1	ırhidim		ump de Perist	escriptio	on:				ailer desc	ription: ble polye	thylene
✓ YSI MPS 5		Ľ	HF Scie						dedica	ited /	portat			ble Teflo	
Other:			Other:					ersible	_				Disposal	ole PVC	
Purge depth	feet		_			purging								2	
Casing vol.	gallons			r		T	r		r		meter	of well	(inches)	$]^2 \times 0.040$	
Time	24-hou) 1235	1240	1245	1250	1255	1300	130)5				Rema	rks
Purge vol.	gallons		100	100	190	190	190	100	10	0					
Purge rate pH	mL/mii su	n 190 6.8	190 6.6	190 6.4	6.4	6.4	6.5	190 6.5	19 6.:						
Temp.	°℃	17.2		16.5	16.3	16.4	16.3	16.3	16.						
Conductivity	μS/cm	488		490	489	489	489	489	48						
DO	mg/L	1.1	0.5	0.4	0.3	0.3	0.4	0.4	0.4						
ORP	mV	104.		108.5	105.7	103.1	100.3	99.2	96.						
Turbidity	NTU	8.8	3.1	2.7	2.5	2.5	2.6	2.9	2.2	2					
Color/tint		clea	r clear	clear	clear	clear	clear	clear	cle	ar					
Odor		non	e none	none	none	none	none	none	nor	ne					
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	red			R	emarks		
MW-117			4/6/202	2 1	315	3		0							
MW-117 DU	Р		4/6/202	2 1	320	3		0							
		0		<u>c 1 1</u>	<u>01</u>			a 1	c.						
Sampler's Na	me (prin	t):	Ν	/ichael	Claytor	1		Sample	er Sigi	nature:		trai	nscribed l	эу HLF	

Facility:	Plum	Point E	nergy Sta	ation	S	ite ID:	MV	V-118		Sam	pler:	Ν	Micha	el C	layton	
Project Numb	ber: I	R14590-	2764-00	1 (EPA)) [Date:	4/7/2	2022		Sam	pler Orgar	nization	: FTN	N As	sociates,	Ltd.
Site Descripti	on															
Weather:		clea	ır		Air	Temp. (°F):	53	Wir	nd:		wes	t at 14	4 mp	bh	
Site type:					We	l casing	materi	al:	Wel	l diar	meter		inch	es	2	Well
Monitorir Productio			xtraction orehole	Well		PVC			Tote	al der	oth from T		feet			locked?
Dewaterin			pring			Steel fron			100	u uop		50	icci		[✓ Yes
☐ Other:						Other:			TO	C belo	ow/above g	ground	feet			□No
Damages/rep	airs need	led:											1			
Water Level	Data															
Measuring po				Wat	er level	meter:		otech/K ron Dir			☐Geote ✓Solin			, Othe		
North rim o		-		Pre	e-purge	Pre-	purge	-	ring	1	Purge	Aft			4.	
Other:					nitial		mation		ging		end	samp			Rema	arks
Date		nm/dd/y	у		4/2022		2022	4/7/	2022	2	4/7/2022	4/7/2				
Time		4-hour			1458		015)38		1045	110				
Depth to Wate		eet			6.20	17	.93	17	7.90		17.90	17.9	90			
Product/Thick	tness L	NAPL/I	NAPL fe	et												
Field Data																
Field data mer		Ŀ	Hach 2	100D T			ump de Perist		on:						ription:	11
YSI MPS 5		L L	HF Sci						dedio	cated	/ portab				ole polyet ole Teflor	
Other:			Other:					ersible							ole PVC	
Purge depth	feet		Well g	oes dry	during	purging	: 🗌 Y	es 🗸	No							
Casing vol.	gallons	_						(feet)]	×[ir	iterna	al diameter	of well	(inch	es)]	$^{2} \times 0.040$)8
Time	24-hour	: 1020	1025	1030	1035	1040	1045								Rema	rks
Purge vol.	gallons															
Purge rate	mL/mir	-	160	160	160	160	160									
pН	su	6.7	6.6	6.6	6.6	6.6	6.6		_							
Temp.	°C	16.1	16.1	16.1	16.1	16.3	16.2									
Conductivity DO	μS/cm	456 0.7	451 0.4	443 0.3	441 0.3	438 0.3	437 0.3									
ORP	mg/L mV	96.2		92.1	83.4	83.2	84.3									
Turbidity	NTU	2.8	2.3	2.5	2.2	1.9	2.2									
Color/tint		clear	-	clear	clear	clear	clear									
Odor		none		none	none	none	none									
L	I			I	1		1	_1				I	1			
	Sample Data Sample ID Date Time # Containers # Filtered Remarks															
MW-118			4/7/202		055	# Conta 3	uners	0	icu			K	CIIIai N	10		
			1, 1, 202			5		0								
)"				I												
Sampler's Na	me (prin	t):	Ν	Aichael	Claytor	n		Sampl	er Si	gnatu	ire:	trai	nscrib	ed b	y HLF	

Facility:	Plun	n Point I	Energy Sta	ation	S	ite ID:	MV	W-119		Sar	npler:	Ν	Michae	el Cl	ayton	
Project Numb	ber:	R14590	-2764-00	1 (EPA) [Date:	4/7/	2022		Sar	npler Orgar	nization	: FTN	Ass	sociates,	, Ltd.
Site Descripti	on															
Weather:		partly	cloudy		Air	Temp. (°F):	59	Wii	nd:		wes	t at 20	mp	h	
Site type:	XX 7 11		.	XX 7 11		ll casing	materi	al:	Wel	l dia	ameter		inche	es	2	Well
Monitorir Productio			Extraction Borehole	well		PVC Steel		-	Tota	al de	pth from T	C	feet			locked?
Dewaterin			Spring			fron		-			-			-		✓ Yes
☐ Other:						Other:			TO	C bel	low/above §	ground	feet			No
Damages/rep	airs nee	ded:														
Water Level										100		1 /77				
Measuring po				Wa	ter level	meter:		otech/K ron Dip			Geote	ech/Kec st 101	k 200' □C		r.	
North rim o		C		Pr	e-purge	Pre-	purge	1	ring	-	Purge	Aft				
Other:				i	nitial	confir	mation	n pur	ging		end	samp	ling		Rema	arks
Date		mm/dd/			4/2022		2022	4/7/		2	4/7/2022	4/7/2				
Time		24-hour			1422		205		217		1241	125				
Depth to Wate		feet			20.20	20	.58	20	.58		20.58	20.5	58			
Product/Thick	iness	LNAPL/	DNAPL fe	et												
Field Data								<u> </u>								
Field data mer		ſ	✔ Hach 2	100P T	urhidim		ump de Perist	escriptio	on:			Ba	ailer de Dispo		iption: le polyet	thylene
✓ YSI MPS 5		ĺ	HF Sci						ledi	cated	d / 🗌 portab	le]	Dispo	sabl	le Tefloi	
Other:		[Other:					ersible					Dispo	sabl	le PVC	
Purge depth	feet		-	•	-	purging		les 🖌	-						<u>, </u>	
Casing vol.	gallon			1	T	1	r	- F		ntern	al diameter	of well	(inche	es)] ²		
Time	24-hou		0 1215	1220	1225	1230	1235	1240							Rema	rks
Purge vol.	gallon		240	240	240	240	240	240	_							
Purge rate	mL/mi	in 240		240 6.4	240 6.4	240 6.5	240 6.6	240 6.6	_							
рН Тетр.	su °C	17.		0.4 17.7	17.7	17.7	0.0 17.6	17.6	-							
Conductivity	μS/cm			554	552	549	548	548								
DO	mg/L	1.6		0.9	0.8	0.7	0.7	0.7	_							
ORP	mV	135		94.0	98.4	95.6	92.5	86.8								
Turbidity	NTU	5.5		2.0	1.7	2.5	2.5	2.3								
Color/tint		clea	r clear	clear	clear	clear	clear	clear								
Odor		non	e none	none	none	none	none	none								
Sample Data						•	-				<u>.</u>					
	ole ID		Date]	Гime	# Conta	iners	# Filter	red			Re	emarks	s		
MW-119			4/7/202		250	3		0								
)																
Sampler's Na	me (pri	nt):	Ν	Michael	Clayto	n		Sample	er Si	gnat	ure:	trar	nscribe	ed by	y HLF	

First Half 2022 Verification Sampling Event

Groundwater Level Data Sheet

	Energy Station	R143 EPA Mea	ect Number: 590-2764-001 Program suring Device: nst 101		Investiga Michael (Page 1 of 1
Well ID	Date	Time	Depth to Water (feet below TOC)			Damages/Repair	S	
MW-101	6/20/2022	1125	15.09	Damaged well	ards	Damaged TOC Damaged lock Unkept vegetation	🗆 L	acks visibility acks access ee GW sample record
MW-102	6/20/2022	1131	16.71	Damaged well Damaged boll Damaged equi	l pad/casing ards	Damaged TOC Damaged lock Unkept vegetation		acks visibility acks access ee GW sample record
MW-103	6/20/2022	1114	15.98	Damaged well Damaged boll Damaged equi	ards	 □ Damaged TOC □ Damaged lock ⊠ Unkept vegetation 	🛛 L	acks visibility acks access ee GW sample record
MW-108	6/20/2022	0952	19.15	Damaged well Damaged boll Damaged equi	ards	 □ Damaged TOC □ Damaged lock ⊠ Unkept vegetation 	ΠL	acks visibility acks access ee GW sample record
MW-113	6/20/2022	0944	18.31	Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 		acks visibility acks access ee GW sample record
MW-115	6/20/2022	0937	17.89	Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 	ΠL	acks visibility acks access ee GW sample record
MW-116	6/20/2022	1129	16.73	Damaged well Damaged boll Damaged equi	ards	Damaged TOC Damaged lock Unkept vegetation		acks visibility acks access ee GW sample record
MW-117	6/20/2022	1142	15.37	Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 	ΠL	acks visibility acks access ee GW sample record
MW-118	6/20/2022	1053	13.95	Damaged well Damaged boll Damaged equi	ards ipment	 Damaged TOC Damaged lock Unkept vegetation 	🗆 L	acks visibility acks access ee GW sample record
MW-119	6/20/2022	1121	19.01	Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 	ΠL	acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	Damaged TOC Damaged lock Unkept vegetation		acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 		acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 	🗆 L	acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 	🗆 L	acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 		acks visibility acks access ee GW sample record
				Damaged well Damaged boll Damaged equi	ards	 Damaged TOC Damaged lock Unkept vegetation 		acks visibility acks access ee GW sample record

Facility:	Plum	Point B	Energy Sta	tion		Si	te ID:	M	<i>W</i> -117		San	npler:	N	Michae	el Cl	layton	
Project Numl	ber:	R14590	-2764-00	I (EF	PA)	D	ate:	6/20	/2022		San	npler Orgar	nization	: FTN	As	sociates,	, Ltd.
Site Descripti	on																
Weather:		cle	ar			Air 🛛	Гетр. ('	°F):	92	Win	d:		south	east at	5 n	nph	
Site type:	*** 11			*** 1			casing	materi	al:	Well	dia	meter		inche	es	2	Well
Monitorir Productio			Extraction Borehole	Wel	1	P P	VC teel			Tota	1 de	pth from T(C	feet			locked?
Dewaterin			Spring			_	on					-					✓ Yes
Other:							Other:			TOC	bel	low/above g	ground	feet			□No
Damages/rep	airs nee	ded:															
Water Level	Data																
Measuring po				V	Vater 1	evel	meter:		otech/k ron Dir			Geote	ech/Kec	k 200' □C			
North rim o		C		-	Pre-pu	irge	Pre-1	purge		ring	1	Purge	Aft		Jule	1.	
Other:					initi		confir			ging		end	samp			Rema	arks
Date	1	nm/dd/	уу		6/20/2	022	6/20/	/2022	6/20	/2022	2 (6/20/2022	6/20/2	2022			
Time		24-hour			114			250		323		1338	142				
Depth to Wate		eet			15.3	7	15	.37	15	5.37		15.37	15.	37			
Product/Thick	iness I	LNAPL/	DNAPL fe	et												<u> </u>	
Field Data																	
Field data me		Г	Hach 2	1000	Turk	dim		ump de Perist	escriptio	on:			Ba			iption:	thulono
✓ YSI ProPit		Ľ	Hach 2							dedic	ated	l / 🗌 portab	ole]			le polyet le Tefloi	
Other:		[Other:						ersible							le PVC	
Purge depth	feet		-		•		ourging			_							
Casing vol.	gallons			r								al diameter	of well	(inche	es)] ²		
Time	24-hou		5 1300	130	05 13	310	1315	1320	1325	5 13	30	1335				Rema	rks
Purge vol.	gallons				_					_							
Purge rate	mL/mi			15		50	150	150	150	_	50	150					
pН	su	4.7		4.		4.7	5.0	5.4	5.8	_	.7	5.8					
Temp.	°C	22.1 673		20. 59		0.1	20.1 585	20.3 586	20.1 586).3 84	20.3 586					
Conductivity DO	µS/cm mg/L	1.2		1.		1.0	1.0	0.9	0.9	_	.9	0.9					
ORP	mg/L mV	163.		163)9.8	69.1	56.9	39.1	37		28.9					
Turbidity	NTU	6.7		6.		5.5	5.9	6.9	6.5		.8	5.9					
Color/tint		clea		cle		lear	clear	clear			ear	clear					
Odor						one	none	none		-		none					
Sample Data	I	I		1			I	1		1		J I					
-	ole ID		Date		Time	e	# Conta	iners	# Filte	red			R	emark	s		
MW-117			6/20/202	22	1350		3		0								
MW-117 DU	P		6/20/202		1355		3		0								
EPA EB-1			6/20/202	22	141()	3		0								
)																	
Sampler's Na	me (prii	nt):	Ν	/icha	ael Cla	yton			Sampl	er Sig	gnati	ure:	trai	nscribe	ed b	y HLF	

Second Half 2022 Sampling Event

Groundwater Level Data Sheet

2022 Ground Weather Co	Energy Station	R143 EPA Mea	ect Number: 590-2764-001 Program suring Device: nst 101		Investiga Michael (Page 1 of 1
Well ID	Date	Time	Depth to Water (feet below TOC)			Damages/Repair	s	
MW-101	10/3/2022	1216	22.41	Damaged we Damaged bol	lards	Damaged TOC Damaged lock Unkept vegetation		Lacks visibility Lacks access See GW sample record
MW-102	10/3/2022	1229	25.50	Damaged wei Damaged bol	ll pad/casing lards	Damaged TOC Damaged lock Unkept vegetation		Lacks visibility Lacks access See GW sample record
MW-103	10/3/2022	1208	23.39	Damaged wei Damaged bol	ll pad/casing lards	Damaged TOC Damaged lock Unkept vegetation	\square	Lacks visibility Lacks access See GW sample record
MW-108	10/3/2022	1054	29.99	Damaged wei Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-113	10/3/2022	1049	28.47	Damaged weiling Damaged bol	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-115	10/3/2022	1040	27.28	Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-116	10/3/2022	1223	24.96	Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-117	10/3/2022	1237	24.01	Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-118	10/3/2022	1202	22.06	Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
MW-119	10/3/2022	1212	26.21	Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				 Damaged we Damaged bol Damaged equ 	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record
				Damaged we Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 		Lacks visibility Lacks access See GW sample record

Facility:	Plum	Point E	nergy Sta	ation	S	Site ID:	MV	V-101		San	npler:	Ν	Micha	el C	layton	
Project Numl	ber: I	R14590-	2764-00	1 (EPA) [Date:	10/5/	2022		San	npler Organ	ization	: FTN	N As	sociates,	, Ltd.
Site Descripti	on															
Weather:		cle	ar		Air	Temp. (°F):	65	Win	ıd:		south	east a	t 4 n	nph	
Site type:	XX 7 11	— -		XX 7 11		ll casing	materi	al:	Wel	l dia	meter		inch	es	2	Well
Monitorir Productio			xtraction	Well		PVC Steel		•	Tota	l der	pth from TO	C	feet			locked?
Dewaterin			pring			fron					-					✓ Yes
Other:						Other:			TOC	C bel	low/above g	ground	feet			□No
Damages/rep	airs need	led:														
Water Level																
Measuring po				Wa	ter level	meter:		otech/K ron Dir			Geote			,' Othe	·r.	
North rim o		-		Pr	e-purge	Pre-	purge	-	ring	<u> </u>	Purge	Aft			4.	
Other:				i	nitial	confi	mation	-	ging		end	samp			Rema	ırks
Date		nm/dd/y	у		/3/2022		/2022		/2022	2 1	10/5/2022	10/5/2				
Time		4-hour			1216		105		131		1139	115				
Depth to Wate		eet			22.41	22	2.50	22	2.56		22.56	22.5	56			
Product/Thick	tness L	NAPL/I	DNAPL fe	eet												
Field Data		<u> </u>													<u> </u>	
Field data me		L.	Hach 2	100P T	urbidim		ump de Perist		on:						ription: ole polyet	thylene
YSI MPS 5		Ĕ	HF Sci				Bladd	er [dedic	ated	l / 🗌 portab	le]	Disp	osab	le Teflor	
Other:			Other:					ersible					Disp	osab	ole PVC	
Purge depth	feet		-		-	purging			_						<u></u>	
Casing vol.	gallons				T			(feet)]	\times [in	terna	al diameter	of well	(inch	es)]		
Time	24-hou	: 1110	1115	1120	1125	1130	1135		_						Rema	rks
Purge vol.	gallons	2(0	2(0	260	2(0	2(0	2(0									
Purge rate	mL/min	n 260 6.6	260 6.2	260 6.1	260 6.2	260 6.2	260 6.2									
pH Temp.	su °C	19.7		18.9	18.9	18.9	18.7									
Conductivity	μS/cm	507	506	503	503	502	501									
DO	mg/L	1.2	1.1	1.1	1.3	1.3	1.3		+							
ORP	mV	-18.4		-32.5	-34.1	-35.8	-35.6									
Turbidity	NTU	7.7	3.8	2.8	2.8	2.0	2.0									
Color/tint		clear		clear	clear	clear	clear		1							
Odor		none	none	none	none	none	none									
Sample Data								-								
-	ole ID		Date]	Гime	# Conta	iners	# Filte	red			R	emark	s		
MW-101			10/5/202		143	3		0								
)																
Sampler's Na	me (prin	t):	Ν	Michael	Clayto	n		Sampl	er Sig	gnati	ure:	trai	nscrib	ed b	y HLF	

Facility:	Plum P	oint E	nergy Sta	tion	S	ite ID:	MV	W-102	2	Samp	pler:		Mich	ael C	layton	
Project Numb	ber: R	14590-	2764-001	I (EPA)	Γ	Date:	10/5/	2022	2	Samp	pler Or	ganizat	ion: FT	'N As	ssociates,	, Ltd.
Site Descripti	on															
Weather:		clea	r		Air	Temp. (°F):	79	Wind	1:		no	rtheast	at 4 r	nph	
Site type:						l casing	materi	al:	Well	diam	neter		inc	hes	2	Well
Monitorin			xtraction	Well				-	Total	dent	th from	TOC	fee	t		locked?
Dewaterin			pring			Steel ron		-								₽ Yes
Other:						Other:			TOC	belo	w/abov	e grou	nd fee	t		□No
Damages/rep	airs neede	ed:														
Water Level I																
Measuring por		otion:		Wate	er level	meter:		otech/K ron Dip				eotech/H linst 10	Keck 20	0']Othe		
North rim c				Pre	-purge	Pre-	purge	· ·	ring		Purge		After			
Other:					nitial		mation		ging		end		mpling		Rema	arks
Date		n/dd/y	y		3/2022		/2022	-	/2022	10	0/5/202		/5/2022			
Time		-hour			229		315	_	58		1422		1447	_		
Depth to Wate					5.50	25	.64	26	.35	_	26.35		26.33	_		
Product/Thick	iness LN	APL/C	NAPL fe	et												
Field Data Field data meters: Pump description: Bailer description:																
Field data met			Hach 2	100D T ₁	rhidim		ump de Perist		on:						ription: ole polye	thulono
✓ YSI MPS 5				entific T				ler [🗌 o	dedica	ated /	/ Dpor	table]			ole Tefloi	
Other:			Other:					ersible							ole PVC	
Purge depth	feet		-	•	-	purging		les 🔽	-							
Casing vol.	gallons			r	-	T			r		T I I I I I I I I I I I I I I I I I I I			hes)]	$^{2} \times 0.040$	
Time	24-hour	1320	1325	1330	1335	1340	1345	1350	135	55	1400	1405	1410		Rema	
Purge vol.	gallons									_						flow cell
Purge rate	mL/min	180	180	180	180	180	180	1890			50	50	50	betv	veen 135	0 & 1355
pН	su	5.7	5.5	5.4	5.6	5.7	5.9	5.9	6.		5.9	6.0	6.2			
Temp. Conductivity	°C μS/cm	20.2 495	19.5 497	19.4 497	19.5 504	19.6 511	19.7 518	19.5 521	18 52		19.2 523	20.2 523	20.4 524			
DO	mg/L	2.0	1.5	0.7	0.7	0.7	0.7	0.7	2.		0.9	0.9	0.9			
ORP	mV	-22.2	-23.0	-26.0	-32.7	-35.5	-40.9				-36.9	-44.3	-47.4			
Turbidity	NTU	6.0	6.1	9.9	10.8	9.4	7.1	4.6	4.		3.9	3.4	3.2			
Color/tint		clear	clear	clear	clear	clear	clear	clear	-		clear	clear	clear			
Odor		none	none	none	none	none	none	none			none	none	none			
Sample Data				•	•	•				<u> </u>				•		
	ole ID		Date	Т	ime	# Conta	iners	# Filter	red				Rema	·ks		
MW-102			10/5/202		428	3		0					1.011101			
Sampler's Na	me (print)):	N	/lichael	Claytor	1		Sample	er Sig	natur	re:		transcri	bed b	y HLF	

Facility:	Plum	Point E	nergy Sta	tion	S	ite ID:	M٧	W-102		Sa	ampler:	Ν	Michae	el C	layton	
Project Numb	per: F	R14590-	2764-001	(EPA)	D	ate:	10/5/	/2022		Sa	ampler Orgar	nization	: FTN	I As	sociates,	Ltd.
Site Descripti	on															
Weather:		clea	ar		Air	Гетр. (°F):	79	Wir	nd:		north	east at	t 4 n	nph	
Site type:		_			Wel	l casing	materi	al:	Wel	ll di	iameter		inch	es	2	Well
Monitorir			xtraction orehole	Well	P				Tot	h le	lepth from T		feet			locked?
Dewaterin			pring			teel ron			100	ui u			icci			✓ Yes
Other:						Other:			TO	Cb	elow/above g	ground	feet			No
Damages/rep	airs need	ed:														
Water Level	Data															
Measuring po				Wate	er level	meter:		otech/k								
Mark/notch				Dro	nurgo	Dro	∐He purge	ron Dip	per- ring		✓ Solin	st 101 Aft		Othe	er:	
Other:	100				purge itial		matior		ging		Purge end	samp			Rema	urks
Date	n	m/dd/y	у	10/3	3/2022		/2022	10/5			10/5/2022	10/5/2				
Time	2	4-hour		1	229	13	315	1.	358		1422	144	17			
Depth to Wate	er fe	et		25	5.50	25	6.64	26	5.35		26.35	26.3	33			
Product/Thick	tness L	NAPL/I	ONAPL fee	et												
Field Data																
Field data met YSI ProPlu YSI MPS 5	S	•	Hach 21 HF Scie			eter 🔽	Perist Bladd	ler [cate	ed /portab	ole]	Dispo Dispo	osab osab	iption: le polyet le Teflor	
Other:	-		Other:				-	ersible	1				Dispo	osab	le PVC	
Purge depth	feet			bes dry o				Yes 🔽							2	
Casing vol.	gallons	1 4 1 7		depth (feet) –	depth to	water	(feet)]	× [ir	nter	nal diameter	of well	(inch	es)]'		
Time	24-hour	-											т	71	Remai	rks flow cell
Purge vol.	gallons mL/min	50	50													0 & 1355
Purge rate pH	su	6.3	6.3											Jetw		J & 1555
Temp.	°C	20.6														
Conductivity	μS/cm	524	526													
DO	mg/L	0.8	0.7													
ORP	mV	-49.5														
Turbidity	NTU	2.7	2.7													
Color/tint		clear	· clear													
Odor		none	none													
Sample Data																
Samp	ole ID		Date	Ti	me	# Conta	iners	# Filte	red			Re	emark	S		
MW-102			10/5/202	2 14	428	3		0								
Sampler's Na	me (prin	t):	N	fichael (Claytor	1		Sampl	er Si	gna	ature:	trar	nscribe	ed b	y HLF	

Facility:	Plum	Point I	Energy Sta	ation	S	Site ID:	M١	W-103		San	npler:	Ν	Michae	l Clayton	
Project Numb	ber:]	R14590	-2764-00	1 (EPA	.) I	Date:	10/5/	2022		San	npler Orgar	nization	: FTN	Associates	s, Ltd.
Site Descripti	on														
Weather:		cle	ar		Air	Temp. (°F):	57	Wi	nd:		south	east at	1 mph	
Site type:	XX 7 11	— ,		XX 7 11		ll casing	materi	al:	We	l dia	meter		inche	s 2	Well
Monitorir			Extraction Borehole	Well		PVC Steel		-	Tot	al dei	pth from T(C	feet		locked?
Dewaterin			Spring			Iron		-			-				✓ Yes
_] Other:						Other:			TO	C bel	low/above g	ground	feet		□No
Damages/rep	airs nee	ied: We	ell lacks a	ccess											
			iii iuoko u												
Water Level															
Measuring po				Wa	ter leve	l meter:		otech/K ron Dip			Geote ✓ Solin	ech/Kec		ther:	
North rim o				Pr	e-purge	Pre-	purge	-	ring		Purge	Aft			
Other:					initial		mation	pur	ging		end	samp		Rem	arks
Date		nm/dd/	уу	10	/3/2022		/2022	10/5		2 1	10/5/2022	10/5/2			
Time		4-hour			1208		355		922		0938	095			
Depth to Wate		eet			23.39	23	8.41	23	5.70		23.70	23.7	/0		
Product/Thick	iness 1	LNAPL/	DNAPL fe	et											
Field Data Field data meters: Pump description: Bailer de											<u> </u>				
Field data mer		Г	Hach 2	100P T	urbidim		ump de Perist		on:			Ba		scription: sable polye	ethylene
YSI MPS 5		ĺ	HF Sci		Turbidi		Bladd	ler [dedi	cated	l /portab	le]	Dispos	sable Teflo	n
Other:			Other:					ersible	-				Dispos	sable PVC	
Purge depth	feet		-	-	-	purging		les 🔽							
Casing vol.	gallons									nterna	al diameter	of well	(inche		
Time	24-hou		5 0910	0915	0920	0925	0930	0935	,					Rem	arks
Purge vol.	gallons		270	270	270	140	140	140							
Purge rate pH	mL/mi su	6.5		6.2	6.2	6.2	6.3	6.3							
Temp.	°C	19.3		19.1	19.2	19.3	19.5	19.6							
Conductivity	μS/cm	375		374	373	374	374	375							
DO	mg/L	3.7	2.1	1.8	1.7	1.6	1.5	1.5							
ORP	mV	-27.	0 -34.2	-35.9	-36.7	-38.3	-39.6	-40.7	7						
Turbidity	NTU	31.0	5 22.2	15.0	15.2	11.5	9.4	9.1							
Color/tint		clea	r clear	clear	clear	clear	clear	clear	-						
Odor		non	e none	none	none	none	none	none	;						
Sample Data															
Samp	ole ID		Date	,	Гime	# Conta	ainers	# Filte	red			R	emarks		
MW-103			10/5/202	22	0943	3		0							
								~							
Sampler's Na	me (prir	it):	1	Michae	l Clayto	n		Sampl	er Si	gnatı	ure:	trai	nscribe	d by HLF	

Facility:	Plum l	Point E	nergy Sta	tion	S	ite ID:	MV	W-108	Ş	Sampler:		Ν	Micha	el C	layton	
Project Numb	ber: R	14590-	2764-00	I (EPA)	D	ate:	10/4/	2022	1	Sampler (Organiz	ation	: FTN	I As	sociates,	, Ltd.
Site Descripti	on															
Weather:		clea	ar		Air	Temp. ('	°F):	65	Wind	1:	ea	st-nor	theast	t at 5	5 mph	
Site type:					Wel	l casing	materi	al:	Well	diameter			inch	es	2	Well
Monitorin			xtraction orehole	Well	I I I				Total	depth fro	m TOO	-	feet			locked?
Dewaterin			pring			Steel ron		-	Total	deptil lite		-	icci			✓ Yes
Other:	-					Other:			TOC	below/ab	ove gro	ound	feet			No
Damages/rep	airs need	ed:														
Water Level	Data			n												
Measuring po Mark/notch				Wate	er level	meter:		otech/K ron Dip			Geotecl Solinst			, Othe	·r·	
North rim c				Pre	-purge	Pre-	purge		ring	Purg		Aft	_		4.	
Other:					nitial		mation		ging	end		samp			Rema	arks
Date		m/dd/y	у		3/2022		/2022	_	/2022	10/4/2		10/4/2				
Time		l-hour			054)50		07	114		121				
Depth to Wate					9.99	30	.11	30	.40	30.1	6	30.2	21			
Product/Thick	tness Li	NAPL/I	NAPL fe	et												
Field Data																
Field data met		Ŀ	Hach 2	100D T.	ubidina		ump de Perist	escriptio	on:						iption: le polye	thulana
YSI MPS 5				entific T					dedica	ated /]p	ortable				le polye	
Other:		<u> </u>	Other:					ersible							le PVC	
Purge depth	feet		Well g	oes dry	during	purging	: 🗌 Y	les 🔽	No							
Casing vol.	gallons		= [tota	l depth ((feet) –	depth to	water	(feet)]	× [int	ernal dian	neter of	f well	(inch	es)] ²	$^{2} \times 0.040$)8
Time	24-hour	1055	1100	1105	1110	1115	1120	1125	11.	30 1135	114	0 11	145		Rema	rks
Purge vol.	gallons							_								
Purge rate	mL/min	90	90	90	50	50	50	50	50		50		50			
pH	su	6.5	5.5	5.4	5.7	5.9	6.0	6.0	6.		6.2		5.2			
Temp.	°C	22.5	21.8	21.0	21.3	21.3	21.2	21.2	21		21.3		1.5			
Conductivity	µS/cm	631	647	667	674	676	685	688	68		692		90			
DO	mg/L	4.0	2.7	2.7	2.6	2.1	1.8	1.5	1.		1.3		.2			
ORP Turki ditu	mV NTU	37.3	-1.9 7.5	-1.0 4.0	-7.7 3.5	-14.3 2.8	-19.4 5.9		-22 6.				29.7 3.0			
Turbidity Color/tint		6.4 clear		4.0 clear	clear	clear	clear	6.1 clear			4.4 clea		ear			
Odor		none	_	none	none	none	none	none	-				one			
<u> </u>			none	none	none	none	none	none			non					
Sample Data					. [.									
	ole ID		Date			# Conta	iners	# Filte	red			Re	emark	S		
MW-108			10/4/202	22 1	253	3		0								
		1														
Sampler's Na	me (print):	Ν	Aichael	Claytor	1		Sample	er Sig	nature:		trar	nscrib	ed b	y HLF	

Facility:	Plum	Point E	nergy Sta	ation	S	ite ID:	MV	W-113		San	npler:	N	Micha	el C	layton	
Project Numl	ber:]	R14590	2764-00	1 (EPA)) E	Date:	10/4/	2022		San	npler Orgar	nization	: FTN	√ As	sociates,	, Ltd.
Site Descripti	on															
Weather:		cle	ar		Air	Temp. (°F):	62	Wir	nd:	(east-noi	rtheas	t at 4	4 mph	
Site type:	XX 7 11			XX 7 11		l casing	materi	al:	Wel	l dia	meter		inch	ies	2	Well
Monitorir Productio			xtraction	Well		PVC Steel		-	Tota	al dei	pth from T(C	feet			locked?
Dewaterin			pring			ron		-			-					✓ Yes
Other:						Other:			TOC	C bel	low/above g	ground	feet			No
Damages/rep	airs need	led:														
Water Level																
Measuring po				Wat	er level	meter:		otech/K ron Dip			Geote)' Othe	-r·	
North rim o				Pre	e-purge	Pre-	purge	· ·	ring	-	Purge	Aft	_			
Other:					nitial	confir	mation	-	ging		end	samp		\vdash	Rema	arks
Date		nm/dd/y	уy		3/2022		/2022		/202	2 1	10/4/2022	10/4/2				
Time		4-hour			1049		940		003		1019	104				
Depth to Wate		eet			28.47	28	3.57	28	8.57		28.57	28.:	57			
Product/Thick	tness I	NAPL/J	DNAPL fe	et												
Field Data								• .•								
Field data me		ſ	Hach 2	100P T	ırbidim		ump de Perist	escriptio altic	on:						ription: ble polyet	thvlene
YSI MPS 5		Ľ	HF Sci				Bladd	ler [dedic	cated	l /portab	le]	Disp	osab	ole Tefloi	
Other:	-		Other:					ersible	1				Disp	osab	ole PVC	
Purge depth	feet		-		-	purging			_						2	
Casing vol.	gallons	-		1	1				- F	terna	al diameter	of well	(inch	_es)]		
Time	24-hou		5 0950	0955	1000	1005	1010	1015)						Rema	rks
Purge vol. Purge rate	gallons mL/mii		160	160	160	160	160	160	-							
pH	su	6.5	6.4	6.5	6.4	6.4	6.4	6.4								
Temp.	°C	19.9		20.0	20.0	20.0	20.0	20.4								
Conductivity	μS/cm	450		447	447	447	449	447								
DO	mg/L	3.4	2.5	2.3	2.3	2.3	2.3	2.2								
ORP	mV	-4.3	-12.5	-16.1	-18.2	-19.9	-22.1	-24.0)							
Turbidity	NTU	3.6	2.9	2.9	2.3	2.6	3.9	2.5								
Color/tint		clea	clear	clear	clear	clear	clear	clear	:							
Odor		none	none	none	none	none	none	none	;							
Sample Data																
Samp	ole ID		Date	Γ	ïme	# Conta	ainers	# Filte	red			R	emark	s		
MW-113			10/4/202	22 1	023	3		0								
					~			~								
Sampler's Na	me (prin	t):	Ν	Michael	Claytor	1		Sample	er Sig	gnatı	ure:	trai	nscrib	ed b	by HLF	

Facility:	Plun	n Point	Energy	Stati	on	S	ite ID:	M١	W-115	2	Sampler	:		Micha	el C	layton	
Project Numl	ber:	R1459)-2764-	001 ((EPA)	Ľ	Date:	10/3/	2022	Ś	Sampler	Orga	nizatio	n: FTN	J As	sociates,	Ltd.
Site Descripti	on																
Weather:		cl	ear			Air	Temp. (°F):	77	Wind	l:	1	north-n	ortheas	st at	9 mph	
Site type:						Wel	l casing	materi	al:	Well	diamete	er		inch	es	2	Well
Monitorir			Extract Boreho		Vell				-	Total	depth f	rom T	00	feet			locked?
Dewaterin			Spring				Steel ron		-		_						✔ Yes
_] Other:							Other:			TOC	below/a	above	ground	l feet			No
Damages/rep	airs nee	eded: w	asps in	well	area	•											
			usps in		ureu												
Water Level					1												
Measuring po	int desc	cription:			Wat	er level	meter:		otech/K ron Dip			Geot Solin		eck 200	, Dthe		
North rim o					Pre	-purge	Pre-	purge	-	ring		rge	1	fter		1.	
Other:						nitial		mation		ging		nd		pling		Rema	urks
Date		mm/dd/	′yy		10/	3/2022	10/3	/2022	10/3	/2022	10/3/	2022		/2022			
Time		24-hour	-		-	040		340	-	113		42		452			
Depth to Wate		feet				7.28	27	.28	27	.28	27	.28	27	.28			
Product/Thick	iness	LNAPL	DNAPL	feet.													
Field Data																	
Field data me			✔ Hacl	n 210)0P T1	urhidim		ump de Perist	escriptio	on:			E	Bailer d		iption: le polyet	thylene
YSI MPS 5			HF S	Scien		urbidir	neter	Bladd	ler [dedica	ited /	portal	ole]	Dispo	osab	le Tefloi	
Other:	1		Othe						ersible	_				Dispo	osab	le PVC	
Purge depth	feet			-			purging		les 🖌	-						<u>,</u>	
Casing vol.	gallon							1							es)]	$^{2} \times 0.040$	
Time	24-ho		50 135	55	1400	1405	1410	1415	1420	142	25 14	30 1	435	1440		Rema	rks
Purge vol.	gallon mL/m		0 24	0	240	240	240	240	240	24	0 24	0 2	240	240			
Purge rate pH	mL/m	in 24			6.2	6.2	6.2	6.3	6.4	6.4			5.6	6.7			
Temp.	°C	18.			18.4	18.3	18.2	18.2	18.6					18.6			
Conductivity	μS/cm				622	620	619	620	617	61				618			
DO	mg/L	4.			4.0	4.0	4.0	3.8	3.6	3.			3.4	2.9			
ORP	mV	21.	0 16	9	12.7	11.4	8.8	6.9	2.4	-0.	7 -1	.9 -	3.5	-8.0			
Turbidity	NTU	5.2	2 2.	9	2.5	2.1	2.2	2.1	1.9	2.	2 1.	9 3	3.0	2.3			
Color/tint		cle	ar cle	ar	clear	clear	clear	clear	clear	cle	ar cle	ar c	lear	clear			
Odor							none	none	none	noi	ne no	ne n	one 1	none			
Sample Data																	
Samp	ole ID		Da	te	Т	ime	# Conta	iners	# Filte	red			ŀ	Remark	S		
MW-115			10/3/	2022	1	448	3		0								
				_		~1				~ .							
Sampler's Na	me (pri	nt):		Mi	chael	Claytor	1		Sample	er Sigi	nature:		tra	anscrib	ed b	y HLF	

Facility:	Plum	Point E	nergy Sta	ation	S	ite ID:	M١	<i>N</i> -116		Sar	mpler:	Ν	Michae	el Cla	iyton	
Project Numb	ber: H	R14590	2764-00	1 (EPA)	I	Date:	10/5/	/2022		Sar	mpler Organ	nization	: FTN	Ass	ociates,	, Ltd.
Site Descripti	on															
Weather:		cle	ar		Air	Temp. (°F):		Wi	nd:						
Site type:		_			We	ll casing	materi	al:	We	l dia	ameter		inche	es	2	Well
Monitorir			xtraction	Well		PVC			Tot	al da	epth from T		feet			locked?
Dewaterin			pring			Steel Iron			100	ai uc			icci			✓ Yes
Other:						Other:			TO	C be	low/above g	ground	feet			No
Damages/rep	airs need	led: wa	one in we	ll area												
		vv a	sps in we	ii aica												
Water Level	Data															
Measuring po				Wat	er leve	meter:		otech/k ron Dip			' ☐Geoto ✓Solin	ech/Kec		Other		
North rim o		-		Pre	e-purge	Pre-	purge		ring	-1	Purge	Aft		liei		
Other:					nitial		mation		ging		end	samp			Rema	arks
Date	n	nm/dd/y	уy	10/	/3/2022	10/5	/2022	10/5	/202	2	10/5/2022	10/5/2	2022			
Time		4-hour			1223	12	205	12	223		1242	125	59			
Depth to Wate		eet			24.96	25	5.12	25	5.12		25.12	25.	12			
Product/Thick	tness L	NAPL/I	DNAPL fe	et												
Field Data																
Field data met		-		1000 0	1 · 1·			escripti	on:			Ba	ailer de			1 1
YSI ProPlu ✓ YSI MPS 5		L <u>e</u>	Hach 2 HF Sci	entific T			Perist Bladd		dedi	cated	d / 🗌 portab	ole 1			e polyet e Teflor	
Other:	00	Ē	Other:		urorun			ersible							e PVC	-
Purge depth	feet		-	-	-	purging		les 🔽								
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [ir	ntern	al diameter	of well	(inche	$es)]^2$	× 0.040)8
Time	24-hour	: 1210) 1215	1220	1225	1230	1235	1240)						Rema	rks
Purge vol.	gallons															
Purge rate	mL/mir			300	300	300	300	300								
рН	su	6.5	6.0	5.8	6.0	6.0	6.2	6.2	_							
Temp.	°C	19.9		19.1	19.2	19.5	19.6	19.6	_							
Conductivity	μS/cm	442	442	444	446	446	448	447								
DO	mg/L	2.0	1.5	1.5	1.4	1.4	1.4	1.3								
ORP Turbi ditu	mV	9.3	-16.7	-22.9	-28.3	-31.1	-36.7		,							
Turbidity Color/tint	NTU	4.9 clea	3.4 clear	3.0 clear	5.1 clear	3.5 clear	3.3 clear	2.5 clear			+					
Odor		none		none	none	none	none		-							
L		none	none	none	none	none	none	none								
Sample Data		<u> </u>														
	ole ID		Date		ime	# Conta	iners	# Filte	red			R	emarks	5		
MW-116			10/5/202	22 1	253	3		0								
Sampler's Na	me (nrin	t):	Ν	Michael	Clavto	n		Sampl	er Si	gnat	ture:	trai	nscribe	ed by	HLF	
Sumptor 5 Nd	me (prin	•)•	1	menael	Ciuyio			Sumpi	51 01	onal		uai	1501100	u Uy	111/1	

Facility:	Plum	Point E	Energy Sta	tion	S	ite ID:	M	W-117		Sa	mpler:	Ν	Michael (Clayton	
Project Numb	ber: I	R14590	-2764-001	(EPA)) I	Date:	10/5/	/2022		Sa	mpler Organ	ization	: FTN A	ssociates	, Ltd.
Site Descripti	on														
Weather:		cle	ar		Air	Temp. (°F):	80	Wir	nd:		eas	st at 4 mp	h	
Site type:		_			Wel	l casing	materi	al:	Wel	l di	ameter		inches	2	Well
Monitorir			Extraction Borehole	Well	I	PVC		-	Tote	1 d	epth from T		feet		locked?
Dewaterin			Spring			Steel fron		_	1012	ii u		λ.	icci		✓ Yes
Other:						Other:		1	ТОС	C be	elow/above g	ground	feet		No
Damages/rep	airs need	led:												1	
Water Level	Data														
Measuring po				Wat	er level	meter:		otech/K							
Mark/notch		_		Pre	e-purge	Pre-	UHe purge	ron Dip Dur		·1	✓ Solin Purge	st 101 Aft	Oth er	er:	
Other:					nitial		matior				end	samp		Rem	arks
Date	n	nm/dd/y	уу	10/	/3/2022	10/5	/2022	10/5/	202	2	10/5/2022	10/5/2	2022		
Time	2	4-hour			1237	15	530	15	53		1607	163	37		
Depth to Wate		eet		2	24.01	24	.21	24.	.21		24.21	24.2	21		
Product/Thick	tness L	NAPL/I	DNAPL fe	et											
Field Data															
Field data me								escriptio	n:			Ba	iler desc		
YSI ProPlu		Lu L	Hach 2 HF Scie				Perist		ledia	cate	d / 🗌 portab	1e 1 🗖		ble polye ble Teflo	
Other:	50	Ľ	Other:	intine i	urorun			ersible	ieur	cute			Disposa		
Purge depth	feet		Well g	oes dry	during	purging	: 🗆 Y	les 🗸	No						
Casing vol.	gallons		= [tota	depth	(feet) –	depth to	o water	(feet)] >	× [in	nteri	nal diameter	of well	(inches)	$]^2 \times 0.04$	08
Time	24-hou	r 153:	5 1540	1545	1550	1555	1600	1605						Rema	rks
Purge vol.	gallons														
Purge rate	mL/mii			310	310	310	310	310							
pH	su	6.1	5.3	5.2	5.4	5.6	5.7	5.7							
Temp.	°C	19.5		18.8	18.8	18.8	18.8	18.5							
Conductivity	μS/cm	416		406	410	411	409	410	_						
DO	mg/L	2.6		2.5	2.5	2.5	2.6	2.6	_						
ORP Truti ditu	mV	-3.2		-27.7	-32.7	-36.2 2.4	-37.9								
Turbidity Color/tint	NTU	2.3 clea		2.4 clear	2.0 clear	clear	2.1 clear	1.9 clear							
Odor		none		none	none	none	none								
<u>l</u>		non		none	none	none	none	none							
Sample Data															
	ole ID		Date		ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-117	<u> </u>		10/5/202		613	3		0							
MW-117 DUI EPA EB	ſ		10/5/202		616 645	3		0	\neg						
			10/3/202		043	3		U							
Sampler's Na	me (prin	t):	Ν	Iichael	Claytor	n		Sample	r Si	gna	ture:	trar	nscribed	by HLF	

Facility:	Plum	Point E	nergy Sta	tion	S	ite ID:	M١	W-118		San	npler:	N	Aichael (Clayton	
Project Numb	oer: R	14590-	2764-00	l (EPA)	D	ate:	10/5/	/2022		San	npler Organ	ization	: FTN A	ssociates	, Ltd.
Site Descripti	on														
Weather:		clea	r		Air	Temp. (°F):	43	Wir	nd:	V	vest-nor	thwest a	t 1 mph	_
Site type:				W-11		l casing	materi	al:	Wel	l dia	ameter		inches	2	Well
Monitorir			xtraction orehole	wen	I I I	VC Steel			Tota	ıl de	pth from T	DC	feet		locked?
Dewaterin		$\Box S_{j}$	oring			ron		-			-				₽ Yes
☐ Other:						Other:			ГОС	C bel	low/above g	ground	feet		No
Damages/rep	airs need	ed: Yell	ow jacke	et nest ir	n well a	rea									
Water Level I Measuring po		ntion		Wat	ar laval	meter:		otech/K	ack	100'	Geote	och/Kec	k 200'		
Mark/notch				vv at		meter.		ron Dip					C 200 □Oth	er:	
North rim o	of TOC				-purge		purge	Dur	ing		Purge	Aft	er		
Other:					nitial		mation		-		end	samp	-	Rema	arks
Date		m/dd/y	у		3/2022		/2022	10/5/		2	10/5/2022	10/5/2			
Time		4-hour			202		750	08			0828	084			
Depth to Wate Product/Thick		et	NAPL fe		2.06	22	2.19	22.	21		22.21	22.2	21		
Product/Thick	liess L	NAPL/L	NAPL IE	el											
Field Data							1	• ,•					.1 1	• .•	
Field data me		l v	Hach 2	100P Tu	ırbidim		ump de Perist	escriptio altic	n:				iler desc Disposa	ble polye	thvlene
YSI MPS 5			HF Scie	entific T		neter	Bladd	ler [🗌 d	edic	cated	1 /portab	le]	Disposa	ble Teflo	
Other:			Other:					ersible					Disposa	ble PVC	
Purge depth	feet		-		-			les 🔽						2	
Casing vol.	gallons		1			T	T		< [in	tern	al diameter	of well	(inches)		
Time	24-hour	0800	0805	0810	0815	0820	0825							Rema	rks
Purge vol.	gallons	210	210	210	210	210	210								
Purge rate pH	mL/min	210 5.8	210 5.9	210 6.0	210 6.0	210 6.0	6.1								
Temp.	su °C	17.0	17.1	17.4	17.3	17.3	17.6								
Conductivity	μS/cm	429	421	420	418	415	414								
DO	mg/L	5.9	5.1	4.6	4.0	3.8	3.6								
ORP	mV	9.7	-5.5	-11.2	-14.8	-18.3	-21.4								
Turbidity	NTU	8.6	2.8	2.0	3.0	2.3	2.4								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-118			10/5/202	22 0	833	3		0							
Sampler's Na	me (print	:):	Ν	Aichael	Claytor	ı		Sample	r Si	gnati	ure:	trar	nscribed	by HLF	

Facility:	cility: Plum Point Energy Station								W-119 Sampler: Michael Clayton					layton				
Project Numb	Project Number: R14590-2764-001 (EPA)							10/5/	/2022		Sampler Organization: FTN Associates, Ltd.						, Ltd.	
Site Description																		
Weather:	Air	Temp. (Temp. (°F): 64 Wind: south-southe							st at 2 mph								
Site type:							ll casing	al:	Wel	l di	ameter		inche	es	2	Well		
Monitorir Productio	Well		PVC Steel		F	Tota	al de	epth from T	C	feet			locked?					
Dewaterin				rehole ring			Iron					-					✓ Yes	
☐ Other:			Other:			TO	C be	elow/above g	ground	feet			□No					
Damages/rep	airs neo	eded:																
Water Level Data																		
Measuring point description:Water level meter:Geotech/Keck 100'Geotech/Keck 200'Mark/notch on TOCHeron Dipper–TSolinst 101Other:																		
North rim o					P	e-purge	Pre-	purge	Du	-	-1	Purge	Aft					
Other:						initial		matior		-		end	samp			Rema	arks	
Date		mm/dd			10	0/3/2022		/2022	10/5/		2	10/5/2022	10/5/2					
Time		24-hou	ır			1212		005		31		1043	105					
Depth to Wate		feet	(5.)			26.21	26	5.33	26	.33		26.33	26.3	33				
Product/Thickness LNAPL/DNAPL feet																		
Field Data			-										<u> </u>					
Field data mer				Hach 2	100P 7	urbidin		ump de Perist	escriptio	n:			Ba	ailer de		iption: le polyet	thylene	
✓ YSI MPS 5				HF Scie						ledio	cate	d / 🗌 portab	le]	Dispo	sabl	le Tefloi		
Other:				Other:		Submersible Disposable PVC												
Purge depth	feet			-	Well goes dry during purging: Yes Vo										<u></u>			
Casing vol.	gallon			r	= [total depth (feet) – depth to water						ntern	nal diameter	of well	(inche	$(s)]^2$			
Time	24-ho		10	1015	1020	1025	1030	1035	1040							Rema	rks	
Purge vol.	gallon		20	280	280	200	200	200	200									
Purge rate pH	mL/m su	1n 20 6.		6.2	6.1	6.1	6.2	6.3	6.2									
Temp.	°C	20		19.3	19.5			19.6	19.5									
Conductivity	μS/cm			563	562	557	554	550	549									
DO	mg/L	1.		1.2	1.2	1.1	1.0	0.9	0.9									
ORP	mV	5.	.7	-7.1	-12.7	-20.7	-25.1	-26.5	-27.9									
Turbidity	NTU	6.	.2	5.6	4.2	3.8	2.8	2.9	2.7									
Color/tint		cle	ear	clear	clear	clear	clear	clear	clear									
Odor		no	ne	none	none	none	none	none	none									
Sample Data																		
Sample ID Date				Time	# Conta	iners	# Filter	Filtered Remarks				5						
MW-119				0/5/202	2	1048	3		0									
Somular's N-	ma (nt).		•	fich-				Com-1	C'	<u>an -</u>	turo	J		41			
Sampler's Name (print):Michael ClaytonSampler Signature:transcribed by HLF										gna								

Second Half 2022 Verification Sampling Event

Groundwater Level Data Sheet

2022 Ground Weather Co	Energy Station	R143 s EPA Mea	ect Number: 590-2764-001 Program suring Device: ast 101		Investiga Michael (Page 1 of 1							
Well ID	Date	Time	Depth to Water (feet below TOC)	Damages/Repairs									
MW-101	12/15/2022	1031	25.63	Damaged wel	lards	Damaged TOC Damaged lock Unkept vegetation	Lacks visibility Lacks access See GW sample record						
MW-102	12/15/2022	1036	28.72	Damaged well Damaged bol Damaged equ	l pad/casing lards	Damaged TOC Damaged lock Unkept vegetation	Lacks visibility Lacks access See GW sample record						
MW-103	12/15/2022	1021	25.64	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 	 □ Lacks visibility ⊠ Lacks access □ See GW sample record 						
MW-108	12/15/2022	0937	31.85	 Damaged well Damaged boll Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-113	12/15/2022	0931	30.70	Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-115	12/15/2022	0925	29.10	 Damaged well Damaged boll Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-116	12/15/2022	1035	28.24	 Damaged well pad/casing Damaged bollards Damaged equipment 		 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-117	12/15/2022	1043	27.19	Damaged well pad/casing Damaged bollards Damaged equipment		 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-118	12/15/2022	1014	25.23	Damaged well pad/casing Damaged bollards Damaged equipment		 Damaged TOC Damaged lock Unkept vegetation 	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record						
MW-119	12/15/2022	1026	29.10	 Damaged well Damaged boll Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 	 ☐ Lacks visibility ☐ Lacks access ☐ See GW sample record 						
				 Damaged well Damaged boll Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 	 ☐ Lacks visibility ☐ Lacks access ☐ See GW sample record 						
				 Damaged wel Damaged bol Damaged equipart 	lards	 Damaged TOC Damaged lock Unkept vegetation 	 Lacks visibility Lacks access See GW sample record 						
				 Damaged wel Damaged bol Damaged equipart 	lards	 Damaged TOC Damaged lock Unkept vegetation 	□ Lacks visibility □ Lacks access □ See GW sample record						
				 Damaged wel Damaged bol Damaged equipart 	lards	 Damaged TOC Damaged lock Unkept vegetation 	 □ Lacks visibility □ Lacks access □ See GW sample record 						
				Damaged well Damaged bol Damaged equ	lards	 Damaged TOC Damaged lock Unkept vegetation 	 Lacks visibility Lacks access See GW sample record 						
				 Damaged well Damaged boll Damaged equilibrium 	lards	 Damaged TOC Damaged lock Unkept vegetation 	 Lacks visibility Lacks access See GW sample record 						

Facility: Plum Point Energy Station								D: MW-108 Sampler: Michael Clayton					Clayton				
Project Number: R14590-2496-001 (EPA)								12/15	5/2022		Sampler Organization: FTN Associates, Ltd.						
Site Description																	
Weather: partly cloudy							Temp. (°F): 46 Wind: west-south						thwest at	est at 11 mph			
Site type:						Wel	l casing	materi	al:	We	ll dia	ameter		inches	2	Well	
Monitoring Well Extraction W Production Well Borehole						V			Tot	ما ام	pth from	TOC	feet		locked?		
Dewatering Well Spring							Steel ron		100		purnom	100	ieei	-	✓ Yes		
Other:	-			-			Other:			ТО	C bel	low/above	e ground	feet		No	
Damages/repairs needed:																	
Water Level Data																	
	Measuring point description: Water level meter: Geotech/Keck 100' Geotech/Keck 200'																
Mark/notch					Dro	purge	Dro	UHe purge	ron Di	pper- iring		Purge	inst 101 Aft	Oth	er:		
Other:	л 10 с	-				itial		matior		rging		end	samp		Rem	arks	
Date		mm/	dd/yy	/	12/1	5/2022				000							
Time		24-h	our		0	937	12	200									
Depth to Wate	to Water feet				3	1.85	.85 31.88										
Product/Thickness LNAPL/DNAPL feet																	
Field Data																	
Field data meters: Pump description: Bailer description:																	
YSI ProPlu			F	Hach 21			Perist		c Disposable polyethyle								
Other:	50			Other:	nine i	ific Turbidimeter Bladder [dedicated / portable] Disposable Teflon Submersible Disposable PVC									11		
Purge depth	feet			Well go	oes dry during purging: Yes No												
Casing vol.	gallo	ıs		= [total	depth (feet) –	depth to	o water	(feet)])] × [internal diameter of well (inches)] ² × 0.0408							
Time	24-hc	our													Rema	ırks	
Purge vol.	gallo	18															
Purge rate	mL/n	nin															
рН	su																
Temp.	°C																
Conductivity	µS/cr																
DO	mg/L																
ORP	mV																
Turbidity	NTU																
Color/tint																	
Odor																	
Sample Data																	
Sample ID Date			Ti	me	e # Containers		# Filte	ered	Remarks								
MW-108			1	2/15/202	2 12	200	0		0		Insu	ifficient w	ater quan	tity to co	ollect sam	ple.	
/																	

Sampler's Name (print):	Michael Clayton	Sampler Signature:	transcribed by HLF
-------------------------	-----------------	--------------------	--------------------

Facility:	Facility: Plum Point Energy Station Si									V-108 Sampler: Michael Clayton							
Project Numb	Project Number: R14590-2496-001 (EPA)							1/11/	/2023		Sampler Organization: FTN Associates, Ltd.					, Ltd.	
Site Description																	
Weather:		clo		Air	Air Temp. (°F): 67 Wind: south-southwest							thwest	at 14	mph			
Site type:						Wel	1 casing	materi	al:	We	ll di	ameter		inche	s	2	Well
Monitoring Well Extraction W					Vell		PVC						00	feet			locked?
Dewaterin			Spring				Steel	-	Total depth from T			00	leet			✓ Yes	
Other:	C		1 0				Other:			TO	C be	elow/above	ground	feet			No
Damages/rep	airs nee	ded:													I		
Water Level Data																	
Measuring po	Measuring point description: Water level meter: Geotech/Keck 100' Geotech/Keck 200' Mark/notch on TOC Heron Dipper–T Solinst 101 Other:																
North rim of		C			Pre	-purge	Pre-	purge		ring		Purge	Aft		iner:		
Other:						nitial		matior		ging		end	samp			Rema	arks
Date	1	mm/dd/	′уу		1/1	1/2023	1/11	/2023	1/11			1/11/2023	1/11/2	2023			
Time	,	24-houi			1	255	13	350	14	423		1433	144	49			
Depth to Wate		feet			2	9.44	29	.44	29	0.64		29.69	29.	73			
Product/Thick	iness 1	LNAPL	/DNAPI	L feet													
Field Data																	
Field data me		-							escription	on:			Ba	ailer des			
						ırbidim `urbidir		Perist		dedi	cate	d / Dportal	ale 1	Dispos Dispos			thylene
Other:	50		Oth		itilie I	fic Turbidimeter Bladder [dedicated / portable] Disposable Teflon Submersible Disposable PVC									.1		
Purge depth	feet		We	ell goes dry during purging: Yes No													
Casing vol.	gallons	s	= [t	total	depth	(feet) –	depth to	water	(feet)]	× [iı	nteri	nal diameter	of well	(inches	$s)]^2 \times$	0.040)8
Time	24-hou	ır 140	0 14	05	1410	1415	1420	1425	1430)						Rema	rks
Purge vol.	gallons	s															
Purge rate	mL/mi				35	35	35	35	35								
pН	su	6.8			6.8	6.8	6.8	6.8	6.8	_							
Temp.	°C	19.		9.3	19.2	19.1	19.0	19.2	19.5	_							
Conductivity	μS/cm				732	727	711	709	708	_							
DO	mg/L	3.1			1.5	1.2	1.1	0.9	1.0	_							
ORP Truch i ditar	mV	95.			52.8	52.9	48.9 4.6	44.7	41.4								
Turbidity Color/tint	NTU	20. clea	_	.3	7.1 clear	5.1 clear	4.0 clear	3.4 clear									
Odor		nor			none	none	none	none									
L		non		inc	none	none	none	none	none	, 							
Sample Data			_														
Sample ID			ate		ime	# Containe		# Filte	red	Remarks No sample bottles collected, just field data.							
MW-108			1/11/	/2023	1	435	0		0		INO	sample bot	ues colle	ected, ji	1St 116	ela dat	la.
)																	
Sampler's Na	Sampler's Name (print): Michael Clayton Sampler Signature: transcribed by HLF											trai	nscribed				

Groundwater Sampling Record

Facility: Plum Point Energy Station Site ID: MW-119 Sampler: Michael Clayton															
Project Numb	ber: R	14590	2496-00	I (EPA)	D	Date:	12/16	/2022		Sar	mpler Orgar	nization	: FTN A	ssociates	, Ltd.
Site Descripti	on														
Weather:		clou	dy		Air	Temp. (°F):	42	Wir	nd:		wes	t at 14 m	nph	
Site type:		_			Wel	l casing	materi	al:	Wel	l dia	ameter		inches	2	Well
Monitorin			xtraction orehole	Well	I I I			Total depth from TOC				feet		locked?	
Dewaterin			pring			Steel ron					-				₽Yes
☐ Other:						Other:			TOC	C be	low/above g	ground	feet		No
Damages/rep	airs need	ed:											•		•
Water Level I															
Measuring por				Wate	er level	meter:					' ☐Geote ✓Solin	ech/Kec	k 200' Oth	or	
Image: Mark/notch on TOCImage: Heron Dipper-TImage: Solinst 101Other:Image: North rim of TOCPre-purgePre-purgeDuringPurgeAfter															
Other:Ite pargeDuringPargeIte pargeOther:initialconfirmationpurgingendsamplingRemarks								arks							
Date		m/dd/y	у		5/2022		5/2022	12/1		2 1	12/16/2022	12/16/	2022		
Time		4-hour			026		110	_	147						
Depth to Water feet 29.10 29.00 29.00															
Product/Thickness LNAPL/DNAPL feet															
Field Data															
Field data meters: YSI ProPlus					ırbidim		ump de Perist	escription altic	on:			Ba	iler desc Disposa	cription: ble polye	thylene
YSI MPS 5		Ē	HF Sci	entific T			Bladd	ler [dedic	cated	d / 🗌 portab	le]	Disposa	ble Teflo	
Other:			Other:					ersible					Disposa	ble PVC	
Purge depth	feet		-	•	-	purging								_2	
Casing vol.	gallons			r	r	T	r	r		tern	al diameter	of well	(inches)		
Time	24-hour	1115	1120	1125	1130	1135	1140	1145	,					Rema	rks
Purge vol.	gallons mL/min	190	190	190	190	190	190	190							
Purge rate pH	mL/min su	6.9	6.9	6.9	6.9	6.9	6.9	6.9							
Temp.	°C	16.3		16.5	16.8	16.6	16.8	16.8							
Conductivity	μS/cm	582	588	585	594	598	596	595							
DO	' mg/L	1.1	0.9	0.8	0.7	0.9	0.8	0.9							
ORP	mV	162.	3 155.2	98.7	71.5	65.9	55.3	53.4							
Turbidity	NTU	3.7	2.7	2.5	2.9	2.5	2.1	2.1							
Color/tint		clear	clear	clear	clear	clear	clear	clear	r						
Odor	Odor none none none none none														
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filte	red			R	emarks		
MW-119			12/16/20	22 1	145	0		0		No	sample bott	les colle	ected, jus	st field da	ta.
Q., 1. 2. 23		<u>)</u> .	-	<i>C</i> 1 7	<u> </u>			G. 1					., .	1 111 5	
Sampler's Na	Sampler's Name (print):Michael ClaytonSampler Signature:transcribed by HLF														

APPENDIX B

Laboratory Reports

First Half 2022 Sampling Event

Pace Analytical® ANALYTICAL REPORT April 19, 2022

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1480403 04/08/2022 R14590-2794-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2794-001

SDG: L1480403

DATE/TIME: 04/19/22 13:56

PAGE: 1 of 26

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1480403-01	6
MW-102 L1480403-02	7
MW-103 L1480403-03	8
MW-108 L1480403-04	9
MW-113 L1480403-05	10
MW-115 L1480403-06	11
MW-116 L1480403-07	12
MW-117 L1480403-08	13
MW-118 L1480403-09	14
MW-119 L1480403-10	15
MW-117 DUP L1480403-11	16
EPA EB L1480403-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	20
Metals (ICP) by Method 6010B	22
GI: Glossary of Terms	23
Al: Accreditations & Locations	24
Sc: Sample Chain of Custody	25

SDG: L1480403 DATE/TIME: 04/19/22 13:56 **PAGE**: 2 of 26

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-101 L1480403-01 GW			Michael Clayton	04/07/22 13:40	04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 14:41	04/12/22 14:41	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:16	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1480403-02 GW			Michael Clayton	04/06/22 15:00	04/08/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 14:55	04/12/22 14:55	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:18	ZSA	Mt. Juliet, TN
MW-103 L1480403-03 GW			Collected by Michael Clayton	Collected date/time 04/07/22 11:50	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:09	04/12/22 15:09	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:21	ZSA	Mt. Juliet, TN
MW-108 L1480403-04 GW			Collected by Michael Clayton	Collected date/time 04/05/22 13:40	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
vietnou	Batch	Dilution	date/time	date/time	Andiyst	LUCATION
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:22	04/12/22 15:22	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 16:41	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-113 L1480403-05 GW			Michael Clayton	04/05/22 12:30	04/08/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:36	04/12/22 15:36	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:24	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-115 L1480403-06 GW			Michael Clayton	04/05/22 11:15	04/08/22 09	.30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:49	04/12/22 15:49	LBR	Mt. Juliet, TN

PROJECT: R14590-2794-001 SDG: L1480403 DATE/TIME: 04/19/22 13:56 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

MW-116 L1480403-07 GW			Collected by Michael Clayton	Collected date/time 04/06/22 16:20	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 16:03	04/12/22 16:03	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:29	ZSA	Mt. Juliet, TN
WW-117 L1480403-08 GW			Collected by Michael Clayton	Collected date/time 04/06/22 13:15	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 17:11	04/12/22 17:11	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:32	ZSA	Mt. Juliet, TN
WW-118 L1480403-09 GW			Collected by Michael Clayton	Collected date/time 04/07/22 10:55	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 17:52	04/12/22 17:52	LBR	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:40	ZSA	Mt. Juliet, TN
VW-119 L1480403-10 GW			Collected by Michael Clayton	Collected date/time 04/07/22 12:50	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:06	04/12/22 18:06	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:43	ZSA	Mt. Juliet, TN
MW-117 DUP L1480403-11 GW			Collected by Michael Clayton	Collected date/time 04/06/22 13:20	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:19	04/12/22 18:19	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:45	ZSA	Mt. Juliet, TN
EPA EB L1480403-12 GW			Collected by Michael Clayton	Collected date/time 04/07/22 14:15	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:33	04/12/22 18:33	LBR	Mt. Juliet, TN

SDG: L1480403 DATE/TIME: 04/19/22 13:56

Ср

²Tc

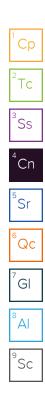
Ss

°Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1480403

DATE/TIME: 04/19/22 13:56 PAGE: 5 of 26

SAMPLE RESULTS - 01 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	388000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	848	J	379	1000	1	04/12/2022 14:41	WG1847040	CII
Fluoride	228		64.0	150	1	04/12/2022 14:41	WG1847040	5
Sulfate	7630		594	5000	1	04/12/2022 14:41	WG1847040	ဳSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Boron	59.7	J	20.0	200	1	04/18/2022 17:16	WG1846822	
Calcium	105000		79.3	1000	1	04/18/2022 17:16	WG1846822	

ʹQc

Gl

Â

SAMPLE RESULTS - 02 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cr	С
Analyte	ug/l		ug/l		date / time		2	7
Dissolved Solids	442000		10000	1	04/09/2022 13:23	WG1845847	Тс	2

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn
Chloride	1910		379	1000	1	04/12/2022 14:55	WG1847040	
Fluoride	142	J	64.0	150	1	04/12/2022 14:55	WG1847040	5
Sulfate	79000		594	5000	1	04/12/2022 14:55	WG1847040	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	83.8	J	20.0	200	1	04/18/2022 17:18	WG1846822
Calcium	110000		79.3	1000	1	04/18/2022 17:18	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 03 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— [Ср
Analyte	ug/l		ug/l		date / time		E	2
Dissolved Solids	278000		10000	1	04/09/2022 13:23	WG1845847		Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4
Chloride	926	J	379	1000	1	04/12/2022 15:09	WG1847040	
Fluoride	128	J	64.0	150	1	04/12/2022 15:09	WG1847040	5
Sulfate	7840		594	5000	1	04/12/2022 15:09	WG1847040	Šr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	55.2	J	20.0	200	1	04/18/2022 17:21	WG1846822
Calcium	71600		79.3	1000	1	04/18/2022 17:21	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 04 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	478000		10000	1	04/10/2022 16:48	WG1846171	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	1380		379	1000	1	04/12/2022 15:22	WG1847040		CII
Fluoride	138	J	64.0	150	1	04/12/2022 15:22	WG1847040		5
Sulfate	24000		594	5000	1	04/12/2022 15:22	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	132	J	20.0	200	1	04/18/2022 16:41	WG1846822
Calcium	151000	$\underline{\vee}$	79.3	1000	1	04/18/2022 16:41	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 05 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	326000		10000	1	04/09/2022 13:23	WG1845847	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		4	\sim_n
Chloride	1320		379	1000	1	04/12/2022 15:36	WG1847040		
Fluoride	84.6	J	64.0	150	1	04/12/2022 15:36	WG1847040	5	
Sulfate	5700		594	5000	1	04/12/2022 15:36	WG1847040	Ś	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	74.7	J	20.0	200	1	04/18/2022 17:24	WG1846822
Calcium	81800		79.3	1000	1	04/18/2022 17:24	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 06 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	374000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn	
Chloride	976	J	379	1000	1	04/12/2022 15:49	WG1847040		
Fluoride	165		64.0	150	1	04/12/2022 15:49	WG1847040	5	
Sulfate	4950	<u>J</u>	594	5000	1	04/12/2022 15:49	WG1847040	[°] Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	42.4	J	20.0	200	1	04/18/2022 17:26	WG1846822
Calcium	102000		79.3	1000	1	04/18/2022 17:26	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 07 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		 2
Dissolved Solids	338000		10000	1	04/10/2022 16:48	WG1846171	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	[
Analyte	ug/l		ug/l	ug/l		date / time		[4 Cn
Chloride	2640		379	1000	1	04/12/2022 16:03	WG1847040		CII
Fluoride	132	J	64.0	150	1	04/12/2022 16:03	WG1847040		5
Sulfate	55600		594	5000	1	04/12/2022 16:03	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	84.2	J	20.0	200	1	04/18/2022 17:29	WG1846822
Calcium	81400		79.3	1000	1	04/18/2022 17:29	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 08 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	341000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	875	J	379	1000	1	04/12/2022 17:11	WG1847040		CII	
Fluoride	91.6	J	64.0	150	1	04/12/2022 17:11	WG1847040		5	
Sulfate	9030		594	5000	1	04/12/2022 17:11	WG1847040		ဳSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	73.8	J	20.0	200	1	04/18/2022 17:32	WG1846822
Calcium	93100		79.3	1000	1	04/18/2022 17:32	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 09 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	320000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	926	J	379	1000	1	04/12/2022 17:52	WG1847040		CII	
Fluoride	129	J	64.0	150	1	04/12/2022 17:52	WG1847040		5	
Sulfate	17600		594	5000	1	04/12/2022 17:52	WG1847040		ဳSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	57.3	J	20.0	200	1	04/18/2022 17:40	WG1846822
Calcium	85200		79.3	1000	1	04/18/2022 17:40	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 10 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	397000		10000	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	1820		379	1000	1	04/12/2022 18:06	WG1847040		Сп
Fluoride	195		64.0	150	1	04/12/2022 18:06	WG1847040		5
Sulfate	37100		594	5000	1	04/12/2022 18:06	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.0	J	20.0	200	1	04/18/2022 17:43	WG1846822
Calcium	107000		79.3	1000	1	04/18/2022 17:43	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 11 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	344000		10000	1	04/09/2022 13:23	WG1845847	ЪС

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn
Chloride	1060		379	1000	1	04/12/2022 18:19	WG1847040		CII
Fluoride	92.5	J	64.0	150	1	04/12/2022 18:19	WG1847040		5
Sulfate	9310		594	5000	1	04/12/2022 18:19	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.1	J	20.0	200	1	04/18/2022 17:45	WG1846822
Calcium	92900		79.3	1000	1	04/18/2022 17:45	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 12 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	- Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	ND		10000	1	04/09/2022 13:23	WG1845847	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	U		379	1000	1	04/12/2022 18:33	WG1847040	CII
Fluoride	U		64.0	150	1	04/12/2022 18:33	WG1847040	5
Sulfate	U		594	5000	1	04/12/2022 18:33	WG1847040	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	04/18/2022 17:48	WG1846822
Calcium	U		79.3	1000	1	04/18/2022 17:48	WG1846822

Qc

Gl

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

L1480403-01,02,03,05,06,08,09,11,12

Method Blank (MB)

Method Blank (MB)						
(MB) R3780075-1 04	/09/22 13:23						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Dissolved Solids	U		10000	10000			

L1478933-01 Original Sample (OS) • Duplicate (DUP)

L1478933-01 Ori	ginal Sample	(OS) • Du	olicate (OUP)			
OS) L1478933-01 04/0	09/22 13:23 • (DU	P) R3780075-3	3 04/09/22	2 13:23			
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		Ж	
Dissolved Solids	573000	572000	1	0.175		5	

L1480461-03 Original Sample (OS) • Duplicate (DUP)

L1480461-03 Ori	iginal Sample	(OS) • Dup	plicate (DUP)			⁷ Gl
(OS) L1480461-03 04/	/09/22 13:23 • (DUP) R3780075-4	4 04/09/22	2 13:23			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	3790000	3730000	1	1.73		5	⁹ So

Laboratory Control Sample (LCS)

(LCS) R3780075-2 04	/09/22 13:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8710000	99.0	77.4-123	

DATE/TIME: 04/19/22 13:56

PAGE: 18 of 26 [°]Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480403-04,07,10

Method Blank (MB)

(MB) R3780062-1 04/10/	22 16:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1479870-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1479870-04 04	1/10/22 16:48 • (DUP) R3780062-3	3 04/10/22	16:48		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1620000	1660000	1	2.74		5

L1480590-05 Original Sample (OS) • Duplicate (DUP)

L1480590-05 O	riginal Sample	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1480590-05 04	4/10/22 16:48 • (DUF	P) R3780062-	4 04/10/22	2 16:48			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	976000	940000	1	3.76		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3780062-2 0	4/10/22 16:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8330000	94.7	77.4-123	

DATE/TIME: 04/19/22 13:56 Тс

Ss

Cn

Sr

Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1480403-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3780665-1 04/12/2	22 10:18					
	MB Result	MB Qualifier	MB MDL	MB RDL	2	
Analyte	ug/l		ug/l	ug/l	⁻Tc	
Chloride	U		379	1000		
Fluoride	U		64.0	150	³ Ss	
Sulfate	U		594	5000	00	

L1480389-01 Original Sample (OS) • Duplicate (DUP)

100	1 1 1 1 0 0 0 0 0 0 1	04/40/00 44.50	(DUP) R3780665	0 04/40	100 10.10
1()~	$M = 14 \times 03 \times 9_{-}01$	112/17/7711.68		$- \prec () \perp / / $	
100	J LI-00303 01	0-1/12/22 11.00 -	(000) 1000000	5 0 - 12/	22 12.12

()	· · · ·					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	121000	123000	1	1.36	E	15
Fluoride	224	307	1	31.1	<u>P1</u>	15
Sulfate	U	U	1	0.000		15

L1480403-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1480403-08 04/12/22 17:11 • (DUP) R3780665-6 04/12/22 17:25										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Chloride	875	861	1	1.65	J	15				
Fluoride	91.6	101	1	10.2	J	15				
Sulfate	9030	9220	1	2.13		15				

Laboratory Control Sample (LCS)

_CS) R3780665-2 04/12/22 10:32										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Chloride	40000	37700	94.1	80.0-120						
Fluoride	8000	7840	98.0	80.0-120						
Sulfate	40000	37800	94.5	80.0-120						

ACCOUNT:
Plum Point Services Co., LLC

PROJECT: R14590-2794-001

SDG: L1480403

DATE/TIME: 04/19/22 13:56

PAGE: 20 of 26 ⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1480403-01.02.03.04.05.06.07.08.09.10.11.12

L1480389-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480389-04 04/12/22 12:52 • (MS) R3780665-4 04/12/22 13:06 • (MSD) R3780665-5 04/12/22 13:20												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	13800	63800	62100	100	96.7	1	80.0-120			2.70	15
Fluoride	5000	75.7	4790	4650	94.3	91.5	1	80.0-120			3.01	15
Sulfate	50000	40900	89700	85100	97.7	88.5	1	80.0-120			5.25	15

L1480403-08 Original Sample (OS) • Matrix Spike (MS)

(OS) L1480403-08 04/12/2	22 17:11 • (MS) R	3780665-7 04	/12/22 17:38				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	875	48700	95.7	1	80.0-120	
Fluoride	5000	91.6	4770	93.5	1	80.0-120	
Sulfate	50000	9030	56500	95.0	1	80.0-120	

DATE/TIME: 04/19/22 13:56

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1480403-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Method Blau	K (IVIB)				
(MB) R3782457-1	04/18/22 16:36				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		20.0	200	
Calcium	U		79.3	1000	

Laboratory Control Sample (LCS)

(LCS) R3782457-2 (04/18/22 16:38					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	969	96.9	80.0-120		
Calcium	10000	9940	99.4	80.0-120		

L1480403-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480403-04 04/18/22 16:41 • (MS) R3782457-4 04/18/22 16:46 • (MSD) R3782457-5 04/18/22 16:48												⁸ Al	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	132	1110	1130	97.6	99.5	1	75.0-125			1.74	20	Sc
Calcium	10000	151000	157000	158000	66.7	72.0	1	75.0-125	V	$\underline{\vee}$	0.342	20	

ACCOUNT:
Plum Point Services Co., LLC

DATE/TIME: 04/19/22 13:56 ¹Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Quanner	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1480403 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1480403 PAGE: 24 of 26

Τс

Ss

Cn

Sr

Qc

Gl

AI

			Billing Infor	mation:					An	alvsis / Con	tainer / P	reservative	In the second	Chain of Cust	ody Page of
Company Name/Address: Plum Point Services C	, LLC		Accounts P.O. Box	s Payable 567		Pres Chk			22					(A	Pace OPLE ADVANCING SCIENCE
2739 SCR 623 Osceola, AR 72370				AR 72370	1										IJULIET, TN
Report to: Dana Derrington			Email To: d assoc.com	lld@ftn-assoc.com;ajp@ftn-assoc.com;	om									Submitting a sam constitutes ackno	d Mount Juliet, TN 37122 ple via this chain of custody weledgment and acceptance of the Conditions found at:
Project Description: Plum Point Energy Station		ILILV/State				Please Circle: PT MT CT ET								https://info.pace terms.pdf	labs.com/hubfs/pas-standard-
Phone: 501-920-9642	Client Project R14590-27			Lab Project # NAESOAR-P	UMPOINT		VoPres	s	EONH-					SDG #	32
Collected by (print):	Site/Facility I) #		P.O. # 2021-00048	3		HDPE-N	NoPre	IHDPE-					10000000000000000000000000000000000000	NAESOAK T175308
Collected by (signature)		ay 5 Da			ults Needed	No. of	SO4 125mlHDPE-NoPres	250mIHDPE-NoPres	I B, Ca 250mlH					Prelogin: PM: 134 - PB: BF	P914886 Mark W. Beasley 3/28/27 ia: FedEX Ground
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS	Total					Remar	ks Sample # (lab only)
MW-101	GRAB	GW		4/2/20	2 1340	3	X	X	X						- 01
MW-102		GW		4/6/22	1500	3	X	X	X						- 02
MW-103		GW		4/7/22	2 1150	3	X	X	X						- 0'
MW-108		GW		4/5/22	1340	/ 3	X	X	X						- 01
MW-113		GW		4/5/22	1230	3	X	X	X						6
MW-115		GW		4/5/22	1115	3	X	X	X						- 00
MW-116		GW		4/6/22	1620	3	X	X	X						= 00
MW-117		GW		4/6/20	1315	3	X	X	X			•			- 09
MW-118		GW		4/7/2	2 105	5 3	X	X	X						-10
MW-119	V	GW		4/7/20	2 1250	2 3	X	X	X					Sample Recei	nt Checklist
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		Cemp	COC Bott Corr	Seal Present/Ir Signed/Accurate les arrive inta ect bottles use icient volume s	itact: _NPN ict:N ict:N ict:N ict:N
DW - Drinking Water OT - Other	Samples returne UPSFedB	ExCouri			ceived by: (Sign	and a state of the	538	522	22	.4 Trip Blank	Received		VOA Pres RAD		Licable Y_N ht/Checked: Y_N
Relinquished by : (Signature) Relinquished by : (Signature)	(p	Date: 4/1/0 Date:	12 1	730	ceived by: (Sig					ters.A	to c	HCL / Meoh TBR Bottles Receive	1		by Login: Date/Time
Relinquished by : (Signature)		Date:	Tir	me: Re			hature)	A	'n	278	22	Time:	30 Hold		Condition: NCF // OK

Billing Information:									Ar	nalvsis / Container / Preservative					Chain of Custody Page 🕰 of 🕰				
Company Name/Address: Plum Point Services Co	., LLC		Accounts P.O. Box	Payable		Pres Chk									_ 4	Pace.			
2739 SCR 623 Osceola, AR 72370				AR 72370									200802			DILE ADVANCING SCIENCE			
Report to: Dana Derrington			Email To: dl assoc.com;	ld@ftn-assoc.com ajp@ftn-assoc.co	om										Submitting a sam constitutes ackno Pace Terms and 0	d Mount Juliet, TN 37122 ple via this chain of custody wledgment and acceptance of t conditions found at:	the		
Project Description: Plum Point Energy Station		City/State Collected:			Please Ci PT MT C			COLUMN T									https://info.pace terms.pdf	abs.com/hubfs/pas-standard-	0
Phone: 501-920-9642	Client Project R14590-27			Lab Project # NAESOAR-P	LUMPOINT		SO4 125mlHDPE-NoPres	s	E-HNO3						SDG # Table #	98090	2		
Collected by (print): MictAel Closton	Site/Facility ID)#		P.O. # 2021-00048	1		HDPE-P	250mIHDPE-NoPres	250mIHDPE						Acctnum: Template:	NAESOAR			
Collected by (signature):	Rush? (I	Lab MUST Be ay Five	e Notified) Day	Quote #			25mlt	HDPE-							Prelogin:	914886 Mark W, Beasley			
Immediately Packed on Ice N Y	Next Da Two Da Three D	y 10 0	iy (Rad Only) Day (Rad Only)	Date Resu	Its Needed	No. of		250mll	B, Ca						PB: Bt	3/28/20 a: FedEX Ground	2		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS	Total						Remar		100000		
MW-117 DUP	GRAD	GW		4/6/22	1320	3	X	X	X							-11			
EPA EB	1	GW		4/7/2:	2 14/5	3	X	X	X X							-12			
		GW				3	X	X	X					Tex.					
							Service of the servic												
														Province Province					
											A DECEMBER								
	Remarks:			_								Temp			Sample Receip eal Present/In	ot Checklist	N		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks.									pH Flow		_ Other		COC S Bottl Corre	igned/Accurate es arrive inta ct bottles use cient volume s	t:	N N N N		
WW - WasteWater DW - Drinking Water OT - Other	Samples returne UPSFedE	d via: ix Couri	er		cking # 57		53	82:	222	24	nk Recei	ved: Ve	5/100	VOA Z Prese	If Appl ero Headspace: rvation Correc	icable t/Checked:	NNN		
Relinquished by : (Signature)	-	Date: 4/7/	5.	1730	ceived by: (Sigr					Прыа	6 No o	- н т	ICL / MeoH BR as Received:		ervation required	hr:1 by Login: Date/Time	e		
Relinquished by : (Signature)		Date:	Tin	ne: Re	ceived by: (Sign	nature)				Tetor	10-20	25	36						
Relinquished by : (Signature)		Date:	Tin	ne: Re		oy: (Sign	(ud	h	2018	122	Time	930	Hold:		Conditio NCF / E			

First Half 2022 Verification Sampling Event

Pace Analytical® ANALYTICAL REPORT July 13, 2022

FTN Associates - Little Rock, AR

Sample Delivery Group: Samples Received: Project Number: Description:

L1507713 06/22/2022 R14590-2764-001 PPES DEQ Program

Report To:

Dana Derrington 3 Innwood Circle, Suite 220 Little Rock, AR 72211

Тс Ss Cn Śr ʹQc Gl AI Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: FTN Associates - Little Rock, AR

PROJECT: R14590-2764-001

SDG: L1507713

DATE/TIME: 07/13/22 17:25 PAGE: 1 of 13

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-117 L1507713-01	5
MW-117 DUP L1507713-02	6
EPA EB-1 L1507713-03	7
Qc: Quality Control Summary	8
Gravimetric Analysis by Method 2540 C-2011	8
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L1507713

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time	
MW-117 L1507713-01 GW			Michael Clayton	06/20/22 13:50	06/22/22 09	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 21:36	07/09/22 21:36	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:34	CCE	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-117 DUP L1507713-02 GW			Michael Clayton	06/20/22 13:55	06/22/22 09	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 21:48	07/09/22 21:48	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:42	CCE	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
EPA EB-1 L1507713-03 GW			Michael Clayton	06/20/22 14:10	06/22/22 09	2/22 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 22:27	07/09/22 22:27	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:15	CCE	Mt. Juliet, TN	

SDG: L1507713 Ср

Tc

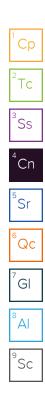
Ss

Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1507713

SAMPLE RESULTS - 01

Collected date/time: 06/20/22 13:50

	Re	esult	Qualifier	RDL	Dilution	Analys	is	Batch	
Analyte	u	g/l		ug/l		date / t	ime		
Dissolved Solids	31	18000		10000	1	06/26/	2022 16:17	WG1885678	
Wet Chemistry b	y Method	9056A							
	Result	Qualifie	r MDL	RDL		Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l			date / time		
Sulfate	9630		594	5000)	1	07/09/2022 21:36	WG1892248	
Metals (ICP) by N	Aethod 60	10B							
	Result	Qualifie	r MDL	RDL		Dilution	Analysis	Batch	
	ug/l		ug/l	ug/l			date / time		
Analyte			79.3	1000		1	07/07/2022 11:34	WG1889898	

AI

SAMPLE RESULTS - 02 L1507713

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011											
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср			
Analyte	ug/l		ug/l		date / time		-	2			
Dissolved Solids	314000		10000	1	06/26/2022 16:17	WG1885678		Tc			

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn	
Sulfate	9650		594	5000	1	07/09/2022 21:48	WG1892248	CII	

Metals (ICP) by Method 6010B

Metals (ICP)	by Method 6010	ЭВ						⁵Sr
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l	ug/l		date / time		[°] Qc
Calcium	92200		79.3	1000	1	07/07/2022 11:42	WG1889898	

GI

Â

SAMPLE RESULTS - 03 L1507713

Gravimetric Analysis by Method 2540 C-2011

	, ,							'Cn
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte		ug/l		ug/l		date / time		2
Dissolved Solids		ND		10000	1	06/26/2022 16:17	WG1885678	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Sulfate	U		594	5000	1	07/09/2022 22:27	WG1892248		CII		

Metals (ICP) by Method 6010B

Metals (ICP)	by Method 601	OB						⁵Sr
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l	ug/l		date / time		[°] Qc
Calcium	U		79.3	1000	1	07/07/2022 11:15	WG1889898	

GI

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blank	(MB)								
(MB) R3810200-1 06/26/22 16:17									
	MB Result	MB Qualifier	MB MDL	MB RDL		2			
Analyte	ug/l		ug/l	ug/l		Tc			
Dissolved Solids	U		10000	10000					
						³ Ss			

L1506994-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1506994-01 06/	/26/22 16:17 • (DUF	P) R3810200-3	06/26/22	16:17		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	730000	766000	1	4.81		5

L1506994-06 Original Sample (OS) • Duplicate (DUP)

L1506994-06 O	506994-06 Original Sample (OS) • Duplicate (DUP)											
(OS) L1506994-06 06	DS) L1506994-06 06/26/22 16:17 • (DUP) R3810200-4 06/26/22 16:17											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD nits		⁸ Al				
Analyte	ug/l	ug/l		%								
Dissolved Solids	677000	703000	1	3.67				⁹ So				

Laboratory Control Sample (LCS)

(LCS) R3810200-2 06	(LCS) R3810200-2 06/26/22 16:17												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	ug/l	ug/l	%	%									
Dissolved Solids	2440000	2440000	100	81.5-118									

DATE/TIME: 07/13/22 17:25 Cn

Sr

Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blar	ik (MB)				
(MB) R3813831-1	07/09/22 10:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Sulfate	U		594	5000	

L1507324-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1507324-14 07/09/2	IS) L1507324-14 07/09/22 18:37 • (DUP) R3813831-3 07/09/22 18:50												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte	ug/l	ug/l		%		%							
Sulfate	43000	42500	5	1.10		15							

⁺Cn

Sr

L1507713-02 Original Sample (OS) • Duplicate (DUP)

L1507713-02 O	riginal Sample	(OS) • Dup	olicate (DUP)						
(OS) L1507713-02 07/09/22 21:48 • (DUP) R3813831-6 07/09/22 22:01										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Sulfate	9650	9690	1	0.376		15				

Laboratory Control Sample (LCS)

(LCS) R3813831-2 07/09/2	(LCS) R3813831-2 07/09/22 10:18												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	ug/l	ug/l	%	%									
Sulfate	40000	38800	97.1	80.0-120									

L1507324-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1507324-14 07/09/2	(OS) L1507324-14 07/09/22 18:37 • (MS) R3813831-4 07/09/22 19:03 • (MSD) R3813831-5 07/09/22 19:15												
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits													
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Sulfate	50000	43000	89800	90000	93.7	94.1	5	80.0-120			0.190	15	

L1507713-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1507713-02 07/09/22 21:48 • (MS) R3813831-7 07/09/22 22:14										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	ug/l	ug/l	ug/l	%		%				
Sulfate	50000	9650	59600	99.9	1	80.0-120				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
FTN Associates - Little Rock, AR	R14590-2764-001	L1507713	07/13/22 17:25	9 of 13

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blar	ik (IVIB)								
(MB) R3812040-1 07/07/22 11:10									
	MB Result	MB Qualifier	MB MDL	MB RDL		2			
Analyte	ug/l		ug/l	ug/l		Tc			
Calcium	U		79.3	1000					
						³ Ss			

Laboratory Control Sample (LCS)

(LCS) R3812040-2 07/0	S) R3812040-2 07/07/22 11:12							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Calcium	10000	10200	102	80.0-120				

L1507713-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1507713-03 07/07/2	(OS) L1507713-03 07/07/22 11:15 • (MS) R3812040-4 07/07/22 11:21 • (MSD) R3812040-5 07/07/22 11:23											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	U	10100	10000	101	100	1	75.0-125			0.0844	20

Cn

Sr

[°]Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: R14590-2764-001 SDG: L1507713 DATE/TIME: 07/13/22 17:25 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1507713

ompany Name/Address:			Billing Infor	mation:		1		2. 2.	A	nalvsis /	Contair	er / Prese	rvative			_ Chain of Custody	Page of
TN Associates - Little Rock, AR Innwood Circle, Suite 220 Ittle Rock, AR 72211		3 Innwood Circle, Suite 220 Little Rock, AR 72211							efati-							ADVANCING SCIENCE	
eport to:			Email To: d	ld@ftn-assoc.co	m			1.50								MT JL 12065 Lebanon Rd Mo	JLIET, TN
Dana Derrington								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second							Submitting a sample via	
roject Description: PPES DEQ Program		City/State Collected:	scealo		Please Ci PT MT	TET										Pace Terms and Condit https://info.pacelabs.co terms.pdf	ions found at: om/hubfs/pas-standard-
hone: 479-571-3334	Client Project R14590-27			Lab Project # FTNLRAR-R	145902764		res	12 Section	03							SDG # LIF	507713
collected by (print):	Site/Facility ID #		5	A. A		E-NoP	es	PE-HN							Acctnum: FTN	B091	
Immediately		ay Five I y 5 Day	e Day ay (Rad Only) Date Results Needed				125mlHDPE-NoPres	1L-HDPE NoPres	250miHDPE-HNO3				1			Template: T211316 Prelogin: P932397 PM: 134 - Mark W. Beasley	
		Three Day		Date Time		of Cntrs	Sulfate 1	TDS 1L-H	otal Ca	Total Ca			-			PB: Shipped Via: Remarks	Sample # (lab only)
IW-117			T	1/201	120-1	1.	X St	X	ĭ ×					77			
	Grab	GW		6/20/2	a the second second second	3	-								an start	1	-0
1W-117 DUP		GW		1 1	1355	3.	X	X	X				21	el.			-02
PA EB-1	V	GW	1.1.1	$ $ \vee	1410	3	X	X	X	104							-03
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	GW	N. TEASON P.			3	X	X	X							1	
					-	-		1.124									
								1.16.4							18		
		-														1 de la com	
	1					12	1										
						18		/									-
		I	1							1					Samo	le Receipt Ch	ecklist +
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:						È :			pH Flow		_ Temp_ _ Other		COC St Bottle Correc	eal Pr igned/ es arr ct bot	Accurate: ive intact: tles used:	
DW - Drinking Water Samples returned via UPS FedEx					king # 5	119	le	194	16	75-	3		~	VOA Ze	ero He	volume sent: <u>If Applicab</u> eadspace: on Correct/Che	Y N
Relinquished by : (Signature)	Di	ate: 6/211	22 Time	:	eived by: (Signa	ture)				Trip Blan	k Recei	ed: Yes HC TB	L/MeoH	RAD So	creen	<0.5 mR/hr:	ZY_N
Relinquished by : (Signature)	D	ate:	Time		eived by: (Signa	ture)			1.1.1.1	Temp: DRAT	123	C Bottles	Received:	If prese	ervatio	n required by Log	gin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Rec	eived for lab by	: (Signat	tupete	ar	Colorist Constitution of the	Date:	1-	Time:	mann	Hold:			Condition: NCF / OK

Second Half 2022 Sampling Event

Pace Analytical® ANALYTICAL REPORT

October 25, 2022

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1544281 10/07/2022 R14590-2764-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2764-001

SDG: L1544281

DATE/TIME: 10/25/22 17:05

PAGE: 1 of 28

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1544281-01	6
MW-102 L1544281-02	7
MW-103 L1544281-03	8
MW-108 L1544281-04	9
MW-113 L1544281-05	10
MW-115 L1544281-06	11
MW-116 L1544281-07	12
MW-117 L1544281-08	13
MW-118 L1544281-09	14
MW-119 L1544281-10	15
MW-117 DUP L1544281-11	16
EPA EB L1544281-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	22
Metals (ICP) by Method 6010B	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26
Sc: Sample Chain of Custody	27

SDG: L1544281 DATE/TIME: 10/25/22 17:05

PAGE: 2 of 28

SAMPLE SUMMARY

MW-101 L1544281-01 GW			Michael Clayton	10/05/22 11:43	10/07/22 09:30		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	5		
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1939483	1	10/08/22 19:49	10/08/22 19:49	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:33	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-102 L1544281-02 GW			Michael Clayton	10/05/22 14:28	10/07/22 09:	30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 20:43	10/08/22 20:43	GEB	Mt. Juliet, TN	
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:36	ZSA	Mt. Juliet, T	
			Collected by	Collected date/time	Pocoivod do	to/timo	
MW-103 L1544281-03 GW			Collected by Michael Clayton	10/05/22 09:43	10/07/22 09:		
Aethod	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	-		
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 20:57	10/08/22 20:57	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:39	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
WW-108 L1544281-04 GW			Michael Clayton	10/04/22 12:53	10/07/22 09:	30	
Aethod	Batch	Dilution	Preparation	Analysis	Analyst	Location	
Provinctric Apolycic by Mathed 2E40.C 2011	WC104021E	1	date/time 10/11/22 09:17	date/time	DTM	Mt Juliat TN	
Gravimetric Analysis by Method 2540 C-2011	WG1940315	1		10/11/22 14:33	DTM	Mt. Juliet, TN	
Vet Chemistry by Method 9056A	WG1939483 WG1943730	1 1	10/08/22 21:10 10/22/22 08:29	10/08/22 21:10 10/24/22 19:42	GEB ZSA	Mt. Juliet, TN	
Ietals (ICP) by Method 6010B	WG1943730	I	10/22/22 08:29	10/24/22 19:42	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time			
MW-113 L1544281-05 GW			Michael Clayton	10/04/22 10:23	10/07/22 09:	30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940315	1	10/11/22 09:17	10/11/22 14:33	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 21:23	10/08/22 21:23	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:45	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-115 L1544281-06 GW			Michael Clayton	10/03/22 14:48	10/07/22 09:		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940110	1	10/10/22 10:49	10/10/22 12:50	DTM	Mt. Juliet, TM	
Wet Chemistry by Method 9056A	WG1939483	1	10/08/22 22:04	10/08/22 22:04	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:48	ZSA	Mt. Juliet, TN	

PROJECT: R14590-2764-001 SDG: L1544281 DATE/TIME: 10/25/22 17:05

Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

MW-116 L1544281-07 GW			Collected by Michael Clayton	Collected date/time 10/05/22 12:53	10/07/22 09:30		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:17	10/08/22 22:17	GEB	Mt. Juliet, TN	
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:50	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-117 L1544281-08 GW			Michael Clayton	10/05/22 16:13	10/07/22 09:	30	
<i>f</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:31	10/08/22 22:31	GEB	Mt. Juliet, TN	
Ietals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:53	ZSA	Mt. Juliet, TN	
MW-118 L1544281-09 GW			Collected by Michael Clayton	Collected date/time 10/05/22 08:33	Received da 10/07/22 09:		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:44	10/08/22 22:44	GEB	Mt. Juliet, TN	
tetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:56	ZSA	Mt. Juliet, TN	
MW-119 L1544281-10 GW			Collected by Michael Clayton	Collected date/time 10/05/22 10:48	Received da 10/07/22 09:		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:57	10/08/22 22:57	GEB	Mt. Juliet, TN	
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:59	ZSA	Mt. Juliet, TN	
MW-117 DUP L1544281-11 GW			Collected by Michael Clayton	Collected date/time 10/05/22 16:16	Received da 10/07/22 09:		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Vet Chemistry by Method 9056A	WG1940849 WG1939483	1	10/08/22 23:11	10/08/22 23:11	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1933463 WG1943730	1	10/22/22 08:29	10/24/22 16:55	ZSA	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
EPA EB L1544281-12 GW			Michael Clayton	10/05/22 16:45	10/07/22 09:	30	
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 23:51	10/08/22 23:51	GEB	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 16:58	ZSA	Mt. Juliet, TN	

PROJECT: R14590-2764-001 SDG: L1544281 DATE/TIME: 10/25/22 17:05

Ср

²Tc

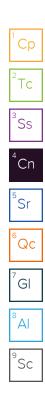
Ss

°Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1544281 DATE/TIME: 10/25/22 17:05 PAGE: 5 of 28

SAMPLE RESULTS - 01 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		р
Analyte	ug/l		ug/l		date / time		2	_
Dissolved Solids	388000		10000	1	10/12/2022 10:25	WG1940842	Tc	С

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn	
Chloride	860	J	379	1000	1	10/08/2022 19:49	WG1939483			
Fluoride	258		64.0	150	1	10/08/2022 19:49	WG1939483		5	
Sulfate	7930		594	5000	1	10/08/2022 19:49	WG1939483		ँSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	52.6	J	20.0	200	1	10/24/2022 19:33	WG1943730
Calcium	110000		79.3	1000	1	10/24/2022 19:33	WG1943730

DATE/TIME: 10/25/22 17:05 Qc

Gl

Â

SAMPLE RESULTS - 02 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	439000		10000	1	10/12/2022 10:25	WG1940842	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	2450		379	1000	1	10/08/2022 20:43	WG1939483		CII		
Fluoride	174		64.0	150	1	10/08/2022 20:43	WG1939483		5		
Sulfate	93400		594	5000	1	10/08/2022 20:43	WG1939483		ँSr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	76.9	J	20.0	200	1	10/24/2022 19:36	WG1943730
Calcium	116000		79.3	1000	1	10/24/2022 19:36	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 03 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	285000		10000	1	10/12/2022 10:25	WG1940842	ЪС

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>										
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	949	J	379	1000	1	10/08/2022 20:57	WG1939483			
Fluoride	188		64.0	150	1	10/08/2022 20:57	WG1939483		5	
Sulfate	11800		594	5000	1	10/08/2022 20:57	WG1939483		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.7	J	20.0	200	1	10/24/2022 19:39	WG1943730
Calcium	79800		79.3	1000	1	10/24/2022 19:39	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 04 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	471000		10000	1	10/11/2022 14:33	WG1940315	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	1240		379	1000	1	10/08/2022 21:10	WG1939483		CII	
Fluoride	164		64.0	150	1	10/08/2022 21:10	WG1939483		5	
Sulfate	17000		594	5000	1	10/08/2022 21:10	WG1939483		ဳSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	94.1	J	20.0	200	1	10/24/2022 19:42	WG1943730
Calcium	138000		79.3	1000	1	10/24/2022 19:42	WG1943730

1

Qc

GI

Â

SAMPLE RESULTS - 05 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	291000		10000	1	10/11/2022 14:33	WG1940315	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemist	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	709	J	379	1000	1	10/08/2022 21:23	WG1939483		CII		
Fluoride	82.8	J	64.0	150	1	10/08/2022 21:23	WG1939483		5		
Sulfate	4020	J	594	5000	1	10/08/2022 21:23	WG1939483		Sr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	74.7	J	20.0	200	1	10/24/2022 19:45	WG1943730
Calcium	73100		79.3	1000	1	10/24/2022 19:45	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 06 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	377000		10000	1	10/10/2022 12:50	WG1940110	¯Тс

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A 3										
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>										
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	742	J	379	1000	1	10/08/2022 22:04	WG1939483		CII	
Fluoride	208		64.0	150	1	10/08/2022 22:04	WG1939483		5	
Sulfate	3680	J	594	5000	1	10/08/2022 22:04	WG1939483		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	37.0	J	20.0	200	1	10/24/2022 19:48	WG1943730
Calcium	109000		79.3	1000	1	10/24/2022 19:48	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 07 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	360000		10000	1	10/12/2022 12:30	WG1940849	¯Тс

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	4140		379	1000	1	10/08/2022 22:17	WG1939483		Cir		
Fluoride	194		64.0	150	1	10/08/2022 22:17	WG1939483		5		
Sulfate	57100		594	5000	1	10/08/2022 22:17	WG1939483		ဳSr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	86.7	J	20.0	200	1	10/24/2022 19:50	WG1943730
Calcium	94100		79.3	1000	1	10/24/2022 19:50	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 08 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	311000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	953	J	379	1000	1	10/08/2022 22:31	WG1939483		CII		
Fluoride	122	J	64.0	150	1	10/08/2022 22:31	WG1939483		5		
Sulfate	10300		594	5000	1	10/08/2022 22:31	WG1939483		ဳSr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.5	J	20.0	200	1	10/24/2022 19:53	WG1943730
Calcium	88000		79.3	1000	1	10/24/2022 19:53	WG1943730

1

Qc

GI

Â

SAMPLE RESULTS - 09 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	329000		10000	1	10/12/2022 12:30	<u>WG1940849</u>	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	y by Method 9	9056A						3	Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		4	Cn
Chloride	1310		379	1000	1	10/08/2022 22:44	WG1939483		CII
Fluoride	124	J	64.0	150	1	10/08/2022 22:44	WG1939483	5	
Sulfate	19700		594	5000	1	10/08/2022 22:44	WG1939483		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	62.8	J	20.0	200	1	10/24/2022 19:56	WG1943730
Calcium	87500		79.3	1000	1	10/24/2022 19:56	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 10 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	444000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	1980		379	1000	1	10/08/2022 22:57	WG1939483	CII
Fluoride	230		64.0	150	1	10/08/2022 22:57	WG1939483	5
Sulfate	46200		594	5000	1	10/08/2022 22:57	WG1939483	ँSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.1	J	20.0	200	1	10/24/2022 19:59	WG1943730
Calcium	119000		79.3	1000	1	10/24/2022 19:59	WG1943730

Qc

Gl

Â

SAMPLE RESULTS - 11 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	316000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn
Chloride	928	J	379	1000	1	10/08/2022 23:11	WG1939483	CII
Fluoride	98.1	J	64.0	150	1	10/08/2022 23:11	WG1939483	5
Sulfate	10200		594	5000	1	10/08/2022 23:11	WG1939483	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	82.1	J	20.0	200	1	10/24/2022 16:55	WG1943730
Calcium	87200		79.3	1000	1	10/24/2022 16:55	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 12 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	ND		10000	1	10/12/2022 12:30	<u>WG1940849</u>	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	U		379	1000	1	10/08/2022 23:51	WG1939483	CII
Fluoride	U		64.0	150	1	10/08/2022 23:51	WG1939483	5
Sulfate	U		594	5000	1	10/08/2022 23:51	WG1939483	ँSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	10/24/2022 16:58	WG1943730
Calcium	U		79.3	1000	1	10/24/2022 16:58	WG1943730

1

Qc

Gl

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-06

Method Blank (MB)

(MB) R3848661-1 10/10	/22 12:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	11000		10000	10000

L1542785-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1542785-01 10/10/2	22 12:50 • (DUP) R3848661-3	10/10/22 1	2:50		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1360000	1970000	1	36.7	<u>J3</u>	5

L1542920-18 Original Sample (OS) • Duplicate (DUP)

L1542920-18 Or	riginal Sample	e (OS) • Du	plicate	(DUP)			 ⁷ Gl
(OS) L1542920-18 10/	/10/22 12:50 • (DUF	P) R3848661-4	10/10/22 1	2:50			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	JP RPD mits	⁸ Al
Analyte	ug/l	ug/l		%			
Dissolved Solids	2570000	2590000	1	0.775			⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3848661-2 10/	/10/22 12:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8310000	94.4	77.3-123	

Ср

Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-04,05

Method Blank (MB)

Method Blank	MB)				
(MB) R3849086-1 10	/11/22 14:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Dissolved Solids	U		10000	10000	

L1544143-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1544143-04 10	/11/22 14:33 • (DUP)	R3849086-3	10/11/22 14	33		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	350000	359000	1	2.54		5

L1544143-05 Original Sample (OS) • Duplicate (DUP)

L1544143-05 Orig	ginal Sample	(OS) • Dup	olicate (DUP)			⁷ Gl
(OS) L1544143-05 10/11/	(22 14:33 • (DUP) F	23849086-4	10/11/22 14:	33			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	115000	114000	1	0.873		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3849086-2 10)/11/22 14:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8760000	99.5	77.3-123	

DATE/TIME: 10/25/22 17:05 ⁺Cn

⁵Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-01,02,03

Method Blank (MB)

(MB) R3849079-1 10/12/	/22 10:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1544143-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1544143-03 10/1	12/22 10:25 • (DUP)) R3849079-3	10/12/22 1	0:25		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	286000	287000	1	0.349		5

L1544281-01 Original Sample (OS) • Duplicate (DUP)

L1544281-01 Orig	ginal Sample	(OS) • Dup	olicate (l	OUP)			⁷ Gl
(OS) L1544281-01 10/12	2/22 10:25 • (DUP)	R3849079-4	10/12/22 1	0:25			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	388000	404000	1	4.04		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3849079-2 10/	/12/22 10:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8820000	100	77.3-123	

DATE/TIME: 10/25/22 17:05

PAGE: 20 of 28 Тс

Ss

⁺Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-07,08,09,10,11,12

Method Blank (MB)

(MB) R3849076-1 10/12	2/22 12:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1544392-01 Original Sample (OS) • Duplicate (DUP)

L1544392-01 Origii	hal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1544392-01 10/12/2	2 12:30 • (DUP)	R3849076-3	10/12/22 1	2:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	693000	657000	1	5.33	<u>J3</u>	5

L1544523-02 Original Sample (OS) • Duplicate (DUP)

L1544523-02 Or	iginal Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1544523-02 10/1	12/22 12:30 • (DUP) R3849076-4	10/12/22	12:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1560000	1670000	1	7.12	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3849076-2 10/	/12/22 12:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8880000	101	77.3-123	

Тс

Ss

[°]Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1544281-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3847297-1	10/08/22	19:23
-----------------	----------	-------

(MB) R384/29/-1 10/08/22	2 19:23				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Chloride	U		379	1000	
Fluoride	U		64.0	150	³ Ss
Sulfate	U		594	5000	00

L1544281-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1544281-01 10/08/2	22 19:49 • (DUP)	R3847297-3	10/08/22	20:03		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	860	799	1	7.33	J	15
Fluoride	258	250	1	3.35		15
Sulfate	7930	7790	1	1.74		15

L1544281-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1544281-11 10/08/22	23:11 • (DUP) R	3847297-6 10	0/08/22 23	3:24		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	928	897	1	3.46	J	15
Fluoride	98.1	103	1	4.68	J	15
Sulfate	10200	9810	1	3.74		15

Laboratory Control Sample (LCS)

(LCS) R3847297-2 10/08	3/22 19:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	38900	97.3	80.0-120	
Fluoride	8000	7810	97.6	80.0-120	
Sulfate	40000	39100	97.7	80.0-120	

ACCOUNT:
Plum Point Services Co., LLC

PROJECT: R14590-2764-001

SDG: L1544281

DATE/TIME: 10/25/22 17:05

PAGE: 22 of 28 °Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY <u>L1544281-01,02,03,04,05,06,07,08,09,10,11,12</u>

L1544281-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1544281-01 10/08/2	2 19:49 • (MS) F	3847297-4 10	/08/22 20:16	• (MSD) R38472	297-5 10/08/2	22 20:30						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	860	49300	49100	97.0	96.4	1	80.0-120			0.580	15
Fluoride	5000	258	4990	4960	94.6	94.0	1	80.0-120			0.639	15
Sulfate	50000	7930	56400	55900	96.9	96.0	1	80.0-120			0.823	15

L1544281-11 Original Sample (OS) • Matrix Spike (MS)

(OS) L1544281-11 10/08/22	2 23:11 • (MS) R3	847297-7 10/0	8/22 23:38				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	928	49400	97.0	1	80.0-120	
Fluoride	5000	98.1	4820	94.4	1	80.0-120	
Sulfate	50000	10200	58600	96.8	1	80.0-120	

DATE/TIME: 10/25/22 17:05

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1544281-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

MB) R3852425-1 1	10/24/22 18:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3852425-2	10/24/22 19:02					
	Spike Amour	nt LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	993	99.3	80.0-120		
Calcium	10000	9850	98.5	80.0-120		

L1544212-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

LIG 11212 00 011g	indi Sumpic	(00) - Mati		(ind) - Math	Copine Du	pricate (m							
(OS) L1544212-03 10/24	/22 19:05 • (MS)	R3852425-4 1	0/24/22 19:10	• (MSD) R3852	425-5 10/24/2	2 19:13							 ⁸ AI
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	 9
Boron	1000	92.2	1110	1100	101	101	1	75.0-125			0.519	20	SC
Calcium	10000	133000	142000	142000	96.8	92.1	1	75.0-125			0.332	20	

DATE/TIME: 10/25/22 17:05 °Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

The associated batch QC was outside the established quality control range for precision.

JЗ

SDG: L1544281 AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

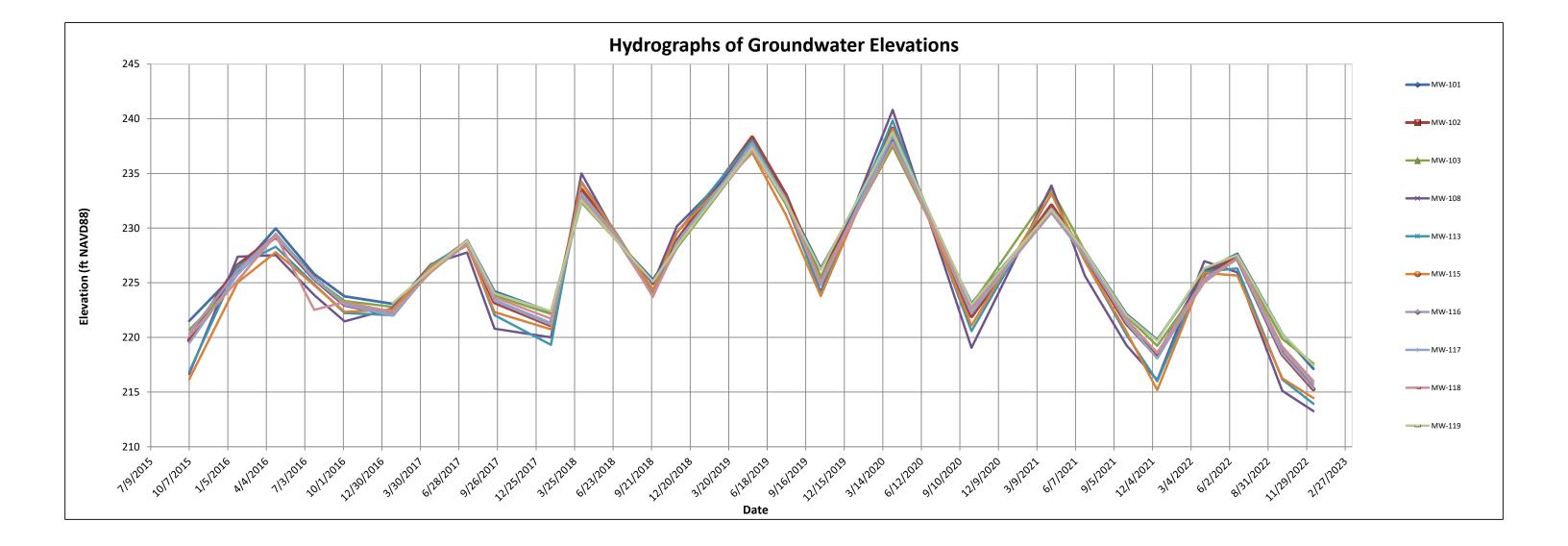
DATE/TIME: 10/25/22 17:05

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Company Name/Address: Plum Point Services Co., LLC 2739 SCR 623 Osceola, AR 72370			Billing Into	ormation:	1	L				Analysis / C	(Chain of Custody Page of							
			Account P.O. Box	Pre				22						B					
			Osceola, AR 72370													PEOPLE	ADVANCING SCIENCE		
Osceola, AK 72370																			
Report to:	Email To: d											JLIET, TN							
Dana Derrington		assoc.com;mcc@ftn-assoc.com												S	12065 Lebanon Rd Mo Submitting a sample vi	a this chain of custody			
Project Description: Plum Point Energy Station			OSCEOLA AR Please Cir PT MT C												P	Pace Terms and Condit	ment and acceptance of the ions found at: om/hubfs/pas-standard-		
Phone: 501-920-9642	Client Project R14590-2		Lab Project # NAESOAR-PLUMPOINT					oPres		HNO3						SDG #	# SYY281		
Collected by (print):	Site/Facility	ID #	P.O. #					N-B	res	PE-I						J(087		
Michal ClayTon								DPI	lop	IQH					Acctnum: NAESU				
Collected by (signature):		(Lab MUST Be Day Five		Quote #	Quote #			125mlHDPE-NoPres	DPE-N	250mlHDPE-HNO					01030	Template: T17 Prelogin: P95			
Immediately		ay 10 D	y (Rad Only) ay (Rad Only)	Date R	te Results Needed) .	S04 12	250mlHDPE-NoPres	B, Ca					P	PM: 134 - Mar PB:	k W. Beasley		
Sample ID	Comp/Grat	Matrix *	Depth	Date	Tim	e Cnt	trs	CI, F,	TDS 2	Total					S	Remarks	Sample # (lab only)		
WW-101	Gnas	GW		10 15%	2 1/4	3 3	3	x	X	X							-01		
WW-102		GW		10/51	100 C	4 :	3	x	X	X							-0)		
WW-103		GW			laz 943		3	x	x	X							_ 03		
WW-108		GW		1 1 1	122 125		3	X	X	X							04		
MW-113		GW		10/4/	1		3	x	x	x							- 05		
MW-115		GW		10/3/0			3	x	x	x							-06		
MW-116		GW		10/5/-		1000	3	X	x	X							-07		
MW-117		GW		10/5/0		2 3	3	x	X	X							-08		
MW-118		GW		10/5/		100	3	x	x	x					le che		-09		
MW-119	V	GW		10/5/2		1000 E.S. 100 E.S. 100	3	x	X	X							-10'		
Matrix:	Remarks:			1. 1. 0. 1.01				-								Receipt Ch			
S - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay NW - WasteWater											PH Flow		emp Other	COC Sig Bottles	gned/Ac s arriv	ent/Intact: curate: re intact: .es used:			
DW - Drinking Water DT - Other	Samples returne UPSFedE			т	racking #	IN	5	992	. 7	562	. 1629					lume sent: <u>If Applicabl</u> space:			
Relinquished by : (Signature)		Date:	Time		eceived by: (Si						Trip Blank		Yes No	Preserv	vation	Correct/Che	cked:		
Markel Cher Inthis		10/6/27	12	00									HCL / MeoH TBR		RAD Screen <0.5 mR/hr: Y_N				
Relinquished by : (Signature) Date:		Date:	Time		eceived by: (Si	gnature)					N.SA Temp: 1.9+0=1.	L	Bottles Received:	If preser	If preservation required by Login: Date/Time				
Relinquished by : (Signature)	C	Date:	Time	e: R	eceived for lab	by: (Sigr	natu	ire). 1			Date:	and the second se	Time: 093D	Hold:			Condition: NCF / OK		
	1		-	11	pyn		1	1		-	- la dec		0 100	and manual second					

Company Name/Address:			Billing Into	rmation:		1	-			Analysis /	Cha	Chain of Custody Page $\frac{2}{2}$ of $\frac{2}{2}$					
Plum Point Services C 2739 SCR 623 Osceola, AR 72370	P.O. Box	s Payable 567 , AR 72370	Pres Chk			77.						PEOPLE	ADVANCING SCIENCE				
Report to: Dana Derrington		Email To: d										5 Lebanon Rd Mo	JLIET, TN unt Juliet, TN 37122 this chain of custody				
Project Description: Plum Point Energy Station	asc.E.O.	FT ET								Pace https	Terms and Conditi ://info.pacelabs.co	ment and acceptance of the ons found at: om/hubfs/pas-standard-					
Phone: 501-920-9642 Client Project # R14590-2764-001				Lab Project #	LUMPOINT		oPres		INO3					1000	SDG # 1949		
Collected by (print):	Site/Facility I	D #		P.O. #			DPE-N	, SO4 125miHDPE-NoPres 250miHDPE-NoPres	4DPE-NoPres 250mlHDPE-HNO3						ble #	SOAR	
Michael Clayton Collected by (signature):		Lab MUST Be		Quote #	l'ai st	SmiHi							Ten	nplate: T17 login: P95	5308		
MaclueSame D Next Da ImmediatelyTwo Da Packed on Ice N Y Three D		y 10 Da	(Rad Only) ay (Rad Only)	Date Resu	lts Needed	No. of	S04 12		B, Ca					PM: PB:	k W. Beasley		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS 2	Total					Ship	Remarks	Sample # (lab only)	
WW-117 DUP	GRAG	GW		10/5/22	1616	3	X	x	X							-11	
PA EB	11	GW		10/5/22		3	X	X	X							-12	
		GW		101010	1	3	x	X	X						1. 19 M		
		GW				3	X	X	X								
'Matrix:	Remarks:									pH _	Т	emp	COC Se	Sample Re al Presen	eceipt Ch	ecklist MP Y N	
iS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay NW - WasteWater										Flow Other			COC Si Bottle Correc	gned/Accu s arrive t bottles	rate: intact: used:		
DW - Drinking Water DT - Other	Samples returned UPSFedEx			Trac	king #									ient volu <u>If</u> ro Headsp	Applicabl	e Y N	
Relinquished by : (Signature) Date:		ate:	Time	Rece	ived by: (Signat	ture)				Trip Blank	Received:	Yes / No HCL / MeoH	Preser	vation Co creen <0.5	rrect/Che	cked:	
Relinquished by : (Signature) Date:		ate:	Time		ived by: (Signat	ture)				Temp: G	°C	TBR Bottles Received:	If prese	rvation requ	uired by Log	in: Date/Time	
Relinquished by : (Signature) Date:			Time	Rece	ived for lab by:	(Signati	ure)	-		Date: /	22/22	Time: (7930)	Hold:			Condition: NCF / OK	

APPENDIX C


Water Elevation Data and Hydrographs

			Water Surfa	ace Elevatio	n (ft <i>,</i> North	American V	/ertical Datu	um of 1988)		
Date	MW-101	MW-102	MW-103	MW-108	MW-113	MW-115	MW-116	MW-117	MW-118	MW-119
10/7/2015	221.51	219.73	220.71	216.68	216.87	216.17	220.40	219.48	220.12	N/A*
1/28/2016	226.07	226.58	225.16	227.39	226.53	225.03	226.14	225.78	225.22	N/A*
4/26/2016	229.97	229.24	229.48	227.53	228.30	227.80	229.43	229.23	229.33	N/A*
7/25/2016	225.79	225.38	225.41	223.87	224.87	224.78	225.33	225.45	222.53	N/A*
10/4/2016	223.76	223.00	223.33	221.47	222.23	222.34	223.10	222.99	223.23	N/A*
1/24/2017	223.08	222.09	222.79	222.66	222.03	222.54	222.12	222.00	222.34	223.14
4/24/2017	226.04	226.33	226.33	226.71	226.65	226.53	226.07	226.11	225.98	226.22
7/17/2017	228.89	228.74	228.48	227.77	228.65	228.41	228.53	228.77	228.65	228.86
9/19/2017	224.21	223.23	223.82	220.80	222.03	222.32	223.42	223.33	223.67	224.04
1/29/2018	222.35	221.12	222.14	220.01	219.32	220.74	221.33	221.18	221.71	222.39
4/10/2018	232.63	233.50	232.34	234.99	234.23	234.15	232.89	233.19	232.76	232.52
7/9/2018	228.52	228.81	228.50	228.72	229.03	228.95	228.49	228.87	228.73	228.49
9/24/2018	225.29	224.15	224.16	224.89	224.08	224.29	223.83	223.71	223.72	225.11
11/19/2018	228.54	228.80	228.16	230.16	229.57	229.62	228.31	228.71	228.46	228.33
2/18/2019	NM	NM	NM	NM	NM	NM	NM	NM	NM	236.90
5/14/2019	237.60	238.28	237.17	237.13	238.03	236.89	237.76	237.55	237.08	237.35
7/31/2019	232.75	233.02	232.22	232.39	232.66	231.26	232.55	232.75	232.40	232.48
10/21/2019	226.32	225.29	225.52	224.14	223.95	223.78	225.08	224.77	224.98	226.16
4/6/2020	238.06	239.09	237.46	240.81	239.83	239.08	238.49	238.51	237.83	238.76
10/7/2020	223.12	221.96	222.96	219.05	220.58	221.09	222.58	222.19	222.70	223.03
4/12/2021	231.65	232.06	233.51	233.90	233.12	233.15	231.38	231.81	231.53	231.69
6/29/2021	227.90	227.49	227.88	225.64	227.00	226.99	227.42	227.80	227.97	227.85
10/4/2021	222.14	221.32	221.94	219.28	220.25	220.53	221.49	221.37	221.7	222.04
12/14/2021	219.78	218.27	219.23	216.11	215.99	215.18	218.62	218.08	218.56	219.70
4/4/2022	226.11	225.81	225.29	226.97	226.00	225.89	225.36	225.22	225.03	226.33

Historical water levels.

		Water Surface Elevation (ft, North American Vertical Datum of 1988)								
Date	MW-101	MW-102	MW-103	MW-108	MW-113	MW-115	MW-116	MW-117	MW-118	MW-119
6/20/2022	227.66	227.28	227.27	225.96	226.32	225.66	227.24	227.16	227.28	227.52
10/3/2022	220.34	218.49	219.86	215.12	216.16	216.27	219.01	218.52	219.17	220.32
12/15/2022	217.12	215.27	217.61	213.26	213.93	214.45	215.73	215.34	216.00	217.43

*Monitoring well not installed yet.

APPENDIX D

Appendix III Groundwater Quality Historical Database

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-101	compliance							
	10/7/2015	0.0858(J)	116	3.02	0.281	12.4	401	6.4
	1/28/2016	0.114(J)	117	2.74	0.274	11.4	421(B)	6.6
	4/27/2016	0.105(J)	120	6.61	0.283	19.9	437	6.3
	7/26/2016	0.0877(J)	115	3.41	0.241	12.8	448(B)	6.6
	10/6/2016	0.0890(J)	110	1.93	0.267	8.44	387	6.2
	1/25/2017	0.0681(J)	109	1.67	0.300	11.5	381	6.7
	4/26/2017	<1.80(O)	80.5	2.14	0.273	9.57	407	6.9
	7/20/2017	0.0903(BJ)	110	1.98	0.331	13.5	414	6.7
	9/20/2017	0.0718(J)	153	1.57	0.328	9.68	385	7.0
	12/11/2017	n/a	120	n/a	n/a	n/a	n/a	6.4
	4/12/2018	0.0840(BJ)	121	2.75	0.307	17.4	420	6.4
	9/26/2018	0.0981(BJ)	115	1.94(B)	0.290(B)	14.6	421	6.8
	5/16/2019	0.118(J)	103	1.01	0.263(B)	9.17	392	6.6
	10/23/2019	0.0491(J)	109	1.37	0.264	11.9	404	7.0
	4/8/2020	0.0780(J)	105	0.823(J)	0.279	10.3	362	6.8
	10/9/2020	0.0556(J)	107	1.75	0.309	9.91	389	6.7
	4/15/2021	0.0608(J)	96.9	0.855(J)	0.385	5.73	335	7.1
	6/29/2021	n/a	n/a	n/a	0.307	n/a	n/a	6.7
	10/7/2021	0.0555(J)	113	0.975(J)	0.312	10.2	380	6.7
	4/7/2022	0.0597(J)	105	0.848(J)	0.228	7.63	388	6.8
	10/5/2022	0.0526(J)	110	0.860(J)	0.258	7.93	388	6.2
MW-102	compliance							
	11/10/2015	0.0818(J)	121	5.53	0.160	82.3	434	6.8
	1/28/2016	0.125(J)	123	5.33	0.157	85.9	470	6.8
	4/27/2016	0.135(J)	131	6.32	0.154	103	478	6.7
	7/26/2016	0.122(J)	122	5.42	0.150	88.1	474(B)	7.7(R)
	10/6/2016	0.0999(J)	120	5.18	0.158	83.2	458	6.0
	1/25/2017	0.0938(J)	118	4.50	0.182	88.8	435	5.8
	4/27/2017	0.120(J)	121	4.85	0.175	91.0	504	6.7
	7/19/2017	0.108(BJ)	126	4.28	0.207	85.4	461	6.6
	9/20/2017	0.0536(J)	25.9(O)	4.29	0.194	88.7	454	6.7
	4/11/2018	0.144(BJ)	136	1.77	0.206	46.7(O)	472	6.3
	7/9/2018	n/a	124	n/a	n/a	n/a	n/a	6.7
	9/27/2018	0.121(BJ)	121	3.84	0.183(B)	88.6	453	6.5
	5/16/2019	0.150(J)	121	2.87	0.196(B)	75.4	466	6.6
	10/23/2019	0.0602(J)	117	3.62	0.201	85.6	461	6.7
	4/7/2020	0.0890(J)	116	2.79	0.199	84.7	461	6.6
	10/9/2020	0.0699(J)	115	3.30	0.178	96.1	438	6.5
	4/15/2021	0.0966(J)	118	2.31	0.210	79.4	446	6.9

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-102	10/6/2021	0.0784(J)	116	2.48	0.215	95.3	415	6.8
(cont.)	4/6/2022	0.0838(J)	110	1.91	0.142(J)	79.0	442	6.6
	10/5/2022	0.0769(J)	116	2.45	0.174	93.4	439	6.3
MW-103	compliance							
	10/7/2015	0.119(J)	168	3.92	0.198	95.0	591	6.5
	1/28/2016	0.149(J)	153	2.66	0.188	60.1	539(B)	6.3
	4/27/2016	0.166(J)	147	4.06	0.170	62.0	517	6.5
	7/26/2016	0.142(J)	148	3.63	0.163	60.9	539(B)	6.3
	10/6/2016	0.137(J)	152	2.69	0.201	54.5	518	6.3
	1/26/2017	0.138(J)	135	2.82	0.223	52.0	477	6.8
	4/27/2017	0.137(J)	136	2.89	0.200	49.8	513	6.5
	7/20/2017	0.124(BJ)	136	2.28	0.240	52.2	506	6.6
	9/20/2017	0.134(J)	141	1.79	0.240	48.2	496	6.6
	4/11/2018	0.122(BJ)	128	3.24	0.163	80.6	468	6.2
	9/26/2018	0.145(BJ)	129	1.36(B)	0.217(B)	32.8	440	6.6
	5/15/2019	0.154(J)	106	1.10	0.213(B)	23.4	396	6.6
	10/22/2019	0.0816(J)	107	1.29	0.253	24.4	384	6.7
	4/8/2020	0.0541(J)	88.2	0.726(J)	0.219	9.93	318	6.7
	10/8/2020	0.0763(J)	91.9	3.55	0.234	15.0	319	6.4
	4/15/2021	0.0726(J)	85.9	0.976(J)	0.258	11.4	294	6.9
	10/7/2021	0.0681(J)	89.7	1.16	0.256	12.6	324	6.5
	4/7/2022	0.0552(J)	71.6	0.926(J)	0.128(J)	7.84	278	6.8
	10/5/2022	0.0727(J)	79.8	0.949(J)	0.188	11.8	285	6.3
MW-108	background							
	1/28/2016	0.164(J)	166	5.34	0.158	44.4	555	6.7
	4/28/2016	0.194(J)	178	2.81	0.134	45.2	638(B)	6.6
	7/26/2016	0.158(J)	144	2.43	0.144	39.3	475(B)	9.8(R)
	10/6/2016	0.174(J)	158	2.48	0.169	41.4	539	6.2
	1/26/2017	0.164(J)	154	2.64	0.202	51.6		7.0
	4/25/2017	0.147(J)	151	3.10	0.167	45.7	488	6.8
	7/18/2017	0.162(J)	167	3.03	0.191	39.4	576	6.7
	9/19/2017	0.158(J)	170	2.06	0.199	43.8	578	6.7
	4/10/2018	0.171(BJ)	183	3.03	0.177	44.5	582	6.5
	9/25/2018	0.183(BJ)	163	3.11	0.188(B)	52.2	537	6.7
	5/14/2019	0.224(BR)	169	2.44	0.184(B)	34.5	529	6.8
	8/1/2019	0.127(BJ)	n/a	n/a	n/a	n/a	n/a	7.1
	10/22/2019	0.110(J)	153	1.95	0.205	32.9	528	6.7
	4/6/2020	0.143(J)	160	1.87	0.185	33.8	557	6.9
	10/7/2020	0.111(J)	151	2.23	0.185	42.4	515	6.8
	4/13/2021	0.125(J)	149	2.67	0.216	36.8	541	7.0

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-108	10/5/2021	0.111(J)	149	1.37	0.203	23.4	505	6.7
(cont.)	4/5/2022	0.132(J)	151	1.38	0.138(J)	24.0	478	6.8
	10/4/2022	0.0941(J)	138	1.24	0.164	17.0	471	6.2(R)
	1/11/2023	n/a	n/a	n/a	n/a	n/a	n/a	6.8
MW-113	background							
	1/28/2016	0.102(J)	84.7	3.61	0.0808(J)	11.0	320(B)	6.6
	4/28/2016	0.127(J)	72.5	2.05	0.0604(J)	8.99	321(B)	6.9
	7/26/2016	0.144(J)	69.8	0.856(J)	0.0570(J)	4.97(J)	281(B)	8.1(R)
	10/5/2016	0.0963(J)	84.7	2.63	0.0827(J)	9.51	323	6.0
	1/26/2017	0.0891(J)	88.9	5.81	0.0901(J)	13.3	332	7.1
	4/25/2017	0.0890(J)	87.9	5.49	0.0944(J)	11.8	339	6.9
	7/18/2017	0.0982(BJ)	82.5	3.96	0.119	10.9	321	6.8
	9/19/2017	0.0998(J)	84.1	2.19	0.117	9.45	326	6.9
	4/10/2018	0.0899(BJ)	92.0	2.94	0.0562(J)	10.1	340	6.4
	9/25/2018	0.111(BJ)	90.0	2.84(B)	0.114(B)	9.81	337	6.7
	5/14/2019	0.168(J)	87.2	1.58	0.120(B)	3.15(J)	342	6.7
	10/22/2019	0.0881(J)	75.9	1.73	0.110	4.88(J)	307	6.7
	4/6/2020	0.131(J)	77.1	1.08	0.0943(J)	3.61(J)	332	6.7
	10/7/2020	0.0879(J)	70.6	1.62	0.106(J)	4.61(J)	274	6.5
	4/13/2021	0.0673(J)	95.4	2.50	0.102(J)	9.83	372	7.1
	6/29/2021	n/a	n/a	n/a	n/a	n/a	303	6.2
	10/5/2021	0.0817(J)	67.5	0.877(J)	0.139(J)	3.75(J)	275	6.6
	4/5/2022	0.0747(J)	81.8	1.32	0.0846(J)	5.70	326	6.6
	10/4/2022	0.0747(J)	73.1	0.709(J)	0.0828(J)	4.02(J)	291	6.5
MW-115	background							
	11/10/2015	0.0473(J)	109	2.14	0.230	8.23	363	7.0
	1/28/2016	0.0617(J)	103	7.55(O)	0.201	14.8(O)	376	7.1
	4/28/2016	0.0863(J)	115	1.83	0.179	5.63	443(B)	6.8
	7/26/2016	0.0604(J)	114	1.22	0.200	4.79(J)	399(B)	9.0(R)
	10/5/2016	0.0737(J)	114	1.31	0.218	4.59(J)	446	6.1
	1/27/2017	0.0602(J)	110	1.77	0.244	6.52	406	7.0
	4/25/2017	0.0641(J)	106	2.71	0.203	6.75	385	6.8
	7/18/2017	0.0608(BJ)	105	2.32	0.238	7.10	369	6.6
	9/19/2017	0.0609(J)	116	0.835(J)	0.243	5.37	403	6.8
	4/10/2018	0.0666(BJ)	111	1.34	0.209	5.81	368	6.3
	9/25/2018	0.0764(BJ)	121	1.18(B)	0.216(B)	5.00(J)	417	6.7
	5/14/2019	0.0751(J)	128	0.598(J)	0.184(B)	5.63	440	6.6
	8/1/2019	n/a	125	n/a	n/a	n/a	n/a	7.1
	10/23/2019	0.0224(J)	114	1.23	0.220	5.83	411	6.9
	4/6/2020	0.0525(J)	108	0.922(J)	0.192	5.37	398	6.7

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-115	10/7/2020	0.0704(J)	99.4	0.864(J)	0.180	2.97(J)	334	6.6
(cont.)	4/13/2021	0.0379(J)	117	0.789(J)	0.239	5.67	441	7.0
	10/5/2021	0.0655(J)	109	0.964(J)	0.225	3.70(J)	379	6.7
	4/5/2022	0.0424(J)	102	0.976(J)	0.165	4.95(J)	374	6.7
	10/3/2022	0.0370(J)	109	0.742(J)	0.208	3.68(J)	377	6.7
MW-116	compliance							
	10/8/2015	0.108(J)	103	5.84	0.173	45.1	367	6.7
	1/28/2016	0.139(J)	111	5.67	0.165	78.0	426	6.8
	4/28/2016	0.142(J)	106	4.80	0.148	83.5	461(B)	6.6
	7/26/2016	0.115(J)	109	5.20	0.148	81.8	395(B)	6.2
	10/6/2016	0.126(J)	110	4.70	0.172	86.5	443	5.9
	1/25/2017	0.141(J)	118	4.85	0.201	89.2	467	5.9
	4/27/2017	0.137(J)	107	4.25	0.172	95.2	443	6.7
	7/19/2017	0.135(BJ)	111	4.45	0.208	98.4	435	6.5
	9/20/2017	0.132(J)	115	4.16	0.207	94.2	451	6.7
	1/30/2018	n/a	n/a	n/a	n/a	35.5	n/a	6.5
	4/11/2018	0.111(BJ)	137	4.90	0.166	113	511	6.4
	7/9/2018	n/a	125	n/a	n/a	n/a	n/a	6.6
	9/26/2018	0.153(BJ)	130	4.13	0.183(B)	97.5	500	6.6
	5/16/2019	0.144(J)	93.2	1.66	0.189(B)	27.0	349	6.6
	10/23/2019	0.0829(J)	109	2.75	0.216	63.1	417	6.7
	4/8/2020	0.0768(J)	98.3	2.50	0.184	38.7	365	6.6
	10/9/2020	0.0772(J)	134	7.05	0.187	103	537	6.3
	4/15/2021	0.0854(J)	144	9.09	0.226	126	541	6.9
	6/29/2021	n/a	169	n/a	n/a	n/a	n/a	6.5
	10/6/2021	0.0973(J)	185	11.2	0.214	166	670	6.5
	12/14/2021	n/a	190	n/a	n/a	200	730	6.7
	4/6/2022	0.0842(J)	81.4	2.64	0.132(J)	55.6	338	6.9
	10/5/2022	0.0867(J)	94.1	4.14	0.194	57.1	360	6.2
MW-117	compliance							
	10/8/2015	0.0733(J)	80.4	1.17	0.0770(J)	5.21	281	6.6
	1/28/2016	0.0960(J)	75.2	1.61	0.126	6.32	271(B)	6.5
	4/27/2016	0.130(J)	76.9	1.30	0.101	6.19	272	6.6
	7/26/2016	0.105(J)	78.2	1.25	0.0971(J)	5.48	271(B)	7.9(R)
	10/5/2016	0.115(J)	85.5	1.53	0.110	5.68	287	5.1
	1/26/2017	0.0970(J)	75.7	1.34	0.120	7.46	268	6.1
	4/25/2017	0.0835(J)	76.7	1.48	0.131	6.55	277	6.6
	7/18/2017	0.102(BJ)	77.6	1.36	0.151	6.56	292	6.4
	9/20/2017	0.106(J)	84.2	0.747(J)	0.144	6.43	280	6.5
	4/11/2018	0.0952(BJ)	82.5	1.57	0.124	7.28	290	6.4

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-117	9/27/2018	0.127(BJ)	89.7	1.25(B)	0.144(B)	7.19	318	6.4
(cont.)	11/19/2018	n/a	85.7	n/a	n/a	n/a	288	6.6
	5/15/2019	0.133(J)	98.3	1.25	0.147(B)	6.66	341	6.5
	8/2/2019	n/a	102	n/a	n/a	n/a	302	6.3
	10/22/2019	0.0610(J)	80.9	0.864(J)	0.136	5.45	322	6.5
	4/7/2020	0.0759(J)	98.1	1.33	0.144(J)	7.47	323	6.6
	6/22/2020	n/a	90.1	n/a	n/a	n/a	n/a	6.1
	10/8/2020	0.0721(J)	84.1	0.793(J)	0.137(J)	7.75	298	6.3
	4/13/2021	0.0705(J)	98.8	0.976(J)	0.152	7.46	351	6.9
	6/29/2021	n/a	83.7	n/a	n/a	n/a	314	6.4
	10/6/2021	0.0677(J)	88.8	0.921(J)	0.162	9.09	314	6.5
	12/14/2021	n/a	82.0	n/a	n/a	9.31	308	6.5
	4/6/2022	0.0738(J)	93.1	0.875(J)	0.0916(J)	9.03	341	6.5
	6/20/2022	n/a	92.2	n/a	n/a	9.63	318	5.8
	10/5/2022	0.0725(J)	88.0	0.953(J)	0.122(J)	10.3	311	5.7
MW-118	compliance							
	10/9/2015	0.0916(J)	75.1	1.08	0.175	12.0	271	6.4
	1/28/2016	0.121(J)	73.4	1.59	0.175	11.5	269(B)	6.2
	4/28/2016	0.123(J)	94.1	1.80	0.119	26.7	378(B)	6.2
	7/26/2016	0.101(J)	85.4	2.13	0.133	26.6	322(B)	8.0(R)
	10/5/2016	0.103(J)	78.1	1.48	0.157	15.1	294	6.3
	1/26/2017	0.106(J)	74.7	1.13(B)	0.188	13.4	275	6.1
	4/26/2017	0.0994(J)	71.1	1.47	0.163	12.2	276	6.3
	7/20/2017	0.104(BJ)	74.9	1.62	0.172	20.4	313	6.5
	9/20/2017	0.104(J)	85.1	1.17	0.187	18.5	305	6.5
	4/11/2018	0.0949(BJ)	71.8	1.36	0.157	15.2	257	5.8
	7/10/2018	n/a	n/a	n/a	n/a	n/a	n/a	6.5
	9/27/2018	0.113(BJ)	80.6	1.33(B)	0.165(B)	17	375	6.3
	5/15/2019	0.125(J)	76.4	1.44	0.185	16.5	286	6.0
	8/2/2019	n/a	n/a	n/a	n/a	n/a	n/a	6.1
	10/22/2019	0.0459(J)	91.6	1.45	0.162	17.5	335	6.4
	4/8/2020	0.0739(J)	82.9	1.62	0.152	16.6	304	6.1
	10/8/2020	0.0596(J)	84.8	1.13	0.150(J)	18.3	301	6.1
	4/15/2021	0.0663(J)	94.1	0.911(J)	0.185	20.0	329	6.6
	10/6/2021	0.0656(J)	82.9	1.15	0.189	11.5	280	6.4
	4/7/2022	0.0573(J)	85.2	0.926(J)	0.129(J)	17.6	320	6.6
	10/5/2022	0.0628(J)	87.5	1.31	0.124(J)	19.7	329	6.1
MW-119	compliance							
	1/25/2017	0.0922(J)	104	2.62	0.255	47.6	409	6.6
	4/27/2017	0.108(J)	106	2.80	0.198	39.1	403	6.8

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-119	7/20/2017	0.0936(BJ)	103	6.84(O)	0.256	48.7	432	6.6
(cont.)	9/20/2017	0.0798(J)	92.7	2.30	0.289	38.7	338	6.8
	1/30/2018	0.0805(BJ)	99.3	2.07	0.259	35.5	380	6.4
	4/11/2018	0.0950(BJ)	85.9	2.15	0.230	31.1	315	6.4
	9/27/2018	0.103(BJ)	99.0	2.30(B)	0.253(B)	41.6	290	6.7
	11/20/2018	0.0826(BJ)	94.0	1.96	0.271	33.0	343	6.8
	12/18/2018	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	2/18/2019	0.110(J)	103	2.27	0.253	43.0	374	6.6
	5/16/2019	0.109(J)	135	2.86	0.252	47.4	487	6.4
	8/2/2019	n/a	97.4	n/a	n/a	n/a	n/a	6.4
	10/22/2019	0.0480(J)	110	2.86	0.266	47.7	400	6.7
	4/8/2020	0.0639(J)	109	2.45	0.229	39.4	426	6.6
	10/8/2020	0.0588(J)	109	2.22	0.251	52.9	415	6.5
	4/15/2021	0.0687(J)	115	2.43	0.267	33.6	413	6.9
	10/7/2021	0.0594(J)	104	2.40	0.269	39.1	388	6.7
	4/7/2022	0.0670(J)	107	1.82	0.195	37.1	397	6.6
	10/5/2022	0.0671(J)	119	1.98	0.230	46.2	444	6.2(R)
	12/16/2022	n/a	n/a	n/a	n/a	n/a	n/a	6.9

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

APPENDIX E

Background Data Sets Used for Statistics

BACKGROUND DATA SETS

Background data sets are generally evaluated every 2 to 3 years in accordance with the landfill's statistical analysis plan (SAP) and Unified Guidance recommendations. This document describes recommended methods and procedures used to evaluate compliance data for inclusion in the background data sets in accordance with §257.94(b), the landfill's SAP, and the Unified Guidance. The Unified Guidance recommends updating background data sets to include more recent observations, because some long-term fluctuation in background levels may be possible even though a given well has not been impacted by the landfill. As identified in the Unified Guidance, the term "background" refers to the natural or baseline groundwater quality at a site. Background conditions can range from an uncontaminated aquifer to a historically contaminated site with baseline conditions that are unaffected by recent releases that are actionable under the Resource Conservation and Recovery Act. The terms "background" and "baseline" are used interchangeably herein. Procedures used for establishing the initial background data sets were described in the 2018 and 2019 annual reports.

Background data sets were evaluated for an update prior to the first half of 2022 monitoring period for all well-parameter pairs except for select parameters at MW-116, which were excluded from the evaluation due to an ongoing investigation. Well-parameter pairs that were not updated in 2022 will be re-evaluated prior to the first half 2023 monitoring period. Updated background data sets used for the first and second half of 2022 statistical evaluations are attached to this appendix.

Exploratory Analyses

Background data sets were screened using exploratory data analyses to identify potential trends, outliers, and spatial variability. Time-series plots and box-and-whiskers plots were applied to all background data sets to identify potential excursions from normal.

Updating Background Data Sets

Existing background and compliance populations for each well-parameter pair were evaluated with the intrawell Mann-Whitney (Wilcoxon Rank-Sum) test. This test evaluates whether the existing background data set is statistically different from the compliance data set. When comparing a minimum of four compliance values to the background data set, the background data set is generally updated if the test finds no significant difference at the 95% confidence level ($\alpha = 0.05$). When comparing compliance populations of five or more values, background data sets are generally updated if the test finds no significant difference at the 99% confidence level ($\alpha = 0.01$).

Outliers and Rejected Data in Background Data Sets

The Unified Guidance recommends that background data be screened for potential outliers. However, it also advises that outliers not be removed unless a source of error or reason for the discrepancy can be identified. As advised in the Unified Guidance, select removal of extreme outliers without knowledge of error may be warranted to improve environmental protection, but removal of all outliers can mask real and legitimate changes in background data. Outlier screening included the application of Dixon's or Tukey's outlier tests to the updated background data sets to identify potential outliers for exclusion.

Extreme outliers and data that are excluded from the historical database based on independent evidence of error or that are suspected of being unrepresentative of groundwater quality (e.g., due to excessively high sample turbidity) are listed in Table E.1. Outlier data that are excluded from statistical evaluations are flagged with an "O" and data that are excluded due to independent evidence of error are flagged with an "R" in the historical database.

Parameter	Well	Date	Value (mg/L)	Flag	Note
Boron	MW-101	4/26/2017	<1.8	0	Laboratory reporting detection limit was nine times higher than normal due to a sample dilution.
Boron	MW-108	5/14/2019	0.224	R	Suspected laboratory/sampling error; disconfirmed by verification sampling in August 2019.
Calcium	MW-102	9/20/2017	25.9	0	Statistically low outlier; suspected laboratory error.
Chloride	MW-115	1/28/2016	7.55	0	Statistically high outlier.
Chloride	MW-119	7/20/2017	6.84	0	Statistically high outlier.
pН	MW-102	7/26/2016	7.7 (su)	R	Known equipment malfunction.
pН	MW-108	7/26/2016	9.8 (su)	R	Known equipment malfunction.
pН	MW-108	10/4/2022	6.2 (su)	R	Known equipment malfunction.
pН	MW-113	7/26/2016	8.1 (su)	R	Known equipment malfunction.
pН	MW-115	7/26/2016	9.0 (su)	R	Known equipment malfunction.
pН	MW-117	7/26/2016	7.9 (su)	R	Known equipment malfunction.
pН	MW-118	7/26/2016	8.0 (su)	R	Known equipment malfunction.
pН	MW-119	10/5/2022	6.2 (su)	R	Known equipment malfunction.
Sulfate	MW-102	4/11/2018	46.7	0	Statistically low outlier.
Sulfate	MW-115	1/28/2016	14.8	0	Statistically high outlier.

Table E.1. Data excluded from statistical analyses.

Screening for Trends in Background Data Sets

EPA guidance recommends screening background populations for statistically significant trends, because some tests (such as a prediction limit test) require a stationary statistical distribution for valid results. The presence of statistically significant tends in background data may violate key assumptions of some statistical tests and require an alternate approach to testing the data. If trends are indicated in background populations, testing strategies that either correct for, or are not sensitive to, temporal variation may be required.

Well-parameter pairs containing statistically significant trends in their background data sets are summarized in Table E.2. The well-parameter pairs below are tested for compliance using the Mann-Kendall test and Theil-Sen trend line as opposed to a prediction limit test. All remaining well-parameter pairs are tested for compliance using prediction limits.

Parameter	Well(s)
Boron	MW-103, MW-108
Calcium	MW-102, MW-103
Chloride	MW-101, MW-102, MW-103, MW-115, MW-116
Sulfate	MW-103
TDS	MW-103

Table E.2. Well-parameter pairs tested with Mann-Kendall test and Theil-Sen trend line.

Date Ranges

Date: 9/14/2022 12:35 PM

Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Plum Point Energy Station

Boron (mg/L) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-12/14/2021 MW-117 background:10/7/2015-12/14/2021 MW-118 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 Calcium (mg/L) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-10/23/2019 MW-117 background:6/7/2011-2/18/2019 MW-118 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 Chloride (mg/L) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-10/23/2019 MW-117 background:10/7/2015-12/14/2021 MW-118 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 Dissolved Solids (mg/L) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-10/23/2019 MW-117 background:6/7/2011-2/18/2019 MW-118 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 Fluoride (mg/L) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-7/20/2017 MW-103 background:10/7/2015-10/23/2019 MW-108 background:10/7/2015-10/23/2019 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-10/23/2019 MW-117 background:10/7/2015-7/20/2017 MW-118 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 pH (su) MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-12/14/2021 MW-117 background:10/7/2015-12/14/2021 MW-118 background:10/7/2015-12/14/2021

MW-119 background:10/7/2015-12/14/2021 Sulfate (mg/L)

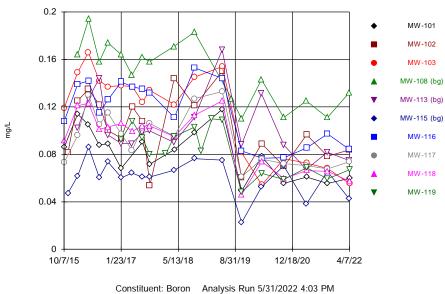
MW-101 background:10/7/2015-12/14/2021 MW-102 background:10/7/2015-12/14/2021 MW-103 background:10/7/2015-12/14/2021 Page 1

Date Ranges

Date: 9/14/2022 12:35 PM

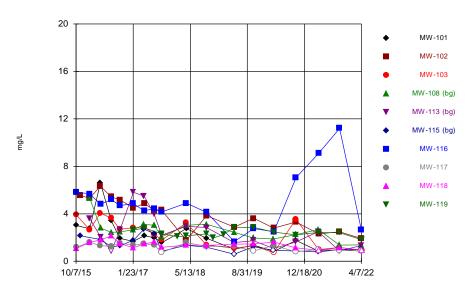
Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


MW-108 background:10/7/2015-12/14/2021 MW-113 background:10/7/2015-12/14/2021 MW-115 background:10/7/2015-12/14/2021 MW-116 background:10/7/2015-10/23/2019 MW-117 background:10/7/2015-12/14/2021 MW-119 background:10/7/2015-12/14/2021 Page 2

APPENDIX F

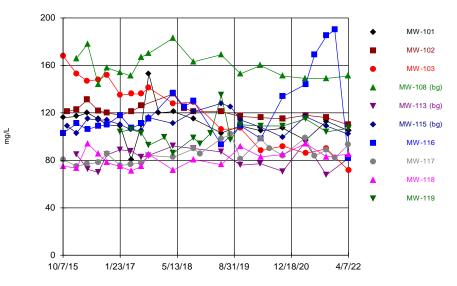
Exploratory Data Analysis Plots


Time-Series Plots, First Half of 2022 Data Set

Time Series

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\mathrm{w}}$ v.9.6.34 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.



Time Series

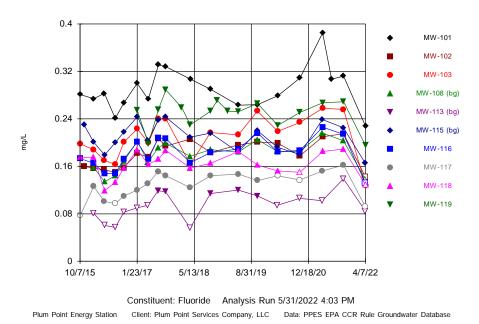
Constituent: Chloride Analysis Run 5/31/2022 4:03 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

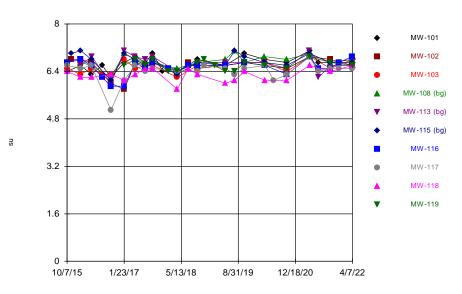
Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

Time Series

 Constituent: Calcium
 Analysis Run 5/31/2022 4:03 PM

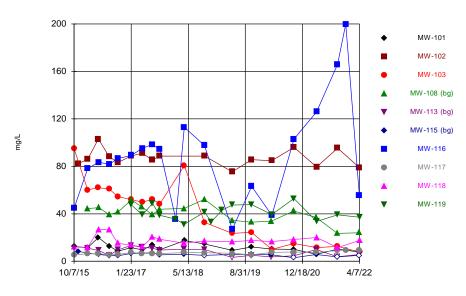
 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database


Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG



Constituent: Dissolved Solids Analysis Run 5/31/2022 4:03 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Time Series

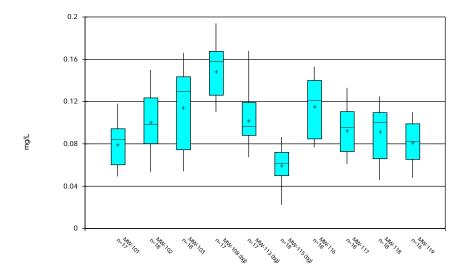

Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

Time Series

Constituent: pH Analysis Run 5/31/2022 4:03 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

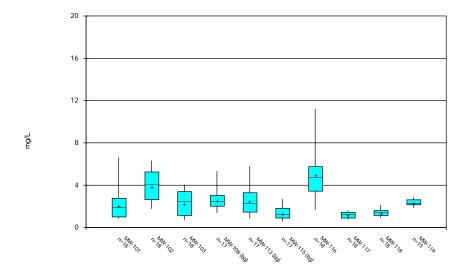
Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Time Series

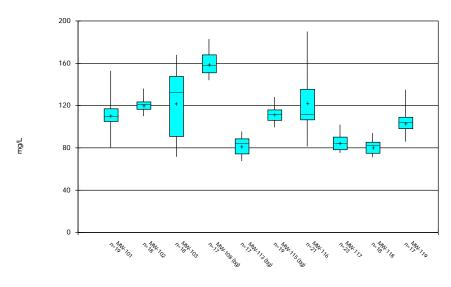

Constituent: Sulfate Analysis Run 5/31/2022 4:03 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Box-and-Whisker Plots, First Half of 2022 Data Set

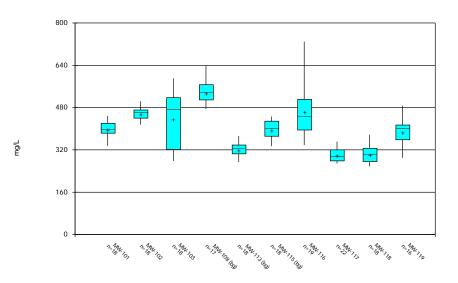

Box & Whiskers Plot

 Constituent: Boron
 Analysis Run 4/27/2022 12:17 PM


 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

Constituent: Chloride Analysis Run 4/27/2022 12:18 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

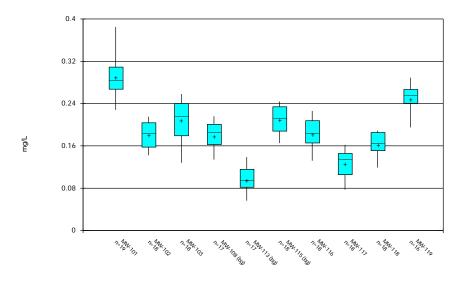
Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG



Constituent: Calcium Analysis Run 4/27/2022 12:17 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

Box & Whiskers Plot



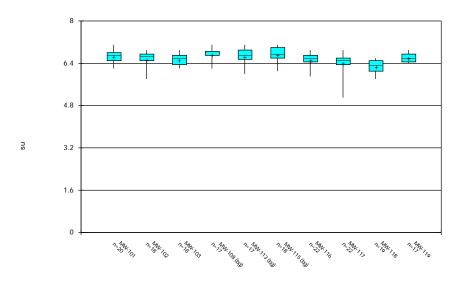
Constituent: Dissolved Solids Analysis Run 4/27/2022 12:18 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

200

Box & Whiskers Plot

Box & Whiskers Plot

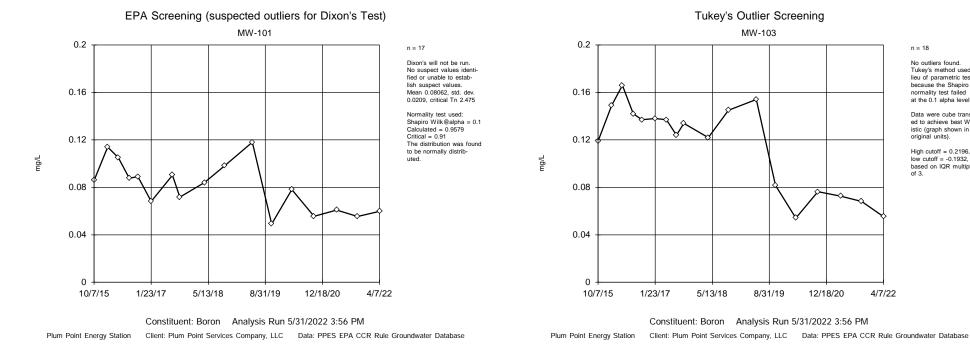
 Constituent: Fluoride
 Analysis Run
 4/27/2022 12:18 PM

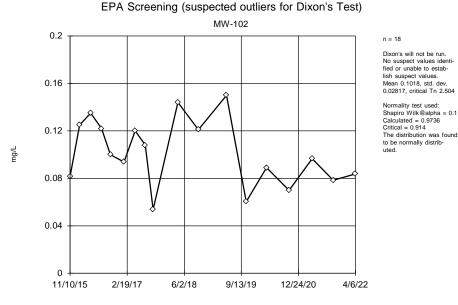

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

160 120 mg/L 80 40 0 1. 1. N. 101 1 1n 103 N. M. N. R. Co. 1.1.1.1.1.1.3 (bg) N. M. IS 2 MM 13 1 1m 103 1 AM. 19

Constituent: Sulfate Analysis Run 4/27/2022 12:18 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

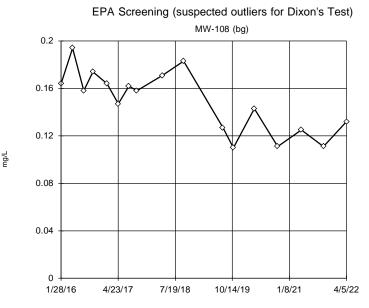

Box & Whiskers Plot



Constituent: pH Analysis Run 4/27/2022 12:18 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Outlier Plots, Period-of-Record Data through First Half of 2022



Constituent: Boron Analysis Run 5/31/2022 3:56 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 17 Dixon's will not be run. No suspect values identi-

n = 18

No outliers found. Tukey's method used in

lieu of parametric test

normality test failed

at the 0.1 alpha level

istic (graph shown in

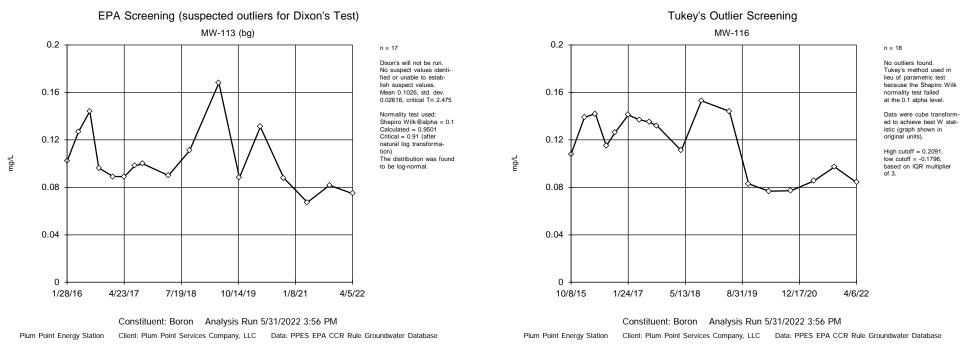
High cutoff = 0.2196, low cutoff = -0.1932,

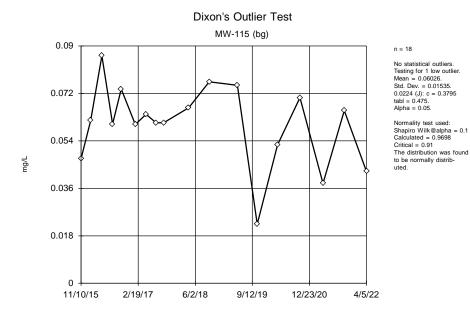
based on IQR multiplier

original units).

of 3.

because the Shapiro Wilk

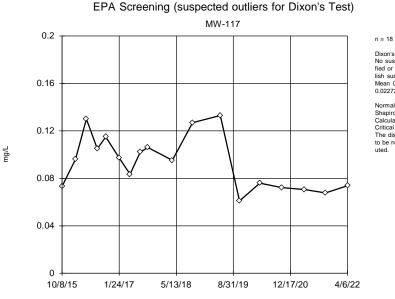

Data were cube transform-


ed to achieve best W stat-

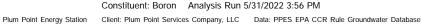
fied or unable to establish suspect values. Mean 0.1491, std. dev. 0.02606, critical Tn 2.475

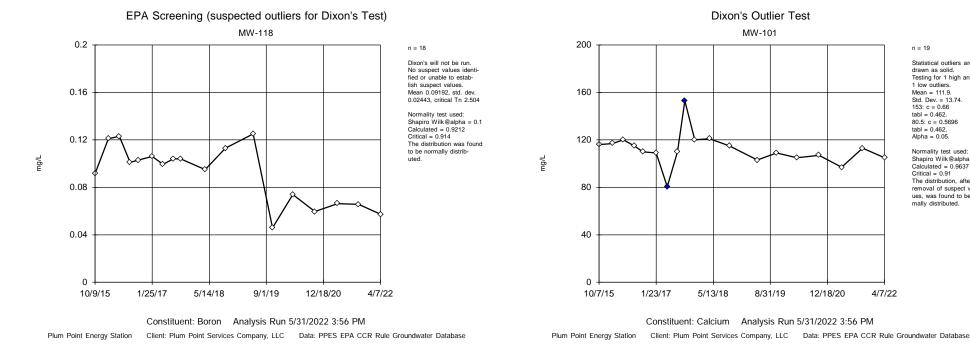
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9461Critical = 0.91 The distribution was found to be normally distributed

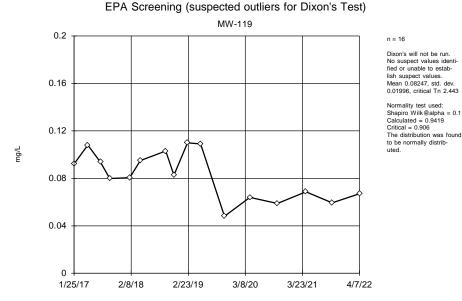
Constituent: Boron Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Constituent: Boron Analysis Run 5/31/2022 3:56 PM

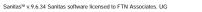

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

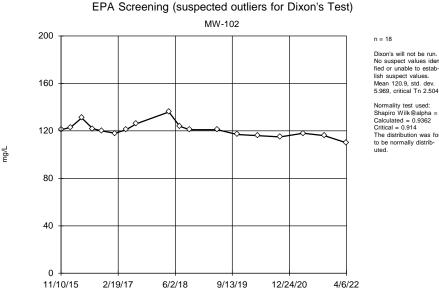

Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.09356, std. dev. 0.02272, critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9305Critical = 0.914 The distribution was found to be normally distributed.





Constituent: Boron Analysis Run 5/31/2022 3:56 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 120.9, std. dev.

n = 19

Statistical outliers are drawn as solid.

Testing for 1 high and

1 low outliers

Mean = 111.9.

tabl = 0.462.

tabl = 0.462.

Alpha = 0.05.

Std. Dev. = 13.74. 153: c = 0.66

80.5; c = 0.5696

Normality test used: Shapiro Wilk@alpha = 0.1

Calculated = 0.9637 Critical = 0.91 The distribution, after

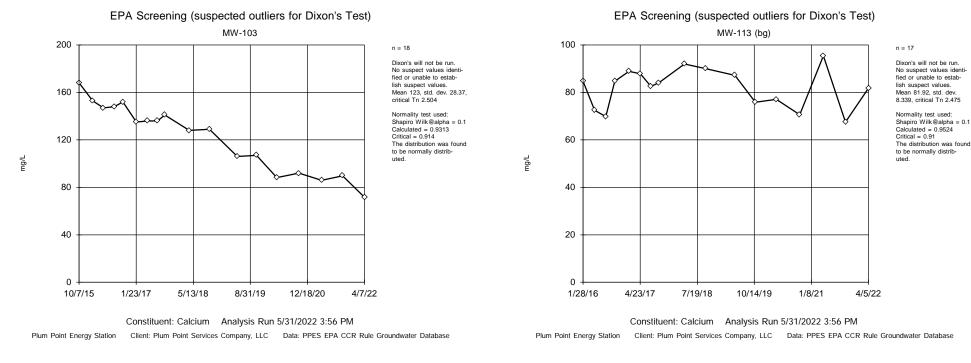
removal of suspect values, was found to be normally distributed.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9362Critical = 0.914 The distribution was found to be normally distrib-

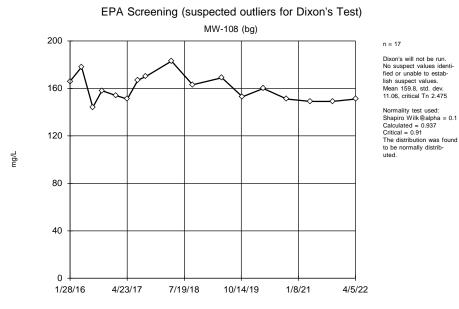
160

120

80

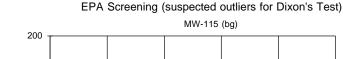

40

0


11/10/15

2/19/17

mg/L



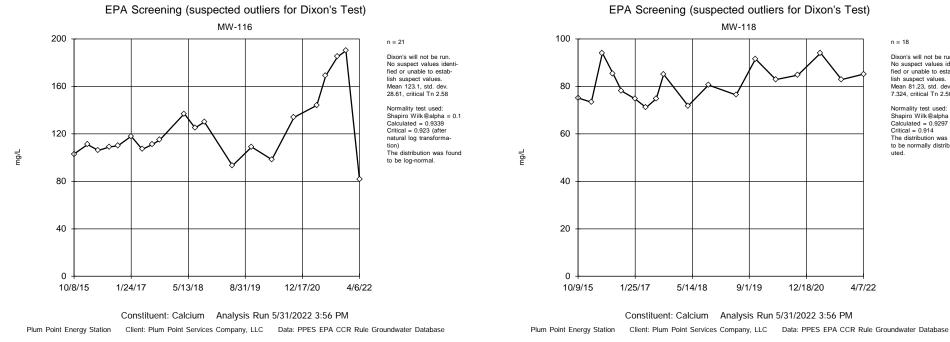
Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG

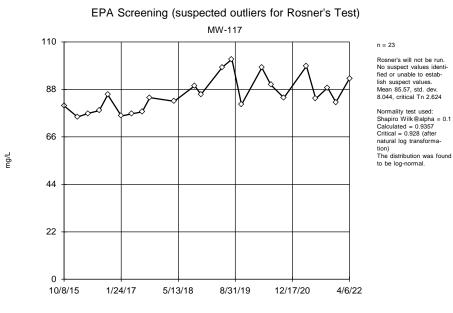
Constituent: Calcium Analysis Run 5/31/2022 3:56 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 19 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 111.9, std. dev. 7.571, critical Tn 2.532 Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.977 The distribution was found to be normally distributed.

12/23/20

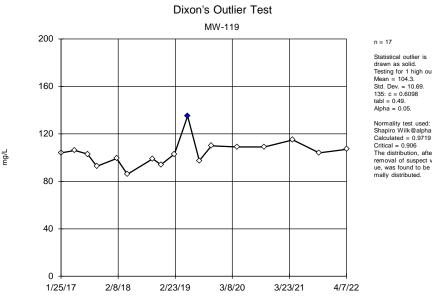

4/5/22


Constituent: Calcium Analysis Run 5/31/2022 3:56 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

9/12/19

6/2/18



Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

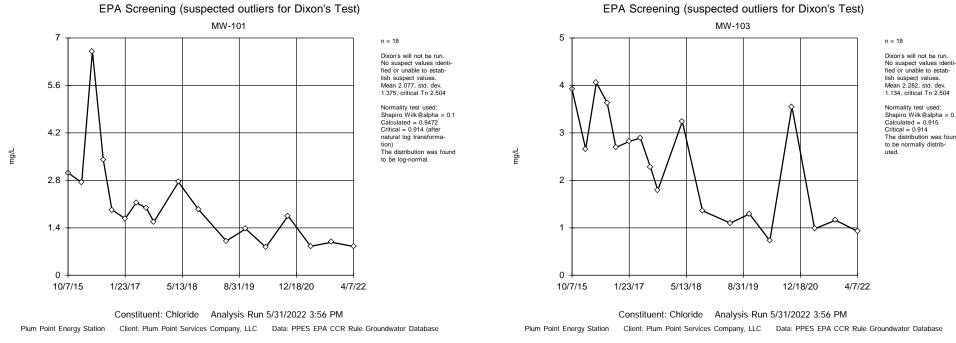
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 81.23, std. dev. 7.324. critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9297 Critical = 0.914 The distribution was found to be normally distrib-

Statistical outlier is Testing for 1 high outlier. Std. Dev. = 10.69.

Shapiro Wilk@alpha = 0.1 Calculated = 0.9719Critical = 0.906The distribution, after removal of suspect value, was found to be normally distributed.

mg/L


2.4

1.2

0

1/28/16

4/23/17

n = 18

Dixon's will not be run.

fied or unable to estab-

lish suspect values.

Mean 3.922, std. dev.

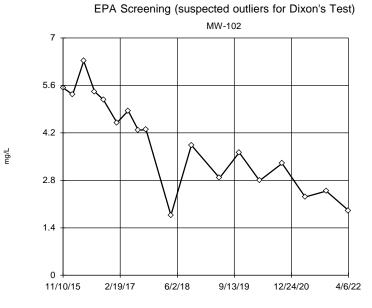
Normality test used:

Calculated = 0.9605

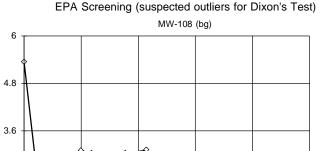
to be normally distrib-

Critical = 0.914

uted


1.368, critical Tn 2.504

Shapiro Wilk@alpha = 0.1


The distribution was found

No suspect values identi-

Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

Constituent: Chloride Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

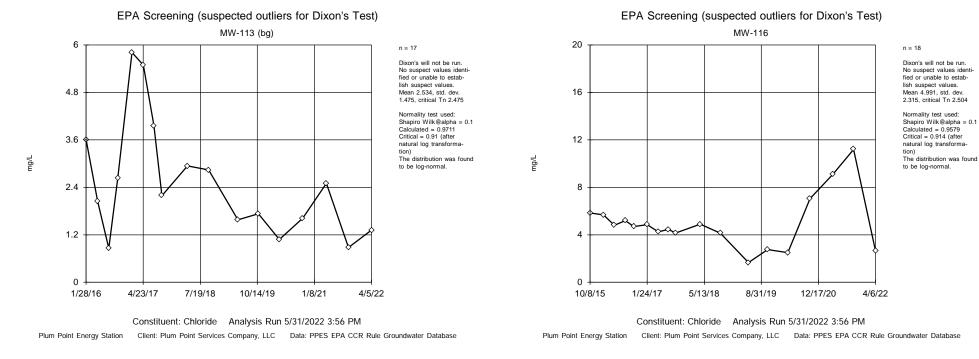
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 2.585, std. dev. 0.8975, critical Tn 2.475

n = 17

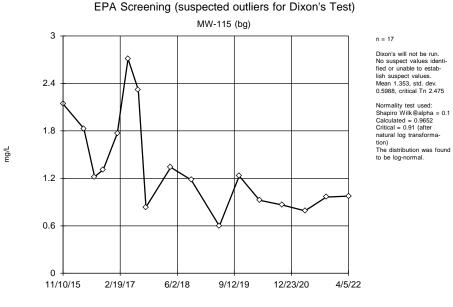
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9369Critical = 0.91 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Chloride Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

10/14/19

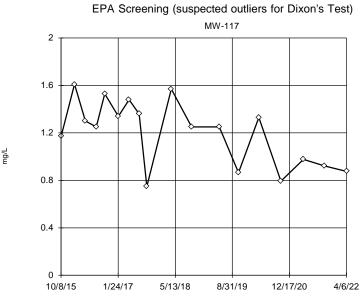

1/8/21

4/5/22


7/19/18

fied or unable to estab-1.134, critical Tn 2.504

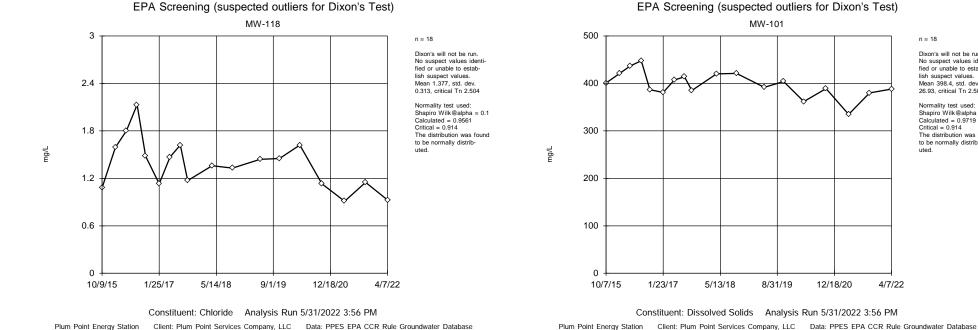
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.915 Critical = 0.914 The distribution was found to be normally distrib-

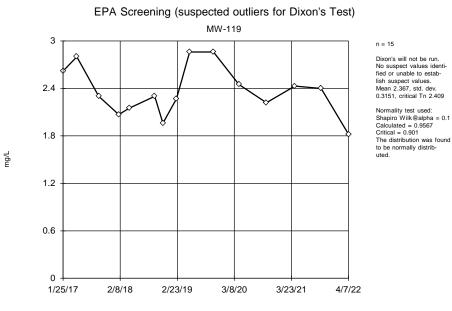


Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

Constituent: Chloride Analysis Run 5/31/2022 3:56 PM

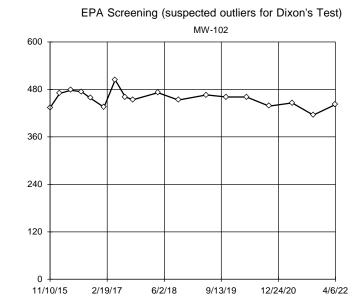
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


n = 18 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 1.201, std. dev.


0.2755, critical Tn 2.504 Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9314Critical = 0.914 The distribution was found

to be normally distrib-

uted.


Constituent: Chloride Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

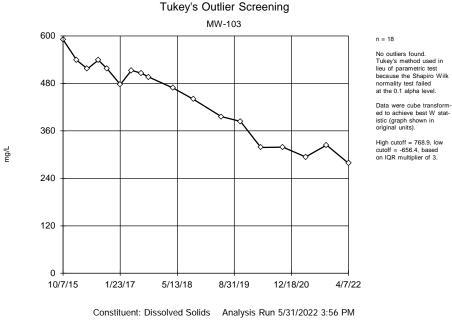
Constituent: Chloride Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

mg/L

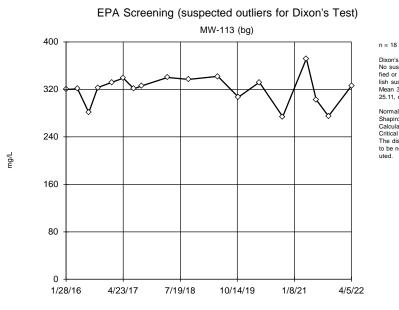
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 398.4, std. dev 26.93. critical Tn 2.504

n = 18

4/7/22


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9719 Critical = 0.914 The distribution was found to be normally distributed

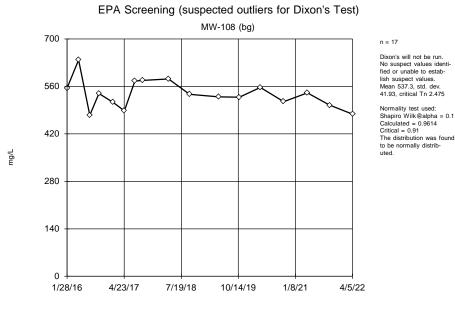
n = 18 Dixon's will not be run.


No suspect values identified or unable to establish suspect values. Mean 456.8, std. dev. 20.25, critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9775Critical = 0.914 The distribution was found to be normally distributed.

Constituent: Dissolved Solids Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

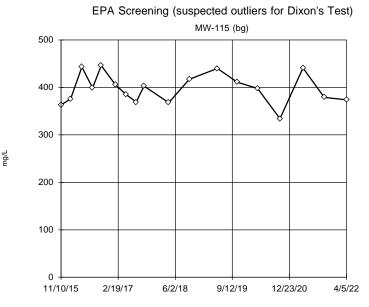
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 320.6, std. dev. 25.11, critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9225 Critical = 0.914 The distribution was found to be normally distributed.

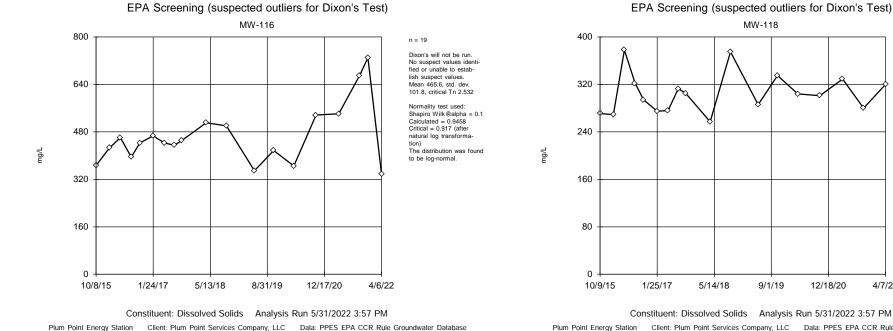
Constituent: Dissolved Solids Analysis Run 5/31/2022 3:56 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

 Constituent: Dissolved Solids
 Analysis Run 5/31/2022 3:56 PM

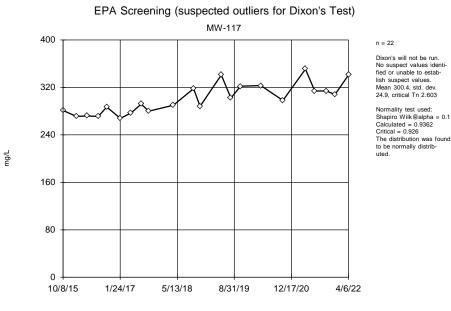
 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG

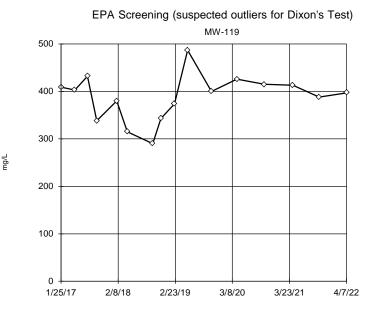

n = 18

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 397.3, std. dev. 31.81, critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9516 Critical = 0.914 The distribution was found to be normally distributed.


Constituent: Dissolved Solids Analysis Run 5/31/2022 3:56 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

Constituent: Dissolved Solids Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 16 Dixon's will not be run.

n = 18

Dixon's will not be run. No suspect values identi-

fied or unable to estab-

Mean 305, std. dev. 34.22.

Shapiro Wilk@alpha = 0.1

The distribution was found to be normally distrib-

lish suspect values.

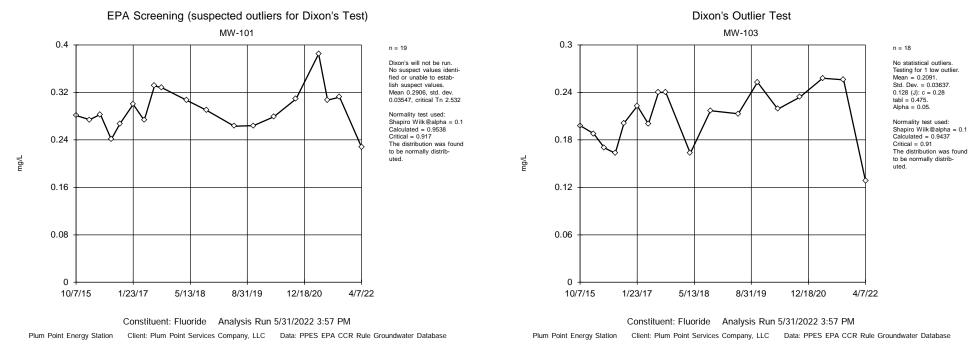
Normality test used:

Calculated = 0.9269

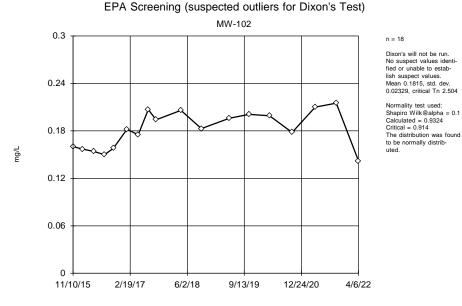
Critical = 0.914

uted

4/7/22

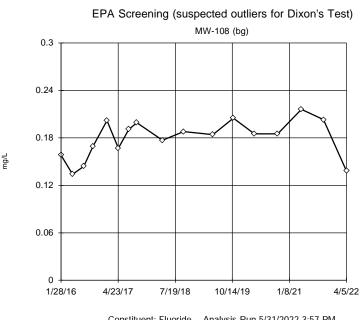

critical Tn 2.504

No suspect values identified or unable to establish suspect values. Mean 388.1, std. dev. 48.4. critical Tn 2.443


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9607Critical = 0.906 The distribution was found to be normally distributed

Constituent: Dissolved Solids Analysis Run 5/31/2022 3:57 PM

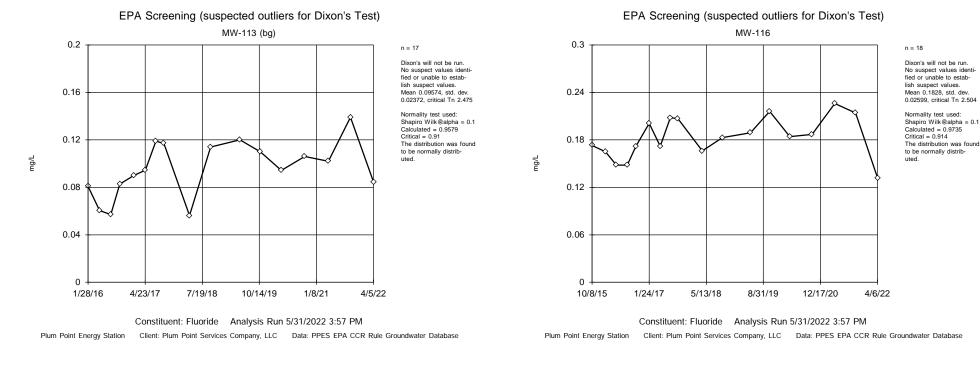
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

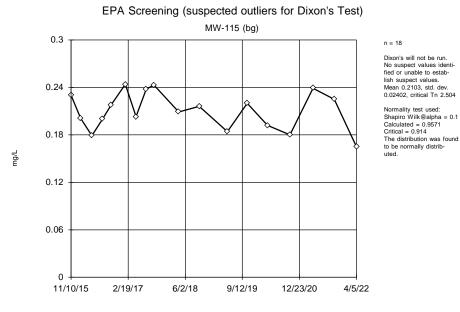


Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG

Constituent: Fluoride Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

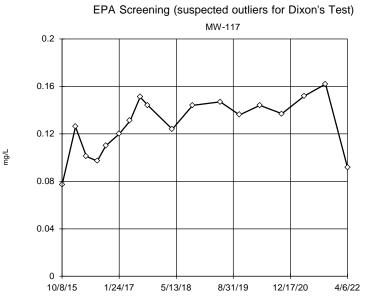



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1791, std. dev. 0.02436, critical Tn 2.475

n = 17

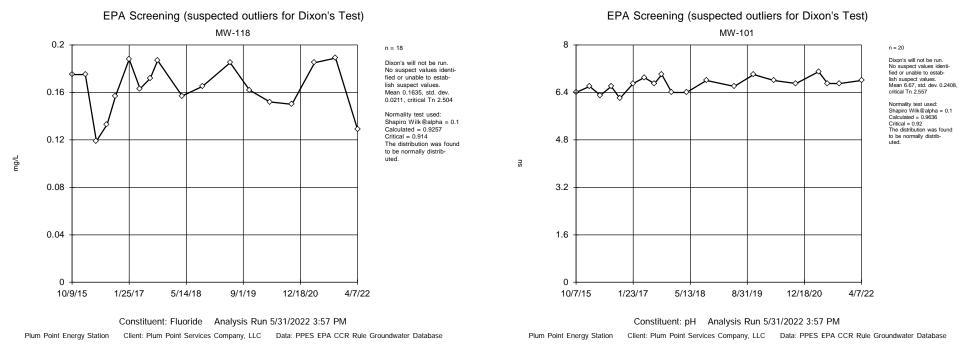
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9418 Critical = 0.91 The distribution was found to be normally distributed.

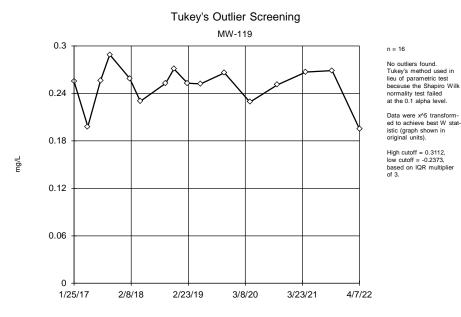
Constituent: Fluoride Analysis Run 5/31/2022 3:57 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Constituent: Fluoride Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

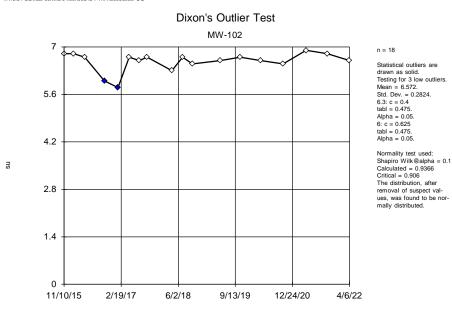

Constituent: Fluoride Analysis Run 5/31/2022 3:57 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1275, std. dev. 0.02371, critical Tn 2.504

n = 18

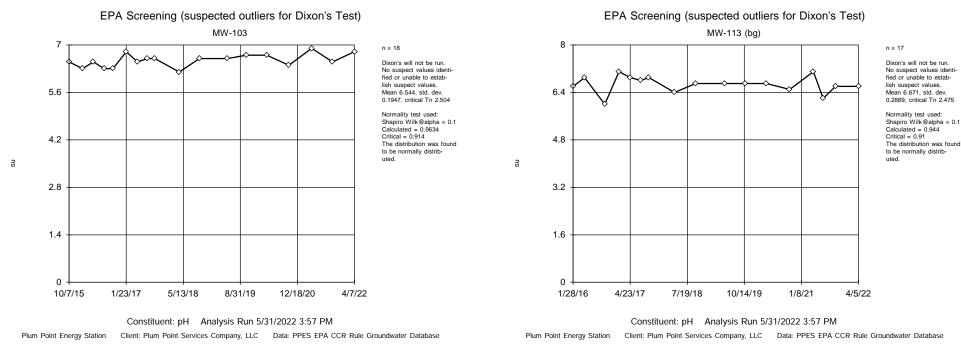
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.941Critical = 0.914 The distribution was found to be normally distributed



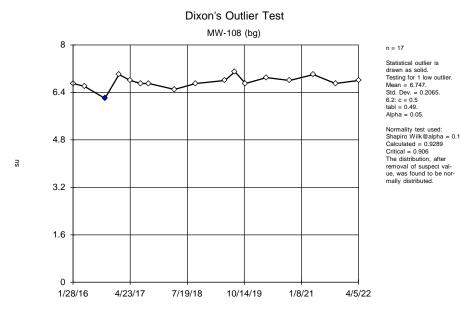
Constituent: Fluoride Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.34 Sanitas software licensed to FTN Associates. UG

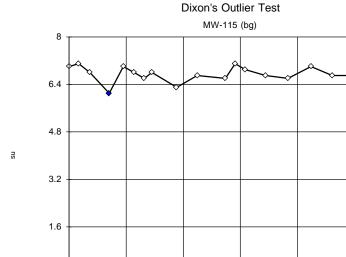


Constituent: pH Analysis Run 5/31/2022 3:57 PM


0

11/10/15

2/19/17



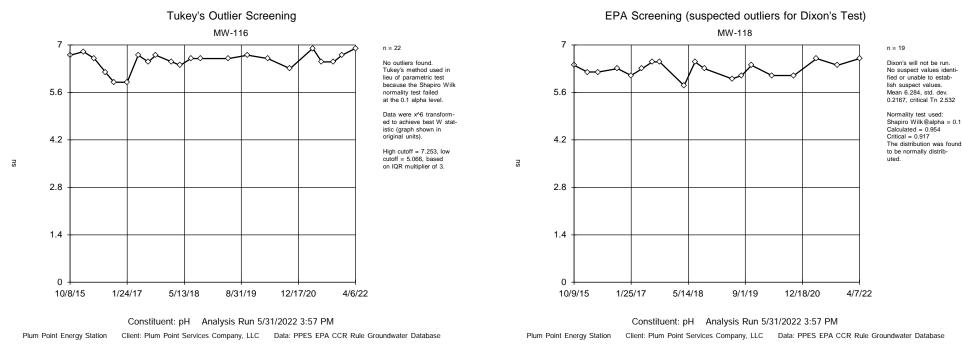
Sanitas™ v.9.6.34 Sanitas software licensed to FTN Associates. UG

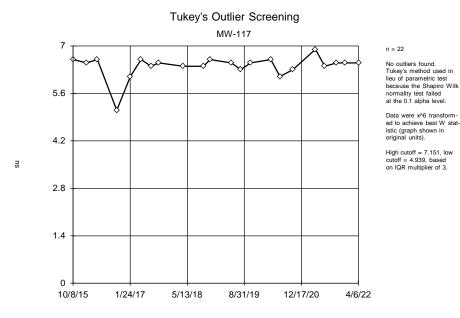
Constituent: pH Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

6/2/18

 $\label{eq:response} \begin{array}{l} n=18 \\ \\ Statistical outlier is \\ drawn as solid. \\ \\ Testing for 1 low outlier. \\ \\ Mean = 6.75. \\ \\ Std. Dev. = 0.2618. \\ 6.1: c=0.5556 \\ tabl = 0.475. \\ \\ Alpha = 0.05. \end{array}$

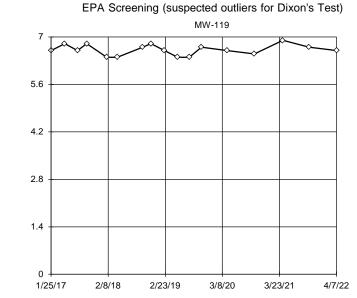

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9391 Critical = 0.91 The distribution, after removal of suspect value, was found to be normally distributed.


4/5/22

12/23/20

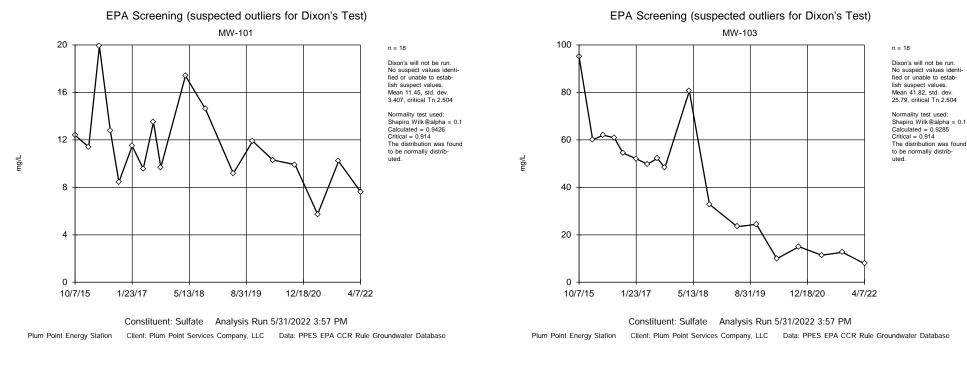
Constituent: pH Analysis Run 5/31/2022 3:57 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

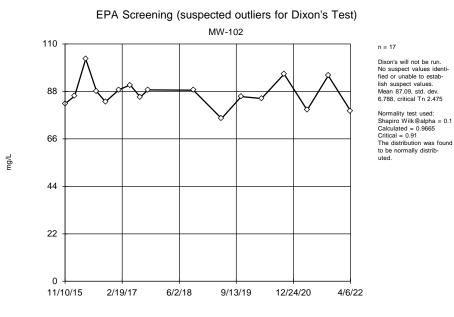
9/12/19



Constituent: pH Analysis Run 5/31/2022 3:57 PM

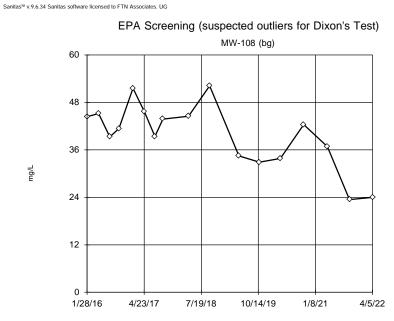
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


su

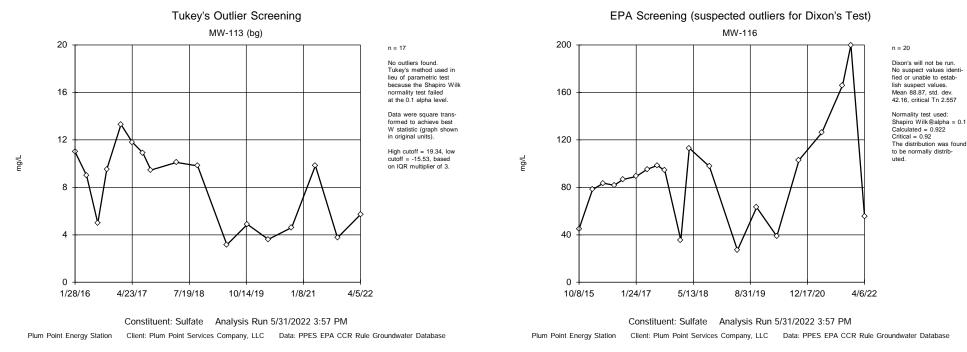


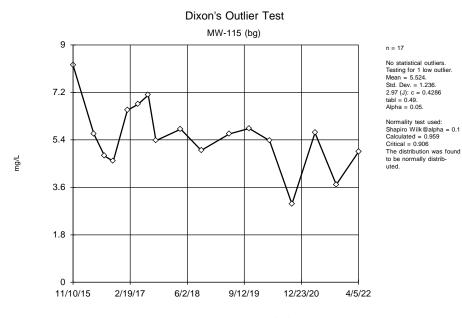
n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.618, std. dev. 0.159. critical Tn 2.475


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9172 Critical = 0.91 The distribution was found to be normally distributed.

Constituent: Sulfate Analysis Run 5/31/2022 3:57 PM

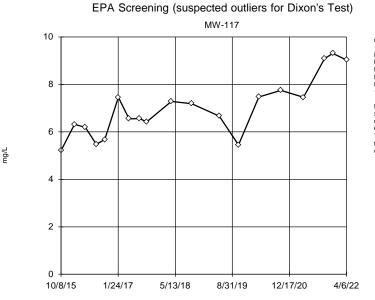

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 39.72, std. dev. 8.159. critical Tn 2.475

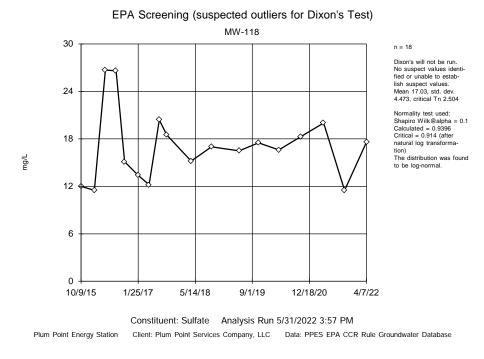
n = 17

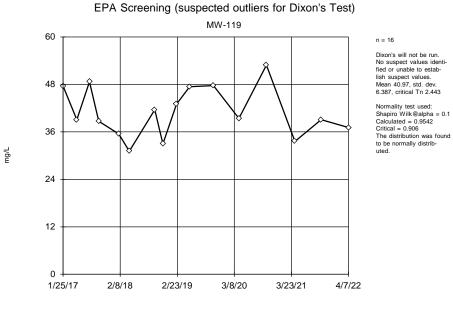
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.941 Critical = 0.91 The distribution was found to be normally distributed.



Constituent: Sulfate Analysis Run 5/31/2022 3:57 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

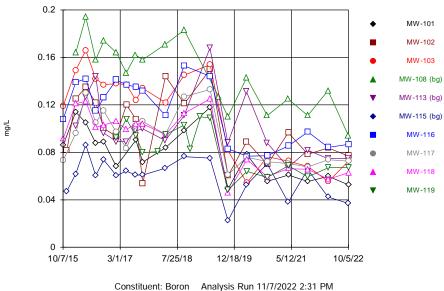




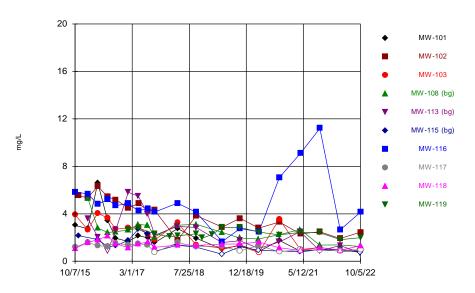
n = 19

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.977, std. dev. 1.219. critical Tn 2.532

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9337 Critical = 0.917 The distribution was found to be normally distributed.



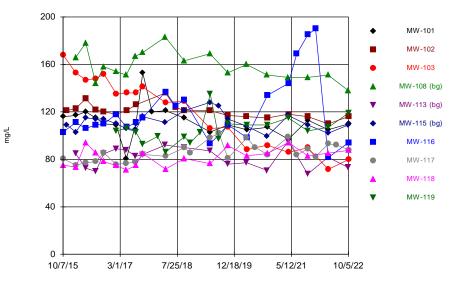
Constituent: Sulfate Analysis Run 5/31/2022 3:57 PM


Time-Series Plots, Second Half of 2022 Data Set

Time Series

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\rm M}$ v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

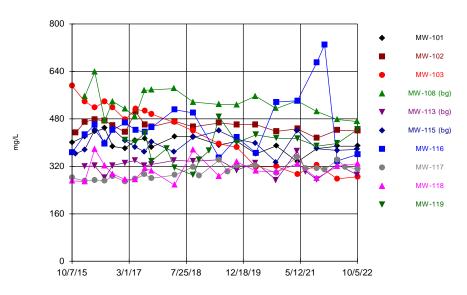


Time Series

Constituent: Chloride Analysis Run 11/7/2022 2:31 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

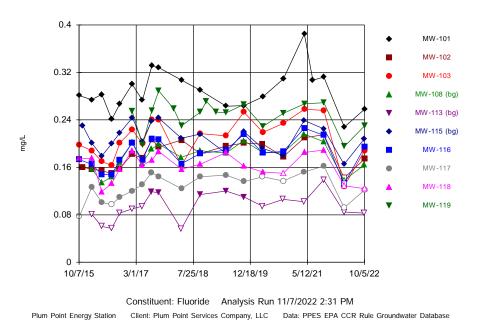
Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

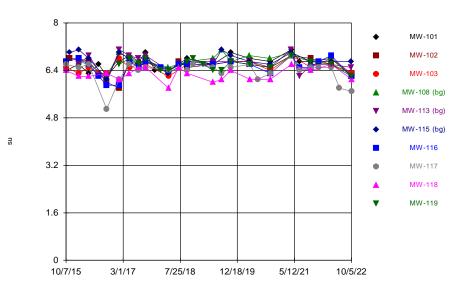
Time Series



 Constituent: Calcium
 Analysis Run 11/7/2022 2:31 PM

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

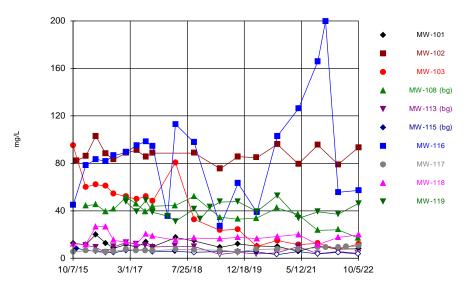

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG



Constituent: Dissolved Solids Analysis Run 11/7/2022 2:31 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Time Series

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

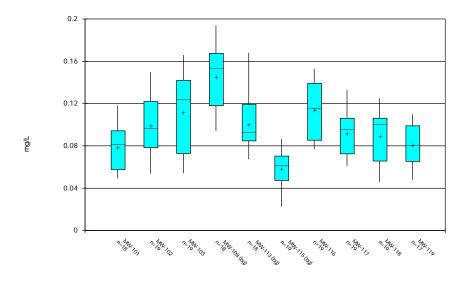


Time Series

 Constituent: pH
 Analysis Run 11/7/2022 2:31 PM

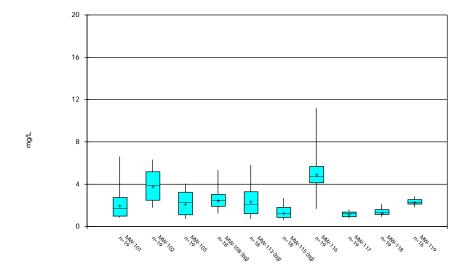
 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

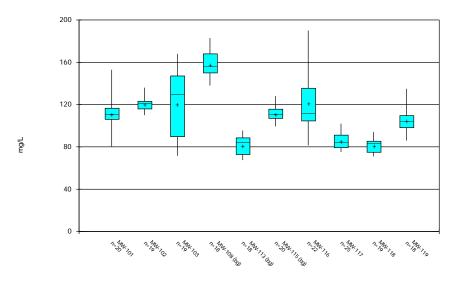

Constituent: Sulfate Analysis Run 11/7/2022 2:31 PM

Time Series

Box-and-Whisker Plots, Second Half of 2022 Data Set

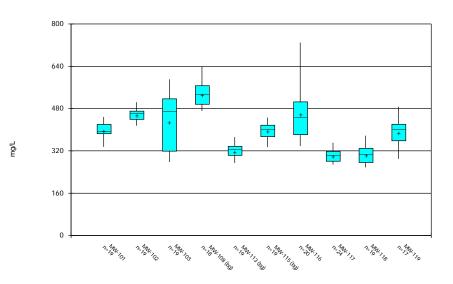

Box & Whiskers Plot

 Constituent: Boron
 Analysis Run 11/7/2022 2:33 PM


 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

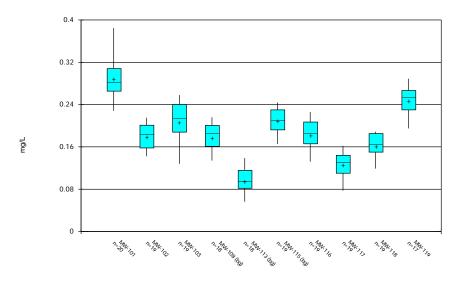
Constituent: Chloride Analysis Run 11/7/2022 2:33 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG



Constituent: Calcium Analysis Run 11/7/2022 2:33 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG

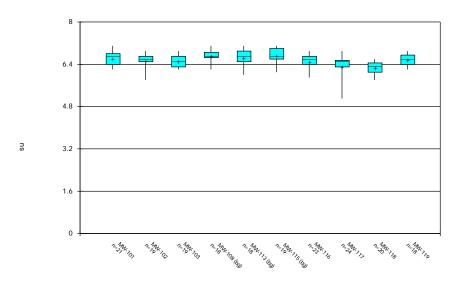


Constituent: Dissolved Solids Analysis Run 11/7/2022 2:33 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Box & Whiskers Plot

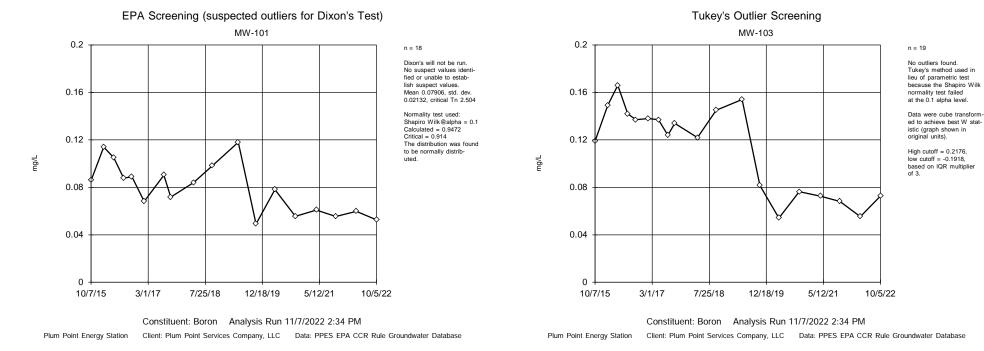
Box & Whiskers Plot

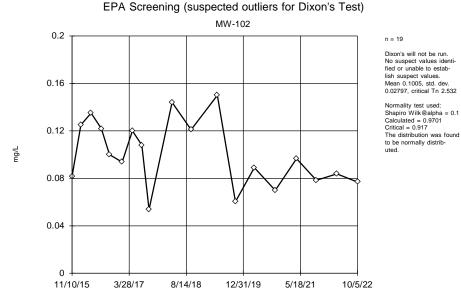
Constituent: Fluoride Analysis Run 11/7/2022 2:33 PM
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


200 160 120 mg/L 80 40 + 0 N. M. Jos 1 1n 103 1 IN IL IL IL N. M. I.S. CO. 1 MM 16 2 MM 113 1 ANK 101 7. 17. 18 1 MA 110

 Constituent: Sulfate
 Analysis Run 11/7/2022 2:33 PM

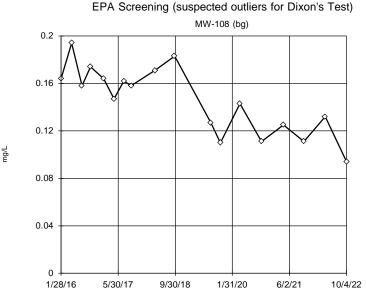
 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database


Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG


Box & Whiskers Plot

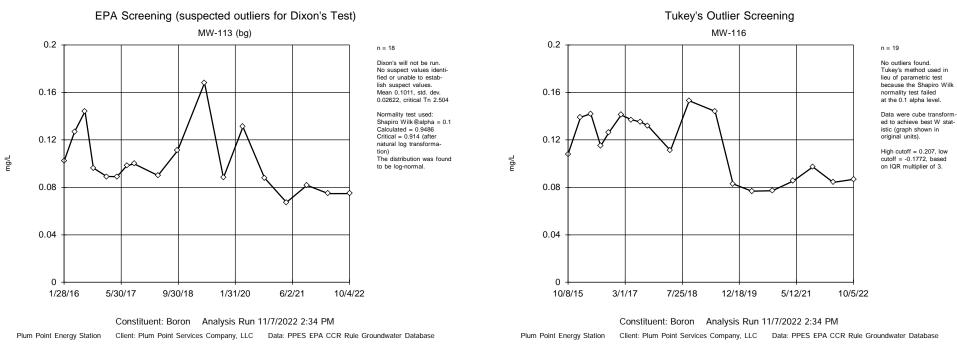
Constituent: pH Analysis Run 11/7/2022 2:33 PM

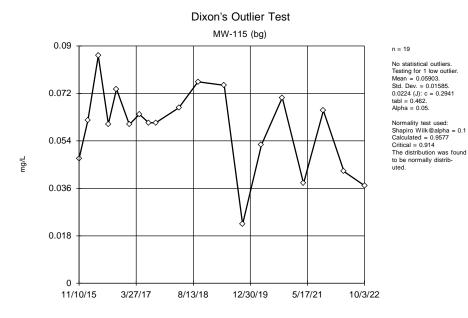
Outlier Plots, Period-of-Record Data through Second Half of 2022



Constituent: Boron Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

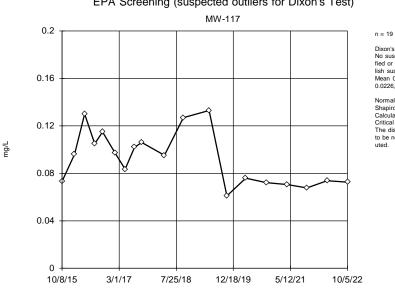

Constituent: Boron Analysis Run 11/7/2022 2:34 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.146, std. dev. 0.02841, critical Tn 2.504

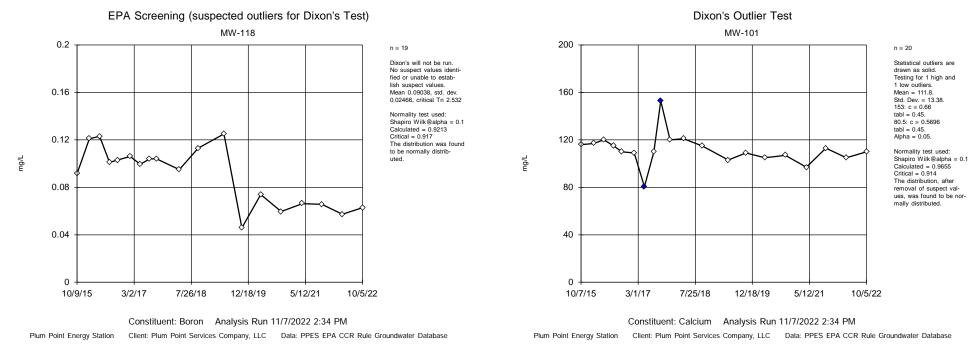
n = 18

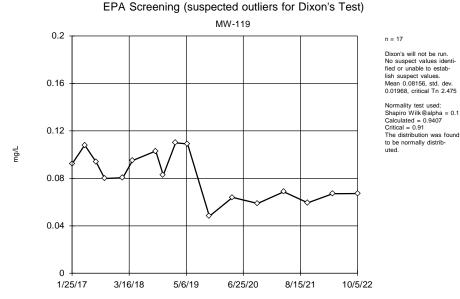
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9614Critical = 0.914 The distribution was found to be normally distributed



Constituent: Boron Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

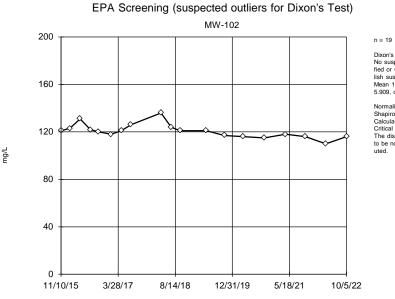



EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.09245, std. dev. 0.0226, critical Tn 2.532

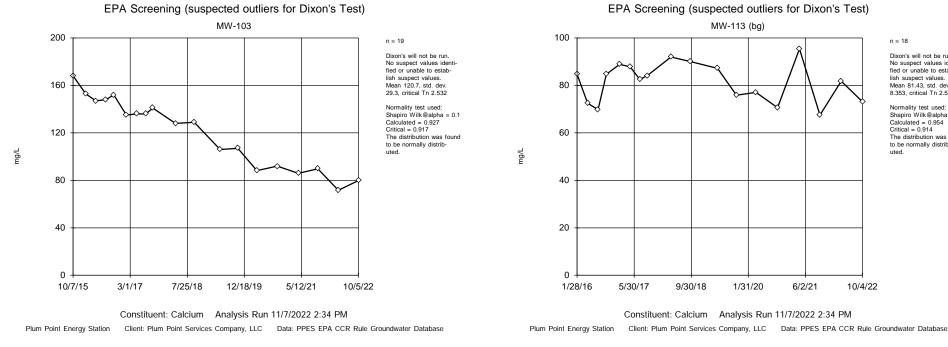
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9182Critical = 0.917 The distribution was found to be normally distributed.

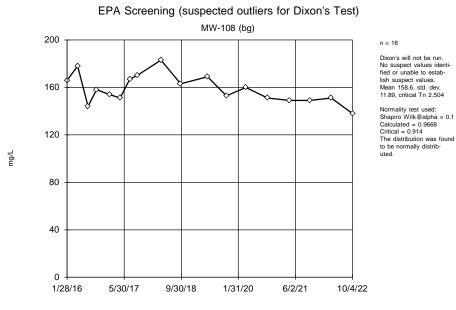
Constituent: Boron Analysis Run 11/7/2022 2:34 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Constituent: Boron Analysis Run 11/7/2022 2:34 PM

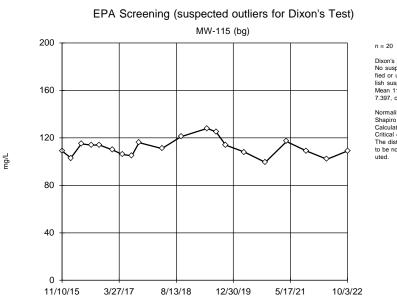
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database




Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 120.6, std. dev. 5.909, critical Tn 2.532

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9287Critical = 0.917 The distribution was found to be normally distrib-

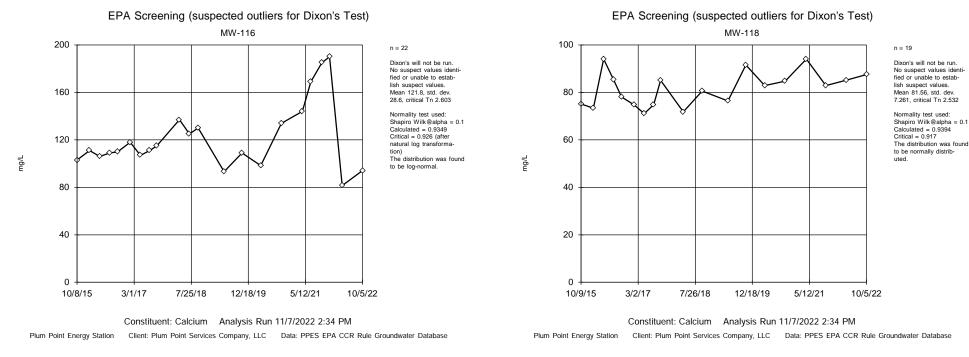
Constituent: Calcium Analysis Run 11/7/2022 2:34 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

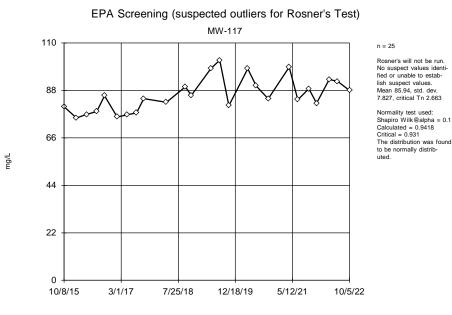


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Constituent: Calcium Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

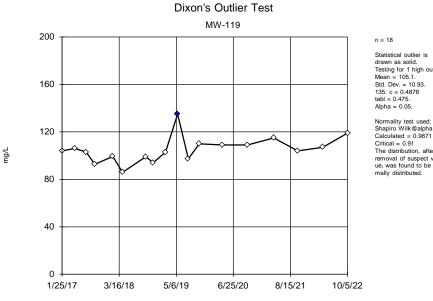



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 81.43, std. dev 8.353. critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.954 Critical = 0.914 The distribution was found to be normally distrib-

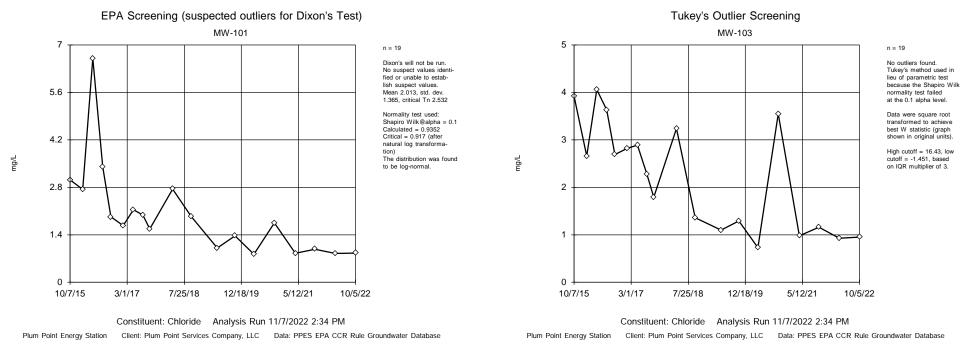
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 111.8, std. dev. 7.397, critical Tn 2.557

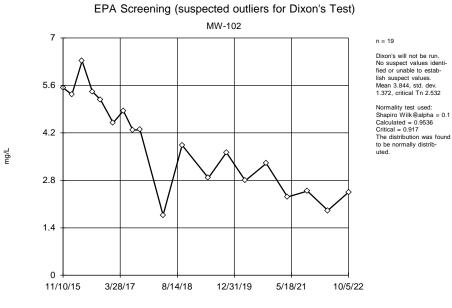
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9696Critical = 0.92 The distribution was found to be normally distrib-



Constituent: Calcium Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

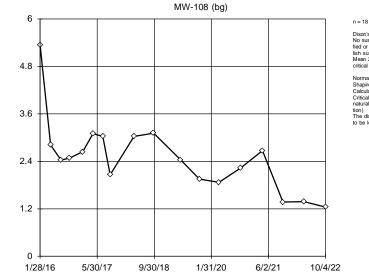



Constituent: Calcium Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Statistical outlier is Testing for 1 high outlier.

Shapiro Wilk@alpha = 0.1 Calculated = 0.9871 The distribution, after removal of suspect value, was found to be normally distributed.



Constituent: Chloride Analysis Run 11/7/2022 2:34 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

mg/L

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG

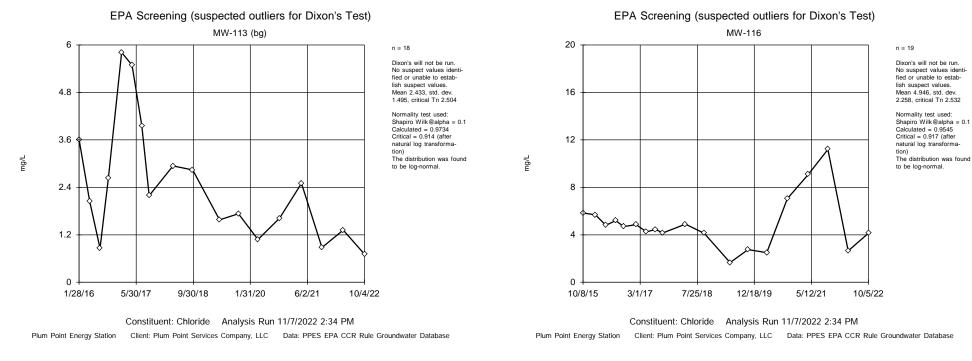
EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 2.51, std. dev. 0.9266, critical Tn 2 504

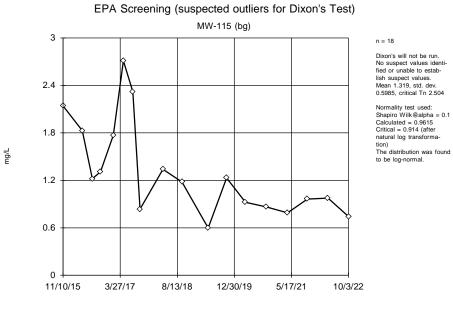
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9415 Critical = 0.914 (after natural log transformation) The distribution was found

to be log-normal.

Constituent: Chloride Analysis Run 11/7/2022 2:34 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


1.2

0.8


0.4

0

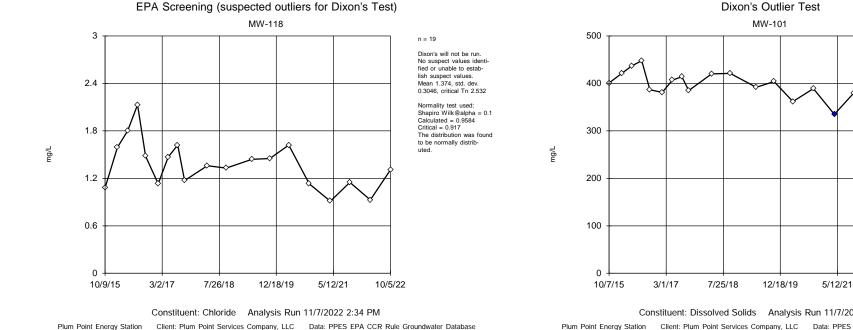
ng/L

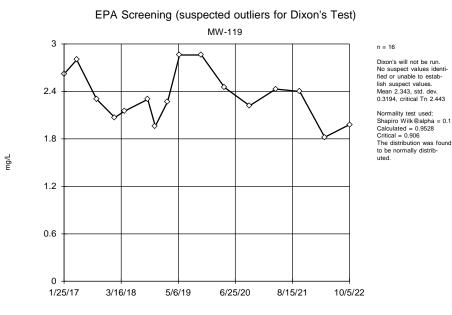


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

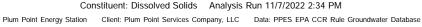
Constituent: Chloride Analysis Run 11/7/2022 2:34 PM

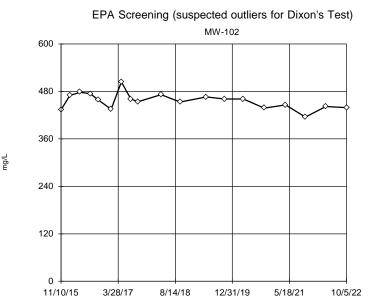
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 1.188, std. dev. 0.2737, critical Tn 2.532


n = 19

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9359Critical = 0.917 The distribution was found to be normally distributed.


Constituent: Chloride Analysis Run 11/7/2022 2:34 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Constituent: Chloride Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 455.8, std. dev. 20.1. critical Tn 2.532

n = 19

n = 19

Statistical outlier is

Testing for 1 low outlier.

drawn as solid.

Mean = 397.9.

Std. Dev. = 26.28.

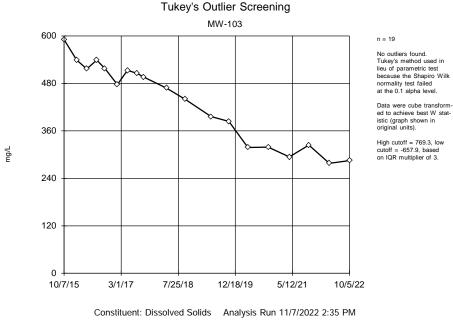
Normality test used:

Calculated = 0.9575Critical = 0.914

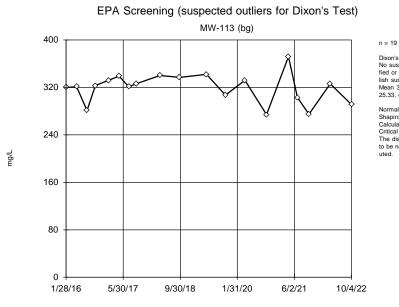
The distribution, after

removal of suspect value was found to be normally distributed.

Shapiro Wilk@alpha = 0.1


335: c = 0.5233 tabl = 0.462.

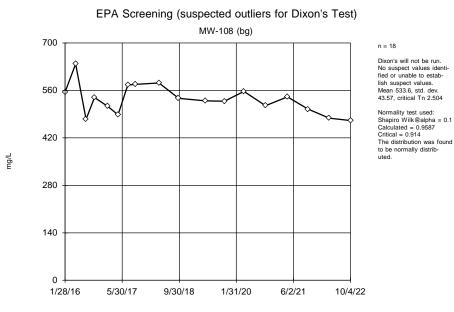
Alpha = 0.05.


10/5/22

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.976Critical = 0.917 The distribution was found to be normally distributed.

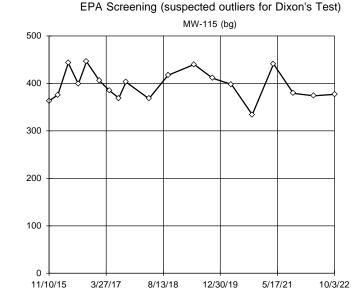
Constituent: Dissolved Solids Analysis Run 11/7/2022 2:34 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 319.1, std. dev. 25.33, critical Tn 2.532

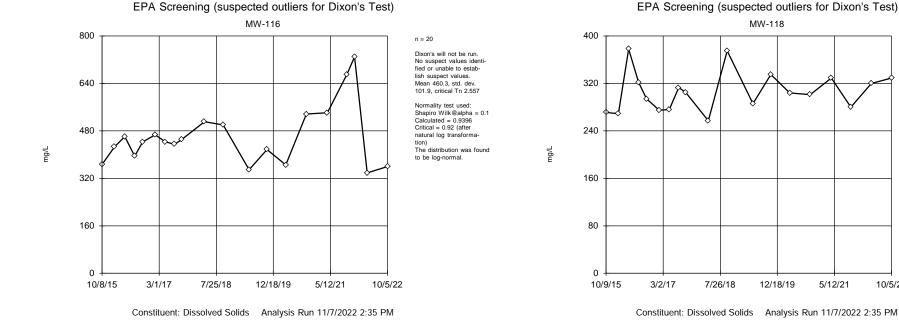
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.938 Critical = 0.917 The distribution was found to be normally distributed.


Constituent: Dissolved Solids Analysis Run 11/7/2022 2:35 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Constituent: Dissolved Solids Analysis Run 11/7/2022 2:35 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

mg/L



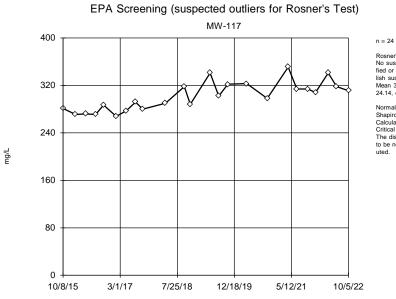
n = 19

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 396.3, std. dev. 31.27, critical Tn 2.532

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9474 Critical = 0.917 The distribution was found to be normally distributed.

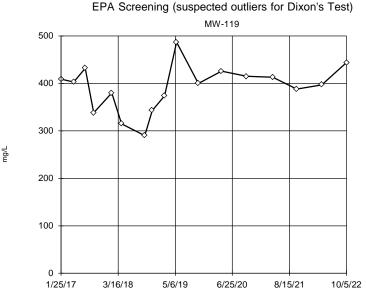
Constituent: Dissolved Solids Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database



n = 17

10/5/22

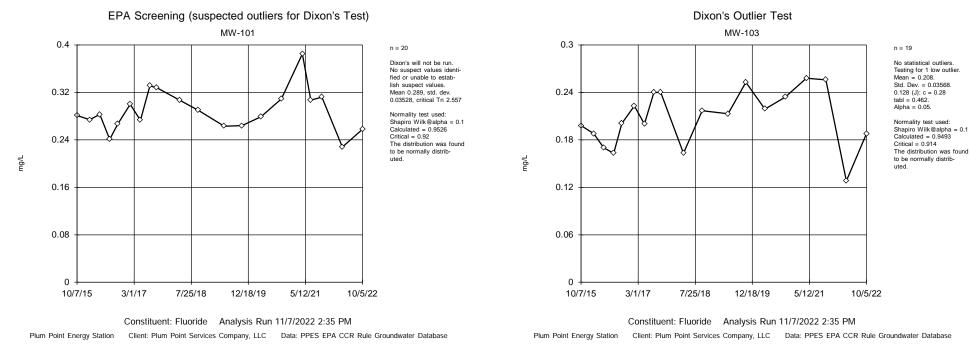

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9692Critical = 0.91 The distribution was found to be normally distributed

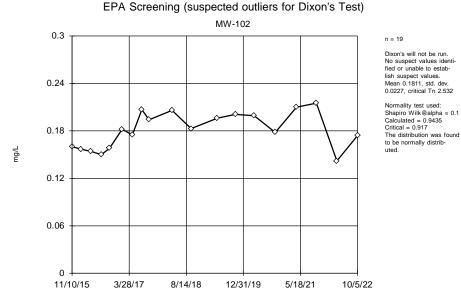
Constituent: Dissolved Solids Analysis Run 11/7/2022 2:35 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Rosner's will not be run. No suspect values identified or unable to establish suspect values. Mean 301.6, std. dev. 24.14. critical Tn 2.644

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9465Critical = 0.93 The distribution was found to be normally distrib-

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

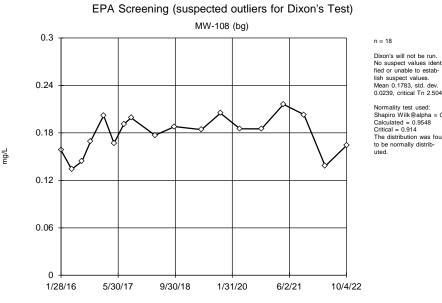

Constituent: Dissolved Solids Analysis Run 11/7/2022 2:35 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

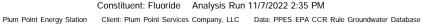
n = 19 Dixon's will not be run. No suspect values identi-

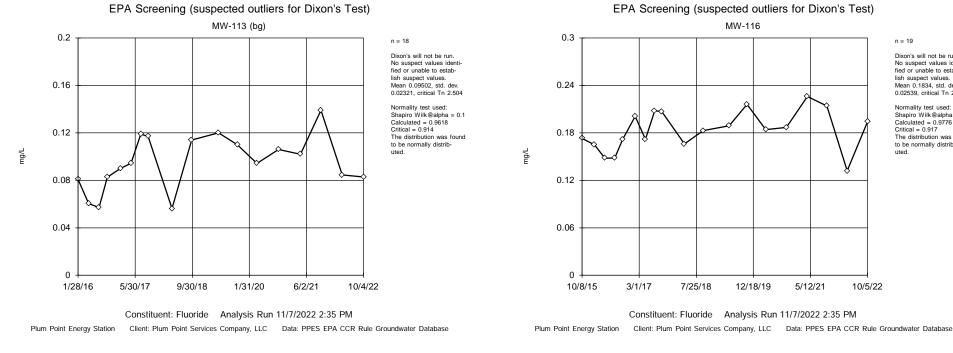
fied or unable to establish suspect values. Mean 306.3, std. dev. 33.71, critical Tn 2.532

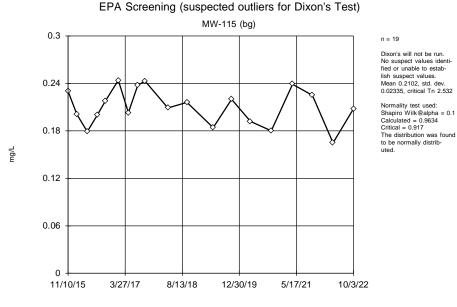
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9371 Critical = 0.917 The distribution was found to be normally distributed



Constituent: Fluoride Analysis Run 11/7/2022 2:35 PM

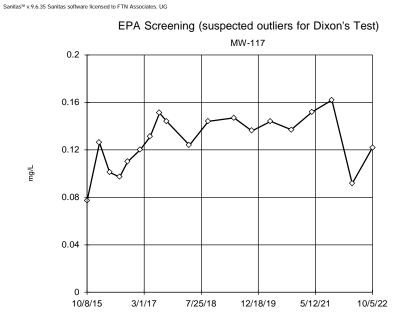

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG



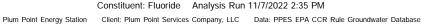
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1783, std. dev.

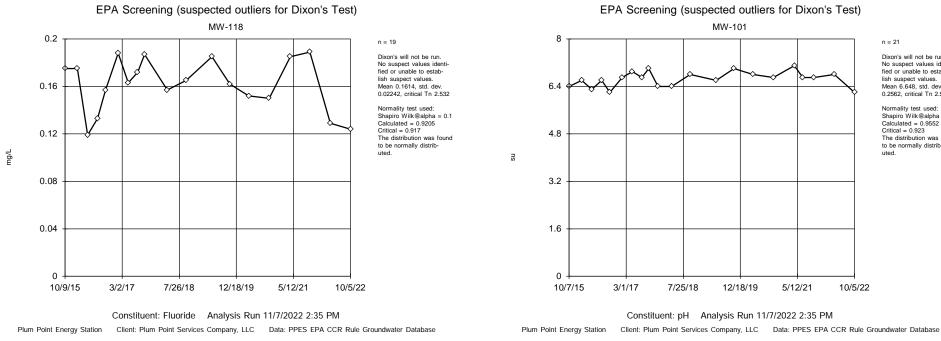
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9548Critical = 0.914 The distribution was found to be normally distributed

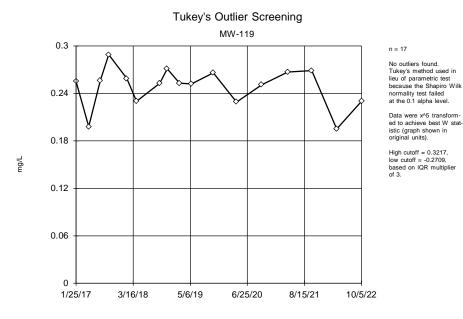


Constituent: Fluoride Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

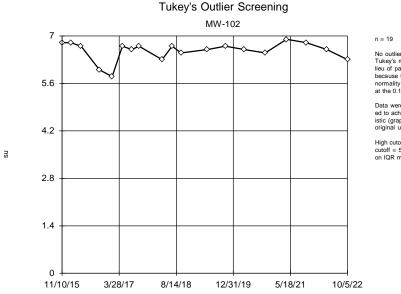

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1834, std. dev 0.02539, critical Tn 2.532


Shapiro Wilk@alpha = 0.1 Calculated = 0.9776 Critical = 0.917 The distribution was found to be normally distrib-


Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1272, std. dev. 0.02308, critical Tn 2.532

n = 19

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9503Critical = 0.917 The distribution was found to be normally distributed.

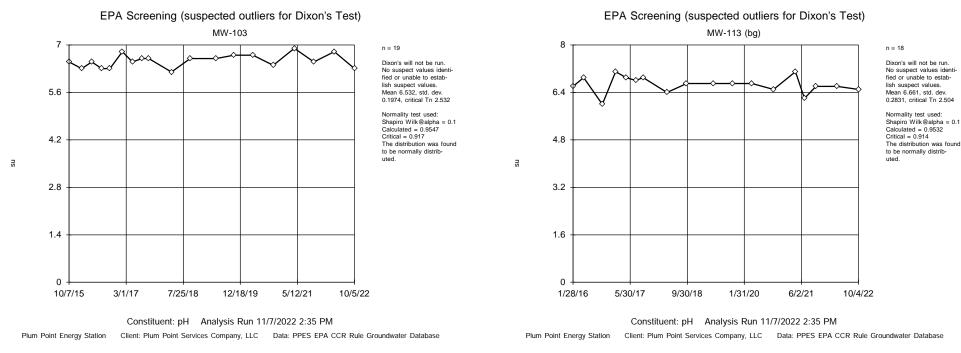


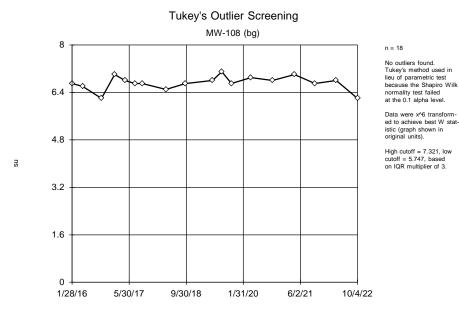
Constituent: Fluoride Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's will not be run. No suspect values identified or unable to estab-Mean 6.648, std. dev. 0.2562, critical Tn 2.58

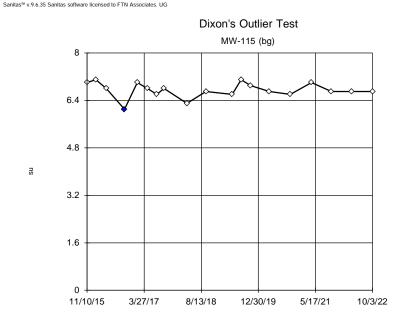
Shapiro Wilk@alpha = 0.1 Calculated = 0.9552 The distribution was found to be normally distrib-


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG


No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level

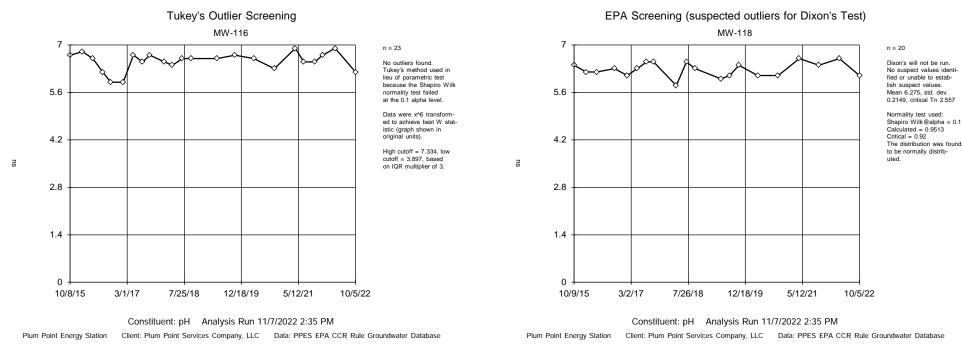
Data were x^6 transformed to achieve best W statistic (graph shown in original units).

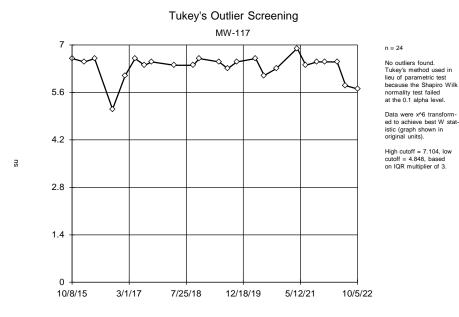
High cutoff = 7.167, low cutoff = 5.584, based on IQR multiplier of 3.


Constituent: pH Analysis Run 11/7/2022 2:35 PM

Constituent: pH Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

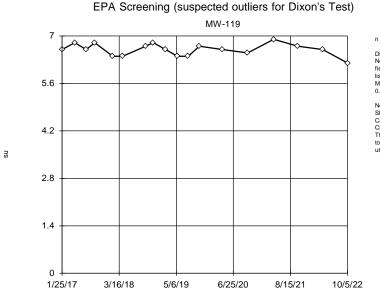



 $\label{eq:n} \begin{array}{l} n=19 \\ \\ Statistical outlier is \\ drawn as solid. \\ \\ Testing for 1 low outlier. \\ \\ Mean = 6.747. \\ \\ Std. Dev. = 0.2547. \\ \\ 6.1: c = 0.5556 \\ \\ tabl = 0.462. \end{array}$

Alpha = 0.05.

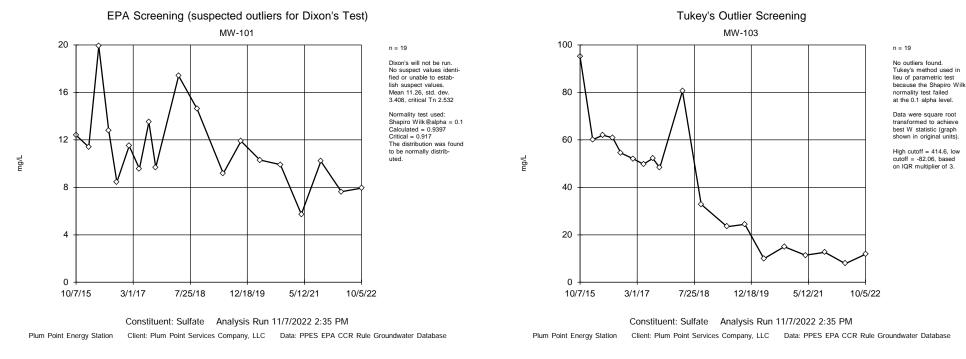
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9348 Critical = 0.914 The distribution, after removal of suspect value, was found to be normally distributed.

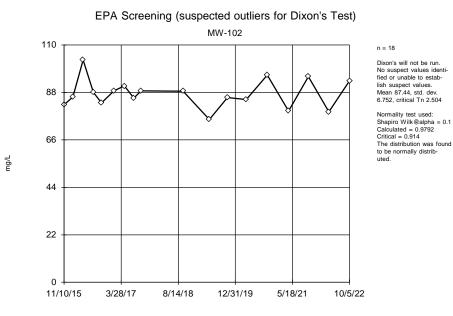
Constituent: pH Analysis Run 11/7/2022 2:35 PM



Constituent: pH Analysis Run 11/7/2022 2:35 PM

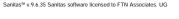
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

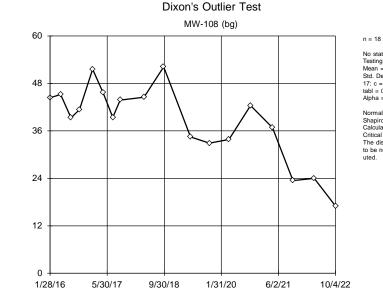

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG



n = 18 Dixon's will not be run.

No suspect values identified or unable to establish suspect values. Mean 6.594, std. dev. 0.183, critical Tn 2.504

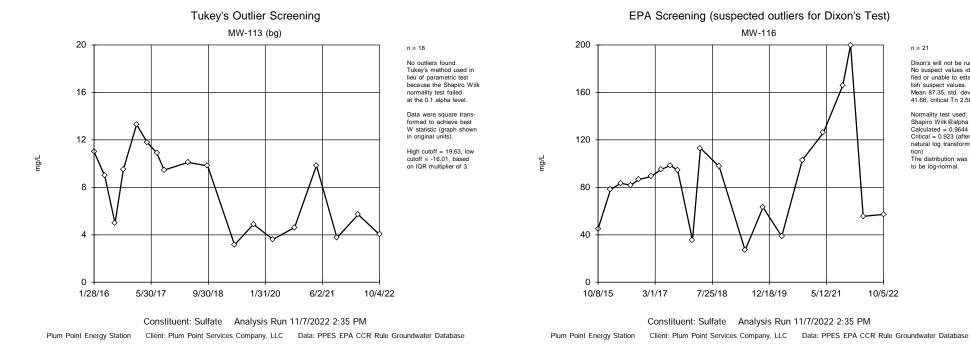

Normality test used: Shapiro Wilk@alpha = 0.1Calculated = 0.9494Critical = 0.914The distribution was found to be normally distributed.

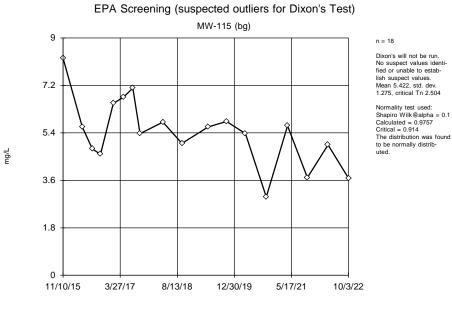


Constituent: Sulfate Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

mg/L

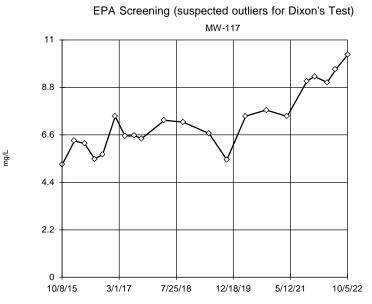



Constituent: Sulfate Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

 $\label{eq:n=18} \begin{array}{l} \text{No statistical outliers.}\\ \text{Testing for 1 low outlier.}\\ \text{Mean = 38.46.}\\ \text{Std. Dev. = 9.557.}\\ 17: c = 0.2439\\ \text{tabl = 0.475.}\\ \text{Alpha = 0.05.} \end{array}$

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.941 Critical = 0.91 The distribution was found to be normally distributed



Constituent: Sulfate Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.35 Sanitas software licensed to FTN Associates. UG

Constituent: Sulfate Analysis Run 11/7/2022 2:35 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 21 Dixon's will not be run. No suspect values identi-

n = 21

tion)

Dixon's will not be run.

No suspect values identi-

fied or unable to estab-

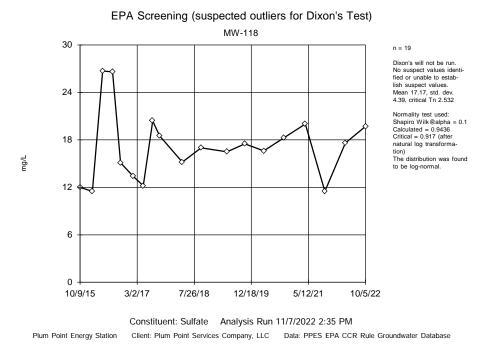
lish suspect values.

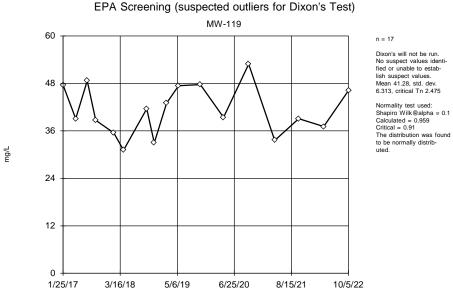
Mean 87.35, std. dev. 41.68, critical Tn 2.58

Normality test used: Shapiro Wilk@alpha = 0.1

Calculated = 0.9644

Critical = 0.923 (after

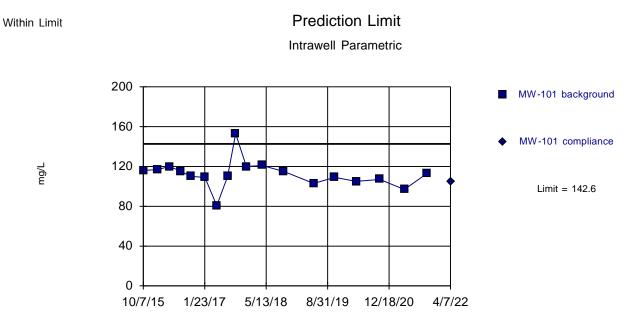

to be log-normal.


natural log transforma-

The distribution was found

fied or unable to establish suspect values. Mean 7.262, std. dev. 1.468. critical Tn 2.58

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9345Critical = 0.923 The distribution was found to be normally distributed



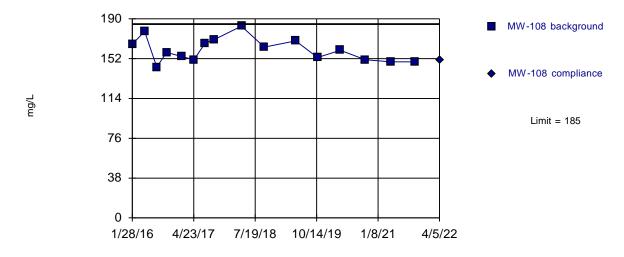
Constituent: Sulfate Analysis Run 11/7/2022 2:35 PM

APPENDIX G

Statistical Evaluation Results

Prediction Limits, First Half 2022 Monitoring Event

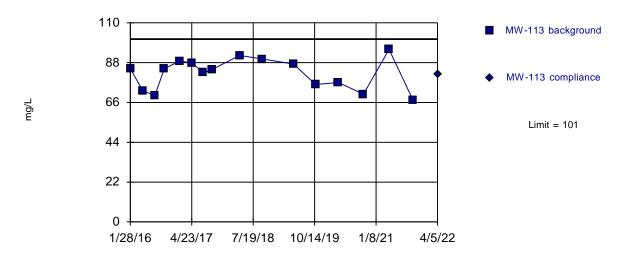
Background Data Summary: Mean=112.2, Std. Dev.=14.04, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8661, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

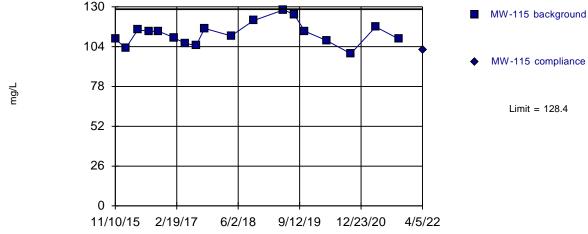
Within Limit


Prediction Limit

Background Data Summary: Mean=160.3, Std. Dev.=11.18, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9513, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```

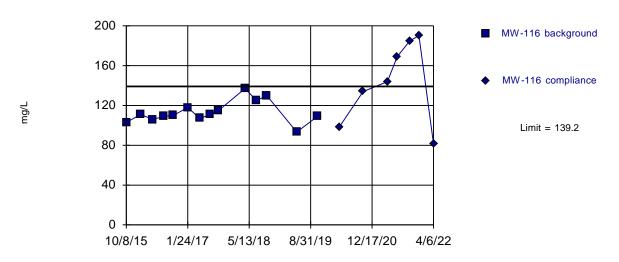

Background Data Summary: Mean=81.93, Std. Dev.=8.613, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

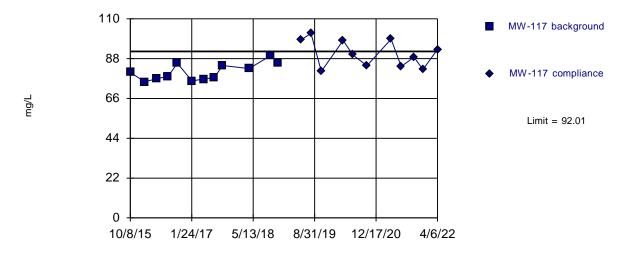
Within Limit


Prediction Limit Intrawell Parametric

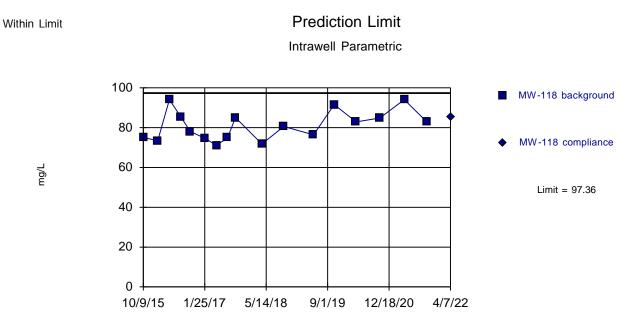
Background Data Summary: Mean=112.5, Std. Dev.=7.388, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

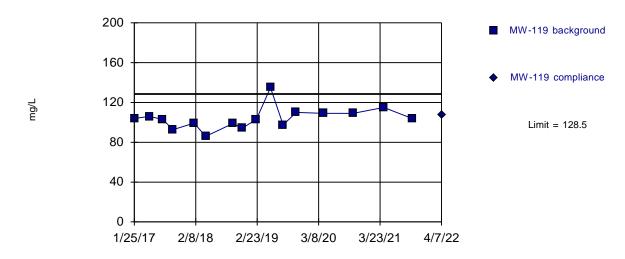

Sanitas™ v.9.6.33 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=80.69, Std. Dev.=4.731, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

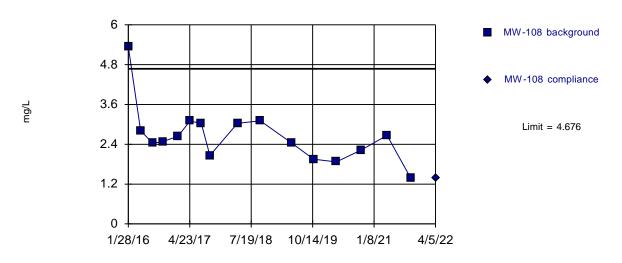
Background Data Summary: Mean=81, Std. Dev.=7.48, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9232, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

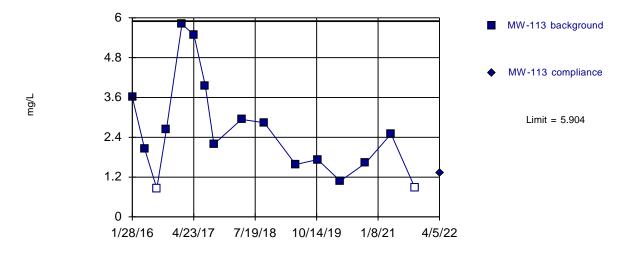

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=104.1, Std. Dev.=11.01, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9078, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

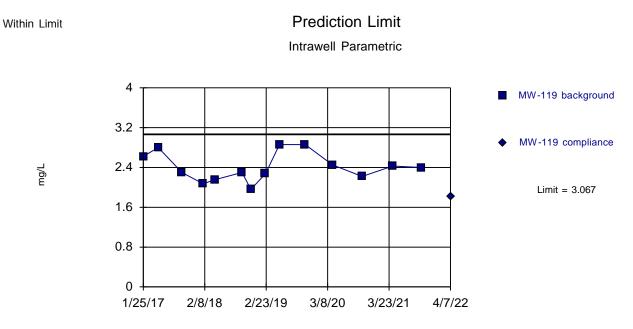
Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=1.613, Std. Dev.=0.2483, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8972, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Chloride Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\rm M}$ v.9.6.32 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

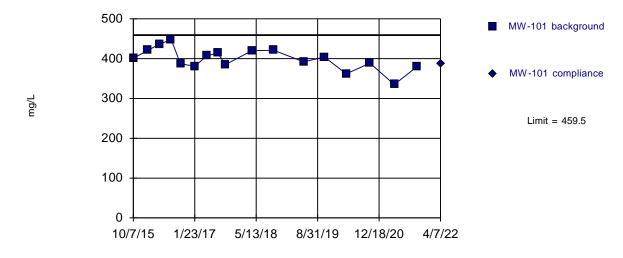

Within Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=2.61, Std. Dev.=1.489, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9047, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Background Data Summary: Mean=2.406, Std. Dev.=0.2867, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9373, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

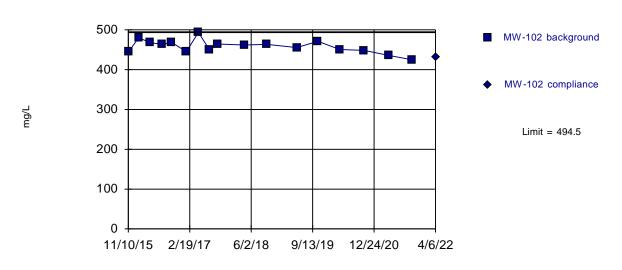

Constituent: Chloride Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

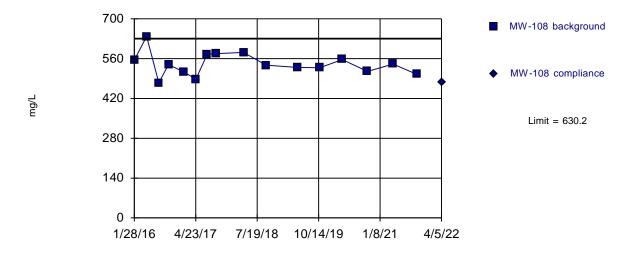


Background Data Summary: Mean=399.1, Std. Dev.=27.63, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9751, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limit

```
Prediction Limit
```

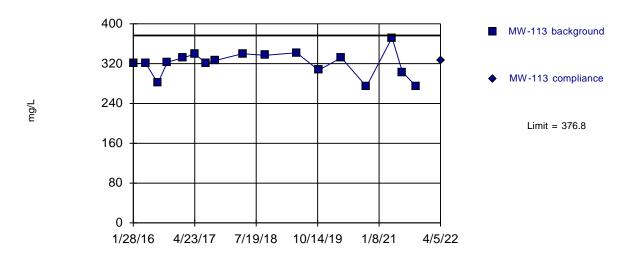

Background Data Summary: Mean=458.3, Std. Dev.=16.55, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9845, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 4/27/2022 12:45 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

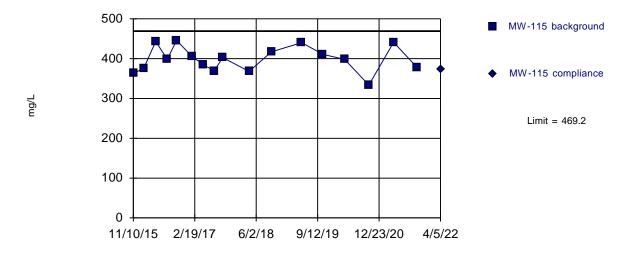
Within Limit


Prediction Limit Intrawell Parametric

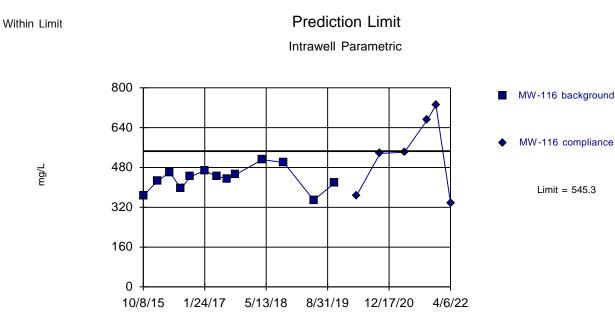
Background Data Summary: Mean=541, Std. Dev.=40.32, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=320.3, Std. Dev.=25.85, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

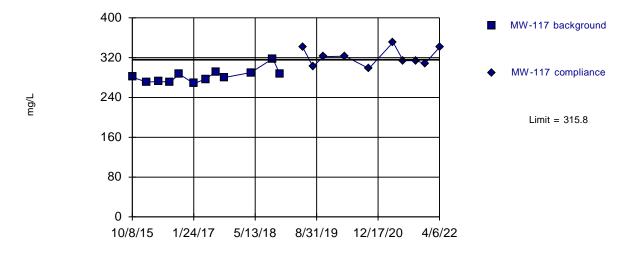

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=398.7, Std. Dev.=32.24, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9544, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

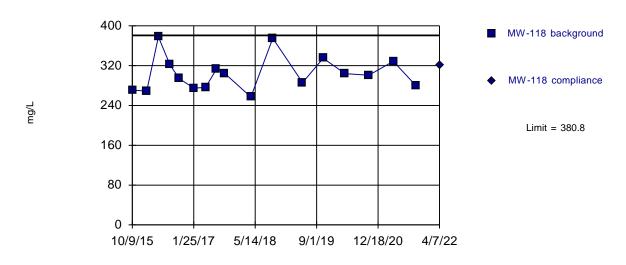
Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.33 Sanitas software licensed to FTN Associates. UG

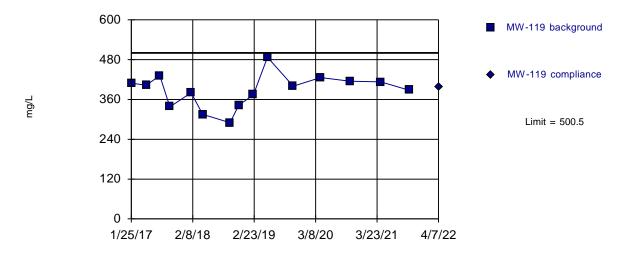
Exceeds Limit


Prediction Limit

Background Data Summary: Mean=282.9, Std. Dev.=13.75, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.861, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```

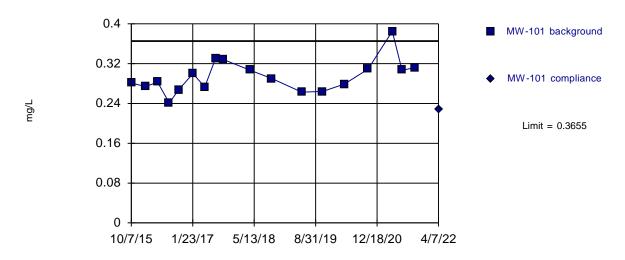

Background Data Summary: Mean=304.1, Std. Dev.=35.06, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9158, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

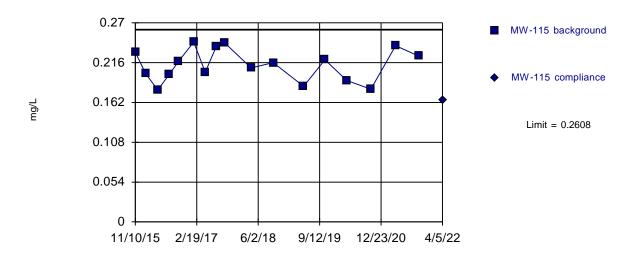
Within Limit


Prediction Limit

Background Data Summary: Mean=387.5, Std. Dev.=50.04, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9666, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```

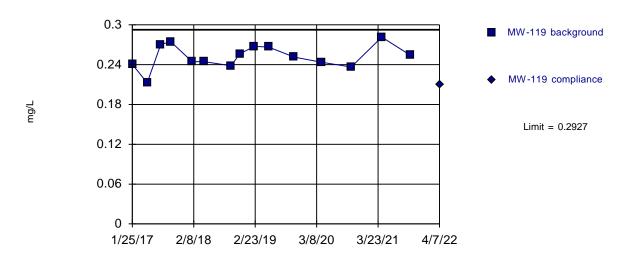

Background Data Summary: Mean=0.2941, Std. Dev.=0.03299, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9277, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Fluoride Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

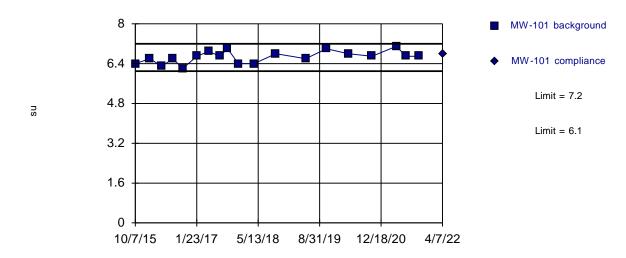
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.213, Std. Dev.=0.02184, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9423, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

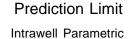

```
Prediction Limit
Intrawell Parametric
```

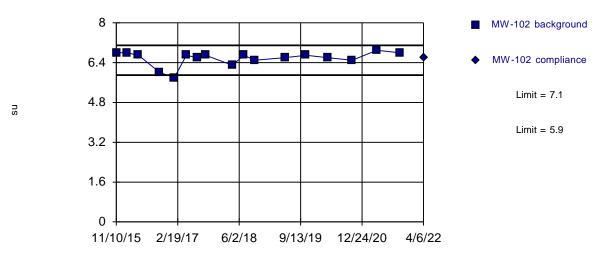

Background Data Summary: Mean=0.2522, Std. Dev.=0.01793, n=15. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9622, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Fluoride Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

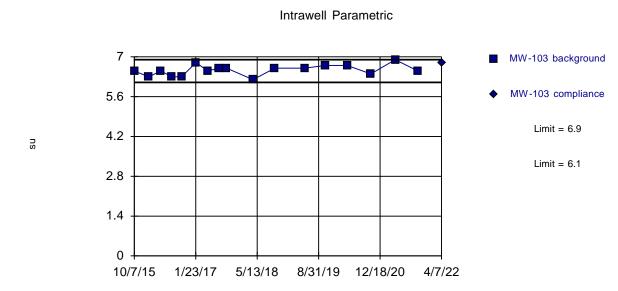
Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG


Within Limits


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.663, Std. Dev.=0.2454, n=19. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9635, critical = 0.863. Kappa = 2.139 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limits

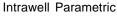

Background Data Summary (based on x⁴ transformation): Mean=1884, Std. Dev.=301.4, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8532, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

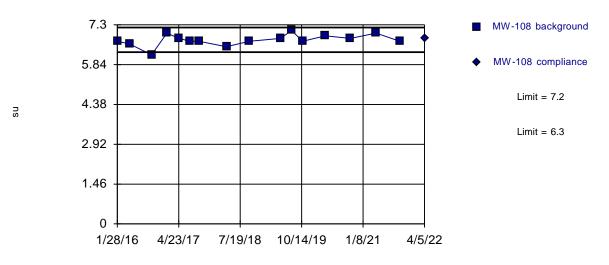
Constituent: pH Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG



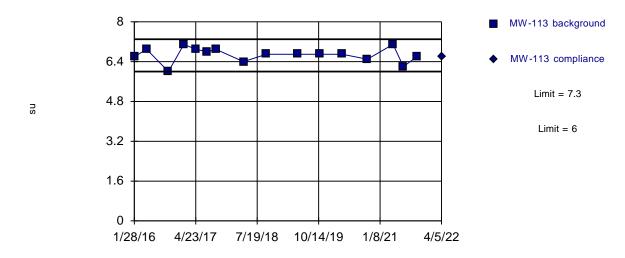

Background Data Summary: Mean=6.529, Std. Dev.=0.1896, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limits

Within Limits

```
Prediction Limit
```

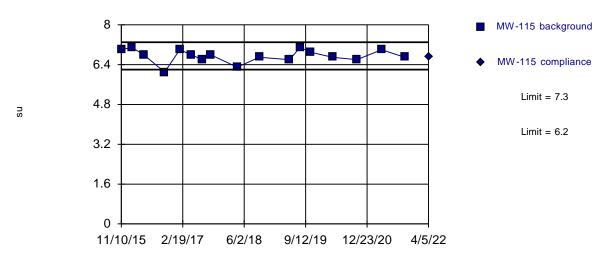

Background Data Summary: Mean=6.744, Std. Dev.=0.2128, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9177, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: pH Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

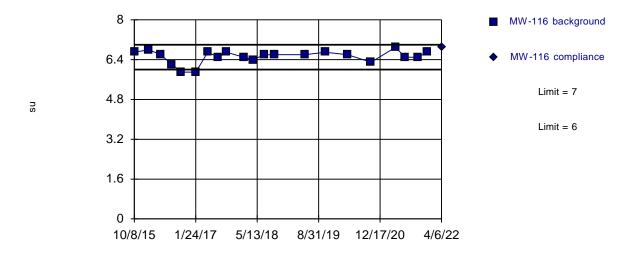
Within Limits


Prediction Limit Intrawell Parametric

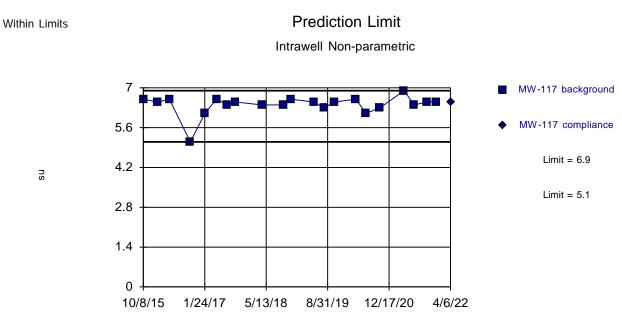
Background Data Summary: Mean=6.675, Std. Dev.=0.2978, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9421, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=6.753, Std. Dev.=0.2695, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9194, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: pH Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

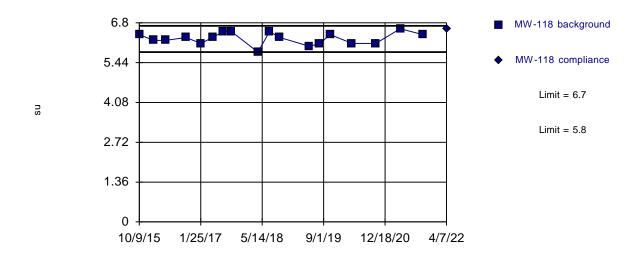

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit Intrawell Parametric

Background Data Summary (based on square transformation): Mean=42.56, Std. Dev.=3.313, n=21. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8756, critical = 0.873. Kappa = 2.1 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 21 background values. Well-constituent pair annual alpha = 0.01596. Individual comparison alpha = 0.007998 (1 of 2). Seasonality was not detected with 95% confidence.

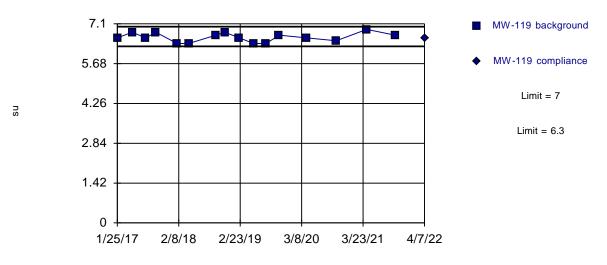

Constituent: pH Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit Intrawell Parametric



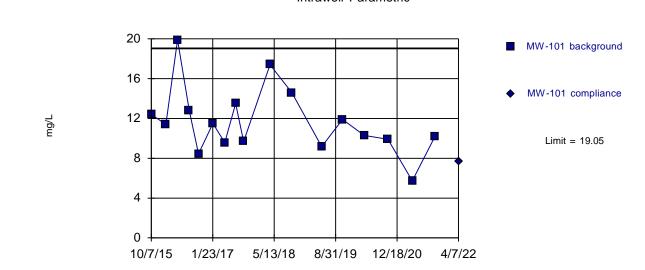
Background Data Summary: Mean=6.267, Std. Dev.=0.2086, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9579, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limits

```
Prediction Limit
```

Intrawell Parametric

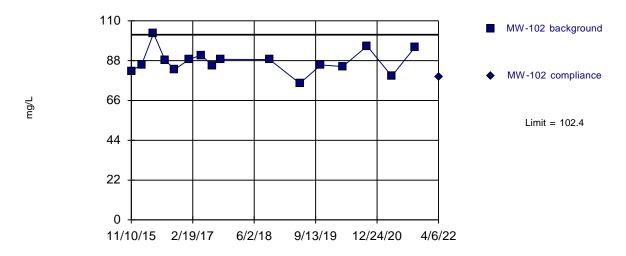
Background Data Summary: Mean=6.619, Std. Dev.=0.1642, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: pH Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

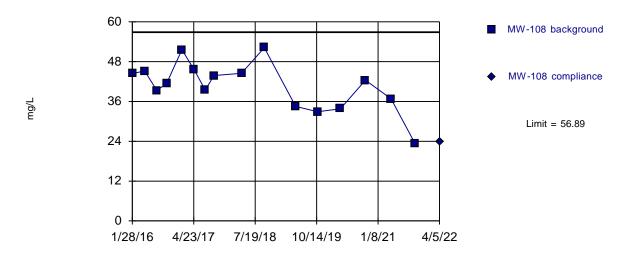
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=11.67, Std. Dev.=3.372, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=87.59, Std. Dev.=6.672, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9649, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

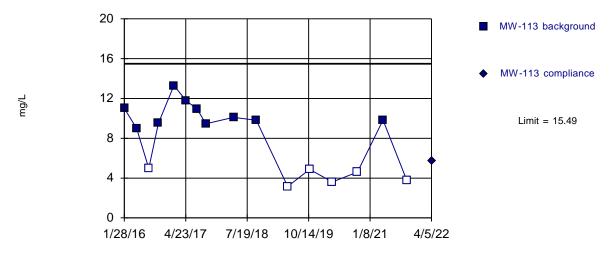

Constituent: Sulfate Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric



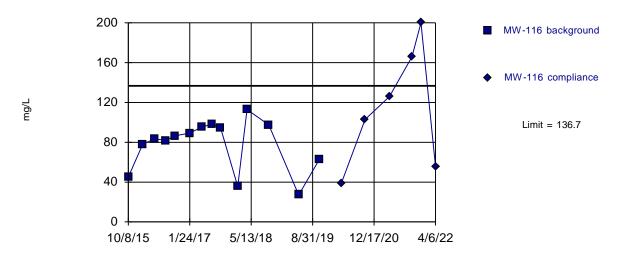
Background Data Summary: Mean=40.71, Std. Dev.=7.314, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limit

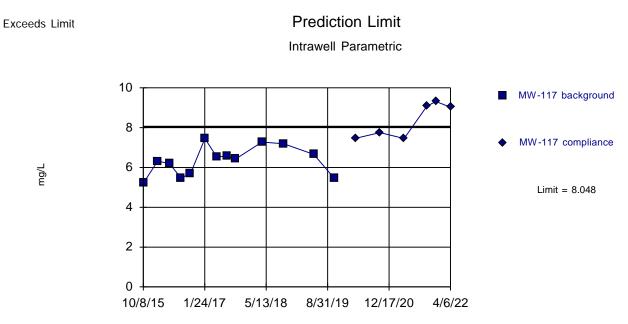
Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=8.104, Std. Dev.=3.341, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8842, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Sulfate Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

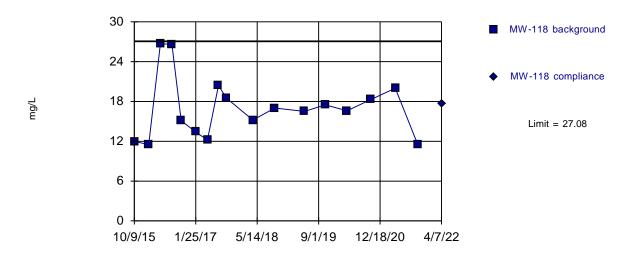

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

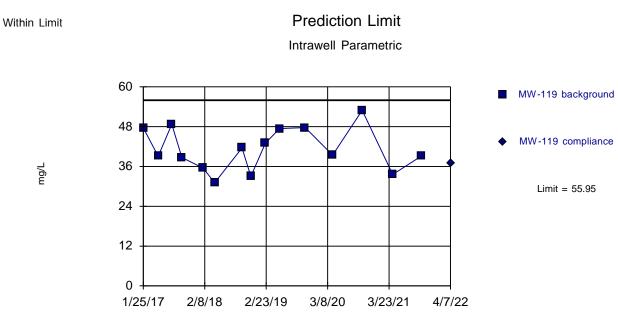
Prediction Limit

Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Sulfate Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL

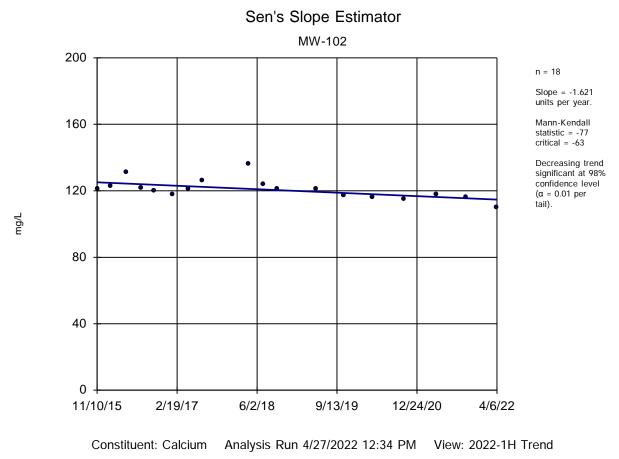
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

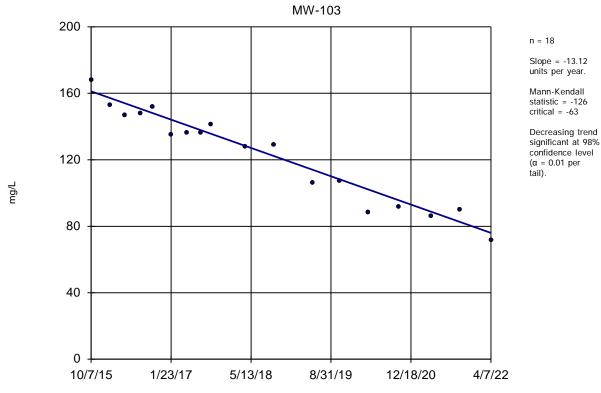
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=17, Std. Dev.=4.608, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9008, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

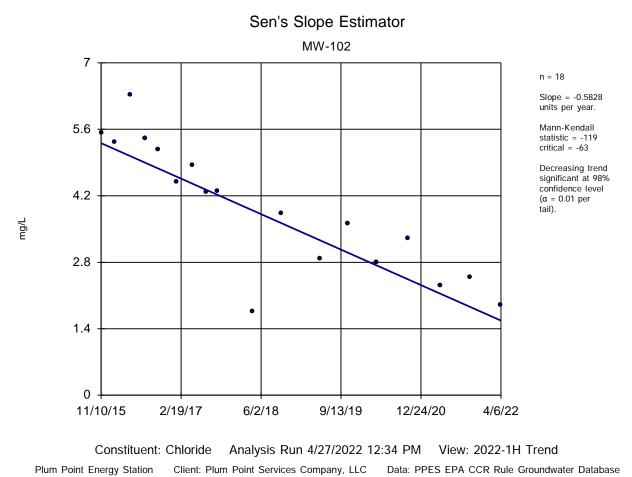


Background Data Summary: Mean=41.23, Std. Dev.=6.525, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9533, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

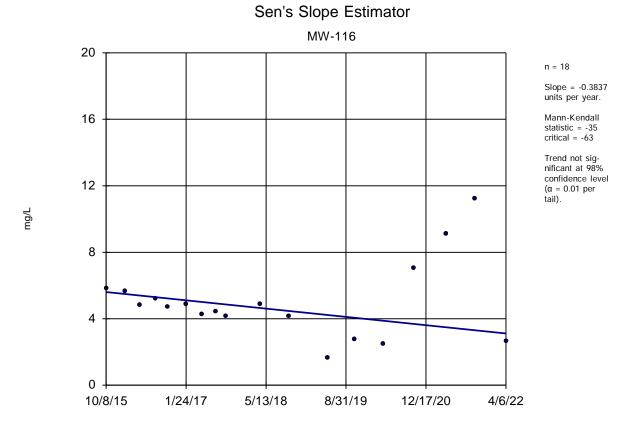
Constituent: Sulfate Analysis Run 4/27/2022 12:46 PM View: 2022-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

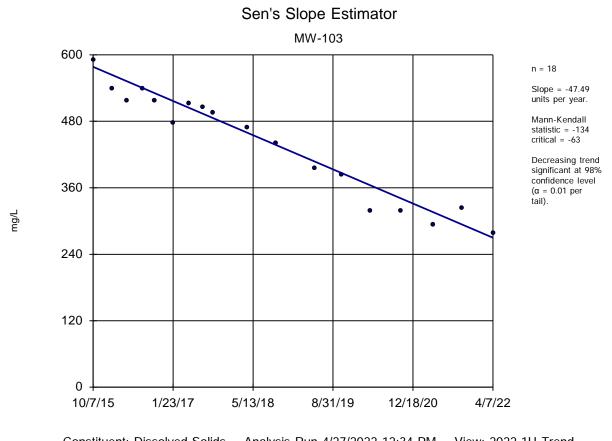
Trend Tests, First Half 2022 Monitoring Event

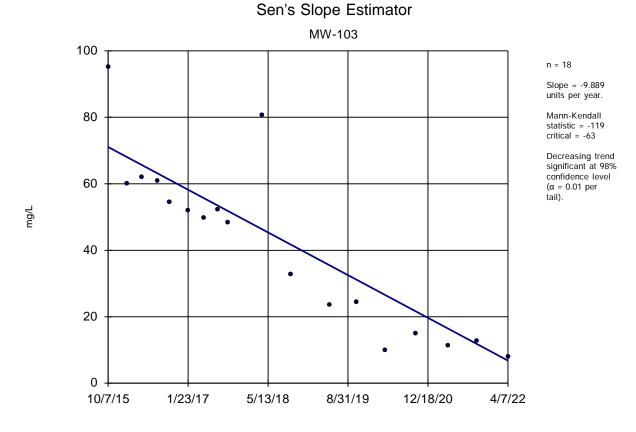

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

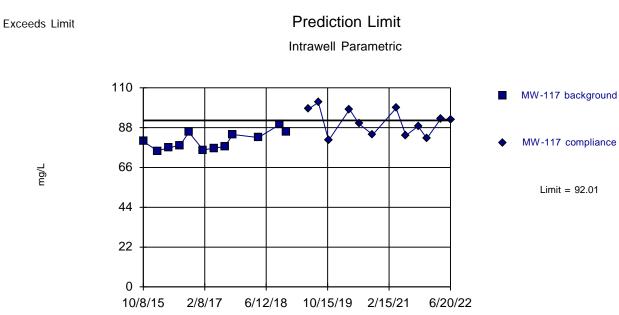


Sen's Slope Estimator


Constituent: CalciumAnalysis Run 4/27/2022 12:34 PMView: 2022-1H TrendPlum Point Energy StationClient: Plum Point Services Company, LLCData: PPES EPA CCR Rule Groundwater Database



Constituent: Chloride Analysis Run 4/27/2022 12:34 PM View: 2022-1H Trend Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

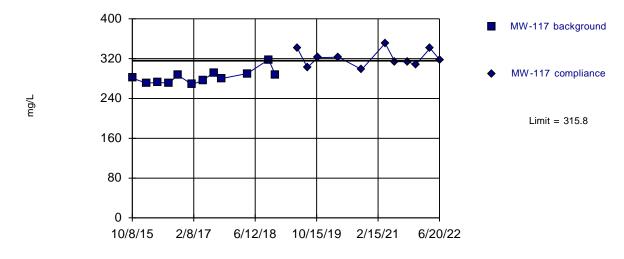

Constituent: Dissolved SolidsAnalysis Run 4/27/202212:34 PMView: 2022-1H TrendPlum Point Energy StationClient: Plum Point Services Company, LLCData: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

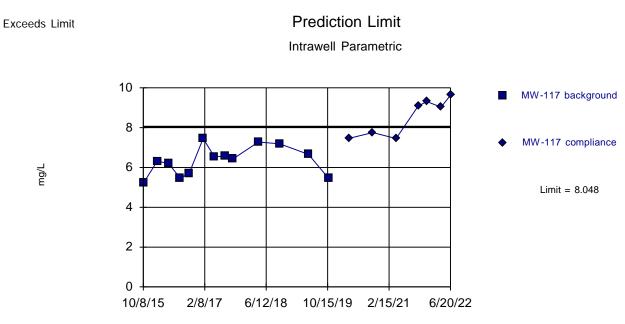
Constituent:SulfateAnalysis Run 4/27/2022 12:34 PMView: 2022-1H TrendPlum Point Energy StationClient:Plum Point Services Company, LLCData:PPES EPA CCR Rule Groundwater Database

Prediction Limits, First Half 2022 Verification Sampling Event

Background Data Summary: Mean=80.69, Std. Dev.=4.731, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 7/14/2022 12:46 PM

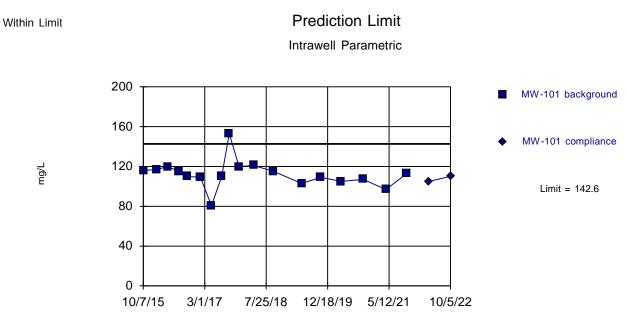
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Background Data Summary: Mean=282.9, Std. Dev.=13.75, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.861, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.



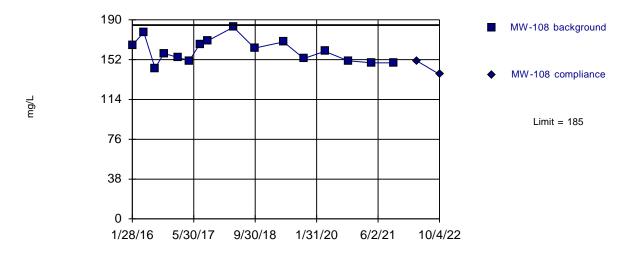
Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Sulfate Analysis Run 7/14/2022 12:46 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limits, Second Half 2022 Monitoring Event

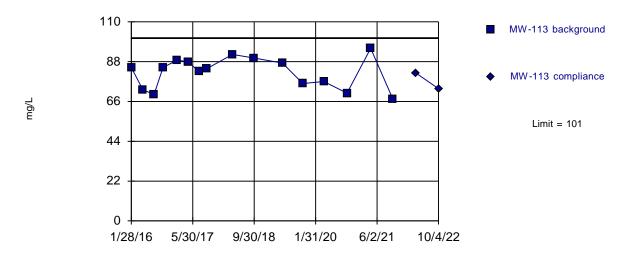
Background Data Summary: Mean=112.2, Std. Dev.=14.04, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8661, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit


Prediction Limit

Background Data Summary: Mean=160.3, Std. Dev.=11.18, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9513, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

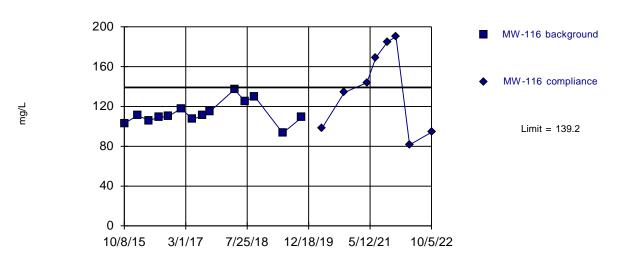

```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=81.93, Std. Dev.=8.613, n=16. Seasonality was not detected with 95% Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.942, critical = 0.844. Kappa = 2.212 (c=6, confidence. w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v 9.6.35 Sanitas software licensed to ETN Associates, LIG

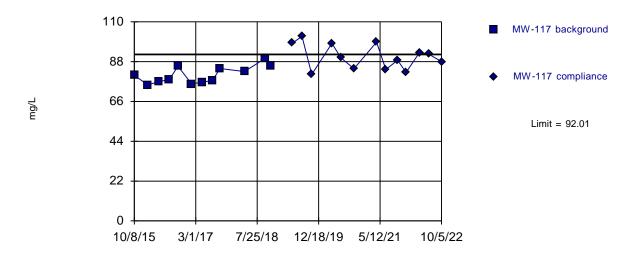

Within Limit

Prediction Limit Intrawell Parametric 130 MW-115 background 104 MW-115 compliance 78 mg/L Limit = 128.4 52 26 0 3/27/17 11/10/15 8/13/18 12/30/19 5/17/21 10/3/22

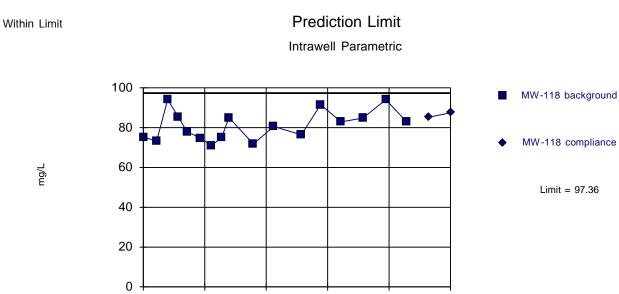
Background Data Summary: Mean=112.5, Std. Dev.=7.388, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9764, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Calcium Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=80.69, Std. Dev.=4.731, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9147, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Background Data Summary: Mean=81, Std. Dev.=7.48, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9232, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

12/18/19

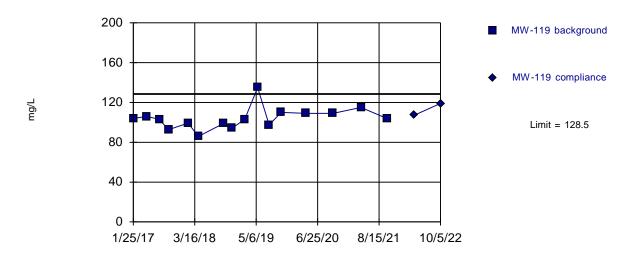
5/12/21

10/5/22

Constituent: Calcium Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

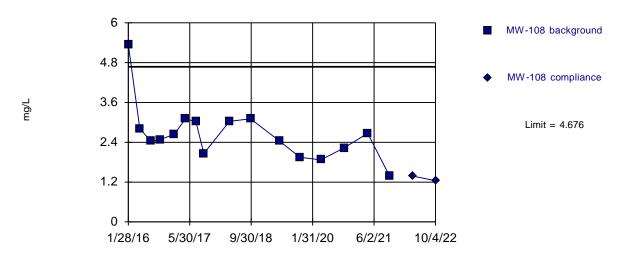
Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG


10/9/15

3/2/17

7/26/18

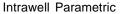
Within Limit

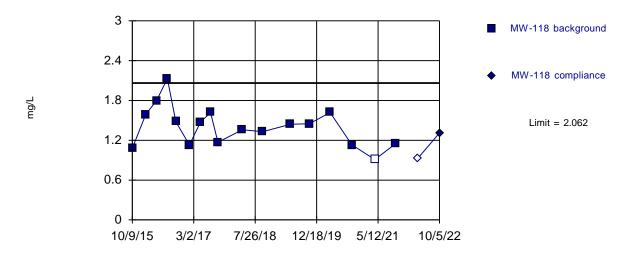

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=104.1, Std. Dev.=11.01, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9078, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

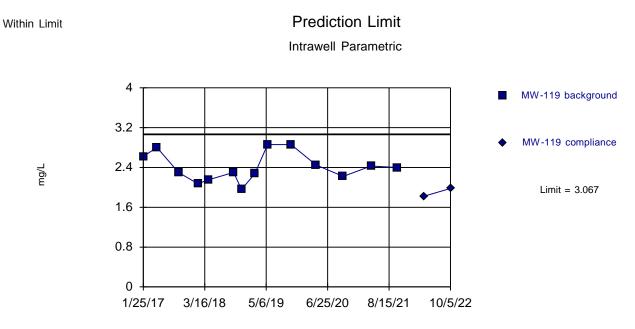
Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=1.613, Std. Dev.=0.2483, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8972, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Chloride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

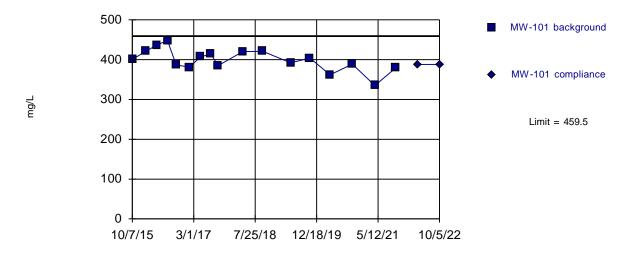
Sanitas $^{\rm M}$ v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.


Within Limit

Prediction Limit

Background Data Summary: Mean=1.404, Std. Dev.=0.3011, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9568, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Background Data Summary: Mean=2.406, Std. Dev.=0.2867, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9373, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

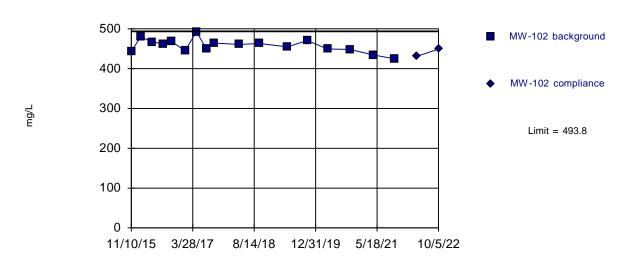

Constituent: Chloride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

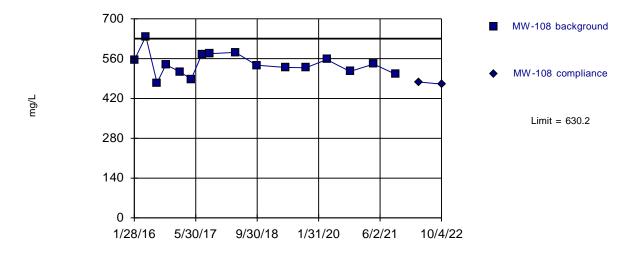


Background Data Summary: Mean=399.1, Std. Dev.=27.63, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9751, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
```

Intrawell Parametric

Background Data Summary: Mean=457.7, Std. Dev.=16.52, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.985, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

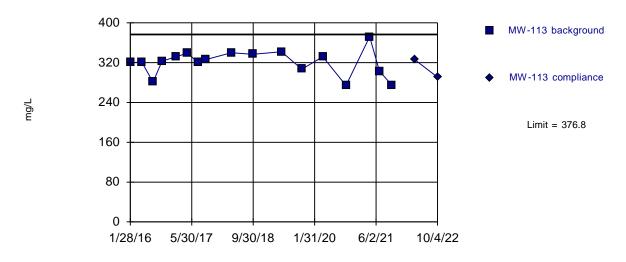

Constituent: Dissolved Solids Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

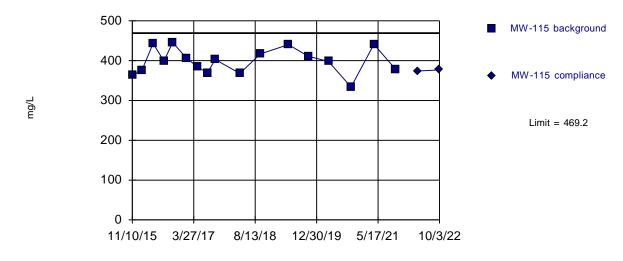


Background Data Summary: Mean=541, Std. Dev.=40.32, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9661, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
```

Intrawell Parametric

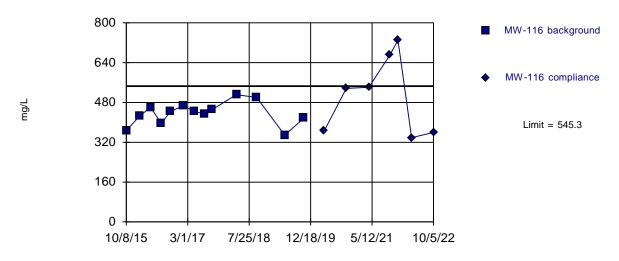
Background Data Summary: Mean=320.3, Std. Dev.=25.85, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9286, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

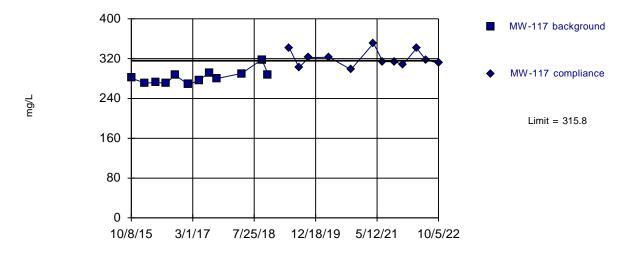
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=398.7, Std. Dev.=32.24, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9544, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

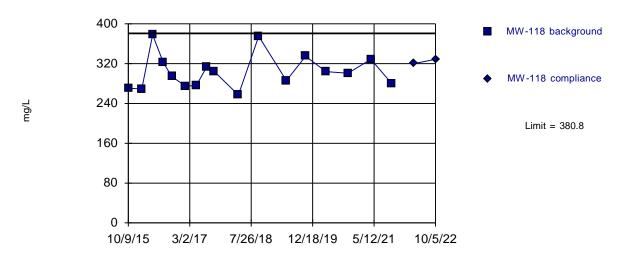
Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

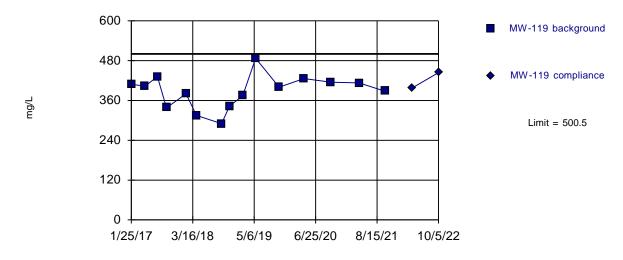
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=282.9, Std. Dev.=13.75, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.861, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

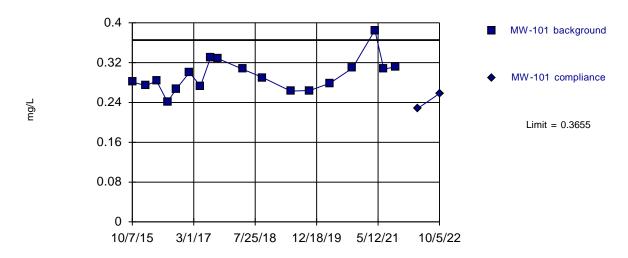
Background Data Summary: Mean=304.1, Std. Dev.=35.06, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9158, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Dissolved Solids Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit

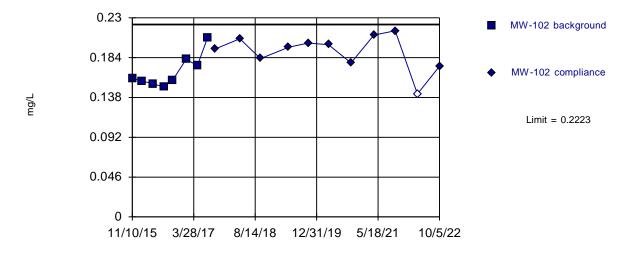

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=387.5, Std. Dev.=50.04, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9666, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=0.2941, Std. Dev.=0.03299, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9277, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

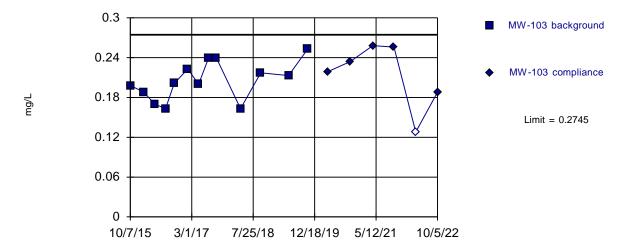
Constituent: Fluoride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\rm M}$ v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit


Intrawell Parametric

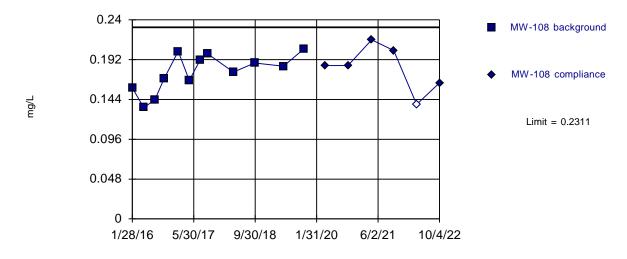
Background Data Summary: Mean=0.1679, Std. Dev.=0.01916, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8449, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=0.2053, Std. Dev.=0.02946, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

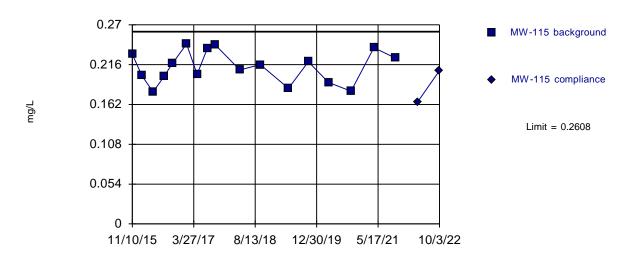
Constituent: Fluoride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\rm M}$ v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

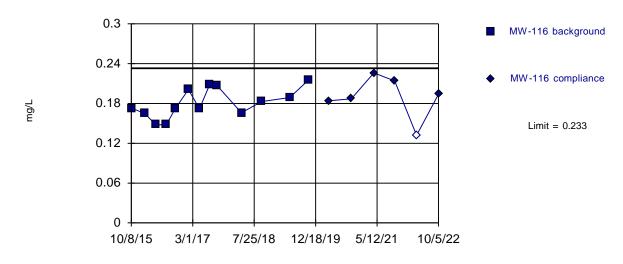
Prediction Limit


Intrawell Parametric

Background Data Summary: Mean=0.1765, Std. Dev.=0.0228, n=12. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
```


Background Data Summary: Mean=0.213, Std. Dev.=0.02184, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9423, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

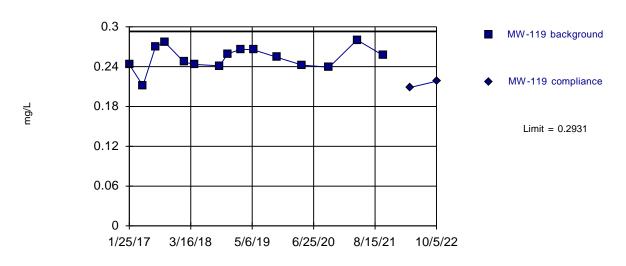

Constituent: Fluoride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\rm M}$ v.9.6.35 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit Intrawell Parametric

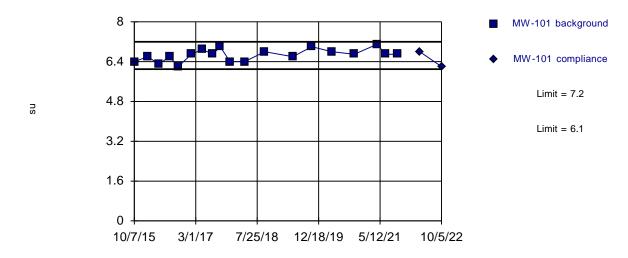


Background Data Summary: Mean=0.1806, Std. Dev.=0.02233, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9394, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
```

Intrawell Parametric

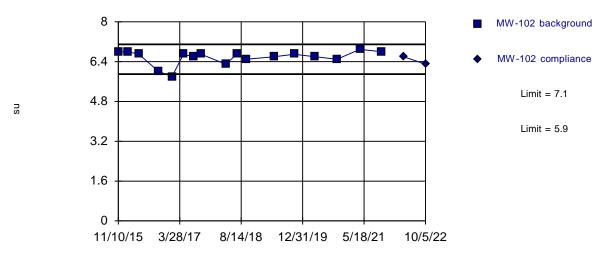
Background Data Summary: Mean=0.2531, Std. Dev.=0.01771, n=15. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9474, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Fluoride Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limits


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.663, Std. Dev.=0.2454, n=19. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9635, critical = 0.863. Kappa = 2.139 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

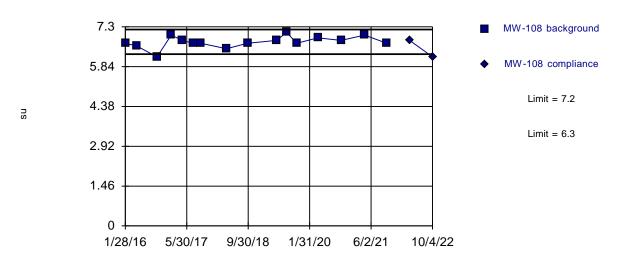
Within Limits

```
Prediction Limit
Intrawell Parametric
```


Background Data Summary (based on x⁴ transformation): Mean=1884, Std. Dev.=301.4, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8532, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

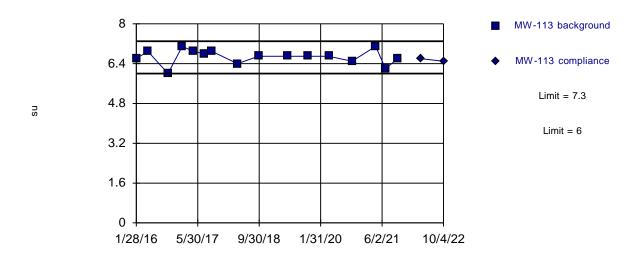
Prediction Limit Within Limits Intrawell Parametric 7 MW-103 background MW-103 compliance 5.6 Limit = 6.94.2 su Limit = 6.12.8 1.4 0 10/7/15 7/25/18 5/12/21 3/1/17 12/18/19 10/5/22

Background Data Summary: Mean=6.529, Std. Dev.=0.1896, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9646, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Exceeds Limits

```
Prediction Limit
Intrawell Parametric
```

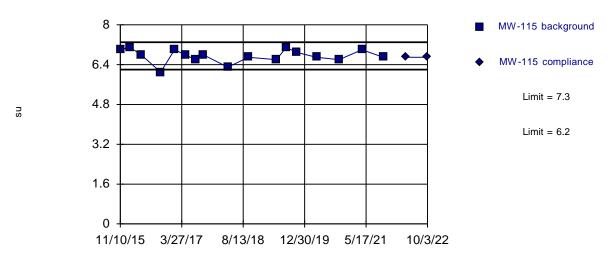

Background Data Summary: Mean=6.744, Std. Dev.=0.2128, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9177, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: pH Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

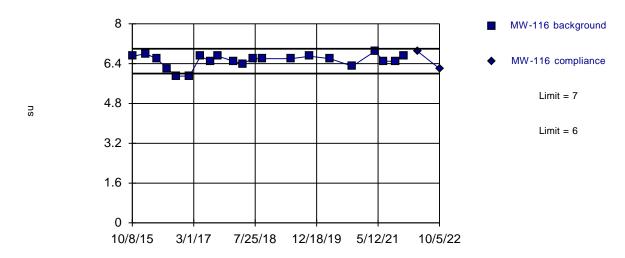
Within Limits


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.675, Std. Dev.=0.2978, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9421, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.753, Std. Dev.=0.2695, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9194, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

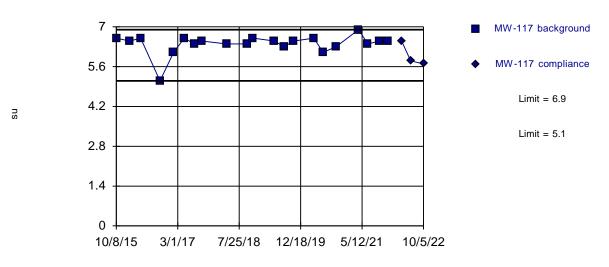

Constituent: pH Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit Intrawell Parametric



Background Data Summary (based on square transformation): Mean=42.56, Std. Dev.=3.313, n=21. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8756, critical = 0.873. Kappa = 2.1 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Non-parametric

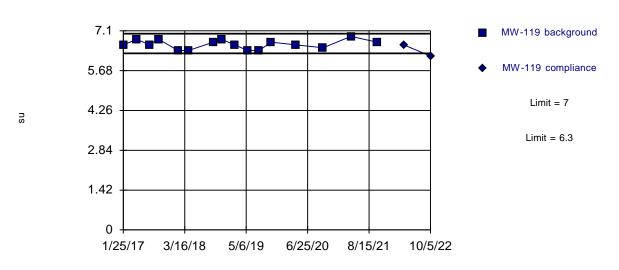
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 21 background values. Well-constituent pair annual alpha = 0.01596. Individual comparison alpha = 0.007998 (1 of 2). Seasonality was not detected with 95% confidence.

Constituent: pH Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limits

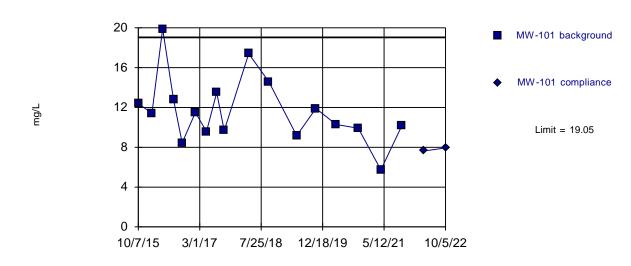

Prediction Limit

6.8 MW-118 background MW-118 compliance 5.44 Limit = 6.74.08 su Limit = 5.82.72 1.36 0 3/2/17 10/9/15 7/26/18 5/12/21 12/18/19 10/5/22

Background Data Summary: Mean=6.267, Std. Dev.=0.2086, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9579, critical = 0.858. Kappa = 2.163 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit Intrawell Parametric

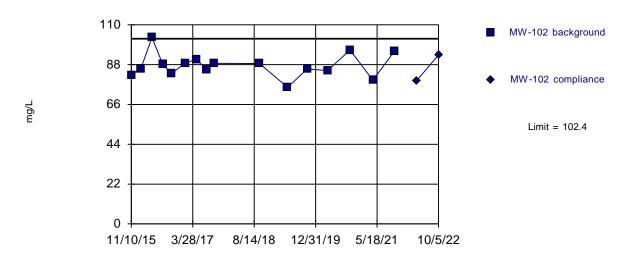
Background Data Summary: Mean=6.619, Std. Dev.=0.1642, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: pH Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

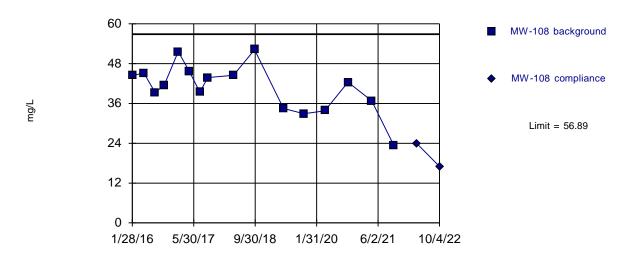
Within Limit


Prediction Limit Intrawell Parametric

Background Data Summary: Mean=11.67, Std. Dev.=3.372, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9362, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


```
Prediction Limit
Intrawell Parametric
```


Background Data Summary: Mean=87.59, Std. Dev.=6.672, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9649, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

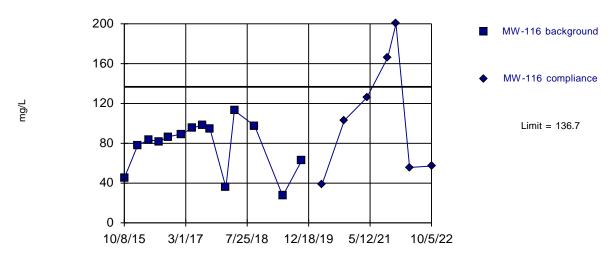

Constituent: Sulfate Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit Intrawell Parametric

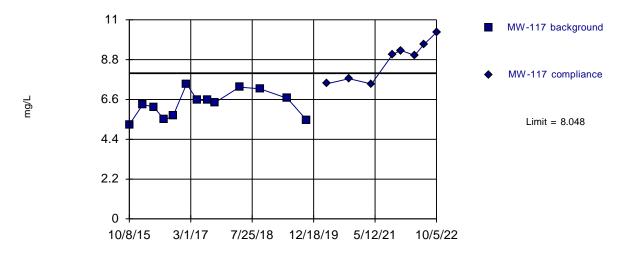


Background Data Summary: Mean=40.71, Std. Dev.=7.314, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

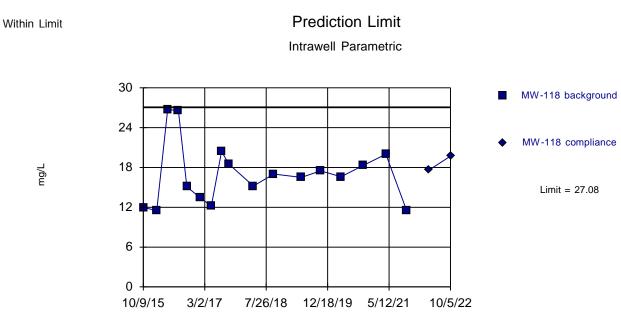
Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Sulfate Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

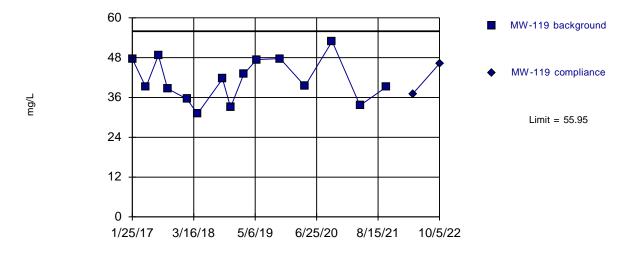
Exceeds Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

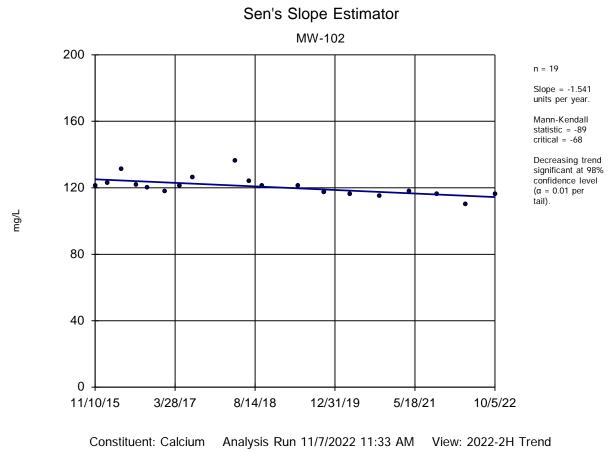
Background Data Summary: Mean=17, Std. Dev.=4.608, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9008, critical = 0.851. Kappa = 2.188 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Sulfate Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL

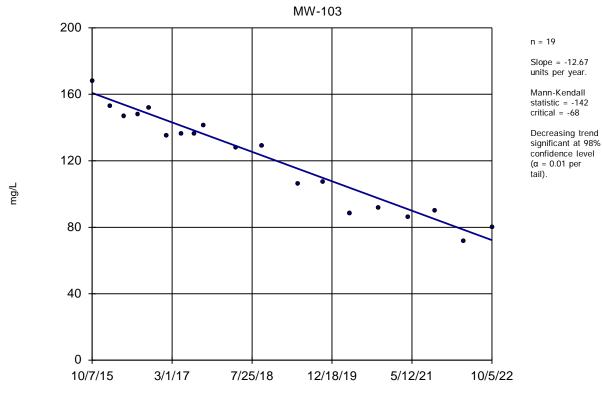

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

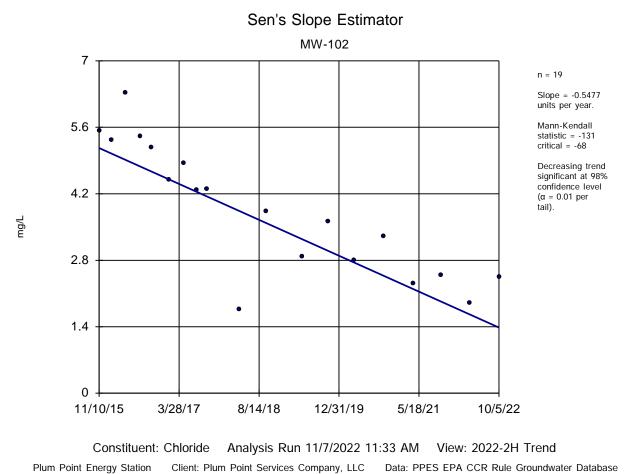
Within Limit


Prediction Limit

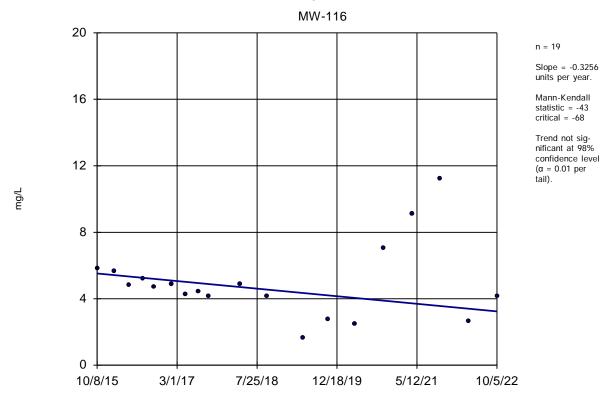
Intrawell Parametric


Background Data Summary: Mean=41.23, Std. Dev.=6.525, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9533, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Trend Tests, Second Half 2022 Monitoring Event

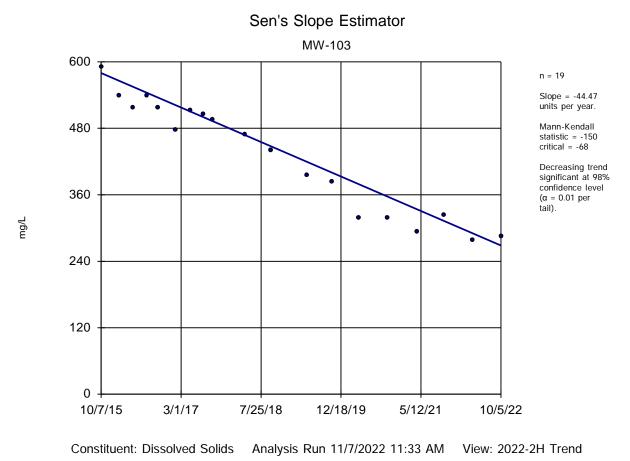

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

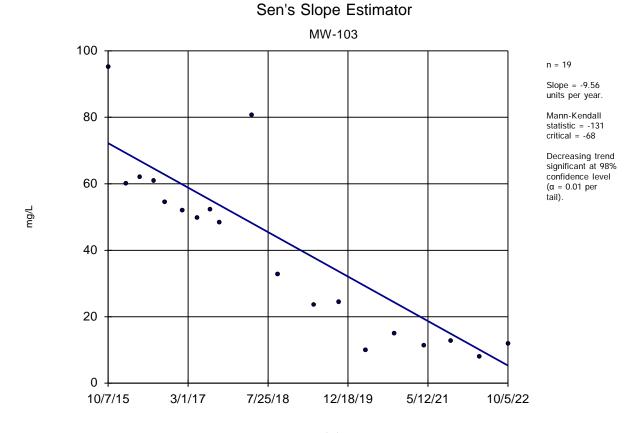


Sen's Slope Estimator

Constituent: CalciumAnalysis Run 11/7/2022 11:33 AMView: 2022-2H TrendPlum Point Energy StationClient: Plum Point Services Company, LLCData: PPES EPA CCR Rule Groundwater Database



Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG


Sen's Slope Estimator

Constituent:ChlorideAnalysis Run 11/7/2022 2:16 PMView: 2022-2H TrendPlum Point Energy StationClient:Plum Point Services Company, LLCData:PPES EPA CCR Rule Groundwater Database

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Constituent: Sulfate Analysis Run 11/7/2022 11:33 AM View: 2022-2H Trend Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

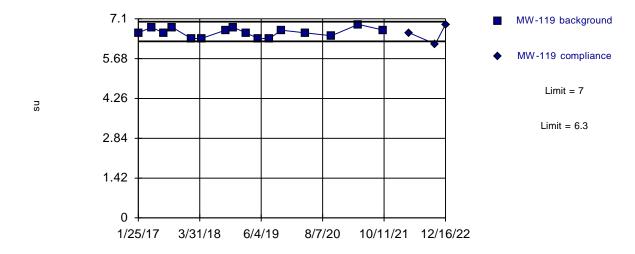
Prediction Limits, Second Half 2022 Verification Sampling Event

Within Limits

Prediction Limit

Background Data Summary: Mean=6.744, Std. Dev.=0.2128, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9177, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 1/11/2023 4:02 PM View: 2022-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.36 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.619, Std. Dev.=0.1642, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

APPENDIX H

Alternate Source Demonstrations

Alternate Source Demonstration for Second Half 2021 Statistically Significant Results

3 Innwood Circle, Suite 220 • Little Rock, AR 72211 • (501) 225-7779 • Fax (501) 225-6738

TECHNICAL MEMORANDUM

- **DATE:** April 5, 2022
- TO: Matt Gray Plum Point Services Company, LLC
- **FROM:** Dana Derrington, PE, PG
- SUBJECT: Alternate Source Demonstration for Statistically Significant Increases Second Half of 2021 Monitoring Period, Plum Point Energy Station Landfill FTN No. R14590-2496-001

FTN Associates, Ltd. (FTN), has prepared this technical memorandum for the Plum Point Services Company, LLC (PPSC), coal combustion residuals (CCR) landfill, which is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals Rule, promulgated in Title 40 of the Code of Federal Regulations (40 CFR), Part 257. The landfill is also regulated by Arkansas Pollution Control and Ecology Commission (APCEC) Regulation No. 22 and permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1.

FTN was contracted to sample groundwater and to statistically evaluate the data from the second half of 2021 monitoring event. Based on statistical evaluation of the data, five confirmed statistically significant increases (SSIs) over background concentrations were identified. Pursuant to §257.94(e)(2), the landfill may demonstrate that a source other than the CCR unit caused an SSI over background levels for a constituent or that an SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. This memorandum, hereafter referred to as an alternate source demonstration (ASD), presents evidence that the confirmed SSIs are due to a source other than the CCR unit or are the result of offsite influence and/or natural fluctuations in groundwater quality.

1.0 BACKGROUND

FTN performed groundwater sampling for the second half 2021 semiannual groundwater monitoring period during October 2021. Sample collection, preservation, shipment, analytical procedures, chain-of-custody control, and data quality control for this sampling event followed protocol outlined in the landfill's groundwater sampling and analysis plan (GWSAP) (FTN 2017b). Statistical evaluation of the data set followed the most recent EPA guidance (EPA 2009) and the landfill's statistical analysis plan (SAP) (FTN 2017c). Based on the results of the intrawell statistical analysis of the October 2021 data, verification sampling was performed during December 2021 in accordance with the landfill's

SAP and EPA guidance (EPA 2009). Laboratory reports for the October and December sampling events are included in Attachment 4.

As shown in Table 1 (Attachment 3), results from verification sampling confirmed SSIs for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117, and disconfirmed one SSI for calcium at MW-117. Of the confirmed SSIs in Table 1, calcium at MW-116 and TDS at MW-117 had been confirmed during prior monitoring periods. In accordance with §257.94(e)(2), prior ASDs have been prepared for the confirmed SSIs for calcium at MW-116 (FTN 2018, 2019a, 2021) and for TDS at MW-117 (FTN 2019b, 2019c, 2020, 2021), and each ASD successfully demonstrated that the SSIs were not the result of influence from the CCR unit.

2.0 DISCUSSION

This section provides a review of the monitoring system with respect to onsite background wells, background groundwater quality, published literature, and landfill leachate within the context of the confirmed SSIs for calcium, sulfate, and TDS at compliance well MW-116 and for sulfate and TDS at compliance well MW-117.

2.1 Monitoring System Background Wells

As required by §257.91(c)(1), the groundwater monitoring network is required to contain a minimum of one monitoring well that is hydraulically upgradient of the CCR management area for the purpose of monitoring background water quality. However, there is not a hydraulically upgradient location at this facility because the direction of groundwater flow is seasonably variable. As allowed by §257.91(a)(1), a facility may utilize wells for background water quality that are not hydraulically upgradient of the CCR unit. For this reason, the facility incorporated monitoring wells MW-108, MW-113, and MW-115 (Figure 1) to monitor background water quality because those wells are positioned outside the potential zone of impact from the CCR unit. The rationale for this is based on the age of the landfill; the estimated maximum rate of groundwater flow; and the distance of MW-108, MW-113, and MW-115 from the CCR unit. Specifically:

- MW-108, MW-113, and MW-115 are located more than 2,300 ft from the eastern edge of cell 3;
- Groundwater at the landfill has historically exhibited a maximum flow rate of 40 ft/year; and
- The landfill became active during March 2010.

Using the information available above, a potential leachate plume would not be expected to have migrated more than 470 ft from the CCR unit as of the second half 2021 monitoring event. This estimate is conservative for the following reasons:

1. It assumes impact to groundwater occurred at the same time cell 1 was activated (March 2010) and does not account for travel time through the confining unit soils;

- 2. It assumes that groundwater flows in one direction; however, it is well-documented that groundwater flow at the landfill is multidirectional and reverses flow on a seasonal basis (FTN 2017a); and
- 3. It does not account for any physical or chemical properties of the constituents of concern that would cause them to travel at rates slower than groundwater (e.g., adsorption).

In view of this, groundwater quality at the site can be expected to show concentrations of up to 183 mg/L for calcium, 82.2 mg/L for sulfate, and 628 mg/L for TDS due to offsite influence and/or natural fluctuations in groundwater quality. These data are summarized in Table 1 (Attachment 3).

2.2 Published Groundwater Quality for the Aquifer

Each monitoring well is screened in the Mississippi River Valley alluvial aquifer, the uppermost aquifer in the vicinity of the landfill (FTN 2017b). The United States Geological Survey published a study of groundwater quality of the aquifer, specifically with respect to that of Holocene alluvium and Pleistocene valley train deposits, which are two of the major hydrogeologic units within the aquifer (Gonthier 2003). The landfill is located in Holocene alluvium, as shown on Figure 2. According to this study, wells screened in Holocene alluvium show concentrations of up to 130 mg/L for calcium, 120 mg/L for sulfate, and 728 mg/L for TDS. These data are summarized in Table 1 (Attachment 3). In consideration of these data, groundwater quality at the site can be expected to show concentrations similar to published levels due to offsite influence and/or natural fluctuations in groundwater quality.

2.3 CCR Leachate Quality

Leachate quality is monitored on a semiannual basis for the landfill's APCEC Regulation No. 22 monitoring program, as required by permit no. 0303 S3N-R1, and are publicly available on the DEQ website. Calcium, sulfate, and TDS data for leachate are compared to groundwater quality data for compliance wells MW-116 and MW-117 and background wells MW-108, MW-113, and MW-115 on the time-series graphs in Attachment 2. As shown by these graphs, the calcium concentrations in CCR leachate are lower than those measured at any of the wells. This shows that calcium is not a good primary indicator of CCR leachate. In contrast, the levels of sulfate and TDS in leachate are much higher than those found in groundwater. As such, sulfate and TDS are considered primary indicators of CCR leachate.

3.0 ASD FOR MW-116

As shown on the time-series graphs (Attachment 2) and in Table 1 (Attachment 3), concentrations of calcium, sulfate, and TDS at MW-116 were at or above onsite background groundwater quality and/or published values for the aquifer. This is an excursion from historical groundwater quality in samples collected from this well as shown by the time-series graphs. None of these parameters have an EPA-promulgated maximum contaminant level (MCL). As discussed in Section 2.3, CCR leachate is lower in calcium than the natural concentrations measured in groundwater and calcium is therefore not

a suitable primary indicator. Measured sulfate in MW-116 during the second half of 2021 was well below the non-enforceable secondary drinking water standard (SDWS) established by EPA.

Discussions with PPSC personnel revealed that surface evidence of leaks in the leachate transmission pipeline (LTP) was identified in June 2020 at the locations shown on Figure 3. PPSC immediately took the LTP out of use and subcontracted the required repair work to Hill Services, Inc. Repairs to the LTP were initiated in June 2020 and completed by the end of July 2020.

Based on the location of the LTP leak near MW-116, the date the leak was identified, and the subsequent rise in concentrations of calcium, sulfate, and TDS at MW-116, it has been determined that the damaged LTP, and not the CCR unit, caused the SSIs at MW-116. Although the LTP was immediately shut down after the first leak was identified, and the LTP was repaired, residual evidence of the leak near MW-116 remains evident in the groundwater data from the well. It is expected that groundwater quality at the well will return to background levels given the repairs made to the LTP in 2020.

4.0 ASD FOR MW-117

As shown on the time-series graphs (Attachment 2) and in Table 1 (Attachment 3), measured values for sulfate and TDS at MW-117 are well within the range of values measured at the onsite background wells and are well below published levels for the aquifer. These comparisons provide two lines of supporting evidence that the currently measured values of sulfate and TDS at MW-117 reflect offsite influence and/or natural fluctuations in groundwater quality.

In addition, the major ion composition of leachate and groundwater samples collected during October 2021 was evaluated using the Stiff and Piper diagrams included in Attachment 2. The Stiff diagrams show that the ionic distributions in groundwater at MW-117 are similar to those at background wells MW-108, MW-113, and MW-115. In contrast, the leachate diagram is distinctly different. Specifically, the leachate sample exhibits concentrations of sodium, potassium, and sulfate ions that are comparatively absent in groundwater. The Piper diagram also illustrates the dissimilarity of groundwater quality to leachate, with data for MW-117, MW-108, MW-113, and MW-115 clustered in the quadrant classified as calcium-bicarbonate-type water and positioned apart from the leachate data, which is located in the sodium-bicarbonate quadrant. If leachate was mixing with groundwater, the data for MW-117 would plot at an intermediate distance between the leachate data and the data for background wells MW-108, MW-113, and MW-115 on the diamond-shaped field of the Piper diagram. The Stiff and Piper diagrams provide a key line of evidence that the SSIs for sulfate and TDS at MW-117 are not due to a release from the CCR unit.

5.0 CONCLUSIONS

In consideration of the information presented in this memorandum, FTN concludes the following:

• The SSIs for calcium, sulfate, and TDS at MW-116 are due to a source other than the CCR unit. This conclusion is based the location of the LTP leak located in close proximity to

MW-116, the date the leak was identified, and the subsequent rise in concentrations of primary CCR leachate indicators.

• The SSIs for sulfate and TDS MW-117 are the result of offsite influence and/or natural fluctuations in groundwater quality. This is based on concentrations for these two parameters that are well within onsite background water quality and published levels for the aquifer. In addition, major ion data show that groundwater quality at MW-117 is similar to onsite background water quality and distinctly different from CCR leachate.

This memorandum serves as the ASD prepared in accordance with §257.94(e)(2) and supports the position that the confirmed SSIs identified for calcium at MW-116 and sulfate and TDS at MW-116 and MW-117 are not due to a release from the CCR unit. Therefore, no further action is required and the landfill will remain in detection monitoring.

If you have questions or comments regarding this memorandum, please do not hesitate to call Dana Derrington, PE, PG, at (314) 786-5855 or Heather Ferguson at (501) 225-7779.

DLD/hlf

Attachments

U:\WP_FILES\14590-2496-001\2022-04-05 FTN TO PPES - EPA ASD FOR 2H2021 SSIS\2022-04-05 FTN TO PPES - EPA ASD FOR 2H2021 SSIS\DOCX $\mu\nu$ F



REFERENCES

- EPA [US Environmental Protection Agency]. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: Office of Resource Conservation and Recovery, Program Implementation and Information Division, US Environmental Protection Agency. March 2009.
- FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd.
 - ——. 2017b. *Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- ———. 2017c. *Statistical Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- ———. 2019a. Alternate Source Demonstration for Statistically Significant Increase, Second Half of 2018 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. January 29, 2019.
 - —. 2019b. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2019 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 24, 2019.
- - —. 2020. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2020 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. August 3, 2020.
 - —. 2021. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2021 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 6, 2021.
- Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 03-4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.

PROFESSIONAL ENGINEER'S CERTIFICATION

With this certification, I certify that I, as a professional engineer in the state of Arkansas, am a qualified professional engineer as defined in §257.53 of Title 40 of the Code of Federal Regulations (CFR), Part 257, that this technical memorandum has been prepared under my direction in accordance with generally accepted good engineering practices, that the findings are accurate to the best of my knowledge, and that the alternate source demonstration described herein meets the requirements of §257.94(e)(2) of 40 CFR Part 257.

Dana L. Derrington, Arkansas PE #16372

04/05/2022 Date

ATTACHMENT 1

Figures

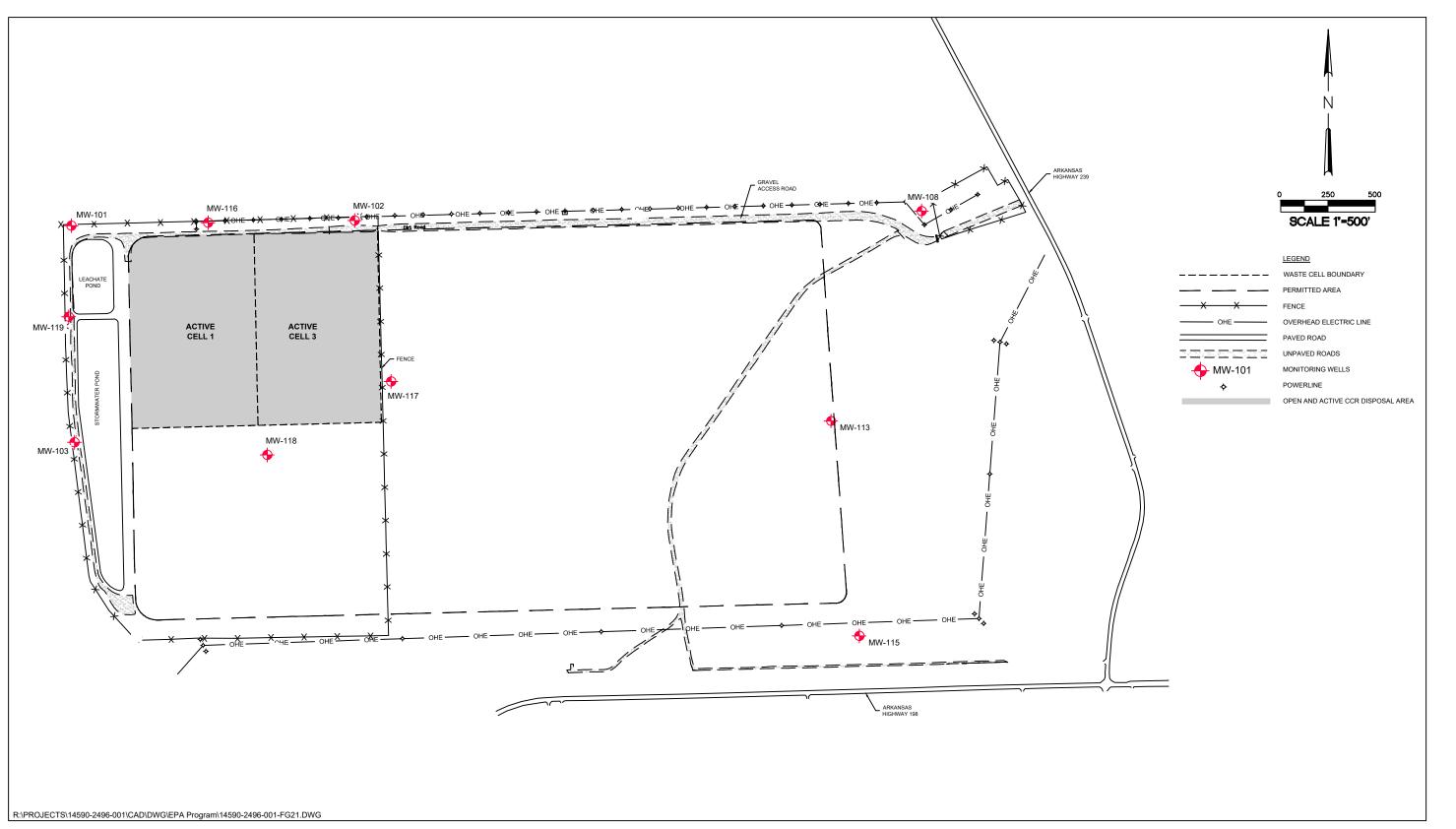
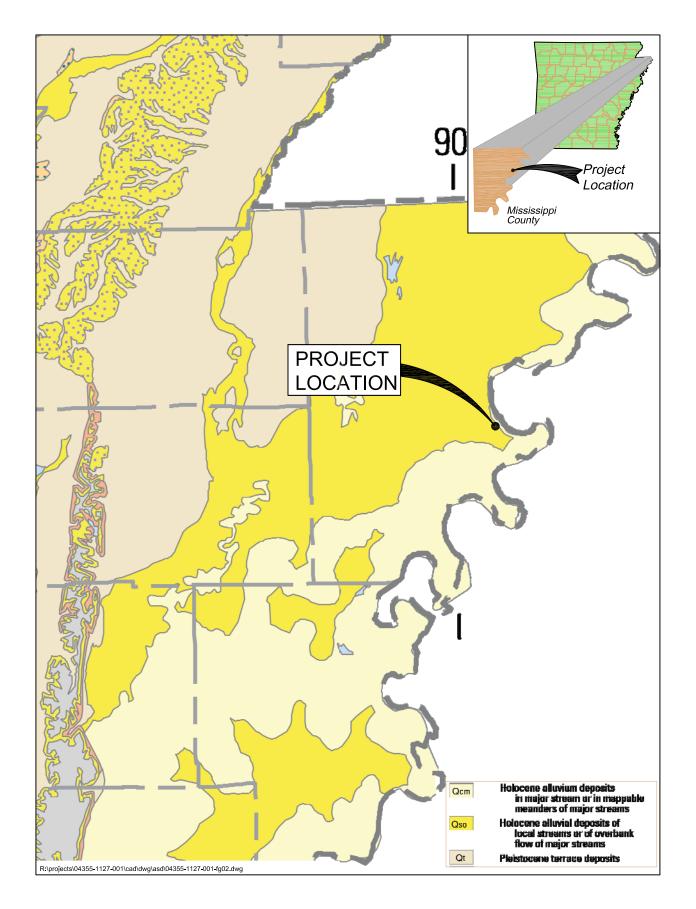




Figure 1. Monitoring well location map.

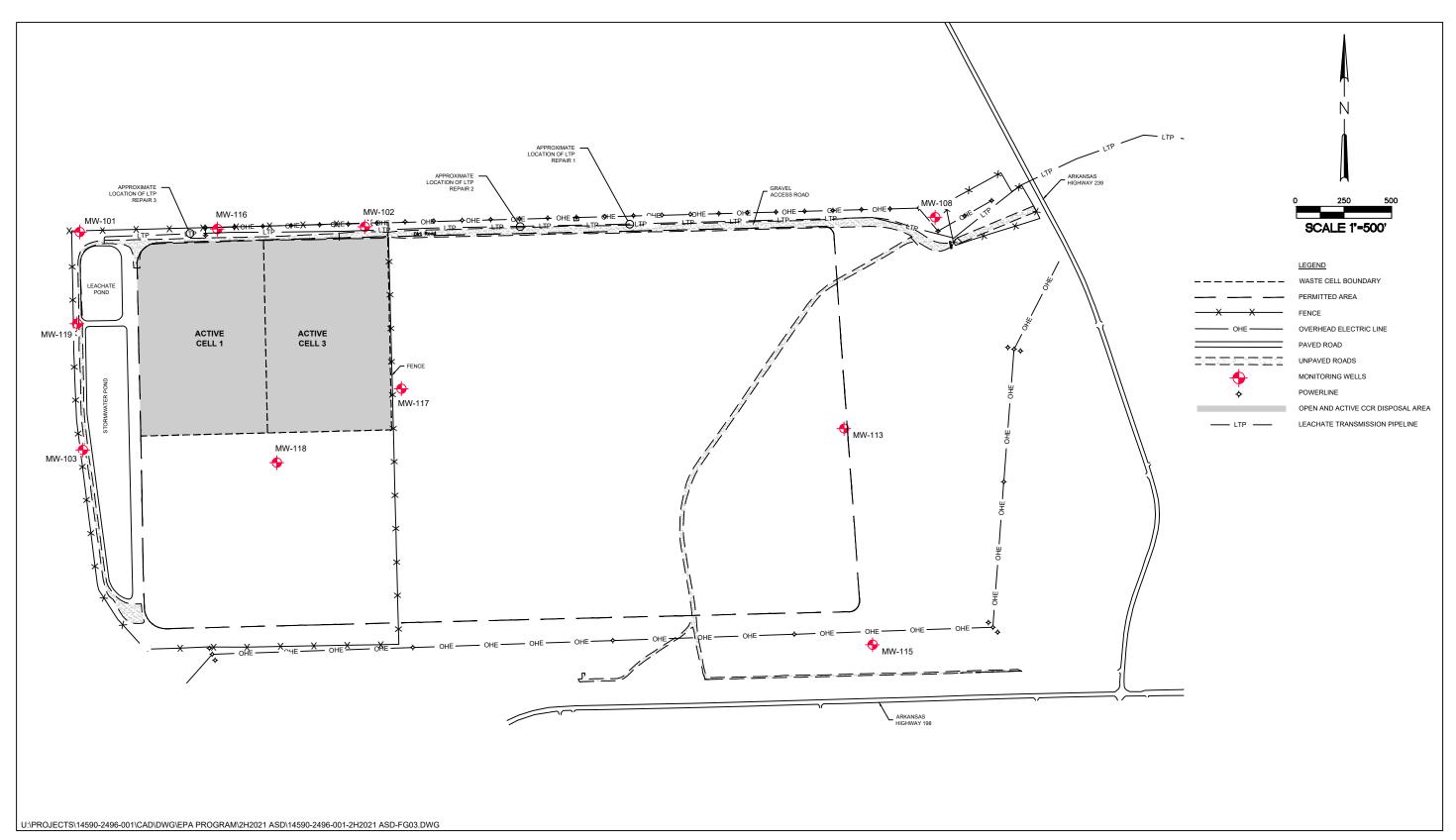
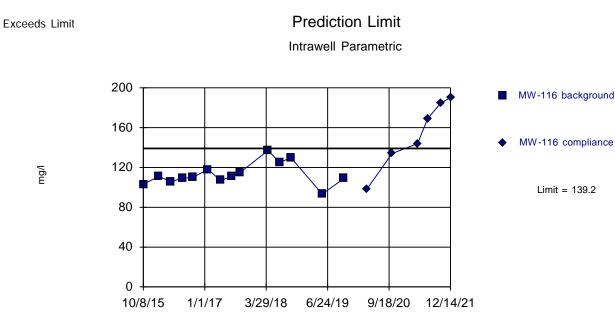
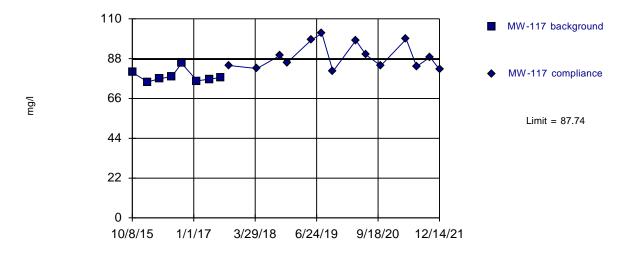
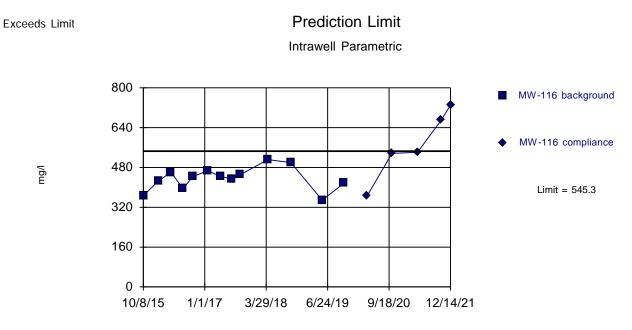



Figure 3. Site map showing locations of leachate transmission pipeline repairs.

Statistical Plots


Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

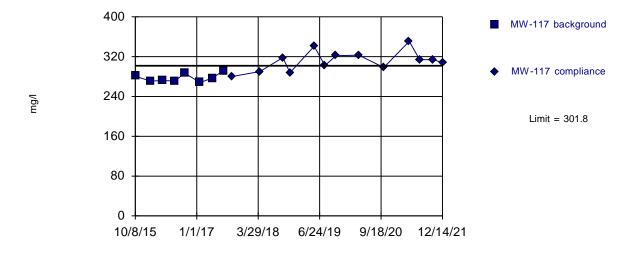
Constituent: Calcium Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

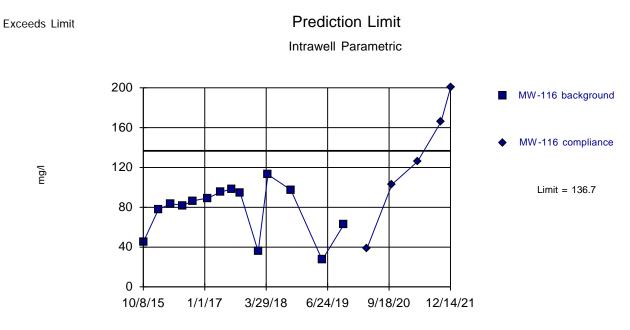
Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=78.28, Std. Dev.=3.33, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8288, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

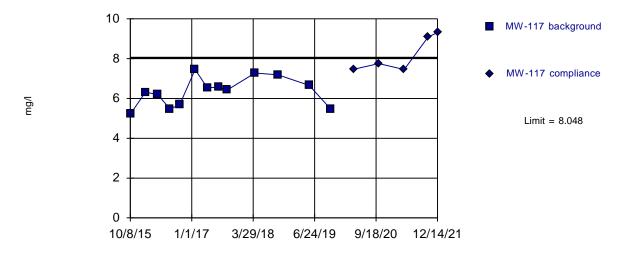
Constituent: Dissolved Solids Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

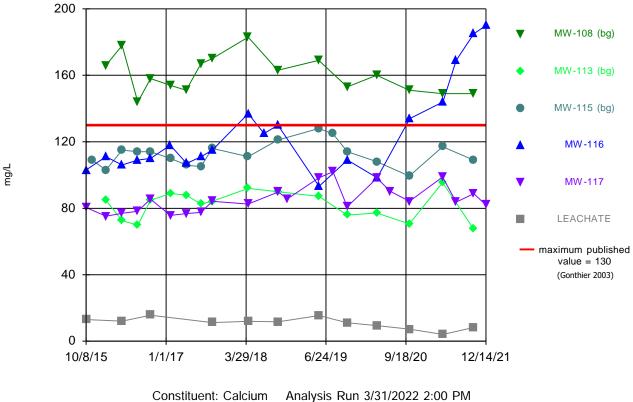
Prediction Limit Intrawell Parametric

Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

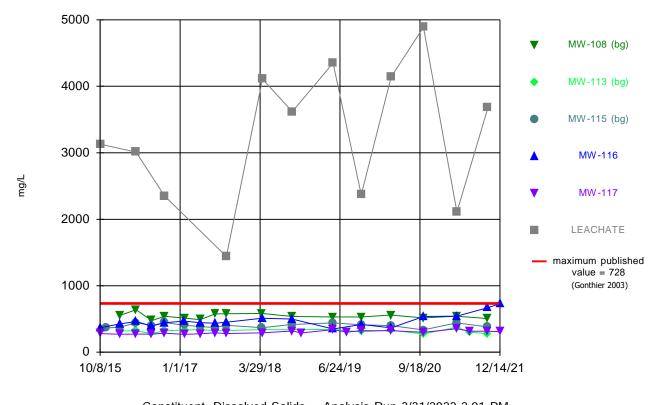
Constituent: Sulfate Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

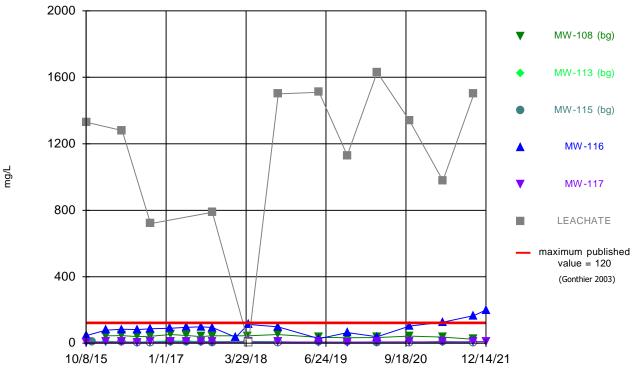

Exceeds Limit

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Plum Point Energy Station

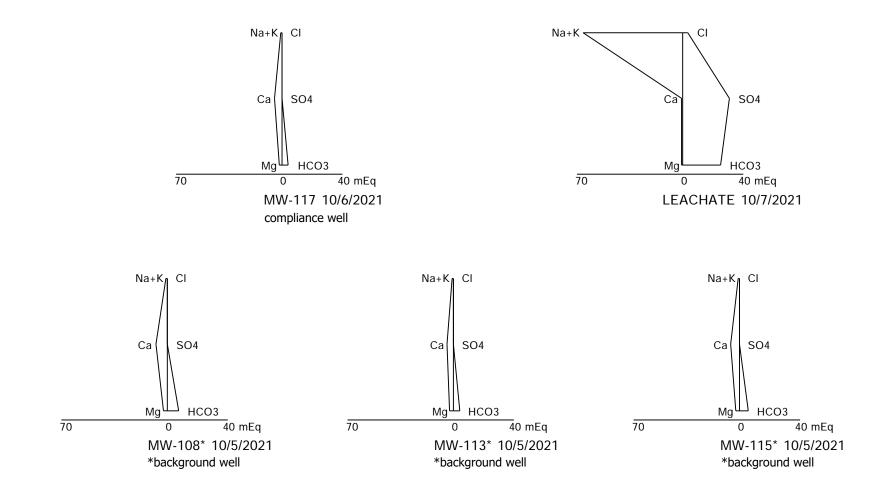
Analysis Run 3/31/2022 2:00 PM


Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Time Series

Constituent: Dissolved Solids Analysis Run 3/31/2022 2:01 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

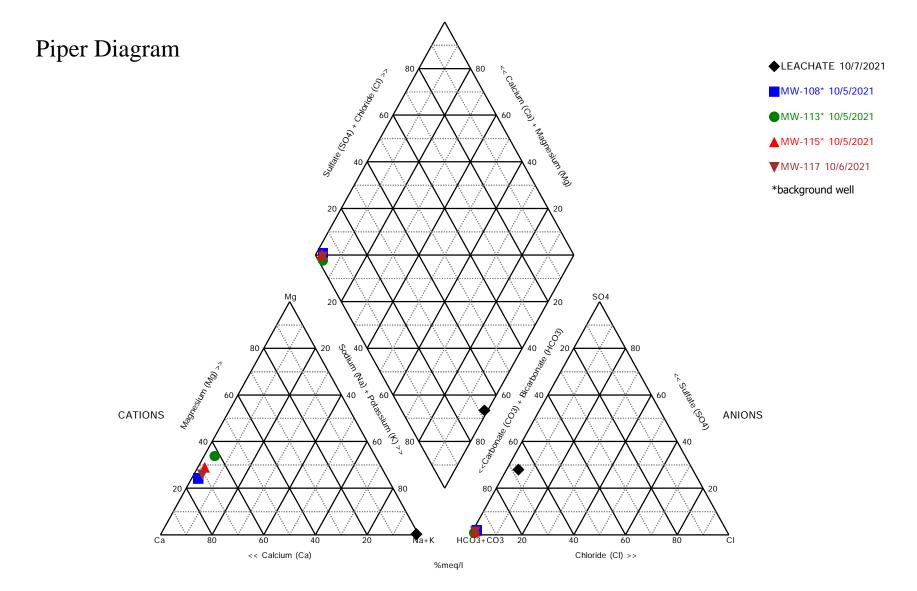

Constituent: Sulfate Analysis Run 3/31/2022 2:01 PM

Plum Point Energy Station

Client: Plum Point Services Company, LLC

Data: PPES EPA CCR Rule Groundwater Database

Time Series



Stiff Diagram Analysis Run 1/24/2022 3:40 PM

Plum Point Energy Station

Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Analysis Run 1/24/2022 3:41 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Summary Table

Well ID	Parameter	Prediction Limit (mg/L)	October 2021 Initial Result (mg/L)	December 2021 Verification Result (mg/L)	SSI Confirmed?	Maximum Background Level ^(a) (mg/L)	Maximum Published Levels ^(b) (mg/L)
MW-116	Calcium	139.2	185	190	Yes ^(c)	183 (MW-108, 4/2018)	130
MW-117	Calcium	87.74	88.8	82.0	No	103 (WW - 100, 4/2010)	150
MW-116	Sulfate	136.7	166	200	Yes	82.2 (MW 108 0/2018)	120
MW-117	Sulfate	8.048	9.09	9.31	Yes	82.2 (MW-108, 9/2018)	120
MW-116	TDS	545.3	670	730	Yes	629 (NAW 109 4/2016)	728
MW-117	TDS	301.8	314	308	Yes ^(c)	638 (MW-108, 4/2016)	128

Table 1. Summary of statistically significant results and maximum background and published levels.

Notes:

a. Based on historical values at MW-108, MW-113, and MW-115.

b. From Gonthier 2003.

c. Previously confirmed SSI.

REFERENCES

Gonthier, G.J. 2003. *Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998* [Water-Resources Investigations Report 03-4202]. Jackson, MS: US Geological Survey, National Water-Quality Assessment Program.

Laboratory Reports

Pace Analytical® ANALYTICAL REPORT October 25, 2021

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1415555 10/08/2021 R14590-2496-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2496-001

SDG: L1415555 DATE/TIME: 10/25/21 11:15 PAGE: 1 of 31

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1415555-01	6
MW-102 L1415555-02	7
MW-103 L1415555-03	8
MW-108 L1415555-04	9
MW-113 L1415555-05	10
MW-115 L1415555-06	11
MW-116 L1415555-07	12
MW-117 L1415555-08	13
MW-118 L1415555-09	14
MW-119 L1415555-10	15
MW-117 DUP L1415555-11	16
EPA EB L1415555-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	24
Metals (ICP) by Method 6010B	27
GI: Glossary of Terms	28
Al: Accreditations & Locations	29
Sc: Sample Chain of Custody	30

SDG: L1415555 DATE/TIME: 10/25/21 11:15

PAGE: 2 of 31

SAMPLE SUMMARY

MW-101 L1415555-01 GW			Michael Clayton	10/07/21 10:55	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1757080	1	10/14/21 12:01	10/14/21 12:54	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 02:29	10/15/21 02:29	ELN	Mt. Juliet, TM
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:04	CCE	Mt. Juliet, T
	Wender		10/22/21 13:23	10/23/21 00:01	CCE	Wit. Sullet, H
			Collected by	Collected date/time	Received da	te/time
MW-102 L1415555-02 GW			Michael Clayton	10/06/21 13:50	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:01	10/15/21 03:01	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:07	CCE	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-103 L1415555-03 GW			Michael Clayton	10/07/21 09:00	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1757189	1	10/14/21 13:49	10/14/21 15:51	MMF	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:18	10/15/21 03:18	ELN	Mt. Juliet, TN
Netals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:15	CCE	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-108 L1415555-04 GW			Michael Clayton	10/05/21 12:45	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:34	10/15/21 03:34	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:18	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-113 L1415555-05 GW			Michael Clayton	10/05/21 11:25	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:51	10/15/21 03:51	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:21	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-115 L1415555-06 GW			Michael Clayton	10/05/21 10:10	10/08/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 04:07	10/15/21 04:07	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:24	CCE	Mt. Juliet, TN

SDG: L1415555 DATE/TIME: 10/25/21 11:15

Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

MW-116 L1415555-07 GW			Collected by Michael Clayton	Collected date/time 10/06/21 15:10	Received da 10/08/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1757240	1	10/15/21 04:23	10/15/21 04:23	ELN	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1758277	5	10/16/21 15:48	10/16/21 15:48	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:27	CCE	Mt. Juliet, TN
			Collected by Michael Clayton	Collected date/time 10/06/21 12:00	Received da 10/08/21 09:	
MW-117 L1415555-08 GW						00
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756375	1	10/13/21 12:32	10/13/21 14:11	BRG	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1757240	1	10/15/21 05:13	10/15/21 05:13	ELN	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:30	CCE	Mt. Juliet, TN
MW-118 L1415555-09 GW			Collected by Michael Clayton	Collected date/time 10/06/21 10:50	Received da 10/08/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Datan	Bildtion	date/time	date/time	, margor	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1757240	1	10/15/21 05:29	10/15/21 05:29	ELN	Mt. Juliet, TN
Aetals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:33	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-119 L1415555-10 GW			Michael Clayton	10/07/21 10:00	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1757189	1	10/14/21 13:49	10/14/21 15:51	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1757240	1	10/15/21 05:46	10/15/21 05:46	ELN	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:36	CCE	Mt. Juliet, TN
MW-117 DUP L1415555-11 GW			Collected by Michael Clayton	Collected date/time 10/06/21 12:05	Received da 10/08/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756375	1	10/13/21 12:32	10/13/21 14:11	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 06:02	10/15/21 06:02	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:39	CCE	Mt. Juliet, TN
EPA EB L1415555-12 GW			Collected by Michael Clayton	Collected date/time 10/06/21 11:25	Received da 10/08/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756503	1	10/13/21 16:14	10/13/21 17:20	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 06:18	10/15/21 06:18	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:42	CCE	Mt. Juliet, TN

SDG: L1415555 DATE/TIME: 10/25/21 11:15

Ср

²Tc

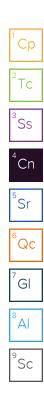
Ss

°Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1415555

SAMPLE RESULTS - 01 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l		date / time		[2
Dissolved Solids	380000		10000	1	10/14/2021 12:54	WG1757080		⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	975	J	379	1000	1	10/15/2021 02:29	WG1757240		CII
Fluoride	312		64.0	150	1	10/15/2021 02:29	WG1757240		5
Sulfate	10200		594	5000	1	10/15/2021 02:29	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	55.5	J	20.0	200	1	10/23/2021 00:04	WG1761047
Calcium	113000		79.3	1000	1	10/23/2021 00:04	WG1761047

Qc

Gl

Â

SAMPLE RESULTS - 02 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	415000		10000	1	10/13/2021 14:33	WG1756452	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	2480		379	1000	1	10/15/2021 03:01	WG1757240		
Fluoride	215		64.0	150	1	10/15/2021 03:01	WG1757240		5
Sulfate	95300		594	5000	1	10/15/2021 03:01	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	78.4	J	20.0	200	1	10/23/2021 00:07	WG1761047
Calcium	116000		79.3	1000	1	10/23/2021 00:07	WG1761047

1

Qc

Gl

Â

SAMPLE RESULTS - 03 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	324000		10000	1	10/14/2021 15:51	WG1757189	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn
Chloride	1160		379	1000	1	10/15/2021 03:18	WG1757240		CII
Fluoride	256		64.0	150	1	10/15/2021 03:18	WG1757240		5
Sulfate	12600		594	5000	1	10/15/2021 03:18	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	68.1	J	20.0	200	1	10/23/2021 00:15	WG1761047
Calcium	89700		79.3	1000	1	10/23/2021 00:15	WG1761047

1

Qc

GI

Â

SAMPLE RESULTS - 04 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	505000		10000	1	10/12/2021 14:09	WG1755519	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>										
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn	
Chloride	1370		379	1000	1	10/15/2021 03:34	WG1757240		CII	
Fluoride	203		64.0	150	1	10/15/2021 03:34	WG1757240		5	
Sulfate	23400		594	5000	1	10/15/2021 03:34	WG1757240		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	111	J	20.0	200	1	10/23/2021 00:18	WG1761047
Calcium	149000		79.3	1000	1	10/23/2021 00:18	WG1761047

1

Qc

Gl

Â

SAMPLE RESULTS - 05 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDI	. Dilutior	Analysis	Batch	Ср
Analyte	ug/l	ug/l		date / time		2
Dissolved Solids	275000	100	00 1	10/12/2021 14:09	WG1755519	¯Тс

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
Result Qualifier MDL RDL Dilution Analysis Batch									
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	877	J	379	1000	1	10/15/2021 03:51	WG1757240		CII
Fluoride	139	J	64.0	150	1	10/15/2021 03:51	WG1757240		5
Sulfate	3750	J	594	5000	1	10/15/2021 03:51	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	81.7	J	20.0	200	1	10/23/2021 00:21	WG1761047
Calcium	67500		79.3	1000	1	10/23/2021 00:21	WG1761047

1

Qc

GI

Â

SAMPLE RESULTS - 06 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	379000		10000	1	10/12/2021 14:09	<u>WG1755519</u>	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>									
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	964	J	379	1000	1	10/15/2021 04:07	WG1757240		CII
Fluoride	225		64.0	150	1	10/15/2021 04:07	WG1757240		5
Sulfate	3700	J	594	5000	1	10/15/2021 04:07	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	65.5	J	20.0	200	1	10/23/2021 00:24	WG1761047
Calcium	109000		79.3	1000	1	10/23/2021 00:24	WG1761047

1

Qc

GI

Â

SAMPLE RESULTS - 07 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	670000		10000	1	10/13/2021 14:33	WG1756452	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A										
	Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>										
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	11200		379	1000	1	10/15/2021 04:23	WG1757240				
Fluoride	214		64.0	150	1	10/15/2021 04:23	WG1757240		5		
Sulfate	166000		2970	25000	5	10/16/2021 15:48	WG1758277		Sr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	97.3	J	20.0	200	1	10/23/2021 00:27	WG1761047
Calcium	185000		79.3	1000	1	10/23/2021 00:27	WG1761047

1

Qc

GI

Â

SAMPLE RESULTS - 08 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	314000		10000	1	10/13/2021 14:11	WG1756375	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		4	⁴ Cn
Chloride	921	J	379	1000	1	10/15/2021 05:13	WG1757240		CII
Fluoride	162		64.0	150	1	10/15/2021 05:13	WG1757240		5
Sulfate	9090		594	5000	1	10/15/2021 05:13	WG1757240		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.7	J	20.0	200	1	10/23/2021 00:30	WG1761047
Calcium	88800		79.3	1000	1	10/23/2021 00:30	WG1761047

1

Qc

GI

Â

SAMPLE RESULTS - 09 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	280000		10000	1	10/13/2021 14:33	WG1756452	Тс

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	1150		379	1000	1	10/15/2021 05:29	WG1757240		CII	
Fluoride	189		64.0	150	1	10/15/2021 05:29	WG1757240		5	
Sulfate	11500		594	5000	1	10/15/2021 05:29	WG1757240		ँSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	65.6	J	20.0	200	1	10/23/2021 00:33	WG1761047
Calcium	82900		79.3	1000	1	10/23/2021 00:33	WG1761047

Qc

Gl

Â

SAMPLE RESULTS - 10 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	388000		10000	1	10/14/2021 15:51	WG1757189	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	2400		379	1000	1	10/15/2021 05:46	WG1757240		CII	
Fluoride	269		64.0	150	1	10/15/2021 05:46	WG1757240		5	
Sulfate	39100		594	5000	1	10/15/2021 05:46	WG1757240		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	59.4	J	20.0	200	1	10/23/2021 00:36	WG1761047
Calcium	104000		79.3	1000	1	10/23/2021 00:36	WG1761047

Qc

GI

Â

SAMPLE RESULTS - 11 L1415555

Gravimetric Analysis by Method 2540 C-2011

era mathematic , mary										
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Cp		
Analyte	ug/l		ug/l		date / time			2	ì	
Dissolved Solids	305000		10000	1	10/13/2021 14:11	WG1756375		Tc		

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A 3										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn	
Chloride	920	J	379	1000	1	10/15/2021 06:02	WG1757240		СП	
Fluoride	156		64.0	150	1	10/15/2021 06:02	WG1757240		5	
Sulfate	9180		594	5000	1	10/15/2021 06:02	WG1757240		Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	70.2	J	20.0	200	1	10/23/2021 00:39	WG1761047
Calcium	88800		79.3	1000	1	10/23/2021 00:39	WG1761047

Qc

Gl

Â

SAMPLE RESULTS - 12 L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	ND		10000	1	10/13/2021 17:20	WG1756503	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	U		379	1000	1	10/15/2021 06:18	WG1757240	CII
Fluoride	U		64.0	150	1	10/15/2021 06:18	WG1757240	5
Sulfate	U		594	5000	1	10/15/2021 06:18	WG1757240	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	10/23/2021 00:42	WG1761047
Calcium	U		79.3	1000	1	10/23/2021 00:42	WG1761047

Qc

Gl

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-04,05,06

Method Blank (MB)

(MB)				
2/21 14:09				
MB Result	MB Qualifier	MB MDL	MB RDL	2
ug/l		ug/l	ug/l	
U		10000	10000	
				3
	2/21 14:09 MB Result	2/21 14:09 MB Result <u>MB Qualifier</u>	2/21 14:09 MB Result <u>MB Qualifier</u> MB MDL ug/l ug/l	2/21 14:09 MB Result <u>MB Qualifier</u> MB MDL MB RDL ug/l ug/l ug/l

L1411702-02 Original Sample (OS) • Duplicate (DUP)

L1411702-02 Origin		· · ·		· · ·		
(OS) L1411702-02 10/12/2	1 14:09 • (DUP) R	3716571-3 10	/12/21 14:0	9		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	676000	683000	1	0.982		5

L1413623-05 Original Sample (OS) • Duplicate (DUP)

L1413623-05 Orig	ginal Sample	e (OS) • Du [,]	plicate /	(DUP)			⁷ Gl
(OS) L1413623-05 10/12	2/21 14:09 • (DUF	.2) R3716571-4 10	0/12/21 14:0	 ວ9			
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	427000	429000	1	0.467		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3716571-2 10/	/12/21 14:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8670000	98.5	77.4-123	

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-08,11

Method Blank (MB)

Result MB Qualifier	MB MDL	MB RDL	
	ug/l	ug/l	
	10000	10000	
	Result <u>MB Qualifier</u>	ug/l	ug/l ug/l

L1416228-08 Original Sample (OS) • Duplicate (DUP)

L1416228-08 Origii		· · · ·				
OS) L1416228-08 10/13/2	1 14:11 • (DUP) R3	3717162-3 10/	/13/21 14:11			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1350000	1340000	1	0.149		5

L1416228-09 Original Sample (OS) • Duplicate (DUP)

L1416228-09 Ori	ginal Sample	(OS) • Duj	plicate (DUP)				⁷ Gl
(OS) L1416228-09 10/1	3/21 14:11 • (DUP) R	3717162-4 10/	13/21 14:11					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al
Analyte	ug/l	ug/l		%		%		
Dissolved Solids	1850000	1860000	1	0.270		5		⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3717162-2 10/	/13/21 14:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8680000	98.6	77.4-123	

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-02,07,09

Method Blank (MB)

Method Blank ((MB)				1
(MB) R3717327-1 10/1	3/21 14:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	
Dissolved Solids	U		10000	10000	
					3

L1415554-09 Original Sample (OS) • Duplicate (DUP)

L1415554-09 Origir	nal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1415554-09 10/13/21	1 14:33 • (DUP) F	83717327-3 10	0/13/21 14:3	3		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	663000	697000	1	5.00		5

L1415555-07 Original Sample (OS) • Duplicate (DUP)

L1415555-07 Oriç	ginal Sample	e (OS) • Du	plicate ((DUP)			⁷ Gl
(OS) L1415555-07 10/13	/21 14:33 • (DUP) R3717327-4 10	0/13/21 14:3	33			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	670000	690000	1	2.94		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3717327-2 10/13/21 14:33							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
Dissolved Solids	8800000	8310000	94.4	77.4-123			

DATE/TIME: 10/25/21 11:15

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-12

Method Blank (MB)

Method Blank (IVIB)				¹ C
(MB) R3717175-1 10/13	3/21 17:20				
	MB Result	MB Qualifier	MB MDL	/B RDL	2
Analyte	ug/l		ug/l	g/l	T
Dissolved Solids	U		10000	0000	
					35

L1415583-06 Original Sample (OS) • Duplicate (DUP)

L1415583-06 Origin	nal Sample	(OS) • Du	plicate (DUP)		
(OS) L1415583-06 10/13/2	1 17:20 • (DUP) I	23717175-3 10	0/13/21 17:2	0		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1180000	1180000	1	0.170		5

L1415583-09 Original Sample (OS) • Duplicate (DUP)

L1415583-09 Ori	ginal Sample	(OS) • Du	plicate (DUP)			⁷ Gl
(OS) L1415583-09 10/13	3/21 17:20 • (DUP)	R3717175-4 10)/13/21 17:2	0			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ A
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	1100000	1100000	1	0.181		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3717175-2 10/13	/21 17:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8700000	98.9	77.4-123	

DATE/TIME: 10/25/21 11:15

PAGE: 21 of 31

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-01

Method Blank (MB)

(MB) R3718311-1 10/14/21	12:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1414612-20 Original Sample (OS) • Duplicate (DUP)

L1414612-20 Origin	ial Sample	(OS) • Dup	olicate (l	DUP)		
(OS) L1414612-20 10/14/21	12:54 • (DUP)	R3718311-3 10	/14/21 12:54	1		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1080000	1170000	1	8.20	<u>J3</u>	5

L1414612-23 Original Sample (OS) • Duplicate (DUP)

L1414612-23 Origi	nal Sample (OS) • Dup	licate (E	OUP)			⁷ Gl
(OS) L1414612-23 10/14/2	21 12:54 • (DUP) R	3718311-4 10/	14/21 12:54				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	848000	904000	1	6.39	<u>13</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3718311-2 10/14	4/21 12:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8140000	92.5	77.4-123	

DATE/TIME: 10/25/21 11:15 Тс

Ss

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1415555-03,10

Method Blank (MB)

(MB) R3718287-1 10/14/21 15:51									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Dissolved Solids	U		10000	10000					

L1415583-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1415583-01 10/14/	/21 15:51 • (DUP) R	3718287-3 10	/14/21 15:51			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1030000	1000000	1	2.17		5

L1415844-01 Original Sample (OS) • Duplicate (DUP)

L1415844-01 Original Sample (OS) • Duplicate (DUP)										
(OS) L1415844-01 10/14/	(21 15:51 • (DUP) R	3718287-4 10	/14/21 15:5	1						
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al		
Analyte	ug/l	ug/l		%		%				
Dissolved Solids	1900000	1880000	1	1.19		5		°Sc		

Laboratory Control Sample (LCS)

(LCS) R3718287-2 10,)/14/21 15:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8660000	98.4	77.4-123	

DATE/TIME: 10/25/21 11:15 Тс

Ss

Cn

Sr

Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1415555-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Sulfate

(MB) R3717169-1 10	/14/21 14:24
--------------------	--------------

(MB) R3717169-1 10/14	/21 14:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Тс
Chloride	U		379	1000	
Fluoride	U		64.0	150	³ Ss
Sulfate	U		594	5000	00

L1415555-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1415555-01 10/15/21 02:29 • (DUP) R3717169-7 10/15/21 02:45											
	DUP RPD Limits										
Analyte	ug/l	ug/l		%		%					
Chloride	975	983	1	0.858	1	15					
Chionae	975	900	I	0.000	<u> </u>	15					

0.774

L1415555-12 Original Sample (OS) • Duplicate (DUP)

10200

10100

1

(OS) L1415555-12 10/15/21	(OS) L1415555-12 10/15/21 06:18 • (DUP) R3717169-8 10/15/21 06:35											
	Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u>											
Analyte	ug/l	ug/l		%		%						
Chloride	U	U	1	0.000		15						
Fluoride	U	U	1	0.000		15						
Sulfate	U	U	1	0.000		15						

15

Laboratory Control Sample (LCS)

(LCS) R3717169-2 10/14/2	LCS) R3717169-2 10/14/21 14:40											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	ug/l	ug/l	%	%								
Chloride	40000	39200	98.1	80.0-120								
Fluoride	8000	8120	101	80.0-120								
Sulfate	40000	39300	98.2	80.0-120								

ACCOUNT:
Plum Point Services Co., LLC

⁺Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1415555-01,02,03,04,05,06,07,08,09,10,11,12

L1415451-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415451-01 10/14/21 23:28 • (MS) R3717169-3 10/14/21 23:44 • (MSD) R3717169-4 10/15/21 00:01												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	75800	122000	122000	93.0	92.8	1	80.0-120	Ē	E	0.0957	15
Fluoride	5000	174	5100	5090	98.5	98.3	1	80.0-120			0.198	15
Sulfate	50000	U	49200	48900	98.4	97.9	1	80.0-120			0.504	15

L1415451-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415451-02 10/15/21 00:17 • (MS) R3717169-5 10/15/21 00:34 • (MSD) R3717169-6 10/15/21 00:50												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8550	56100	55900	95.2	94.7	1	80.0-120			0.449	15
Fluoride	5000	130	4790	4760	93.2	92.7	1	80.0-120			0.536	15
Sulfate	50000	789	47100	46900	92.6	92.2	1	80.0-120			0.401	15

DATE/TIME:

PAGE: 25 of 31 Тс

Ss

Cn

Sr

*Q*c

GI

Â

Sc

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2496-001

SDG: L1415555

10/25/21 11:15

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1415555-07

Method Blank (MB)

(MB) R3717773-1 10/	16/21 07:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Sulfate	U		594	5000

Тс

Ss

⁶Qc

L1415555-07 Original Sample (OS) • Duplicate (DUP)

L1415555-07 Ori	ginal Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1415555-07 10/1	6/2115:48 • (DUP) R3717773-3 1	0/16/21 16:	04		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	166000	166000	5	0.249		15

L1418554-334 Original Sample (OS) • Duplicate (DUP)

	a oumpic	$(OS) \bullet Du$	1418554-334 Original Sample (OS) • Duplicate (DUP)						
(OS) L1418554-334 10/16/21 2	21:48 • (DUP)	R3717773-6 10	0/16/21 22	::07					
(Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte u	ug/l	ug/l		%		%			
Sulfate 1	1020000	1040000	20	1.40		15			

Laboratory Control Sample (LCS)

(LCS) R3717773-2 10/16/2	.CS) R3717773-2 10/16/21 07:16							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Sulfate	40000	39300	98.2	80.0-120				

L1418554-328 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1418554-328 10/16/21 18:31 • (MS) R3717773-4 10/16/21 18:48 • (MSD) R3717773-5 10/16/21 19:04												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	503000	549000	554000	92.5	103	1	80.0-120	F	_	0.918	1

L1418554-336 Original Sample (OS) • Matrix Spike (MS)

(OS) L1418554-336 10/16/2	DS) L1418554-336 10/16/21 22:56 • (MS) R3717773-7 10/16/21 23:13								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier		
Analyte	ug/l	ug/l	ug/l	%		%			
Sulfate	50000	1430000	1440000	14.4	1	80.0-120	EV		

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Plum Point Services Co., LLC	R14590-2496-001	L1415555	10/25/21 11:15	26 of 31

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1415555-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Method Blan	K (IVID)						
(MB) R3720344-1 10/22/21 23:40							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Boron	U		20.0	200			
Calcium	U		79.3	1000			

Laboratory Control Sample (LCS)

(LCS) R3720344-2	10/22/21 23:43					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	CS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	985	98.5	80.0-120		
Calcium	10000	9600	96.0	80.0-120		

L1415480-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415480-01 10/22/21 23:46 • (MS) R3720344-4 10/22/21 23:52 • (MSD) R3720344-5 10/22/21 23:55								⁸ Al						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		9
Boron	1000	495	1490	1480	99.4	98.9	1	75.0-125			0.394	20		Sc
Calcium	10000	494000	490000	483000	0.000	0.000	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	1.33	20		

°Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1415555 ¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Company Name/Address:			Billing Infor	rmation:		1 der				Analysis / C	ontain	er / Preservative	Sec. 1	Chain of Custo	ody Page of	
Plum Point Services Co. 2739 SCR 623 Osceola, AR 72370	, LLC		P.O. Box	s Payable 567 AR 72370		Pres Chk								- Pa	7 ace Analytical®	
eport to: Dana Derrington			1	ld@ftn-assoc ajp@ftn-asso	.com;hlf@ftn- oc.com									Submitting a samp	Mount Juliet, TN 37122 le via this chain of custody vledgment and acceptance of the	
Project Description: Plum Point Energy Station		City/State Collected:	OSC-OLA	An	Please Ci PT MT C									Pace Terms and Co		
hone: 501-920-9642	Client Project R14590-24	#	<u> </u>	Lab Project	# R-PLUMPOINT		NoPres		HNO3					SDG # C2	-1415555	
ollected by (print): Milthal Clautos	Site/Facility II	D#		P.O. # 2020-00128			HDPE-N	VoPres	HDPE-HNO	HDPE					Acctnum: NAESOAR	
ollected by (signature):	Same D	ab MUST Be ay Five	Day	Quote #	esults Needed		125mlH	250mlHDPE-NoPres	250mIHI					Template: T Prelogin: P 8		
mmediately acked on Ice N Y	Two Da	y 10 D	ay (Rad Only)		1	No. of	S04 3	250ml	B, Ca				and the second	PB:	FedEX Ground	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS	Total					Remarks	Sample # (lab only)	
W-101	GNAS	GW		10/7/2	1 1055	3	X	x	Х						-01	
W-102		GW		10/6/21	1350	3	X	X	х						- 02	
W-103		GW		10/2/21	900	3	X	X	х						- 03	
W-108		GW		10/5/0	1 1245	3	X	X	х						-04	
W-113		GW		10/5/2	1 1125	3	X	X	х						- 03	
W-115		GW		10/5/2	1 1010	3	X	x	х						- 06	
W-116		GW		10/6/2	1 1010	3	X	Х	х						-07	
W-117		GW		10/6/2	1 1200	3	X	X	x						-08	
IW-118		GW		10/6/2	1050	3	X	X	x						- 09	
IW-119	V	GW		10/7/2	1 1000	3	x	X	x						-10	
Matrix: 5 - Soil AIR - Air F - Filter W - Groundwater B - Bioassay /W - WasteWater W - Drinking Water	marks:								17	pH		Temp Other	COC Seal COC Sign Bottles Correct	Sample Receipt 1 Present/Intac ned/Accurate: arrive intact bottles used:	DL: _NP \V _N VY _N NN NN	
DT - Other	mples returned UPS FedEx		Places	Tra	acking # 53	x	>4	-29	5	717	4	Ast.	VOA Zero	ent volume sent <u>If Applic</u> o Headspace:	ableYN	
elinquished by : (Signature)	Da	te: 10/7/	Time:		ceived by: (Signati	ure)				Trip Blank F	Receive	ed: Yes / No HCL / MeoH TBR		ation Correct/(een <0.5 mR/hr		
elinquished by : (Signature)	Da	te:	Time:	Re	ceived by: (Signati	ure)				Temp/24	101 201 111		If preserv	ation required by I	.ogin: Date/Time	
elinquished by : (Signature)	Da	te:	Time:	Re	ceived for lab by;	(Signit	ire)	-	175 STORES	Date:	2	Time: 900	Hold:			

Company Name/Address:			Billing Info	rmation:						Analysis	/ Cont	ainer / Pr	reservativ	/e	1. 16. 14. 14. 17. 21.6	Chain of C	ustody	Page of				
Plum Point Services Co 2739 SCR 623 Dsceola, AR 72370	o., LLC		P.O. Box	s Payable 567 AR 72370		Pres Chk											Pace	Analytical				
eport to: Dana Derrington				lld@ftn-assoc. ;ajp@ftn-asso			soc.com;hlf@ftn- assoc.com													Submitting a s	sample via thi	Juliet, TN 37122 s chain of custody at and acceptance of the
roject Description: Plum Point Energy Station		City/State Collected:) SCEWAR	An	Please C PT MT (Pace Terms an	nd Conditions					
Phone: 501-920-9642	Client Project R14590-24	:#	2	Lab Project	# R-PLUMPOINT		Pres		INO3							SDG #	L141	5555				
ollected by (print):	Site/Facility I	D #		P.O. # 2020-001	28		PE-No	oPres	DPE-H							Table #	NAES	OAR				
Collected by (signature)	Same D Next Da Two Da		Day	Quote # Date Re	esults Needed	No.	4 125mlHDPE-NoPres	50mIHDPE-NoPres	Ca 250mIHDPE-HNO							Template Prelogin: PM: 134 PB:	P8773					
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	cl, F, SO	TDS 250	Total B,							provide literation and	And and an owner of the owner own	EX Ground Sample # (lab only)				
MW-117 DUP	GMB	GW		10/6/2	1205	3	X	X	x									-11				
PA EB	V	GW		10/6/21		3	X	X	X									-12				
		GW				3	X	х	X							28.00						
		GW				3	X	X	X													
						1																
						-										1						
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	<u> </u>	1							pH Flow		Tem			COC Seal COC Sign Bottles	ample Receip Present/In hed/Accurate arrive inta bottles use	tact: _ : ct:	klist NP Y _ N _ NP _ N _ N				
DW - Drinking Water DT - Other	Samples returned UPS FedEx			Tra	acking #		ر مړي							"	Sufficie	ent volume s <u>If Appl</u> Headspace:	ent: icable	ZY _N Y N				
Relinquished by : (Signature)	Da	ote: 10/7/21	Time:		ceived by: (Signat	ure)				Trip Blar	nk Rece		es / No HCL / Me TBR	он	Preserva	ation Correcten <0.5 mR/	t/Check	ed:N				
Relinquished by : (Signature)			ceived by: (Signat					Temp;0		°C Bott	tles Receiv	ed:	If preservation required by Login: Date/Time									
Relinquished by : (Signature)	Da	ite:	Time:	Re	deived for lab by:	(Signati	ire)			Date:		Tim	ne: 20	>	Hold:			Condition: NCF / OK				

Pace Analytical® ANALYTICAL REPORT January 19, 2022

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1443406 12/16/2021 R14590-2496-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2496-001

SDG: L1443406

DATE/TIME: 01/19/22 19:35 PAGE: 1 of 15

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-116 L1443406-01	5
MW-116 DUP L1443406-02	6
MW-117 L1443406-03	7
EPA EB-1 L1443406-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

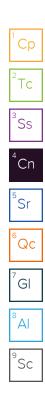
Ср Ss Cn Sr Qc GI A Sc

SDG: L1443406

SAMPLE SUMMARY

			Collected by	Collected date/time		
MW-116 L1443406-01 GW			Michael Clayton	12/14/21 12:58	12/16/21 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1796352	5	01/03/22 12:57	01/03/22 12:57	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1801153	1	01/13/22 09:31	01/18/22 23:01	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	e/time
MW-116 DUP L1443406-02 GW			Michael Clayton	12/14/21 12:55	12/16/21 09:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1796352	5	01/03/22 13:10	01/03/22 13:10	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1801153	1	01/13/22 09:31	01/18/22 23:04	KMG	Mt. Juliet, Ti
			Collected by	Collected date/time	Received date	e/time
MW-117 L1443406-03 GW			Michael Clayton	12/14/21 14:05	12/16/21 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1796352	1	12/30/21 15:08	12/30/21 15:08	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1801419	1	01/13/22 11:40	01/19/22 02:11	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received date	e/time
EPA EB-1 L1443406-04 GW			Michael Clayton	12/14/21 14:30	12/16/21 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1796352	1	12/30/21 15:21	12/30/21 15:21	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1801419	1	01/13/22 11:40	01/19/22 02:13	CCE	Mt. Juliet, TN

SDG: L1443406


DATE/TIME: 01/19/22 19:35

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1443406 DATE/TIME: 01/19/22 19:35

PAGE:

4 of 15

SAMPLE RESULTS - 01

Collected date/time: 12/14/21 12:58 Gravimetric Analysis by Method 2540 C-2011

	Res	ult	Qualifier	RDL	Dilution	Analys	is	Batch	
Analyte	ug/l			ug/l		date / t	ime		
Dissolved Solids	730	000		10000	1	12/20/2	2021 18:45	WG1792248	
Wet Chemistry	by Method 9	056A							
	Result	Qualifie	r MDL	F	DL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ι	g/l		date / time		
Sulfate	200000		2970	2	5000	5	01/03/2022 12:57	WG1796352	
Metals (ICP) by	Method 6010	ЭВ							
	Result	Qualifie	r MDL	F	DL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	L	g/l		date / time		
Calcium	190000		79.3	1	000	1	01/18/2022 23:01	WG1801153	

A

Calcium

SAMPLE RESULTS - 02

Gravimetric Analysis by Method 2540 C-2011

189000

79.3

1000

	Res	ult	Qualifier	RDL		Dilution	Analysi	is	Batch	
Analyte	ug/l			ug/l			date / t	ime		
Dissolved Solids	724	000		10000		1	12/20/2	2021 18:45	WG1792248	
Net Chemistry	y by Method 9	056A								
	Result	Qualifie	r MDL		RDL	I	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		ug/l			date / time		
Sulfate	200000		2970		25000	ļ	ō	01/03/2022 13:10	WG1796352	
Metals (ICP) by	y Method 6010	ЭВ								
	Result	Qualifie	MDL		RDL	I	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		ug/l			date / time		

1

01/18/2022 23:04

WG1801153

Gl

Â

SAMPLE RESULTS - 03

Collected date/time: 12/14/21 14:05

Analyte	ug/l		Qualifier	RDL	Dilution	Analys	15	Batch
	uy/i			ug/l		date / f	ime	
Dissolved Solids	3080	000		10000	1	12/20/2	2021 18:45	WG1792248
Wet Chemistry by	Method 9	056A						
	Result	Qualifier	MDL	RDL		Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l			date / time	
Sulfate	9310		594	500	0	1	12/30/2021 15:08	WG1796352
Metals (ICP) by Me	thod 6010	B						
	Result	Qualifier	MDL	RDL		Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l			date / time	
Calcium	82000		79.3	1000)	1	01/19/2022 02:11	WG1801419

AI

SAMPLE RESULTS - 04

Collected date/time: 12/14/21 14:30

	Res	sult	Qualifier	RDL		Dilution	Analys	is	Batch
Analyte	ug/l	l		ug/l			date / t	ime	
Dissolved Solids	ND			10000		1	12/20/2	2021 18:45	WG1792248
Wet Chemistry	v by Method S	056A							
	Result	Qualifier	MDL	F	RDL	[Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ι	ıg/l			date / time	
Sulfate	U		594	Ę	5000	1	1	12/30/2021 15:21	WG1796352
Metals (ICP) by	/ Method 6010	ЭВ							
	Result	Qualifier	MDL	F	RDL	[Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ι	ıg/l			date / time	
Calcium	U		79.3	1	000	4	1	01/19/2022 02:13	WG1801419

ΆI

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1443406-01,02,03,04

Method Blank (MB)

(MB) R3744484-1 12/20)/21 18:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1443377-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1443377-04 12/	20/21 18:45 • (DUF	P) R3744484-3	12/20/211	8:45		
	Original Resul	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1690000	1670000	1	1.67		5

L1444231-10 Original Sample (OS) • Duplicate (DUP)

L1444231-10 Orig	ginal Sample	e (OS) • Dup	olicate (l	OUP)			⁷ Gl
(OS) L1444231-10 12/2	0/21 18:45 • (DUP) R3744484-4	12/20/21 18	3:45			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	3730000	3810000	1	2.12		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3744484-2 12/2	20/21 18:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8400000	95.5	77.4-123	

DATE/TIME: 01/19/22 19:35

PAGE: 9 of 15 Тс

Ss

Cn

Sr

Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1443406-01,02,03,04

Method Blank (MB)

(MB) R3746963-1 12/	/30/21 09:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Sulfate	U		594	5000

Тс

Ss

Cn

Sr

L1442956-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1442956-03 12/30/2	21 12:22 • (DUP)	R3746963-3	12/30/21 1	2:35		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	40800	40700	1	0.216		15

L1443406-04 Original Sample (OS) • Duplicate (DUP)

L1443406-04 Orig	ginal Sample	e (OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1443406-04 12/30	0/21 15:21 • (DUP) R3746963-6	12/30/211	5:59			
	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	er Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Sulfate	U	U	1	0.000		15	°Sc

Laboratory Control Sample (LCS)

(LCS) R3746963-2 12/30/	/21 09:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	41200	103	80.0-120	

L1442956-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1442956-03 12/30/2	21 12:22 • (MS) F	3746963-4 12	2/30/21 12:48 •	(MSD) R37469	63-5 12/30/21 ⁻	13:26						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	40800	89300	91400	96.9	101	1	80.0-120			2.43	15

L1443406-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1443406-04 12/30/	21 15:21 • (MS) R	3746963-7 12/	30/21 16:12				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	U	51500	103	1	80.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Plum Point Services Co., LLC	R14590-2496-001	L1443406	01/19/22 19:35	10 of 15

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3751550-1 01/	/19/22 12:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	88.3	J	79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3751550-2 01/19	9/22 12:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9960	99.6	80.0-120	

L1443268-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1443268-13 01/18/2	2 23:17 • (MS) R	3751556-4 01/1	18/22 23:22 • (I	MSD) R3751556	6-5 01/18/22 23	3:24						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyta					0/	0/		0/			0/	0/
Analyte	ug/l	ug/l	ug/l	ug/I	70	%		70			70	70

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3751163-1 01/1	9/22 01:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3751163-2 01/19	/22 01:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	10300	103	80.0-120	

L1443692-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1443692-17 01/19/22 02:00 • (MS) R3751163-4 01/19/22 02:06 • (MSD) R3751163-5 01/19/22 02:08													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Calcium	10000	613	10800	10700	102	101	1	75.0-125			1.45	20	

DATE/TIME: 01/19/22 19:35

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

V

The sample concentration is too high to evaluate accurate spike recoveries.

Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

DATE/TIME: 01/19/22 19:35

Company Name/Address:				Billing Info	rmation:				-		A	nalvsis / C	ontain	er / Prese	rvative	-		Chain of Custody	Pageof	
e e			Accounts Payable P.O. Box 567 Osceola, AR 72370				Pres Chk	12	-				-				- Pace Analytical*			
Dana Derrington Project Description: City/State				Email To: dld@ftn-assoc.com;hlf@ftn- assoc.com;ajp@ftn-assoc.com														1 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes achroweldement and screentores of the		
				OSCEOLO AN Please Circ						Pres								constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard- terms.pdf		
Phone: 501-920-9642 Client Project # R14590-2496-001			Lab Project # NAESOAR-PLUMPOINT														sDG # (1443 406 D165			
Collected by (print): Collected by (signature) Collected by (signatu)#			P.O. # 2020-00128			ONH-	DPE-No	loPres							Acctnum: NAESOAR			
		ay Five L	ay 🦾	Quote #	ote #			250mlHDPE-HNO3	SULFATE 125miHDPE-NoPres	250mlHDPE-NoPres							Template: T200676 Prelogin: P892986 PM: 134 - Mark W. Beasley			
		10 Da	Jay (Rad Only) Date R			Results Needed			ATE 1.	250ml							PB: . Shipped Via:			
. Sample ID	Con	np/Grab	Matrix *	Depth	Dat	te	Time	Cntrs	CAICP	SULF	TDS 2							Remarks	Sample # (lab only)	
MW-116	GA	da	GW		12/1	4/21	1258	3	×	×	×								-01	
MW-116 DUP			GW		1		1255	3	X	$\left \chi \right $	X								- 92	
MW-117			GW				1405	3	X	X	X						1. 2	1-17-17 J.A. I	-0]	
EPA EB-1	1		GW		V		1430	3	X	X	X								-09	
			GW				1											-		
			GW					1			Property.					Media				
			GW															an a		
						3 														
					1.11													<u>A</u>		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks:						1			0		pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact: MP Y _N COC Signed/Accurate: M N Bottles arrive intact: M N Correct bottles used: M N Sufficient volume sent: M N					
OT - Other	Samples returned via: UPSFedExCourier					Trackin	ig #		531	\$9	181	3540			If Applicable VOA Zero Headspace: X			<u>e</u> yN		
Relinquished by : (Signature) Date: Production Date: Relinquished by : (Signature) Date: Date:		Time: Received by: (Signat			Received by: (Signatu					Trip Blank Received: Yes No DIA2 HCL/MeoH TBR			Preservation Correct/Checked: Y			cked: Y_N_N				
									Temp: °C Bottles Received:				If preservation required by Login: Date/Time							
Relinquished by : (Signature) Date:		ite:	Time	2:	Received for lab by:			gnature)			Date: Time: 6915				Hold:			Condition: NCF OK		

Alternate Source Demonstration for First Half 2022 Statistically Significant Results

3 Innwood Circle, Suite 220 • Little Rock, AR 72211 • (501) 225-7779 • Fax (501) 225-6738

TECHNICAL MEMORANDUM

DATE: September 27, 2022

- TO: Matt Gray Plum Point Services Company, LLC
- **FROM:** Dana Derrington, PE, PG FTN Associates, Ltd.
- SUBJECT: Alternate Source Demonstration for Statistically Significant Increases First Half of 2022 Monitoring Period, Plum Point Energy Station Landfill FTN No. R14590-2764-001

FTN Associates, Ltd. (FTN), has prepared this technical memorandum for the Plum Point Services Company, LLC (PPSC), coal combustion residuals (CCR) landfill, which is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals Rule, promulgated in Title 40 of the Code of Federal Regulations (40 CFR), Part 257. The landfill is also regulated by the Arkansas Pollution Control and Ecology Commission (APCEC) Regulation No. 22 and permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1.

FTN was contracted to sample groundwater and to statistically evaluate the data for the first half of 2022 monitoring period. Based on statistical evaluation of the data, three confirmed statistically significant increases (SSIs) over background concentrations were identified. Pursuant to \$257.94(e)(2), the landfill may demonstrate that a source other than the CCR unit caused an SSI over background levels for a constituent or that an SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. This memorandum, hereafter referred to as an alternate source demonstration (ASD), presents evidence that the confirmed SSIs are the result of off-site influence and/or natural fluctuations in groundwater quality.

1.0 BACKGROUND

FTN performed groundwater sampling for the first half 2022 semiannual groundwater monitoring period during April 2022. Sample collection, preservation, shipment, analytical procedures, chain-of-custody control, and data quality control for this sampling event followed protocol outlined in the landfill's groundwater sampling and analysis plan (GWSAP) (FTN 2017b). Statistical evaluation of the data set followed the most recent EPA guidance (EPA 2009) and the landfill's statistical analysis plan (SAP) (FTN 2017c). An intrawell prediction limit evaluation identified one previously confirmed

SSI for sulfate at MW-117 and two unverified¹ SSIs for calcium and total dissolved solids (TDS) at MW-117. A site map showing the locations of these wells relative to the CCR unit (cells 1 and 3) is included as Figure 1 (all figures are included in Attachment 1).

In accordance with the landfill's SAP and EPA guidance (EPA 2009), verification sampling was performed during June 2022, and intrawell prediction limit plots showing the results of verification sampling are included in Attachment 2. As shown in Table 1 (Attachment 3), concentrations for calcium, sulfate, and TDS at MW-117 remain above their respective intrawell prediction limits. Prior ASDs have been prepared for the confirmed SSIs for calcium (FTN 2019a, 2020), sulfate (FTN 2022), and TDS at MW-117 (FTN 2019a, 2019b, 2020, 2021, 2022) in accordance with §257.94(e)(2) and based on the statistical limits at the time of each prior reporting period. Each ASD successfully demonstrated that the SSIs were not the result of influence from the CCR unit.

Laboratory reports for the April and June sampling events are included in Attachment 4.

2.0 DISCUSSION

A review of the monitoring system with respect to onsite background wells, background groundwater quality, published literature, and landfill leachate quality was performed to determine if the confirmed SSIs for calcium, sulfate, and TDS at compliance well MW-117 were indicative of a release from the CCR unit. Findings from this review are discussed below.

2.1 Monitoring System Background Wells

As required by §257.91(c)(1), the groundwater monitoring network is required to contain a minimum of one monitoring well that is hydraulically upgradient of the CCR management area for the purpose of monitoring background water quality. However, there is not a hydraulically upgradient location at this facility because the direction of groundwater flow is seasonably variable. As allowed by §257.91(a)(1), a facility may utilize wells for background water quality that are not hydraulically upgradient of the CCR unit. For this reason, the facility incorporated monitoring wells MW-108, MW-113, and MW-115 (Figure 1) to monitor background water quality because those wells are positioned outside the potential zone of impact from the CCR unit. The rationale for this is based on the age of the landfill; the estimated maximum rate of groundwater flow; and the distance of MW-108, MW-113, and MW-115 from the CCR unit. Specifically:

- MW-108, MW-113, and MW-115 are located more than 2,300 ft from the eastern edge of cell 3;
- Groundwater at the landfill has historically exhibited a maximum flow rate of 40 ft/year; and
- The landfill became active during March 2010.

¹ The SSIs for calcium and TDS at MW-117 have also been previously confirmed during at least one prior monitoring period, but the SSIs were based on older prediction limits that are no longer applicable. Therefore, these SSIs are considered "unverified" with respect to their current prediction limits.

Using the information available above, a potential leachate plume would not be expected to have migrated more than 485 ft from the CCR unit as of the first half 2022 monitoring event. This estimate is conservative for the following reasons:

- 1. It assumes impact to groundwater occurred at the same time cell 1 was activated (March 2010) and does not account for travel time through the confining unit soils;
- 2. It assumes that groundwater flows in one direction; however, it is well-documented that groundwater flow at the landfill is multidirectional and reverses flow on a seasonal basis (FTN 2017a); and
- 3. It does not account for any physical or chemical properties of the constituents of concern that would cause them to travel at rates slower than groundwater (e.g., adsorption).

2.2 Comparison to Onsite Background Groundwater Quality

Period-of-record calcium, sulfate, and TDS data for compliance well MW-117 and background wells MW-108, MW-113, and MW-115 are plotted on the time-series graphs and box-and-whiskers diagrams included in Attachment 2. As is evident from these graphs and diagrams, concentrations for calcium, sulfate, and TDS at MW-117 are well within the range of values measured at the onsite background wells. This comparison provides supporting evidence that the currently measured values of calcium, sulfate, and TDS at MW-117 reflect natural fluctuations in groundwater quality.

2.3 Comparison to Published Groundwater Quality for the Aquifer

Each monitoring well is screened in the Mississippi River Valley alluvial aquifer, the uppermost aquifer in the vicinity of the landfill (FTN 2017b). The United States Geological Survey published a study of groundwater quality of the aquifer, specifically with respect to that of Holocene alluvium and Pleistocene valley train deposits, which are two of the major hydrogeologic units within the aquifer (Gonthier 2003). The landfill is located in Holocene alluvium, as shown on Figure 2. According to this study, wells screened in Holocene alluvium had a maximum measured calcium concentration of 130 mg/L, a maximum measured sulfate concentration of 120 mg/L, and a maximum measured TDS concentration of 728 mg/L. As shown in Table 1 (Attachment 3), published levels for the aquifer are well above those measured at MW-117 and at background wells MW-108, MW-113, and MW-115. This comparison provides supporting evidence that the currently measured values of calcium, sulfate, and TDS at MW-117 reflect natural fluctuations in groundwater quality.

2.4 Comparison to Landfill Leachate

The major ion composition of leachate and groundwater samples collected during April 2022 was evaluated using the Stiff and Piper diagrams included in Attachment 2. These data are collected on a semiannual basis for the landfill's APCEC Regulation No. 22 monitoring program, as required by permit no. 0303-S3N-R1, and are publicly available on the DEQ website². If groundwater has been

² <u>https://www.adeq.state.ar.us/sw/permits/facility_data.aspx</u>

impacted by landfill leachate, the relative proportions of major ions in groundwater will resemble those in leachate.

A review of the Stiff diagrams shows that the ionic distribution in groundwater at MW-117 is similar to the ionic distribution at background wells MW-108, MW-113, and MW-115. In contrast, the leachate diagram is distinctly different. Specifically, the leachate sample exhibits concentrations of sodium, potassium, and sulfate ions that are comparatively absent in groundwater. The Piper diagram also illustrates the dissimilarity of groundwater quality to leachate, with data for background wells MW-108, MW-113, and MW-115 and compliance well MW-117 clustered in the quadrant classified as calcium-bicarbonate-type water and positioned apart from the leachate data, which is located in the sodium-chloride quadrant. If leachate was mixing with groundwater at MW-117, the data for MW-117 would plot at an intermediate distance between the leachate data and the data for background wells MW-108, MW-113, and MW-115 on the Piper diagram.

The Stiff and Piper diagrams show that the relative proportions of major ions in groundwater at MW-117 are different than landfill leachate, providing a key line of evidence that the SSIs for calcium, sulfate, and TDS at MW-117 are not due to a release from the CCR unit.

3.0 CONCLUSIONS

In consideration of the information presented in this memorandum, FTN concludes that the SSIs for calcium, sulfate, and TDS at MW-117 are the result of off-site influence and/or natural fluctuations in groundwater quality.

This memorandum serves as the ASD prepared in accordance with \$257.94(e)(2) and supports the position that the confirmed SSIs identified for calcium, sulfate, and TDS at MW-117 are not due to a release from the CCR unit. Therefore, no further action is required and the landfill will remain in detection monitoring.

If you have questions or comments regarding this memorandum, please do not hesitate to call Dana Derrington, PE, PG, at (314) 786-5855 or Heather Ferguson at (501) 225-7779.

DLD/hlf

Attachments

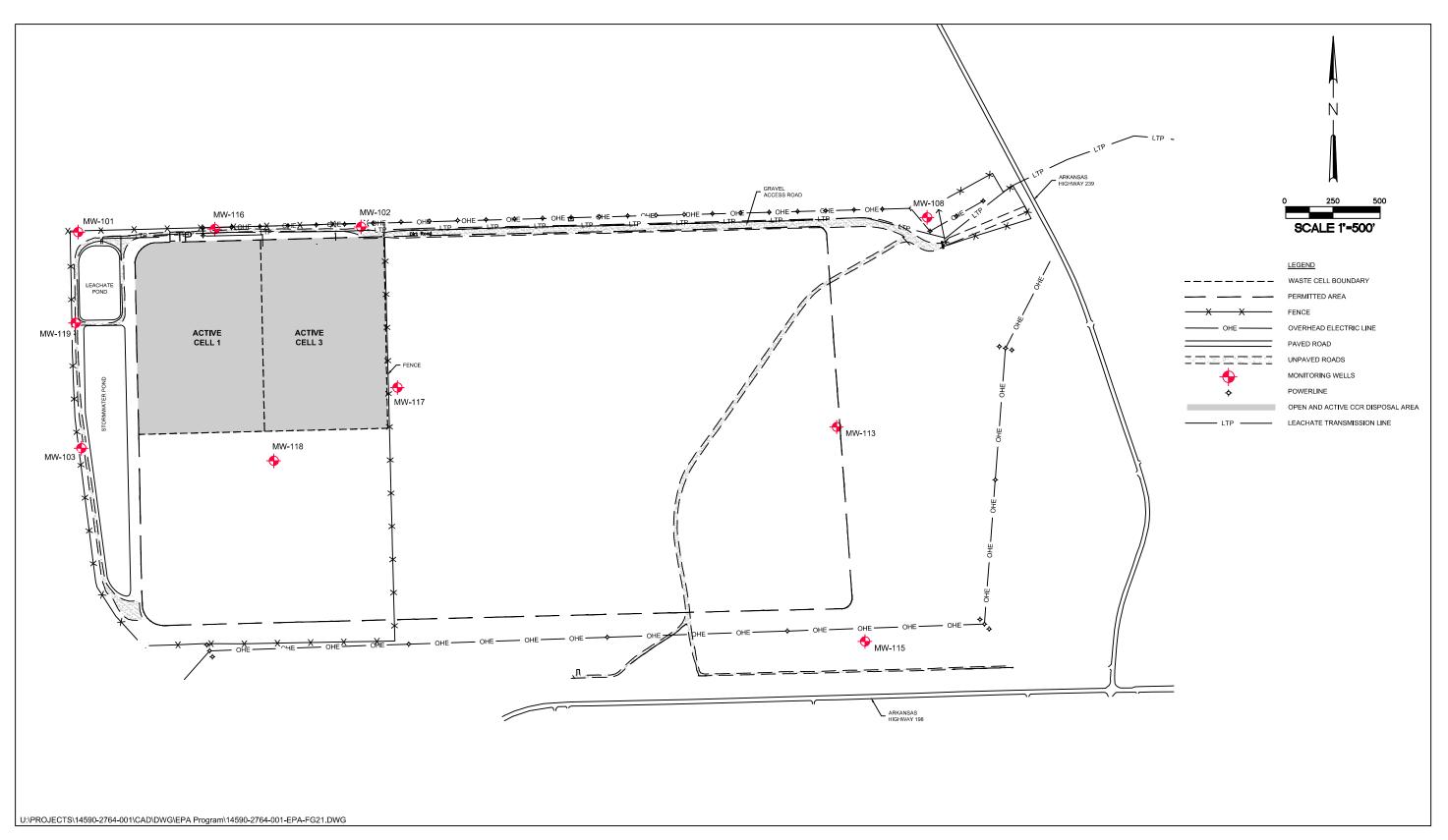
U:\WP_FILES\14590-2764-001\2022-09-27 FTN TO PPSC - ASD FOR 1H2022 EPA SSIS\2022-09-27 FTN TO PPES - EPA ASD FOR 1H2022 SSIS.DOCX

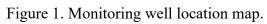

REFERENCES

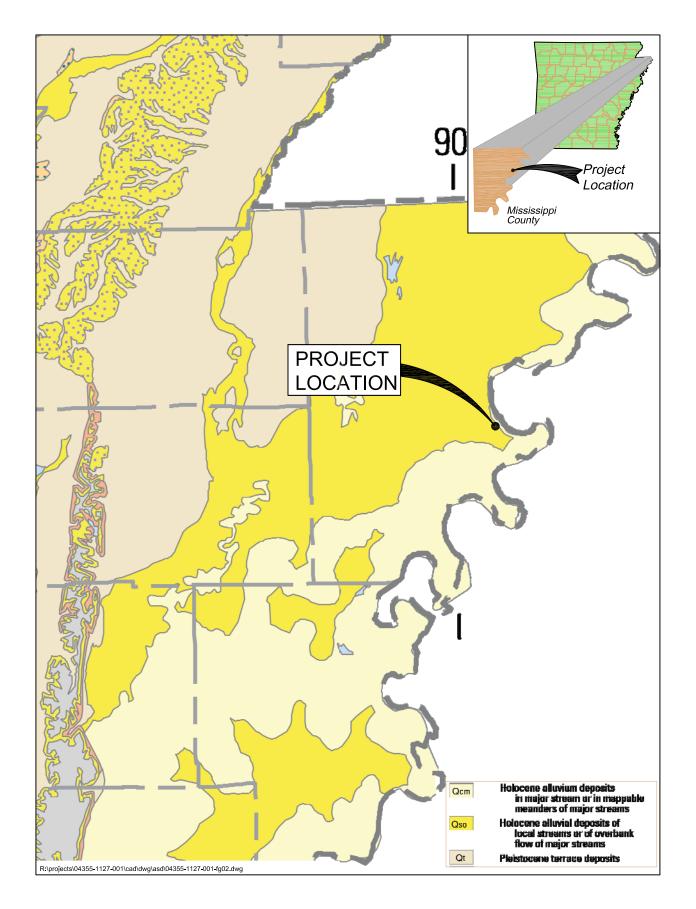
- EPA [US Environmental Protection Agency]. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: Office of Resource Conservation and Recovery, Program Implementation and Information Division, US Environmental Protection Agency. March 2009.
- FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd.
 - ——. 2017b. *Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- ———. 2017c. *Statistical Analysis Plan, Plum Point Energy Station Landfill.* Little Rock, AR: FTN Associates, Ltd.
- ———. 2019a. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2019 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 24, 2019.
- ———. 2019b. Alternate Source Demonstration for Statistically Significant Increases, Second Half of 2019 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. December 17, 2019.
 - —. 2020. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2020 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. August 3, 2020.
- ———. 2021. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2021 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 6, 2021.
 - 2022. Alternate Source Demonstration for Statistically Significant Increases, Second Half of 2021 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. April 4, 2022.
- Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 03-4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.

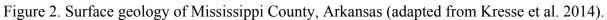
PROFESSIONAL ENGINEER'S CERTIFICATION

With this certification, I certify that I, as a professional engineer in the state of Arkansas, am a qualified professional engineer as defined in §257.53 of Title 40 of the Code of Federal Regulations (CFR), Part 257, that this technical memorandum has been prepared under my direction in accordance with generally accepted good engineering practices, that the findings are accurate to the best of my knowledge, and that the alternate source demonstration described herein meets the requirements of §257.94(e)(2) of 40 CFR Part 257.

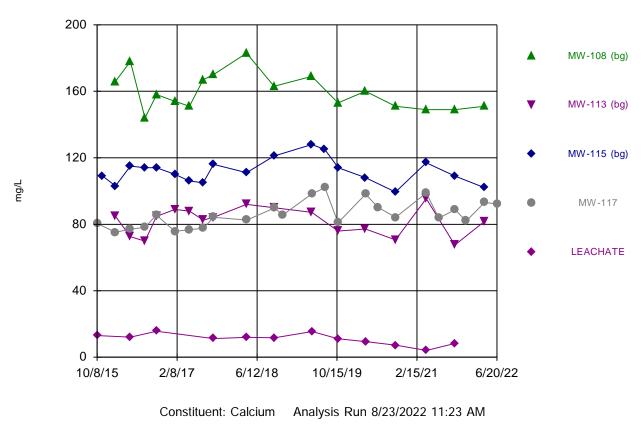

Dana L. Derrington, Arkansas PE #16372

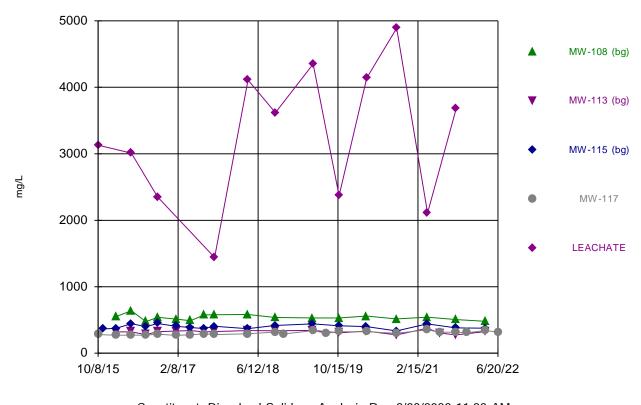

09/27/2022 Date




ATTACHMENT 1

Figures

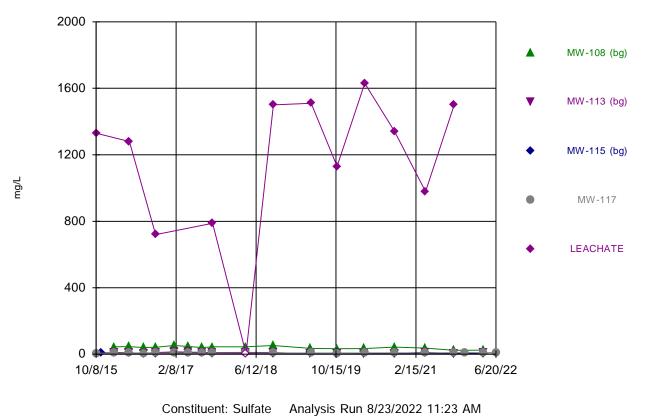




Statistical Plots

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

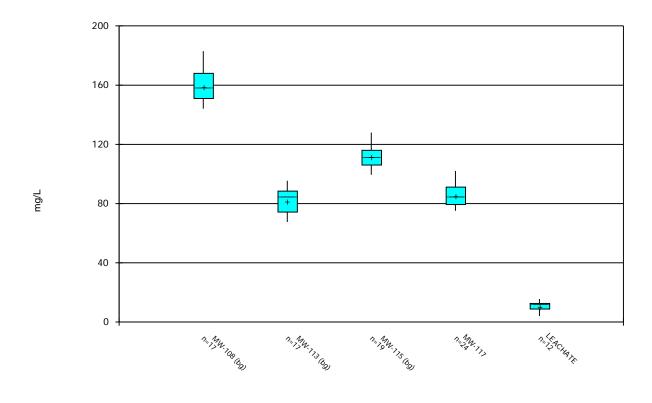
Time Series



 Constituent: Dissolved Solids
 Analysis Run 8/23/2022 11:23 AM

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

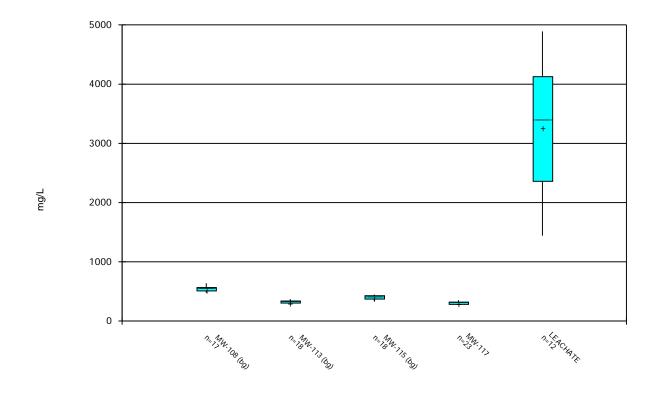


Plum Point Energy Station

Client: Plum Point Services Company, LLC

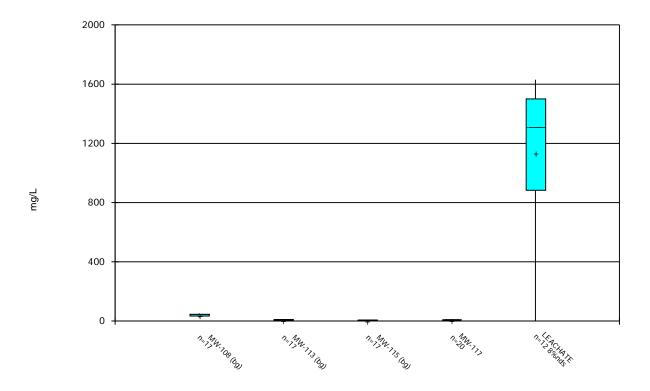
Data: PPES EPA CCR Rule Groundwater Database

Time Series

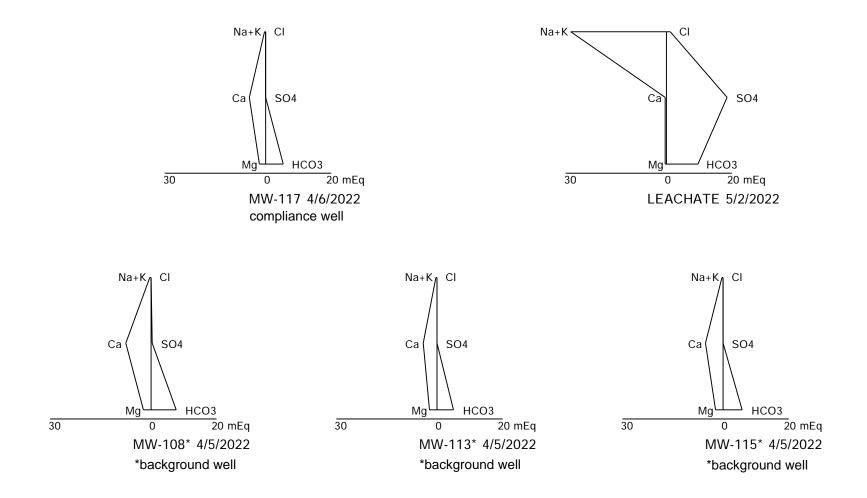


Constituent: Calcium Analysis Run 8/23/2022 11:25 AM

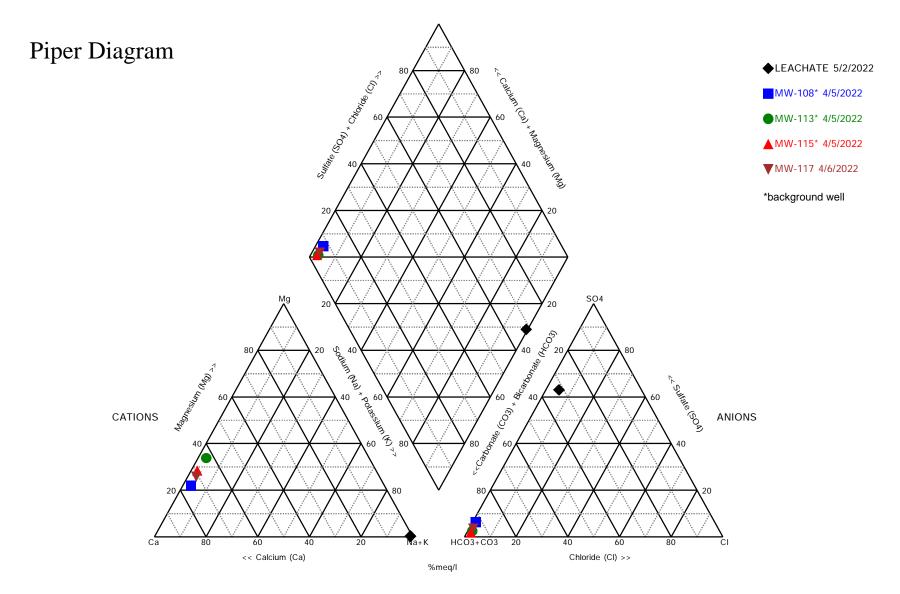
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.35 Sanitas software licensed to FTN Associates. UG

Box & Whiskers Plot


 Constituent: Dissolved Solids
 Analysis Run 8/23/2022 11:25 AM

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database


 Constituent: Sulfate
 Analysis Run 8/23/2022 11:25 AM

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Rule Groundwater Database

 Stiff Diagram
 Analysis Run 8/23/2022 11:26 AM

 Plum Point Energy Station
 Client: Plum Point Services Company, LLC
 Data: PPES EPA CCR Database (GWQ parameters)

Analysis Run 8/23/2022 11:26 AM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Summary Table

Well ID	Parameter	Prediction Limit (mg/L)	April 2022 Initial Result (mg/L)	June 2022 Verification Result (mg/L)	SSI Confirmed?	Maximum Background Level ^(a) (mg/L)	Maximum Published Level ^(b) (mg/L)
MW-117	Calcium	92.01	93.1	92.2	Yes	190 (MW-108, May 2014)	130
MW-117	Sulfate	8.048	9.03	9.63	Yes ^(c)	82.2 (MW-108, 9/2018)	120
MW-117	TDS	315.8	341	318	Yes	700 (MW-108, October 2016)	728

Table 1. Summary of statistically significant results and maximum background and published levels.

Notes:

a. Based on historical values at MW-108, MW-113, and MW-115.

b. From Gonthier 2003; value is for the Holocene subunit.

c. Previously confirmed SSI.

REFERENCES

Gonthier, G.J. 2003. *Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998* [Water-Resources Investigations Report 03-4202]. Jackson, MS: US Geological Survey, National Water-Quality Assessment Program.

Laboratory Reports

Pace Analytical® ANALYTICAL REPORT April 19, 2022

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1480403 04/08/2022 R14590-2794-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2794-001

SDG: L1480403

DATE/TIME: 04/19/22 13:56

PAGE: 1 of 26

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1480403-01	6
MW-102 L1480403-02	7
MW-103 L1480403-03	8
MW-108 L1480403-04	9
MW-113 L1480403-05	10
MW-115 L1480403-06	11
MW-116 L1480403-07	12
MW-117 L1480403-08	13
MW-118 L1480403-09	14
MW-119 L1480403-10	15
MW-117 DUP L1480403-11	16
EPA EB L1480403-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	20
Metals (ICP) by Method 6010B	22
GI: Glossary of Terms	23
Al: Accreditations & Locations	24
Sc: Sample Chain of Custody	25

SDG: L1480403 DATE/TIME: 04/19/22 13:56 **PAGE**: 2 of 26

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-101 L1480403-01 GW			Michael Clayton	04/07/22 13:40	04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 14:41	04/12/22 14:41	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:16	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1480403-02 GW			Michael Clayton	04/06/22 15:00	04/08/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 14:55	04/12/22 14:55	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:18	ZSA	Mt. Juliet, TN
MW-103 L1480403-03 GW			Collected by Michael Clayton	Collected date/time 04/07/22 11:50	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:09	04/12/22 15:09	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:21	ZSA	Mt. Juliet, TN
MW-108 L1480403-04 GW			Collected by Michael Clayton	Collected date/time 04/05/22 13:40	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
vietnou	Batch	Dilution	date/time	date/time	Andiyst	LUCATION
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:22	04/12/22 15:22	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 16:41	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-113 L1480403-05 GW			Michael Clayton	04/05/22 12:30	04/08/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:36	04/12/22 15:36	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:24	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-115 L1480403-06 GW			Michael Clayton	04/05/22 11:15	04/08/22 09	.30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847040	1	04/12/22 15:49	04/12/22 15:49	LBR	Mt. Juliet, TN

PROJECT: R14590-2794-001 SDG: L1480403 DATE/TIME: 04/19/22 13:56 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

MW-116 L1480403-07 GW			Collected by Michael Clayton	Collected date/time 04/06/22 16:20	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 16:03	04/12/22 16:03	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:29	ZSA	Mt. Juliet, TN
WW-117 L1480403-08 GW			Collected by Michael Clayton	Collected date/time 04/06/22 13:15	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 17:11	04/12/22 17:11	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:32	ZSA	Mt. Juliet, TN
WW-118 L1480403-09 GW			Collected by Michael Clayton	Collected date/time 04/07/22 10:55	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 17:52	04/12/22 17:52	LBR	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:40	ZSA	Mt. Juliet, TN
VW-119 L1480403-10 GW			Collected by Michael Clayton	Collected date/time 04/07/22 12:50	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:06	04/12/22 18:06	LBR	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:43	ZSA	Mt. Juliet, TN
MW-117 DUP L1480403-11 GW			Collected by Michael Clayton	Collected date/time 04/06/22 13:20	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:19	04/12/22 18:19	LBR	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1846822	1	04/15/22 01:33	04/18/22 17:45	ZSA	Mt. Juliet, TN
EPA EB L1480403-12 GW			Collected by Michael Clayton	Collected date/time 04/07/22 14:15	Received da 04/08/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1845847	1	04/09/22 11:28	04/09/22 13:23	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1847040	1	04/12/22 18:33	04/12/22 18:33	LBR	Mt. Juliet, TN

SDG: L1480403 DATE/TIME: 04/19/22 13:56

Ср

²Tc

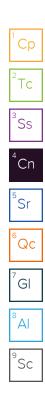
Ss

°Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1480403

DATE/TIME: 04/19/22 13:56 PAGE: 5 of 26

SAMPLE RESULTS - 01 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	388000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	848	J	379	1000	1	04/12/2022 14:41	WG1847040	CII
Fluoride	228		64.0	150	1	04/12/2022 14:41	WG1847040	5
Sulfate	7630		594	5000	1	04/12/2022 14:41	WG1847040	ဳSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Boron	59.7	J	20.0	200	1	04/18/2022 17:16	WG1846822	
Calcium	105000		79.3	1000	1	04/18/2022 17:16	WG1846822	

ʹQc

Gl

Â

SAMPLE RESULTS - 02 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cr	С
Analyte	ug/l		ug/l		date / time		2	7
Dissolved Solids	442000		10000	1	04/09/2022 13:23	WG1845847	Тс	2

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn
Chloride	1910		379	1000	1	04/12/2022 14:55	WG1847040	
Fluoride	142	J	64.0	150	1	04/12/2022 14:55	WG1847040	5
Sulfate	79000		594	5000	1	04/12/2022 14:55	WG1847040	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	83.8	J	20.0	200	1	04/18/2022 17:18	WG1846822
Calcium	110000		79.3	1000	1	04/18/2022 17:18	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 03 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— [Ср
Analyte	ug/l		ug/l		date / time		E	2
Dissolved Solids	278000		10000	1	04/09/2022 13:23	WG1845847		Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4
Chloride	926	J	379	1000	1	04/12/2022 15:09	WG1847040	
Fluoride	128	J	64.0	150	1	04/12/2022 15:09	WG1847040	5
Sulfate	7840		594	5000	1	04/12/2022 15:09	WG1847040	Šr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	55.2	J	20.0	200	1	04/18/2022 17:21	WG1846822
Calcium	71600		79.3	1000	1	04/18/2022 17:21	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 04 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	478000		10000	1	04/10/2022 16:48	WG1846171	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	1380		379	1000	1	04/12/2022 15:22	WG1847040		CII
Fluoride	138	J	64.0	150	1	04/12/2022 15:22	WG1847040		5
Sulfate	24000		594	5000	1	04/12/2022 15:22	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	132	J	20.0	200	1	04/18/2022 16:41	WG1846822
Calcium	151000	$\underline{\vee}$	79.3	1000	1	04/18/2022 16:41	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 05 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	326000		10000	1	04/09/2022 13:23	WG1845847	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		4	\sim_n
Chloride	1320		379	1000	1	04/12/2022 15:36	WG1847040		
Fluoride	84.6	J	64.0	150	1	04/12/2022 15:36	WG1847040	5	
Sulfate	5700		594	5000	1	04/12/2022 15:36	WG1847040	Ś	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	74.7	J	20.0	200	1	04/18/2022 17:24	WG1846822
Calcium	81800		79.3	1000	1	04/18/2022 17:24	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 06 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	374000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn	
Chloride	976	J	379	1000	1	04/12/2022 15:49	WG1847040		
Fluoride	165		64.0	150	1	04/12/2022 15:49	WG1847040	5	
Sulfate	4950	<u>J</u>	594	5000	1	04/12/2022 15:49	WG1847040	[°] Sr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	42.4	J	20.0	200	1	04/18/2022 17:26	WG1846822
Calcium	102000		79.3	1000	1	04/18/2022 17:26	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 07 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		 2
Dissolved Solids	338000		10000	1	04/10/2022 16:48	WG1846171	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	[
Analyte	ug/l		ug/l	ug/l		date / time		[4 Cn
Chloride	2640		379	1000	1	04/12/2022 16:03	WG1847040		CII
Fluoride	132	J	64.0	150	1	04/12/2022 16:03	WG1847040		5
Sulfate	55600		594	5000	1	04/12/2022 16:03	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	84.2	J	20.0	200	1	04/18/2022 17:29	WG1846822
Calcium	81400		79.3	1000	1	04/18/2022 17:29	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 08 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	341000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	875	J	379	1000	1	04/12/2022 17:11	WG1847040		CII	
Fluoride	91.6	J	64.0	150	1	04/12/2022 17:11	WG1847040		5	
Sulfate	9030		594	5000	1	04/12/2022 17:11	WG1847040		ဳSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	73.8	J	20.0	200	1	04/18/2022 17:32	WG1846822
Calcium	93100		79.3	1000	1	04/18/2022 17:32	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 09 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	320000		10000	1	04/09/2022 13:23	WG1845847	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn	
Chloride	926	J	379	1000	1	04/12/2022 17:52	WG1847040		CII	
Fluoride	129	J	64.0	150	1	04/12/2022 17:52	WG1847040		5	
Sulfate	17600		594	5000	1	04/12/2022 17:52	WG1847040		ဳSr	

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	57.3	J	20.0	200	1	04/18/2022 17:40	WG1846822
Calcium	85200		79.3	1000	1	04/18/2022 17:40	WG1846822

1

Qc

Gl

Â

SAMPLE RESULTS - 10 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	397000		10000	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn
Chloride	1820		379	1000	1	04/12/2022 18:06	WG1847040		Сп
Fluoride	195		64.0	150	1	04/12/2022 18:06	WG1847040		5
Sulfate	37100		594	5000	1	04/12/2022 18:06	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.0	J	20.0	200	1	04/18/2022 17:43	WG1846822
Calcium	107000		79.3	1000	1	04/18/2022 17:43	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 11 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	344000		10000	1	04/09/2022 13:23	WG1845847	ЪС

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn
Chloride	1060		379	1000	1	04/12/2022 18:19	WG1847040		CII
Fluoride	92.5	J	64.0	150	1	04/12/2022 18:19	WG1847040		5
Sulfate	9310		594	5000	1	04/12/2022 18:19	WG1847040		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.1	J	20.0	200	1	04/18/2022 17:45	WG1846822
Calcium	92900		79.3	1000	1	04/18/2022 17:45	WG1846822

Qc

Gl

Â

SAMPLE RESULTS - 12 L1480403

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	- Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	ND		10000	1	04/09/2022 13:23	WG1845847	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	U		379	1000	1	04/12/2022 18:33	WG1847040	CII
Fluoride	U		64.0	150	1	04/12/2022 18:33	WG1847040	5
Sulfate	U		594	5000	1	04/12/2022 18:33	WG1847040	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	04/18/2022 17:48	WG1846822
Calcium	U		79.3	1000	1	04/18/2022 17:48	WG1846822

Qc

Gl

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

L1480403-01,02,03,05,06,08,09,11,12

Method Blank (MB)

Method Blank (MB)						
(MB) R3780075-1 04	/09/22 13:23						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Dissolved Solids	U		10000	10000			

L1478933-01 Original Sample (OS) • Duplicate (DUP)

L1478933-01 Ori	ginal Sample	(OS) • Du	olicate (OUP)			
OS) L1478933-01 04/0	09/22 13:23 • (DU	P) R3780075-3	3 04/09/22	2 13:23			
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		Ж	
Dissolved Solids	573000	572000	1	0.175		5	

L1480461-03 Original Sample (OS) • Duplicate (DUP)

L1480461-03 Ori	iginal Sample	(OS) • Dup	plicate (DUP)			⁷ Gl
(OS) L1480461-03 04/	'09/22 13:23 • (DUP) R3780075-4	4 04/09/22	2 13:23			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	3790000	3730000	1	1.73		5	⁹ So

Laboratory Control Sample (LCS)

(LCS) R3780075-2 04	/09/22 13:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8710000	99.0	77.4-123	

DATE/TIME: 04/19/22 13:56

PAGE: 18 of 26 [°]Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480403-04,07,10

Method Blank (MB)

(MB) R3780062-1 04/10/	22 16:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1479870-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1479870-04 04	1/10/22 16:48 • (DUP) R3780062-3	3 04/10/22	16:48		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1620000	1660000	1	2.74		5

L1480590-05 Original Sample (OS) • Duplicate (DUP)

L1480590-05 O	riginal Sample	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1480590-05 04	4/10/22 16:48 • (DUF	P) R3780062-	4 04/10/22	2 16:48			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	976000	940000	1	3.76		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3780062-2 0	4/10/22 16:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8330000	94.7	77.4-123	

DATE/TIME: 04/19/22 13:56 Тс

Ss

Cn

Sr

Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1480403-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3780665-1 04/12/2	22 10:18					
	MB Result	MB Qualifier	MB MDL	MB RDL	2	
Analyte	ug/l		ug/l	ug/l	⁻Tc	
Chloride	U		379	1000		
Fluoride	U		64.0	150	³ Ss	
Sulfate	U		594	5000	00	

L1480389-01 Original Sample (OS) • Duplicate (DUP)

100	1 1 1 1 0 0 0 0 0 0 1	04/40/00 44.50	(DUP) R3780665	0 04/40	100 10.10
1()~	$M = 14 \times 03 \times 9_{-}01$	112/17/7711.68		$- \prec () \perp / / $	
100	J LI-00303 01	0-1/12/22 11.00 -	(000) 1000000	5 0 - 12/	22 12.12

()	· · · ·					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	121000	123000	1	1.36	E	15
Fluoride	224	307	1	31.1	<u>P1</u>	15
Sulfate	U	U	1	0.000		15

L1480403-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1480403-08 04/12/22 17:11 • (DUP) R3780665-6 04/12/22 17:25										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	ug/l	ug/l		%		%				
Chloride	875	861	1	1.65	J	15				
Fluoride	91.6	101	1	10.2	J	15				
Sulfate	9030	9220	1	2.13		15				

Laboratory Control Sample (LCS)

_CS) R3780665-2 04/12/22 10:32										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	ug/l	ug/l	%	%						
Chloride	40000	37700	94.1	80.0-120						
Fluoride	8000	7840	98.0	80.0-120						
Sulfate	40000	37800	94.5	80.0-120						

ACCOUNT:
Plum Point Services Co., LLC

PROJECT: R14590-2794-001

SDG: L1480403

DATE/TIME: 04/19/22 13:56

PAGE: 20 of 26 ⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1480403-01.02.03.04.05.06.07.08.09.10.11.12

L1480389-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480389-04 04/12/22 12:52 • (MS) R3780665-4 04/12/22 13:06 • (MSD) R3780665-5 04/12/22 13:20												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	13800	63800	62100	100	96.7	1	80.0-120			2.70	15
Fluoride	5000	75.7	4790	4650	94.3	91.5	1	80.0-120			3.01	15
Sulfate	50000	40900	89700	85100	97.7	88.5	1	80.0-120			5.25	15

L1480403-08 Original Sample (OS) • Matrix Spike (MS)

(OS) L1480403-08 04/12/2	22 17:11 • (MS) R	3780665-7 04	/12/22 17:38				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	875	48700	95.7	1	80.0-120	
Fluoride	5000	91.6	4770	93.5	1	80.0-120	
Sulfate	50000	9030	56500	95.0	1	80.0-120	

DATE/TIME: 04/19/22 13:56

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1480403-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Method Blau	K (IVIB)				
(MB) R3782457-1	04/18/22 16:36				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Boron	U		20.0	200	
Calcium	U		79.3	1000	

Laboratory Control Sample (LCS)

(LCS) R3782457-2 (04/18/22 16:38					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	969	96.9	80.0-120		
Calcium	10000	9940	99.4	80.0-120		

L1480403-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480403-04 04/18/22 16:41 • (MS) R3782457-4 04/18/22 16:46 • (MSD) R3782457-5 04/18/22 16:48												⁸ Al	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	9
Boron	1000	132	1110	1130	97.6	99.5	1	75.0-125			1.74	20	Sc
Calcium	10000	151000	157000	158000	66.7	72.0	1	75.0-125	V	$\underline{\vee}$	0.342	20	

ACCOUNT:
Plum Point Services Co., LLC

DATE/TIME: 04/19/22 13:56 ¹Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Quanner	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1480403 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1480403 PAGE: 24 of 26

Τс

Ss

Cn

Sr

Qc

Gl

AI

			Billing Infor	mation:					An	alvsis / Con	tainer / P	reservative	In the second	Chain of Cust	ody Page of
Company Name/Address: Plum Point Services C	, LLC		Accounts P.O. Box	s Payable 567		Pres Chk			22					(A	Pace OPLE ADVANCING SCIENCE
2739 SCR 623 Osceola, AR 72370				AR 72370	1										IJULIET, TN
Report to: Dana Derrington			Email To: d assoc.com	lld@ftn-assoc.com;ajp@ftn-assoc.com;	om									Submitting a sam constitutes ackno	d Mount Juliet, TN 37122 ple via this chain of custody weledgment and acceptance of the Conditions found at:
Project Description: Plum Point Energy Station		ILILV/State				Please Circle: PT MT CT ET								https://info.pace terms.pdf	labs.com/hubfs/pas-standard-
Phone: 501-920-9642	Client Project R14590-27			Lab Project # NAESOAR-P	UMPOINT		VoPres	s	EONH-					SDG #	32
Collected by (print):	Site/Facility I) #		P.O. # 2021-00048	3		HDPE-N	NoPre	IHDPE-					10000000000000000000000000000000000000	NAESOAK T175308
Collected by (signature)		ay 5 Da			ults Needed	No. of	SO4 125mlHDPE-NoPres	250mIHDPE-NoPres	I B, Ca 250mlH					Prelogin: PM: 134 - PB: BF	P914886 Mark W. Beasley 3/28/27 ia: FedEX Ground
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS	Total					Remar	ks Sample # (lab only)
MW-101	GRAB	GW		4/2/20	2 1340	3	X	X	X						- 01
MW-102		GW		4/6/22	1500	3	X	X	X						- 02
MW-103		GW		4/7/22	2 1150	3	X	X	X						- 0'
MW-108		GW		4/5/22	1340	/ 3	X	X	X						- 01
MW-113		GW		4/5/22	1230	3	X	X	X						6
MW-115		GW		4/5/22	1115	3	X	X	X						- 00
MW-116		GW		4/6/22	1620	3	X	X	X						= 00
MW-117		GW		4/6/20	1315	3	X	X	X			•			- 09
MW-118		GW		4/7/2	2 105	5 3	X	X	X						-10
MW-119	V	GW		4/7/20	2 1250	2 3	X	X	X					Sample Recei	nt Checklist
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		Cemp	COC Bott Corr	Seal Present/Ir Signed/Accurate les arrive inta ect bottles use icient volume s	itact: _NPN ict:N ict:N ict:N ict:N
DW - Drinking Water OT - Other	Samples returne UPSFedB	ExCouri			ceived by: (Sign	and a state of the	538	522	22	.4 Trip Blank	Received		VOA Pres RAD		Licable Y_N ht/Checked: Y_N
Relinquished by : (Signature) Relinquished by : (Signature)	(p	Date: 4/1/0 Date:	12 1	730	ceived by: (Sig					ters.A	to c	HCL / Meoh TBR Bottles Receive	+		by Login: Date/Time
Relinquished by : (Signature)		Date:	Tir	me: Re			hature)	A	'n	278	22	Time:	30 Hold		Condition: NCF / OK

Billing Information:									Ar	nalvsis / Container / Preservative					Chain of Custody Page 🕰 of 🕰				
Company Name/Address: Plum Point Services Co	., LLC		Accounts P.O. Box	Payable		Pres Chk									_ 4	Pace.			
2739 SCR 623 Osceola, AR 72370				AR 72370									200802			DILE ADVANCING SCIENCE			
Report to: Dana Derrington			Email To: dl assoc.com;	ld@ftn-assoc.com ajp@ftn-assoc.co	om										Submitting a sam constitutes ackno Pace Terms and 0	d Mount Juliet, TN 37122 ple via this chain of custody wledgment and acceptance of t conditions found at:	the		
Project Description: Plum Point Energy Station		City/State Collected:			Please Ci PT MT C			COLUMN T									https://info.pace terms.pdf	abs.com/hubfs/pas-standard-	0
Phone: 501-920-9642	Client Project R14590-27			Lab Project # NAESOAR-P	LUMPOINT		SO4 125mlHDPE-NoPres	s	E-HNO3						SDG # Table #	98090	2		
Collected by (print): MictAel Closton	Site/Facility ID)#		P.O. # 2021-00048	1		HDPE-P	250mIHDPE-NoPres	250mIHDPE						Acctnum: Template:	NAESOAR			
Collected by (signature):	Rush? (I	Lab MUST Be ay Five	e Notified) Day	Quote #			25mlt	HDPE-							Prelogin:	914886 Mark W, Beasley			
Immediately Packed on Ice N Y	Next Da Two Da Three D	y 10 0	iy (Rad Only) Day (Rad Only)	Date Resu	Its Needed	No. of		250mll	B, Ca						PB: Bt	3/28/20 a: FedEX Ground	2		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS	Total						Remar		1000000000		
MW-117 DUP	GRAD	GW		4/6/22	1320	3	X	X	X							-11			
EPA EB	1	GW		4/7/2:	2 14/5	3	X	X	X X							-12			
		GW				3	X	X	X					Tex.					
							Service of the servic												
														Province Province					
			1 (1 (day)								A DECEMBER								
	Remarks:			_								Temp			Sample Receip eal Present/In	ot Checklist	N		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks.									pH Flow		_ Other		COC S Bottl Corre	igned/Accurate es arrive inta ct bottles use cient volume s	t:	N N N N		
WW - WasteWater DW - Drinking Water OT - Other	Samples returne UPSFedE	d via: ix Couri	er		cking # 57		53	82:	222	24	nk Recei	ved: Ve	5/100	VOA Z Prese	If Appl ero Headspace: rvation Correc	icable t/Checked:	NNN		
Relinquished by : (Signature)	-	Date: 4/7/	5.	1730	ceived by: (Sigr					Прыа	6 No o	- н т	ICL / MeoH BR as Received:		ervation required	hr:1 by Login: Date/Time	e		
Relinquished by : (Signature)		Date:	Tin	ne: Re	ceived by: (Sign	nature)				Tetor	10-20	25	36						
Relinquished by : (Signature)		Date:	Tin	ne: Re		oy: (Sign	(ud	h	2018	122	Time	930	Hold:		Conditio NCF / E			

Pace Analytical® ANALYTICAL REPORT July 13, 2022

FTN Associates - Little Rock, AR

Sample Delivery Group: Samples Received: Project Number: Description:

L1507713 06/22/2022 R14590-2764-001 PPES DEQ Program

Report To:

Dana Derrington 3 Innwood Circle, Suite 220 Little Rock, AR 72211

Тс Ss Cn Śr ʹQc Gl AI Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: FTN Associates - Little Rock, AR

PROJECT: R14590-2764-001

SDG: L1507713

DATE/TIME: 07/13/22 17:25 PAGE: 1 of 13

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-117 L1507713-01	5
MW-117 DUP L1507713-02	6
EPA EB-1 L1507713-03	7
Qc: Quality Control Summary	8
Gravimetric Analysis by Method 2540 C-2011	8
Wet Chemistry by Method 9056A	9
Metals (ICP) by Method 6010B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L1507713

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time	
MW-117 L1507713-01 GW			Michael Clayton	06/20/22 13:50	06/22/22 09	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 21:36	07/09/22 21:36	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:34	CCE	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-117 DUP L1507713-02 GW			Michael Clayton	06/20/22 13:55	06/22/22 09	:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 21:48	07/09/22 21:48	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:42	CCE	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
EPA EB-1 L1507713-03 GW			Michael Clayton	06/20/22 14:10	06/22/22 09	2/22 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1885678	1	06/26/22 15:41	06/26/22 16:17	SJF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1892248	1	07/09/22 22:27	07/09/22 22:27	ELN	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1889898	1	07/05/22 16:52	07/07/22 11:15	CCE	Mt. Juliet, TN	

SDG: L1507713 Ср

Tc

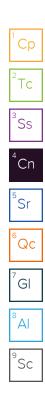
Ss

Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1507713

SAMPLE RESULTS - 01

Collected date/time: 06/20/22 13:50

	Re	esult	Qualifier	RDL	Dilution	Analys	is	Batch	
Analyte	u	g/l		ug/l		date / t	ime		
Dissolved Solids	31	18000		10000	1	06/26/	2022 16:17	WG1885678	
Wet Chemistry b	y Method	9056A							
	Result	Qualifie	r MDL	RDL		Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l			date / time		
Sulfate	9630		594	5000)	1	07/09/2022 21:36	WG1892248	
Metals (ICP) by N	Aethod 60	10B							
	Result	Qualifie	r MDL	RDL		Dilution	Analysis	Batch	
	ug/l		ug/l	ug/l			date / time		
Analyte			79.3	1000		1	07/07/2022 11:34	WG1889898	

AI

SAMPLE RESULTS - 02 L1507713

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011											
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср			
Analyte	ug/l		ug/l		date / time		-	2			
Dissolved Solids	314000		10000	1	06/26/2022 16:17	WG1885678		Tc			

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn	
Sulfate	9650		594	5000	1	07/09/2022 21:48	WG1892248	CII	

Metals (ICP) by Method 6010B

Metals (ICP)	by Method 6010	ЭВ						⁵Sr
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l	ug/l		date / time		[°] Qc
Calcium	92200		79.3	1000	1	07/07/2022 11:42	WG1889898	

GI

Â

SAMPLE RESULTS - 03 L1507713

Gravimetric Analysis by Method 2540 C-2011

	, ,							Cn l
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte		ug/l		ug/l		date / time		 2
Dissolved Solids		ND		10000	1	06/26/2022 16:17	WG1885678	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	y by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Sulfate	U		594	5000	1	07/09/2022 22:27	WG1892248	CII

Metals (ICP) by Method 6010B

Metals (ICP)	by Method 601	OB						⁵Sr
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	6
Analyte	ug/l		ug/l	ug/l		date / time		[°] Qc
Calcium	U		79.3	1000	1	07/07/2022 11:15	WG1889898	

GI

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blank	(MB)					
(MB) R3810200-1 06	6/26/22 16:17					
	MB Result	MB Qualifier	MB MDL	MB RDL	Г	2
Analyte	ug/l		ug/l	ug/l		Tc
Dissolved Solids	U		10000	10000		
						³ Ss

L1506994-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1506994-01 06	5/26/22 16:17 • (DUF	P) R3810200-3	06/26/22	2 16:17		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	730000	766000	1	4.81		5

L1506994-06 Original Sample (OS) • Duplicate (DUP)

L1506994-06 O	riginal Sample	(OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1506994-06 06	6/26/22 16:17 • (DUP) R3810200-4	1 06/26/2	2 16:17			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD nits	⁸ Al
Analyte	ug/l	ug/l		%			
Dissolved Solids	677000	703000	1	3.67			°S¢

Laboratory Control Sample (LCS)

(LCS) R3810200-2 06	/26/22 16:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	2440000	2440000	100	81.5-118	

DATE/TIME: 07/13/22 17:25 Cn

Sr

Qc

WG1892248

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blar	ik (MB)				
(MB) R3813831-1	07/09/22 10:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Sulfate	U		594	5000	

L1507324-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1507324-14 07/09/2	22 18:37 • (DUP)	R3813831-3 (37/09/22 1	8:50		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	43000	42500	5	1.10		15

⁺Cn

Sr

L1507713-02 Original Sample (OS) • Duplicate (DUP)

L1507713-02 O	riginal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1507713-02 07	7/09/22 21:48 • (DUF	P) R3813831-6	07/09/22	22:01		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	9650	9690	1	0.376		15

Laboratory Control Sample (LCS)

(LCS) R3813831-2 07/09/2	22 10:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	38800	97.1	80.0-120	

L1507324-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1507324-14 07/09/2	DS) L1507324-14 07/09/22 18:37 • (MS) R3813831-4 07/09/22 19:03 • (MSD) R3813831-5 07/09/22 19:15											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	43000	89800	90000	93.7	94.1	5	80.0-120			0.190	15

L1507713-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1507713-02 07/09/2	22 21:48 • (MS) F	R3813831-7 07	/09/22 22:14				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	9650	59600	99.9	1	80.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
FTN Associates - Little Rock, AR	R14590-2764-001	L1507713	07/13/22 17:25	9 of 13

WG1889898

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1507713-01,02,03

Method Blank (MB)

Method Blar	ik (IVIB)				1 Cp
(MB) R3812040-1	07/07/22 11:10				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Calcium	U		79.3	1000	
					³ Ss

Laboratory Control Sample (LCS)

(LCS) R3812040-2 07/0	LCS) R3812040-2 07/07/22 11:12								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Calcium	10000	10200	102	80.0-120					

L1507713-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1507713-03 07/07/2	OS) L1507713-03 07/07/22 11:15 • (MS) R3812040-4 07/07/22 11:21 • (MSD) R3812040-5 07/07/22 11:23											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	U	10100	10000	101	100	1	75.0-125			0.0844	20

Cn

Sr

[°]Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: R14590-2764-001 SDG: L1507713 DATE/TIME: 07/13/22 17:25 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1507713

ompany Name/Address:			Billing Infor	mation:		1		2. 2.	A	nalvsis /	Contair	er / Prese	rvative			_ Chain of Custody	Page of
TN Associates - Little Ro Innwood Circle, Suite 220 ittle Rock, AR 72211	ock, AR		3 Innwoo	3 Innwood Circle, Suite 220 Little Rock, AR 72211													ADVANCING SCIENCE
eport to:			Email To: dld@ftn-assoc.com				1.50								MT JL 12065 Lebanon Rd Mo	JLIET, TN	
Dana Derrington								18 ·	and the second							Submitting a sample via	
roject Description: PPES DEQ Program		City/State Collected:	scealo		Please Ci PT MT	TET										Pace Terms and Condit https://info.pacelabs.co terms.pdf	ions found at: om/hubfs/pas-standard-
hone: 479-571-3334	Client Project R14590-27			Lab Project # FTNLRAR-R	145902764		res	12 Section	03							SDG # LIF	507713
ollected by (print):	Site/Facility ID)#	5	P.O. #	A. A		E-NoP	es	PE-HN							Acctnum: FTN	B091
collected by (signature):		ab MUST Be ay Five I y 5 Day 10 Da		Quote # Date Resu	ults Needed	No.	125mlHDPE-NoPres	1L-HDPE NoPres	250mlHDPE-HNO3				نوبة الوبة		1.00	Template: T21 Prelogin: P93 PM: 134 - Mar	1316 2397
sample ID	Three D		Depth	Date	Time	of Cntrs	Sulfate 1	TDS 1L-H	Total Ca							PB: Shipped Via: Remarks	Sample # (lab only)
IW-117			T	1/201	120-1	1.	X St	X	ĭ ×					77			
	Grab	GW		6/20/2	a the second second second	3	-								an start Part of	1	-0
1W-117 DUP		GW		1 1	1355	3.	X	X	X				21	el.			-02
PA EB-1	V	GW	1.1.1	$ $ \vee	1410	3	X	X	X	104							-03
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	GW	N. TEASON IN			3	X	X	X						12.3	1	
					-	-		1.124									
								1.16.4							18		
		-														1 de la com	
	1					12	1										
						18		/							-		-
		I	1							1					Samo	le Receipt Ch	ecklist +
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:						È :			pH Flow		_ Temp_ _ Other		COC St Bottle Correc	eal Pr igned/ es arr ct bot	Accurate: ive intact: tles used:	
	mples returned UPS FedEx				king # 5	119	le	194	16	75-	3		~	VOA Ze	ero He	volume sent: <u>If Applicab</u> eadspace: on Correct/Che	Y N
Relinquished by : (Signature)	Di	ate: 6/211	22 Time	:	eived by: (Signa	ture)				Trip Blan	k Recei	ed: Yes HC TB	L/MeoH	RAD So	creen	<0.5 mR/hr:	ZY_N
Relinquished by : (Signature)	D	ate:	Time		eived by: (Signa	ture)			1.1.1.1	Temp: DRAT	123	C Bottles	Received:	If prese	ervatio	n required by Log	gin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Rec	eived for lab by	: (Signat	tupete	ar	Colorist Constitution of the	Date:	1-	Time:	mann	Hold:			Condition: NCF / OK

Alternate Source Demonstration for Second Half 2022 Statistically Significant Results

3 Innwood Circle, Suite 220 • Little Rock, AR 72211 • (501) 225-7779 • Fax (501) 225-6738

TECHNICAL MEMORANDUM

- **DATE:** January 25, 2023
- TO: Matt Gray Plum Point Services Company, LLC
- **FROM:** Dana Derrington, PE, PG FTN Associates, Ltd.
- SUBJECT: Alternate Source Demonstration for Statistically Significant Increases Second Half of 2022 Monitoring Period, Plum Point Energy Station Landfill FTN No. R14590-2764-001

FTN Associates, Ltd. (FTN), has prepared this technical memorandum for the Plum Point Services Company, LLC (PPSC), coal combustion residuals (CCR) landfill, which is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals Rule, promulgated in Title 40 of the Code of Federal Regulations (40 CFR), Part 257. The landfill is also regulated by the Arkansas Pollution Control and Ecology Commission (APCEC) Regulation No. 22 and permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1.

FTN was contracted to sample groundwater and to statistically evaluate the data for the second half of 2022 monitoring period. Based on statistical evaluation of the data, one confirmed statistically significant increase (SSI) over background concentrations was identified. Pursuant to §257.94(e)(2), the landfill may demonstrate that a source other than the CCR unit caused an SSI over background levels for a constituent or that an SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. This memorandum, hereafter referred to as an alternate source demonstration (ASD), presents evidence that the confirmed SSI is the result of off-site influence and/or natural fluctuations in groundwater quality.

1.0 BACKGROUND

FTN performed groundwater sampling for the second half 2022 semiannual groundwater monitoring period during October 2022. Sample collection, preservation, shipment, analytical procedures, chain-of-custody control, and data quality control for this sampling event followed protocol outlined in the landfill's groundwater sampling and analysis plan (GWSAP) (FTN 2017b). Statistical evaluation of the data set followed the most recent EPA guidance (EPA 2009) and the landfill's statistical analysis plan (SAP) (FTN 2017c). An intrawell prediction limit evaluation identified one previously confirmed SSI for sulfate at compliance well MW-117 and two unverified statistically significant decreases (SSDs) for pH at background well MW-108 and compliance well MW-119. A site map showing the

locations of these wells relative to the CCR unit (cells 1 and 3) is included as Figure 1 (all figures are included in Attachment 1). In accordance with the landfill's SAP and EPA guidance (EPA 2009), verification sampling was performed during December 2022; however, during the December 2022 event, one of the wells scheduled to be sampled (MW-108) had an insufficient quantity of water, and as such, the well was rescheduled for verification sampling during January 2023.

Intrawell prediction limit plots showing the results of verification sampling are included in Attachment 2. As shown in Table 1 (Attachment 3), measured sulfate at MW-117 remained above the intrawell prediction limit, and measured pH values at MW-108 and MW-119 were within their respective statistical limits. As discussed in the 2022 annual CCR report (FTN 2023), a number of pH values recorded during the October 2022 event were abnormally low compared to historical values. After review of the calibration forms and discussions with field personnel, it was found that the pH sensor on the multi-parameter probe had malfunctioned, causing lower than normal pH readings at MW-108 and MW-119. As such, these values were flagged with an "R" in the historical database to indicate that they will be excluded from statistical analyses due to equipment failure.

Prior ASDs have been prepared for the confirmed SSI for sulfate at MW-117 (FTN 2022b, 2022a) in accordance with §257.94(e)(2) and based on the statistical limits at the time of each prior reporting period. Each ASD successfully demonstrated that the SSI was not the result of influence from the CCR unit.

The laboratory report for the October sampling event is included in Attachment 4, along with field sheets for wells MW-108 and MW-119 from each sampling event.

2.0 DISCUSSION

A review of the monitoring system with respect to onsite background wells, background groundwater quality, published literature, and landfill leachate quality was performed to determine if the confirmed SSI for sulfate at compliance well MW-117 was indicative of a release from the CCR unit. Findings from this review are discussed below.

2.1 Monitoring System Background Wells

As required by §257.91(c)(1), the groundwater monitoring network is required to contain a minimum of one monitoring well that is hydraulically upgradient of the CCR management area for the purpose of monitoring background water quality. However, there is not a hydraulically upgradient location at this facility because the direction of groundwater flow is seasonably variable. As allowed by §257.91(a)(1), a facility may utilize wells for background water quality that are not hydraulically upgradient of the CCR unit. For this reason, the facility incorporated monitoring wells MW-108, MW-113, and MW-115 (Figure 1) to monitor background water quality because those wells are positioned outside the potential zone of impact from the CCR unit. The rationale for this is based on the age of the landfill; the estimated maximum rate of groundwater flow; and the distance of MW-108, MW-113, and MW-115 from the CCR unit. Specifically:

- MW-108, MW-113, and MW-115 are located more than 2,300 ft from the eastern edge of cell 3;
- Groundwater at the landfill has historically exhibited a maximum flow rate of 40 ft/year; and
- The landfill became active during March 2010.

Using the information available above, a potential leachate plume would not be expected to have migrated more than 505 ft from the CCR unit as of the second half 2022 monitoring event. This estimate is conservative for the following reasons:

- 1. It assumes impact to groundwater occurred at the same time cell 1 was activated (March 2010) and does not account for travel time through the confining unit soils;
- 2. It assumes that groundwater flows in one direction; however, it is well-documented that groundwater flow at the landfill is multidirectional and reverses flow on a seasonal basis (FTN 2017a); and
- 3. It does not account for any physical or chemical properties of the constituents of concern that would cause them to travel at rates slower than groundwater (e.g., adsorption).

2.2 Comparison to Onsite Background Groundwater Quality

Period-of-record sulfate data for compliance well MW-117 and background wells MW-108, MW-113, and MW-115 are plotted on the time-series graphs and box-and-whiskers diagrams included in Attachment 2. As is evident from these graphs and diagrams, concentrations of sulfate at MW-117 are well within the range of values measured at the onsite background wells. This comparison provides supporting evidence that the currently measured value for sulfate at MW-117 reflects natural fluctuations in groundwater quality.

2.3 Comparison to Published Groundwater Quality for the Aquifer

Each monitoring well is screened in the Mississippi River Valley alluvial aquifer, the uppermost aquifer in the vicinity of the landfill (FTN 2017b). The United States Geological Survey published a study of groundwater quality of the aquifer, specifically with respect to that of Holocene alluvium and Pleistocene valley train deposits, which are two of the major hydrogeologic units within the aquifer (Gonthier 2003). The landfill is located in Holocene alluvium, as shown on Figure 2. According to this study, wells screened in Holocene alluvium had a maximum measured sulfate concentration of 120 mg/L. As shown in Table 1 (Attachment 3), the published level of sulfate for the aquifer is well above the measured value for sulfate at MW-117 and at background wells MW-108, MW-113, and MW-115. This comparison provides supporting evidence that the currently measured value of sulfate at MW-117 reflects natural fluctuations in groundwater quality.

2.4 Comparison to Landfill Leachate

The major ion compositions of the leachate sample collected during December 2022 and groundwater samples collected during October 2022 were evaluated using the Stiff and Piper diagrams included in Attachment 2. These data are collected on a semiannual basis for the landfill's APCEC Regulation No. 22 monitoring program, as required by permit no. 0303-S3N-R1, and are publicly available on the DEQ website¹. If groundwater has been impacted by landfill leachate, the relative proportions of major ions in groundwater will resemble those in leachate.

A review of the Stiff diagrams shows that the ionic distribution in groundwater at MW-117 is similar to the ionic distribution at background wells MW-108, MW-113, and MW-115. In contrast, the leachate diagram is distinctly different. Specifically, the leachate sample exhibits concentrations of sodium, potassium, and sulfate ions that are comparatively absent in groundwater. The Piper diagram also illustrates the dissimilarity of groundwater quality to leachate, with data points for background wells MW-108, MW-108, MW-113, and MW-115 and compliance well MW-117 clustered in the quadrant classified as calcium-bicarbonate-type water and positioned apart from the leachate data point, which is located in the sodium-chloride quadrant. If leachate was mixing with groundwater at MW-117, the data point for MW-117 would plot at an intermediate distance between the leachate data point and the data points for background wells MW-108, MW-113, and MW-113, and MW-113, and MW-115 on the Piper diagram.

The Stiff and Piper diagrams show that the relative proportions of major ions in groundwater at MW-117 are different than landfill leachate, providing a key line of evidence that the SSI for sulfate at MW-117 is not due to a release from the CCR unit.

3.0 CONCLUSIONS

In consideration of the information presented in this memorandum, FTN concludes that the SSI for sulfate at MW-117 is the result of off-site influence and/or natural fluctuations in groundwater quality.

This memorandum serves as the ASD prepared in accordance with \$257.94(e)(2) and supports the position that the confirmed SSI for sulfate at MW-117 is not due to a release from the CCR unit. Therefore, no further action is required and the landfill will remain in detection monitoring.

If you have questions or comments regarding this memorandum, please do not hesitate to call Dana Derrington, PE, PG, at (314) 786-5855 or Heather Ferguson at (501) 225-7779.

DLD/hlf

Attachments

U:\WP_FILES\14590-2764-001\2023-01-25 FTN TO PPSC - ASD FOR 2H2022 EPA SSIS\2023-01-25 FTN TO PPES - EPA ASD FOR 2H2022 SSIS.DOCX

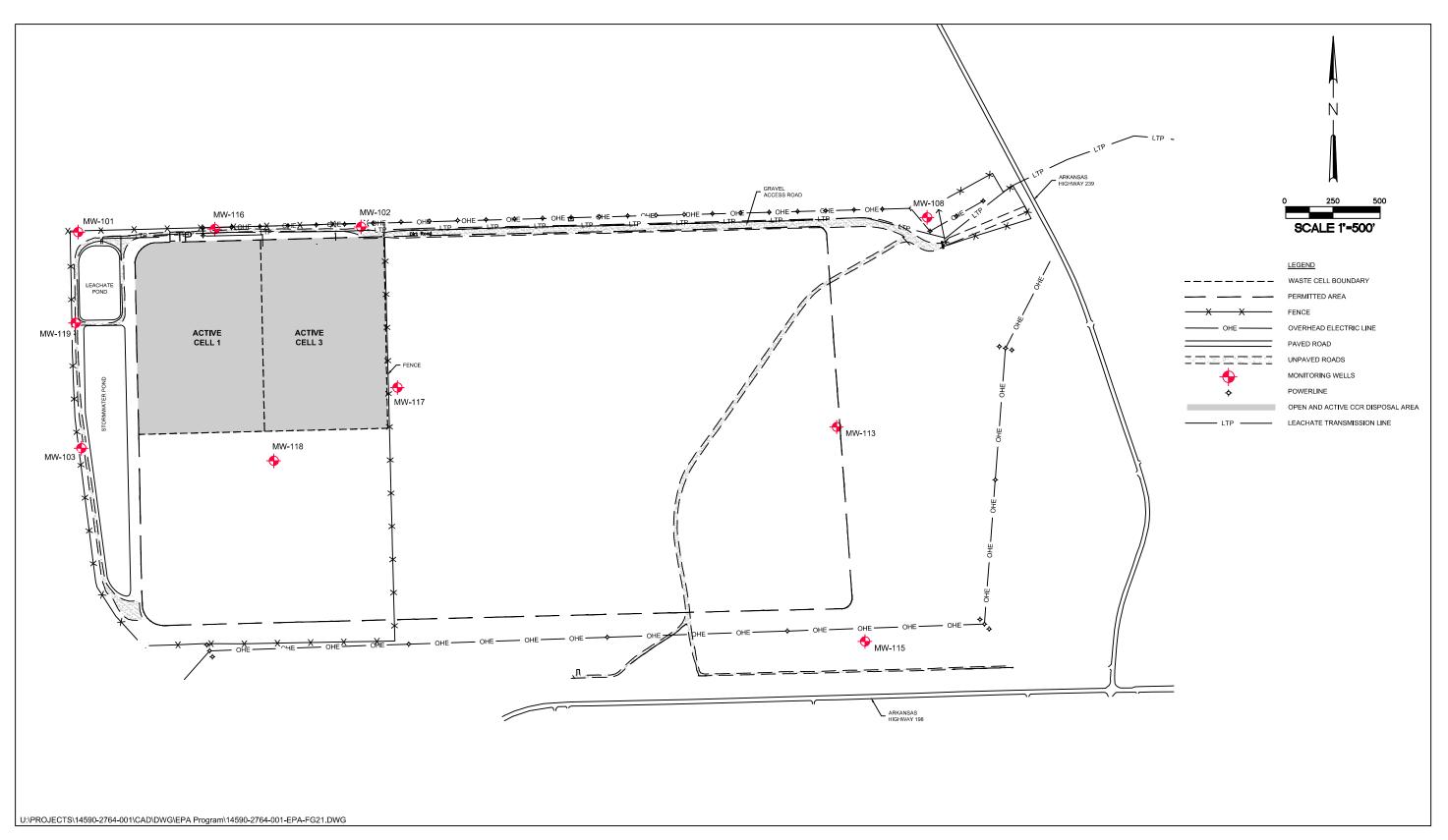
¹ <u>https://www.adeq.state.ar.us/sw/permits/facility_data.aspx</u>

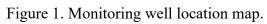
REFERENCES

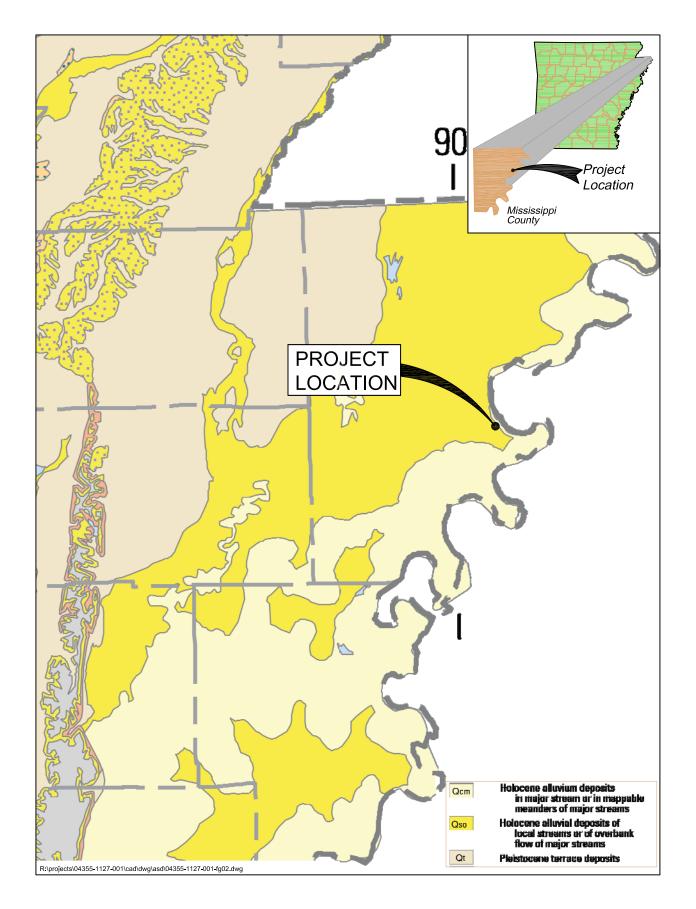
- EPA [US Environmental Protection Agency]. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: Office of Resource Conservation and Recovery, Program Implementation and Information Division, US Environmental Protection Agency. March 2009.
- FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd.
 - ——. 2017b. *Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill*. Little Rock, AR: FTN Associates, Ltd.
- ———. 2017c. *Statistical Analysis Plan, Plum Point Energy Station Landfill.* Little Rock, AR: FTN Associates, Ltd.
- - 2020. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2020 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. August 3, 2020.
- ———. 2021. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2021 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 6, 2021.
 - —. 2022a. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2022 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. September 27, 2022.
- ——. 2022b. Alternate Source Demonstration for Statistically Significant Increases, Second Half of 2021 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. April 4, 2022.
- ———. 2023. Groundwater Monitoring and Corrective Action, 2022 Annual Report, Plum Point Energy Station. Little Rock, AR: FTN Associates, Ltd. January 25, 2022.
- Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 03-4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.

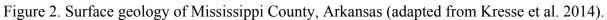
PROFESSIONAL ENGINEER'S CERTIFICATION

With this certification, I certify that I, as a professional engineer in the state of Arkansas, am a qualified professional engineer as defined in §257.53 of Title 40 of the Code of Federal Regulations (CFR), Part 257, that this technical memorandum has been prepared under my direction in accordance with generally accepted good engineering practices, that the findings are accurate to the best of my knowledge, and that the alternate source demonstration described herein meets the requirements of §257.94(e)(2) of 40 CFR Part 257.

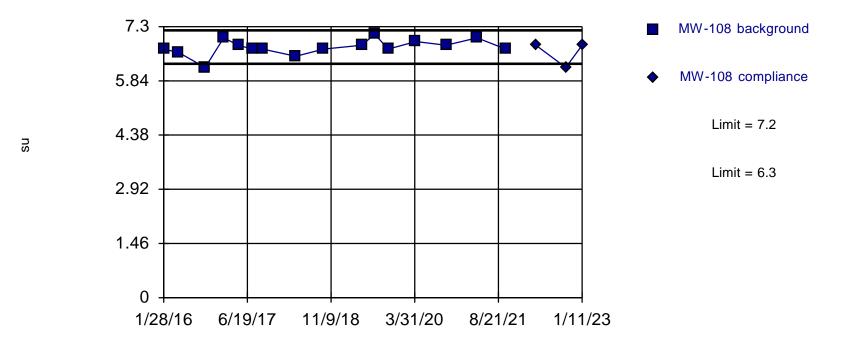

Dana L. Derrington, Arkansas PE #16372


01/25/2023 Date




ATTACHMENT 1

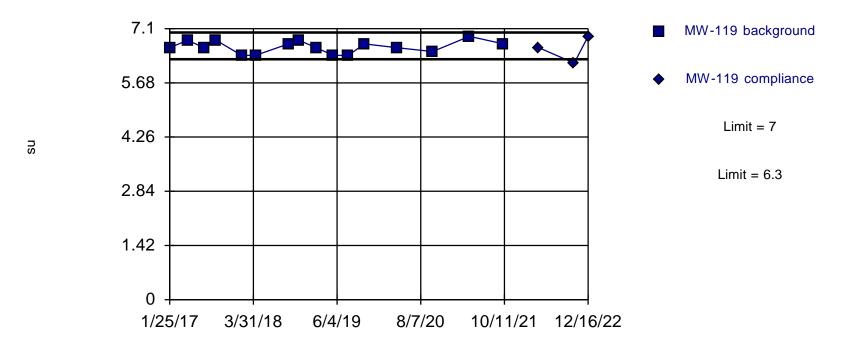
Figures


Statistical Plots

Sanitas[™] v.9.6.36 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit

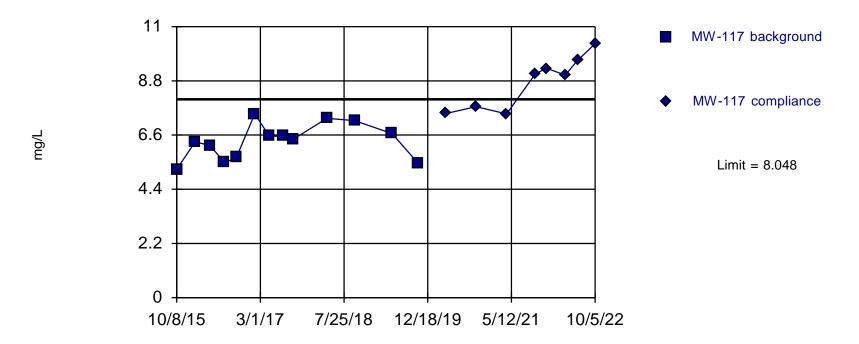


Background Data Summary: Mean=6.744, Std. Dev.=0.2128, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9177, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 1/12/2023 12:50 PM View: 2022-2H PL Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Within Limits

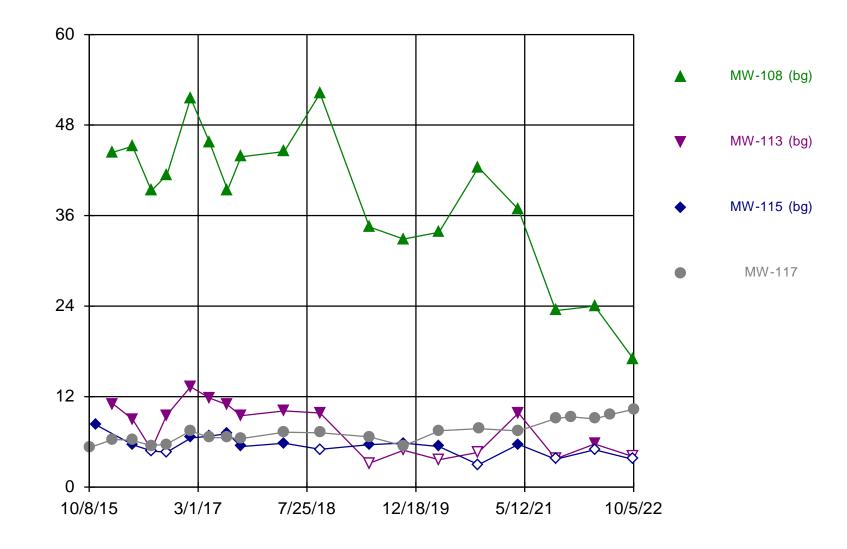

Prediction Limit

Intrawell Parametric

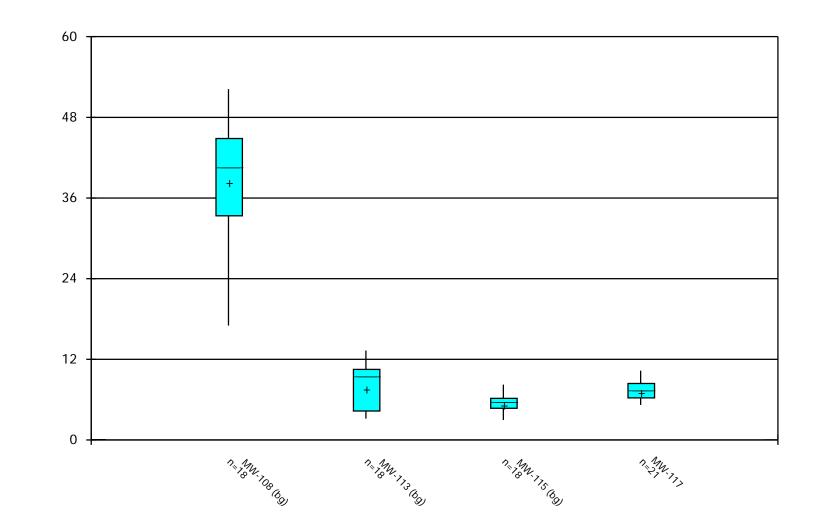

Background Data Summary: Mean=6.619, Std. Dev.=0.1642, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9133, critical = 0.844. Kappa = 2.212 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 1/12/2023 12:50 PM View: 2022-2H PL Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

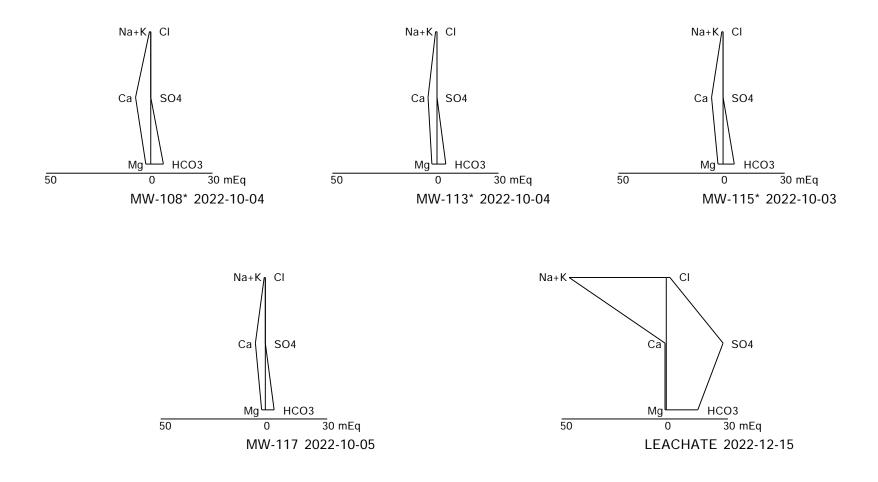
Prediction Limit

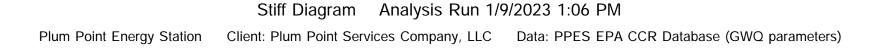


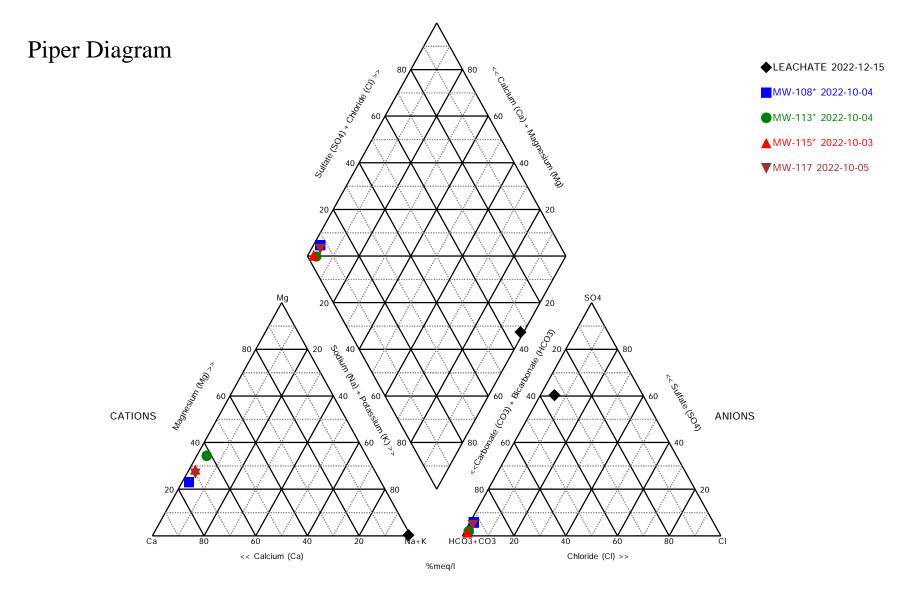
Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Sulfate Analysis Run 11/7/2022 11:28 AM View: 2022-2H PL Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Sanitas[™] v.9.6.36 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 1/12/2023 3:16 PM View: 2022-2H ASD Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


mg/L




Box & Whiskers Plot

Constituent: Sulfate Analysis Run 1/12/2023 3:16 PM View: 2022-2H ASD Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

mg/L

Analysis Run 1/9/2023 1:06 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Summary Table

Well ID	Parameter	Prediction	October 2022 Initial Result	December 2022/ January 2023 Verification Result	SSI Confirmed?	Minimum/Maximum Background Level ^(a)	Minimum/ Maximum Published Level ^(b)
MW-108	рН	6.3 su ^(c)	6.2 su ^(d)	6.8	No	6.0 su (MW-113, 10/2016)	6.6 su
MW-119	рН	6.3 su ^(c)	6.2 su ^(d)	6.9	No	6.0 su (MW-113, 10/2016)	6.6 su
MW-117	Sulfate	8.048 mg/L	10.3 mg/L	N/A ^(e)	Yes ^(e)	82.2 mg/L (MW-108, 9/2018)	120 mg/L

Table 1. Summary of statistically significant results and background and published levels.

Notes:

a. Based on historical values at MW-108, MW-113, and MW-115; pH value listed is minimum background value and sulfate value listed is maximum background value.

b. From Gonthier 2003; value is for the Holocene subunit. pH value listed is minimum published value and sulfate value listed is maximum published value.

c. Lower prediction limit.

d. Value is flagged with an "R" in the historical database to indicate that it is excluded from statistical analyses due to evidence of sampling, laboratory, or equipment error.

e. Previously confirmed SSI; no verification sample collected.

REFERENCES

Gonthier, G.J. 2003. *Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998* [Water-Resources Investigations Report 03-4202]. Jackson, MS: US Geological Survey, National Water-Quality Assessment Program.

ATTACHMENT 4

Laboratory Report and Applicable Field Data Sheets

Pace Analytical® ANALYTICAL REPORT

October 25, 2022

Plum Point Services Co., LLC

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1544281 10/07/2022 R14590-2764-001 Plum Point Energy Station

Report To:

Dana Derrington 2739 SCR 623 Osceola, AR 72370

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Plum Point Services Co., LLC

PROJECT: R14590-2764-001

SDG: L1544281

DATE/TIME: 10/25/22 17:05

PAGE: 1 of 28

Тс Ss Cn Śr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1544281-01	6
MW-102 L1544281-02	7
MW-103 L1544281-03	8
MW-108 L1544281-04	9
MW-113 L1544281-05	10
MW-115 L1544281-06	11
MW-116 L1544281-07	12
MW-117 L1544281-08	13
MW-118 L1544281-09	14
MW-119 L1544281-10	15
MW-117 DUP L1544281-11	16
EPA EB L1544281-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	22
Metals (ICP) by Method 6010B	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26
Sc: Sample Chain of Custody	27

SDG: L1544281 DATE/TIME: 10/25/22 17:05

PAGE: 2 of 28

SAMPLE SUMMARY

MW-101 L1544281-01 GW			Michael Clayton	10/05/22 11:43	10/07/22 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	5	
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1939483	1	10/08/22 19:49	10/08/22 19:49	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:33	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1544281-02 GW			Michael Clayton	10/05/22 14:28	10/07/22 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 20:43	10/08/22 20:43	GEB	Mt. Juliet, TN
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:36	ZSA	Mt. Juliet, T
			Collected by	Collected date/time	Pocoivod do	to/timo
MW-103 L1544281-03 GW			Collected by Michael Clayton	10/05/22 09:43	10/07/22 09:	
Aethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	-	
Gravimetric Analysis by Method 2540 C-2011	WG1940842	1	10/11/22 13:32	10/12/22 10:25	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 20:57	10/08/22 20:57	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:39	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WW-108 L1544281-04 GW			Michael Clayton	10/04/22 12:53	10/07/22 09:	30
Aethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
Provinctric Apolycic by Mathed 2E40.C 2011	WC104021E	1	date/time 10/11/22 09:17	date/time	DTM	Mt Juliat TN
Gravimetric Analysis by Method 2540 C-2011	WG1940315	1		10/11/22 14:33	DTM	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1939483 WG1943730	1 1	10/08/22 21:10 10/22/22 08:29	10/08/22 21:10 10/24/22 19:42	GEB ZSA	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1943730	I	10/22/22 08:29	10/24/22 19:42	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-113 L1544281-05 GW			Michael Clayton	10/04/22 10:23	10/07/22 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940315	1	10/11/22 09:17	10/11/22 14:33	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 21:23	10/08/22 21:23	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:45	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-115 L1544281-06 GW			Michael Clayton	10/03/22 14:48	10/07/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940110	1	10/10/22 10:49	10/10/22 12:50	DTM	Mt. Juliet, TM
Wet Chemistry by Method 9056A	WG1939483	1	10/08/22 22:04	10/08/22 22:04	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:48	ZSA	Mt. Juliet, TN

PROJECT: R14590-2764-001 SDG: L1544281 DATE/TIME: 10/25/22 17:05

Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

MW-116 L1544281-07 GW			Collected by Michael Clayton	Collected date/time 10/05/22 12:53	10/07/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:17	10/08/22 22:17	GEB	Mt. Juliet, TN
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:50	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-117 L1544281-08 GW			Michael Clayton	10/05/22 16:13	10/07/22 09:	30
<i>f</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:31	10/08/22 22:31	GEB	Mt. Juliet, TN
Ietals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:53	ZSA	Mt. Juliet, TN
MW-118 L1544281-09 GW			Collected by Michael Clayton	Collected date/time 10/05/22 08:33	Received da 10/07/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:44	10/08/22 22:44	GEB	Mt. Juliet, TN
tetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:56	ZSA	Mt. Juliet, TN
MW-119 L1544281-10 GW			Collected by Michael Clayton	Collected date/time 10/05/22 10:48	Received da 10/07/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 22:57	10/08/22 22:57	GEB	Mt. Juliet, TN
Aetals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 19:59	ZSA	Mt. Juliet, TN
MW-117 DUP L1544281-11 GW			Collected by Michael Clayton	Collected date/time 10/05/22 16:16	Received da 10/07/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1940849 WG1939483	1	10/08/22 23:11	10/08/22 23:11	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1933463 WG1943730	1	10/22/22 08:29	10/24/22 16:55	ZSA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EPA EB L1544281-12 GW			Michael Clayton	10/05/22 16:45	10/07/22 09:	30
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1940849	1	10/11/22 13:37	10/12/22 12:30	DTM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1939483	1	10/08/22 23:51	10/08/22 23:51	GEB	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1943730	1	10/22/22 08:29	10/24/22 16:58	ZSA	Mt. Juliet, TN

PROJECT: R14590-2764-001 SDG: L1544281 DATE/TIME: 10/25/22 17:05

Ср

²Tc

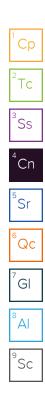
Ss

°Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1544281 DATE/TIME: 10/25/22 17:05 PAGE: 5 of 28

SAMPLE RESULTS - 01 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		р
Analyte	ug/l		ug/l		date / time		2	_
Dissolved Solids	388000		10000	1	10/12/2022 10:25	WG1940842	Tc	С

Wet Chemistry by Method 9056A

Wet Chemist	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			⁴ Cn		
Chloride	860	J	379	1000	1	10/08/2022 19:49	WG1939483				
Fluoride	258		64.0	150	1	10/08/2022 19:49	WG1939483		5		
Sulfate	7930		594	5000	1	10/08/2022 19:49	WG1939483		ँSr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	52.6	J	20.0	200	1	10/24/2022 19:33	WG1943730
Calcium	110000		79.3	1000	1	10/24/2022 19:33	WG1943730

DATE/TIME: 10/25/22 17:05 Qc

Gl

Â

SAMPLE RESULTS - 02 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	439000		10000	1	10/12/2022 10:25	WG1940842	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time			4 Cn		
Chloride	2450		379	1000	1	10/08/2022 20:43	WG1939483		CII		
Fluoride	174		64.0	150	1	10/08/2022 20:43	WG1939483		5		
Sulfate	93400		594	5000	1	10/08/2022 20:43	WG1939483		ँSr		

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	76.9	J	20.0	200	1	10/24/2022 19:36	WG1943730
Calcium	116000		79.3	1000	1	10/24/2022 19:36	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 03 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	285000		10000	1	10/12/2022 10:25	WG1940842	ЪС

Wet Chemistry by Method 9056A

Wet Chemistry	y by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	949	J	379	1000	1	10/08/2022 20:57	WG1939483	
Fluoride	188		64.0	150	1	10/08/2022 20:57	WG1939483	5
Sulfate	11800		594	5000	1	10/08/2022 20:57	WG1939483	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.7	J	20.0	200	1	10/24/2022 19:39	WG1943730
Calcium	79800		79.3	1000	1	10/24/2022 19:39	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 04 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	471000		10000	1	10/11/2022 14:33	WG1940315	Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	1240		379	1000	1	10/08/2022 21:10	WG1939483	CII
Fluoride	164		64.0	150	1	10/08/2022 21:10	WG1939483	5
Sulfate	17000		594	5000	1	10/08/2022 21:10	WG1939483	ဳSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	94.1	J	20.0	200	1	10/24/2022 19:42	WG1943730
Calcium	138000		79.3	1000	1	10/24/2022 19:42	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 05 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	291000		10000	1	10/11/2022 14:33	WG1940315	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	709	J	379	1000	1	10/08/2022 21:23	WG1939483	CII
Fluoride	82.8	J	64.0	150	1	10/08/2022 21:23	WG1939483	5
Sulfate	4020	J	594	5000	1	10/08/2022 21:23	WG1939483	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	74.7	J	20.0	200	1	10/24/2022 19:45	WG1943730
Calcium	73100		79.3	1000	1	10/24/2022 19:45	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 06 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	377000		10000	1	10/10/2022 12:50	WG1940110	¯Тс

Wet Chemistry by Method 9056A

Wet Chemistry	y by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	742	J	379	1000	1	10/08/2022 22:04	WG1939483	CII
Fluoride	208		64.0	150	1	10/08/2022 22:04	WG1939483	5
Sulfate	3680	J	594	5000	1	10/08/2022 22:04	WG1939483	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	37.0	J	20.0	200	1	10/24/2022 19:48	WG1943730
Calcium	109000		79.3	1000	1	10/24/2022 19:48	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 07 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	360000		10000	1	10/12/2022 12:30	WG1940849	¯Тс

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	4140		379	1000	1	10/08/2022 22:17	WG1939483	Cir
Fluoride	194		64.0	150	1	10/08/2022 22:17	WG1939483	5
Sulfate	57100		594	5000	1	10/08/2022 22:17	WG1939483	ဳSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	86.7	J	20.0	200	1	10/24/2022 19:50	WG1943730
Calcium	94100		79.3	1000	1	10/24/2022 19:50	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 08 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Cp
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	311000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	953	J	379	1000	1	10/08/2022 22:31	WG1939483	CII
Fluoride	122	J	64.0	150	1	10/08/2022 22:31	WG1939483	5
Sulfate	10300		594	5000	1	10/08/2022 22:31	WG1939483	ဳSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.5	J	20.0	200	1	10/24/2022 19:53	WG1943730
Calcium	88000		79.3	1000	1	10/24/2022 19:53	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 09 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	329000		10000	1	10/12/2022 12:30	<u>WG1940849</u>	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	y by Method 9	9056A						3	Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time		4	Cn
Chloride	1310		379	1000	1	10/08/2022 22:44	WG1939483		CII
Fluoride	124	J	64.0	150	1	10/08/2022 22:44	WG1939483	5	
Sulfate	19700		594	5000	1	10/08/2022 22:44	WG1939483		Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	62.8	J	20.0	200	1	10/24/2022 19:56	WG1943730
Calcium	87500		79.3	1000	1	10/24/2022 19:56	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 10 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	444000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	1980		379	1000	1	10/08/2022 22:57	WG1939483	CII
Fluoride	230		64.0	150	1	10/08/2022 22:57	WG1939483	5
Sulfate	46200		594	5000	1	10/08/2022 22:57	WG1939483	ँSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.1	J	20.0	200	1	10/24/2022 19:59	WG1943730
Calcium	119000		79.3	1000	1	10/24/2022 19:59	WG1943730

Qc

Gl

Â

SAMPLE RESULTS - 11 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	316000		10000	1	10/12/2022 12:30	WG1940849	Tc

Wet Chemistry by Method 9056A

Wet Chemist	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		⁴ Cn
Chloride	928	J	379	1000	1	10/08/2022 23:11	WG1939483	CII
Fluoride	98.1	J	64.0	150	1	10/08/2022 23:11	WG1939483	5
Sulfate	10200		594	5000	1	10/08/2022 23:11	WG1939483	Sr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	82.1	J	20.0	200	1	10/24/2022 16:55	WG1943730
Calcium	87200		79.3	1000	1	10/24/2022 16:55	WG1943730

1

Qc

Gl

Â

SAMPLE RESULTS - 12 L1544281

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Dissolved Solids	ND		10000	1	10/12/2022 12:30	<u>WG1940849</u>	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistr	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		4 Cn
Chloride	U		379	1000	1	10/08/2022 23:51	WG1939483	CII
Fluoride	U		64.0	150	1	10/08/2022 23:51	WG1939483	5
Sulfate	U		594	5000	1	10/08/2022 23:51	WG1939483	ँSr

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	10/24/2022 16:58	WG1943730
Calcium	U		79.3	1000	1	10/24/2022 16:58	WG1943730

1

Qc

Gl

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-06

Method Blank (MB)

(MB) R3848661-1 10/10	/22 12:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	11000		10000	10000

L1542785-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1542785-01 10/10/2	22 12:50 • (DUP) R3848661-3	10/10/22 1	2:50		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1360000	1970000	1	36.7	<u>J3</u>	5

L1542920-18 Original Sample (OS) • Duplicate (DUP)

L1542920-18 Or	riginal Sample	e (OS) • Du	plicate	(DUP)			 ⁷ Gl
(OS) L1542920-18 10/	/10/22 12:50 • (DUF	P) R3848661-4	10/10/22 1	2:50			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	JP RPD mits	⁸ Al
Analyte	ug/l	ug/l		%			
Dissolved Solids	2570000	2590000	1	0.775			⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3848661-2 10/	/10/22 12:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8310000	94.4	77.3-123	

Ср

Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-04,05

Method Blank (MB)

Method Blank	MB)				
(MB) R3849086-1 10	/11/22 14:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Dissolved Solids	U		10000	10000	

L1544143-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1544143-04 10	/11/22 14:33 • (DUP)	R3849086-3	10/11/22 14	33		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	350000	359000	1	2.54		5

L1544143-05 Original Sample (OS) • Duplicate (DUP)

L1544143-05 Orig	ginal Sample	(OS) • Dup	olicate (DUP)			⁷ Gl
(OS) L1544143-05 10/11/	(22 14:33 • (DUP) F	23849086-4	10/11/22 14:	33			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	115000	114000	1	0.873		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3849086-2 10)/11/22 14:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8760000	99.5	77.3-123	

DATE/TIME: 10/25/22 17:05 ⁺Cn

⁵Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-01,02,03

Method Blank (MB)

(MB) R3849079-1 10/12/	/22 10:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1544143-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1544143-03 10/1	12/22 10:25 • (DUP)) R3849079-3	10/12/22 1	0:25		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	286000	287000	1	0.349		5

L1544281-01 Original Sample (OS) • Duplicate (DUP)

L1544281-01 Orig	ginal Sample	(OS) • Dup	olicate (l	OUP)			⁷ Gl
(OS) L1544281-01 10/12	2/22 10:25 • (DUP)	R3849079-4	10/12/22 1	0:25			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	388000	404000	1	4.04		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3849079-2 10/	/12/22 10:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8820000	100	77.3-123	

DATE/TIME: 10/25/22 17:05

PAGE: 20 of 28 Тс

Ss

⁺Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1544281-07,08,09,10,11,12

Method Blank (MB)

(MB) R3849076-1 10/12	2/22 12:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1544392-01 Original Sample (OS) • Duplicate (DUP)

L1544392-01 Origii	hal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1544392-01 10/12/2	2 12:30 • (DUP)	R3849076-3	10/12/22 1	2:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	693000	657000	1	5.33	<u>J3</u>	5

L1544523-02 Original Sample (OS) • Duplicate (DUP)

L1544523-02 Or	iginal Sample	e (OS) • Du	plicate	(DUP)		
(OS) L1544523-02 10/1	12/22 12:30 • (DUP) R3849076-4	10/12/22	12:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1560000	1670000	1	7.12	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3849076-2 10/	LCS) R3849076-2 10/12/22 12:30										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Dissolved Solids	8800000	8880000	101	77.3-123							

Тс

Ss

[°]Qc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1544281-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3847297-1	10/08/22	19:23
-----------------	----------	-------

(MB) R384/29/-1 10/08/22	2 19:23				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Chloride	U		379	1000	
Fluoride	U		64.0	150	³ Ss
Sulfate	U		594	5000	00

L1544281-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1544281-01 10/08/2)S) L1544281-01 10/08/22 19:49 • (DUP) R3847297-3 10/08/22 20:03											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	ug/l	ug/l		%		%						
Chloride	860	799	1	7.33	J	15						
Fluoride	258	250	1	3.35		15						
Sulfate	7930	7790	1	1.74		15						

L1544281-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1544281-11 10/08/22 23:11 • (DUP) R3847297-6 10/08/22 23:24											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	ug/l	ug/l		%		%					
Chloride	928	897	1	3.46	J	15					
Fluoride	98.1	103	1	4.68	J	15					
Sulfate	10200	9810	1	3.74		15					

Laboratory Control Sample (LCS)

(LCS) R3847297-2 10/08	CS) R3847297-2 10/08/22 19:36										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	ug/l	ug/l	%	%							
Chloride	40000	38900	97.3	80.0-120							
Fluoride	8000	7810	97.6	80.0-120							
Sulfate	40000	39100	97.7	80.0-120							

ACCOUNT:									
Plum Point Services Co., LLC									

PROJECT: R14590-2764-001

SDG: L1544281

DATE/TIME: 10/25/22 17:05

PAGE: 22 of 28 °Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY <u>L1544281-01,02,03,04,05,06,07,08,09,10,11,12</u>

L1544281-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1544281-01 10/08/22 19:49 • (MS) R3847297-4 10/08/22 20:16 • (MSD) R3847297-5 10/08/22 20:30												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	860	49300	49100	97.0	96.4	1	80.0-120			0.580	15
Fluoride	5000	258	4990	4960	94.6	94.0	1	80.0-120			0.639	15
Sulfate	50000	7930	56400	55900	96.9	96.0	1	80.0-120			0.823	15

L1544281-11 Original Sample (OS) • Matrix Spike (MS)

(OS) L1544281-11 10/08/22	5) L1544281-11 10/08/22 23:11 • (MS) R3847297-7 10/08/22 23:38												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte	ug/l	ug/l	ug/l	%		%							
Chloride	50000	928	49400	97.0	1	80.0-120							
Fluoride	5000	98.1	4820	94.4	1	80.0-120							
Sulfate	50000	10200	58600	96.8	1	80.0-120							

DATE/TIME: 10/25/22 17:05

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1544281-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

MB) R3852425-1 1	10/24/22 18:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3852425-2	10/24/22 19:02					
	Spike Amour	nt LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Boron	1000	993	99.3	80.0-120		
Calcium	10000	9850	98.5	80.0-120		

L1544212-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1544212-03 10/24/22 19:05 • (MS) R3852425-4 10/24/22 19:10 • (MSD) R3852425-5 10/24/22 19:13														⁸ AI
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits														
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%		9
Boron	1000	92.2	1110	1100	101	101	1	75.0-125			0.519	20		SC
Calcium	10000	133000	142000	142000	96.8	92.1	1	75.0-125			0.332	20		

DATE/TIME: 10/25/22 17:05 °Cn

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

The associated batch QC was outside the established quality control range for precision.

JЗ

SDG: L1544281 AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1544281

Company Name/Address:			Billing Into	1	L				Analysis / C	ontainer	/ Preservative		(Chain of Custody	Page of 2		
Plum Point Services C	o., LLC		Account P.O. Box	s Payable 567		Pre				22						B	
2739 SCR 623			Osceola,	, AR 72370												PEOPLE	ADVANCING SCIENCE
Osceola, AR 72370																	
Report to:					com;hlf@ftn												JLIET, TN
Dana Derrington			assoc.com	;mcc@ftn-ass											S	12065 Lebanon Rd Mo Submitting a sample vi	a this chain of custody
Project Description: Plum Point Energy Station			ISCED.	LA AK		e Circle:	т								P	Pace Terms and Condit	ment and acceptance of the ions found at: om/hubfs/pas-standard-
Phone: 501-920-9642	Client Project			Lab Project	# R-PLUMPOI	NT		oPres		HNO3						SDG #	544281
Collected by (print):	Site/Facility	ID #		P.O. #				N-B	res	PE-I						J(087
Michal ClayTon								DPI	VoP	IQH					A	Acctnum: NA	SUAK
Collected by (signature):		(Lab MUST Be Day Five		Quote #				125mlHDPE-NoPres	DPE-N	250mlHDPE-HNO					01030	Template: T17 Prelogin: P95	
Immediately Packed on Ice N Y		y (Rad Only) ay (Rad Only)	Date R	esults Needed	No) .	S04 12	250mIHDPE-NoPres	B, Ca					P	PM: 134 - Mar PB:	k W. Beasley	
Sample ID	Matrix *	Depth	Date	Tim	e Cnt	trs	CI, F,	TDS 2	Total					S	Remarks	Sample # (lab only)	
WW-101	Gras	GW		10 15%	2 1/4	3 3	3	x	x	X							-01
WW-102		GW		10/51	100 C	4 :	3	x	X	X							-0)
WW-103		GW			laz 943		3	x	x	X							_ 03
WW-108		GW		1 1 1	122 125				X	X							04
WW-113		GW		10/4/	1		3	X X	x	x							- 05
MW-115		GW		10/3/0	1 1000		3	x	x	x							-06
MW-116		GW		10/5/-		1000	3	X	x	X							-07
MW-117		GW		10/5/0		2 3	3	x	X	X							-08
MW-118		GW		10/5/0		100	3	x	x	x					le che		-09
MW-119	V	GW		10/5/2		100 Con 100 C	3	x	X	X							-10'
Matrix:	Remarks:			1. 1. 0. 1.01				-								Receipt Ch	
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater										PH Flow		emp Other	COC Sig Bottles	gned/Ac s arriv	ent/Intact: curate: re intact: .es used:		
DW - Drinking Water DT - Other	d via: x Courier		т	racking #	IN	5	992	. 7	562	. 1629					lume sent: <u>If Applicabl</u> space:		
Relinquished by : (Signature) Date:			Time		eceived by: (Si						Trip Blank		Yes No	Preserv	vation	Correct/Che	cked:
Markel Cher 10/6/2			22. 1200										HCL / MeoH TBR		10011 10		_* _^
Relinquished by : (Signature)			Time: Received by: (Signatur								N.SA Temp: 1.9+0=1.	C	Bottles Received:	If preser	rvation re	equired by Log	in: Date/Time
Relinquished by : (Signature) Date:			Time	e: R	eceived for lab	by: (Sigr	natu H	ire). 1			Date:		Time: 093D	Hold:			Condition: NCF / OK
		-	11	pyn		1	1		-	- la dec		0 100	and manufactures				

Company Name/Address:			Billing Into	rmation:		1	-			Analysis /	Container /	Preservative			Chain of Custody	Page 2 of 2
Plum Point Services C 2739 SCR 623 Osceola, AR 72370	o., LLC		P.O. Box	s Payable 567 , AR 72370		Pres Chk			77.						PEOPLE	ACCO"
Report to: Dana Derrington				lld@ftn-assoc.co ;mcc@ftn-assoc											MT JU 12065 Lebanon Rd Mo Submitting a sample vi	
Project Description: Plum Point Energy Station		City/State Collected:	asc EO	la, an	Please Ci PT MT	F ET								P	Pace Terms and Condit	gment and acceptance of the ions found at: om/hubfs/pas-standard-
Phone: 501-920-9642	Client Project R14590-27	:#		Lab Project #	LUMPOINT		oPres		FONH	EONH				SDG #	544281	
Collected by (print):	Site/Facility I	D #		P.O. #			125mlHDPE-NoPres	loPres	250mlHDPE-HNO3						Table # Acctnum: NA I	SOAR
Michael Clayton Collected by (signature): Machine Color		Lab MUST Be		Quote #		l'ai st	SmiHi	DPE-N	Somlt					Т	Template: T17 Prelogin: P95	5308
Immediately Packed on Ice N Y	Next Da Two Da Three D	y 10 Da	(Rad Only) ay (Rad Only)	Date Resu	e Results Needed		S04 12	250mIHDPE-NoPres	B, Ca					P F	PM: 134 - Mar PB:	k W. Beasley
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CI, F,	TDS 2	Total					S	Remarks	Sample # (lab only)
WW-117 DUP	GRAG	GW		10/5/22	1616	3	X	x	X							-11
PA EB	GW		10/5/22		3	X	x	X							-12	
		GW		101010	1.0.2	3	x	X	X							
		GW				3	X	X	X							
'Matrix: iS - Soil AIR - Air F - Filter	Remarks:									pH _	Te	emp	COC Se	Sample	Receipt Ch ent/Intact:	ecklist MP Y N
3W - Groundwater B - Bioassay NW - WasteWater									Flow_		ther	COC S: Bottle Correc	igned/Ac es arriv ct bottl	curate: re intact: .es used:		
DW - Drinking Water DT - Other		Trac	king #										olume sent: If Applicab Ispace:	Le Y N		
Relinquished by : (Signature)	Time	Rece	ived by: (Signat	ture)				Trip Blank	Received:	Yes / No HCL / MeoH	Prese	rvation	Correct/Che .5 mR/hr:	ecked:		
Relinquished by : (Signature) Date:					ived by: (Signat	ture)				Temp: G	°C	TBR Nottles Received:	red: If preservation required by		equired by Log	in: Date/Time
Relinquished by : (Signature) Date:				: Rece	ived for lab by:	(Signati	ure)	-		Date: /	1/22	ime: 3930	Hold:			Condition: NCF / OK

Facility:Plum Point Energy StationSite ID:MW-108Sampler:Michael ClaytonProject Number:R14590-2764-001 (EPA)Date:10/4/2022Sampler Organization:FTN Associates, Ltd.																
Project Numb	ber: R	14590-	2764-00	I (EPA)	D	ate:	10/4/	2022		Sample	er Orga	nizati	on: FT	N As	ssociates,	, Ltd.
Site Descripti	on															
Weather:		clea	ır		Air	Temp. (°F):	65	Wind	d:		east-r	northeas	st at :	5 mph	
Site type:		_			Wel	l casing	materi	al:	Well	diamet	ter		incl	hes	2	Well
Monitorin			xtraction orehole	Well	I I I			-	Total	depth	from T	TOC	feet	+		locked?
Dewaterin			pring			Steel ron		-	Total	ucpui		00	ice	L		✓ Yes
Other:	-					Other:			TOC	below	/above	groun	d feet	t		No
Damages/rep	airs need	ed:						I								
Water Level	Data			n												
Measuring po Mark/notch				Wate	er level	meter:		otech/K ron Dip			Geot ✓ Solii		leck 20)' Othe	- 1 -1	
North rim c				Pre	-purge	Pre-	purge		ring		urge		After			
Other:					nitial		mation		ging		end		npling		Rema	arks
Date		m/dd/y	у		3/2022	_	/2022	_	/2022		4/2022	_	4/2022			
Time		-hour			054)50	_	07		147		216	_		
Depth to Wate					9.99	30	.11	30	.40	30	0.16	3	0.21			
Product/Thick	tness LI	NAPL/I	NAPL fe													
Field Data						F										
Field data met		L	Hach 2	1ሰበወ ጊ	rhidim		ump de Perist	escriptio	on:				Bailer o		ription: ble polye	thylono
✓ YSI MPS 5				entific T				ler []	dedica	ated /	porta	ble]			ole Tefloi	
Other:		<u> </u>	Other:					ersible				-			ole PVC	
Purge depth	feet		-	•	-	purging			-							
Casing vol.	gallons	<u> </u>		r		r			r	- T	T T	T.		nes)]	$^{2} \times 0.040$	
Time	24-hour	1055	1100	1105	1110	1115	1120	1125	11.	30 11	135 1	140	1145		Rema	rks
Purge vol.	gallons															
Purge rate	mL/min	90	90	90	50	50	50	50	5			50	50			
pН	su	6.5	5.5	5.4	5.7	5.9	6.0	6.0	6.			6.2	6.2			
Temp.	°C	22.5	21.8	21.0	21.3 674	21.3	21.2	21.2	21			21.3	21.5			
Conductivity DO	μS/cm	631 4.0	647 2.7	667 2.7	674 2.6	676 2.1	685 1.8	688 1.5	68			692 1.3	690 1.2			
ORP	mg/L mV	37.3	-1.9	-1.0	-7.7	-14.3	-19.4	_	_			1.5 28.8	-29.7			
Turbidity	NTU	6.4	7.5	4.0	3.5	2.8	-19.4 5.9	6.1	-22			20.0 4.4	3.0			
Color/tint		clear		clear	clear	clear	clear		-			elear	clear			
Odor		none		none	none	none	none	none				none	none			
<u> </u>	<u>I</u>					1.0110		none	10							
Sample Data	ole ID		Date	т	ime	# Conta	iners	# Filter	red				Remar	ks		
MW-108			10/4/202		253	# Conta 3		# Fille	icu				Nenial.	кð		
			10, 1/202			5		v								
)		I							I							
Sampler's Na	me (print):	Ν	Aichael	Claytor	1		Sample	er Sig	nature:		t	ranscrit	oed b	y HLF	

Facility:	Facility:Plum Point Energy StationSite ID:MW-119Sampler:Michael ClaytonProject Number:R14590-2764-001 (EPA)Date:10/5/2022Sampler Organization:FTN Associates, Ltd.																
Project Numb	ber:	R1459	0-2	764-001	(EPA	.) 1	Date:	10/5/	/2022		Sa	mpler Orgar	nization	: FTN	As	sociates,	, Ltd.
Site Descripti	on																
Weather:		c	lear			Air	Temp. (°F):	64	Win	nd:	S	outh-so	utheast	t at 1	2 mph	
Site type:	*** 11		1	•			ll casing	materi	al:	Wel	l di	ameter		inche	es	2	Well
Monitorir Productio			-	traction rehole	Well		PVC Steel		F	Tota	al de	epth from T	C	feet			locked?
Dewaterin				ring			Iron					-					✓ Yes
☐ Other:							Other:			TO	C be	elow/above g	ground	feet			□No
Damages/rep	airs neo	eded:															
Water Level																	
Measuring po			:		Wa	ter leve	l meter:		otech/K ron Dip)' Geote	ech/Kec	k 200' □O		r .	
North rim o					P	e-purge	Pre-	purge	Du	-	-1	Purge	Aft		the.	1.	
Other:						initial		matior		-		end	samp			Rema	arks
Date		mm/dc			10)/3/2022		/2022	10/5/		2	10/5/2022		5/2022			
Time		24-hou	ır			1212)05		31		1043	105				
Depth to Wate		feet				26.21	26	5.33	26	.33		26.33	26.3	33			
Product/Thick	et																
Field Data			-				r										
Field data mer				Hach 2	ר סחחו	urbidin		ump de Perist	escriptic	n:			Ba	ailer de		iption: le polyet	thylong
✓ YSI MPS 5				HF Scie						ledio	cate	d / portab	le]			le Tefloi	
Other:	1			Other:					ersible			<u> </u>				le PVC	
Purge depth	feet			-			purging		les 🖌								
Casing vol.	gallon	-				r	-	r			nteri	nal diameter	of well	(inche	$(s)]^2$		
Time	24-ho		10	1015	1020	1025	1030	1035	1040							Rema	rks
Purge vol.	gallon																
Purge rate	mL/m			280	280	200	200	200	200								
pН	su	6.		6.2	6.1	6.1	6.2	6.3	6.2								
Temp. Conductivity	°C µS/cm		0.0	19.3 563	19.5 562	19.6 557	19.6 554	19.6 550	19.5 549								
DO	mg/L		.6	1.2	1.2	1.1	1.0	0.9	0.9	_							
ORP	mV	5.		-7.1	-12.7			-26.5									
Turbidity	NTU	6		5.6	4.2	3.8	2.8	2.9	2.7								
Color/tint		cle		clear	clear			clear									
Odor		no	ne	none	none	none	none	none	none								
Sample Data	1											I					
	ole ID			Date		Time	# Conta	iners	# Filter	ed			Re	emarks	3		
MW-119			1	0/5/202		1048	3		0								
Sampler's Na	me (pri	int):		Ν	Iichae	l Clayto	n		Sample	er Si	gna	ture:	trar	nscribe	d b	y HLF	

Facility:																
Project Numl	Project Number: R14590-2496-001 (EPA) Date: 12/15/2022 Sampler Organization: FTN Associates, Ltd. ite Description Image: Comparison of the second se													, Ltd.		
Site Descripti	on															
Weather:		par	tly cl	oudy		Air	ſemp. (°F):	46	Wi	nd:	,	west-sou	thwest at	: 11 mph	
Site type:			_	•		Well	casing	materi	al:	We	ll dia	meter		inches	2	Well
Monitorir				xtraction V orehole	Vell	P	VC					pth from 7	200	feet	+	locked?
				oring			teel on			100	arue			leet		✓ Yes
Other:	C		_ 1	U U			ther:			ТО	C bel	low/above	ground	feet		No
Damages/rep	airs ne	eded:				1										
Water Level	Data															
Measuring po			on:		Water	r level	meter:						tech/Kec			
Mark/notch					Dro	D 11 F 222	Dro		ron Dij	pper- iring		✓ Soli Purge	nst 101 Aft	Oth	ier:	
Other:Ite pargeIte pargeDuringItegeIterOther:initialconfirmationpurgingendsamplingRemarks													arks			
Date		mm/	dd/yy	y	12/15	5/2022	12/15	5/2022		000	, 					
Time		24-h	our		09	937	12	200								
Depth to Water feet 31.85 31.88																
Product/Thick	iness	LNA	PL/D	NAPL feet	-											
Field Data																
Field data me			_	_				ump de		on:				ailer desc		
YSI ProPlu			Ļ	Hach 210 HF Scier				Perist		dadi	onto	1/ porta			ble polye	
Other:	50			Other:		noium			ersible		calce				ble PVC	11
Purge depth	feet			Well go	es dry d	uring p	ourging	: 🗆 Y	les 🗌	No						
Casing vol.	gallo	ıs		= [total	depth (f	eet) –	depth to	o water	(feet)]	×[i	ntern	al diamete	r of well	(inches)	$]^2 \times 0.040$	08
Time	24-hc	our													Rema	rks
Purge vol.	gallo	18														
Purge rate	mL/n	nin														
pН	su															
Temp.	°C															
Conductivity	µS/cr								_							
DO	mg/L															
ORP	mV															
Turbidity	NTU															
Color/tint									_							
Odor																
Sample Data																
Samp	ole ID			Date	Tiı	ne	# Conta	ainers	# Filte	ered			R	emarks		
MW-108			1	12/15/2022	2 12	00	0		0		Insu	ifficient wa	ater quan	tity to co	ollect sam	ple.
/																

Sampler's Name (print):	Michael Clayton	Sampler Signature:	transcribed by HLF
-------------------------	-----------------	--------------------	--------------------

Facility:Plum Point Energy StationSite ID:MW-119Sampler:Michael ClaytonProject Number:R14590-2496-001 (EPA)Date:12/16/2022Sampler Organization:FTN Associates, Ltd.															
Project Numb	ber: R	14590	2496-00	I (EPA)	D	Date:	12/16	/2022		Sar	mpler Orgar	nization	: FTN A	ssociates	, Ltd.
Site Descripti	on														
Weather:		clou	dy		Air	Temp. (°F):	42	Wir	nd:		wes	t at 14 m	nph	
Site type:		_			Wel	l casing	materi	al:	Wel	l dia	ameter		inches	2	Well
Monitorin			xtraction orehole	Well	I I I				Tota	ol de	pth from T		feet		locked?
Dewaterin			pring			Steel ron					-				₽Yes
☐ Other:						Other:			TOC	C be	low/above g	ground	feet		No
Damages/rep	airs need	ed:											•		
Water Level I															
Measuring por				Wate	er level	meter:		otech/k ron Dip			' ☐Geote ✓Solin	ech/Kec	k 200' Oth	or	
North rim c				Pre	-purge	Pre-	purge	^	ring	1	Purge	Aft		101.	
Other:					nitial		mation		ging		end	samp		Rema	arks
Date		m/dd/y	у		5/2022		5/2022	12/1		2 1	12/16/2022	12/16/	2022		
Time		4-hour			026		110	_	147						
Depth to Wate		et	DNAPL fe		9.10	29	0.00	29	9.00						
Product/Thick	iness L	NAPL/I	et												
Field Data		<u> </u>													
Field data met		6	Hach 2	100P Tr	ırbidim		ump de Perist	escription altic	on:			Ba	iler desc Disposa	cription: ble polye	thylene
YSI MPS 5		Ē	HF Sci	entific T			Bladd	ler [dedic	cated	d / 🗌 portab	le]	Disposa	ble Teflo	
Other:			Other:					ersible					Disposa	ble PVC	
Purge depth	feet		-	•	-	purging								_2	
Casing vol.	gallons			r	r	T	r	r		tern	al diameter	of well	(inches)		
Time	24-hour	1115	1120	1125	1130	1135	1140	1145	,					Rema	rks
Purge vol.	gallons mL/min	190	190	190	190	190	190	190							
Purge rate pH	mL/min su	6.9	6.9	6.9	6.9	6.9	6.9	6.9							
Temp.	°C	16.3		16.5	16.8	16.6	16.8	16.8	:						
Conductivity	μS/cm	582	588	585	594	598	596	595							
DO	' mg/L	1.1	0.9	0.8	0.7	0.9	0.8	0.9							
ORP	mV	162.	3 155.2	98.7	71.5	65.9	55.3	53.4							
Turbidity	NTU	3.7	2.7	2.5	2.9	2.5	2.1	2.1							
Color/tint		clear	clear	clear	clear	clear	clear	clear	r						
Odor		none	none	none	none	none	none	none	e						
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filte	red			R	emarks		
MW-119			12/16/20	22 1	145	0		0		No	sample bott	les colle	ected, jus	st field da	ta.
Q., 1. 2. 23		<u>)</u> .	-	<i>C</i> 1 7	<u> </u>			G. 1					., .	1 111 5	
Sampler's Na	me (print):	N	Aichael	Claytor	1		Sampl	er Sig	gnat	ture:	trai	nscribed	by HLF	

Facility:Plum Point Energy StationSite ID:MW-108Sampler:Michael ClaytonProject Number:R14590-2496-001 (EPA)Date:1/11/2023Sampler Organization: FTN Associates, Ltd.																	
Project Numb	ber:	R14590)-2496-	-001	(EPA)	Γ	Date:	1/11/	/2023		Sa	mpler Orga	nization	: FTN	Asso	ciates	, Ltd.
Site Descripti	on																
Weather:		clo	udy			Air	Temp. (°F):	67	Wi	nd:	S	outh-sou	thwest	at 14	mph	
Site type:		_				Wel	1 casing	materi	al:	We	ll di	ameter		inche	s	2	Well
Monitorir Productio			Extract Boreho		Vell		PVC						00	feet			locked?
Dewaterin			Spring				Steel		-	100	ai u	epth from T	00	leet			✓ Yes
Other:	C		1 0				Other:			TO	C be	elow/above	ground	feet			No
Damages/rep	airs nee	ded:													I		
Water Level 1	Data																
Measuring po	int desc	ription:			Wat	er level	meter:		otech/K)' ☐Geot ✔Solir	ech/Kec	k 200' ∏O	41		
North rim of		C			Pre	-purge	Pre-	purge	ron Dip	ring		Purge	Aft		iner:		
Other:						nitial		mation		ging		end	samp			Rema	arks
Date	1	mm/dd/	′уу		1/1	1/2023	1/11	/2023		1/2023		1/11/2023	1/11/2	2023			
Time	,	24-houi			1	255	13	350	14	423		1433	144	49			
Depth to Wate		feet			2	9.44	29	.44	29	0.64		29.69	29.	73			
Product/Thick	iness 1	LNAPL	/DNAPI	L feet													
Field Data																	
Field data me		-							escription	on:			Ba	ailer des			
						ırbidim `urbidir		Perist		dedi	cate	d / portal	ale 1	Dispos Dispos			thylene
Other:	50		Oth		itilie I	urolun			ersible	ucui	cute			Dispos			1
Purge depth	feet		We	ell go	es dry	during	purging	: 🗌 \	les 🗌]No			· ·				
Casing vol.	gallons	s	= [t	total	depth	(feet) –	depth to	water	(feet)]	× [iı	nteri	nal diameter	of well	(inches	$s)]^2 \times$	< 0.040)8
Time	24-hou	ır 140	0 14	05	1410	1415	1420	1425	1430)						Rema	rks
Purge vol.	gallons	s															
Purge rate	mL/mi				35	35	35	35	35								
pН	su	6.8			6.8	6.8	6.8	6.8	6.8	_							
Temp.	°C	19.		9.3	19.2	19.1	19.0	19.2	19.5	_							
Conductivity	μS/cm				732	727	711	709	708	_							
DO	mg/L	3.1			1.5	1.2	1.1	0.9	1.0	_							
ORP Truch i ditar	mV	95.			52.8	52.9	48.9 4.6	44.7	41.4								
Turbidity Color/tint	NTU	20. clea	_	.3	7.1 clear	5.1 clear	4.0 clear	3.4 clear									
Odor		nor			none	none	none	none									
L		non		inc	none	none	none	none	none	, 							
Sample Data			_														
	ole ID			ate		ime	# Conta	iners	# Filte	red	N	1 1 4		emarks		111	
MW-108			1/11/	/2023	1	435	0		0		INO	sample bot	ues colle	ected, ji	1St 116	ela dai	la.
)																	
Sampler's Na	me (pri	nt):		M	chael	Clayto	1		Sample	er Si	gna	ture:	trai	nscribed	d by]	HLF	