

PLUM POINT ENERGY STATION

GROUNDWATER MONITORING AND CORRECTIVE ACTION 2021 ANNUAL REPORT

PREPARED IN COMPLIANCE WITH THE
EPA FINAL RULE FOR THE DISPOSAL OF
COAL COMBUSTION RESIDUALS
TITLE 40 OF THE CODE OF FEDERAL REGULATIONS, PART 257

PLUM POINT ENERGY STATION

GROUNDWATER MONITORING AND CORRECTIVE ACTION 2021 ANNUAL REPORT

Prepared for

Plum Point Services Company, LLC Plum Point Energy Station 2732 South County Road 623 Osceola, AR 72370

Prepared by

FTN Associates, Ltd. 3 Innwood Circle, Suite 220 Little Rock, AR 72211

FTN No. R14590-2496-001

EXECUTIVE SUMMARY

Plum Point Services Company, LLC (PPSC), operates a landfill for the disposal of coal combustion residuals (CCRs) at the Plum Point Energy Station located near Osceola, Arkansas. The landfill is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals rule, promulgated at Title 40 of the Code of Federal Regulations (40 CFR), Part 257, and published on April 17, 2015. Landfills regulated by this rule are required to implement and maintain a groundwater monitoring program to determine if the CCR landfill is impacting groundwater quality at the facility's compliance boundary. For this purpose, semiannual groundwater detection monitoring is required. This report presents results from semiannual detection monitoring events performed during 2021 in accordance with 40 CFR Part 257.

The landfill's groundwater monitoring program uses a certified monitoring well network comprised of ten monitoring wells (FTN 2017a). Groundwater sample collection is performed in accordance with the landfill's groundwater sampling and analysis plan (FTN 2017b). Data collected from this program are evaluated in accordance with the landfill's certified statistical analysis plan (FTN 2017c).

FTN Associates, Ltd. (FTN), was contracted to sample groundwater and statistically evaluate the data from the 2021 semiannual monitoring events. Major conclusions from the evaluations include the following:

- 1. Detection monitoring was performed during April and October 2021 for the first and second half of 2021 monitoring periods, respectively.
- 2. The direction of groundwater flow varied between the first and second half monitoring events. Water levels gauged during April 2021 indicate groundwater flow was generally toward the southwest across the active landfill area. Water levels gauged during October 2021 indicate groundwater flow was generally toward the northeast across the active landfill area.
- 3. Of the parameters evaluated, only fluoride has an EPA maximum contaminant level (MCL). None of the measured values in groundwater exceeded the MCL for fluoride.

- 4. Time-series plots and box-and-whiskers diagrams show variability across the well network for calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). Values for boron and pH are relatively similar across all wells.
- 5. Statistical evaluation of the first half of 2021 data set identified confirmed statistically significant increases (SSIs) for calcium at MW-116 and TDS at MW-117. PPSC completed a successful alternate source demonstration (ASD) in response to the SSIs in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on October 6, 2021, and is included with this report in accordance with §257.94(e)(2). Based on the successful ASD, PPSC continued with detection monitoring in accordance with §257.94.
- 6. Statistical evaluation of the second half of 2021 data set identified confirmed SSIs for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117. In accordance with §257.94(e)(2), PPSC will undertake an ASD during the first half 2022 to address the confirmed SSIs. Pending the results of the ASD, PPSC will continue with detection monitoring in accordance with §257.94.

TABLE OF CONTENTS

EXE	CUTIVI	E SUMN	MARY	i			
1.0	BAC	KGROU	JND	1-1			
	1.1	Sampl	ling Area	1-1			
	1.2	Opera	tional History	1-4			
	1.3	Regional Hydrogeology					
	1.4	Site H	lydrogeology	1-7			
	1.5	Gener	al Groundwater Quality	1-7			
2.0	MON	ITORIN	NG NETWORK AND SCHEDULE	2-1			
	2.1	Monit	oring Well Network	2-1			
	2.2	Netwo	ork Improvements During 2021	2-3			
	2.3	Sampl	ling Schedule	2-3			
	2.4	Monitoring Well Operation and Maintenance					
	2.5	Sampling Methodology					
	2.6	Labora	atory Analyses	2-4			
3.0	DAT	A PRES	ENTATION	3-1			
	3.1	Water	Level Data	3-1			
		3.1.1	Water Level Measurements and Hydrograph	3-1			
		3.1.2	Direction of Groundwater Flow	3-2			
		3.1.3	Rate of Groundwater Flow	3-2			
	3.2	Field-	Measured Water Quality Data	3-3			
	3.3	Labora	atory Analytical Data	3-3			
	3.4	Qualit	ty Assurance and Quality Control	3-6			
		3.4.1	Review of Laboratory Quality Control Samples	3-6			
		3.4.2	Review of Field Quality Control Samples	3-7			
4.0	STAT	ΓISTICA	AL EVALUATION	4-1			
	4.1	Statist	tical Program Design	4-1			
		4.1.1	Statistical Approach	4-1			
		4.1.2	Site-Wide False Positive Rate and Statistical Power	4-2			
	4.2	4.2 Exploratory Data Analysis					

TABLE OF CONTENTS (CONTINUED)

		4.2.1	Time-Series Plots and Box-and-Whiskers Diagrams	4-4
		4.2.2	Identification of Outliers	4-4
	4.3	Statist	ical Evaluation Results	4-5
		4.3.1	Intrawell Prediction Limit Analysis, First Half of 2021	4-5
		4.3.2	Mann-Kendall/Theil-Sen Trend Line Test, First Half of 2021	4-6
		4.3.3	Intrawell Prediction Limit Analysis, Second Half of 2021	4-6
		4.3.4	Mann-Kendall Test/Theil-Sen Trend Line, Second Half of 2021	4-7
5.0	CONC	CLUSIC	ONS AND RECOMMENDATIONS	5-1
6.0	REFE	RENCE	S	6-1

LIST OF APPENDICES

APPENDIX A:	Field Sampling Forms
APPENDIX B:	Laboratory Reports
APPENDIX C:	Water Elevation Data and Hydrographs
APPENDIX D:	Appendix III Groundwater Quality Historical Database
APPENDIX E:	Background Data Sets Used for Statistics
APPENDIX F:	Exploratory Data Analysis Plots
APPENDIX G:	Statistical Evaluation Results
APPENDIX H:	Alternate Source Demonstrations

LIST OF TABLES

Table 2.1	Summary of well construction details	2-1
Table 2.2	Appendix III parameters for groundwater detection monitoring	2-4
Table 3.1	Water level data	3-1
Table 3.2	Field-measured water quality data	3-4
Table 3.3	Summary of appendix III results, first half of 2021	3-5
Table 3.4	Summary of appendix III results, second half of 2021	3-6
Table 4.1	Values used to determine test alpha and power curve	4-2
Table 4.2	Summary of statistically significant results, intrawell prediction limit analysis, first half of 2021	4-6
Table 4.3	Summary of statistically significant results, intrawell prediction limit analysis, second half of 2021	4-7
	LIST OF FIGURES	
Figure 1.1	Location map, Plum Point Energy Station	1-2
Figure 1.2	Vicinity map, Plum Point Energy Station	1-3
Figure 1.3	Landfill layout map, Plum Point Energy Station landfill	1-5
Figure 1.4	Physiographic location, Plum Point Energy Station	1-6
Figure 2.1	Monitoring well locations, Plum Point Energy Station	2-2
Figure 3.1	Potentiometric surface, April 12, 2021	3-8
Figure 3.2	Potentiometric surface, October 4, 2021	3-9
Figure 4.1	ERPC versus landfill power curve for detection monitoring	4-3

1.0 BACKGROUND

Plum Point Services Company, LLC (PPSC), operates a landfill for the disposal of coal combustion residuals (CCRs) at the Plum Point Energy Station in Mississippi County, Arkansas. The plant and landfill are located approximately 2 miles south of the city of Osceola, as shown on Figure 1.1. The landfill is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals rule, promulgated at Title 40 of the Code of Federal Regulations (40 CFR), Part 257, and published on April 17, 2015. The regulation, referred to hereafter as the CCR rule, requires regulated landfills to implement and maintain a groundwater monitoring program to determine if the CCR landfill is impacting groundwater quality at the facility's compliance boundary. For this purpose, groundwater detection monitoring is required on a semiannual frequency. A groundwater sampling program that meets the requirements of the CCR rule was implemented by PPSC during 2015, and the first semiannual detection monitoring event was performed at the landfill during the second half of 2017.

FTN Associates, Ltd. (FTN), was contracted to sample groundwater and statistically evaluate the data from the semiannual monitoring events performed during 2021. This report presents the results of groundwater sampling and the associated statistical evaluations, and is intended to satisfy the reporting requirements of §257.90(e)(1) through (5). The following sections provide a brief description of the sampling area, operational history of the plant and landfill, regional and site-specific hydrogeological setting, and general regional and site groundwater quality.

1.1 Sampling Area

The landfill area encompasses approximately 245 acres located approximately 1 mile west of the Mississippi River and 2 miles south of Osceola, Arkansas. The landfill is bordered by Arkansas Highway 239 to the east, Arkansas Highway 198 to the south, and the BNSF rail line to the west. Beyond these features and immediately north of the landfill are agricultural fields, and topography is relatively flat. A vicinity map of Plum Point Energy Station and the landfill is provided as Figure 1.2.

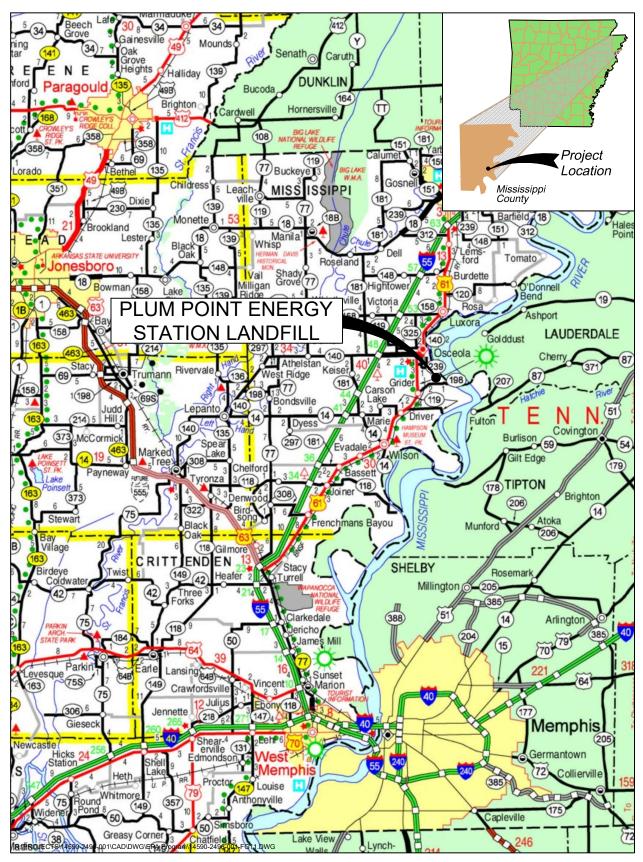


Figure 1.1. Location map.

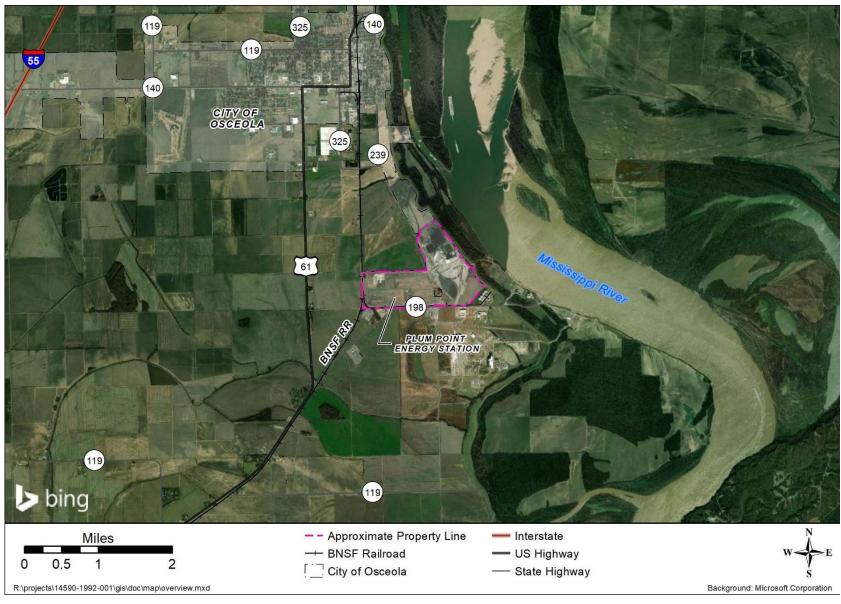


Figure 1.2. Vicinity map, Plum Point Energy Station.

1.2 Operational History

The plant has been in operation since 2010 and generates electricity through the combustion of coal. Approximately 500,000 tons of CCR material is produced and deposited in the landfill each year. The landfill is permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1 and became active during March 2010. The landfill currently has two active disposal cells, cells 1 and 3, which are shown on Figure 1.3. The combined area of the two active CCR disposal cells is approximately 30 acres.

Groundwater detection monitoring was initiated at the landfill in November 2007, in accordance with Arkansas Pollution Control and Ecology Commission (APCEC) Regulation No. 22 requirements. The landfill's groundwater monitoring system was expanded and designed to conform to the requirements of the CCR rule. The groundwater monitoring network was certified by FTN in October 2017 (FTN 2017a). Details regarding the certified groundwater monitoring network are provided in Section 2.0 and in the landfill groundwater monitoring network certification report (FTN 2017a).

1.3 Regional Hydrogeology

The landfill is located in the Mississippi Alluvial Plain physiographic region, as shown on Figure 1.4. The region was formed by the deposits of the Mississippi River and its tributaries and is generally flat-lying (Cushing, Boswell, & Hosman 1964). The uppermost aquifer in the region is the Mississippi River Valley alluvial aquifer (hereafter referred to as the alluvial aquifer). The alluvial aquifer is comprised of unconsolidated Quaternary-age alluvial and terrace deposit sands and gravels that generally grade upward to clays and silts, which form a semi-confining to confining layer over much of the aquifer. Regionally, the alluvium reaches depths of 100 ft to 200 ft below ground surface (bgs) (Ryling 1960; Cushing, Boswell, & Hosman 1964). Beneath the alluvial aquifer is the Tertiary-aged Jackson-Claiborne clay, which acts as a lower confining unit. The Jackson group is comprised of primarily dense clay with occasional lenses of fine-grained sand (Peterson, Broom, & Bush 1985). The regional direction of groundwater flow is toward the southwest (Schrader 2015, Rodgers & Whaling 2020).

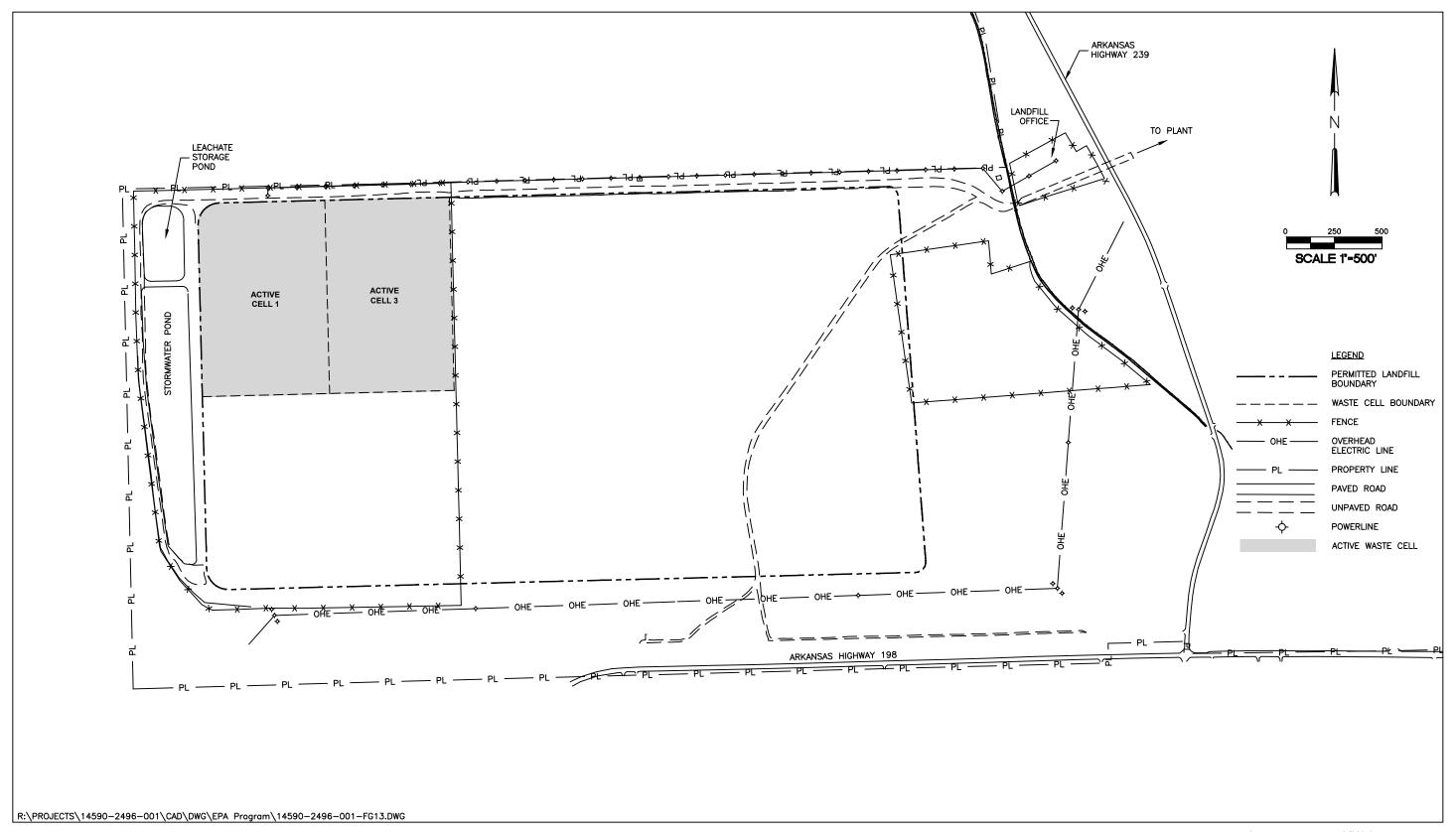


Figure 1.3. Landfill layout map.

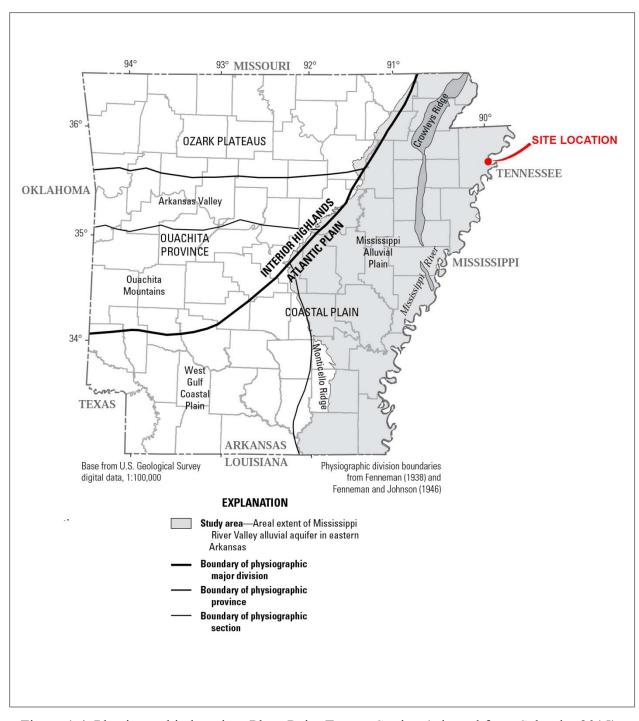


Figure 1.4. Physiographic location, Plum Point Energy Station (adapted from Schrader 2015).

1.4 Site Hydrogeology

A detailed site investigation was performed in 2001 as part of the DEQ permit application for the landfill. The findings from the investigation were submitted to DEQ by Genesis Environmental Consulting, Inc. (GEC), in a geotechnical and hydrogeological investigation (GHI) report (GEC 2001). Findings from the GHI indicated that the confining unit above the alluvial aquifer ranges from 0 ft to over 30 ft thick, with an average thickness of 15 ft at the site. Confining unit soils are comprised of brown to grey clay, silty clay, and sandy clays. Underlying the confining unit are fine- to coarse-grained sands of the alluvial aquifer, with fine- to coarse-grained gravel encountered at depth. Based on one deep boring, completed to a depth of 200 ft below ground surface (bgs), the coarse-grained aquifer materials reach a depth of 190 ft bgs in the vicinity of the landfill.

Laboratory geotechnical testing of confining unit soils indicate a vertical permeability ranging from 6.7×10^{-4} centimeters per second (cm/s) to 3.7×10^{-8} cm/s. Field results from one aquifer pumping test and multiple aquifer slug tests indicate that the uppermost alluvial aquifer has an average hydraulic conductivity of 1.09×10^{-2} cm/s (GEC 2001). The GHI reported an effective porosity for the aquifer of 27% (GEC 2001), which agrees with published values ranging from 10% to 30% for similar aquifer materials (EPA 1998, Yu et al. 2015).

The direction of groundwater flow at the landfill is variable and changes from eastward to westward on a seasonal basis (FTN 2017a). The direction of flow is influenced by the river stage of the adjacent Mississippi River (Kresse et al. 2014).

1.5 General Groundwater Quality

Regionally, groundwater in the alluvial aquifer is a calcium-bicarbonate water type with sodium, magnesium, chloride, sulfate, silica, and iron comprising the majority of the remaining dissolved ions (Kresse et al. 2014). Elevated concentrations of trace metals including iron, manganese, and arsenic are ubiquitous in the alluvial aquifer and thought to be elevated due to the presence of carbonaceous material within the aquifer that drives redox-sensitive parameters to dissolve in groundwater (Kresse & Fazio 2003, Gonthier 2003, Kresse & Clark 2008, Welch et al. 2009, Kresse et al. 2014). Concentrations of most parameters vary widely both laterally and

vertically in the aquifer (Kresse et al. 2014). Groundwater at the top of the aquifer is generally influenced by the quality of natural recharge (e.g., precipitation and surface waterbodies) and anthropogenic activity. Conversely, groundwater quality at the base of the aquifer is influenced heavily by the underlying confining formation (Kresse et al. 2014).

2.0 MONITORING NETWORK AND SCHEDULE

The following sections describe the certified monitoring well network, changes made to the network during 2021, sampling schedule, network maintenance, sampling methodology, and required laboratory analyses.

2.1 Monitoring Well Network

The certified groundwater monitoring network for the CCR rule includes the 10 monitoring wells shown on Figure 2.1. The wells are constructed of 2-inch, schedule 40 polyvinyl chloride (PVC) pipe, with 10-ft slotted well screens. A summary of well construction details is included in Table 2.1.

Table 2.1. Summary of well construction details.

	Well	Ground Surface	Measuring Point	Total Depth (ft below	Screened
Well	Installation	Elevation	Elevation ^(b)	measuring	Interval
Number	Date	(ft NAVD[a])	(ft NAVD)	point)	(ft NAVD)
MW-101	4/9/2001	239.4	242.75	33.6	219.2-209.2
MW-102	4/9/2001	240.5	243.99	30.2	223.8-213.8
MW-103	9/26/2007	240.5	243.25	32.8	220.5-210.5
MW-108	4/11/2001	241.8	245.11	32.4	222.7-212.7
MW-113	4/07/2009	241.5	244.63	35.9	223.7-208.7
MW-115	9/25/2007	240.4	243.55	33.0	220.6-210.7
MW-116	6/23/2015	239.3	243.97	31.9	222.5-212.5
MW-117	6/24/2015	239.4	242.53	34.2	218.5-208.5
MW-118	6/24/2015	238.0	241.23	31.4	220.2-210.2
MW-119	10/6/2016	243.6	246.53	35.4	221.5-211.5

Notes:

a. North American Vertical Datum of 1988.

b. Measuring point is the surveyed and marked point on the top of casing (TOC) of each monitoring well.

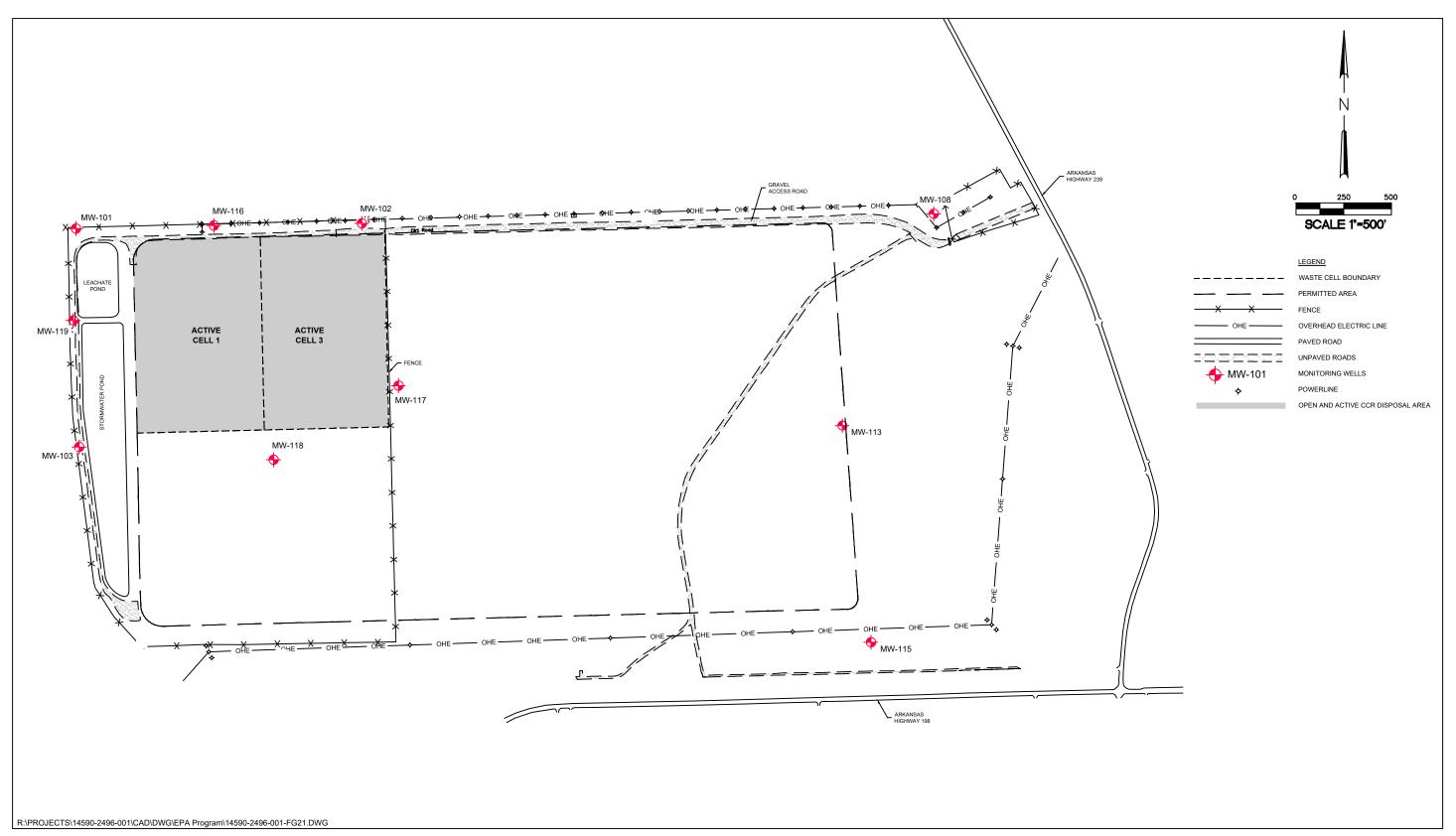


Figure 2.1. Monitoring well locations, Plum Point Energy Station.

Each monitoring well is screened in the alluvial aquifer, the uppermost aquifer in the vicinity of the landfill. The direction of groundwater flow beneath the site is seasonally variable. As a result, there is not a hydraulically upgradient location with respect to cells 1 and 3. As allowed by §257.91(a)(1), the groundwater program utilizes wells for background water quality that are not hydraulically upgradient of the CCR management area. Monitoring wells MW-108, MW-113, and MW-115 (Figure 2.1) are used for this purpose because they are positioned outside the potential zone of impact from cells 1 and 3. The rationale for this is based on the age of the landfill, the estimated maximum rate of groundwater flow, and the distance of MW-108, MW-113, and MW-115 from the CCR management area (FTN 2017a).

2.2 Network Improvements During 2021

All of the 10 monitoring wells in the certified network were installed prior to 2021. No new wells were installed and none of the existing wells were altered or abandoned during 2021.

2.3 Sampling Schedule

In accordance with the CCR rule and the landfill's groundwater sampling and analysis plan (GWSAP), detection monitoring is scheduled to occur semiannually. The first half 2021 detection monitoring event was conducted during April 2021. Based on statistical evaluation of the data set, verification sampling was performed during June 2021, as discussed in Section 4.0. The second half 2021 detection monitoring event was conducted during October 2021. Verification sampling was performed during December 2021.

Detection monitoring for the 2022 monitoring year is tentatively scheduled for April and October 2022.

2.4 Monitoring Well Operation and Maintenance

The integrity of each monitoring well was inspected prior to commencement of groundwater sampling activities. Well casing, concrete pads, and bollards were inspected for any indications of damage and dedicated sampling equipment was assessed for visible damage.

Noted damages and recommended repairs, if any, were communicated to PPSC.

2.5 Sampling Methodology

To ensure that monitoring results are an accurate representation of groundwater quality, sample collection follows the guidelines for sample collection, preservation, shipment, chain-of-custody (COC) control, and quality control outlined in the landfill's GWSAP (FTN 2017a). Groundwater sample collection during the 2021 monitoring events was performed in accordance with the landfill's GWSAP and EPA guidelines (Puls & Barcelona 1996). Groundwater was sampled with a Geopump Peristaltic Series II Pump and linear low-density polyethylene tubing. Field parameters were measured during purging and sampling using a Hach 2100P portable turbidity meter and a handheld YSI MPS 556 or YSI ProPlus multiparameter instrument fitted with a flow-through cell. Field sampling forms for the 2021 monitoring events are provided in Appendix A.

2.6 Laboratory Analyses

Samples collected for each detection monitoring event are required to be analyzed for the 40 CFR Part 257 appendix III list of parameters provided in Table 2.2. Pace Analytical National (Pace), of Mt. Juliet, Tennessee, provided laboratory services during the detection monitoring period. Samples were analyzed in accordance with EPA's *Test Methods for Evaluating Solid Waste Physical/Chemical Methods* (SW-846) (EPA 1986b), or equivalent, and guidelines established by EPA. Laboratory reports from Pace are included in Appendix B.

Table 2.2. Appendix III parameters for groundwater detection monitoring.

Appendix III to Part 257 – Parameters for Detection Monitoring					
Boron	Sulfate				
Calcium	Total dissolved solids (TDS)				
Chloride	pH (field-measured)				
Fluoride					

3.0 DATA PRESENTATION

This section presents the data collected during the 2021 monitoring events. Water level data are presented in Section 3.1, field-measured groundwater quality data are presented in Section 3.2, laboratory analytical data are presented in Section 3.3, and a review of quality assurance and quality control (QA/QC) measures is presented in Section 3.4.

3.1 Water Level Data

This section presents groundwater level measurements and groundwater flow characteristics determined from these measurements.

3.1.1 Water Level Measurements and Hydrograph

Static water levels were measured in all 10 monitoring wells prior to conducting any sampling activities for the April and October detection monitoring events. Water levels were measured using a Solinst 101 water level meter on April 12, 2021, and October 4, 2021, for the first and second half 2021 monitoring periods, respectively. Depth to water was measured to the nearest 0.01 ft from the measuring point (MP) located on the top of casing (TOC) of each well and recorded on the field water level data sheets included in Appendix A. Field water level measurements are tabulated in Table 3.1.

October 4, 2021 **April 12, 2021** MP Elevation Depth to Water Water Elevation **Depth to Water** Water Elevation Well ID (ft NAVD88) (ft below MP) (ft NAVD88) (ft below MP) (ft NAVD88) MW-101 242.75 11.10 231.65 20.61 222.14 MW-102 243.99 11.93 232.06 22.67 221.32 MW-103 243.25 9.74* 233.51* 21.31 221.94 MW-108 245.11 11.21 233.90 25.83 219.28 MW-113 244.63 11.51 233.12 24.38 220.25 MW-115 10.40 23.02 243.55 233.15 220.53 12.59 231.38 22.48 221.49 MW-116 243.97 MW-117 242.53 10.72 231.81 21.16 221.37 MW-118 241.23 9.70 231.53 19.53 221.70 MW-119 246.53 231.69 24.49 222.04 14.84

Table 3.1. Water level data.

Note: *Water level was not used to construct the potentiometric surface due to a suspected transcription error.

Hydrographs depicting water level elevations over time are included in Appendix C. As shown on the hydrograph, within-well water levels fluctuated seasonally as much as ± 24 ft over the period of record for the CCR rule program.

3.1.2 Direction of Groundwater Flow

Depth-to-water measurements were converted to feet NAVD88 and used to construct the potentiometric surface maps shown on Figures 3.1 and 3.2 (figures are included at the end of Section 3.0). As shown on Figure 3.1, groundwater flow was generally flat across the active landfill during the April 2021 monitoring event; however, flow across the permitted area was toward the southwest. As shown on Figure 3.2, groundwater flow beneath the active landfill was generally to the northeast during the October 2021 monitoring event.

3.1.3 Rate of Groundwater Flow

The rate of groundwater flow beneath the landfill is estimated based on Darcy's law, modified to account for the open space available for groundwater flow within the aquifer. The resulting equation used to estimate the average linear groundwater velocity, or rate of flow, is shown below (Kuo 1999):

$$V_x = K/n_e(dh/dl)$$

Where: $V_x = linear velocity$,

K = hydraulic conductivity,

 n_e = effective porosity, and

dh/dl = hydraulic gradient.

The hydraulic conductivity (K) and the effective porosity (n_e) of the alluvial aquifer are 1.09×10^{-2} cm/sec and 27%, respectively, based on previous reports (GEC 2001). The hydraulic gradient (dh/dl) is calculated using water level elevations that most closely represent the flow line from upgradient to downgradient across cells 1 and 3. The hydraulic gradient was estimated to be 6.4×10^{-4} ft/ft during April 2021 and 3.3×10^{-4} ft/ft during October 2021 using the potentiometric surface maps shown on Figures 3.1 and 3.2, respectively. Based on these values,

 V_x was calculated to be approximately 27 ft/year during April 2021 and 14 ft/year during October 2021. These values are consistent with historically observed flow rates at the site (FTN 2017a).

3.2 Field-Measured Water Quality Data

Groundwater sampling records for the 2021 monitoring events are included in Appendix A. Field-measured water quality parameters from the 2021 monitoring events are summarized in Table 3.2. A review of the field quality control samples is provided in Section 3.4.

3.3 Laboratory Analytical Data

Laboratory reports for sampling performed during the 2021 monitoring periods are included in Appendix B. A review of the laboratory quality control information is provided in Section 3.4. Reported measured values along with field-measured pH are summarized in Tables 3.3 and 3.4 for the first and second half of 2021 monitoring periods, respectively. EPA-promulgated maximum contaminant levels (MCLs) are shown for comparison purposes. Of the appendix III parameters listed in Tables 3.3 and 3.4, fluoride is the only parameter with an established MCL. As shown in Tables 3.3 and 3.4, none of the measured levels for fluoride were above the MCL of 4 mg/L. Data from these monitoring events are compiled in the landfill's historical groundwater database for appendix III parameters, included as Appendix D.

Table 3.2. Field-measured water quality data.

		Conductivity	pН	Temperature	Turbidity
Well	Date	(µmhos/cm)	(su)	(C)	(NTU)
First Half 20	21 Monitoring E	vent, April 202	21		
MW-101	4/15/2021	485	7.1	17.0	3.6
MW-102	4/15/2021	605	6.9	16.8	3.3
MW-103	4/15/2021	442	6.9	17.0	4.3
MW-108	4/13/2021	706	7.0	17.4	3.1
MW-113	4/13/2021	535	7.1	16.3	2.1
MW-115	4/13/2021	595	7.0	15.9	2.3
MW-116	4/15/2021	677	6.9	16.7	1.7
MW-117	4/13/2021	507	6.9	18.1	2.2
MW-118	4/15/2021	484	6.6	15.7	2.4
MW-119	4/15/2021	594	6.9	17.5	2.2
First Half 20	21 Verification S	Sampling Event	t, June 2021		
MW-101	6/29/2021	710	6.7	18.6	2.0
MW-113	6/29/2021	550	6.2	21.9	2.3
MW-116	6/29/2021	1,052	6.5	19.5	1.8
MW-117	6/29/2021	566	6.4	20.0	1.4
Second Half	2021 Monitoring	Event, Octobe	er 2021		
MW-101	10/7/2021	612	6.7	18.6	1.3
MW-102	10/6/2021	630	6.8	21.1	4.3
MW-103	10/7/2021	496	6.5	18.4	2.9
MW-108	10/5/2021	756	6.7	20.8	2.3
MW-113	10/5/2021	417	6.6	20.4	1.1
MW-115	10/5/2021	584	6.7	20.2	1.0
MW-116	10/6/2021	948	6.5	19.9	1.0
MW-117	10/6/2021	491	6.5	19.6	2.1
MW-118	10/6/2021	457	6.4	18.8	1.1
MW-119	10/7/2021	579	6.7	19.7	1.5
Second Half	2021 Verification	n Sampling Evo	ent, December 2	2021	
MW-116	12/14/2021	901	6.7	19.5	1.1
MW-117	12/14/2021	435	6.5	18.8	1.1

Table 3.3. Summary of appendix III results, first half of 2021.

Well ID	Date Collected	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	pH (su)
First Half 2	2021 Detecti	on Monitorin	g, April 202	ĺ				
MW-101	4/15/2021	0.0608 J	96.9	0.855 J	0.385	5.73	335	7.1
MW-102	4/15/2021	0.0966 J	118	2.31	0.210	79.4	446	6.9
MW-103	4/15/2021	0.0726 J	85.9	0.976 J	0.258	11.4	294	6.9
MW-108	4/13/2021	0.125 J	149	2.67	0.216	36.8	541	7.0
MW-113	4/13/2021	0.0673 J	95.4	2.50	0.102 J	9.83	372	7.1
MW-115	4/13/2021	0.0379 J	117	0.789 J	0.239	5.67	441	7.0
MW-116	4/15/2021	0.0854 J	144	9.09	0.226	126	541	6.9
MW-117	4/13/2021	0.0705 J	98.8	0.976 J	0.152	7.46	351	6.9
MW-118	4/15/2021	0.0663 J	94.1	0.911 J	0.185	20.0	329	6.6
MW-119	4/15/2021	0.0687 J	115	2.43	0.267	33.6	413	6.9
First Half 2	2021 Verific	ation Samplir	ng, June 202	1				
MW-101	6/29/2021				0.307			6.7
MW-113	6/29/2021						303	6.2
MW-116	6/29/2021		169					6.5
MW-117	6/29/2021		83.7				314	6.4
Quality Co	ntrol Sampl	les						
MW-117 DUP ^(a)	4/13/2021	0.0708 J	99.0	0.972 J	0.153	7.41	353	
EPA EB ^(a)	4/15/2021	< 0.200	<1.00	<1.00	< 0.150	< 5.00	<10.0	
MW-117 DUP ^(b)	6/29/2021		84.4				321	
EPA EB-1 ^(b)	6/29/2021		<1.00		< 0.0150		<10.0	
EPA MCL					4			

Notes:

[&]quot;J" flag indicates that the analyte was detected at a level below the laboratory RDL; therefore the value is an estimate.

a. Duplicate sample and field equipment rinsate blank collected during the April sampling event.

b. Duplicate sample and field equipment rinsate blank collected during the June sampling event.

Table 3.4. Summary of appendix III results, second half of 2021.

Well ID	Date Collected	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	pH (su)
		etion Monito		(0 /	(mg/L)	(mg/L)	(IIIg/L)	(su)
	_	_		_	T 0 0 1 0	T 10 0	F • • • •	
MW-101	10/7/2021	0.0555 J	113	0.975 J	0.312	10.2	380	6.7
MW-102	10/6/2021	0.0784 J	116	2.48	0.215	95.3	415	6.8
MW-103	10/7/2021	0.0681 J	89.7	1.16	0.256	12.6	324	6.5
MW-108	10/5/2021	0.111 J	149	1.37	0.203	23.4	505	6.7
MW-113	10/5/2021	0.0817 J	67.5	0.877 J	0.139 J	3.75 J	275	6.6
MW-115	10/5/2021	0.0655 J	109	0.964 J	0.225	3.7 J	379	6.7
MW-116	10/6/2021	0.0973 J	185	11.2	0.214	166	670	6.5
MW-117	10/6/2021	0.0677 J	88.8	0.921 J	0.162	9.09	314	6.5
MW-118	10/6/2021	0.0656 J	82.9	1.15	0.189	11.5	280	6.4
MW-119	10/7/2021	0.0594 J	104	2.40	0.269	39.1	388	6.7
Second Half	f 2021 Verif	ication Samp	oling, Dece	ember 2021				
MW-116	12/14/2021		190			200	730	6.7
MW-117	12/14/2021		82.0			9.31	308	6.5
Quality Cor	trol Sample	es						
MW-117 DUP ^(a)	10/6/2021	0.0702 J	88.8	0.920 J	0.156	9.18	305	
EPA EB-1 ^(a)	10/6/2021	<0.200	<1.00	<1.00	<0.150	<5.00	<10.0	
MW-116 DUP ^(b)	12/14/2021		189			200	724	
EPA EB-1 ^(b)	12/14/2021		<1.00			<5.00	<10.0	
EPA I	MCL				4			

Notes:

3.4 Quality Assurance and Quality Control

A review of laboratory and field QA/QC measures is presented below.

3.4.1 Review of Laboratory Quality Control Samples

Based on a review of the data quality documentation provided by Pace in Appendix B, samples were received by the laboratory in good condition, properly preserved, at the correct temperature, and were analyzed within holding times. The overall quality of the data relative to

[&]quot;J" flag indicates that the analyte was detected at a level below the laboratory RDL; therefore the value is an estimate.

a. Duplicate sample and field equipment rinsate blank collected during the October sampling event.

b. Duplicate sample and field equipment rinsate blank collected during the December sampling event.

the contaminants of concern was acceptable and generally met method-specific requirements for precision and accuracy.

3.4.2 Review of Field Quality Control Samples

Field QA/QC samples include field duplicates and field equipment blanks. Field duplicates are two samples taken from the same well and collected as close to each other in time as practical. Data from the duplicate pair are compared to evaluate the level of precision associated with the sampling and analytical methods. Field equipment rinsate blanks are prepared by pouring deionized water over decontaminated sampling equipment. Equipment blank results are used to verify that proper protocols for equipment decontamination were followed in the field. In accordance with the landfill's GWSAP, a minimum of one duplicate sample and one equipment rinsate blank is to be collected per sampling event, or one per 20 groundwater samples collected.

In accordance with the GWSAP, field QA/QC samples were collected in conjunction with groundwater sampling activities for this monitoring period. All QA/QC samples were handled in the same manner as groundwater samples with respect to sample collection, packaging, shipping, preservation, and COC procedures. A review of the field QA/QC samples is performed upon receipt of the data from the laboratory. Field duplicate pairs are evaluated to verify that the duplicate pair showed reasonable precision for analyzed parameters by calculating the relative percent difference (RPD) for parameters where the detected level was at least five times the laboratory RDL and where neither result was qualified or suspected of contamination. Calculated RPDs were below the quality control limit of 20% for all duplicate pairs evaluated, indicating that field methods produced samples with an acceptable level of reproducibility. Results for the equipment rinsate blanks were all below their respective laboratory RDLs, indicating field decontamination methods were effective.

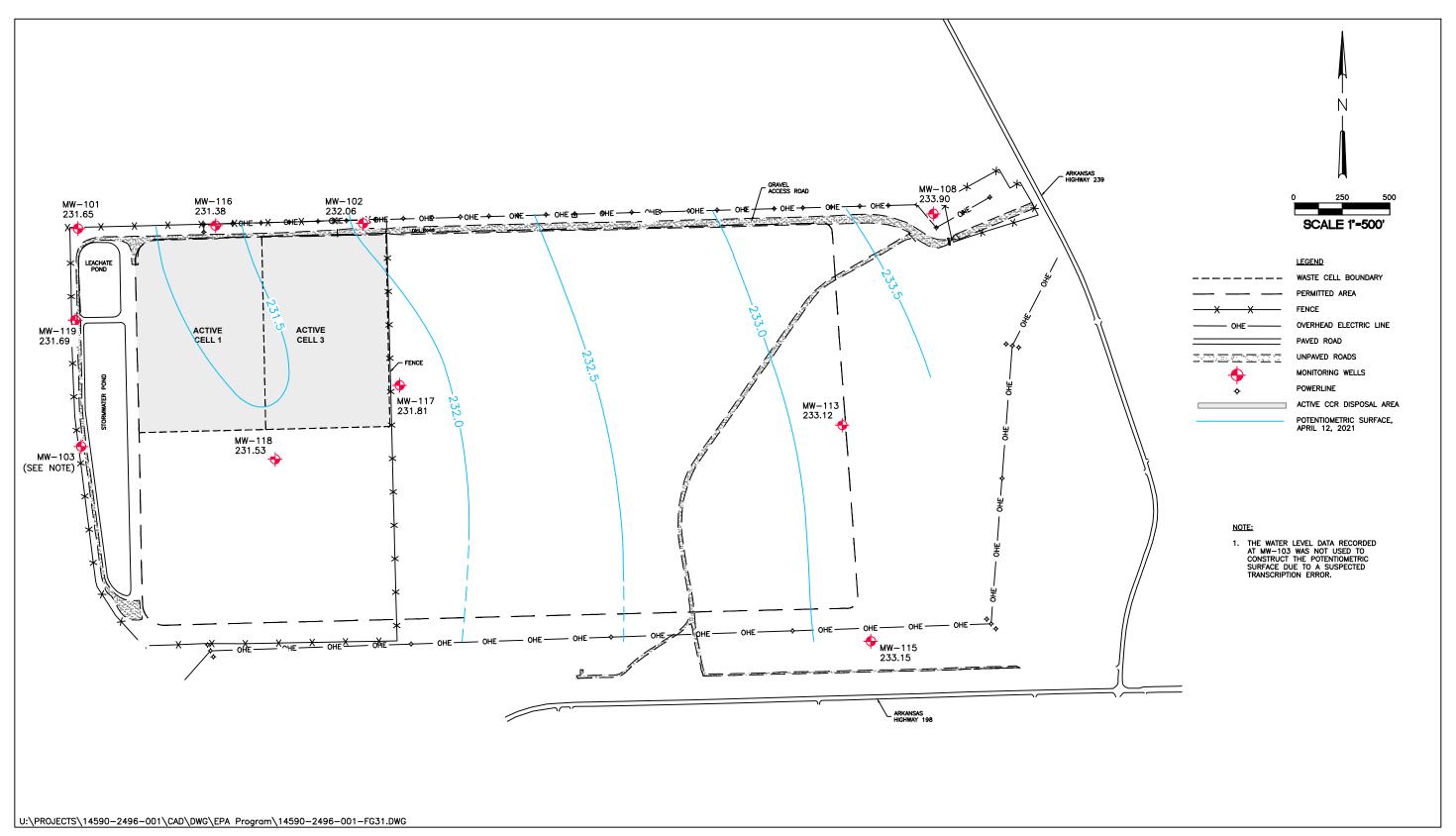


Figure 3.1. Potentiometric surface, April 12, 2021.

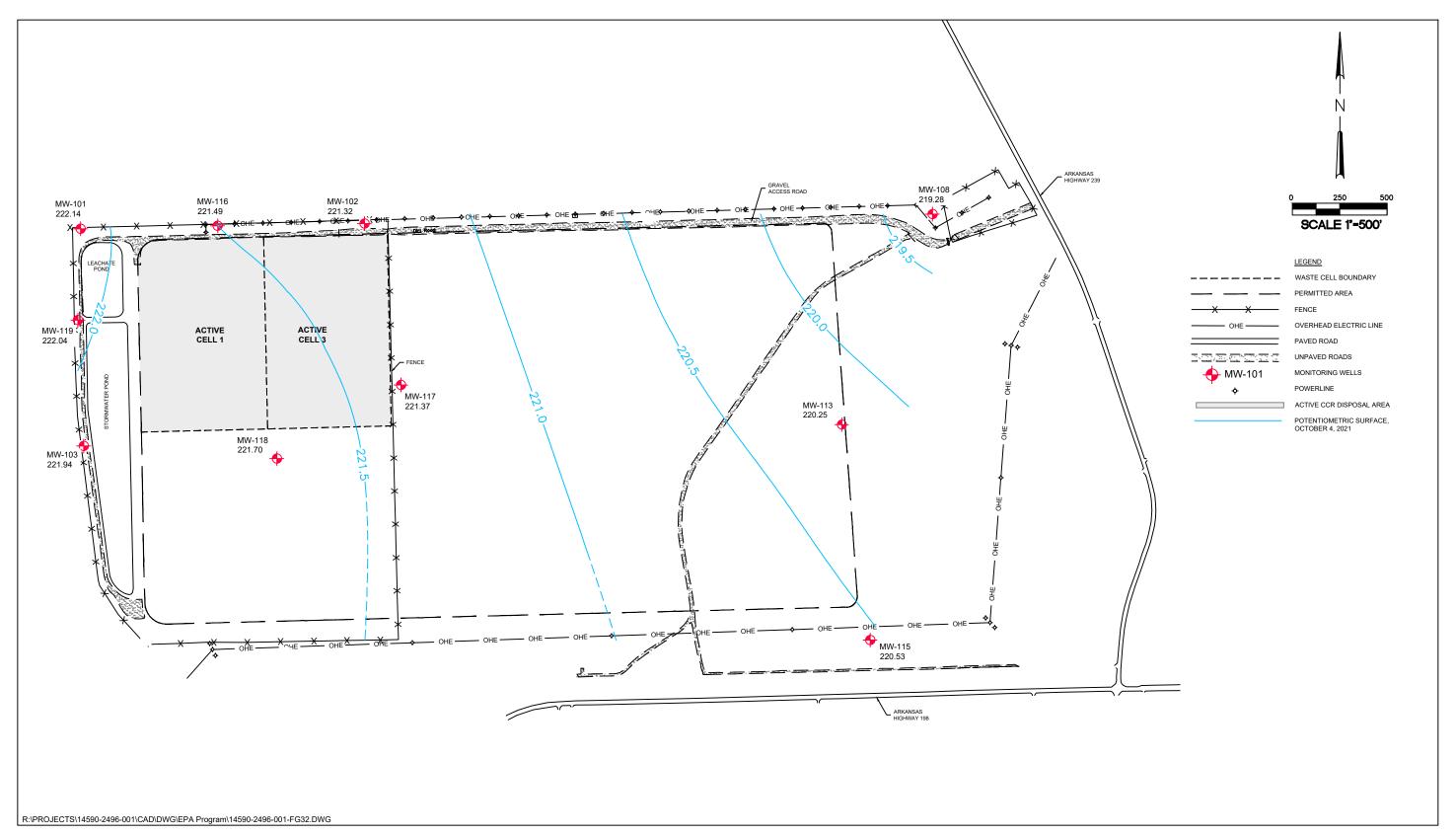


Figure 3.2. Potentiometric surface, October 4, 2021.

4.0 STATISTICAL EVALUATION

This section describes the statistical approach and evaluation of the detection monitoring data collected during 2021. Groundwater quality data were evaluated using the statistical software *Sanitas version 9.6*. Statistical analyses of the data were performed in accordance with the landfill's SAP.

4.1 Statistical Program Design

4.1.1 Statistical Approach

The statistical approach for groundwater monitoring at the landfill is described in the facility's SAP and adheres to recommendations in EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance*, released in March 2009 (Unified Guidance). Groundwater quality data collected for detection monitoring are evaluated with either an intrawell prediction limit combined with a "1 of 2" retesting strategy or with the Mann-Kendall/Sen's Slope test for trends. The technical basis for selecting these tests is discussed in the facility's SAP. Each test and its appropriate application is briefly discussed below.

A prediction limit tests for the likelihood that a new monitoring value (compliance value) comes from the same population as background data. Prediction limit analysis combined with retesting (verification sampling) is effective at reducing a monitoring program's site-wide false positive rate (SWFPR) and improving the statistical power of the monitoring program. The prediction limit test requires a minimum of 8 to 10 background values that are statistically independent and that exhibit stationarity. Retesting, or verification sampling, is performed if an initial sampling result exceeds a prediction limit. The "1 of 2" retesting strategy requires one verification sample be obtained within the same monitoring period as the initial exceedance. If the measured value in the verification sample also exceeds the prediction limit, then a statistically significant increase (SSI) (or statistically significant decrease [SSD] in the case of pH) is declared.

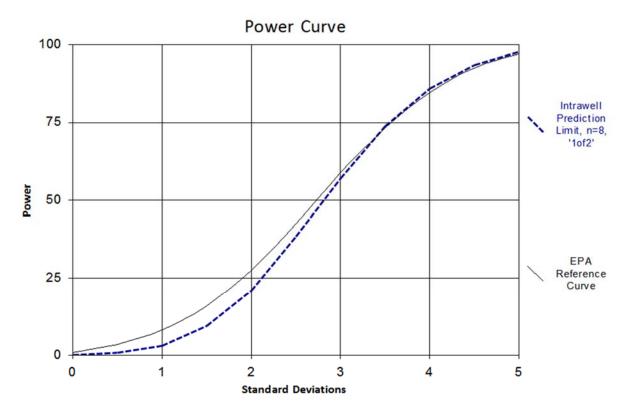
If data characteristics do not meet the requirements for a prediction limit test, the well-parameter pair is tested using the Mann-Kendall/Sen's Slope test for trends, as recommended by the Unified Guidance. If a statistically significant increasing trend (or statistically significant decreasing trend in the case of pH) is indicated, then this is evidence of possible deteriorating groundwater quality. While there is no explicit retesting strategy for the Mann-Kendall/Sen's Slope test (as there is for prediction limits), retesting can be applied (Cameron 2015).

Background data sets were updated, where applicable, prior to the first half of 2020 monitoring period. Results of the evaluation are summarized in Appendix E.

4.1.2 Site-Wide False Positive Rate and Statistical Power

The Unified Guidance recommends that detection monitoring programs have adequate statistical power and an SWFPR (alpha) value of 10% over a one-year period of testing. As a result, the semiannual SWFPR is fixed at 5%. The magnitude of the per-test alpha will vary depending on how many statistical tests are required per semiannual evaluation. Input values used to determine the per-test alpha for intrawell prediction limit analyses, combined with a "1 of 2" retesting strategy are listed in Table 4.1.

Certified Well Network					
Statistical Test	Intrawell Prediction Limit				
Number of Compliance Wells (w)	7				
Minimum Background Sample Size (n)	8				
Number of Constituents (c)	6				
Resample Strategy	1 of 2				
Semiannual SWFPR	0.05				


Table 4.1. Values used to determine test alpha and power curve.

Statistical power is inversely related to the SWFPR and is an estimate of the rate at which false negative results will occur. To gauge statistical power, the Unified Guidance recommends the use of the EPA Reference Power Curve (ERPC) to estimate the ability of any individual test to identify an exceedance above background. Any single statistical test should have the ability to

detect an exceedance 55% to 60% of the time at three standard deviations (3 σ) above background and 80% to 85% of the time at 4 σ above background. Input values for the detection monitoring program's power curve are listed in Table 4.1 and discussed below.

Figure 4.1 depicts the power curve for the well network plotted against the ERPC. This curve shows that any single test is expected to detect exceedances approximately 57% of the time at levels 3σ above background and 87% of the time at levels 4σ above background. Given this comparison, the statistical power of the landfill's detection monitoring program exceeds EPA recommendations.

Sanitas** v.9.6.23 Sanitas software licensed to FTN Associates. UG

kappa = 2.841, based on 7 compliance wells and 6 constituents, evaluated semi-annually (this report reflects annual total).

Figure 4.1. ERPC versus landfill power curve for detection monitoring.

4.2 Exploratory Data Analysis

Exploratory data analysis (EDA) includes viewing data graphically to identify apparent trends or excursions from normal ranges. To accomplish this, period-of-record data were screened using time-series plots, box-and-whiskers diagrams, and outlier tests. Time-series plots are used to visualize changes in data over time. Box-and-whiskers diagrams provide a graphic depiction of the mean, median, minimum, maximum, and interquartile range of a data set to assist with visualizing the variation in groundwater quality within and across wells. Outlier tests help identify values that are extremely different from other values in a given data set. Section 4.2.1 summarizes observations made from time-series and box-and-whiskers diagrams. Evaluation for the presence of outliers is discussed in Section 4.2.2. The graphical plots from the EDA evaluation are included in Appendix F.

4.2.1 Time-Series Plots and Box-and-Whiskers Diagrams

The following observations are based on a review of the time-series plots and box-and-whiskers diagrams (Appendix F):

- Calcium, chloride, fluoride, sulfate, and TDS values are variable across the network.
- Measured pH and boron are generally similar across the well network.¹

4.2.2 Identification of Outliers

Period-of-record data for statistically evaluated wells were evaluated to identify possible outliers in the April and October 2021 data sets (Appendix F). Dixon's outlier test was applied to data sets with a normal distribution, or to populations that could be mathematically transformed so they have a normal distribution. For data sets that did not have a normal distribution, the non-parametric Tukey's outlier screening was applied. Plots are included in Appendix F. Outlier

.

¹ As documented in prior annual reports (FTN 2018, 2019, 2020, 2021), multiple pH values measured during the July 2016 background sampling event were anomalous and were suspected to be the result of equipment malfunction. These values were flagged with an "R" in the historical database as part of a background data review completed prior to the first half 2020 monitoring period. Data flagged with an "R" are excluded from statistical evaluations and are not shown on distributional plots.

testing identified one outlier in the April 2021 data set: TDS at MW-101 was statistically low compared to the period-of-record data set. No statistically significant outliers were identified in the October 2021 data set.

4.3 Statistical Evaluation Results

Groundwater quality data from the 2021 monitoring periods were statistically evaluated if they were detected at or above the laboratory RDL. Results detected below the RDL but above a method detection limit ("trace" values) are estimated values and therefore are not statistically evaluated. Trace values are flagged with a "J" in the laboratory reports provided in Appendix B and in the historical database included in Appendix D. Statistical analyses are not performed on nondetect data, which are flagged with a "U" in the laboratory reports (Appendix B) and represented in the historical database as less than (<) the RDL value for the method used (Appendix D).

4.3.1 Intrawell Prediction Limit Analysis, First Half of 2021

In accordance with 257.93(h), intrawell prediction limit analyses were performed on all detected appendix III parameters, except as noted in Section 4.3.2, using the background data sets identified in Appendix E. Results from the first half of 2021 monitoring period are summarized in Table 4.2 and graphical plots of the evaluation are included in Appendix G. Two previously confirmed statistically significant increases (SSIs), calcium and TDS at MW-117, were identified in the April 2021 data set, along with unverified SSIs for calcium at MW-116, fluoride at MW-101, pH at MW-117, and TDS at MW-113, as shown in Table 4.2.

Measurements for all other well-parameter pairs were below calculated intrawell prediction limits. In accordance with the facility's SAP and "1 of 2" retesting strategy, verification sampling was performed during June 2021 for the potential exceedances, and while not required, verification sampling was also performed for the two previously confirmed SSIs. As shown in Table 4.2, verification sampling results confirmed the SSIs for calcium at MW-116 and TDS at MW-117, and disconfirmed the SSIs for calcium at MW-117, fluoride at MW-101, pH at MW-117, and TDS at MW-113.

Table 4.2. Summary of statistically significant results, intrawell prediction limit analysis, first half of 2021.

		Prediction	April 2021	June 2021	SSI
Parameter	Well	Limit	Result	Verification Result	Confirmed?
Calcium	MW-116	139.2 mg/L	144 mg/L	169 mg/L	Yes
Calcium	MW-117	87.74 mg/L	98.8 mg/L ^(a)	83.7 mg/L	No
Fluoride	MW-101	0.346 mg/L	0.385 mg/L	0.307 mg/L	No
рН	MW-117	6.6 su ^(b)	6.9 su	6.4 su	No
TDS	MW-113	365 mg/L	372 mg/L	303 mg/L	No
TDS	MW-117	301.8 mg/L	323 mg/L ^(a)	314 mg/L	Yes ^(a)

Notes:

In response to the confirmed SSIs for calcium at MW-116 and TDS at MW-117 identified during the first half of 2021 detection monitoring period, PPSC completed a successful alternate source demonstration (ASD) in accordance with §257.94(e)(2). The ASD was certified by an Arkansas-registered professional engineer on October 6, 2021, and is included with this report (Appendix H) as required by §257.94(e)(2). Based on the successful ASD, the facility continued with detection monitoring in accordance with §257.94.

4.3.2 Mann-Kendall/Theil-Sen Trend Line Test, First Half of 2021

Well-parameter pairs tested for compliance using the Mann-Kendall/Theil-Sen trend line test due to significant trends in background data sets are identified in Table E.2 of Appendix E. Period-of-record data for each well-parameter pair were analyzed and test plots are included in Appendix G. The evaluation did not identify any statistically significant increasing trends in the period-of-record data sets.

4.3.3 Intrawell Prediction Limit Analysis, Second Half of 2021

In accordance with 257.93(h), intrawell prediction limit analyses were performed on all detected appendix III parameters, except as noted in Section 4.3.4, using the background data sets identified in Appendix E. Graphical plots of the evaluation are included in Appendix G. Three previously confirmed SSIs, calcium at MW-116 and MW-117 and TDS at MW-117, were

a. SSI was previously confirmed.

b. Upper prediction limit.

identified in the October 2021 data set, along with unverified SSIs for sulfate at MW-116 and MW-117 and TDS at MW-116, as shown in Table 4.2. Measurements for all other well-parameter pairs were below calculated intrawell prediction limits. In accordance with the facility's SAP and "1 of 2" retesting strategy, verification sampling was performed during December 2021 for the potential SSIs, and while not required, verification sampling was also performed for the three previously confirmed SSIs. As shown in Table 4.3, verification sampling results confirmed the SSIs for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117.

Table 4.3. Summary of statistically significant results, intrawell prediction limit analysis, second half of 2021.

Parameter	Well	Prediction Limit (mg/L)	October 2021 Result (mg/L)	December 2021 Verification Result (mg/L)	SSI Confirmed?
Calcium	MW-116	139.2	185	190	Yes*
Calcium	MW-117	87.74	88.8	82.0	No
Sulfate	MW-116	136.7	166	200	Yes
Sulfate	MW-117	8.048	9.09	9.31	Yes
TDS	MW-116	545.3	670	730	Yes
TDS	MW-117	301.8	314	308	Yes*

Note: *SSI was previously confirmed.

In accordance with §257.94(e)(2), PPSC will undertake an ASD during the first half 2022 to address the confirmed SSIs. Pending the results of the ASD, PPSC will continue with detection monitoring in accordance with §257.94.

4.3.4 Mann-Kendall Test/Theil-Sen Trend Line, Second Half of 2021

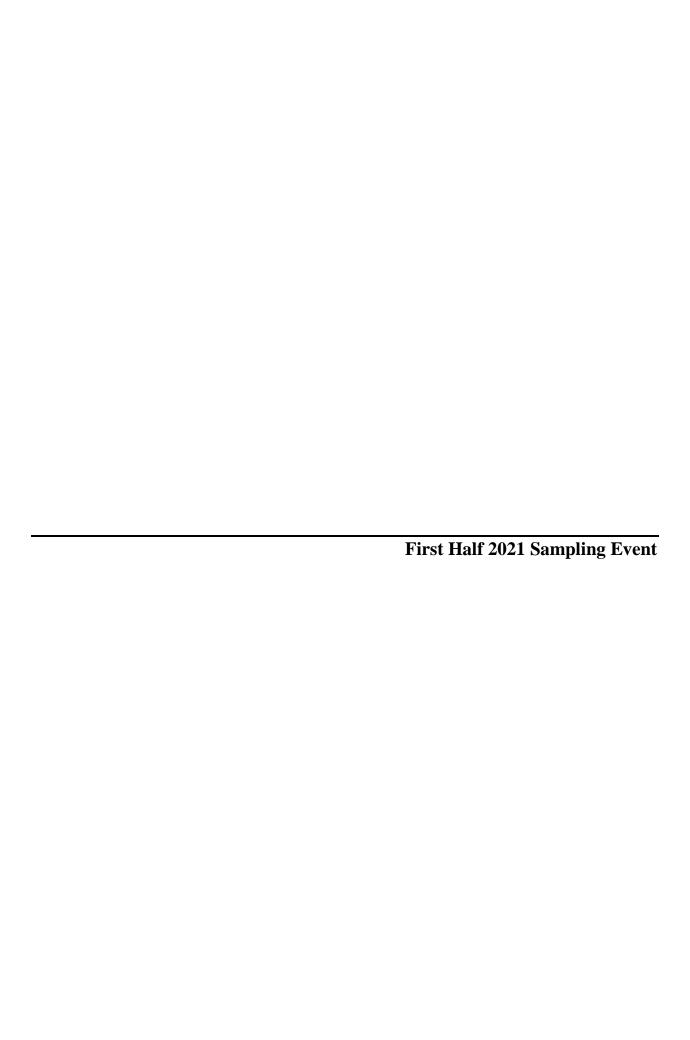
Well-parameter pairs tested for compliance using the Mann-Kendall/Theil-Sen trend line test due to significant trends in background data sets are identified in Table E.2 of Appendix E. Period-of-record data for each well-parameter pair were analyzed and test plots are included in Appendix G. The evaluation did not identify any statistically significant increasing trends in the period-of-record data sets.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following recommendations and conclusions are based on a review of data for the landfill from the 2021 monitoring period:

- 1. The direction of groundwater flow at the landfill is seasonally variable. Flow across the active landfill was to the southwest during the first half of 2021 monitoring event and to the northeast during the second half of 2021 monitoring event.
- 2. Of the parameters evaluated, only fluoride has an EPA MCL. None of the reported values in groundwater were measured above the MCL for fluoride.
- 3. Time-series plots and box-and-whiskers diagrams show variability across the well network for calcium, chloride, fluoride, sulfate, and TDS. Values for boron and pH are relatively similar across all wells.
- 4. A comparison of the statistical power curve for the detection monitoring program to the EPA Reference Power Curve indicates that the detection rates for statistical exceedances meet EPA recommendations.
- 5. Statistical evaluation of the first half of 2021 data set identified confirmed SSIs for calcium at MW-116 and TDS at MW-117. A successful ASD was completed for the exceedances on October 6, 2021, and is included with this report in accordance with §257.94(e)(2). The facility continued with detection monitoring in accordance with §257.94.
- 6. Statistical evaluation of the second half of 2021 data set identified confirmed SSIs for calcium, sulfate, and TDS at MW-116 and for sulfate and TDS at MW-117. In accordance with §257.94(e)(2), PPSC will undertake an ASD during the first half 2022 to address the confirmed SSIs. Pending the results of the ASD, PPSC will continue with detection monitoring in accordance with §257.94.

6.0 REFERENCES


- EPA [Environmental Protection Agency]. 1986. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. Dublin, OH: National Water Well Association. -. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water [EPA/600/R-98/128]. Washington, DC: US Environmental Protection Agency, Office of Research and Development. 248 pp. -. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: Office of Resource Conservation and Recovery, Program Implementation and Information Division, US Environmental Protection Agency. March 2009. FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. . 2017b. Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill -Little Rock, AR: FTN Associates, Ltd. —. 2017c. Statistical Analysis Plan, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. ... 2018. Plum Point Energy Station Landfill , Groundwater Monitoring and Corrective Action 2017 Annual Report. Little Rock, AR: FTN Associates, Ltd. . 2019. Plum Point Energy Station Landfill , Groundwater Monitoring and Corrective Action 2018 Annual Report. Little Rock, AR: FTN Associates, Ltd. . 2020. Plum Point Energy Station Landfill , Groundwater Monitoring and Corrective Action 2019 Annual Report. Little Rock, AR: FTN Associates, Ltd. -. 2021. Plum Point Energy Station Landfill , Groundwater Monitoring and Corrective Action 2020 Annual Report. Little Rock, AR: FTN Associates, Ltd.
- GEC [Genesis Environmental Consulting, Inc.]. 2001. *Geotechnical and Hydrogeological Investigation, Plum Point Energy Station, July 2001* [DEQ DIN 14702]. Little Rock, AR: Genesis Environmental Consulting, Inc.
- Gibbons, Robert D. 1994. *Statistical Methods for Groundwater Monitoring*. New York: John Wiley & Sons, Inc.
- Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 2003 4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.

- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. *Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas* [Scientific Investigations Report 2014–5149]. Prepared in cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp. doi: http://dx.doi.org/10.3133/sir20145149.
- Kuo, J. 2009. *Practical Design Calculations for Groundwater and Soil Remediation*. Boca Raton, FL: Lewis Publishers.
- Peterson, J.C., M.E. Broom, and W.V. Bush. 1985. *Geohydrologic Units of the Gulf Coastal Plain in Arkansas* [USGS Water Resources Investigations Report 85-4116]. Little Rock, AR: US Geological Survey in cooperation with the Arkansas Department of Pollution Control and Ecology and the Arkansas Geological Commission. 20 p.
- Pugh, A.L., P.W. Westerfield, and D.T. Poynter. 1997. *Thickness of the Quaternary Alluvial and Terrace Deposits Comprising the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas* [USGS Water Resources Investigations Report 97-4049]. Little Rock, AR: US Geological Survey in cooperation with the Arkansas Geological Commission. 1 plate.
- Puls, R.W., and M.J. Barcelona. 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* [EPA 540/S-95/504]. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- Rodgers, K.D., and A.R. Whaling. 2020. Water Levels and Selected Water-Quality Conditions in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2014 [Scientific Investigations Report 2020-5123]. Prepared in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey. Reston, VA: US Geological Survey.
- Ryling, R.W. 1960. *Ground-water Potential of Mississippi County, Arkansas* [Water Resources Circular No. 7]. Little Rock, AR: Arkansas Geological and Conservation Commission in cooperation with the US Geological Survey. 87 p.
- Sanitas Technologies. 2018. *Sanitas User Guide, Version 9.6.* Loveland, CO: Sanitas Technologies.
- Schrader, T.P. 2015. Water Levels and Water Quality in the Mississippi River Valley Alluvial Aquifer in Eastern Arkansas, 2012 [Scientific Investigations Report 2015-5059]. Prepared in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey. Reston, VA: US Geological Survey.

- Welch, H.L., J.A. Kingsbury, W.T. Roland, and R.C. Seanor. 2009. *Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004* [Scientific Investigations Report 2009-5091]. Reston, VA: National Water-Quality Assessment Program, US Geological Survey.
- Yu, C., S. Kamboj, C. Wang, and J. Cheng. 2015. *Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures*[ANL/EVS/TM-14/4]. Argonne, IL: US Department of Energy, Argonne National Laboratory, Environmental Science Division.

Field Sampling Forms

Groundwater Level Data Sheet

	Energy Station Iwater Service	R es E	roject Number: 14590-2496-001 PA Program Ieasuring Device: olinst 101		atigator: ael Clayton	Page 1 of 1
Well ID	Date	Time	Depth to Water (feet below TOC)		Damages/Repairs	
MW-101	4/12/2021	1344	11.10	☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	Lacks visibility Lacks access See GW sample record
MW-102	4/12/2021	1247	11.93	☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment		Lacks visibility Lacks access See GW sample record
MW-103	4/12/2021	1329	9.74	☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-108	4/12/2021	1136	5 11.21	☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	Lacks visibility Lacks access See GW sample record
MW-113	4/12/2021	1126	11.51	☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-115	4/12/2021	1120	10.40	☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-116	4/12/2021	1254	12.59	☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-117	4/12/2021	1235	10.72	☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-118	4/12/2021	1309	9.70	☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-119	4/12/2021	1337	14.84	☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas☐ Damaged bollards☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
				☐ Damaged well pad/cas ☐ Damaged bollards ☐ Damaged equipment	ing Damaged TOC Damaged lock Un-kept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record

Facility:	Plum	Point E	nergy Sta	ition	S	ite ID:	MV	W-101		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			mpler Organ				Ltd
Site Description		117570	2470 001	(LITI)		oute.	4/13/	2021		- Du	impier Organ	nzation	. 1 11(1)	Issociates	, Eta.
Weather:	OII	clea	ar		Air	Temp. (°F):	59	Wir	nd:	n	orth-nor	theast at	14 mph	
Site type:						l casing		al:	Wel	l di	ameter		inches	2	Well
✓ Monitorin ☐ Productio		_	xtraction orehole	Well		PVC		-				OC			locked?
Dewaterir		_	pring			Steel Iron			101	ai ac	epth from To	<u> </u>	feet		✓ Yes
Other:	-8	~	r8			Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:	s in well					<u> </u>					I.		1
Water Level I	Data														
Measuring po		ption:		Wat	er level	meter:	Ge	otech/K	eck	100)' Geot	ech/Kec	k 200'		
Mark/notch						1		ron Dip		-T	✓ Solin		Oth	ner:	
□North rim o □Other:	of TOC				-purge nitial		purge mation	Dur purg			Purge end	Afte samp		Rem	arke
Date	m	m/dd/y	v	_	2/2021	+	/2021	4/15/	_	_	4/15/2021	4/15/2		NUIII	urko
Time		1-hour	<i>y</i>	_	1344		230	12		1	1302	131			
Depth to Water		et		_	1.10		.50	11.			11.50	11.5			
Product/Thick		NAPL/I	ONAPL fe	-											
Field Data	<u> </u>					<u> </u>		<u> </u>					<u> </u>		
Field data meters: YSI ProPlus Hach 2100P Turbidimeter YSI MPS 556 HF Scientific Turbidimeter Other: Pump description: Pump description: Disposable polyethylene Bladder [dedicated / portable] Disposable Teflon Disposable PVC															
Purge depth	feet			oes dry	during	nurging			Nο				Disposa	ibic i v C	
Casing vol.	gallons									nterr	nal diameter	of well	(inches)	$1^2 \times 0.040$	08
Time	24-hour	1235		1245	1250	1255	1300	T	Ì					Rema	
Purge vol.	gallons														
Purge rate	mL/min	200	200	200	200	200	200								
рН	su	7.2	7.1	7.1	7.0	7.0	7.1								
Temp.	°C	16.5	16.4	16.6	16.8	16.8	17.0								
Conductivity	μS/cm	474	446	464	482	482	485								
DO	mg/L	2.0	0.8	0.6	0.5	0.45	0.4								
ORP	mV	3.3	-8.4	-26.6	-40.5	-43.9	-46.9								
Turbidity	NTU	4.6	3.8	4.4	4.0	3.8	3.6								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data															
	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-101			4/15/202	21 1	305	3		0							
Sampler's Na	me (print	:):	N	Michael	Clayto	n		Sample	r Si	gna	ture:	trar	nscribed	by HLF	

Facility:	Plum I	Point E	nergy Sta	ition	S	ite ID:	MV	W-102		Sar	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			npler Orga				Ltd
Site Description		11000	2100 001	(2171)		- ucc.	1/13/	2021		Sur	inprer organ	112411011		issociates	, 2.0.
Weather:		artly c	loudy		Air	Temp. (°F):	64	Win	nd:	n	orth-noi	theast at	14 mph	
Site type:						l casing		al:	Wel	1 dia	ameter		inches	2	Well
Monitorin Productio			xtraction orehole	Well	V	PVC		_				00			locked?
Dewaterir		_	orenoie pring			Steel Iron			100	ai de	pth from T		feet		✓ Yes
Other:	-6	— ~	r <i>6</i>			Other:			TO	C be	low/above	ground	feet		□No
Damages/rep	airs need	ed:						<u> </u>					l	<u> </u>	
Water Level I															
Measuring poi		ption:		Wat	er level	meter:	_	otech/K ron Dip			' □Geot ✓Solin	ech/Kec	k 200' □Oth		
North rim				Pre	-purge	Pre-	<u></u> пе	Dui		-1	Purge	Aft		ier:	
Other:					nitial		mation		_		end	samp		Rem	arks
Date	m	m/dd/y	У	4/1	2/2021	4/15	/2021	4/15/	202	1	4/15/2021	4/15/2	2021		
Time	24	l-hour			1247	14	140	15	03		1522	153	31		
Depth to Wate	er fe	et		1	1.93	12	2.00	12	.00		12.00	12.0	00		
Product/Thick	ness Li	NAPL/I	NAPL fe	et											
Field Data															
Field data meters: YSI ProPlus Hach 2100P Turbidimeter YSI MPS 556 Other: Pump description: Peristaltic Disposable polyethylene Bailer description: Disposable polyethylene Submersible Disposable PVC															
	6 1	<u> L</u>			1 .	_			N.T.				Disposa	ble PVC	
Purge depth Casing vol.	feet	-	_	•		purging				4	.1.1	C 11	(* 1)	12 0 04	00
Time	gallons 24-hour	1450		1500	1505	1510	1515			itern	al diameter	or well	(inches)	Rema	
Purge vol.	gallons	1430	1433	1300	1303	1310	1313	1320	-					Kema	IIKS
Purge rate	mL/min	160	160	160	160	160	160	160							
pH	su	6.9	6.8	6.8	6.9	6.9	6.9	6.9							
Temp.	°C	16.9	_	16.8	16.7	16.7	16.8	16.8							
Conductivity	μS/cm	612	611	611	608	607	606	605							
DO	mg/L	6.4	0.8	0.6	0.4	0.4	0.4	0.4							
ORP	mV	3.5	-12.6	-25.3	-40.9	-45.4	-48.1	-49.9							
Turbidity	NTU	4.5	4.0	4.3	4.2	3.3	2.9	3.3							
Color/tint		clear	clear	clear	clear	clear	clear	clear							
Odor		none	none	none	none	none	none	none							
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			R	emarks		
MW-102			4/15/202	21 1	525	3		0							
Sampler's Na	me (print):	N	/lichael	Clayto	n		Sample	r Si	gnat	ure:	traı	nscribed	by HLF	

Facility:	Plum I	Point E	nergy Sta	ıtion	S	ite ID:	MV	W-103		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			ımpler Orgai				Ltd
Site Descripti		14370	2470 001	(LITI)		- Luce	4/15/	2021		Du	impier Organ	nzation	. 1 11(1)	Issociates	, Ltu.
Weather:	OII	clea	ır		Air	Temp. (°F):	57	Wi	nd:	n	orth-noi	theast at	14 mph	
Site type:						l casing		al:	Wel	ll di	ameter		inches	2	Well
Monitorin			xtraction orehole	Well		PVC		-				OC			locked?
Dewaterir		_	orenoie pring			Steel Iron			TOU	ai de	epth from To	<u> </u>	feet		✓ Yes
☐ Other:	-6	— ~.	8			Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:													1
Water Level 1				XX7.4	1 1	4	ПС	otech/K	1.	100)2	1. /IZ	1. 2002		
Measuring po		ption:		wat	er ieve	meter:	_	otecn/K/ ron Dip _l			∫ Geot ✓ Solin	ech/Kec st 101	k 200 □Otł	ner:	
☐North rim o				Pre	-purge	Pre-	purge	Dur			Purge	Aft			
Other:	r			i	nitial	confir	mation	n purg	ging	5	end	samp	ling	Rem	arks
Date	m	m/dd/y	y	_	2/2021		/2021	4/15/		1	4/15/2021	4/15/2			
Time	24	-hour			1329)35	10			1108	112			
Depth to Wate				-	9.74	12	2.10	12.	.21		12.21	12.2	21		
Product/Thick	iness LN	NAPL/E	NAPL fe	et											
Field Data															
Field data met		_	7 r r r o	100D T	1 . 1.			escriptio	n:				iler desc		.1 1
✓ YSI ProPlu SI MPS 5		<u>"</u>	Hach 2 HF Scie				Perist		ledi	cate	ed / portab			ble polye ble Teflo	
Other:	.50	Ē	Other:		aroran			ersible	.cur	cuic	да / Шрогше			ble PVC	
Purge depth	feet		Well g	oes dry	during	purging	: 🔲 ك	Yes 🔽	No						
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [iɪ	nteri	nal diameter	of well	(inches)	$[2 \times 0.040]$	08
Time	24-hour	1040	1045	1050	1055	1100	1105							Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	190	190	190	190	190	190								
pН	su	6.9	6.9	6.9	6.9	6.9	6.9								
Temp.	°C	16.8	16.7	16.6	16.8	16.9	17.0								
Conductivity	μS/cm	444	444	443	431	442	442								
DO	mg/L	2.8	0.9	0.5	0.5	0.4	0.4								
ORP	mV	-21.7		-33.7	-40.4	-49.6	-50.7	'							
Turbidity	NTU	6.3	7.1	5.4	4.6	3.9	4.3								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none	<u> </u>							
Sample Data															
	ole ID		Date		ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-103			4/15/202	21 1	110	3		0							
Commlan's NI-	ma a (marine t	١.	1	Æak1	Cla-t			Correct:	C:		tura	4	1	h III F	
Sampler's Na	me (print).	N	/lichael	Ciayto	1		Sample	r 51	gna	uure:	trai	nscribed	oy HLF	

Facility:	Plum 1	Point E	nergy Sta	tion	S	ite ID:	M	V-108		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:	4/13/				mpler Orgai				Ltd
Site Descripti		11370	2170 001	(L171)		- ucc.	1/15/	2021		- Su	impier organ	nzation	. 1 11(1)	issociates	, Etc.
Weather:	OII	clou	dy		Air	Temp. (°F):	61	Wiı	nd:		northe	ast at 10) mph	
Site type:					Wel	l casing	materi	al:	Wel	ll di	ameter		inches	2	Well
Monitorin			xtraction orehole	Well	V]	PVC		-				00			locked?
Dewaterir		_	orenoie pring			Steel Iron			Tota	ai de	epth from To		feet		✓ Yes
☐ Other:	-6	~	r <i>6</i>			Other:		,	TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:											ı		
Water Level 1								. 1 /77		100	<u>., Па</u> .	1 /77	1 2001		
Measuring po				Wat	er level	meter:	_	otech/Karon Dip)′ ∐Geot ✓Solin	ech/Kec st 101	k 200° □Otł	ner•	
□ North rim o				Pre	-purge	Pre-	purge	Dur			Purge	Aft		101.	
Other:					nitial		mation		_		end	samp		Rem	arks
Date	m	m/dd/y	у	4/1	2/2021	4/13	/2021	4/13/	202	1	4/13/2021	4/13/2	2021		
Time	24	l-hour		1	136	10)45	10	53		1117	112	29		
Depth to Water		et		1	1.21	11	.43	11.	.52		11.52	11.:	52		
Product/Thick	iness Li	NAPL/I	NAPL fe	et											
Field Data															
Field data met		_	7 r r r o	100D T	1 . 1.			escriptio	n:				iler desc		.1 1
✓ YSI ProPlu SI MPS 5		<u>Г</u>	Hach 2 HF Scie				Perist		ledio	cate	d/□portab			ible polye ible Teflo	
Other:	30	Ī	Other:	munic 1	urorun			ersible	icar	cuic	и / Шрогии			ble PVC	
Purge depth	feet		Well g	oes dry	during	purging	: 🔲 ን	es 🔽	No						
Casing vol.	gallons		= [tota	depth	(feet) –	depth to	water	(feet)]	× [ir	ıteri	nal diameter	of well	(inches)	$(0.04)^2 \times 0.04$	08
Purge vol.	gallons														
Purge rate	mL/min	150	150	150	150	150	150								
pН	su	7.0	7.0	7.0	7.0	7.0	7.0								
Temp.	°C	17.1	17.2	17.3	17.3	17.5	17.4								
Conductivity	μS/cm	712	711	709	708	708	706								
DO	mg/L	3.1	2.3	1.9	1.5	1.2	1.1								
ORP	mV	27.5	19.8	8.8	-1.1	-7.6	-12.6								
Turbidity	NTU	4.1	5.3	4.1	3.5	3.3	3.1								
Color/tint		clear	-	clear	clear	clear	clear	+							
Odor		none	none	none	none	none	none								
Sample Data															
	ole ID		Date		ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-108			4/13/202	1 1	120	3		0							
Sampler's Na	me (print)·	1	/lichael	Claytor	n		Sample	r Ci	ane	ture:	tros	nscribad	by HLF	
Sampler 5 Na	me (himi	<i>J</i> ·	11	nenaei	Ciayio	11		Sample	וטו	gna	tuic.	uai	13011000	oy HLH	

Facility:	Plum	Point F	nergy Sta	ntion	S	ite ID:	MV	W-113		Sar	npler:	N	Michael (Clayton	
Project Numb			2496-00			Date:	4/13/				npler Orga				Ltd
Site Descripti		(14370	2470 00.	(LITI)	12	- dic.	4/13/	2021		Dui	inpier Organ	inzunon	. 1 11 (1)	issociates	, Eta.
Weather:	OII	clou	dy		Air	Temp. (°F):	60	Win	nd:		northe	ast at 12	mph	
Site type:						1 casing		al:	Wel	ll dia	meter		inches	2	Well
✓ Monitorin		_	Extraction Sorehole	Well	✓ I	PVC		-				00			locked?
Dewaterin		_	pring			Steel		-	100	ai de	pth from T	<u> </u>	feet		✓Yes
☐ Other:	-8	~	r <i>6</i>			Other:			TO	C be	low/above	ground	feet		□No
Damages/rep	airs need	led:	s in well										<u>I</u>	_1	L
Water Level 1	Data														
Measuring po		iption:		Wat	er level	meter:	□Ge	otech/K	eck	100	' ☐Geot	ech/Kec	k 200'		
✓ Mark/notch	on TOC						ПНе	ron Dip		T	✓ Solin		Oth	ner:	
☐North rim o☐Other:	of TOC				-purge nitial		purge mation		ring		Purge	Aft		Dam	orlea
Date	n	nm/dd/y	vV	_	2/2021		mation /2021	4/13/			end 4/13/2021	samp		Rem	aiks
Time		4-hour	y		126		940		202	1 '	1018	103			
Depth to Wate		eet		_	1.51		.50		.50		11.54	11.3			
Product/Thick			ONAPL fe												
Field Data								- I					I		
Field data meters: YSI ProPlus Hach 2100P Turbidimeter YSI MPS 556 HF Scientific Turbidimeter Other: Pump description: Peristaltic Disposable polyethylene Bailer description: Disposable polyethylene Submersible Disposable PVC Purge depth feet Well goes dry during purging: Yes No															
Purge depth	feet		Well g	oes dry	during	purging	: <u> </u> \	es 🔽	No						
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [ir	itern	al diameter	of well	(inches)	$]^2 \times 0.04$	08
Time	24-hour	0945	0950	0955	1000	1005	1010	1015						Rema	ırks
Purge vol.	gallons														
Purge rate	mL/mir			160	160	160	160	160							
pН	su	7.1	6.9	7.1	7.1	7.1	7.1	7.1							
Temp.	°C	16.3		16.3	16.1	16.2	16.2	16.3							
Conductivity	μS/cm	539.		537.1	575.1	535.1	534.9								
DO ORP	mg/L	6.2	2.0	0.6	0.5	0.5	0.5	0.5							
Turbidity	mV NTU	2.5	38.3	23.5	12.4	7.1	-2.0 2.3	-3.7 2.1							
Color/tint	N1U 	clea	+	clear	clear	clear	clear	_							
Odor		none		none	none	none	none	none							
	<u> </u>	none	none	none	none	none	none	none	<u> </u>				<u> </u>		
Sample Data Sample	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-113			4/13/202		020	3	- ~	0							
Sampler's Na	me (prin	t):	N	Aichael	Clayto	1		Sample	er Si	gnat	ure:	trai	scribed	by HLF	

Facility:	Plum	Point E	nergy Sta	ition	S	Site ID:	MV	W-115		Sar	mpler:	N	Aichael (Clayton	
Project Numb			2496-00			Date:		/2021			mpler Orga				. Ltd.
Site Descripti		,	, 0 00	(2111)	<u> </u>		., 15,		Į						,
Weather:	<u> </u>	rair	ıy		Air	Temp. (°F):	59	Wiı	nd:		northe	ast at 14	mph	
Site type:						ll casing		al:	Wel	II dia	ameter		inches	2	Well
Monitorin		_	xtraction	Well	1	PVC		-				0.0		+ -	locked?
Productio Dewaterin		_	orehole pring			Steel			Tota	al de	epth from T	OC	feet		✓Yes
Other:	ig wen	П	pring			fron Other:			TO	C be	low/above	ground	feet		□No
Damages/rep	airs need	ed:						I							
Water Level 1				W	1 1	L 4	Пс	- 41- /TZ	1.	100	, []	1. /IZ	1- 2002		
Measuring po				wat	er level	meter:	_	otech/K ron Dip			☐ Geot ✓ Solin	ech/Kec	k 200° ☐Oth	er.	
□North rim o		•		Pre	e-purge	Pre-	purge		ring		Purge	Aft			
☐Other:					nitial		mation		_		end	samp		Rem	arks
Date	m	ım/dd/y	'y	4/1	2/2021	4/13	/2021	4/13/	202	1	4/13/2021	4/13/2	2021		
Time	2	4-hour			1120	08	330	08	57		0913	092	25		
Depth to Wate	er fe	et]	0.40	10).53	10	.53		10.53	10.5	53		
Product/Thick	iness L	NAPL/I	ONAPL fe	et											
Field Data															
Field data met		_	-					escriptio	n:				iler desc		
✓ YSI ProPlu SI MPS 5		<u> •</u>	☐ Hach 2☐ HF Scie				Perist		ladi	anta	d /∏portal			ble polye ble Teflo	
Other:	30	F	Other:	enunic i	urbian			iei [i iersible	ieur	cate	а / Шрона			ble PVC	11
Purge depth	feet		Well g	oes dry	during	purging	: 🔲 Y	Yes 🗸	No				1		
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [ir	ntern	al diameter	of well	(inches)	$]^2 \times 0.04$	08
Time	24-hour	0840	0845	0850	0855	0900	0905	0910						Rema	ırks
Purge vol.	gallons														
Purge rate	mL/min	160	160	160	160	160	160	160							
pН	su	6.8	6.9	6.9	7.0	7.0	7.0	7.0							
Temp.	°C	15.6	15.7	15.9	16.0	15.9	15.9	15.9							
Conductivity	μS/cm	600.7	7 597.4	598.4	597.8	595.7	595.9	595.0)						
DO	mg/L	2.1	0.9	0.8	0.7	0.7	0.7	0.6							
ORP	mV	95.9	72.1	60.6	51.2	36.5	29.7	26.0							
Turbidity	NTU	4.9	2.7	2.7	2.9	2.6	2.2	2.3							
Color/tint		clear	clear	clear	clear	clear	clear	clear							
Odor		none	none	none	none	none	none	none							
Sample Data															
	ole ID		Date		ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-115			4/13/202	21 0	915	3		0							
G 1 2 27			-	<i>c</i> : 1 · :	CI.			g 1	۵.				., .	1 177 5	
Sampler's Na	me (print	t) :	N	/lichael	Clayto	n		Sample	er Si	gnat	ure:	trai	scribed	by HLF	

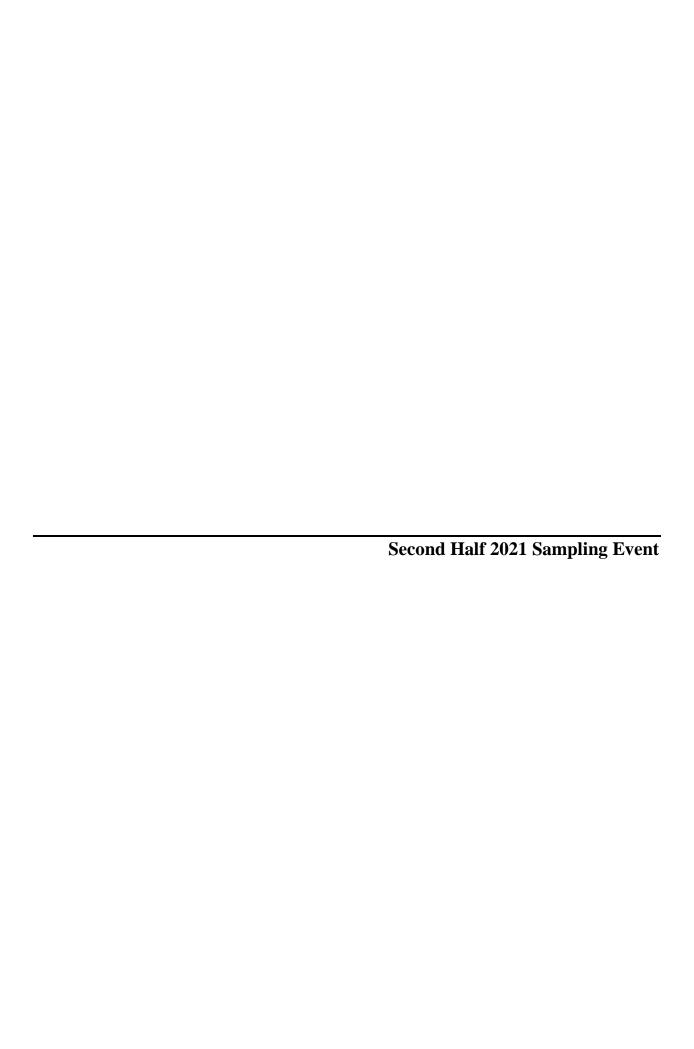
Facility:	Plum I	Point E	nergy Sta	ıtion	S	ite ID:	MV	W-116		Sar	mpler:	Ŋ	Michael	Clayton	
Project Numb			2496-001			Date:		/2021			mpler Orgai			•	Ltd
Site Descripti		14370	2470 001	(LITI)	-	- Lite.	4/13/	2021		Dui	inpier Organ	inzunon	. 1 11(2	issociates	, Ltu.
Weather:	OII	clea	ar		Air	Temp. (°F):	61	Wir	nd:	n	orth-noi	rtheast at	12 mph	
Site type:					Wel	l casing	materi	al:	Wel	l dia	ameter		inches	2	Well
✓ Monitorin			xtraction orehole	Well		PVC		-				00			locked?
Dewaterin		_	orenoie pring			Steel Iron			100	ai de	epth from T	<u> </u>	feet		✓ Yes
☐ Other:	-6	_~	r <i>6</i>			Other:			TO	C be	low/above g	ground	feet		□No
Damages/rep	airs need	ed:						1					1		
Water Level 1								. 1 /52		100	, –	1 /77	1 2001		
Measuring po				Wat	er level	meter:	_	otech/K ron Dip			′ ∐Geote ✓Solin	ech/Kec	k 200′ □Otl	ner•	
□ North rim o				Pre	-purge	Pre-	purge	Dui		1	Purge	Aft		101.	
Other:					nitial		mation		_		end	samp		Rem	arks
Date	m	m/dd/y	у	4/1	2/2021	4/15	/2021	4/15/	202	1	4/15/2021	4/15/2	2021		
Time	24	l-hour			254	13	325	13	38		1402	142	23		
Depth to Wate		et		1	2.59	12	2.64	12.	.64		12.64	12.0	64		
Product/Thick	iness LN	NAPL/I	NAPL fe	et											
Field Data															
Field data met		_	7	100 D m				escriptio	n:				ailer desc		
✓ YSI ProPlu SI MPS 5		<u> •</u>	Hach 2 HF Scie				Perist		ledio	cated	d / Dportab			ible polye ible Teflo	
Other:	30	Ė	Other:	JIIIIIC I	uroidii			ersible	ican	carce	а / Шрогас			ible PVC	11
Purge depth	feet		Well g	oes dry	during	purging	: <u> </u> \	es 🔽	No						
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [ir	itern	nal diameter	of well	(inches)	$(0.040)^2 \times 0.040$	08
Time	24-hour	1330	1335	1340	1345	1350	1355	1400						Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	190	190	190	190	190	190	190							
pН	su	7.0	6.9	6.9	6.9	6.9	6.9	6.9							
Temp.	°C	16.5	16.5	16.6	16.6	16.7	16.6	16.7							
Conductivity	μS/cm	574	589	608	633	655	658	677							
DO	mg/L	2.8	1.8	1.9	1.9	1.7	1.6	1.5							
ORP	mV	11.3	-20.0	-26.0	-33.0	-35.5	-36.1								
Turbidity	NTU	3.4	2.9	2.6	3.4	2.2	2.2	1.7							
Color/tint		clear	clear	clear	clear	clear	clear	clear							
Odor		none	none	none	none	none	none	none							
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			R	emarks		
MW-116			4/15/202	21 1	405	3		0							
Commlan's NI-	ma a (marine t	١.	1	Ciale1	Cla-+			Correl	C:	~ · ·		4	1	k IT F	
Sampler's Na	me (print) :	N	/lichael	Clayto	n		Sample	r 51	gnat	ture:	trai	nscribed	oy HLF	

Facility:	Plum	Point F	Energy Sta	ntion	S	ite ID:	MV	V-117		San	npler:	N	Michael (Clayton	
Project Numb			-2496-00			ate:	4/13/				npler Orgar				. Ltd.
Site Description				(2111)			., 10,								, —
Weather:		cle	ar		Air	Temp. (°	PF):	61	Win	nd:	ne	orth-nor	theast at	12 mph	
Site type:						1 casing		a1·	Wel	1 dia	meter		inches	2	Well
Monitorin		_	Extraction	Well		PVC	materia	-						2	locked?
Production		_	Borehole			Steel			Tota	ıl dep	pth from To	OC	feet		✓ Yes
Dewaterir	ig Well		Spring			ron Other:			TOC	C bel	ow/above g	ground	feet		□No
Damages/rep	airs need	ded:			1										
Water Level I				T											
Measuring poi				Wat	er level	meter:		otech/K			☐Geote	ech/Kec			
North rim o		_		Dro	911899	Dro. 1	<u> </u>	on Dip	per– ring	1		St 101 Aft	Oth	er:	
Other:	7 100				-purge nitial		mation		ging		Purge end	samp		Rem	arks
 Date	n	nm/dd/y	vv	-	2/2021	_	/2021	4/13/			4/13/2021	4/13/2			
Time		24-hour			1235	+	350	+	-08		1417	144			
Depth to Wate	er f	eet		1	0.72	10	.71	10	.71		10.71	10.7	71		
Product/Thick			DNAPL fe	et											
Field Data															
Field data met ✓ YSI ProPlu ☐ YSI MPS 5 ☐ Other:	s	[[[Hach 2 HF Sci			eter neter	Perista	er [🔲 d		cated	l/∏portab	ole]	Disposa	ription: ble polye ble Teflo ble PVC	
Purge depth	feet		Well g	oes dry	during	purging:	: <u></u> Y	es 🔽	No						
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [in	terna	al diameter	of well	(inches)	$]^2 \times 0.04$	08
Time	24-hou	r 135	5 1400	1405	1410	1415								Rema	ırks
Purge vol.	gallons														
Purge rate	mL/mii	n 190	170	170	170	170									
pН	su	6.9	6.9	6.9	6.9	6.9									
Temp.	°C	17.8	3 17.8	18.1	18.0	18.1									
Conductivity	μS/cm	511.	5 510.1	508.1	507.7	507.1									
DO	mg/L	0.6	0.5	0.4	0.4	0.4									
ORP	mV	-31.	7 -40.3	-46.7	-50.4	-51.9									
Turbidity	NTU	5.5	2.7	2.6	2.9	2.2									
Color/tint		clea	r clear	clear	clear	clear									
Odor		non	e none	none	none	none									
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	red			Re	emarks		
MW-117			4/13/202	21 1	420	3		0							
MW-117 DUI			4/13/202	21 1	420	3		0							
Sampler's Na	me (prin	nt):	N	Michael	Claytor	1		Sample	er Sig	gnatı	ure:	trar	nscribed	by HLF	

Facility:	Plum 1	Point E	nergy Sta	tion	S	ite ID:	MV	W-118		Samp	nler:	N	/lichael (Clayton	
Project Numb			2496-001			Date:		/2021			pler Organ				Ltd
Site Descripti		117570	2470 001	(L171)		oute.	7/13/	2021		Sump	pier Organ	nzation	1 111 21	ssociates	, Eta.
Weather:	OII	clea	ar		Air	Temp. (°F):	51	Win	d:		northe	ast at 14	mph	
Site type:						l casing		al:	Well	l diam	neter		inches	2	Well
✓ Monitorin		_	xtraction orehole	Well	V]	PVC		-) C			locked?
Dewaterin		_	pring			Steel Iron			Tota	п аері	th from To	<u> </u>	feet		✓ Yes
☐ Other:	-6	~	r8			Other:			TOC	belo	w/above g	ground	feet		□No
Damages/rep	airs need	ed:						1						1	
Water Level 1				337.4	1 1	4	ПС	otech/K	·1. 1	1002	ПС	1. /TZ	1- 2002		
Measuring po				wat	er ievei	meter:	_	otecn/K ron Dip			Solin	ech/Kec st 101	k 200 □Oth	er:	
☐North rim o				Pre	-purge	Pre-	purge		ring		Purge	Aft			
Other:					nitial		mation	pur	ging		end	samp	ling	Rem	arks
Date	m	m/dd/y	у		2/2021		/2021		/2021	1 4/	/15/2021	4/15/2			
Time	24	1-hour			309	08	320	08	337		0906	092	.2		
Depth to Water					9.70	9.	.76	9.	.76		9.76	9.7	8		
Product/Thick	iness Li	NAPL/I	ONAPL fe	et											
Field Data		-										-			
Field data met		-	7m. 1. 0	100D T	1.1.11			escriptio	on:				iler desc		41. 1
✓ YSI ProPlu SI MPS 5		<u> •</u> 	☐ Hach 2☐ HF Scie				Perist		dedic	ated /	/ portab			ble polye ble Teflo	
Other:	30	Ī	Other:		urorun			ersible	acare	atea /	рогшо		Disposa		
Purge depth	feet		Well g	oes dry	during	purging	: 🔲 ነ	es 🔽	No						
Casing vol.	gallons		= [tota	l depth	(feet) –	depth to	water	(feet)]	× [in	ternal	diameter	of well	(inches)	$]^2 \times 0.040$	08
Time	24-hour	0830	0835	0840	0845	0850	0855	0900	09	905				Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	150	150	150	150	150	150	150	1:	50					
pН	su	6.3	6.3	6.4	6.5	6.5	6.5	6.5	6	5.6					
Temp.	°C	15.5	15.5	15.5	15.5	15.7	15.7	15.7	15	5.7					
Conductivity	μS/cm	488	485	484	485	484	483	483	48	84					
DO	mg/L	3.1	1.4	0.9	0.9	0.8	0.6	0.8	0	.8					
ORP	mV	107.3	3 78.4	63.9	49.7	23.7	9.6	1.6	-2	2.4					
Turbidity	NTU	2.7	2.1	2.3	2.3	2.7	2.6	2.6	2	.4					
Color/tint		clear	clear	clear	clear	clear	clear	clear	cle	ear					
Odor		none	none	none	none	none	none	none	no	one					
Sample Data							:1		1						
Samp	ole ID		Date	T	ime	# Conta	iners	# Filte	red			Re	emarks		
MW-118			4/15/202	21 0	910	3		0							
									_						
Sampler's Na	me (nrint	·)·	1	/lichael	Claytor	n		Sample	er Sie	matur	re·	tros	scribed	by HI E	
pampier 5 Na	me (himi	·J·	1\	nunaci	Ciayio	11		Sample	CI 1318	511atul	· C.	ual	iscribed	UYILLE	

Facility:	Plum I	Point E	nergy Sta	ition	S	Site ID:	M	W-119		Sar	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:	4/15/				mpler Organ				Ltd
Site Descripti		14370	2470 001	(LITI)	-	Juic.	7/13/	2021		Dui	inpier Organ	nzation	. 1 11(1)	Issociates	, Ltu.
Weather:	OII	clea	ır		Air	Temp. (°F):	57	Wir	nd:	n	orth-nor	theast at	14 mph	
Site type:						ll casing		al:	Wel	l dia	ameter		inches	2	Well
Monitorin Productio			xtraction orehole	Well	V]	PVC		-)C	feet		locked?
Dewaterin		_	pring			Steel Iron			1012	ıı de	epth from To	<u> </u>	Teet		✓ Yes
Other:	C	_				Other:			TOC	C be	low/above §	ground	feet		□No
Damages/rep	airs need	ed:						L							
Water Level 1								. 1 /77		100	, D a	1 /77	1 2001		
Measuring po				Wat	er level	meter:	_	otech/Koron Dip			′ ∐Geote ✓Solin	ech/Kec st 101	k 200′ □Oth	ner:	
North rim				Pre	-purge	Pre-	purge	Dur			Purge	Aft		ici.	
☐Other:					nitial		mation		_		end	samp		Rem	arks
Date		m/dd/y	y		2/2021		/2021	4/15/	202	1	4/15/2021	4/15/2			
Time		l-hour			.337		30	11			1206	122			
Depth to Wate					4.84	15	.23	15.	23		15.23	15.2	23		
Product/Thick	iness Li	NAPL/I	NAPL fe	et											
Field Data												r			
Field data met YSI ProPlu			Zilioch 2	100D T.	معناء نطسم		ump de Perist	escriptio	n:				iler desc		thrilana
☐YSI ProPiu			Hach 2 HF Scie			_	_		ledio	cateo	d / portab			ble polye ble Teflo	
Other:			Other:		410141			ersible			п, Прогодо			ble PVC	
Purge depth	feet		Well g	oes dry	during	purging	: 🔲 ነ	les 🔽	No						
Casing vol.	gallons	<u> </u>	= [tota	l depth	(feet) –	depth to	water	(feet)]	< [in	itern	al diameter	of well	(inches)	$(0.040)^2 \times 0.040$	08
Time	24-hour	1140	1145	1150	1155	1200	1205							Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	210	210	210	210	210	210								
pН	su	6.9	6.8	6.8	6.8	6.8	6.9								
Temp.	℃	18.0	17.3	17.3	17.4	17.5	17.5								
Conductivity	μS/cm	596	600	591	595	595	594								
DO	mg/L	2.2	0.8	0.6	0.5	0.5	0.5								
ORP	mV	5.9	-6.4	-28.0	-32.1	-34.6	-37.8	-							
Turbidity Color/tint	NTU	3.1 clear	2.7 clear	2.3 clear	2.4 clear	2.6 clear	2.2 clear								
Odor		none		none	none	none	none								
		попс	попе	попе	попе	попс	none								
Sample Data	ال مار		Date	Т	ime	# Conta	inora	# Filter	ad			D.	emarks		
MW-119	ole ID	+	4/15/202		210	# Conta	mers	# Filter	cu			K	LIIIAIKS		
1/1 // 11/			r/ 13/ 402	-1	210			- 0							
Sampler's Na	me (print): 	N	/lichael	Clayto	n		Sample	r Si	gnat	ture:	trar	nscribed	by HLF	

Groundwater Level Data Sheet


	Energy Station dwater Service onditions:		R145 EPA Mea	ect Number: 590-2496-001 Program suring Device: ast 101		Investiga Michael (Page 1 of 1
Well ID	Date	Tiı	me	Depth to Water (feet below TOC)			Damages/Repairs	8
MW-101	6/29/2021	10	04	14.85	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-102	6/29/2021	10	15	16.50	Damaged we	ll pad/casing llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-103	6/29/2021	09	48	15.37	☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☑ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-108	6/29/2021	08			☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-113	6/29/2021	08	37	17.63	☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-115	6/29/2021	08	30	16.56	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-116	6/29/2021	10	22	16.55	☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-117	6/29/2021	10	31	14.73	☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-118	6/29/2021	09	32	13.26	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☑ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-119	6/29/2021	09	56	18.68	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we☐ Damaged bol☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record

Facility:	Plum I	Point E	nergy Sta	tion	S	ite ID:	MV	W-101		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			mpler Orgai				Ltd
Site Descripti		14370	2470 001	(L171)		oute.	0/27/	2021		Du	impier Organ	nzation	. 1 11(7)	issociates	, Ltd.
Weather:		artly c	loudy		Air	Temp. (°F):	93	Wiı	nd:		south	east at 4	mph	
Site type:			•			l casing		al:	Wel	ll di	ameter		inches	2	Well
Monitorin Productio			xtraction orehole	Well	V]	PVC		-				OC	feet		locked?
Dewaterin		_	pring			Steel Iron			101	ai u	epth from To	<u> </u>	Teet		✓ Yes
Other:	C					Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:						I					l		l
	D. 4														
Water Level I Measuring po		ntion		Wat	er level	meter:	ПСе	otech/K	eck	100)' □Geot	ech/Kec	k 200°		
✓ Mark/notch				, vv ac	ci icvei	meter.	_	ron Dip			Solin		Oth	ier:	
□ North rim o	of TOC				-purge		purge	Dur	_		Purge	Aft			_
Other:		/11/		_	nitial	-	mation	+ + +			end	samp		Rem	arks
Date		m/dd/y l-hour	<u>y</u>		9/2021		/2021 125	6/29/	_	1	6/29/2021 1458	6/29/2			
Time Depth to Wate					4.85		.82	14			14.82	14.8			
Product/Thick			NAPL fe		4.03	14	.02	14.	.02		14.02	14.0	32		
	iless Li	VAI L/L	MAILIC	- I											
Field Data Field data met	ters:	<u> </u>				P	ump de	escriptio	n:			Ва	iler desc	cription:	
YSI ProPlu		<u> </u>	Hach 2			eter	Perist	altic					Disposa	ble polye	
✓ YSI MPS 5	556	F]HF Scie]Other:	ntific T	`urbidir	neter		ler [d ersible	ledi	cate	ed / portab			ble Teflo ble PVC	n
Purge depth	feet			oes dry	during	purging			No				2 isposa		
Casing vol.	gallons			•						nteri	nal diameter	of well	(inches)	$1^2 \times 0.040$	08
Time	24-hour	1430	7	1440	1445	1450	1455	Ì	Ī					Rema	
Purge vol.	gallons														
Purge rate	mL/min	230	230	230	230	230	230								
рН	su	6.8	6.7	6.7	6.7	6.7	6.7								
Temp.	°C	19.3	19.0	19.0	19.1	18.7	18.6								
Conductivity	μS/cm	714	714	713	712	712	710								
DO	mg/L	0.4	0.3	0.3	0.3	0.3	0.2								
ORP	mV	51.9	60.6	62.3	60.2	58.3	58.8								
Turbidity	NTU	2.8	2.6	2.8	3.0	2.4	2.0								
Color/tint		clear		clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data		Т		1	П		П		1						
	ole ID		Date	_	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-101			6/29/202	1 1	500	1		0							
Sampler's Na	me (print):	N	Iichael	Clayto	n		Sample	r Si	gna	ture:	traı	nscribed	by HLF	

Facility:	Plum I	Point E	nergy Sta	tion	S	ite ID:	M	W-113		Sai	mpler:		Michael (Clayton	
Project Numb			2496-001			Date:	6/29/				mpler. mpler Orgar				Ltd
Site Description		1 1370	2190 001	(LITI)		- 410.	0/27/	2021		Su	inpier organ	nzatroni	. 1 11(1)	is so craces	, 2.0.
Weather:		artly c	oudy		Air	Temp. (°F):	91	Wir	nd:		south	east at 5	mph	
Site type:						1 casing		al:	Wel	1 dia	ameter		inches	2	Well
Monitorin Production			xtraction orehole	Well	V]	PVC		-				200			locked?
Dewaterin		_	orenoie oring			Steel			101	ai ae	epth from To	<u> </u>	feet		✓ Yes
Other:	-6	— ~.	6			Other:			TOO	C be	low/above g	ground	feet		□No
Damages/repa	airs need	ed:			I			ı					I		
W-4 I I I	2-4-														
Water Level I Measuring poi		ntion:		Wat	er level	meter:	ПGe	otech/K	eck	100	' □Geote	ech/Kec	k 200'		
✓ Mark/notch		ption.		, vv ac	ci icvci	meter.	_	ron Dip			Solin		ik 200 ☐Oth	er:	
□North rim o	of TOC				-purge		purge	Dur	_		Purge	Aft			
Other:				_	nitial		mation	+ + +		_	end	samp		Rem	arks
Date		m/dd/y	У		9/2021	_	/2021	6/29/		1	6/29/2021	6/29/2			
Time		-hour			0837		140	12		_	1218	123			
Depth to Wate Product/Thick			NIADI f.		7.63	1/	.64	17.	.64		17.64	17.6	04		
Product/ I nick	ness Lr	NAPL/L	NAPL fe	et											
Field Data						12									
Field data met		[-	Hach 2	1በበ ኮ ፐ፣	ırhidim		ump de Perist	escriptio	n:				iler desc	ription: ble polye	thylene
YSI MPS 5		Ė	HF Scie				_		ledio	cate	d / □portab			ble Teflo	
Other:			Other:				Subm	ersible					Disposa	ble PVC	
Purge depth	feet					purging									
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [in	iterr	nal diameter	of well	(inches)	$1^2 \times 0.040$	08
Time	24-hour	1150	1155	1200	1205	1210	1215							Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	140	140	140	140	140	140								
pН	su	6.1	5.9	5.9	6.2	6.2	6.2								
Temp.	°C	22.1	22.6	22.1	22.2	21.9	21.9		-						
Conductivity	μS/cm	545	543	544	549	549	550		-						
DO	mg/L	5.0	4.6	4.5	4.6	4.7	5.0	1							
ORP	mV	89.1	104.9	101.8	90.2	86.7	86.6								
Turbidity	NTU	2.9	2.7	2.4	2.0	1.6	2.3								
Color/tint		clear	clear	clear	clear	clear	clear		-						
Odor		none	none	none	none	none	none	<u> </u>							
Sample Data					Т				ı						
Samp	le ID		Date	_	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-113			6/29/202	1 1	225	1		0							
Sampler's Nar	me (print	Clayto	1		Sample	r Si	gnat	ture:	trar	nscribed	by HLF				

Facility:	Plum I	Point E	nergy Sta	tion	S	ite ID:	MV	W-116		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			mpler Orgai				Ltd
Site Description		11000	2170 001	(LITI)		- ucc.	0/27/	2021		Su.	inpier organ	nzatron	. 1 11(1)	is sociates	, 210.
Weather:		artly c	loudy		Air	Temp. (°F):	94	Wiı	nd:		south	east at 4	mph	
Site type:			<u>-</u>			1 casing		al:	Wel	l di	ameter		inches	2	Well
✓ Monitorin ☐ Productio			xtraction orehole	Well	V]	PVC		-				00			locked?
Dewaterir		_	orenoie pring			Steel			Tota	ai ac	epth from To		feet		✓ Yes
☐ Other:	-6	— ~				Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:			.								I	1	
W-4 I I	D - 4 -														
Water Level I Measuring po		ntion:		Wat	er level	meter:	ПGe	otech/K	eck	100)' □Geot	ech/Kec	k 200'		
✓ Mark/notch	on TOC			, ac	01 10 101	11101011	_	ron Dip			✓ Solin		Oth	ier:	
North rim o	of TOC				-purge		purge	Dui	_		Purge	Aft			_
Other:		/11/		_	nitial		mation	+ + •		_	end	samp		Rem	arks
Date		m/dd/y	У		9/2021		/2021	6/29/	_	1	6/29/2021	6/29/2			
Time		l-hour		_	6.55		5.55	15 16		-	1547 16.55	155 16.5			
Depth to Wate Product/Thick			NAPL fe	-	0.33	10	0.33	10.	.33		10.33	10))		
	iless Li	VAI L/L	MAILIC	J.											
Field Data Field data met		<u> </u>				П	1.					D.	:1		
YSI ProPlu		[v	Hach 2	100P Tu	ırbidim		Perist	escriptio altic	ш.				iler desc Disposa	ripuon: ble polye	thvlene
YSI MPS 5			HF Scie			_	Bladd	ler [🔲 d	ledi	cate	d/_portab		Disposa	ble Teflo	
Other:	Т	<u> </u>	Other:					ersible					Disposa	ble PVC	
Purge depth	feet	-		•		purging								2	
Casing vol.	gallons					7		(feet)]	× [ir	nterr	nal diameter	of well	(inches)		
Time	24-hour	1520	1525	1530	1535	1540	1545							Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	210	210	210	210	210	210								
pН	su	6.5	6.5	6.5	6.5	6.5	6.5								
Temp.	°C	19.6	19.7	19.8	19.6	19.7	19.5	+							
Conductivity DO	μS/cm	963	1001	1018	1032	1042	1052								
ORP	mg/L mV	1.4	48.4	52.3	49.2	48.5	46.7								
Turbidity	NTU	2.1	1.5	2.0	2.7	2.0	1.8	1							
Color/tint		clear	-	clear	clear	clear	clear								
Odor		none		none	none	none	none	+							
Sample Data	<u> </u>	110110	110110		110110	1.0110	110110	1	<u> </u>		<u> </u>				
<u> </u>	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-116			6/29/202	_	555	1		0							
				•											
Sampler's Na	me (print):	N	Iichael	Clayto	1		Sample	r Si	gna	ture:	traı	nscribed	by HLF	

Facility:	Plum	Point E	nergy Sta	tion	5	Site ID:	MV	W-117		Sa	mpler:	N	Michael (Clavton	
Project Numb			2496-001			Date:	6/29/				mpler Orga			-	, Ltd.
Site Descripti				,							1 0				,
Weather:		clou	dv		Air	Temp. (°F):	93	Wi	nd:		south-so	utheast a	t 5 mph	
Site type:			<u>J</u>			ll casing			We	11 di	ameter		inches	2	Well
Monitoring			xtraction	Well		PVC	materi	۵۱.					menes	2	locked?
Productio		_	orehole			Steel			Tot	al de	epth from T	OC	feet		✓ Yes
Dewatering Other:	ng Well	∐S	pring			Iron Other:			TO	C be	elow/above	ground	feet		□No
Damages/rep	airs need	ed:													
Water Level 1				1						100	. 🗖 a	1 /77			
Measuring po				Wat	er leve	l meter:	_	otech/K ron Dip)' ∐Geot ☑Solir	ech/Kec	k 200' □Oth		
North rim		•		Dro	-purge	Dro	<u></u> пе		ring		Purge	Aft		er.	
Other:	<i>n</i> 100				-purge iitial		mation		ring ging		end	samp		Rem	arks
Date	m	ım/dd/y	у	_	9/2021	+	/2021	6/29			6/29/2021	6/29/2			
Time	24	4-hour		1	.031	16	505	16	522		1637	171	.0		
Depth to Wate	er fe	et		1	4.73	14	.73	14	.73		14.73	14.7	73		
Product/Thick	iness L	NAPL/I	NAPL fe	et											
Field Data															
Field data met								escriptio	n:				iler desc		
YSI ProPlu		<u>•</u>	Hach 2				Perist							ble polye	
✓ YSI MPS 5	556	F	HF Scie	entific T	urbidii	meter L		ler [o ersible	dedi	cate	ed / ∏portal			ble Teflo ble PVC	on
Purge depth	feet		Well g	oes dry	during	purging	: <u></u>	es 🔽	No						
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [iı	nterr	nal diameter	of well	(inches)	$]^2 \times 0.04$	08
Time	24-hour	1610	1615	1620	1625	1630	1635							Rema	arks
Purge vol.	gallons														
Purge rate	mL/min	180	180	180	180	180	180								
pН	su	6.5	6.4	6.4	6.4	6.4	6.4								
Temp.	°C	19.9	20.0	20.2	20.3	20.2	20.0								
Conductivity	μS/cm	570	567	566	566	565	566								
DO	mg/L	2.8	2.5	2.5	2.4	2.4	2.5								
ORP	mV	51.2	57.6	56.2	56.4	55.7	58.4								
Turbidity	NTU	3.4	1.4	1.4	1.6	1.5	1.4								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	red			Re	emarks		
MW-117			6/29/202	1 1	650	2		0							
MW-117 DUI	P		6/29/202	1 1	655	2		0		dup	olicate samp	le			
EPA EB-1		1 1	710	3		0		equ	ipment blar	ık					
Sampler's Na	ma (nrint	1	fichael	Clarita	n		Sample	ar Si	ana	tura.	tror	scribed	by HI E		

Groundwater Level Data Sheet

	Energy Station dwater Service onditions:		R145 EPA Mea	ect Number: 590-2496-001 Program suring Device: ast 101		Investiga Michael (Page 1 of 1
Well ID	Date	Tiı	me	Depth to Water (feet below TOC)			Damages/Repairs	
MW-101	10/4/2021	10:	55	20.61	☐ Damaged we ☑ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-102	10/4/2021	110	02	22.67	Damaged we Damaged bol Damaged equ	ll pad/casing llards	□ Damaged TOC □ Damaged lock □ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-103	10/4/2021	10	43	21.31	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	ll pad/casing llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-108	10/4/2021	08:	54	25.83	☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-113	10/4/2021	084	48	24.38	☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	Lacks visibility Lacks access See GW sample record
MW-115	10/4/2021	084	40	23.02	☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-116	10/4/2021	10-	47	22.48	☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-117	10/4/2021	11	18	21.16	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☑ Lacks access ☐ See GW sample record
MW-118	10/4/2021	10:	32	19.53	☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-119	10/4/2021	10	48	24.49	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we☐ Damaged bol☐ Damaged equ	llards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record

Facility:	Plum	Point F	Energy Sta	tion	S	ite ID:	MV	V-101		San	npler:		Michael (Clayton	
Project Numb			-2496-001			Date:	10/7/				npler Orga				Ltd.
Site Description		1070	2190 001	(12171)		- ucc.	10/ //	2021		Buil	apier organ	inzunon	. 1 11(1)	issociate.	, Eta.
Weather:	<u> </u>	partly (loudy		Air	Temp. (°F)·	72	Wir	ıd.		vest-son	thwest a	t 1 mph	
Site type:		partiy	loudy					-				West sou		T .	Well
Monitorin	ng Well	□I	Extraction	Well		ll casing	materi	ai: _	wei	ı aıa	meter		inches	2	locked?
☐ Production	n Well		Borehole			Steel			Tota	al de	pth from T	OC	feet		✓ Yes
Dewaterir	ng Well		pring			ron			T O 0	~					
☐ Other:					(Other:			100	bel	low/above	ground	feet		□No
Damages/rep	airs nee	ded:													
Water Level I	Data														
Measuring po	int desci	ription:		Wat	er level	meter:	□Geo	otech/K	eck	100'	Geot	ech/Kec	k 200'		
Mark/notch		C						on Dip		T	✓ Solin		Oth	ier:	
North rim o	of TOC				-purge		purge	Dui	_		Purge	Aft		ъ	,
Other:		/11/		_	nitial		mation	_			end	samp		Rem	arks
Date		nm/dd/	/у	-	4/2021	-	/2021	10/7/		I .	10/7/2021	10/7/2			
Time		24-hour		_	1055)22	10			1053	110			
Depth to Wate		eet		-	20.61	20).77	20.	.77		20.77	20.7	77		
Product/Thick	iness I	NAPL/	DNAPL fe	et											
Field Data	Field Data														
Field data met		-						scriptio	n:				iler desc		
☐YSI ProPlu ✓YSI MPS 5		<u>[</u>	Hach 2 HF Scie				Perist		ladio	antad	l /∏portal			ble polye ble Teflo	
Other:	30	ŀ	Other:	enunic i	urbian	Heter	Subm		iear	zateu	і / Шрогіаі			ble PVC)II
Purge depth	feet		Well g	oes drv	during	purging			No			-	···		
Casing vol.	gallons		_							nterna	al diameter	of well	(inches)	$1^2 \times 0.04$	08
Time	24-hou	-		1035	1040	1045	1050	[Rema	
Purge vol.	gallons	_	1000	1000	10.0	10.0	1000								
Purge rate	mL/mi	-	210	210	210	210	210								
pH	su	7.1	6.7	6.6	6.7	6.7	6.7								
Temp.	°C	20.0	_	18.7	18.6	18.5	18.6								
Conductivity	μS/cm	600	_	605	609	610	612		+						
DO	mg/L	3.3	0.6	0.4	0.3	0.2	0.2								
ORP	mV	174.	_	132.9	124.5		122.1	1	+						
Turbidity	NTU	6.2	3.1	1.8	1.4	1.2	1.3		+						
Color/tint		clea		clear	clear	clear	clear								
Odor		non		none	none	none	none								
Sample Data			-			1					<u>, l</u>	l	<u> </u>		
_	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-101			10/7/202		055	3		0							
EPA EB			10/7/202		125	3		0							
						-									
)															
Sampler's Na	Sampler's Name (print): Michael Clayton Sampler Signature: transcribed by HLF														

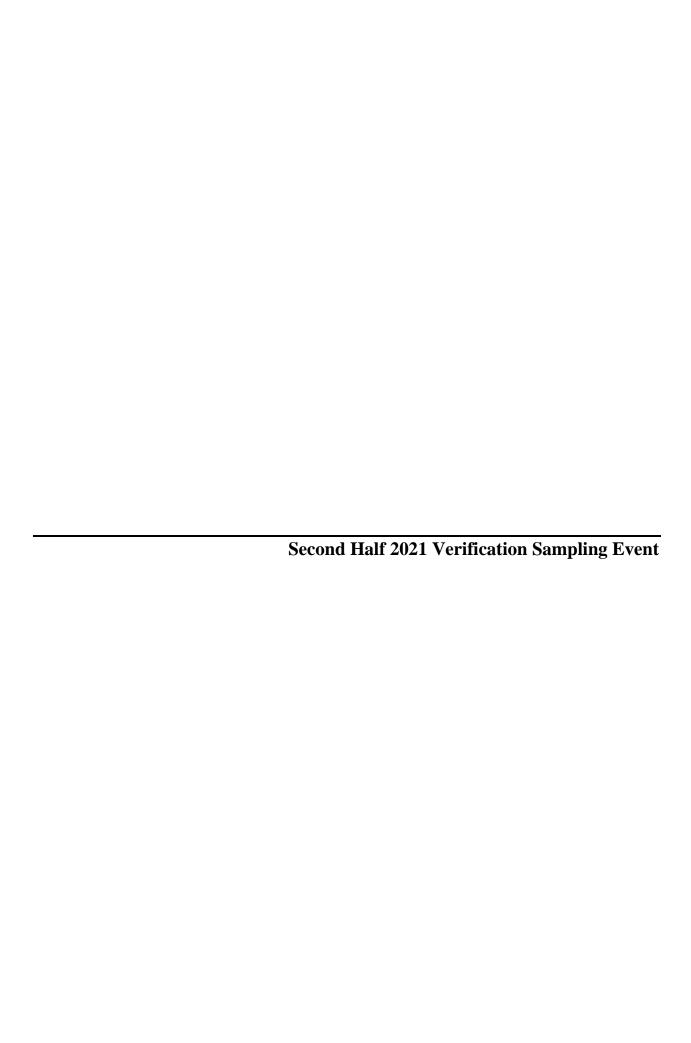
Eggilitzu	Dl.,,,, D	oint Er	arar Cta	tion	C	ite ID:	1/1	W-102		Commlon.		Micho	al Clarete		
Facility:			ergy Sta			ate:				Sampler: Sampler O			el Clayto		T + A
Project Numb	ber: K	14590-2	2496-001	(EPA)	L	ate:	10/6/	/2021	i.	Sampler O	rganizat	ion: FIN	N ASSOCI	ates	, Lta.
Site Description					<u> </u>			r							
Weather:	p	artly cl	oudy		Air	Temp. (°F):	75	Wind	l:	south	-southeas	st at 6 m	ph	1
Site type: Monitoring	og Woll	ПБ	traction	Wall		l casing	materi	al:	Well	diameter		inch	es 2	2	Well locked?
Production			orehole	Well		PVC Steel			Total	depth from	n TOC	feet			
Dewaterir		_	oring			ron									✓Yes
☐ Other:						Other:			TOC	below/abo	ve grou	nd feet			□No
Damages/rep	airs neede	d: Larg	e ant ne	st in we	1							l .	I .		
Water Level I	Data														
Measuring po		otion:		Wate	er level	meter:	=	otech/K				Keck 200			
✓ Mark/notch North rim o				Desc		Duo		ron Dip	per-1 ring		olinst 10	01 <u></u> After	Other:		
Other:	лтос				-purge nitial		purge mation		ring ging	Purge end		mpling	F	Rem	arks
 Date	mr	n/dd/y	I		4/2021		/2021	_	/2021	10/6/20		/6/2021	_		
Time		-hour	<u>'</u>		102		235		312	1348		1410			
Depth to Wate	er fee	et		2	2.67	22	.77	22	.82	22.82		22.82			
Product/Thick	ness LN	IAPL/D	NAPL fe	et											
Field Data	<u>+</u> _							<u> </u>			<u> </u>		•		
Field data met	ters:	_				P	ump de	escriptio	on:			Bailer d	escriptio	n:	
☐YSI ProPlu		V	Hach 2			eter 🔽	Perist	altic				Dispo	osable p	olye	
YSI MPS 5	56		HF Scie	entific T	urbidin	neter			dedica	ited / _po	rtable]		osable T		a
Other:	Cont		Other:	1 .	1	L		ersible	lar.			□ Dispo	osable P	٧C	
Purge depth	feet			•		purging		es 🔽				11 // 1	<u> </u>		
Casing vol.	gallons	1240	r	r			7			ernal diam	T	r r			
Time	24-hour	1240	1245	1250	1255	1300	1305	1310	131	15 1320	1325	1330	K	ema	rks
Purge vol.	gallons	160	160	160	160	160	160	160	1.6	0 160	160	160			
Purge rate	mL/min	160 6.6	160 6.6	160	6.6	160 6.6	160 6.7	160 6.5	6.		160 6.7	160 6.7			
рН	°C	20.8	20.9	20.8	20.5	20.5	20.5	_	20.		20.2	20.5			
Temp. Conductivity	μS/cm	624	623	625	625	625	625	20.1 625	62		629	627			
DO		0.6	0.3	0.3	0.2	0.2	0.2	0.2	0.1		0.2	0.2			
ORP	mg/L mV	129.8	117.5	112.5	113.1	116.9	111.1	91.3	17.		-46.2	-52.4			
	NTU	2.2	2.1	1.5	1.5	1.7	2.4	3.9	4.		4.4	4.3			
Turbidity Color/tint		clear	clear	clear	clear	clear	clear	-	_		clear	clear			
Odor		none	none	none	none	none	none	+		_	sour	sour			
		попс	Hone	HOHE	HOHE	Hone	none	попс	300	ui soui	Soul	Soul			
Sample Data						~									
Samp	ole ID		Date			# Conta	iners	# Filte				Remark	.S		
MW-102			10/6/202	2.1					S	ee page 2					
					+										
Sampler's Na	me (print)	:	N	/lichael	Claytor	1		Sample	er Sigi	nature:		transcrib	ed by H	LF	

Facility:	Plum	Point E	nergy Sta	tion	S	ite ID:	MV	W-102		Sa	ampler:	N	/ichael	Clayton	
Project Numb			2496-001			Date:		/2021			ampler Orgai			•	Ltd
Site Descripti		1370	2190 001	(L171)		- ucc.	10/0/	2021		54	impier organ	nzation		Issociates	, Etc.
Weather:		partly c	loudy		Air	Temp. (°	°F):	75	Wi	nd:	S	outh-so	utheast a	at 6 mph	
Site type:						l casing		al:	We	ll di	iameter		inches	1	Well
✓ Monitorin			xtraction orehole	Well	V]	PVC						00			locked?
Dewaterir		_	orenoie pring			Steel Iron			100	ai d	lepth from To	<u> </u>	feet		✓ Yes
☐ Other:	-8	~	r <i>8</i>			Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed: Lar	ge ant nes	st in we	11								I		1
Water Level 1	Data														
Measuring po		iption:		Wate	er level	meter:	□Ge	otech/k	Ceck	100	0' ☐Geot	ech/Kec	k 200'		
Mark/notch								ron Dip	-	-	✓ Solin		Otl	her:	
□North rim o □Other:	of TOC				-purge nitial	Pre-p	ourge mation		iring rging		Purge end	Aft samp		Rem	arke
Date	m	ım/dd/y	v	_	4/2021	+	/2021	-	5/202		10/6/2021	10/6/2		Kem	arks
Time		4-hour	<i>3</i>	_	102	_	35		312		1348	141			
Depth to Wate		et		_	2.67		.77		2.82		22.82	22.8			
Product/Thick		NAPL/I	NAPL fe	-											
Field Data	<u> </u>							•		•			•		
Field data met YSI ProPlu YSI MPS 5 Other:	S		Hach 2: HF Scie Other:			eter	Perist Bladd		dedi	cate	ed /∏portab	ole]	Disposa Disposa	cription: able polye able Teflo able PVC	
Purge depth	feet		Well g	oes dry	during	purging:	: <u>\</u>	les 🔽	No						
Casing vol.	gallons		= [total	depth ((feet) –	depth to	water	(feet)]	× [ir	nter	nal diameter	of well	(inches	(0.040)	08
Time	24-hour	1335	1340	1345										Rema	rks
Purge vol.	gallons														
Purge rate	mL/min		160	160											
pН	su	6.7	6.7	6.8											
Temp.	°C	20.3	20.9	21.1											
Conductivity	μS/cm	631	627	630											
DO	mg/L	0.3	0.2	0.3											
ORP	mV	-61.4		-57.9											
Turbidity	NTU	4.1	4.3	4.3											
Color/tint Odor		clear		clear											
		sour	sour	sour											
Sample Data	1 115		Б.			" C		# F '1	,			-	1		
	ole ID		Date		ime	# Conta	iners	# Filte	red			R	emarks		
IVI W - 1 U Z	IW-102 10/6/2021 1350														
Sampler's Na	me (prin	t):	N	Iichael	Clayto	n		Sampl	er Si	gna	ature:	traı	nscribed	by HLF	

Facility:	Plum 1	Point E	nergy Sta	ıtion	S	ite ID:	MV	W-103		Sar	npler:	N	Michael (Clayton	
Project Numb			2496-001			Date:	10/7/				npler Orga				. Ltd.
Site Description			, 0 00.	(2111)			10///				<u>F</u> <u>8</u>				, —
Weather:		partly c	loudy		Air	Temp. (°F):	63	Wiı	nd:		northy	west at 2	mph	
Site type:	-					l casing		al:	Wel	ll dia	meter		inches	2	Well
Monitorin		_	xtraction	Well	V	PVC		H				0.0		1 -	locked?
Production Dewaterin		_	orehole pring			Steel			Tota	al de	pth from T	OC	feet		✓ Yes
Other:	ig Weii	Ш°.	pring			ron Other:			TO	C be	low/above	ground	feet		□No
Damages/rep	airs need	ed:						ı							1
	<u> </u>														
Water Level I Measuring po		ntion		Wat	or lovol	meter:	ПСа	otech/K	ook	100	, DGeot	ech/Kec	k 200°		
Mark/notch				vv at	ei ievei	meter.	_	ron Dip			Solin		K 200 ☐Otl	ner:	
North rim o				Pre	-purge	Pre-	purge	Dui			Purge	Aft			
Other:	1			i	nitial	confir	mation	 			end	samp	ling	Rem	arks
Date	m	m/dd/y	y	_	4/2021		/2021	10/7/	_	1	10/7/2021	10/7/2			
Time	24	1-hour			1043	08	310	08	37		0854	091	.6		
Depth to Wate	er fe	et		2	21.31	21	.44	21.	.50		21.50	21.5	50		
Product/Thick	iness Li	NAPL/E	NAPL fe	et											
Field Data															
Field data met		_	_					escriptio	n:				iler desc		
☐YSI ProPlu ✓YSI MPS 5		<u> •</u>	Hach 2 HF Scie				Perist		ladi.	aataá	d /∏portal			ible polye ible Teflo	
Other:	36	-] Other:	enunic i	urbian	neter		ersible	iear	catec	1 /portat			ible PVC	11
Purge depth	feet			oes dry	during	purging	<u>-</u> : Пъ	es 🔽	No				1		
Casing vol.	gallons			•						ntern	al diameter	of well	(inches)	0.04	08
Time	24-hour	0820	0825	0830	0835	0840	0845	0850						Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	190	190	190	190	190	190	190							
pН	su	6.5	6.2	6.1	6.3	6.4	6.5	6.5							
Temp.	°C	18.3	18.2	18.3	18.4	18.4	18.4	18.4							
Conductivity	μS/cm	497	493	491	494	494	494	496							
DO	mg/L	0.8	0.6	0.5	0.5	0.4	0.5	0.5							
ORP	mV	177.9	193.0	168.0	154.7	156.7	150.4	146.3							
Turbidity	NTU	2.4	2.5	3.4	3.0	3.2	2.7	2.9							
Color/tint		clear	clear	clear	clear	clear	clear	clear							
Odor		none	none	none	none	none	none	none							
Sample Data		ī			,		-								
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks		
MW-103			10/7/202	21 0	900	3		0							
Sampler's Na	me (print):	N	/lichael	Clayto	n		Sample	r Si	gnat	ure:	traı	nscribed	by HLF	

Facility:	Plum 1	Point E	nergy Sta	tion	S	ite ID:	MV	W-108		Sam	pler:		Michael	Clayton	
Project Numb			2496-001			Date:		/2021			-			Associates	. Ltd.
Site Descripti		11000	, 0 00.	(2111)			10,0,				<u> </u>	,			,
Weather:		partly c	oudy		Air	Temp. (°F):	72	Wind	d:		north-n	ortheast	at 7 mph	
Site type:	-		<u>-</u>		Wel	1 casing	materi	al:	Well	diar	neter		inches	s 2	Well
Monitorin			xtraction	Well	✓ I	PVC		-				TOG			locked?
Productio Dewaterin		_	orehole oring			Steel		-	I otal	l dep	th from	100	feet		✓Yes
Other:	ig wen		pring			ron Other:			TOC	belo	ow/abov	e ground	feet		□No
Damages/rep	airs need	ed:						L					I		
Water Level 1	Data														
Water Level I Measuring po		ntion		Wat	er level	meter:	ПСе	otech/K	eck 1	00'	□Ge	otech/Ke	ck 200'		
Mark/notch				1,44	ci icvci	meter.	_	ron Dip				inst 101		her:	
North rim o	of TOC				-purge		purge		ring		Purge		ter		
Other:	<u> </u>			_	nitial	_	mation		ging		end		oling	Rem	arks
Date		m/dd/y	y		4/2021	_	/2021		/2021	1	0/5/202		2021		
Time		l-hour)854		42		212		1241	_	.53		
Depth to Wate				_	5.83	25	.95	25	.95		25.95	25	.95		
Product/Thick	iness Li	NAPL/E	NAPL fe	et											
Field Data															
Field data met		_	arr 1 o	100D T	1 . 1.			escription	on:			В		scription:	.1 1
☐YSI ProPlu ✓YSI MPS 5		<u> </u>	Hach 2: HF Scie				Perist		dedica	ated	/ port	able 1 L		able polye able Teflo	
Other:	30	<u> </u>	Other:	illilic i	urbian			ersible	ucuica	aicu	/ Шрогі			able PVC	11
Purge depth	feet		Well g	oes dry	during	purging	: <u></u>	Yes 🔽	No						
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [int	terna	ıl diamet	er of wel	l (inches	$[s]^2 \times 0.040$	08
Time	24-hour	1155	1200	1205	1210	1215	1220	1225	12	30	1235	1240		Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	200	200	200	200	200	200	200	20	00	200	200			
pН	su	7.0	6.6	6.3	6.4	6.4	6.6	6.6	6.	.7	6.7	6.7			
Temp.	°C	55.9	21.1	20.8	20.7	20.4	20.8	20.9	21	.0	20.7	20.8			
Conductivity	μS/cm	766	775	774	774	774	771	768	75	59	761	756			
DO	mg/L	3.2	1.3	1.0	0.6	0.5	0.3	0.3	0.	.3	0.2	0.2			
ORP	mV	74.9	77.5	81.5	70.5	71.5	63.2	61.2	56	5.9	55.8	56.5			
Turbidity	NTU	4.6	3.7	3.7	2.9	4.4	3.4	3.0	2.	.8	2.8	2.3			
Color/tint		clear	clear	clear	clear	clear	clear	clear	cle	ear	clear	clear			
Odor		none	none	none	none	none	none	none	no	ne	none	none			
Sample Data															
Samp	ole ID		Date	Т	ime	# Conta	iners	# Filte	red			F	Remarks		
MW-108			10/5/202	1 1	245	3		0							
Sampler's Na	me (print):	N	Iichael	Clayto	1		Sampl	er Sig	natu	re:	tra	inscribed	d by HLF	

Facility:	Plum 1	Point E	nergy Sta	tion	S	Site ID:	MV	W-113		Sa	mpler:	N	Michael (Clayton	
Project Numb			2496-001			Date:		/2021			mpler Orgai				Ltd
Site Descripti		114370	2470 001	(LITI)		oute.	10/3/	2021		- Du	impier Organ	nzation	. 1 11(1)	issociates	, Ltd.
Weather:		partly c	loudy		Air	Temp. (°F):	76	Wiı	nd:	r	orth-no	rtheast a	t 6 mph	
Site type:	-				Wel	ll casing	materi	al:	Wel	ll di	ameter		inches	2	Well
Monitorin Productio			xtraction orehole	Well		PVC		-	Tote	a1 da	epth from To)C	feet		locked?
Dewaterin		_	pring			Steel Iron			100	ai uc	cpui iroini iv		icci		✓ Yes
Other:						Other:			TO	C be	elow/above g	ground	feet		□No
Damages/rep	airs need	ed:			1			.					•	•	1
Water Level 1				337.4	1 1	L 4	ПС	- 41. /TZ	1.	100	у. ПС	1. /IZ	1. 2002		
Measuring po				wat	er level	meter:	_	otech/K ron Dip			☐ Geot	ech/Kec st 101	k 200° □Oth	ier:	
North rim				Pre	-purge	Pre-	purge	Dui			Purge	Aft			
Other:	1			_	nitial		mation	- ' '			end	samp		Rem	arks
Date		m/dd/y	У		4/2021		/2021	10/5/		1	10/5/2021	10/5/2			
Time		1-hour)848		040	11			1123	113			
Depth to Wate				-	24.38	24	.47	24.	.47		24.47	24.4	47		
Product/Thick	iness Ll	NAPL/I	NAPL fe	et											
Field Data		<u> </u>													
Field data met		Ī.	Hach 2	100 D Tı	ırhidim		ump de Perist	escriptio	n:				iler desc	cription: ble polye	thylono
YSI MPS 5		Ľ	HF Scie			_	_		ledi	cate	d / portab			ble Teflo	
Other:			Other:				Subm	ersible						ble PVC	
Purge depth	feet					purging									
Casing vol.	gallons			r			water	(feet)]	× [ir	nterr	nal diameter	of well	(inches)	$1^2 \times 0.040$	08
Time	24-hour	1055	1100	1105	1110	1115	1120							Rema	ırks
Purge vol.	gallons														
Purge rate	mL/min		150	150	150	150	150								
pН	su	6.3	6.4	6.5	6.6	6.6	6.6								
Temp.	°C	19.8	_	20.1	20.2	20.3	20.4								
Conductivity	μS/cm	424	420	417	415	416	417								
DO	mg/L	4.0	3.7	4.5	4.1	3.8	3.6	+							
ORP	mV	65.6	_	56.0	57.7	57.3	54.0								
Turbidity Color/tint	NTU	1.5	1.5 clear	1.8 clear	1.5 clear	1.1 clear	1.1 clear								
Odor		none		none	none	none	none	+							
		Hone	Hone	попс	попс	Hone	Hone				<u> </u>				
Sample Data	do ID		Date	7	ime	# Conta	inora	# Filter	.o.d			D	emarks		
MW-113	ole ID		10/5/202	_	125	# Conta	111018	# Filter	cu			K	CHIALKS		
171 77 -113			10/3/402	1 1	140			- 0							
Sampler's Na	me (print	:):	N	Iichael	Clayto	n		Sample	r Si	gna	ture:	trai	nscribed	by HLF	


Facility:	Plum I	Point E	nergy Sta	tion	S	ite ID:	MV	W-115	T	Sample	er:	N	Michael	Clayton	
Project Numb			2496-001			Date:		/2021						Associates	. Ltd.
Site Description		11000	, 0 00.	(2111)			10,0,			~ ·					,
Weather:		artly c	oudy		Air	Temp. (°F):	68	Wind	d:	r	north-no	rtheast a	at 7 mph	
Site type:			<u> </u>		Wel	1 casing	materi	al:	Well	diamet	er		inches	2	Well
Monitorin			xtraction	Well	✓ I	PVC		-				0.0			locked?
Production Dewaterin		_	orehole oring			Steel		-	Total	depth	from T	<u> </u>	feet		✓Yes
Other:	15 ((611		pring			ron Other:			TOC	below	above ;	ground	feet		□No
Damages/rep	airs need	ed:													
Water Level I	Data														
Water Level I Measuring po		ntion		Wat	er level	meter:	ПGe	otech/K	eck 1	00'	Geot	ech/Kec	·k 200'		
Mark/notch				wat	ci icvci	meter.	_	ron Dip		-	Solin		⊼k 200 ∐Otl	her:	
North rim o	of TOC			Pre	-purge	Pre-	 purge		ring		urge	Aft	er		
Other:	ı			_	nitial	_	mation	-	ging	_	end	samp		Rem	arks
Date		m/dd/y	у		4/2021	_	/2021		/2021	_	5/2021	10/5/2			
Time	24	l-hour			0840		920		941	_	800	102			
Depth to Water					3.02	23	.12	23	.12	2.	3.12	23.	12		
Product/Thick	iness Li	NAPL/E	NAPL fe	et											
Field Data															
Field data met		_	-					escription	on:					cription:	
☐YSI ProPlu ✓YSI MPS 5		<u> •</u>	Hach 2 HF Scie				Perist		dadia	otad /F	portab			able polye able Teflo	
Other:	30	-] Other:	enunic i	urbian	neter		ersible	ueuica	ated / L	_portat			able PVC	11
Purge depth	feet			oes drv	during	purging	<u>-</u> : 🗆 Y	es 🔽	No						
Casing vol.	gallons									ternal d	iameter	of well	(inches	(0.040)	08
Time	24-hour	0925	0930	0935	0940	0945	0950	0955	10	00 10	005			Rema	rks
Purge vol.	gallons														
Purge rate	mL/min	160	160	160	160	160	160	160	16	50 1	60				
рН	su	6.2	6.1	6.3	6.4	6.5	6.6	6.7	6.	.7 6	5.7				
Temp.	°C	19.1	19.3	19.4	19.5	19.6	19.6	20.0	20	0.2 20	0.2				
Conductivity	μS/cm	626	591	588	587	584	583	583	58	34 5	84				
DO	mg/L	4.9	3.7	3.5	4.0	5.5	5.9	5.9	6.	.0 5	.9				
ORP	mV	105.8	148.2	132.1	118.5	63.8	62.1	77.9	76	5.1 7.	3.3				
Turbidity	NTU	1.9	1.4	1.3	1.1	1.1	1.0	1.0	0.	.9 1	.0				
Color/tint		clear	clear	clear	clear	clear	clear	clear	cle	ear cl	ear				
Odor		none	none	none	none	none	none	none	no	ne no	one				
Sample Data															
Samp	ole ID		Date	_	ime	# Conta	iners	# Filte	red			Re	emarks		
MW-115			10/5/202	1 1	010	3		0							
Sampler's Na	me (print):	N	Iichael	Clayto	1		Sampl	er Sig	nature:		traı	nscribed	by HLF	

Facility: Plum Point Energy Station Site ID: MW-116 Sampler: Mic													Michael	ael Clayton			
Project Numb	Date:				Sampler Organization: FTN Associates, Ltd					Ltd							
Project Number: R14590-2496-001 (EPA) Date: 10/6/2021 Sampler Organization: FTN Associates, Ltd. Site Description																	
Weather:		artly c	loudy		Air	Temp. (°F):	76	Wiı	nd:	S	outh-so	utheast a	ıt 4 mph			
Site type:			1 casing		al:	Wel	Vell diameter			inches	2	Well					
Monitoring Well Extraction W					✓ I	PVC		Total depth from TOC						1			
☐ Production Well ☐ Borehole ☐ Dewatering Well ☐ Spring						Steel			Tota	ai de	ptn from 1		feet		✓ Yes		
Other:	-6	— ~			on Other:			TO	C bel	low/above	ground	feet		□No			
Damages/rep	airs need	ed:											ı		<u> </u>		
Water Level Data																	
Measuring point description: Water level meter: ☐Geotech/Keck 100' ☐Geotech/Keck 200' ☐Heron Dipper—T ✓Solinst 101 ☐Other:																	
✓ North rim o				Pre	-purge	Pre-purge		During			Purge	Aft					
☐Other:				iı	nitial	_	confirmation				end	samp		Remarks			
Date		m/dd/y	у		4/2021		10/6/2021		10/6/2021		10/6/2021	10/6/2					
Time		l-hour			047		120		51		1503	152					
-	Depth to Water feet				2.48	22	.57	22	.57		22.57 22.5		57				
Product/Thick	Product/Thickness LNAPL/DNAPL feet LNAPL/DNAPL feet																
Field Data																	
Field data met		_		100D T	1 . 1.			escriptio	n:				ailer desc		.1 1		
☐YSI ProPlu ✓YSI MPS 5		<u> •</u> -	Hach 2: HF Scie			_	Perist		ledio	cated	d∕∏portal			ible polye ible Teflo			
Other:	munic 1	Submersible								Disposable PVC							
Purge depth	feet		Well g	oes dry	dry during purging: Yes No												
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [ir	ntern	al diameter	of well	(inches)	$(0.040)^2 \times 0.040$	08		
Time	24-hour	1430	1435	1440	1445	1450	1455	1500						Rema	ırks		
Purge vol.	gallons																
Purge rate	mL/min	175	175	175	175	175	175	175									
pН	su	6.7	6.3	6.5	6.5	6.5	6.5	6.5									
Temp.	°C	22.2	20.3	20.6	20.3	20.3	20.8	19.9									
Conductivity	μS/cm	907	924	934	939	944	946	948									
DO	mg/L	2.1	0.9	0.8	0.8	0.7	0.7	0.6									
ORP	mV	14.7	41.1	39.4	45.5	46.5	48.8	51.6									
Turbidity	NTU	2.1	1.5	1.4	1.1	1.1	1.0	1.0									
Color/tint		clear	clear	clear	clear	clear	clear	clear									
Odor		none	none	none	none	none	none	none									
Sample Data																	
Samp	Sample ID Date			Т	ime	# Conta	# Containers		ed	l Remarks							
MW-116			10/6/202	1 1	510	3		0									
Compley's Ne	ma (nnint	١٠	1	liobaat	Clarate	•		Commi	C:	on at	11501	4	ا د دانسور	h. III E			
Sampler's Na	1ichael	Ciaytoi	1		Sampler Signature: transcribed by HLF												

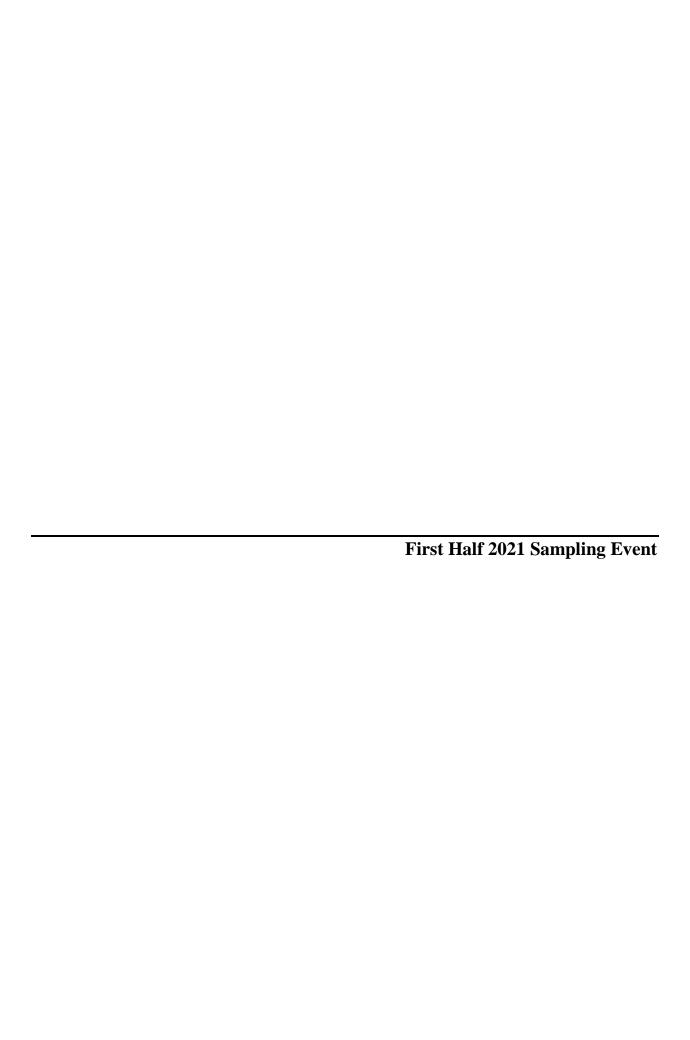
Facility: Plum Point Energy Station Site ID: MW-117 Sampler: Michael Clayton																
Project Number: R14590-2496-001 (EPA)						Date:	10/6/							s. Ltd.		
Site Description																
Weather:		Air Temp. (°F): 74 Wind: south-southeast								utheast a	at 6 mph					
Site type:								neter		inches	2	Well				
Monitorin	ng Well		Extraction	Well		PVC	g material: Wel			i uiai	Hetel		inches		locked?	
Production Well Borehole								Tota	ıl dep	oth from T	feet		✓ Yes			
Dewatering Other:			fron			TOC	¹ held	ow/above	oround	feet		□No				
	_!	1. 1.				Other:			-			Stound	Tool			
Damages/repairs needed:																
Water Level Data																
Measuring point description: Water level meter: Geotech/Keck 100' Geotech/Keck 200'																
Mark/notch		2		_				ron Dip		T	Solir		Other:			
☐North rim o☐Other:	or TOC				e-purge nitial		Pre-purge confirmation		ing		Purge end	Aft		Remarks		
Date	r	nm/dd/y	73.7	_	4/2021		10/6/2021		purging 10/6/2021		0/6/2021	samp		Kein	iaiks	
Time		4-hour	УУ	_	1118	+	1120		47	1 1	1157	122				
Depth to Water		eet		_	21.16		.28	21.			21.30	21.3				
Product/Thick			ONAPL fe	-	-1.10		0				21.50					
Field Data Field data meters: Pump description: Bailer description: □YSI ProPlus □ Hach 2100P Turbidimeter □ Disposable polyethylene																
✓ YSI MPS 5 ☐ Other:	entific I	ific Turbidimeter Bladder [dedicated / portable] Disposable Teflon Submersible Disposable PVC														
Purge depth	feet				dry during purging: Yes No											
Casing vol.	gallons		= [total	depth	(feet) –	depth to water		(feet)]>	× [in	terna	ıl diametei	of well	(inches)	$]^2 \times 0.04$	08	
Time	24-hou	r 1125	5 1130	1135	135 1140		1145 1150		1155					Rema	arks	
Purge vol.	gallons															
Purge rate	mL/mii	n 200	200	200	200	200	200	200								
pН	su	6.6	6.4	6.4	6.5	6.5	6.4	6.5								
Temp.	°C	20.1			20.0 20.1		20.0 19.6									
Conductivity	μS/cm	488		489	490	489	490	491								
DO	mg/L	3.5	3.1	2.9	2.7	2.9	2.9	3.1								
ORP	mV	103.		126.7	124.0		126.1	126.1								
Turbidity	NTU	1.3	0.8	1.4	1.2	1.7	1.0	2.1	-							
Color/tint		clea	-	clear	clear	clear	clear	clear	-							
Odor		none	none	none	none	none	none	none								
Sample Data					ı											
Sample ID Date				T	ime	# Conta	iners	# Filtered				Re	emarks			
MW-117	MW-117 10/6/2021			1 1	200	3		0								
MW-117 DUI	P		10/6/202	1 1	205	3		0								
Sampler's Name (print): Michael Clayton Sampler Signature: transcribed by HLF																

Facility:	Plum I	Point E	nergy Sta	tion	S	W-118 Sampler: Michael Clayton									
Project Numb		ite ID: Date:	10/6/		•						Ltd				
Project Number: R14590-2496-001 (EPA) Date: 10/6/2021 Sampler Organization: FTN Associates, Ltd. Site Description															
Weather:	OII .	cloud		Air	°F):	74	Wir	ıd:		south	east at 4	mph			
Site type:					Well casing mater				Wel	l dia	meter		inches	2	Well
Monitoring Well Extraction W						PVC	11141011							lock	
			orehole oring			Steel		Γota	ıl dep	oth from To	OC	feet		✓ Yes	
Other:	ning			ron Other:		,	TOC below/above g				ground feet		□No		
Damages/repairs needed:															
Water Level Data															
	Measuring point description: Water level meter: ☐Geotech/Keck 100' ☐Geotech/Keck 200' Water level meter: ☐Geotech/Keck 100' ☐Geotech/Keck 200' Heron Dipper—T ✓Solinst 101 ☐Other:														
North rim				Pre	-purge	Pre-1	Pre-purge		ron Dipper–T During		Purge	Aft		ier:	
Other:	7700				-purge iitial		confirmation				end	samp		Remarks	
Date	m	m/dd/y	y	10/	4/2021	10/6	10/6/2021		10/6/2021		0/6/2021	10/6/2			
Time	24	l-hour		1	.032	1014		1023			1047	105	59		
Depth to Wate	er fe	et		1	9.53	19	.65	19.	65		19.65		65		
Product/Thickness LNAPL/DNAPL feet															
Field Data	Field Data														
Field data met								escriptio	n:				iler desc		
YSI ProPlu		<u>~</u>	Hach 2				Perist							ble polye	
✓ YSI MPS 5	56	F]HF Scie]Other:	entific T	fic Turbidimeter Bladder [dedicated / portable] Disposable Teflon Submersible Disposable PVC									n	
Purge depth						s dry during purging: Yes No									
Casing vol.	gallons									terna	al diameter	of well	(inches)	$1^2 \times 0.040$	08
Time	24-hour	1020	1025	1030	1035	1040	1045	73	Ť					Rema	
Purge vol.	gallons														
Purge rate	mL/min	200	200	200	200	200	200								
рН	su	6.6	6.3	6.3	6.3	6.4	6.4								
Temp.	°C	18.9	18.6	18.7	18.8	18.9	18.8								
Conductivity	μS/cm	454	456	456	456	456	457								
DO	mg/L	3.7	3.0	3.5	3.2	2.8	2.7								
ORP	mV	137.8	133.9	129.7	127.1	126.8	126.3								
Turbidity	NTU	6.2	1.4	1.4	1.0	1.2	1.1								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none	none	none	none	none	none								
Sample Data															
Samp	Sample ID Date				ime	# Conta	iners	# Filtered		d Remarks					
MW-118			10/6/202	21 1	050	3		0							
Sampler's Na	/lichael	Clayto	n		Sampler Signature: transcribed by HLF										

Facility: Plum Point Energy Station Site ID: MW-119 Sampler: Michael Clayton													Clayton		
Project Numb	Date:	10/7/		1						Ltd					
Project Number: R14590-2496-001 (EPA) Date: 10/7/2021 Sampler Organization: FTN Associates, Ltd. Site Description															
Weather:		partly c	oudy		Air	Air Temp. (°F): 68						northy	west at 2	2 mph	
Site type:		Wel	l casing	materi	iterial: We			ameter		inches	2	Well			
Monitoring Well Production Well Borehole					V	PVC		Total depth from TOC					feet	loc	
Dewatering Well Spring						Steel Iron			100	ai uc	cpui iroin iv		icci		✓ Yes
Other:					Other:			TO	C be	elow/above g	ground	feet		□No	
Damages/rep	Damages/repairs needed:														•
Water Level Data															
Measuring point description: Water level meter: ☐Geotech/Keck 100' ☐Geotech/Keck 200' ☐Heron Dipper—T ☑Solinst 101 ☐Other:															
North rim	of TOC				-purge	Pre-purge		During			Purge	Aft			
Other:	ı			_	nitial	+	confirmation		1 0 0		end	samp		Remarks	
Date		m/dd/y	y		4/2021		10/7/2021		10/7/2021		10/7/2021	10/7/2			
Time		l-hour			048		925	09			0958	101			
	Depth to Water feet				4.49	24	24.62		.62		24.62 24.6		52		
Product/Thickness LNAPL/DNAPL feet LNAPL/DNAPL feet															
Field Data Field data meters: Pump description: Bailer description:															
Field data met		V	Hach 2	100P Tı	ırbidim		ump ae Perist		n:					cription: able polye	thylene
YSI MPS 5			HF Scie				Bladd	ler [🔲 d	ledi	cate	d/[portab	ole]	Disposa	able Teflo	
Other:		Submersible Disposable PVC													
Purge depth	feet				dry during purging: \square Yes \square No epth (feet) – depth to water (feet)] \times [internal diameter of well (inches)] $^2 \times 0.040$										
Casing vol.	gallons	0000	-				7	(feet)] >	× [ir	iterr	nal diameter	of well	(inches)		
Time	24-hour	0930	0935	0940	0945	0950	0955							Rema	rks
Purge vol.	gallons	225	225	225	225	225	225								
Purge rate pH	mL/min	225 6.9	225 6.7	225 6.6	6.6	225 6.7	6.7								
Temp.	su °C	19.8	19.3	19.2	19.3	16.5	19.7								
Conductivity	μS/cm	586	583	584	581	581	579								
DO	mg/L	2.1	0.6	0.3	0.2	0.3	0.3								
ORP	mV	123.3		130.7	128.4		118.6								
Turbidity	NTU	6.5	3.0	2.1	1.4	1.6	2.0								
Color/tint		clear	clear	clear	clear	clear	clear								
Odor		none			none	none	none								
Sample Data															
Samp	Sample ID Date				ime	# Conta	† Containers		ed	Remarks					
MW-119			10/7/202	1 1	000	3		0							
							Ī	~ :							
Sampler's Name (print): Mic.					Clayto	n		Sampler Signature: transcribed by HLF							

	tn			Ground	water Level	Data She	eet	
2021 Grour Weather C	Point Energy Station R14590-24 Groundwater Services EPA Progr			suring Device:		Investiga Michael (Page 1 of 1
Well ID	Date	Tir	ne	Depth to Water (feet below TOC)			Damages/Repairs	
MW-101	12/14/2021	102	21	22.97	Damaged we Damaged bol Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-102	12/14/2021	102	29	25.72	Damaged we Damaged bol Damaged equ	lards	Damaged TOC Damaged lock Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-103	12/14/2021	10	10	24.02	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-108	12/14/2021	092	25	29.00	☐ Damaged well ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☑ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-113	12/14/2021	09	18	28.64	☐ Damaged well ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-115	12/14/2021	09	12	28.37	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-116	12/14/2021	102	25	25.35	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-117	12/14/2021	104	47	24.45	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	□ Damaged TOC □ Damaged lock □ Unkept vegetation	☐ Lacks visibility☑ Lacks access☐ See GW sample record
MW-118	12/14/2021	100	04	22.67	☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
MW-119	12/14/2021	10	16	26.83	Damaged we Damaged bol Damaged equ	lards ipment	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					Damaged we Damaged bol Damaged equ	lards ipment	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards ipment	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol ☐ Damaged equ	lards ipment	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged well ☐ Damaged boll ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged well ☐ Damaged bol ☐ Damaged equ	lards	☐ Damaged TOC ☐ Damaged lock ☐ Unkept vegetation	☐ Lacks visibility ☐ Lacks access ☐ See GW sample record
					☐ Damaged we ☐ Damaged bol		☐ Damaged TOC ☐ Damaged lock	Lacks visibility Lacks access

Groundwater Sampling Record


Facility:	Plum	Point I	Energy St	ation		Site ID:	MV	W-116		Sam	npler:	N	Michael (Clayton	
Project Numb			-2496-00			Date:		/2021			npler Orga				. Ltd.
Site Descripti					-)						1 - 6				,
Weather:		partly	cloudy		Air	Temp. (°F):	66	Win	nd:	S	outh-so	utheast a	at 9 mph	
Site type:					We	ll casing	materi	al:	Wel	1 dia	meter		inches	2	Well
Monitorin			Extraction	n Well	V	PVC						0.0			locked?
Productio Dewaterin		_	Borehole Spring			Steel		Total depth from TOC f				feet		✓ Yes	
Other:	ig wen	Ш,	opring			Iron Other:			TOO	C bel	ow/above	ground	feet		□No
Damages/rep	airs need	led:													<u> </u>
Water Level 1	Water Level Data														
Measuring po		intion.		Wa	ter leve	l meter:	ПСе	otech/K	leck	100°	Geot	ech/Kec	k 200'		
Mark/notch				'''		1 11101011	_	ron Dip			Solin		∏Otl	ner:	
□North rim o	of TOC				e-purge		purge		ring		Purge	Aft			
Other:					initial	_	mation		ging		end	samp		Rem	arks
Date		m/dd/		12	/14/202		4/2021	12/14		21 1:	2/14/2021	12/14/			
Time		4-hour			1025		200	_	217		1245	130			
Depth to Water		eet			25.35	25	5.35	25	5.35		25.35	25.3	35		
Product/Thick	iness L	NAPL/	DNAPL f	eet											
Field Data															
Field data met					escription	on:					cription:				
☐YSI ProPlu ✓YSI MPS 5		l T	Hach 2		`urbidin Turbidi		Perist		dodic	notod	l/∏portal			ible polye ible Teflo	
Other:	36	[[Other:	enunc	Turbiai	meter		ersible	aearc	zated	і / Шрогіаі			ible PVC	П
Purge depth	feet			goes dr	during	purging			No				1		
Casing vol.	gallons									nterna	al diameter	of well	(inches)	$(0.04)^2 \times 0.04$	08
Time	24-hour	120		1215	_		1230	ľ		240	1245			Rema	
Purge vol.	gallons														
Purge rate	mL/min	150) 150	150	150	150	150	150	1	50	150				
pH	su	6.3		6.6	6.6	6.7	6.7	6.7	6	5.7	6.7				
Temp.	°C	18.		19.1	19.0	19.3	19.4	19.5	1	9.5	19.5				
Conductivity	μS/cm	897	_	892	896	899	900	901		001	901				
DO	mg/L	0.7	0.9	0.8	0.8	0.7	0.7	0.7	().7	0.6				
ORP	mV	125.		109.3			101.7			8.3	99.6				
Turbidity	NTU	1.9		1.6	1.2	1.4	1.1	1.2		1.2	1.1				
Color/tint		clea	-	clear	+	-	clear		_	lear	clear				
Odor		non		none	none	none	none	-	no	one	none				
Sample Data															
Samp	le ID		Date		Time	# Conta	iners	# Filte	red			Re	emarks		
MW-116			12/14/2		1250	3		0							
MW-116 DUI)		12/14/2		1253	3		0							
Sampler's Na	Michae	l Clayto	n		Sample	er Sig	gnatu	ure:	trai	nscribed	by HLF				

Groundwater Sampling Record

Facility:	Plum	Point F	Energy Sta	tion	S	ite ID:	MV	V-117	T	Sampler:		N	Michael	Cla	vton	
Project Numb			-2496-001			Date:	12/14			Sampler Sampler					•	Ltd
Site Description		(1110)0	2190 001	(LITI)			1,2/11	72021		Sumprer	O'gui	nzatron		100	Sciacos	, Etc.
Weather:		clou	ıdv		Air	Temp. (°F):	67	Wind	d:		SOII	th at 7 r	nnh		
Site type:		• • • • • • • • • • • • • • • • • • • •	iaj									504		Ť		Well
Monitorin	g Well	□I	Extraction	Well		l casing	materi	rial: Well diameter					inches	8	2	locked?
☐ Production	n Well	_	Borehole			Steel		1	Total	depth fr	om T	OC	feet			✓ Yes
Dewaterir	ng Well		Spring		☐ Iron											
☐ Other:	Other: TOC below/above ground feet No								□No							
Damages/rep	airs need	ded: we	ll casing li	d diffic	ult to o	pen										
Water Level I	Data															
Measuring po				Wat	er level	meter:		otech/K				ech/Kec				
Mark/notch		C						ron Dip				st 101		her	:	
North rim o	of TOC				-purge		purge	Dur	_	Pur		Aft			ъ	
Other:					nitial	_	mation			en		samp			Rem	arks
Date		nm/dd/	уу	_	14/2021		1/2021	12/14		+		12/14/				
Time		4-hour		_	1047	+	317	13		135		140	-			
Depth to Wate	-	eet		-	24.45	24	.45	24.	.45	24.4	15	24.4	45			
Product/Thick	ness L	NAPL/	DNAPL fe	et												
Field Data Field data meters: Pump description: Bailer description:																
YSI ProPlu				100P Tı	ırbidim		Perist		11.							thylene
YSI MPS 5		Ī	HF Scie			_	_		ledica	ated / 🔲 į	ortab		Dispos			
☐Other:		[Other:				Subm	ersible					Dispos	able	PVC	
Purge depth	feet		Well g	oes dry	during	purging	: _ Y	es 🔽	No							
Casing vol.	gallons		= [total	depth	(feet) –	depth to	water	(feet)]	× [int	ernal dia	meter	of well	(inches	s)] ²	× 0.04	08
Time	24-hou	r 132	5 1330	1335	1340	1345	1350	1355							Rema	ırks
Purge vol.	gallons															
Purge rate	mL/mii	180	180	180	180	180	180	180								
pН	su	6.7	6.4	6.5	6.5	6.5	6.5	6.5								
Temp.	°C	18.8	3 18.9	19.1	19.3	19.9	18.8	18.8								
Conductivity	μS/cm	446	439	436	435	437	435	435								
DO	mg/L	3.5	3.2	2.9	2.8	3.0	2.6	2.7								
ORP	mV	198.	9 139.7	140.1	115.7	112.1	113.2	111.8								
Turbidity	NTU	1.3		1.4	1.3	1.4	1.1	1.1								
Color/tint		clea		clear	clear	clear	clear	clear								
Odor		non	e none	none	none	none	none	none								
Sample Data	Sample Data															
Samp	le ID		Date	Т	ime	# Conta	iners	# Filter	ed			Re	emarks			
MW-117			12/14/20	21 1	400	3		0								
EPA EB-1			12/14/20	21 1	435	3		0								
		J			ı				1							
Sampler's Name (print): Michae					Clayto	1		Sample	r Sig	nature:		traı	nscribed	l by	HLF	

Laboratory Reports

Pace Analytical® ANALYTICAL REPORT

April 29, 2021

Plum Point Services Co., LLC

L1340644 Sample Delivery Group: Samples Received: 04/17/2021

Project Number: R14590-2496-001

Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1340644-01	6
MW-102 L1340644-02	7
MW-103 L1340644-03	8
MW-108 L1340644-04	9
MW-113 L1340644-05	10
MW-115 L1340644-06	11
MW-116 L1340644-07	12
MW-117 L1340644-08	13
MW-118 L1340644-09	14
MW-119 L1340644-10	15
MW-117 DUP L1340644-11	16
EPA EB L1340644-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	21
Metals (ICP) by Method 6010B	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25

PAGE:

2 of 27

26

Sc: Sample Chain of Custody

SAMPLE SUMMARY

MW-101 L1340644-01 GW			Collected by Michael Clayton	Collected date/time 04/15/21 13:05	Received da 04/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1658783	1	04/26/21 13:25	04/26/21 13:25	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:13	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1340644-02 GW			Michael Clayton	04/15/21 15:25	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1658783	1	04/26/21 13:48	04/26/21 13:48	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:15	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-103 L1340644-03 GW			Michael Clayton	04/15/21 11:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:23	04/26/21 14:23	MCG	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:23	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-108 L1340644-04 GW			Michael Clayton	04/13/21 11:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:34	04/26/21 14:34	MCG	Mt. Juliet, TN
fetals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:26	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-113 L1340644-05 GW			Michael Clayton	04/13/21 10:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:46	04/26/21 14:46	MCG	Mt. Juliet, Th
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 03:57	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-115 L1340644-06 GW			Michael Clayton	04/13/21 09:15	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, Ti
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:20	04/26/21 15:20	MCG	Mt. Juliet, Th
Matala (ICD) by Mathad CO10D	WC1650000	4	0.4/0.0/04.04.00	0.4/20/24.04.20	005	NAC Indian TA

Metals (ICP) by Method 6010B

WG1659933

1

04/28/21 21:28

04/29/21 04:29

CCE

Mt. Juliet, TN

SAMPLE SUMMARY

					_	
NAVA 440 L 40 4 0 C 4 4 0 7 C VV			Collected by Michael Clayton	Collected date/time 04/15/21 14:05	Received da 04/17/21 09:0	
MW-116 L1340644-07 GW						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W0405047		date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:31	04/26/21 15:31	MCG	Mt. Juliet, TI
Net Chemistry by Method 9056A	WG1658783	5	04/26/21 17:03	04/26/21 17:03	MCG	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:31	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-117 L1340644-08 GW			Michael Clayton	04/13/21 14:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:43	04/26/21 15:43	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:34	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-118 L1340644-09 GW			Michael Clayton	04/15/21 09:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:54	04/26/21 15:54	MCG	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:37	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-119 L1340644-10 GW			Michael Clayton	04/15/21 12:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, TI
/et Chemistry by Method 9056A	WG1658783	1	04/26/21 16:06	04/26/21 16:06	MCG	Mt. Juliet, Ti
letals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:39	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-117 DUP L1340644-11 GW			Michael Clayton	04/13/21 14:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 16:17	04/26/21 16:17	MCG	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:42	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
EPA EB L1340644-12 GW			Michael Clayton	04/15/21 16:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 16:40	04/26/21 16:40	MCG	Mt. Juliet, T
Mark (IOD) I Mark 1 COAOD	W01030763		0 1/20/21 10.40	0 1/20/21 10.40	IVICO	ivic. Juliet, II

Metals (ICP) by Method 6010B

WG1659933

04/28/21 21:28

04/29/21 04:45

CCE

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager

Collected date/time: 04/15/21 13:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	335000		10000	1	04/21/2021 17:54	WG1656129

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	855	<u>J</u>	379	1000	1	04/26/2021 13:25	WG1658783
Fluoride	385		64.0	150	1	04/26/2021 13:25	WG1658783
Sulfate	5730		594	5000	1	04/26/2021 13:25	WG1658783

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	60.8	<u>J</u>	20.0	200	1	04/29/2021 04:13	WG1659933
Calcium	96900		79.3	1000	1	04/29/2021 04:13	WG1659933

Collected date/time: 04/15/21 15:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	446000		10000	1	04/21/2021 17:54	WG1656129

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2310		379	1000	1	04/26/2021 13:48	WG1658783
Fluoride	210		64.0	150	1	04/26/2021 13:48	WG1658783
Sulfate	79400		594	5000	1	04/26/2021 13:48	WG1658783

Cn

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	96.6	<u>J</u>	20.0	200	1	04/29/2021 04:15	WG1659933
Calcium	118000		79.3	1000	1	04/29/2021 04:15	WG1659933

Αl

L134064

Collected date/time: 04/15/21 11:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	294000		10000	1	04/21/2021 17:54	WG1656129

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	976	J	379	1000	1	04/26/2021 14:23	WG1658783
Fluoride	258		64.0	150	1	04/26/2021 14:23	WG1658783
Sulfate	11400		594	5000	1	04/26/2021 14:23	WG1658783

-----Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.6	<u>J</u>	20.0	200	1	04/29/2021 04:23	WG1659933
Calcium	85900		79.3	1000	1	04/29/2021 04:23	WG1659933

Collected date/time: 04/13/21 11:20

1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	541000		10000	1	04/20/2021 01:42	WG1654736

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2670		379	1000	1	04/26/2021 14:34	WG1658783
Fluoride	216		64.0	150	1	04/26/2021 14:34	WG1658783
Sulfate	36800		594	5000	1	04/26/2021 14:34	WG1658783

³Ss

Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	125	<u>J</u>	20.0	200	1	04/29/2021 04:26	WG1659933
Calcium	149000		79.3	1000	1	04/29/2021 04:26	WG1659933

Collected date/time: 04/13/21 10:20

1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	372000		10000	1	04/20/2021 01:42	WG1654736

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2500		379	1000	1	04/26/2021 14:46	WG1658783
Fluoride	102	J	64.0	150	1	04/26/2021 14:46	WG1658783
Sulfate	9830		594	5000	1	04/26/2021 14:46	WG1658783

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.3	<u>J</u>	20.0	200	1	04/29/2021 03:57	WG1659933
Calcium	95400	V	79.3	1000	1	04/29/2021 03:57	WG1659933

Collected date/time: 04/13/21 09:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	441000		10000	1	04/20/2021 01:42	WG1654736

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	789	J	379	1000	1	04/26/2021 15:20	WG1658783
Fluoride	239		64.0	150	1	04/26/2021 15:20	WG1658783
Sulfate	5670		594	5000	1	04/26/2021 15:20	WG1658783

Ss

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	37.9	<u>J</u>	20.0	200	1	04/29/2021 04:29	WG1659933
Calcium	117000		79.3	1000	1	04/29/2021 04:29	WG1659933

Collected date/time: 04/15/21 14:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	541000		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	9090		379	1000	1	04/26/2021 15:31	WG1658783
Fluoride	226		64.0	150	1	04/26/2021 15:31	WG1658783
Sulfate	126000		2970	25000	5	04/26/2021 17:03	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	85.4	<u>J</u>	20.0	200	1	04/29/2021 04:31	WG1659933
Calcium	144000		79.3	1000	1	04/29/2021 04:31	WG1659933

Collected date/time: 04/13/21 14:20

1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	351000		10000	1	04/20/2021 01:42	WG1654736

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	976	J	379	1000	1	04/26/2021 15:43	WG1658783
Fluoride	152		64.0	150	1	04/26/2021 15:43	WG1658783
Sulfate	7460		594	5000	1	04/26/2021 15:43	WG1658783

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Boron	70.5	<u>J</u>	20.0	200	1	04/29/2021 04:34	WG1659933	
Calcium	98800		79.3	1000	1	04/29/2021 04:34	WG1659933	

Cn

Collected date/time: 04/15/21 09:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	329000		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	911	J	379	1000	1	04/26/2021 15:54	WG1658783
Fluoride	185		64.0	150	1	04/26/2021 15:54	WG1658783
Sulfate	20000		594	5000	1	04/26/2021 15:54	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	66.3	<u>J</u>	20.0	200	1	04/29/2021 04:37	WG1659933
Calcium	94100		79.3	1000	1	04/29/2021 04:37	WG1659933

Collected date/time: 04/15/21 12:10

L1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	413000		10000	1	04/21/2021 15:38	WG1656117

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2430		379	1000	1	04/26/2021 16:06	WG1658783
Fluoride	267		64.0	150	1	04/26/2021 16:06	WG1658783
Sulfate	33600		594	5000	1	04/26/2021 16:06	WG1658783

⁴Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	68.7	<u>J</u>	20.0	200	1	04/29/2021 04:39	WG1659933
Calcium	115000		79.3	1000	1	04/29/2021 04:39	WG1659933

MW-117 DUP

SAMPLE RESULTS - 11

Collected date/time: 04/13/21 14:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	353000		10000	1	04/20/2021 01:42	WG1654736

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	972	<u>J</u>	379	1000	1	04/26/2021 16:17	WG1658783
Fluoride	153	<u>P1</u>	64.0	150	1	04/26/2021 16:17	WG1658783
Sulfate	7410		594	5000	1	04/26/2021 16:17	WG1658783

Cn

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	70.8	<u>J</u>	20.0	200	1	04/29/2021 04:42	WG1659933
Calcium	99000		79.3	1000	1	04/29/2021 04:42	WG1659933

Collected date/time: 04/15/21 16:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	U		379	1000	1	04/26/2021 16:40	WG1658783
Fluoride	U		64.0	150	1	04/26/2021 16:40	WG1658783
Sulfate	U		594	5000	1	04/26/2021 16:40	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	04/29/2021 04:45	WG1659933
Calcium	U		79.3	1000	1	04/29/2021 04:45	WG1659933

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-04,05,06,08,11

Method Blank (MB)

(MB) R3644900-1	04/20/21 01:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1340535-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1340535-16 04/20/21 01:42 • (DUP) R3644900-3 04/20/21 01:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	836000	835000	1	0.120		5

L1340650-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1340650-09 04/20/21 01:42 • (DUP) R3644900-4 04/20/21 01:42

(00, 1.0 .0000 00 0 20,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	424000	422000	1	0.473		5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3644900-2 04/20/21 01:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8930000	101	77 4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-07,09,10,12

Method Blank (MB)

(MB) R3645394-1 04	/21/21 15:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1340644-07 Original Sample (OS) • Duplicate (DUP)

100		0.4/04/04 45:00	(D ID)	000450040	0.4/04/04 45:00
(O)	b) L1340644-07	04/21/21 15:38 •	(DUP) K3645394-3	04/21/21 15:38

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	541000	537000	1	0.742		5

L1340644-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-09 04/21/21 15:38 • (DUP) R3645394-4 04/21/21 15:38

(03) 210-100-1 03 0-1/21/2	Original Result	,			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l			%		%
Dissolved Solids	329000	3320	000 1	1	0.908		5

Laboratory Control Sample (LCS)

(LCS) R3645394-2 04/21/21 15:38

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-01,02,03

Method Blank (MB)

(MB) R3645382-1 C	04/21/21 17:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

3 Ss

L1340602-06 Original Sample (OS) • Duplicate (DUP)

(OC) 1 12	10602 06	04/21/21 17:54 •	(DLID)	D264E202.2	0.4/21/21.17-E.4
(US) L13	40002-00	04/21/211/.54 •	(DUP)	1 K3043362-3	04/21/2117.54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	319000	315000	1	1.26		5

[†]Cn

L1340602-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1340602-07 04/21/21 17:54 • (DUP) R3645382-4 04/21/21 17:54

(83) 218 18882 87 8 11/21/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	188000	171000	1	9.47	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3645382-2 04/21/21 17:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8690000	98.8	77.4-123

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Wet Chemistry by Method 9056A

(MB) R3646883-1 04/26/2111:42

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	П		594	5000

L1340644-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-01 04/26/21 13:25 • (DUP) R3646883-3 04/26/21 13:37

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	855	933	1	8.79	<u>J</u>	15
Fluoride	385	384	1	0.390		15
Sulfate	5730	5790	1	0.917		15

L1340644-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-11 04/26/21 16:17 • (DUP) R3646883-6 04/26/21 16:29

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	972	1010	1	4.29		15
Fluoride	153	120	1	24.0	<u>J P1</u>	15
Sulfate	7410	7330	1	1.16		15

Sc

Laboratory Control Sample (LCS)

(LCS) R3646883-2 04	1/26/21 11:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	97.9	80.0-120	
Fluoride	8000	8030	100	80.0-120	
Sulfate	40000	39900	99.6	80.0-120	

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Wet Chemistry by Method 9056A

L1340644-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1340644-02 04/26/21 13:48 • (MS) R3646883-4 04/26/21 14:00 • (MSD) R3646883-5 04/26/21 14:11

(,				(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	2310	53000	52900	101	101	1	80.0-120			0.276	15
Fluoride	5000	210	5430	5440	104	105	1	80.0-120			0.0386	15
Sulfate	50000	79400	127000	127000	95.2	94 7	1	80 O-120	F	F	0 192	15

L1340644-12 Original Sample (OS) • Matrix Spike (MS)

(OS) L1340644-12 04/26/21 16:40 • (MS) R3646883-7 04/26/21 16:52

(,							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	U	51900	104	1	80.0-120	
Fluoride	5000	U	5410	108	1	80.0-120	
Sulfate	50000	U	52300	105	1	80.0-120	

PAGE:

22 of 27

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3648131-1 04	(MB) R3648131-1 04/29/21 03:52									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Boron	U		20.0	200						
Calcium	II.		79.3	1000						

Laboratory Control Sample (LCS)

(LCS) R3648131-2 04/29/2	21 03:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	934	93.4	80.0-120	
Calcium	10000	9510	95.1	80.0-120	

L1340644-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) 11240644 0E	04/20/21 02:E7 (MC) D2640121 4	04/29/21 04:02 • (MSD) R3648131-5 04/29/21 04:04
1031 L1340044-03	U4/29/21 U3.37 • UVI31 R3040131-4	U4/Z9/Z1U4.UZ • IIVISDI KS046151-5 U4/Z9/Z1U4.U4

(03) [1340044-03 04/29/	,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	67.3	1020	1000	95.3	93.6	1	75.0-125			1.68	20
Calcium	10000	95400	102000	103000	70.2	75.6	1	75.0-125	$\underline{\vee}$		0.525	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	Vational	12065 Lebanon	Rd Mount	Juliet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

			_			-									7 2	
Company Name/Address:			Billing Info	ormation:			-	1	1	Analysis /	Container /	Preservative	- European I	Chain of Custody	Page of 9	
Plum Point Services	Co., LLC		Account	ts Payable		Pres								0		
			P.O. Box			Chk			12					Phone	Inalitical®	
2739 SCR 623				, AR 72370			100000	-	1					National Car	Inalytical "	
Osceola, AR 72370			Osceola													
Report to:			Email To:	dld@ftn-assoc.co	m;mmv@ftn-									12065 Lebanon Road Mt	Juliet, TN 37122	
Dana Derrington			assoc.com									Phone: 615-758-5858 Alt Submitting a sample via t				
Project Description:		City/State		ircle:								constitutes acknowledge Pace Terms and Conditio	ent and acceptance of the ns found at:			
Plum Point Energy Station		Collected:	0500	ols An	PT MT (https://info.pacelabs.com	n/hubfs/pas-standard-	
501 030 0543	Client Project	t#	0)000	Lab Project #			S		3					SDG# 134	0(044	
Phone: 501-920-9642	R14590-24			NAESOAR-P	LUMPOINT		re		9					Cos		
							101	100	皇					Cos	93	
Collected by (print):	Site/Facility I	ID#		P.O. #			E-P	re	PE						THE PART OF THE PA	
Michael Classia	4			2020-00128			OP	OP	무					Acctnum: NAE	SOAR	
Collected by (signature):	Ruch2	(Lab MUST Be	Notified)	Quote #			王	Z	章					Template:T175	308	
111 . [1]		Day Five					SO4 125mlHDPE-NoPres	250mlHDPE-NoPres	250mlHDPE-HNO3					Prelogin: P839	309	
Mulle 15	Next D		y (Rad Only)	Date Resu	ts Needed	T	12	I	75					PM: 134 - Mark		
Immediately	Two Da		ay (Rad Only)			No.	4	E	Ca					PB:		
Packed on Ice NY	Three I	Day				of	SO	550	8,						dEV Cround	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	u.	S	tal					Shipped Via: Fe	Annual Control of the	
						1	ט	TDS	Total					Remarks	Sample # (lab only)	
MW-101	GRAS	GW		11/11/2	1305	3	X	X	X						-01	
MW-102	(SKA) =			1/15/01			BUREAU CO.	-	32000000000000000000000000000000000000						9	
		GW		4/15/21	1525	3	X	X	X						2	
MW-103		GW		4/15/1	1110	3	X	X	X						03	
MW-108		GW		11/12/2	1 .120	3	X	X	X						OV	
MW-113		GW		7//3/21	1/20	3	^	-	^						OV	
MW-113		GW		14/13/21	1020	3	X	X	X						05	
MW-115		GW		4/12/21	915	3	X	X	X						06	
MW-116				1113/2		-	BESSET (1995)	-	2000000000 000000000000000000000000000							
		GW		4/15/21	1405	3	X	X	X						07	
MW-117		GW		4/13/21	1420	3	X	X	X						08	
MW-118		GW		111,000		3	X	X	X						09	
MW-119			-	7/15/21	910	13	^	^	E-1000						THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	
	V	GW		4/15/21	1210	3	X	X	X						10	
* Matrix:	Remarks:												S	ample Receipt Che	cklist	
SS - Soil AIR - Air F - Filter										pH _	Te	emp		Present/Intact: ed/Accurate:	VNP Y N	
GW - Groundwater B - Bioassay WW - WasteWater										Flow	0	ther	Bottles	arrive intact:	Y_N	
DW - Drinking Water									. 1				AND SHIPPERSONS CONTRACTORS	bottles used: nt volume sent:	$+\frac{1}{\lambda}-\frac{N}{N}$	
OT - Other	Samples returnedUPSFedEx			Track	ing#			501	6	1251.	372			If Applicabl	9	
Deliande de (61	- Inches de la company de la c		17:		11 /6:) '						Headspace: tion Correct/Chec	cked: Y N	
Relinquished by : (Signature)	U	ate:	Time		ved by: (Signat	ture)				Trip Blank	Received:	HCL MeoH		en <0.5 mR/hr:	YY _N	
Michel 16	9	1/6/21	1/8	800				1		"-		TBR				
Relinquished by : (Signature)	D	ate:	Time	: Recei	ved by: (Signat	ture)				TeM30	of oc	Bottles Received:	If preservation required by Login: Date/Time			
							1			1.4-24.6 7						
Relinquished by : (Signature) Date:			Time	Panel	ved for lab by:	(Signatu	ura)	. 1		Date:		ime:	Hold:		Condition; /	
	U	uto.	Timile	Kecei	rea for lab by.	(Signati	90	N	200	11-17	171	0900	noid.		NCF / OK	
								The second	100000000000000000000000000000000000000	V 1	-	UIW				

Company Name/Address:		Billing Information:						A	Analysis / Container / Preservative						Chain of Custody Page 2 of 2		
Plum Point Services Co 2739 SCR 623	o., LLC		P.O. Box	s Payable 567 , AR 72370		Pres Chk			12							Pace A	Analytical * ter for Testing & Innovation
Osceola, AR 72370 Report to:			Email To: c	ild@ftn-assoc.com	n;mmv@ftn-											12065 Lebanon Road Mt	
Dana Derrington			assoc.com											Phone: 615-758-5858 Ah Submitting a sample via constitutes acknowledge			
Project Description: Plum Point Energy Station		City/State Collected:	Osceo	la su	Please Ci PT MT C											Pace Terms and Condition https://info.pacelabs.com terms.odf	
Phone: 501-920-9642	Client Project R14590-24	t#		Lab Project # NAESOAR-PLUMPOINT			oPres		HN03							SDG# //	310(1)
Collected by (print): Mrshoul ClayTon	Site/Facility ID #			P.O. # 2020-00128				VoPres	HDPE-							Acctnum: NAE	
Collected by (signature):		Lab MUST Be		Quote #		SO4 125mlHDPE-NoPres	250mlHDPE-NoPres	250mlHDPE-HN03							Preiogin: P839 PM: 134 - Mark	309	
Immediately Packed on Ice N Y	2y 10 D Day	ay (Rad Only)	1	_	No. of Cntrs	F, 504	250m	al B, Ca							PB: Shipped Via: Fe	dEX Ground	
Sample ID Comp/Grab Matrix			Depth	Date	Time	Liius	CI, F	TDS	Total							Remarks	Sample # (lab only)
MW-117 DUP	GRAB	GW		4/13/21	1420	3	X	X	X								11
EPA EB	T	GW		4/15/21	1620	3	X	X	X								12
		GW				3	X	X	X								
		GW				3	X	X	X								
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater									pH Flow		_ Temp		Sample Receipt Cl COC Seal Fresent/Intact COC Signed/Accurate: Bottles arrive intact: Correct bottles used:				
DW - Drinking Water OT - Other	Samples returnedUPSFedEx			Track	ing#								0	Suf	ficient Zero H	volume sent: If Applicable Meadspace:	YN
Relinquished by: (Signature)	late:	71 Time	da	ved by: (Signat	ture)				Trip Blar	nk Recei		es / No HCL / MeoH TBR			on Correct/Che	cked:N	
Relinquished by : (Signature) Date:			Time	THE RESIDENCE OF THE PERSONNELS.	ved by: (Signa	ture)	1			Temp: C Bottles Reserved:						in: Date/Time	
Relinquished by : (Signature)	D	ate:	Time	e: Recei	ved for lab by:	(Signat	(A)	0		Date:	7.21	Tim	e: 0400	Hole)	l:		Condition:

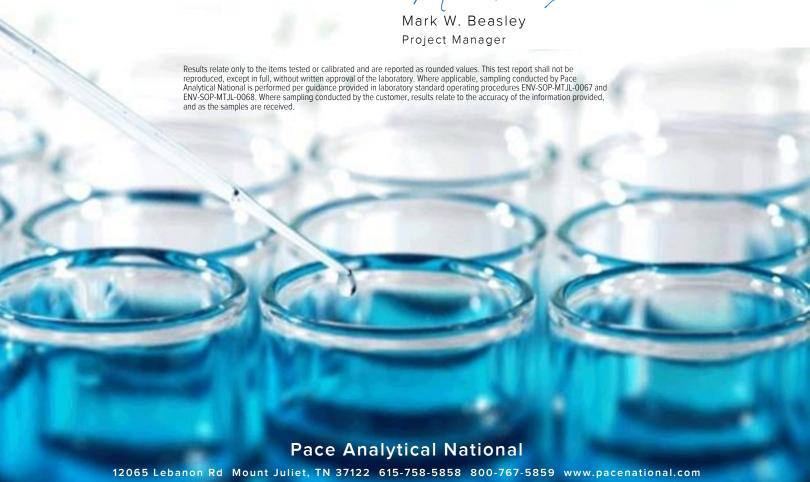
Pace Analytical® ANALYTICAL REPORT

Ss

Plum Point Services Co., LLC

L1373490 Sample Delivery Group: Samples Received: 07/01/2021

Project Number: R14590-2275-001


Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-116 L1373490-01	5
MW-117 L1373490-02	6
MW-117 DUP L1373490-03	7
EPA EB-1 L1373490-04	8
MW-101 L1373490-05	9
MW-113 L1373490-06	10
Qc: Quality Control Summary	11
Gravimetric Analysis by Method 2540 C-2011	11
Wet Chemistry by Method 9056A	12
Metals (ICP) by Method 6010B	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

MW-116 L1373490-01 GW			Collected by Michael Clayton	Collected date/time 06/29/2115:55	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1706313	1	07/19/21 05:52	07/19/21 12:57	EL	Mt. Juliet, TN
MW-117 L1373490-02 GW			Collected by Michael Clayton	Collected date/time 06/29/2116:50	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Metals (ICP) by Method 6010B	WG1699630 WG1706313	1	07/03/21 02:27 07/19/21 05:52	07/03/21 05:11 07/19/21 13:46	VRP EL	Mt. Juliet, TN Mt. Juliet, TN
MW-117 DUP L1373490-03 GW			Collected by Michael Clayton	Collected date/time 06/29/2116:55	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Metals (ICP) by Method 6010B	WG1699630 WG1706313	1 1	07/03/21 02:27 07/19/21 05:52	07/03/21 05:11 07/19/21 13:48	VRP EL	Mt. Juliet, TN Mt. Juliet, TN
EPA EB-1 L1373490-04 GW			Collected by Michael Clayton	Collected date/time 06/29/2117:10	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1699630 WG1705405 WG1706313	1 1 1	07/03/21 02:27 07/15/21 17:58 07/19/21 05:52	07/03/21 05:11 07/15/21 17:58 07/19/21 13:56	VRP MCG EL	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
MW-101 L1373490-05 GW			Collected by Michael Clayton	Collected date/time 06/29/2115:00	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1705405	1	07/15/21 18:47	07/15/21 18:47	MCG	Mt. Juliet, TN
MW-113 L1373490-06 GW			Collected by Michael Clayton	Collected date/time 06/29/2112:25	Received date/time 07/01/21 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Gravimetric Analysis by Method 2540 C-2011

WG1699630

date/time

07/03/21 02:27

date/time

07/03/21 05:11

VRP

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager

Collected date/time: 06/29/21 15:55

L1373490

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	169000	O1 V	79.3	1000	1	07/19/2021 12:57	WG1706313

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 06/29/21 16:50

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l	1	ug/l		date / time	
Dissolved Solids	314000		10000	1	07/03/2021 05:11	WG1699630

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	83700		79.3	1000	1	07/19/2021 13:46	WG1706313

MW-117 DUP

SAMPLE RESULTS - 03

Collected date/time: 06/29/21 16:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	321000		10000	1	07/03/2021 05:11	WG1699630

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	84400		79.3	1000	1	07/19/2021 13:48	WG1706313

Ss

Collected date/time: 06/29/21 17:10

1373490

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	07/03/2021 05:11	WG1699630

²Tc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	U		64.0	150	1	07/15/2021 17:58	WG1705405

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	U		79.3	1000	1	07/19/2021 13:56	WG1706313

Cn

Αl

Collected date/time: 06/29/21 15:00

L1373490

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	307		64.0	150	1	07/15/2021 18:47	WG1705405

Collected date/time: 06/29/21 12:25

L1373490

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	303000		10000	1	07/03/2021 05:11	WG1699630

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1373490-02,03,04,06

Method Blank (MB)

(MB) R36//111-1	0//03/21 05:11
	MD

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1372527-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1372527-14 07/03/21 05:11 • (DUP) R3677111-3 07/03/21 05:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	3690000	3680000	1	0.217		5

[†]Cn

⁶Qc

L1372994-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1372994-01 07/03/21 05:11 • (DUP) R3677111-4 07/03/21 05:11

(03) 2137 2334 01 0770372	Original Result	,			DUP RPD	DUP Qualifier	DUP RPD Limits
alyte	ug/l	ug/	g/l		%		%
Dissolved Solids	129000	118	8000	1	8.91	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3677111-2 07/03/21 05:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8950000	102	77.4-123

QUALITY CONTROL SUMMARY

L1373490-04,05

Wet Chemistry by Method 9056A

Method Blank (MB)

Fluoride

(MB) R3680269-1 07/15/21 11:06								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	ug/l		ug/l	ug/l				

L1373161-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1373161-02 07/15/21 13:03 • (DUP) R3680269-3 07/15/21 13:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	66.4	71 1	1	6.84	J	15

64.0

150

L1373490-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1373490-04 07/15/21 17:58 • (DUP) R3680269-6 07/15/21 18:14

(03) [13/3430-04 0//13/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	U	U	1	0.000		15

Laboratory Control Sample (LCS)

(LCS) R3680269-2 07/15/21 11:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Fluoride	8000	8040	101	80.0-120	

L1373161-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373161-02 07/15/21 13:03 • (MS) R3680269-4 07/15/21 13:35 • (MSD) R3680269-5 07/15/21 13:52

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Fluoride	5000	66.4	4880	4920	96.3	97.1	1	80.0-120			0.832	15

L1373490-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1373490-04 07/15/21 17:58 • (MS) R3680269-7 07/15/21 18:31

(03) [13/3490-04 07/13/2	21 17.30 • (IVIS) K	3000203-7 07	//13/21 10.31				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Fluoride	5000	U	5000	100	1	80.0-120	

QUALITY CONTROL SUMMARY

L1373490-01,02,03,04

Metals (ICP) by Method 6010B

Method Blank (MB)

(MB) R3681167-1	07/19/21 12:52

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3681167-2	07/19/21 12:54
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9400	94.0	80 O-120	

[†]Cn

L1373490-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373490-01 07/19/21 12:57 • (MS) R3681167-4 07/19/21 13:02 • (MSD) R3681167-5 07/19/21 13:04

(,		Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	169000	175000	174000	55.7	47.6	1	75.0-125	V	V	0.462	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
01	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

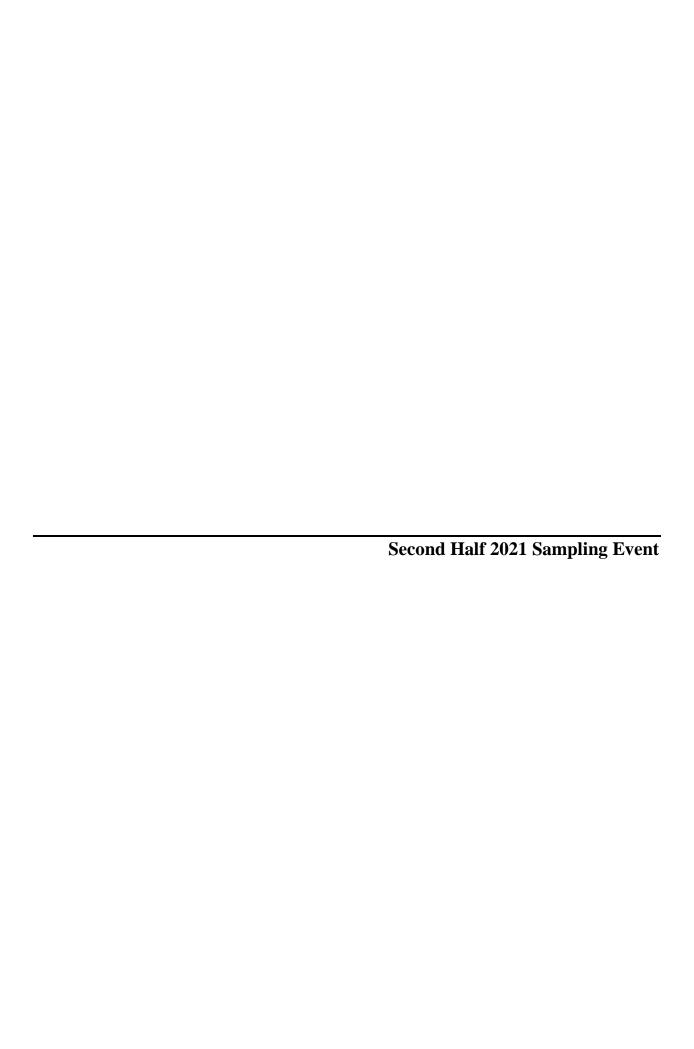
Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto



 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:				Billing Infor	mation:					A	nalvsis / C	ontaine	r / Prese	rvative			Chain of Custody	Page _ of _
Plum Point Services C	o., LL	С		Accounts P.O. Box			Pres Chk	27									Pac	e Analytical [®]
2739 SCR 623 Osceola, AR 72370				Osceola,	AR 72370				-									
Report to: Cynthia Medlin			Email To: cynthia.medlin@pp			70.76	1 48										Pace Terms and Condit	a this chain of custody gment and acceptance of the
Project Description: Plum Point Energy Station			City/State Collected:			Please C											terms.pdf	273497
Phone: 501-920-9642		ent Project 4590-22			Lab Project # NAESOAR-	PLUMPOINT		3	125mIHDPE-NoPres	S						par &	SDG # M	195
Collected by (print): Michael Classon	Site	e/Facility II) #		P.O. # 2020-0012	8		E-HNO	HDPE-	NoPre							Acctnum: NA Template:T19	
Collected by (signature)		Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Date Results Neede		ults Needed		250mlHDPE-HNO3	E 125ml	250mlHDPE-NoPres							Prelogin: P85	66608 kw. Beasley		
Packed on Ice N Y Sample ID	-	Two Da Three D omp/Grab	Action and the second	Depth	Date	Time	No. of Cntrs	0	FLUORIDE	S							Shipped Via: F	edEX Ground Sample # (lab only)
MW-116		1 - 1	GW		6/29/2	1 1555	17	3 X	교	TD	200		73			3217		-01
MW-117	6	Mb	GW		6/27/0	1650	2	V		V	A.C.							02
MW-117 DUP			GW		e near	1655	12	X		X	104							03
EPA EB-1	ye yete ken		GW	200		1710	3	- Contraction	X	X					-14 -14	7	A Zine.	04
MW-101			GW		V	1500	2		Х				Carl Consult			pro-ex-citat		09
MW-113			GW			1225	12		1	X	The same							06
														DIP.				
* Matrix:	Remar	rks		A COLLEGE												Samp	le Receipt C	hecklist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater					And the second s		1						Temp_ Other_	77	COC S Bottl Corre	igned/ es arr	esent/Intact Accurate: ive intact: tles used:	N N
DW - Drinking Water OT - Other		es returne S FedE	d via: x Courie	r		acking# &	16	37	169	18/	197	4			VOA Z	ero He	volume sent: If Applicate eadspace: on Correct/Ch	ole Y N
Relinquished by: (Signature)			bate: 6/30/2		100	ceived by: (Sign		41.3			Trip Blank	ot	HC TB	CL/MeoH	RAD S	creen	<0.5 mR/hr:	ogin: Date/Time
Relinquished by: (Signature)			Date:	Tim	e: Re	ceived by: (Sign	ature)		,		Temp: 8+-2	-2,0	Bottles	10		ervatioi	irrequired by Lo	
Relinquished by : (Signature)			Date:	Tim	ne: Re	cerved for lab by	y: Janun	ature)	M	2	Date:	121	Time:	7:00	Hold:			NCF OK

Pace Analytical® ANALYTICAL REPORT

October 25, 2021

Plum Point Services Co., LLC

L1415555 Sample Delivery Group: Samples Received: 10/08/2021

Project Number: R14590-2496-001

Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1415555-01	6
MW-102 L1415555-02	7
MW-103 L1415555-03	8
MW-108 L1415555-04	9
MW-113 L1415555-05	10
MW-115 L1415555-06	11
MW-116 L1415555-07	12
MW-117 L1415555-08	13
MW-118 L1415555-09	14
MW-119 L1415555-10	15
MW-117 DUP L1415555-11	16
EPA EB L1415555-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	24
Metals (ICP) by Method 6010B	27
GI: Glossary of Terms	28
Al: Accreditations & Locations	29

Sc: Sample Chain of Custody

30

SAMPLE SUMMARY

NAVA 404 14445555 04 0144			Collected by Michael Clayton	Collected date/time 10/07/21 10:55	Received da 10/08/21 09:	
MW-101 L1415555-01 GW						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1757080	1	10/14/21 12:01	10/14/21 12:54	VRP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 02:29	10/15/21 02:29	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:04	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1415555-02 GW			Michael Clayton	10/06/21 13:50	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:01	10/15/21 03:01	ELN	Mt. Juliet, TN
letals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:07	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-103 L1415555-03 GW			Michael Clayton	10/07/21 09:00	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1757189	1	10/14/21 13:49	10/14/21 15:51	MMF	Mt. Juliet, T
let Chemistry by Method 9056A	WG1757240	1	10/15/21 03:18	10/15/21 03:18	ELN	Mt. Juliet, T
letals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:15	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-108 L1415555-04 GW			Michael Clayton	10/05/21 12:45	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	W04755540		date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, Ti
/et Chemistry by Method 9056A	WG1757240	1	10/15/21 03:34	10/15/21 03:34	ELN	Mt. Juliet, T
letals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:18	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-113 L1415555-05 GW			Michael Clayton	10/05/21 11:25	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
iravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1757240	1	10/15/21 03:51	10/15/21 03:51	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:21	CCE	Mt. Juliet, Ti
MW-115 L1415555-06 GW			Collected by Michael Clayton	Collected date/time 10/05/21 10:10	Received da 10/08/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Sateri		date/time	date/time	a.yot	2000001
ravimetric Analysis by Method 2540 C-2011	WG1755519	1	10/12/21 12:31	10/12/21 14:09	MMF	Mt. Juliet, Ti
/et Chemistry by Method 9056A	WG1757240	1	10/15/21 04:07	10/15/21 04:07	ELN	Mt. Juliet, Ti
Motals (ICD) by Method CO10D	WC1761047	1	10/22/21 12:20	10/22/21 00:24	CCE	M+ Juliat TN

Metals (ICP) by Method 6010B

WG1761047

1

10/22/21 13:29 10/23/21 00:24

CCE

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time		
MW-116 L1415555-07 GW			Michael Clayton	10/06/21 15:10	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 04:23	10/15/21 04:23	ELN	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1758277	5	10/16/21 15:48	10/16/21 15:48	ELN	Mt. Juliet, Th
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:27	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-117 L1415555-08 GW			Michael Clayton	10/06/21 12:00	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Cravimatric Analysis by Mothad 2540 C 2011	WC17E627E	1			DDC	Mt Juliot T
Gravimetric Analysis by Method 2540 C-2011	WG1756375	1	10/13/21 12:32	10/13/21 14:11	BRG	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1757240	1	10/15/21 05:13	10/15/21 05:13	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:30	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-118 L1415555-09 GW			Michael Clayton	10/06/21 10:50	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1756452	1	10/13/21 13:58	10/13/21 14:33	BRG	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1757240	1	10/15/21 05:29	10/15/21 05:29	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:33	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-119 L1415555-10 GW			Michael Clayton	10/07/21 10:00	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1757189	1	10/14/21 13:49	10/14/21 15:51	MMF	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1757240	1	10/15/21 05:46	10/15/21 05:46	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:36	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-117 DUP L1415555-11 GW			Michael Clayton	10/06/21 12:05	10/08/21 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1756375	1	10/13/21 12:32	10/13/21 14:11	BRG	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1757240	1	10/15/21 06:02	10/15/21 06:02	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1761047	1	10/22/21 13:29	10/23/21 00:39	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
EPA EB L1415555-12 GW			Michael Clayton	10/06/21 11:25	10/08/21 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1756503	1	10/13/21 16:14	10/13/21 17:20	BRG	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1757240	1	10/15/21 06:18	10/15/21 06:18	ELN	Mt. Juliet, T
Mark (ICD) I Mark 1 COAD	W01/3/24U	1	10/13/21 00.10	10/13/21 00.10	LLIN	ivic. Juliet, II

Metals (ICP) by Method 6010B

WG1761047

10/22/21 13:29

CCE

Mt. Juliet, TN

10/23/21 00:42

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager Sr

Collected date/time: 10/07/21 10:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	380000		10000	1	10/14/2021 12:54	WG1757080

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	975	J	379	1000	1	10/15/2021 02:29	WG1757240
Fluoride	312		64.0	150	1	10/15/2021 02:29	WG1757240
Sulfate	10200		594	5000	1	10/15/2021 02:29	WG1757240

Ss

Cn

Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	55.5	J	20.0	200	1	10/23/2021 00:04	WG1761047
Calcium	113000		79.3	1000	1	10/23/2021 00:04	WG1761047

Collected date/time: 10/06/21 13:50

1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	415000		10000	1	10/13/2021 14:33	WG1756452

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2480		379	1000	1	10/15/2021 03:01	WG1757240
Fluoride	215		64.0	150	1	10/15/2021 03:01	WG1757240
Sulfate	95300		594	5000	1	10/15/2021 03:01	WG1757240

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	78.4	<u>J</u>	20.0	200	1	10/23/2021 00:07	WG1761047
Calcium	116000		79.3	1000	1	10/23/2021 00:07	WG1761047

Collected date/time: 10/07/21 09:00

L1415555

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	324000		10000	1	10/14/2021 15:51	WG1757189

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	1160		379	1000	1	10/15/2021 03:18	WG1757240
Fluoride	256		64.0	150	1	10/15/2021 03:18	WG1757240
Sulfate	12600		594	5000	1	10/15/2021 03:18	WG1757240

Metals (ICP) by Method 6010B

. , , ,							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	68.1	<u>J</u>	20.0	200	1	10/23/2021 00:15	WG1761047
Calcium	89700		79.3	1000	1	10/23/2021 00:15	WG1761047

Αl

Collected date/time: 10/05/21 12:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	505000		10000	1	10/12/2021 14:09	WG1755519

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	1370		379	1000	1	10/15/2021 03:34	WG1757240
Fluoride	203		64.0	150	1	10/15/2021 03:34	WG1757240
Sulfate	23400		594	5000	1	10/15/2021 03:34	WG1757240

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	111	<u>J</u>	20.0	200	1	10/23/2021 00:18	WG1761047
Calcium	149000		79 3	1000	1	10/23/2021 00:18	WG1761047

Collected date/time: 10/05/21 11:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	275000		10000	1	10/12/2021 14:09	WG1755519

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	877	J	379	1000	1	10/15/2021 03:51	WG1757240
Fluoride	139	<u>J</u>	64.0	150	1	10/15/2021 03:51	WG1757240
Sulfate	3750	<u>J</u>	594	5000	1	10/15/2021 03:51	WG1757240

Cn

³Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	81.7	<u>J</u>	20.0	200	1	10/23/2021 00:21	WG1761047
Calcium	67500		79.3	1000	1	10/23/2021 00:21	WG1761047

Qc

Αl

Collected date/time: 10/05/21 10:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	379000		10000	1	10/12/2021 14:09	WG1755519

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	964	J	379	1000	1	10/15/2021 04:07	WG1757240
Fluoride	225		64.0	150	1	10/15/2021 04:07	WG1757240
Sulfate	3700	<u>J</u>	594	5000	1	10/15/2021 04:07	WG1757240

Ss

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	65.5	J	20.0	200	1	10/23/2021 00:24	WG1761047
Calcium	109000		79.3	1000	1	10/23/2021 00:24	WG1761047

Αl

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 10/06/21 15:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Dissolved Solids	670000		10000	1	10/13/2021 14:33	WG1756452	

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	11200		379	1000	1	10/15/2021 04:23	WG1757240
Fluoride	214		64.0	150	1	10/15/2021 04:23	WG1757240
Sulfate	166000		2970	25000	5	10/16/2021 15:48	WG1758277

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	11200		379	1000	1	10/15/2021 04:23	WG1757240
Fluoride	214		64.0	150	1	10/15/2021 04:23	WG1757240
Sulfate	166000		2970	25000	5	10/16/2021 15:48	WG1758277

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	97.3	<u>J</u>	20.0	200	1	10/23/2021 00:27	WG1761047
Calcium	185000		79.3	1000	1	10/23/2021 00:27	WG1761047

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 10/06/21 12:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	314000		10000	1	10/13/2021 14:11	WG1756375

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	921	J	379	1000	1	10/15/2021 05:13	WG1757240
Fluoride	162		64.0	150	1	10/15/2021 05:13	WG1757240
Sulfate	9090		594	5000	1	10/15/2021 05:13	WG1757240

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.7	<u>J</u>	20.0	200	1	10/23/2021 00:30	WG1761047
Calcium	88800		79.3	1000	1	10/23/2021 00:30	WG1761047

Collected date/time: 10/06/21 10:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	280000		10000	1	10/13/2021 14:33	WG1756452

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	1150		379	1000	1	10/15/2021 05:29	WG1757240
Fluoride	189		64.0	150	1	10/15/2021 05:29	WG1757240
Sulfate	11500		594	5000	1	10/15/2021 05:29	WG1757240

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	65.6	<u>J</u>	20.0	200	1	10/23/2021 00:33	WG1761047
Calcium	82900		79.3	1000	1	10/23/2021 00:33	WG1761047

Collected date/time: 10/07/21 10:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	388000		10000	1	10/14/2021 15:51	WG1757189

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2400		379	1000	1	10/15/2021 05:46	WG1757240
Fluoride	269		64.0	150	1	10/15/2021 05:46	WG1757240
Sulfate	39100		594	5000	1	10/15/2021 05:46	WG1757240

³Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	59.4	<u>J</u>	20.0	200	1	10/23/2021 00:36	WG1761047
Calcium	104000		79 3	1000	1	10/23/2021 00:36	WG1761047

Cn

MW-117 DUP

SAMPLE RESULTS - 11

Collected date/time: 10/06/21 12:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	305000		10000	1	10/13/2021 14:11	WG1756375

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	920	J	379	1000	1	10/15/2021 06:02	WG1757240
Fluoride	156		64.0	150	1	10/15/2021 06:02	WG1757240
Sulfate	9180		594	5000	1	10/15/2021 06:02	WG1757240

Cn

³Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	70.2	J	20.0	200	1	10/23/2021 00:39	WG1761047
Calcium	88800		79.3	1000	1	10/23/2021 00:39	WG1761047

Collected date/time: 10/06/21 11:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	10/13/2021 17:20	WG1756503

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	U		379	1000	1	10/15/2021 06:18	WG1757240
Fluoride	U		64.0	150	1	10/15/2021 06:18	WG1757240
Sulfate	U		594	5000	1	10/15/2021 06:18	WG1757240

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	10/23/2021 00:42	WG1761047
Calcium	U		79.3	1000	1	10/23/2021 00:42	WG1761047

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-04,05,06

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1411702-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1411702-02 10/12/21 14:09 • (DUP) R3716571-3 10/12/21 14:09

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	676000	683000	1	0.982		5

⁶Qc

L1413623-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1413623-05 10/12/21 14:09 • (DUP) R3716571-4 10/12/21 14:09

, ,		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	е	ug/l	ug/l		%		%
Dissolv	ved Solids	427000	429000	1	0.467		5

Laboratory Control Sample (LCS)

(LCS) R3716571-2 10/12/21 14:09

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8670000	98.5	77.4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-08,11

Method Blank (MB)

(MB) R3717162-1 10)/13/21 14:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

[†]Cn

L1416228-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1416228-08 10/13/21 14:11 • (DUP) R3717162-3 10/13/21 14:11

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1350000	1340000	1	0.149		5

L1416228-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1416228-09 10/13/21 14:11 • (DUP) R3717162-4 10/13/21 14:11

(00) 21110220 00 10/10/21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1850000	1860000	1	0.270		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3717162-2 10/13/21 14:11

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-02,07,09

Method Blank (MB)

(MB) R3/1/32/-1	10/13/21 14:33		
	MB Result	MB Qualifier	MB MDL

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1415554-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1415554-09 10/13/21 14:33 • (DUP) R3717327-3 10/13/21 14:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	663000	697000	1	5.00		5

L1415555-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1415555-07 10/13/21 14:33 • (DUP) R3717327-4 10/13/21 14:33

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	ug/l	ug/l		%		%	
Dissolved Solids	670000	690000	1	2.94		5	

Laboratory Control Sample (LCS)

(LCS) R3717327-2 10/13/21 14:33

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8310000	94.4	77.4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-12

Method Blank (MB)

(MB) R3717175-1	10/13/21 17:20

	MB Result	MB Qualifier	MB MDL	MB RDI
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

[†]Cn

L1415583-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1415583-06 10/13/21 17:20 • (DUP) R3717175-3 10/13/21 17:20

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1180000	1180000	1	0.170		5

L1415583-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1415583-09 10/13/21 17:20 • (DUP) R3717175-4 10/13/21 17:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1100000	1100000	1	0.181		5

Laboratory Control Sample (LCS)

(LCS) R3717175-2 10/13/21 17:20

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8700000	98 9	77 4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-01

Method Blank (MB)

(MB) R3/18311-1	10/14/21 12:54

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

[†]Cn

L1414612-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1414612-20 10/14/21 12:54 • (DUP) R3718311-3 10/14/21 12:54

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1080000	1170000	1	8.20	J3	5

L1414612-23 Original Sample (OS) • Duplicate (DUP)

(OS) L1414612-23 10/14/21 12:54 • (DUP) R3718311-4 10/14/21 12:54

	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	848000	904000	1	6.39	J3	5

Laboratory Control Sample (LCS)

(LCS) R3718311-2 10/14/21 12:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8140000	92.5	77.4-123

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1415555-03,10

Method Blank (MB)

	MD D
(MB) R3718287-1	10/14/21 15:51

	MB Result	MB Qualifier	MR MDL	MR KDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1415583-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1415583-01 10/14/21 15:51 • (DUP) R3718287-3 10/14/21 15:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1030000	1000000	1	2.17		5

[†]Cn

L1415844-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1415844-01 10/14/21 15:51 • (DUP) R3718287-4 10/14/21 15:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1900000	1880000	1	1.19		5

Sc

Laboratory Control Sample (LCS)

(LCS) R3718287-2 10/14/21 15:51

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8660000	98.4	77.4-123

QUALITY CONTROL SUMMARY

L1415555-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Wet Chemistry by Method 9056A

(MB) R3717169-1 10/14/21 14:24

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	U		594	5000

L1415555-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1415555-01 10/15/21 02:29 • (DUP) R3717169-7 10/15/21 02:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	975	983	1	0.858	<u>J</u>	15
Fluoride	312	313	1	0.0960		15
Sulfate	10200	10100	1	0.774		15

L1415555-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1415555-12 10/15/21 06:18 • (DUP) R3717169-8 10/15/21 06:35

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> Limits	
Original Result Did Result Didtion DOP RPD DOP Qualifier Limits	
Analyte ug/l ug/l % %	
Chloride U U 1 0.000 15	
Fluoride U U 1 0.000 15	
Sulfate U U 1 0.000 15	

Sc

Laboratory Control Sample (LCS)

(I CS) P3717169-2 10/14/21 14:40

(LC3) K3/1/103-2 10/14/2	21 14.40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	98.1	80.0-120	
Fluoride	8000	8120	101	80.0-120	
Sulfate	40000	39300	98.2	80 0-120	

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1415555-01,02,03,04,05,06,07,08,09,10,11,12

L1415451-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415451-01 10/14/21 23:28 • (MS) R3717169-3 10/14/21 23:44 • (MSD) R3717169-4 10/15/21 00:01

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	75800	122000	122000	93.0	92.8	1	80.0-120	Ē	<u>E</u>	0.0957	15
Fluoride	5000	174	5100	5090	98.5	98.3	1	80.0-120			0.198	15
Sulfate	50000	U	49200	48900	98.4	97.9	1	80.0-120			0.504	15

Ср

L1415451-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415451-02 10/15/21 00:17 • (MS) R3717169-5 10/15/21 00:34 • (MSD) R3717169-6 10/15/21 00:50

(,				,		-						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	8550	56100	55900	95.2	94.7	1	80.0-120			0.449	15
Fluoride	5000	130	4790	4760	93.2	92.7	1	80.0-120			0.536	15
Sulfate	50000	789	47100	46900	92.6	92.2	1	80 0-120			0.401	15

Method Blank (MB)

Analyte

QUALITY CONTROL SUMMARY

L1415555-07

Wet Chemistry by Method 9056A

(MB) R3717773-1	10/16/21 07:00
	MD Decola

MB Result	MB Qualifier	MB MDL	MB RDL
ug/l		ug/l	ug/l

Sulfate 594 5000

Ss

L1415555-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1415555-07 10/16/21 15:48 • (DUP) R3717773-3 10/16/21 16:04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	166000	166000	5	0.249		15

[†]Cn

L1418554-334 Original Sample (OS) • Duplicate (DUP)

(OC) | 1/1055/1 22/1 10/16/21 21:49 | (DI ID) | D2717772 | 6 10/16/21 22:07

(US) L1418994-334 10/10/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	1020000	1040000	20	1.40		15

Sc

Laboratory Control Sample (LCS)

(LCS) R3717773-2 10/16/21 07:16

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	39300	98.2	80.0-120	

L1418554-328 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1418554-328 10/16/21 18:31 • (MS) R3717773-4 10/16/21 18:48 • (MSD) R3717773-5 10/16/21 19:04

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Sulfate	50000	503000	549000	554000	92.5	103	1	80.0-120	E	<u>E</u>	0.918	15

L1418554-336 Original Sample (OS) • Matrix Spike (MS)

(OS) L1418554-336 10/16/21 22:56 • (MS) R3717773-7 10/16/21 23:13

		Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
A	Analyte	ug/l	ug/l	ug/l	%		%	
9	Sulfate	50000	1430000	1440000	14.4	1	80.0-120	<u>E V</u>

QUALITY CONTROL SUMMARY

L1415555-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Metals (ICP) by Method 6010B

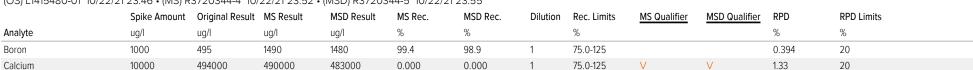
(MB) R3720344-1 10/22/21 23:40 MB DDI MR Qualifior MR MDI

	MD Kesuit	Wib Qualifier	IND INDL	IND KDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	U		79.3	1000

Ss

Laboratory Control Sample (LCS)

(LCS) P3720344-2 10/22/21 23:43


(LC3) R3/20344-2 10/22/	21 23.43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	985	98.5	80.0-120	
Calcium	10000	9600	96.0	80.0-120	

GI

L1415480-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1415480-01 10/22/21 23:46 • (MS) R3720344-4 10/22/21 23:52 • (MSD) R3720344-5 10/22/21 23:55

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

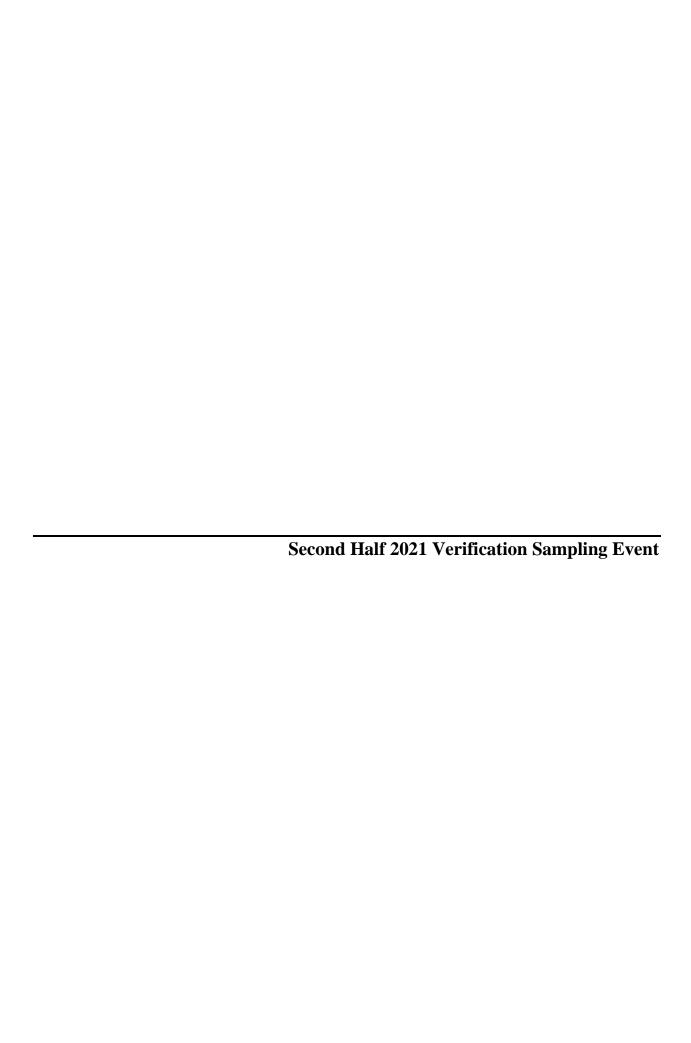
Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 1 6	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto



 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:			100				Analysis / Co	ntaine	r / Preservative	Total of	Chain of Custod	Page of
Plum Point Services Co. 2739 SCR 623 Osceola, AR 72370	, LLC		P.O. Box	Accounts Payable P.O. Box 567 Osceola, AR 72370											- Fac	ee Analytical [°]
Report to: Dana Derrington				ld@ftn-asso		@ftn-										ia this chain of custody
Project Description: City/State			, Please Circ											Pace Terms and Condi	gment and acceptance of the tions found at: com/hubfs/pas-standard-	
hone: 501-920-9642	Client Project # R14590-2496-001			Lab Projec	ect # AR-PLUN	/POINT		NoPres	10	HN03	ONE-HINO		1 - M		SDG# L	415555
oilected by (print): MILKAI CLOVIOS	Site/Facility ID #			P.O. # 2020-00	0128			HDPE N	VoPres	HDPE-					Acctnum: NA	ESOAR
follected by (signature):	Rush? (Lab MUST Be Notifi Same Day Five Day Next Day 5 Day (Rad Two Day 10 Day (Rac			(Rad Only) Date Resu			No.	125m	250mlHDPE-NoPres	Ca 250mlHI	2000 ME/400990				Template: T175308 Prelogin: P877336 PM: 134 - Mark W. Beasley	
Sample ID	Three D	Matrix *	Depth	Date	Date Time		of Cntrs	CI, F, SO4	TDS 250	Total B,					PB: Shipped Via: FedEX Ground Remarks Sample # (lab only)	
W-101	GNAS	GW		10/7	b1 1	055	3	X	Х	X						-01
W-102		GW		10/11	-	50	3	X	Х	X						-02
W-103		GW		10/2/0		200	3	Х	х	Х						-03
W-108		GW		10/01	/	245	3	Х	Х	Х						-04
W-113		GW		10/51	121 1	1/25	3	Х	Х	Х						-05
W-115		GW		10/51	121	010	3	Χ	Х	Х						-06
W-116		GW		10/61		10/0	3	Х	Х	Х						-07
W-117		GW		10/6/	21	1200	3	X	Х	X						-08
IW-118		GW		10/6/0	/	250	3	Χ	Х	X			有類性			109
IW-119	V	GW		10/7/	21/	000	3	Χ	Х	X						-10
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay /W - WasteWater W - Drinking Water	marks:	da and an								,	pH Flow		Temp	COC Seal COC Sign Bottles Correct	ample Receipt Ch Present/Intact ed/Accurate: arrive intact: bottles used:	
T - Other	mples returned UPS FedEx				Tracking #	530	X) 4	-29	5	717	9			nt volume sent: If Applicab Headspace:	le Y N
elinquished by : (Signature)	Da	te:	Time:		Received b	y: (Signati	ure)				Trip Blank Re	eceived	d: Yes / No HCL / MeoH TBR	Preserva	tion Correct/Ch en <0.5 mR/hr:	ecked: N
elinquished by : (Signature)	Da	te:	Time:		Received b					- 1	Temp#24	Proposition	Bottles Received:	If preserva	ation required by Lo	gin: Date/Time
elinquished by : (Signature)	Da	te:	Time:		Received for	or lab by:	Signitu	ire)	-, '		Date:	21	Time: 900	Hold:		Condition: NCF OK

Company Name/Address:			Billing Info	rmation:				,		Analysis	/ Contain	er / Prese	rvative	2	21/2	Chain of Custody	Page of
Plum Point Services Co 2739 SCR 623	o., LLC		P.O. Box	Accounts Payable P.O. Box 567 Osceola, AR 72370												_ Pac	e Analytical [®]
Osceola, AR 72370				shi l												1/	
Report to: Dana Derrington				mail To: dld@ftn-assoc.com;hlf@ftn- ssoc.com;ajp@ftn-assoc.com													a this chain of custody gment and acceptance of the
Project Description: Plum Point Energy Station		City/State Collected: /	DSCEUAN	a An	Please Cir PT MT C											terms.pdf	om/hubfs/pas-standard-
Phone: 501-920-9642	R14590-24	#		Lab Projec	r.# R-PLUMPOINT		oPres		HN03								115555
Collected by (print):	Site/Facility II	0.#		P.O.# 2020-00128				oPres	DPE-F						Table # Acctnum: NAI	ESOAR	
Collected by (signature).	1	Lab MUST Be		Quote #	£ . 3	125mlHDPE-NoPres	PE-No	250mlHDPE-							Template:T17 Prelogin: P87		
Immediately Packed on Ice N Y	Next Da	y 5 Da	y (Rad Only)	(Rad Only) Date Results Needed				250mIHDPE-NoPres	B, Ca 25							PM: 134 - Mari	
Sample ID	Comp/Grab	Matrix *	Depth	Depth Date Time				TDS 25	otal E				The state of the s			Shipped Via: Fo	Sample # (lab only)
MW-117 DUP	GNAS	GW	I	10/6/2	1 1205	3	X C	X	X								-11
EPA EB	1	GW		10/6/2		3	Х	Х	X					-			-12
		GW		10.6/0	1/10)	3	X	Х	X								
		GW				3	Х	Х	X								
Mary 1974 de description de la constant de la const				1													
			-														
			-	-				-									
* Matrix:	<u> </u>	<u> </u>	1														
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:							pH		Temp Other _		_	COC Seal COC Sign Bottles	Sample Receipt Ch 1 Present/Intact: ned/Accurate: arrive intact:	NP Y N		
DW - Drinking Water OT - Other	Samples returnedUPSFedEx		Tracking #											ıı	Sufficie	bottles used: ent volume sent: If Applicab; o Headspace:	Le Y N
Relinquished by : (Signature)	Da	ite:	Time: Received by: (Signature			ure)	1			Trip Blar	ank Received: Yes / No Pre				ation Correct/Che een <0.5 mR/hr;	ecked: A _N	
Relinquished by : (Signature)	Da	ite:	Time: Received by: (Signature			ıre)					160°C	Bottles I	ORDER STATES AND ADDRESS OF THE PARTY.	d:	If preserv	preservation required by Login: Date/Time	
Relinquished by : (Signature)	Da	te:	Time	Time: Received for lab by: (S			2.01=1.9 Date: Time: 10 8 31 900					Hold:		Condition: NCF / OK			

Pace Analytical® ANALYTICAL REPORT

January 19, 2022

Plum Point Services Co., LLC

Sample Delivery Group: L1443406 Samples Received: 12/16/2021

Project Number: R14590-2496-001

Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-116 L1443406-01	5
MW-116 DUP L1443406-02	6
MW-117 L1443406-03	7
EPA EB-1 L1443406-04	8
Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 9056A	10
Metals (ICP) by Method 6010B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

DATE/TIME:

01/19/22 19:35

PAGE:

2 of 15

SAMPLE SUMMARY

			Callantad by	Callanta dalaha hima	December of state	t = /t:
			Collected by	Collected date/time		
MW-116 L1443406-01 GW			Michael Clayton	12/14/21 12:58	12/16/21 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1796352	5	01/03/22 12:57	01/03/22 12:57	ELN	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1801153	1	01/13/22 09:31	01/18/22 23:01	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-116 DUP L1443406-02 GW			Michael Clayton	12/14/21 12:55	12/16/21 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1796352	5	01/03/22 13:10	01/03/22 13:10	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1801153	1	01/13/22 09:31	01/18/22 23:04	KMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-117 L1443406-03 GW			Michael Clayton	12/14/21 14:05	12/16/21 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, Th
Wet Chemistry by Method 9056A	WG1796352	1	12/30/21 15:08	12/30/21 15:08	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1801419	1	01/13/22 11:40	01/19/22 02:11	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
EPA EB-1 L1443406-04 GW			Michael Clayton	12/14/21 14:30	12/16/21 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1792248	1	12/20/21 10:32	12/20/21 18:45	BRG	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1796352	1	12/30/21 15:21	12/30/21 15:21	ELN	Mt. Juliet, TI

WG1801419

Metals (ICP) by Method 6010B

01/13/22 11:40

01/19/22 02:13

CCE

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager

SAMPLE RESULTS - 01

Collected date/time: 12/14/21 12:58

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	730000		10000	1	12/20/2021 18:45	WG1792248

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfate	200000		2970	25000	5	01/03/2022 12:57	WG1796352

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	190000		79.3	1000	1	01/18/2022 23:01	WG1801153

MW-116 DUP

SAMPLE RESULTS - 02

Collected date/time: 12/14/21 12:55

L1443406

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	724000		10000	1	12/20/2021 18:45	WG1792248

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfate	200000		2970	25000	5	01/03/2022 13:10	WG1796352

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	189000		79.3	1000	1	01/18/2022 23:04	WG1801153

Cn

SAMPLE RESULTS - 03

L14434

Gravimetric Analysis by Method 2540 C-2011

Collected date/time: 12/14/21 14:05

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	308000		10000	1	12/20/2021 18:45	WG1792248

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfate	9310		594	5000	1	12/30/2021 15:08	WG1796352

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	82000		79.3	1000	1	01/19/2022 02:11	WG1801419

Cn

SAMPLE RESULTS - 04

Collected date/time: 12/14/21 14:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	12/20/2021 18:45	WG1792248

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Sulfate	U		594	5000	1	12/30/2021 15:21	WG1796352

³Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	U		79.3	1000	1	01/19/2022 02:13	WG1801419

Cn

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1443406-01,02,03,04

Method Blank (MB)

(MB) R3744484-1 12/20/21	18:45			
	MB Result	MB Qualifier	MB MDL	М
Analyte	ua/l		ua/l	110

Ss

[†]Cn

L1443377-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1443377-04 12/20/21 18:45 • (DUP) R3744484-3 12/20/21 18:45

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	1690000	1670000	1	167		5

L1444231-10 Original Sample (OS) • Duplicate (DUP)

(OS) | 1444231-10 | 12/20/21 18:45 • (DUP) R3744484-4 | 12/20/21 18:45

(00) [1777201 10 12/20/21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	3730000	3810000	1	2.12		5

Laboratory Control Sample (LCS)

(LCS) R3744484-2 12/20/21 18:45

QUALITY CONTROL SUMMARY

L1443406-01,02,03,04

Wet Chemistry by Method 9056A

Method Blank (MB)

(MB) R3746963-1	12/30/21 09:33

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Sulfate	U		594	5000

Ss

L1442956-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1442956-03 12/30/21 12:22 • (DUP) R3746963-3 12/30/21 12:35

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Sulfate	40800	40700	1	0.216		15

L1443406-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 14/13/106-04 | 12/30/21 15:21 • (DLIP) P37/16963-6 | 12/30/21 15:59

(03) [1443400-04 12/30/2		al Result DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits
e	ug/l	ug/l		%		%
Sulfate	U	U	1	0.000		15

Laboratory Control Sample (LCS)

(LCS) R3746963-2 12/30/21 09:46

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Sulfate	40000	41200	103	80.0-120	

L1442956-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1442956-03 12/30/21 12:22 • (MS) R3746963-4 12/30/21 12:48 • (MSD) R3746963-5 12/30/21 13:26

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Sulfate	50000	40800	89300	91400	96.9	101	1	80.0-120			2.43	15	

L1443406-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1443406-04 12/30/21 15:21 • (MS) R3746963-7 12/30/21 16:12

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Sulfate	50000	U	51500	103	1	80.0-120	

QUALITY CONTROL SUMMARY

L1443406-01,02

Metals (ICP) by Method 6010B

Method Blank (MB)
(MB) R3751550-1 01/19/22 12:15

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	88.3	J	79.3	1000

Ср

Laboratory Control Sample (LCS)

(LCS) R3751550-2	01/19/22	12:17
------------------	----------	-------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9960	99.6	80.0-120	

⁶Qc

L1443268-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1443268-13 01/18/22 23:17 • (MS) R3751556-4 01/18/22 23:22 • (MSD) R3751556-5 01/18/22 23:24

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	257000	264000	263000	63.8	54.3	1	75.0-125	V	V	0.362	20

Calcium

QUALITY CONTROL SUMMARY

L1443406-03,04

Metals (ICP) by Method $6010\,\mathrm{B}$

Method Blank (MB)

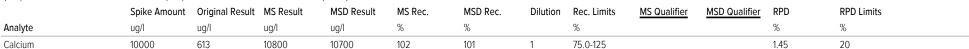
(MB) R3751163-1 01/19	/22 01:55			
	MB Result	MB Qualifier	MB MDL	
Analyte	ua/l		ua/l	

U

_
2_

1	LCS'	R3751163-2	01/19/22	01:58

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	10300	103	80.0-120	



79.3

MB RDL ug/l

1000

(OS) L1443692-17 01/19/22 02:00 • (MS) R3751163-4 01/19/22 02:06 • (MSD) R3751163-5 01/19/22 02:08

GI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

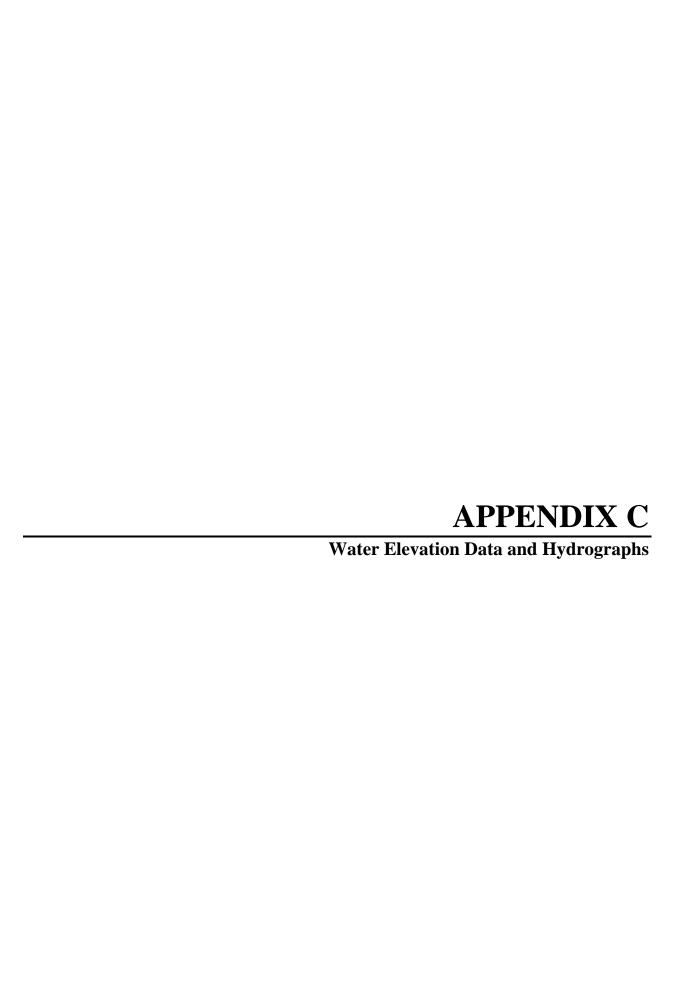
Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

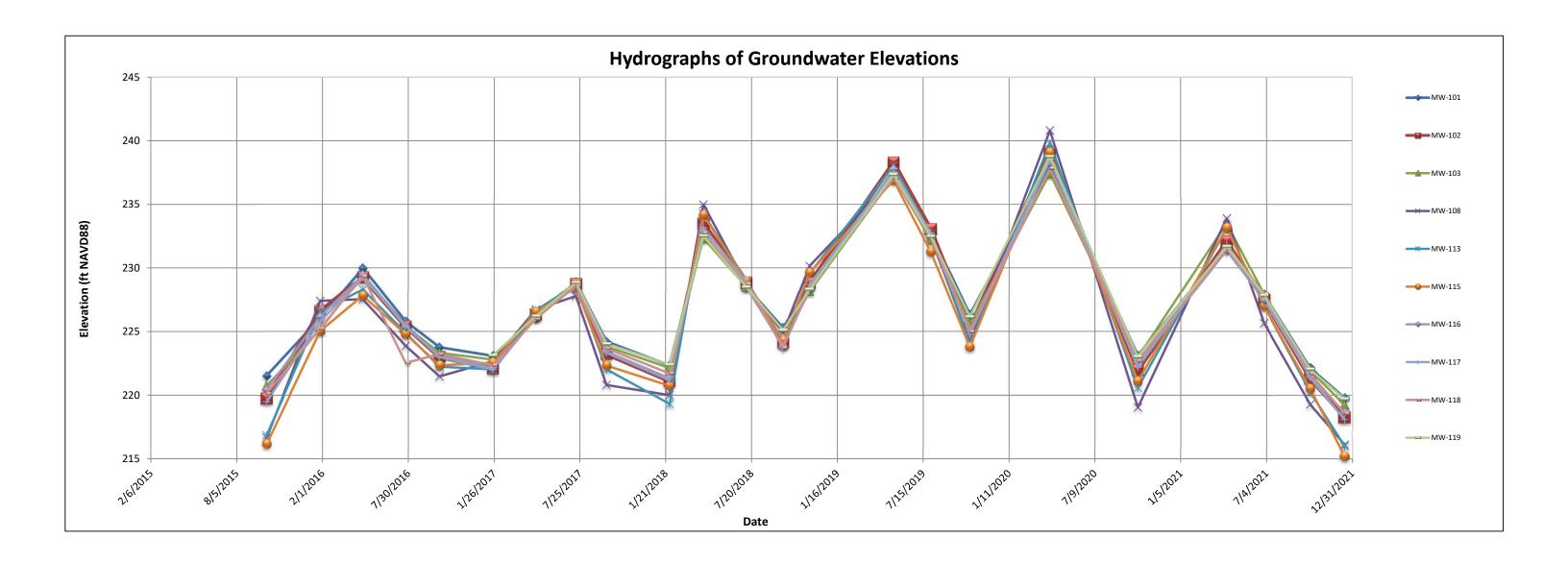
^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

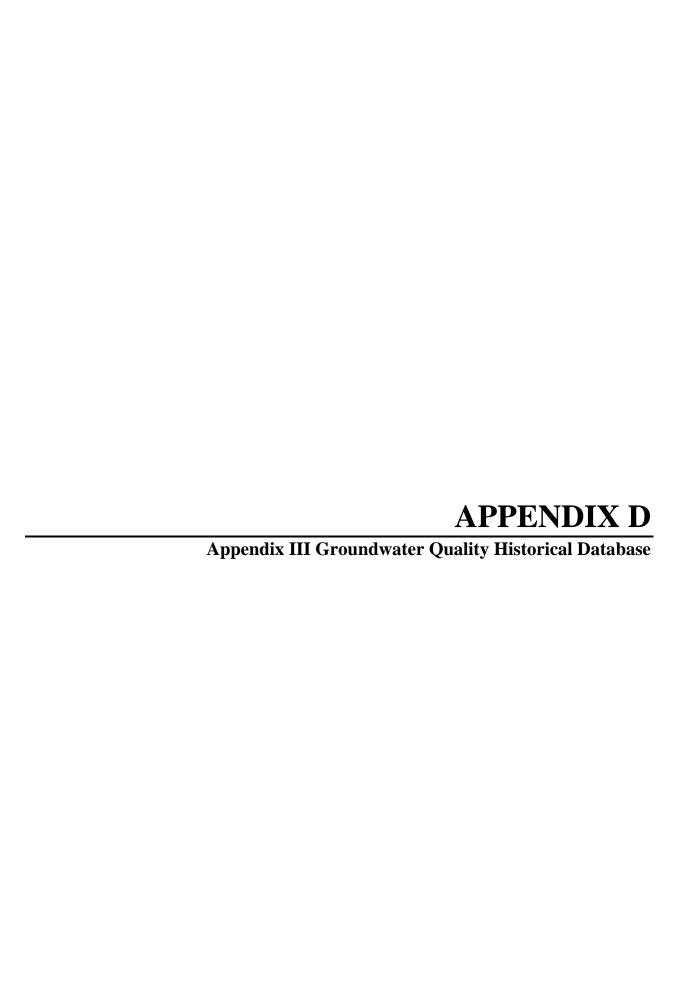
TN00003

EPA-Crypto



 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$


mpar y Name/Address:			Billing Info	rmation:	رد			Analysis / Container / Preservative Chain of Custody						Page of			
lum Point Services Co.,	LLC		P.O. Box	coounts i ajabic		Pres Chk	12					7				- Pac) ce Analytical [®]
sceo la, AR 72370																	9.
eport to:		2	The second secon	dld@ftn-assoc.o ;ajp@ftn-assoc	ssoc.com;hlf@ftn- assoc.com											Submitting a sample v	lount Juliet, TN 37122 via this chain of custody dgment and acceptance of the
oject Description: um Point Energy Station	The second second	City/State Collected:	OSCEOK	to an	Please C											https://info.pacelabs. terms.pdf	.com/hubfs/pas-standard-
one: 501-920-9642	Client Project			NAESOAR	-PLUMPOINT			Pres						1		SDG # U	43 <i>4</i> 06
lected by (print):	Same Day Five Day Some Day Five Day Some Day Some Day 10 Day (Rad On Two Day 10 Day (Rad On Some Day Some Day Five Day Some Day			P.O. # 2020-0012	28		HNO	PE-No	loPres						Acctnum: NA	Acctnum: NAESOAR	
mediately cked-on-ice N Y			Day y (Rad Only)	otified) Quote # y tad Only) Date Results Needed		No.	250mIHDPE-HNO3	ZSUMIHUPE-HNO3	250mlHDPE-NoPr						Prelogin: P89 PM: 134 - Ma PB:	92986	
Sample ID	Three t	Matrix *	Depth	Date	Time	SULFATE						Shipped Via:	Sample # (lab only)				
V-116	Grab	GW	T	12/14/1	21/258	12	X	X	X								-01
/-116 DUP	1000	GW		100/17/0	1)00	13	X	X	Y								-01
J-117		GW			1400	17	X	X	2								-02
VEB-1	1	GW		1	1430	13	X	X	X								-cq
	100000000000000000000000000000000000000	GW			1730	1		/\	/\								
	-	GW	1	+		El .											
	 	GW	1			+											
		1				1										Company of the Compan	
		1		1275													
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay VW - WasteWater	marks:		toronal in terror							pH Flow		_ Temp		_	COC Seal COC Sign Bottles Correct	ample Receipt C Present/Intact ed/Accurate: arrive intact: bottles used:	
T Othor	mples returned UPS FedEx			Tra	cking#		531	89		3540					VOA Zero	nt volume sent: If Applicat Headspace:	ole y N
elinquished by : (Signature)	0	ate:	7 Time	e: Re	ceived by: (Signa		-			Trip Blan	k Recei		HCL / Med			tion Correct/Ch en <0.5 mR/hr:	necked: Y N
		Time		ceived by: (Signa	ture)	//	1		THE RESIDENCE OF THE PARTY OF T		HILLSON TO SERVEY			If preserva	ation required by Lo	ogin: Date/Time	
Relinquished by : (Signature)	D	ate:	Time	e: Re	ceived for lab by	: (Signa)	ure)	1		Date: 12-16		Time	need of the second	15	Hold:		Condition: NCF OK



Historical water levels.

			Water Surfa	ace Elevatio	n (ft, North	American V	ertical Datu	ım of 1988)		
Date	MW-101	MW-102	MW-103	MW-108	MW-113	MW-115	MW-116	MW-117	MW-118	MW-119
10/7/2015	221.51	219.73	220.71	216.68	216.87	216.17	220.40	219.48	220.12	N/A*
1/28/2016	226.07	226.58	225.16	227.39	226.53	225.03	226.14	225.78	225.22	N/A*
4/26/2016	229.97	229.24	229.48	227.53	228.30	227.80	229.43	229.23	229.33	N/A*
7/25/2016	225.79	225.38	225.41	223.87	224.87	224.78	225.33	225.45	222.53	N/A*
10/4/2016	223.76	223.00	223.33	221.47	222.23	222.34	223.10	222.99	223.23	N/A*
1/24/2017	223.08	222.09	222.79	222.66	222.03	222.54	222.12	222.00	222.34	223.14
4/24/2017	226.04	226.33	226.33	226.71	226.65	226.53	226.07	226.11	225.98	226.22
7/17/2017	228.89	228.74	228.48	227.77	228.65	228.41	228.53	228.77	228.65	228.86
9/19/2017	224.21	223.23	223.82	220.80	222.03	222.32	223.42	223.33	223.67	224.04
1/29/2018	222.35	221.12	222.14	220.01	219.32	220.74	221.33	221.18	221.71	222.39
4/10/2018	232.63	233.50	232.34	234.99	234.23	234.15	232.89	233.19	232.76	232.52
7/9/2018	228.52	228.81	228.50	228.72	229.03	228.95	228.49	228.87	228.73	228.49
9/24/2018	225.29	224.15	224.16	224.89	224.08	224.29	223.83	223.71	223.72	225.11
11/19/2018	228.54	228.80	228.16	230.16	229.57	229.62	228.31	228.71	228.46	228.33
2/18/2019	NM	NM	MM	NM	NM	NM	NM	NM	NM	236.90
5/14/2019	237.60	238.28	237.17	237.13	238.03	236.89	237.76	237.55	237.08	237.35
7/31/2019	232.75	233.02	232.22	232.39	232.66	231.26	232.55	232.75	232.40	232.48
10/21/2019	226.32	225.29	225.52	224.14	223.95	223.78	225.08	224.77	224.98	226.16
4/6/2020	238.06	239.09	237.46	240.81	239.83	239.08	238.49	238.51	237.83	238.76
10/7/2020	223.12	221.96	222.96	219.05	220.58	221.09	222.58	222.19	222.70	223.03
4/12/2021	231.65	232.06	233.51	233.90	233.12	233.15	231.38	231.81	231.53	231.69
6/29/2021	227.90	227.49	227.88	225.64	227.00	226.99	227.42	227.80	227.97	227.85
10/4/2021	222.14	221.32	221.94	219.28	220.25	220.53	221.49	221.37	221.7	222.04
12/14/2021	219.78	218.27	219.23	216.11	215.99	215.18	218.62	218.08	218.56	219.70

^{*}Monitoring well not installed yet.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-101	downgradient							
	10/7/2015	0.0858(J)	116	3.02	0.281	12.4	401	6.4
	1/28/2016	0.114(J)	117	2.74	0.274	11.4	421(B)	6.6
	4/27/2016	0.105(J)	120	6.61	0.283	19.9	437	6.3
	7/26/2016	0.0877(J)	115	3.41	0.241	12.8	448(B)	6.6
	10/6/2016	0.0890(J)	110	1.93	0.267	8.44	387	6.2
	1/25/2017	0.0681(J)	109	1.67	0.300	11.5	381	6.7
	4/26/2017	<1.80(O)	80.5	2.14	0.273	9.57	407	6.9
	7/20/2017	0.0903(BJ)	110	1.98	0.331	13.5	414	6.7
	9/20/2017	0.0718(J)	153	1.57	0.328	9.68	385	7.0
	12/11/2017	n/a	120	n/a	n/a	n/a	n/a	6.4
	4/12/2018	0.0840(BJ)	121	2.75	0.307	17.4	420	6.4
	9/26/2018	0.0981(BJ)	115	1.94(B)	0.290(B)	14.6	421	6.8
	5/16/2019	0.118(J)	103	1.01	0.263(B)	9.17	392	6.6
	10/23/2019	0.0491(J)	109	1.37	0.264	11.9	404	7.0
	4/8/2020	0.0780(J)	105	0.823(J)	0.279	10.3	362	6.8
	10/9/2020	0.0556(J)	107	1.75	0.309	9.91	389	6.7
	4/15/2021	0.0608(J)	96.9	0.855(J)	0.385	5.73	335	7.1
	6/29/2021	n/a	n/a	n/a	0.307	n/a	n/a	6.7
	10/7/2021	0.0555(J)	113	0.975(J)	0.312	10.2	380	6.7
MW-102	downgradient							
	11/10/2015	0.0818(J)	121	5.53	0.160	82.3	434	6.8
	1/28/2016	0.125(J)	123	5.33	0.157	85.9	470	6.8
	4/27/2016	0.135(J)	131	6.32	0.154	103	478	6.7
	7/26/2016	0.122(J)	122	5.42	0.150	88.1	474(B)	7.7(R)
	10/6/2016	0.0999(J)	120	5.18	0.158	83.2	458	6.0
	1/25/2017	0.0938(J)	118	4.50	0.182	88.8	435	5.8
	4/27/2017	0.120(J)	121	4.85	0.175	91.0	504	6.7
	7/19/2017	0.108(BJ)	126	4.28	0.207	85.4	461	6.6
	9/20/2017	0.0536(J)	25.9(O)	4.29	0.194	88.7	454	6.7
	4/11/2018	0.144(BJ)	136	1.77	0.206	46.7	472	6.3
	7/9/2018	n/a	124	n/a	n/a	n/a	n/a	6.7
	9/27/2018	0.121(BJ)	121	3.84	0.183(B)	88.6	453	6.5
	5/16/2019	0.150(J)	121	2.87	0.196(B)	75.4	466	6.6
	10/23/2019	0.0602(J)	117	3.62	0.201	85.6	461	6.7
	4/7/2020	0.0890(J)	116	2.79	0.199	84.7	461	6.6
	10/9/2020	0.0699(J)	115	3.30	0.178	96.1	438	6.5
	4/15/2021	0.0966(J)	118	2.31	0.210	79.4	446	6.9
	10/6/2021	0.0784(J)	116	2.48	0.215	95.3	415	6.8
MW-103	downgradient							
	10/7/2015	0.119(J)	168	3.92	0.198	95.0	591	6.5
	1/28/2016	0.149(J)	153	2.66	0.188	60.1	539(B)	6.3
	4/27/2016	0.166(J)	147	4.06	0.170	62.0	517	6.5

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

R: value was rejected due to suspected error; not used in statistics.

Train rome :	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-103	7/26/2016	0.142(J)	148	3.63	0.163	60.9	539(B)	6.3
(cont.)	10/6/2016	0.137(J)	152	2.69	0.201	54.5	518	6.3
(001101)	1/26/2017	0.138(J)	135	2.82	0.223	52.0	477	6.8
	4/27/2017	0.137(J)	136	2.89	0.200	49.8	513	6.5
	7/20/2017	0.124(BJ)	136	2.28	0.240	52.2	506	6.6
	9/20/2017	0.134(J)	141	1.79	0.240	48.2	496	6.6
	4/11/2018	0.122(BJ)	128	3.24	0.163	80.6	468	6.2
	9/26/2018	0.145(BJ)	129	1.36(B)	0.217(B)	32.8	440	6.6
	5/15/2019	0.154(J)	106	1.10	0.213(B)	23.4	396	6.6
	10/22/2019	0.0816(J)	107	1.29	0.253	24.4	384	6.7
	4/8/2020	0.0541(J)	88.2	0.726(J)	0.219	9.93	318	6.7
	10/8/2020	0.0763(J)	91.9	3.55	0.234	15.0	319	6.4
	4/15/2021	0.0726(J)	85.9	0.976(J)	0.258	11.4	294	6.9
	10/7/2021	0.0681(J)	89.7	1.16	0.256	12.6	324	6.5
MW-108	upgradient		-		•		 -	
	1/28/2016	0.164(J)	166	5.34	0.158	44.4	555	6.7
	4/28/2016	0.194(J)	178	2.81	0.134	45.2	638(B)	6.6
	7/26/2016	0.158(J)	144	2.43	0.144	39.3	475(B)	9.8(R)
	10/6/2016	0.174(J)	158	2.48	0.169	41.4	539	6.2
	1/26/2017	0.164(J)	154	2.64	0.202	51.6	513	7.0
	4/25/2017	0.147(J)	151	3.10	0.167	45.7	488	6.8
	7/18/2017	0.162(J)	167	3.03	0.191	39.4	576	6.7
	9/19/2017	0.158(J)	170	2.06	0.199	43.8	578	6.7
	4/10/2018	0.171(BJ)	183	3.03	0.177	44.5	582	6.5
	9/25/2018	0.183(BJ)	163	3.11	0.188(B)	52.2	537	6.7
	5/14/2019	0.224(BR)	169	2.44	0.184(B)	34.5	529	6.8
	8/1/2019	0.127(BJ)	n/a	n/a	n/a	n/a	n/a	7.1
	10/22/2019	0.110(J)	153	1.95	0.205	32.9	528	6.7
	4/6/2020	0.143(J)	160	1.87	0.185	33.8	557	6.9
	10/7/2020	0.111(J)	151	2.23	0.185	42.4	515	6.8
	4/13/2021	0.125(J)	149	2.67	0.216	36.8	541	7.0
	10/5/2021	0.111(J)	149	1.37	0.203	23.4	505	6.7
MW-113	upgradient							
	1/28/2016	0.102(J)	84.7	3.61	0.0808(J)	11.0	320(B)	6.6
	4/28/2016	0.127(J)	72.5	2.05	0.0604(J)	8.99	321(B)	6.9
	7/26/2016	0.144(J)	69.8	0.856(J)	0.0570(J)	4.97(J)	281(B)	8.1(R)
	10/5/2016	0.0963(J)	84.7	2.63	0.0827(J)	9.51	323	6.0
	1/26/2017	0.0891(J)	88.9	5.81	0.0901(J)	13.3	332	7.1
	4/25/2017	0.0890(J)	87.9	5.49	0.0944(J)	11.8	339	6.9
	7/18/2017	0.0982(BJ)	82.5	3.96	0.119	10.9	321	6.8
	9/19/2017	0.0998(J)	84.1	2.19	0.117	9.45	326	6.9
	4/10/2018	0.0899(BJ)	92.0	2.94	0.0562(J)	10.1	340	6.4
	9/25/2018	0.111(BJ)	90.0	2.84(B)	0.114(B)	9.81	337	6.7

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

R: value was rejected due to suspected error; not used in statistics.

		Boron	Historical D Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Sampling Date	(mg/L)	(mg/L)			(mg/L)		рп (su)
			87.2	(mg/L)	(mg/L)		(mg/L)	
MW-113	5/14/2019	0.168(J)		1.58	0.120(B)	3.15(J)	342	6.7
(cont.)	10/22/2019	0.0881(J)	75.9	1.73	0.110	4.88(J)	307	6.7
	4/6/2020	0.131(J)	77.1	1.08	0.0943(J)	3.61(J)	332	6.7
	10/7/2020	0.0879(J)	70.6	1.62	0.106(J)	4.61(J)	274	6.5
	4/13/2021	0.0673(J)	95.4	2.50	0.102(J)	9.83	372	7.1
	6/29/2021	n/a	n/a	n/a	n/a	n/a	303	6.2
	10/5/2021	0.0817(J)	67.5	0.877(J)	0.139(J)	3.75(J)	275	6.6
MW-115	upgradient	1						
	11/10/2015	0.0473(J)	109	2.14	0.230	8.23	363	7.0
	1/28/2016	0.0617(J)	103	7.55	0.201	14.8	376	7.1
	4/28/2016	0.0863(J)	115	1.83	0.179	5.63	443(B)	6.8
	7/26/2016	0.0604(J)	114	1.22	0.200	4.79(J)	399(B)	9.0(R)
	10/5/2016	0.0737(J)	114	1.31	0.218	4.59(J)	446	6.1
	1/27/2017	0.0602(J)	110	1.77	0.244	6.52	406	7.0
	4/25/2017	0.0641(J)	106	2.71	0.203	6.75	385	6.8
	7/18/2017	0.0608(BJ)	105	2.32	0.238	7.10	369	6.6
	9/19/2017	0.0609(J)	116	0.835(J)	0.243	5.37	403	6.8
	4/10/2018	0.0666(BJ)	111	1.34	0.209	5.81	368	6.3
	9/25/2018	0.0764(BJ)	121	1.18(B)	0.216(B)	5.00(J)	417	6.7
	5/14/2019	0.0751(J)	128	0.598(J)	0.184(B)	5.63	440	6.6
	8/1/2019	n/a	125	n/a	n/a	n/a	n/a	7.1
	10/23/2019	0.0224(J)	114	1.23	0.220	5.83	411	6.9
	4/6/2020	0.0525(J)	108	0.922(J)	0.192	5.37	398	6.7
	10/7/2020	0.0704(J)	99.4	0.864(J)	0.180	2.97(J)	334	6.6
	4/13/2021	0.0379(J)	117	0.789(J)	0.239	5.67	441	7.0
	10/5/2021	0.0655(J)	109	0.964(J)	0.225	3.70(J)	379	6.7
MW-116	downgradient							
	10/8/2015	0.108(J)	103	5.84	0.173	45.1	367	6.7
	1/28/2016	0.139(J)	111	5.67	0.165	78.0	426	6.8
	4/28/2016	0.142(J)	106	4.80	0.148	83.5	461(B)	6.6
	7/26/2016	0.115(J)	109	5.20	0.148	81.8	395(B)	6.2
	10/6/2016	0.126(J)	110	4.70	0.172	86.5	443	5.9
	1/25/2017	0.141(J)	118	4.85	0.201	89.2	467	5.9
	4/27/2017	0.137(J)	107	4.25	0.172	95.2	443	6.7
	7/19/2017	0.135(BJ)	111	4.45	0.208	98.4	435	6.5
	9/20/2017	0.132(J)	115	4.16	0.207	94.2	451	6.7
	1/30/2018	n/a	n/a	n/a	n/a	35.5	n/a	6.5
	4/11/2018	0.111(BJ)	137	4.90	0.166	113	511	6.4
	7/9/2018	n/a	125	n/a	n/a	n/a	n/a	6.6
	9/26/2018	0.153(BJ)	130	4.13	0.183(B)	97.5	500	6.6
	5/16/2019	0.144(J)	93.2	1.66	0.189(B)	27.0	349	6.6
	10/23/2019	0.0829(J)	109	2.75	0.216	63.1	417	6.7
	4/8/2020	0.0768(J)	98.3	2.50	0.184	38.7	365	6.6

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

R: value was rejected due to suspected error; not used in statistics.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-116	10/9/2020	0.0772(J)	134	7.05	0.187	103	537	6.3
(cont.)	4/15/2021	0.0854(J)	144	9.09	0.226	126	541	6.9
,	6/29/2021	n/a	169	n/a	n/a	n/a	n/a	6.5
	10/6/2021	0.0973(J)	185	11.2	0.214	166	670	6.5
	12/14/2021	n/a	190	n/a		200	730	6.7
MW-117	downgradient	·		•				
	10/8/2015	0.0733(J)	80.4	1.17	0.0770(J)	5.21	281	6.6
	1/28/2016	0.096(J)	75.2	1.61	0.126	6.32	271(B)	6.5
	4/27/2016	0.130(J)	76.9	1.30	0.101	6.19	272	6.6
	7/26/2016	0.105(J)	78.2	1.25	0.0971(J)	5.48	271(B)	7.9(R)
	10/5/2016	0.115(J)	85.5	1.53	0.110	5.68	287	5.1
	1/26/2017	0.0970(J)	75.7	1.34	0.120	7.46	268	6.1
	4/25/2017	0.0835(J)	76.7	1.48	0.131	6.55	277	6.6
	7/18/2017	0.102(BJ)	77.6	1.36	0.151	6.56	292	6.4
	9/20/2017	0.106(J)	84.2	0.747(J)	0.144	6.43	280	6.5
	4/11/2018	0.0952(BJ)	82.5	1.57	0.124	7.28	290	6.4
	9/27/2018	0.127(BJ)	89.7	1.25(B)	0.144(B)	7.19	318	6.4
	11/19/2018	n/a	85.7	n/a	n/a	n/a	288	6.6
	5/15/2019	0.133(J)	98.3	1.25	0.147(B)	6.66	341	6.5
	8/2/2019	n/a	102	n/a	n/a	n/a	302	6.3
	10/22/2019	0.0610(J)	80.9	0.864(J)	0.136	5.45	322	6.5
	4/7/2020	0.0759(J)	98.1	1.33	0.144(J)	7.47	323	6.6
	6/22/2020	n/a	90.1	n/a	n/a	n/a	n/a	6.1
	10/8/2020	0.0721(J)	84.1	0.793(J)	0.137(J)	7.75	298	6.3
	4/13/2021	0.0705(J)	98.8	0.976(J)	0.152	7.46	351	6.9
	6/29/2021	n/a	83.7	n/a	n/a	n/a	314	6.4
	10/6/2021	0.0677(J)	88.8	0.921(J)	0.162	9.09	314	6.5
	12/14/2021	n/a	82.0	n/a	n/a	9.31	308	6.5
MW-118	downgradient							
	10/9/2015	0.0916(J)	75.1	1.08	0.175	12.0	271	6.4
	1/28/2016	0.121(J)	73.4	1.59	0.175	11.5	269(B)	6.2
	4/28/2016	0.123(J)	94.1	1.80	0.119	26.7	378(B)	6.2
	7/26/2016	0.101(J)	85.4	2.13	0.133	26.6	322(B)	8.0(R)
	10/5/2016	0.103(J)	78.1	1.48	0.157	15.1	294	6.3
	1/26/2017	0.106(J)	74.7	1.13(B)	0.188	13.4	275	6.1
	4/26/2017	0.0994(J)	71.1	1.47	0.163	12.2	276	6.3
	7/20/2017	0.104(BJ)	74.9	1.62	0.172	20.4	313	6.5
	9/20/2017	0.104(J)	85.1	1.17	0.187	18.5	305	6.5
	4/11/2018	0.0949(BJ)	71.8	1.36	0.157	15.2	257	5.8
	7/10/2018	n/a	n/a	n/a	n/a	n/a	n/a	6.5
	9/27/2018	0.113(BJ)	80.6	1.33(B)	0.165(B)	17.0	375	6.3
	5/15/2019	0.125(J)	76.4	1.44	0.185	16.5	286	6.0
	8/2/2019	n/a	n/a	n/a		n/a	n/a	6.1

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

R: value was rejected due to suspected error; not used in statistics.

	Sampling	Boron	Calcium	Chloride	Fluoride	Sulfate	TDS	рН
Well ID	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(su)
MW-118	10/22/2019	0.0459(J)	91.6	1.45	0.162	17.5	335	6.4
(cont.)	4/8/2020	0.0739(J)	82.9	1.62	0.152	16.6	304	6.1
	10/8/2020	0.0596(J)	84.8	1.13	0.150(J)	18.3	301	6.1
	4/15/2021	0.0663(J)	94.1	0.911(J)	0.185	20.0	329	6.6
	10/6/2021	0.0656(J)	82.9	1.15	0.189	11.5	280	6.4
MW-119	downgradient							
	1/25/2017	0.0922(J)	104	2.62	0.255	47.6	409	6.6
	4/27/2017	0.108(J)	106	2.80	0.198	39.1	403	6.8
	7/20/2017	0.0936(BJ)	103	6.84	0.256	48.7	432	6.6
	9/20/2017	0.0798(J)	92.7	2.30	0.289	38.7	338	6.8
	1/30/2018	0.0805(BJ)	99.3	2.07	0.259	35.5	380	6.4
	4/11/2018	0.0950(BJ)	85.9	2.15	0.230	31.1	315	6.4
	9/27/2018	0.103(BJ)	99.0	2.30(B)	0.253(B)	41.6	290	6.7
	11/20/2018	0.0826(BJ)	94.0	1.96	0.271	33.0	343	6.8
	2/18/2019	0.110(J)	103	2.27	0.253	43.0	374	6.6
	5/16/2019	0.109(J)	135	2.86	0.252	47.4	487	6.4
	8/2/2019	n/a	97.4	n/a	n/a	n/a	n/a	6.4
	10/22/2019	0.0480(J)	110	2.86	0.266	47.7	400	6.7
	4/8/2020	0.0639(J)	109	2.45	0.229	39.4	426	6.6
	10/8/2020	0.0588(J)	109	2.22	0.251	52.9	415	6.5
	4/15/2021	0.0687(J)	115	2.43	0.267	33.6	413	6.9
	10/7/2021	0.0594(J)	104	2.40	0.269	39.1	388	6.7

B: analyte was detected in associated blank sample.

J: analyte was detected below the RDL; value is an estimate.

O: value is a statistical outlier.

R: value was rejected due to suspected error; not used in statistics.

BACKGROUND DATA SETS

Background data sets are generally evaluated every 2 to 3 years in accordance with the landfill's SAP and Unified Guidance recommendations. This document describes recommended methods and procedures used to evaluate compliance data for inclusion in the background data sets in accordance with §257.94(b), the landfill's SAP, and the Unified Guidance. The Unified Guidance recommends updating background data sets to include more recent observations, because some long-term fluctuation in background levels may be possible even though a given well has not been impacted by the landfill. As identified in the Unified Guidance, the term "background" refers to the natural or baseline groundwater quality at a site. Background conditions can range from an uncontaminated aquifer to a historically contaminated site with baseline conditions that are unaffected by recent releases that are actionable under the Resource Conservation and Recovery Act. The terms "background" and "baseline" are used interchangeably herein. Procedures used for establishing the initial background data sets were described in the 2018 and 2019 annual reports.

Background data sets were evaluated for an update prior to the first half of 2020 monitoring period for all wells except MW-119, which was excluded from the evaluation due to the limited compliance data available for comparison. Background data sets for calcium and total dissolved solids at MW-117 were also excluded from the background evaluation due to confirmed statistically significant increases (SSIs) identified during 2019. However, multiple alternate source demonstrations (ASDs) certified by an Arkansas-registered professional engineer are now on record for these two SSIs (FTN 2019a, 2019b, 2020). Each ASD successfully demonstrated that the SSIs were not due to a release from the CCR unit using multiple lines of evidence. As such, the SSIs are considered the result of statistical error stemming from a background data set that does not fully capture the natural variation in water quality at this well. In view of this, the background data sets for calcium and TDS at MW-117 will be evaluated for an update along with all data for MW-119 prior to statistical evaluation of the first half of 2021 data set.

Updated background data sets used for the first and second half of 2020 statistical evaluations are attached to this appendix.

Exploratory Analyses

Background data sets for the wells installed prior to 2016 (MW-101 through MW-103, MW-108, and MW-115 through MW-118) were screened using exploratory data analyses to identify potential trends, outliers, and spatial variability. Time-series plots and box-and-whiskers plots were applied to all background data sets to identify potential excursions from normal.

Updating Background Data Sets

Existing background and compliance populations for each well-parameter pair were evaluated with the intrawell Mann-Whitney (Wilcoxon Rank-Sum) test. This test evaluates whether the existing background data set is statistically different from the compliance data set. When comparing a minimum of four compliance values to the background data set, the background data set is updated if the test finds no significant difference at the 95% confidence level ($\alpha = 0.05$). When comparing compliance populations of five or more values, background data sets are updated if the test finds no significant difference at the 99% confidence level ($\alpha = 0.01$).

Outliers and Rejected Data in Background Data Sets

The Unified Guidance recommends that background data be screened for potential outliers. However, it also advises that outliers not be removed unless a source of error or reason for the discrepancy can be identified. As advised in the Unified Guidance, select removal of extreme outliers without knowledge of error may be warranted to improve environmental protection, but removal of all outliers can mask real and legitimate changes in background data. Outlier screening included the application of Dixon's or Tukey's outlier tests to the updated background data sets to identify potential outliers for exclusion.

Extreme outliers and data that are excluded from the historical database based on independent evidence of error or that are suspected of being unrepresentative of groundwater

quality (e.g., due to excessively high sample turbidity) are listed in Table E.1. Outlier data that are excluded from statistical evaluations are flagged with an "O" and data that are excluded due to independent evidence of error are flagged with an "R" in the historical database.

Value Parameter Well Date (mg/L)Flag Note Laboratory reporting detection limit was nine MW-101 times higher than normal due to a sample 4/26/2017 < 1.8 0 Boron dilution. Suspected laboratory/sampling error; MW-108 disconfirmed by verification sampling in Boron 5/14/2019 0.224 R August 2019. Statistically low outlier; suspected laboratory O 9/20/2017 25.9 Calcium MW-102 error. pН MW-102 7/26/2016 7.7 (su)R рН MW-108 7/26/2016 9.8 (su) R рН MW-113 7/26/2016 8.1 (su) R Known equipment malfunction. рН MW-115 7/26/2016 9.0 (su) R рΗ MW-117 7/26/2016 R 7.9 (su)

Table E.1. Data excluded from statistical analyses.

Screening for Trends in Background Data Sets

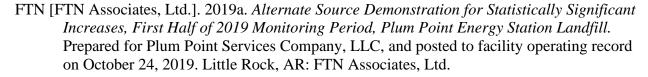
 $8.0 \, (su)$

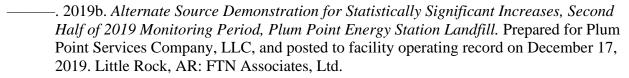
7/26/2016

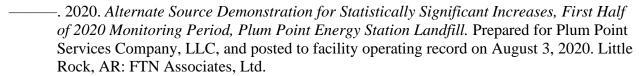
рΗ

MW-118

EPA guidance recommends screening background populations for statistically significant trends, because some tests (such as a prediction limit test) require a stationary statistical distribution for valid results. The presence of statistically significant tends in background data may violate key assumptions of some statistical tests and require an alternate approach to testing the data. If trends are indicated in background populations, testing strategies that either correct for, or are not sensitive to, temporal variation may be required.


R


Well-parameter pairs containing statistically significant trends in their background data sets are summarized in Table E.2. The well-parameter pairs below are tested for compliance using the Mann-Kendall test and Theil-Sen trend line as opposed to a prediction limit test. All remaining well-parameter pairs are tested for compliance using prediction limits.


Table E.2. Well-parameter pairs tested with Mann-Kendall test and Theil-Sen trend line.

Parameter	Well(s)
Calcium	MW-103
Chloride	MW-101, MW-102, MW-103, MW-116
Sulfate	MW-103
TDS	MW-103

References

Sanitas™ v.9.6.27 Sanitas software licensed to FTN Associates. U

Date Ranges

Date: 11/9/2020 3:31 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

```
Boron (mg/l)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-10/23/2019
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
       MW-117 background:10/7/2015-10/23/2019
       MW-118 background:10/7/2015-10/23/2019
       MW-119 background:1/25/2017-2/18/2019
Calcium (mg/l)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-10/23/2019
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
       MW-117 background:10/7/2015-7/20/2017
       MW-118 background:10/7/2015-10/23/2019
       MW-119 background:1/25/2017-2/18/2019
Chloride (mg/l)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-10/23/2019
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
       MW-117 background:10/7/2015-10/23/2019
       MW-118 background:10/7/2015-10/23/2019
       MW-119 background:1/25/2017-2/18/2019
Dissolved Solids (mg/l)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-10/23/2019
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
       MW-117 background:10/7/2015-7/20/2017
       MW-118 background:10/7/2015-10/23/2019
       MW-119 background:1/25/2017-2/18/2019
Fluoride (mg/l)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-7/20/2017
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
       MW-117 background:10/7/2015-7/20/2017
       MW-118 background:10/7/2015-10/23/2019
       MW-119 background:1/25/2017-2/18/2019
pH (su)
       MW-101 background:10/7/2015-10/23/2019
       MW-102 background:10/7/2015-10/23/2019
       MW-103 background:10/7/2015-10/23/2019
       MW-108 background:10/7/2015-10/23/2019
       MW-113 background:10/7/2015-10/23/2019
       MW-115 background:10/7/2015-10/23/2019
       MW-116 background:10/7/2015-10/23/2019
```

Page 1

Sanitas™ v 9 6 27	Sanitas	software	liconsod	to	FTN	Associatos	110

Date Ranges

Page 2

Date: 11/9/2020 3:31 PM

Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database Plum Point Energy Station

MW-117 background:10/7/2015-10/23/2019

MW-118 background:10/7/2015-10/23/2019 MW-119 background:1/25/2017-2/18/2019

Sulfate (mg/l)

MW-101 background:10/7/2015-10/23/2019

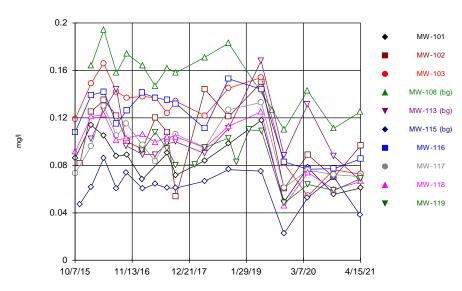
MW-102 background:10/7/2015-10/23/2019

MW-103 background:10/7/2015-10/23/2019

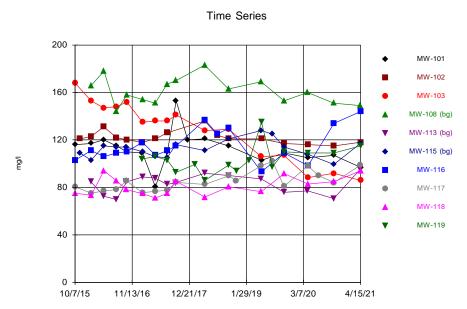
MW-108 background:10/7/2015-10/23/2019

MW-113 background:10/7/2015-10/23/2019 MW-115 background:10/7/2015-10/23/2019

MW-116 background:10/7/2015-10/23/2019

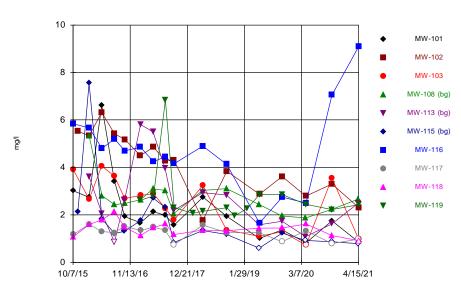

MW-117 background:10/7/2015-10/23/2019 MW-118 background:10/7/2015-10/23/2019

MW-119 background:1/25/2017-2/18/2019



Constituent: Boron Analysis Run 1/21/2022 1:40 PM View: 2021-1H Distributional

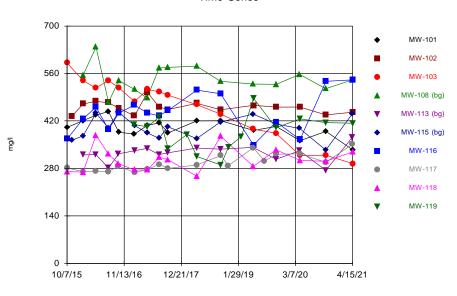
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Constituent: Calcium Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

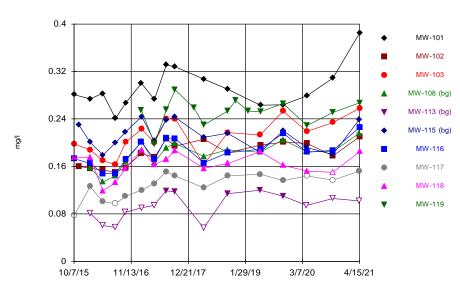
Time Series



Constituent: Chloride Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional

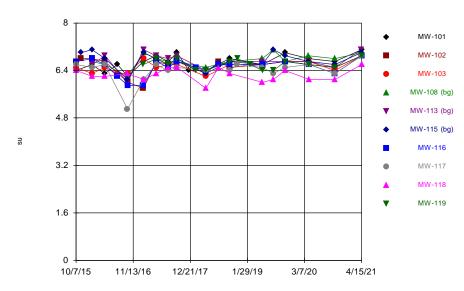
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG


Time Series

Constituent: Dissolved Solids Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas^{to} v.9.6.28 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

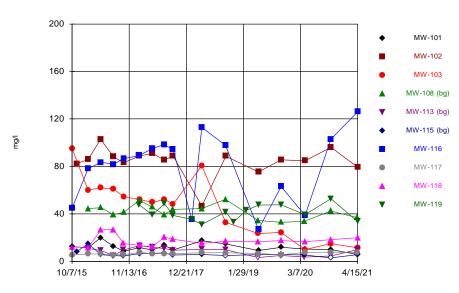


Constituent: Fluoride Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

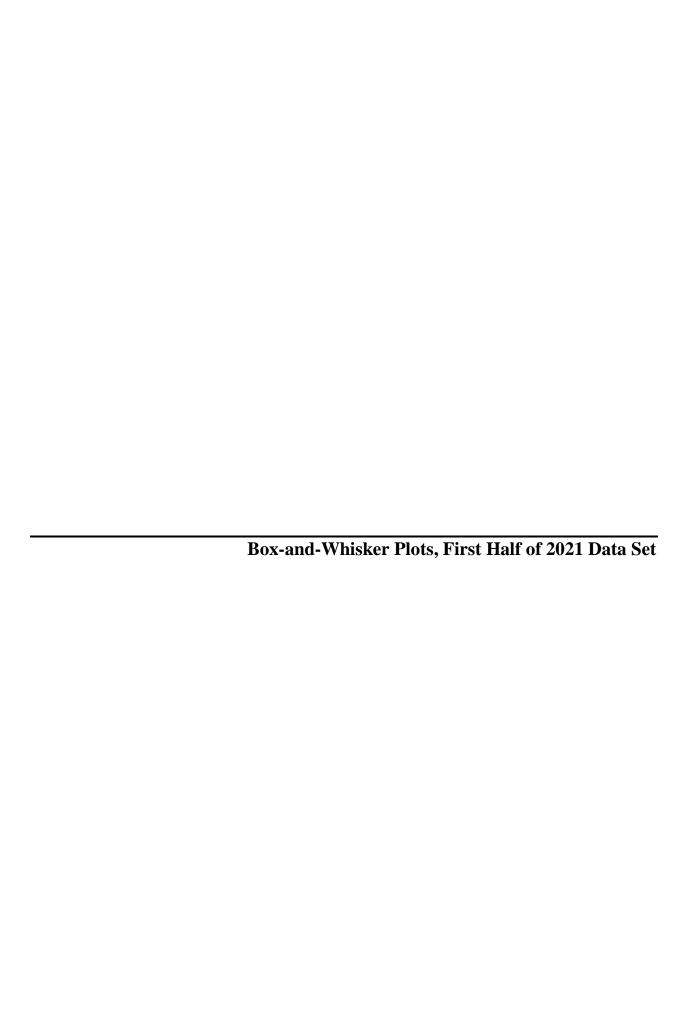
Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Time Series

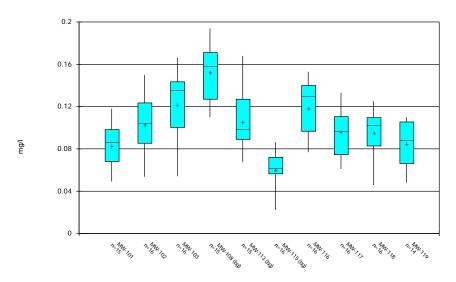


Constituent: pH Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

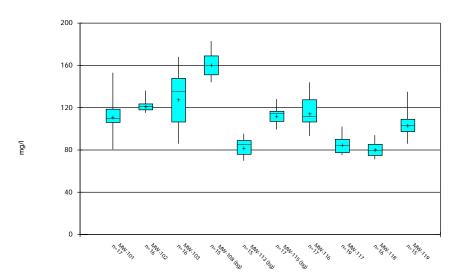
Time Series



Constituent: Sulfate Analysis Run 5/12/2021 8:07 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

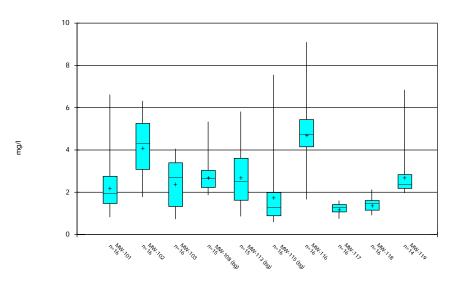
Box & Whiskers Plot



Constituent: Boron Analysis Run 1/21/2022 1:43 PM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

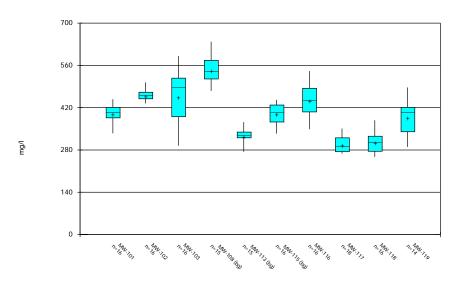
Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Box & Whiskers Plot

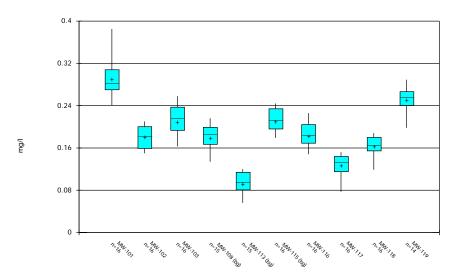


Constituent: Chloride Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Box & Whiskers Plot

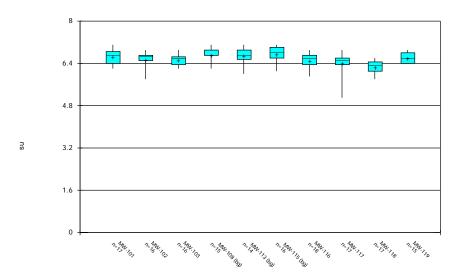


Constituent: Dissolved Solids Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

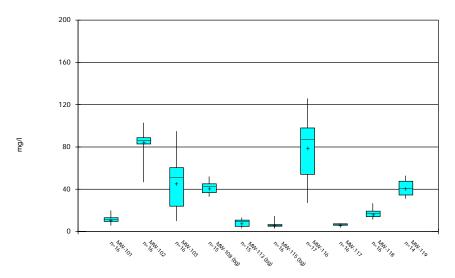
Box & Whiskers Plot



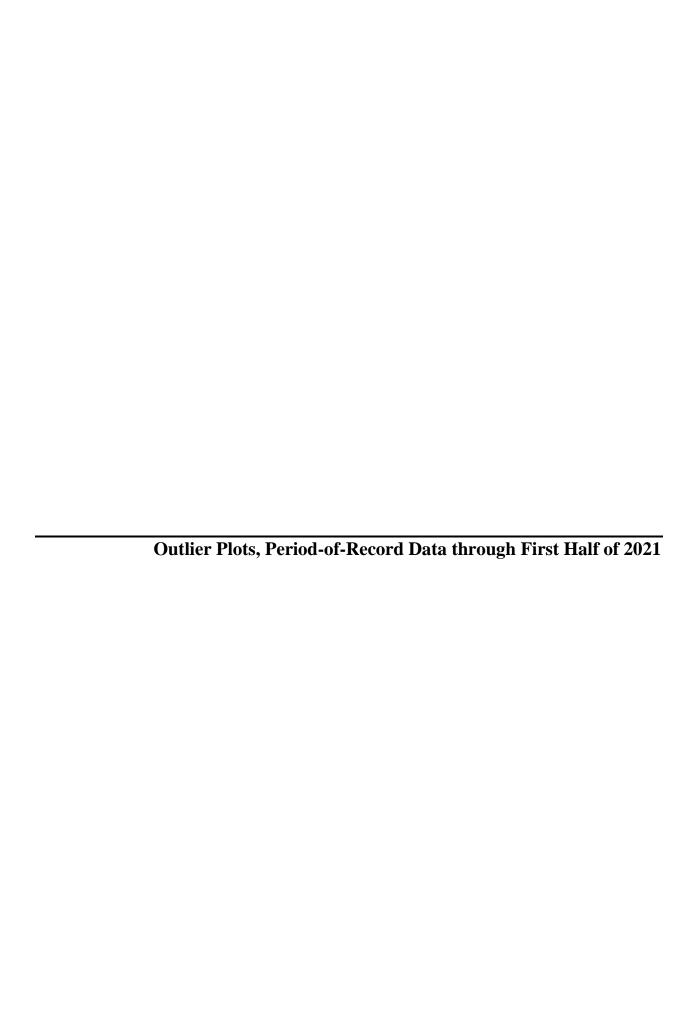
Constituent: Fluoride Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional

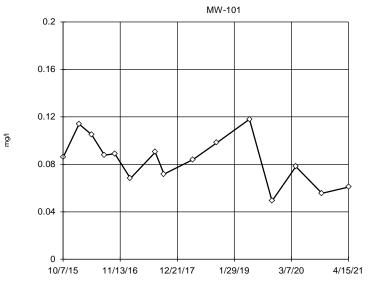
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG


Box & Whiskers Plot

Constituent: pH Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional

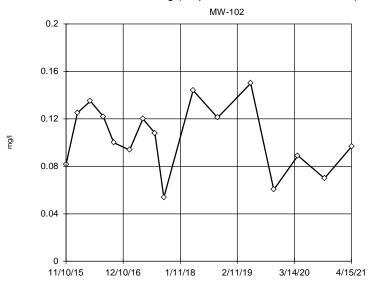

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Box & Whiskers Plot

Constituent: Sulfate Analysis Run 5/12/2021 8:08 AM View: 2021-1H Distributional

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.08369, std. dev 0.02031, critical Tn 2.409


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.976 Critical = 0.901
The distribution was found to be normally distrib-

Constituent: Boron Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

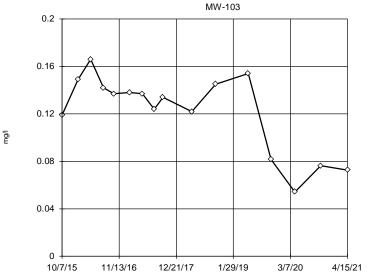
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

suspect values. Mean 0.1044, std. dev. 0.02889, critical Tn 2.443 Shapiro Wilk@alpha = 0.1

Dixon's will not be run. No suspect values identified

or unable to establish


n = 16

Calculated = 0.9695
Critical = 0.906
The distribution was found to be normally distrib-uted.

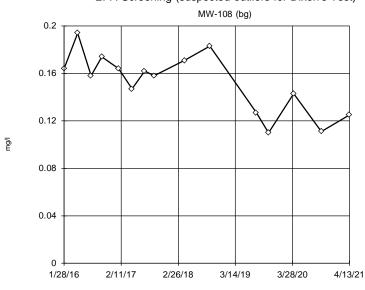
Constituent: Boron Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Tukey's Outlier Screening

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

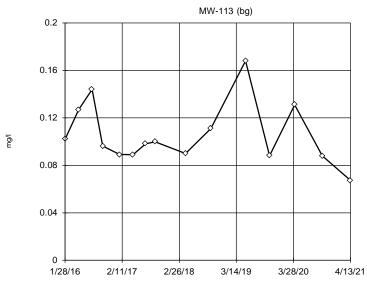
Data were x^4 transformed to achieve best W statistic (graph shown in original units).


High cutoff = 0.191, low cutoff = -0.1673, based on IQR multiplier of 3.

Constituent: Boron Analysis Run 1/24/2022 3:04 PM

Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

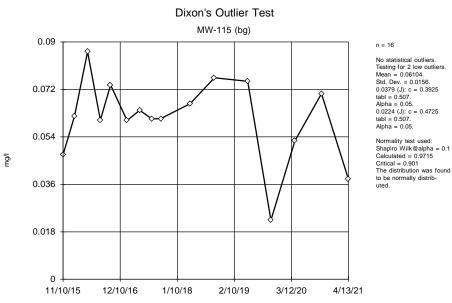

EPA Screening (suspected outliers for Dixon's Test)

n = 15 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1527, std. dev. 0.02525, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1
Calculated = 0.9494
Critical = 0.901 The distribution was found to be normally distrib-uted.

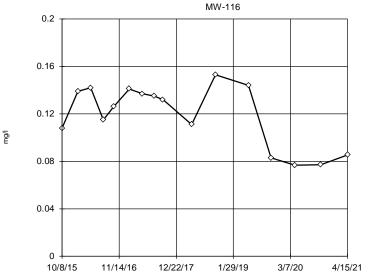
Constituent: Boron Analysis Run 1/24/2022 3:04 PM

n = 15


Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 0.1059, std. dev.
0.02614, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.936 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Boron Analysis Run 1/24/2022 3:04 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

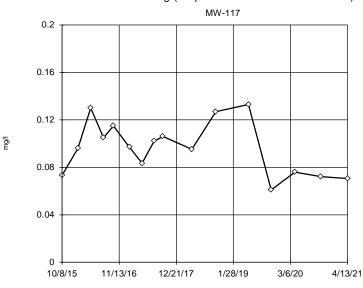
Constituent: Boron Analysis Run 1/24/2022 3:04 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Tukey's Outlier Screening

n = 16

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were x^4 transformed to achieve best W statistic (graph shown in original units).

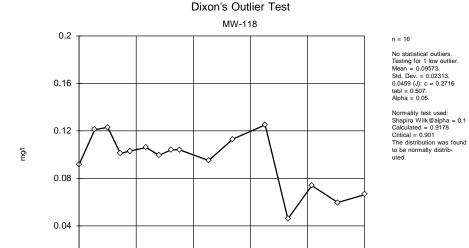

High cutoff = 0.1882, low cutoff = -0.1668, based on IQR multiplier of 3.

Constituent: Boron Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.09641, std. dev. 0.02249, critical Tn 2.443

n = 16

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.949 Critical = 0.906 The distribution was found to be normally distributed.

Constituent: Boron Analysis Run 1/24/2022 3:04 PM

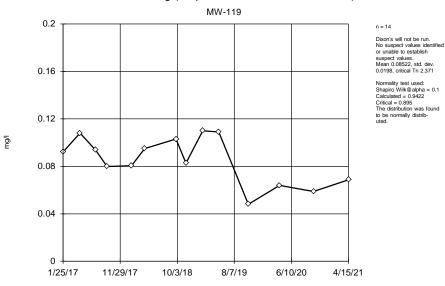
Constituent: Boron Analysis Run 1/24/2022 3:04 PM

1/30/19

3/8/20

4/15/21

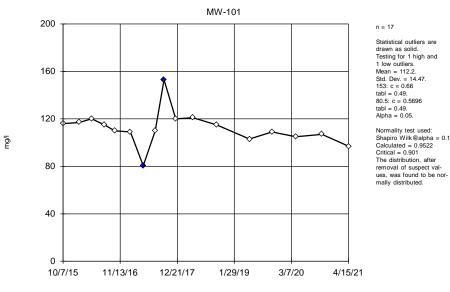
12/23/17


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

10/9/15

11/15/16


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Boron Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's Outlier Test

Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

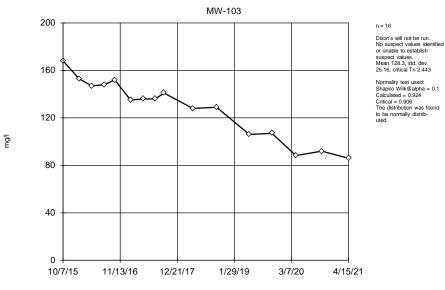
Dixon's Outlier Test

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

11/10/15

12/10/16

MW-102 200 n = 16 Statistical outlier is drawn as solid Testing for 1 high outlier. Mean = 121.9. 160 Std. Dev. = 5.464. 136: c = 0.5263 tabl = 0.507.Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1 120 Calculated = 0.94 Critical = 0.901The distribution, after mg/l removal of suspect value, was found to be normally distributed. 80 40


Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

1/11/18

2/11/19

3/14/20

4/15/21

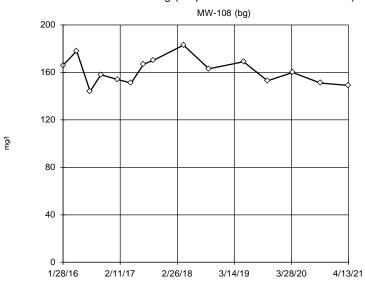
Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

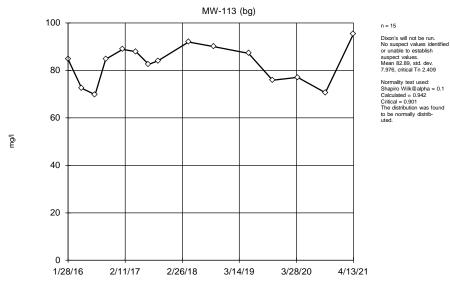
n = 15


Dixon's will not be run. No suspect values identified

or unable to establish

11.14, critical Tn 2.409

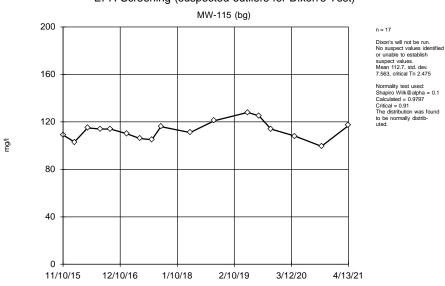
Shapiro Wilk@alpha = 0.1 Calculated = 0.9648 Critical = 0.901 The distribution was found to be normally distributed.


Normality test used:

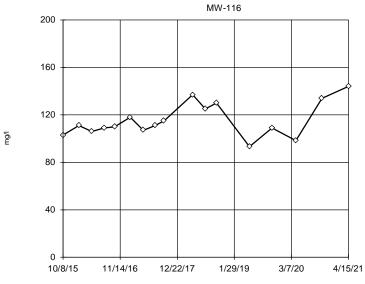
Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

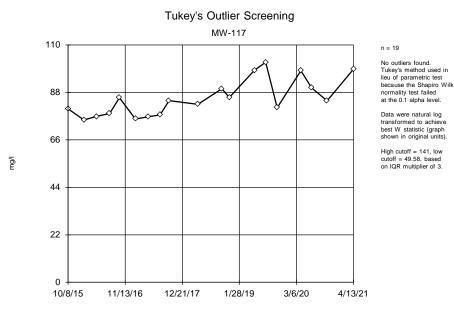


Constituent: Calcium Analysis Run 1/24/2022 3:04 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)


Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

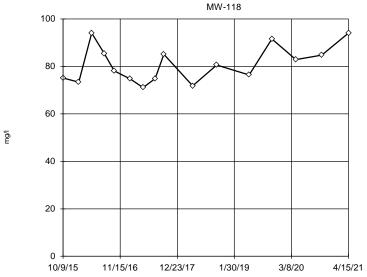
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

MW-116

Dixon's will not be run. No suspect values identified


or unable to establish suspect values. Mean 115.3, std. dev.

14.12, critical Tn 2.475

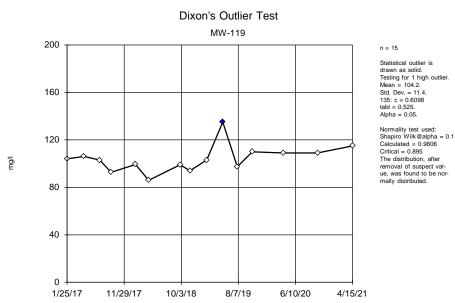
Calculated = 0.94

Normality test used: Shapiro Wilk@alpha = 0.1

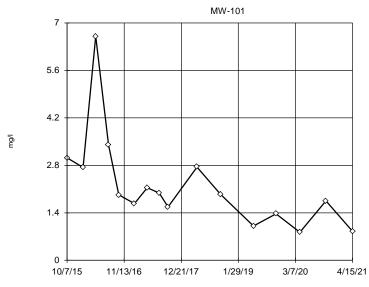
Critical = 0.91
The distribution was found to be normally distrib-

n = 16

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 80.88, std. dev.
7.709, critical Tn 2.443


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9121 Critical = 0.906 The distribution was found to be normally distrib-

Constituent: Calcium Analysis Run 1/24/2022 3:04 PM


EPA Screening (suspected outliers for Dixon's Test)

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Calcium Analysis Run 1/24/2022 3:04 PM

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 2.223, std. dev 1.392, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9611 Critical = 0.906 (after natural log transformation)
The distribution was found to be log-normal.

n = 16

Dixon's will not be run. No suspect values identified

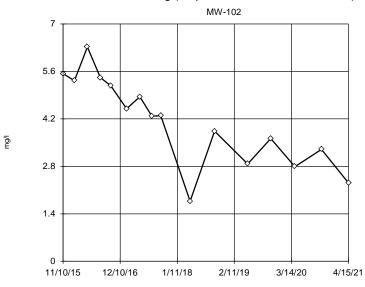
or unable to establish

1.29, critical Tn 2.443

Normality test used:

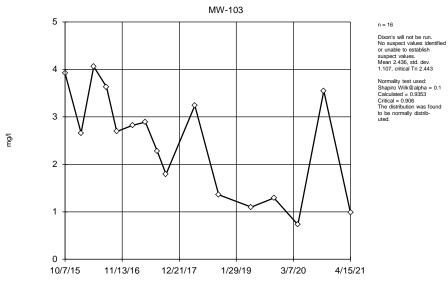
to be normally distrib-uted.

Shapiro Wilk@alpha = 0.1


Calculated = 0.9755
Critical = 0.906
The distribution was found

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

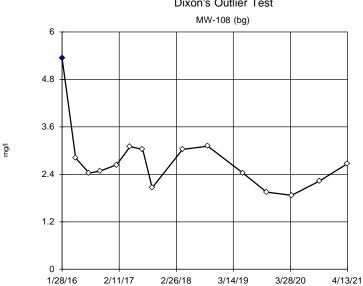
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

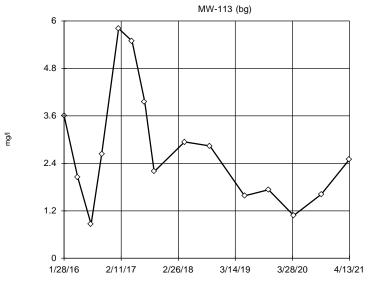


Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test



n = 15

Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 2.746. Std. Dev. = 0.8268. 5.34; c = 0.6829 tabl = 0.525.Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9314 Critical = 0.895The distribution, after removal of suspect value was found to be normally distributed.

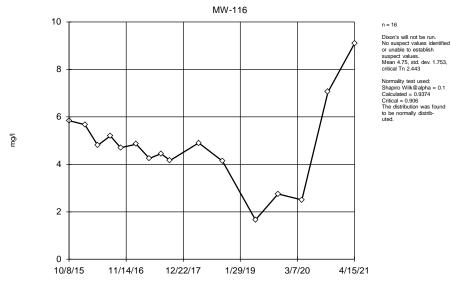
Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

n = 15

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 2.726, std. dev.
1.465, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9098 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

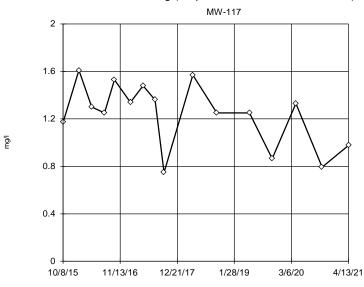

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test MW-115 (bg) 8 n = 16 Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 1.788. 6.4 Std. Dev. = 1.65. 7.55; c = 0.7789 tabl = 0.507.Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1 4.8 Calculated = 0.9231 Critical = 0.901The distribution, after mg/l removal of suspect value, was found to be normally distributed. 3.2 1.6 11/10/15 12/10/16 1/10/18 2/10/19 3/12/20 4/13/21

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

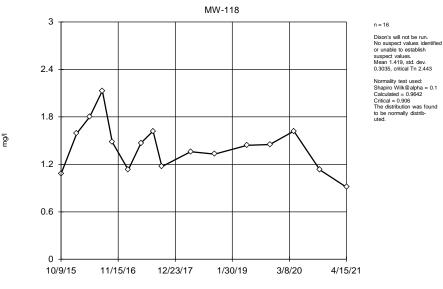
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run.

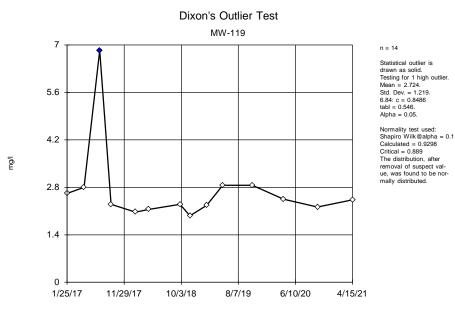
No suspect values identified or unable to establish suspect values.


Mean 1.239, std. dev.

0.2687, critical Tn 2.443

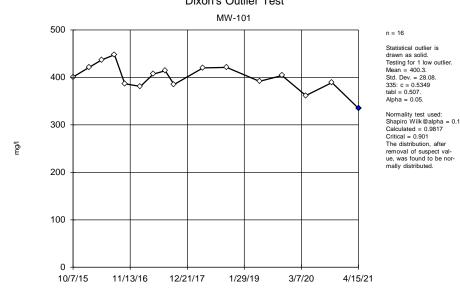
Normality test used:
Shapiro Wilk@alpha = 0.1
Calculated = 0.9233
Critical = 0.906

The distribution was found to be normally distributed.


Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

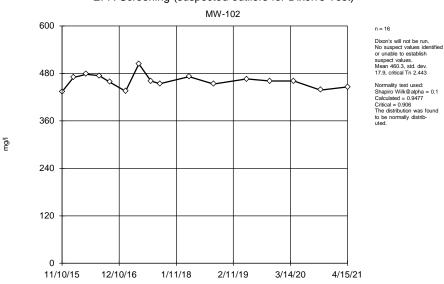
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Chloride Analysis Run 1/24/2022 3:04 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's Outlier Test



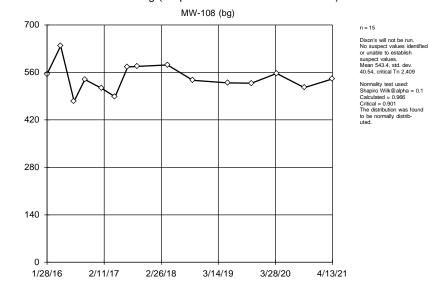
Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

The distribution was found

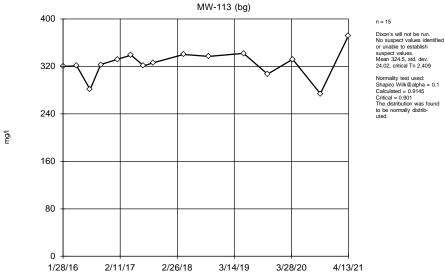
Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM


Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

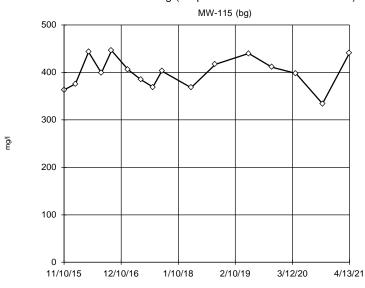
mg/l


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9145 Critical = 0.901 The distribution was found

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

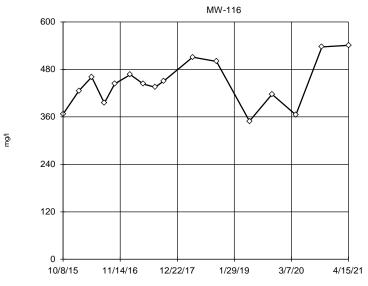
n = 16 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 399.9, std. dev. 32.88, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9514 Critical = 0.906 The distribution was found to be normally distrib-uted.

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Dixon's will not be run. No suspect values identified

or unable to establish


58.47, critical Tn 2.443

Calculated = 0.9613

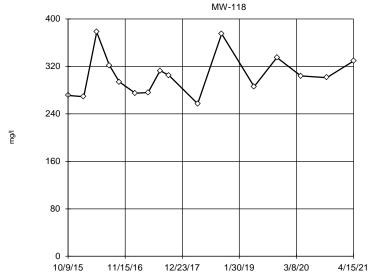
Normality test used: Shapiro Wilk@alpha = 0.1

Critical = 0.906
The distribution was found to be normally distrib-

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

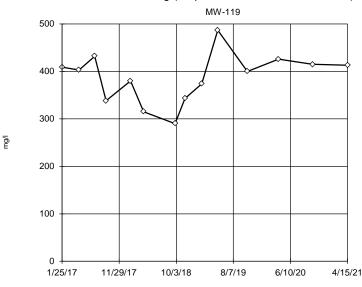
Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

...

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 305.6, std. dev. 35.63, critical Tn 2.443


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.925 Critical = 0.906 The distribution was found to be normally distrib-

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

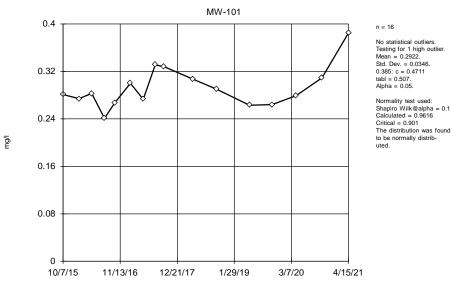
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 14

Dixon's will not be run.

No suspect values identified or unable to establish suspect values.


Mean 387.5, std. dev.

51.93, critical Tn 2.371

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9647 Critical = 0.895 The distribution was found to be normally distributed.

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:05 PM

Dixon's Outlier Test

Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

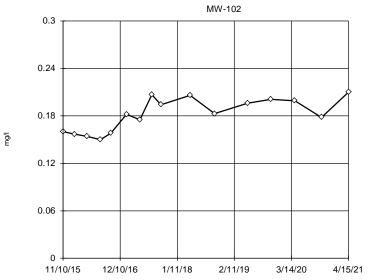
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 16

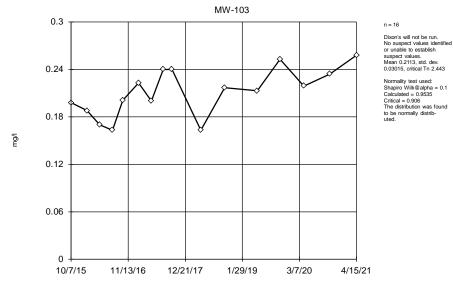
Dixon's will not be run. No suspect values identified


or unable to establish

suspect values. Mean 0.1819, std. dev.

0.02087, critical Tn 2.443

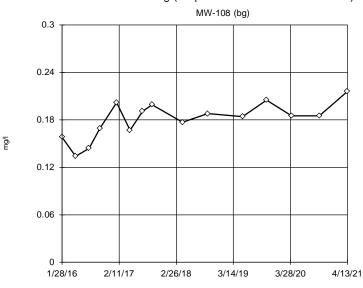
Shapiro Wilk@alpha = 0.1 Calculated = 0.9118 Critical = 0.906 The distribution was found


to be normally distributed.

Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

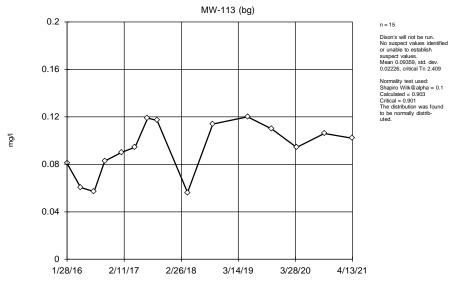


Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)


Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1803, std. dev. 0.0227, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9639 Critical = 0.901 The distribution was found to be normally distributed.

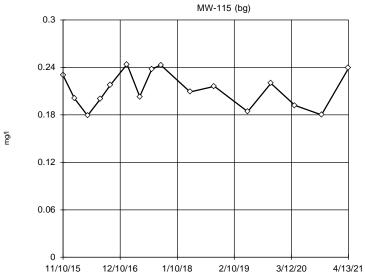
Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

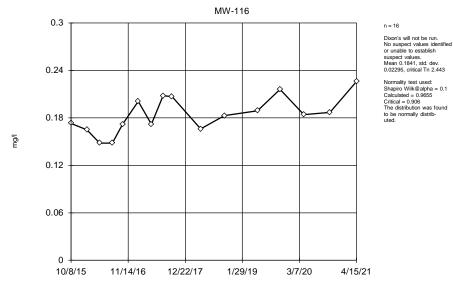
n = 16


Dixon's will not be run. No suspect values identified

0.02233, critical Tn 2.443

Shapiro Wilk@alpha = 0.1 Calculated = 0.9354 Critical = 0.906

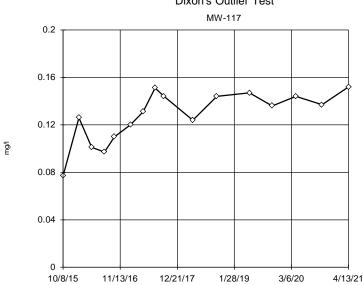
The distribution was found to be normally distributed.


or unable to establish suspect values. Mean 0.2123, std. dev.

Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



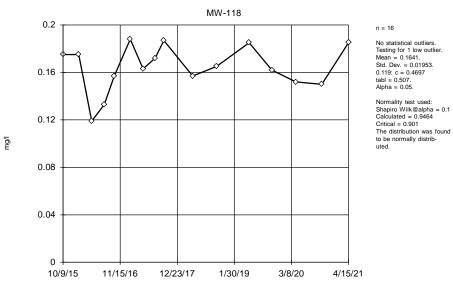
Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test

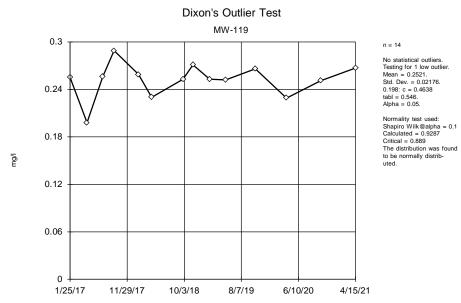
Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 16

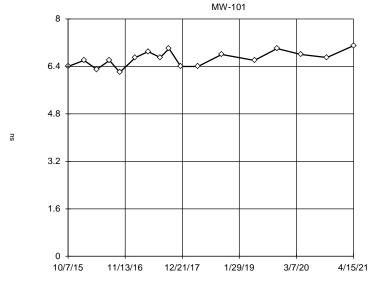
No statistical outliers. Testing for 1 low outlier. Mean = 0.1276. Std. Dev. = 0.02172. 0.077 (J): c = 0.3429 tabl = 0.507. Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.915 Critical = 0.901 The distribution was found to be normally distributed.


Dixon's Outlier Test

Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Fluoride Analysis Run 1/24/2022 3:05 PM

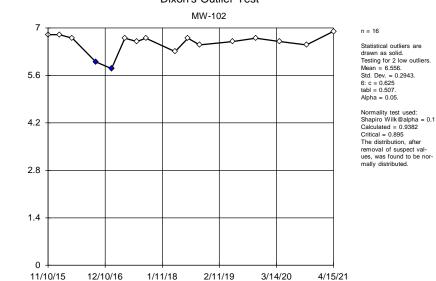
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.659, std. dev. 0.2599, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9661 Critical = 0.91 The distribution was found to be normally distrib-


Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

sn

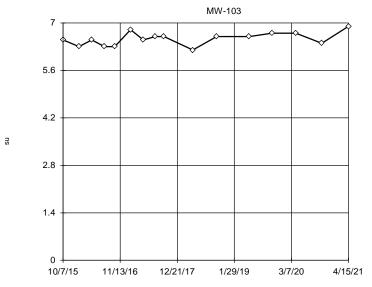
Dixon's Outlier Test

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Dixon's will not be run. No suspect values identified

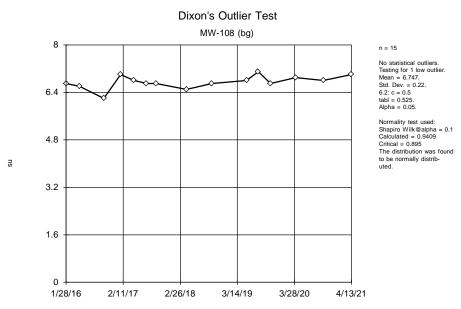
or unable to establish

suspect values. Mean 6.531, std. dev.


Calculated = 0.9629 Critical = 0.906 The distribution was found

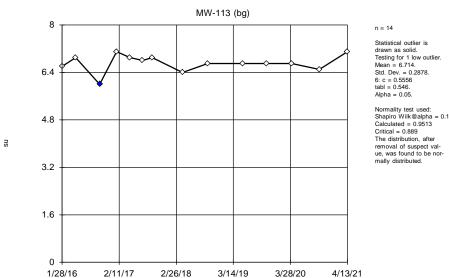
to be normally distrib-

0.1957, critical Tn 2.443


Normality test used: Shapiro Wilk@alpha = 0.1

EPA Screening (suspected outliers for Dixon's Test)

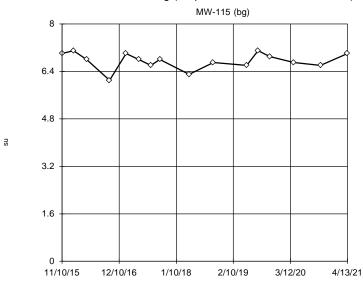
Constituent: pH Analysis Run 1/24/2022 3:05 PM


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's Outlier Test



Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 16

Dixon's will not be run.

No suspect values identified or unable to establish suspect values.

Mean 6.756, std. dev.

0.278, critical Tn 2.443

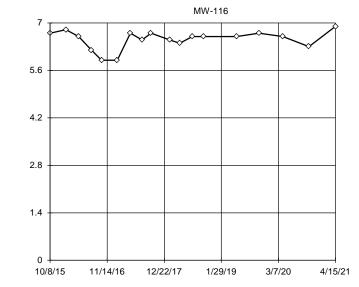
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.917 Critical = 0.906 The distribution was found to be normally distributed. sn

Tukey's Outlier Screening

n = 18

No outliers found. Tukev's method used in lieu of parametric test

normality test failed at the 0.1 alpha level.


because the Shapiro Wilk

Data were x^6 transform-

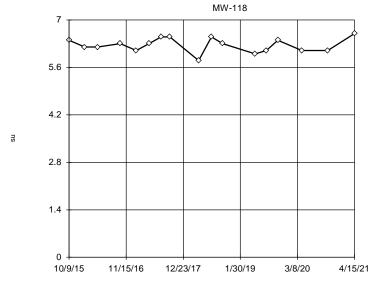
High cutoff = 7.406, low cutoff = -4.551, based

on IQR multiplier of 3.

ed to achieve best W statistic (graph shown in original units).

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

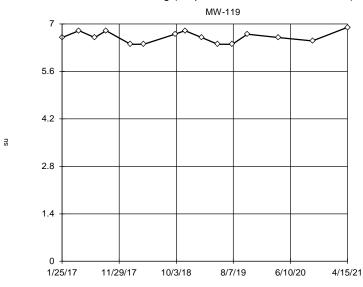
Dixon's Outlier Test MW-117 n = 18 Statistical outlier is drawn as solid Testing for 1 low outlier. Mean = 6.389. 5.6 Std. Dev. = 0.374. $5.1 \cdot c = 0.6667$ tabl = 0.475.Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1 4.2 Calculated = 0.9256 Critical = 0.91The distribution, after sn removal of suspect value, was found to be normally distributed. 2.8 1.4 0 1/28/19 3/6/20 4/13/21 10/8/15 11/13/16 12/21/17

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.259, std. dev 0.2123, critical Tn 2.475


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9599 Critical = 0.91 The distribution was found to be normally distrib-

Constituent: pH Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.613, std. dev. 0.1685, critical Tn 2.409

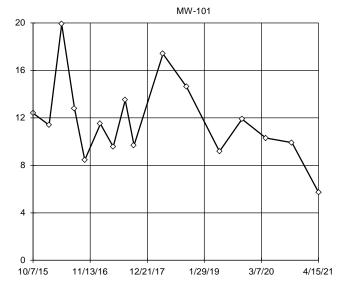
Normality test used: Shapiro Wilk@alpha = 0.1
Calculated = 0.9076
Critical = 0.901 The distribution was found to be normally distrib-uted.

Constituent: pH Analysis Run 1/24/2022 3:05 PM

mg/l

Dixon's will not be run. No suspect values identified

or unable to establish


3.461, critical Tn 2.443

Calculated = 0.9468

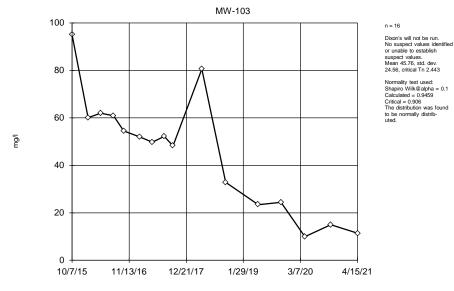
Normality test used: Shapiro Wilk@alpha = 0.1

Critical = 0.906
The distribution was found to be normally distrib-


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

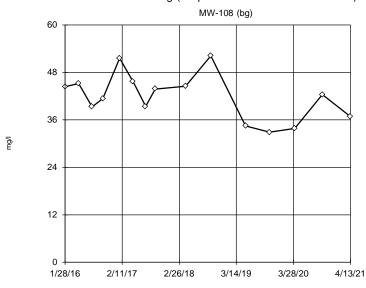
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 15

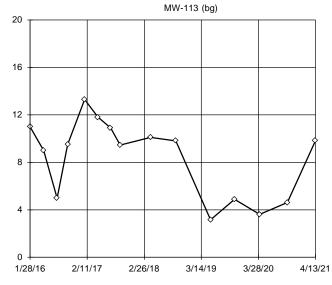
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 41.86, std. dev. 5.874, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.952 Critical = 0.901 The distribution was found to be normally distributed.

Tukey's Outlier Screening

n = 15

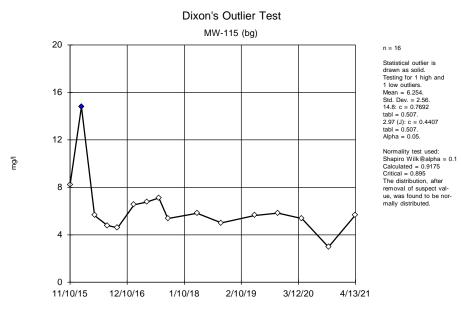
No outliers found. Tukey's method used in lieu of parametric test


because the Shapiro Wilk

Data were square trans-

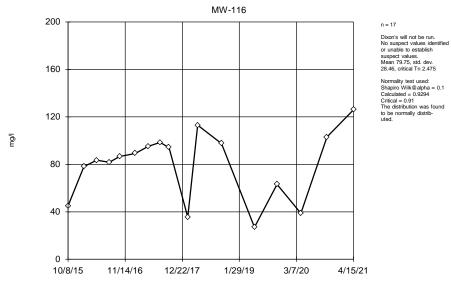
formed to achieve best W statistic (graph shown in original units).

High cutoff = 20.09, low cutoff = -16.16, based on IQR multiplier of 3.


normality test failed at the 0.1 alpha level.

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

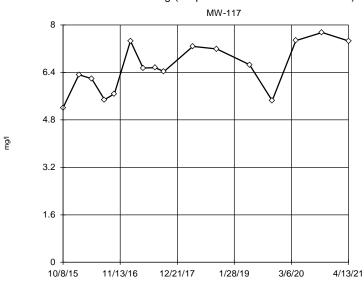
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run. No suspect values identified

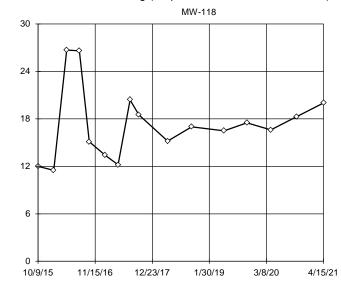
or unable to establish

suspect values. Mean 6.571, std. dev.

Normality test used:

to be normally distrib-uted.

0.8163, critical Tn 2.443


Shapiro Wilk@alpha = 0.1
Calculated = 0.9321
Critical = 0.906

The distribution was found

Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

mg/l

EPA Screening (suspected outliers for Dixon's Test)

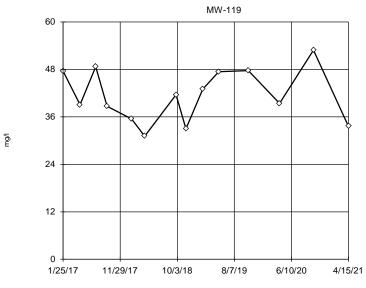
n = 16

n = 14

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 41.38, std. dev. 6.743, critical Tn 2.371

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9518 Critical = 0.895 The distribution was found to be normally distributed.

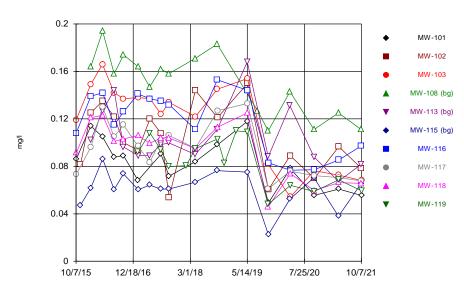
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 17.34, std. dev. 4.529, critical Tn 2.443


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9073 Critical = 0.906 The distribution was found to be normally distributed.

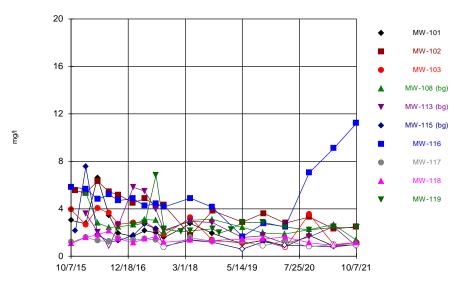
Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG


EPA Screening (suspected outliers for Dixon's Test)

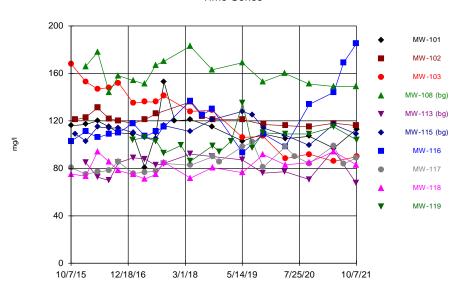
Constituent: Sulfate Analysis Run 1/24/2022 3:05 PM



Constituent: Boron Analysis Run 1/21/2022 1:49 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Time Series

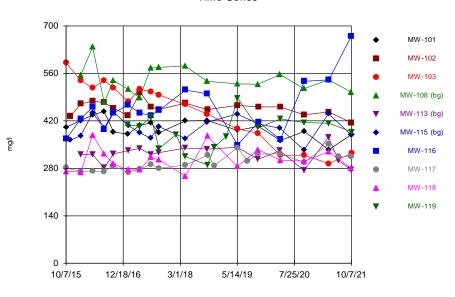


Constituent: Chloride Analysis Run 11/2/2021 6:26 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG

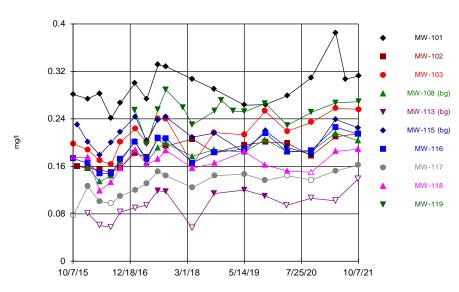
Time Series



Constituent: Calcium Analysis Run 11/2/2021 6:26 PM

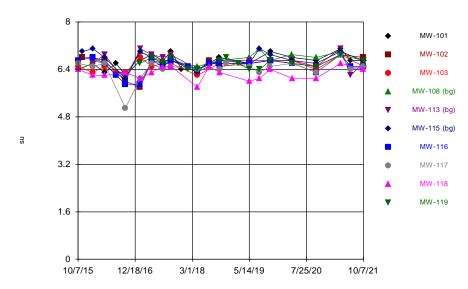
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG


Time Series

Constituent: Dissolved Solids Analysis Run 11/2/2021 6:26 PM

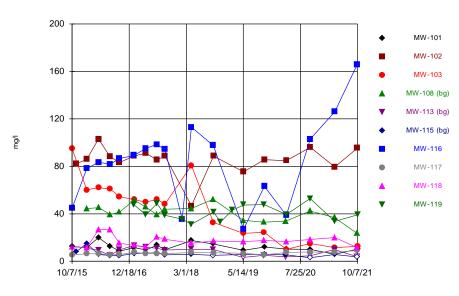
Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.



Constituent: Fluoride Analysis Run 11/2/2021 6:26 PM

Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG

Time Series

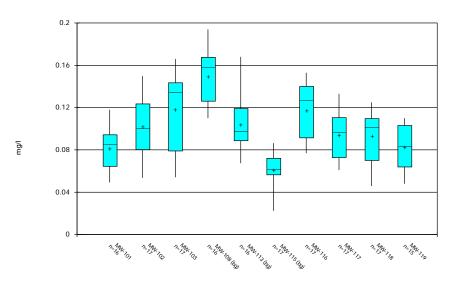


Constituent: pH Analysis Run 11/2/2021 6:26 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

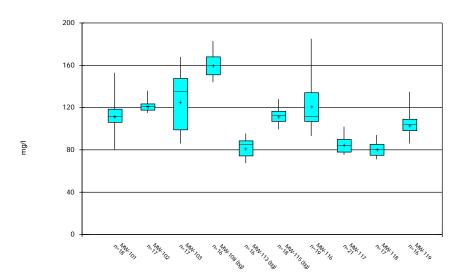
Time Series



Constituent: Sulfate Analysis Run 11/2/2021 6:26 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

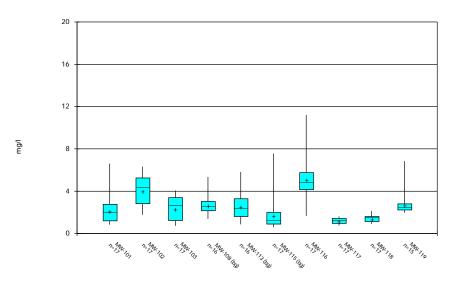
Box & Whiskers Plot



Constituent: Boron Analysis Run 1/21/2022 1:51 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

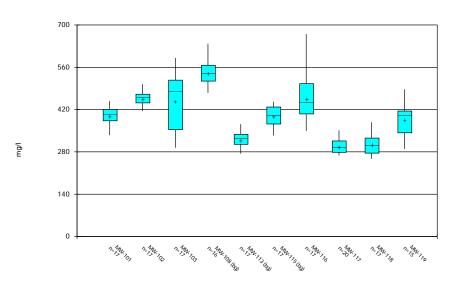
Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 11/2/2021 6:32 PM

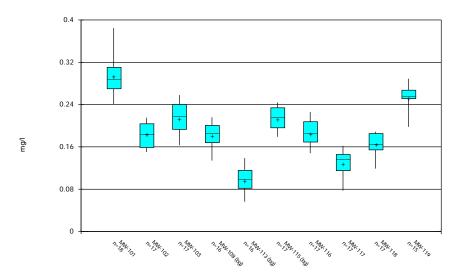
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Box & Whiskers Plot



Constituent: Chloride Analysis Run 11/2/2021 6:32 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG

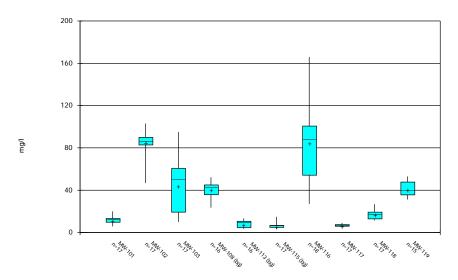
Box & Whiskers Plot

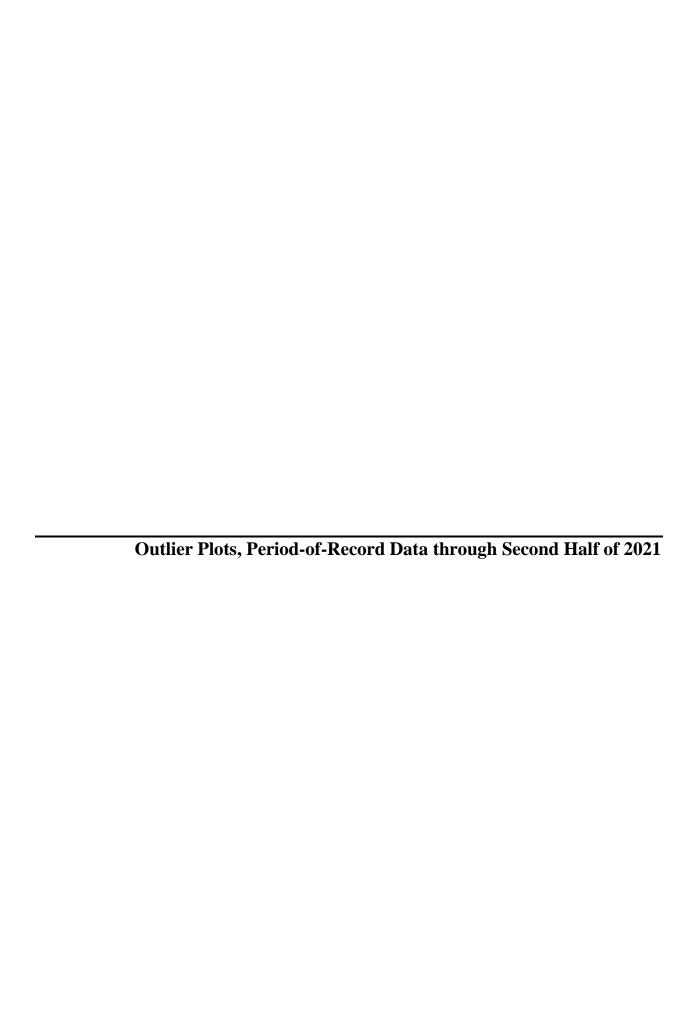
Constituent: Dissolved Solids Analysis Run 11/2/2021 6:32 PM

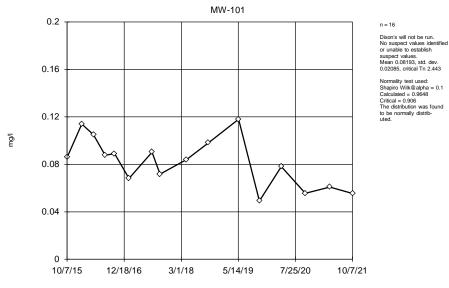
Box & Whiskers Plot

Constituent: Fluoride Analysis Run 11/2/2021 6:32 PM

Sanitas™ v.9.6.31 Sanitas software licensed to FTN Associates. UG


Box & Whiskers Plot


Constituent: pH Analysis Run 11/2/2021 6:32 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 11/2/2021 6:32 PM

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

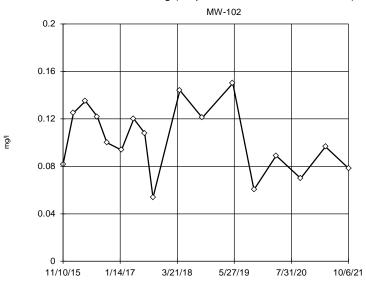
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 17

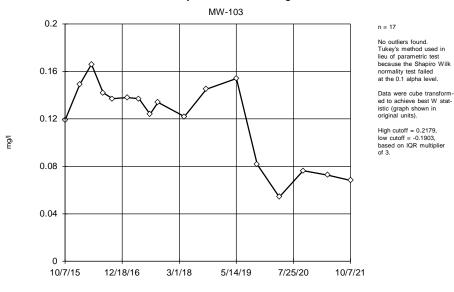
Dixon's will not be run. No suspect values identified


or unable to establish

suspect values. Mean 0.1028, std. dev.

0.02867, critical Tn 2.475

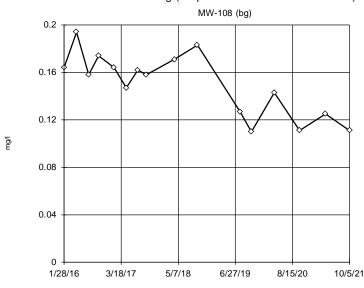
Shapiro Wilk@alpha = 0.1 Calculated = 0.9728 Critical = 0.91 The distribution was found


to be normally distributed.

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Tukey's Outlier Screening

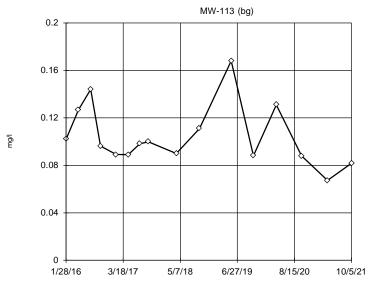


Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)


Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

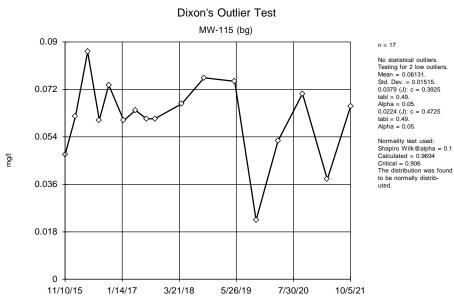
n = 16

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1501, std. dev. 0.02653, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.934 Critical = 0.906 The distribution was found to be normally distributed.

Dixon's will not be run.

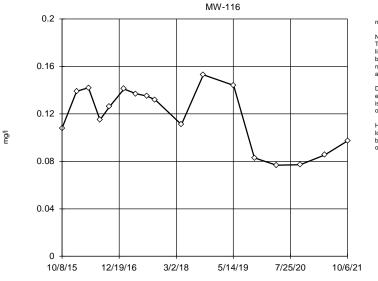
No suspect values identified or unable to establish suspect values.


Mean 0.1044, std. dev.
0.02597, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9408 Critical = 0.906 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

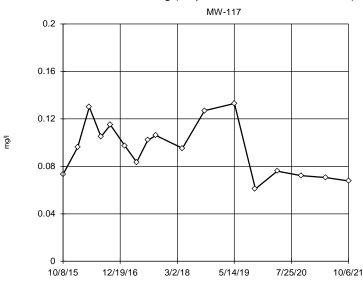
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Tukey's Outlier Screening

n = 17

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were x^4 transformed to achieve best W statistic (graph shown in original units).

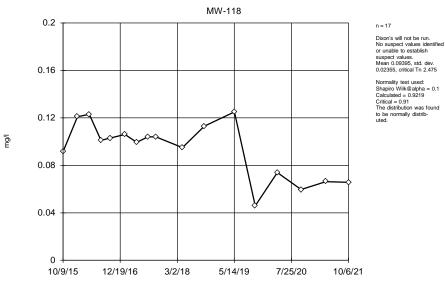

High cutoff = 0.1907, low cutoff = -0.1716, based on IQR multiplier of 3.

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)



Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.09472, std. dev. 0.02286, critical Tn 2.475

n = 17

Normality test used: Shapiro Wilk@ alpha = 0.1 Calculated = 0.9401 Critical = 0.91 The distribution was found to be normally distributed.

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

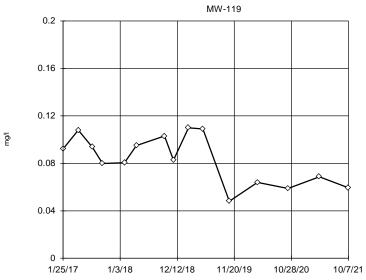
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run. No suspect values identified

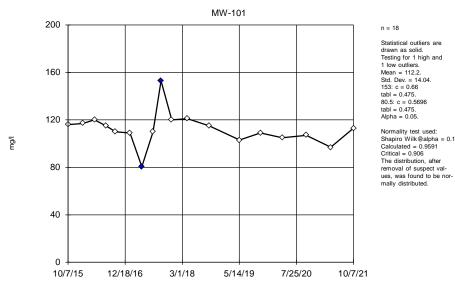
or unable to establish


suspect values. Mean 0.0835, std. dev.

0.02021, critical Tn 2.409

Shapiro Wilk@alpha = 0.1

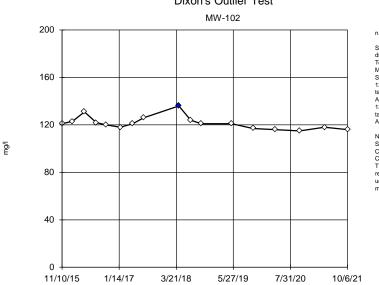
Calculated = 0.9385
Critical = 0.901
The distribution was found


to be normally distributed.

Constituent: Boron Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's Outlier Test

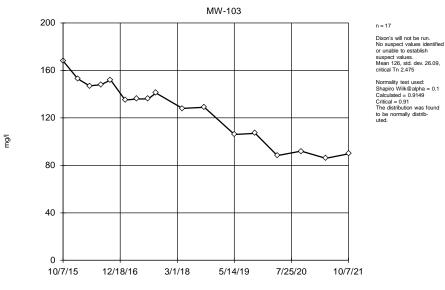


Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test


Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 17

Statistical outlier is drawn as solid. Testing for 2 high outliers. Mean = 121.5. Std. Dev. = 5.479. 131: c = 0.4667 tabl = 0.49. Alpha = 0.05. 136: c = 0.5 tabl = 0.49. Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.932 Critical = 0.906 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

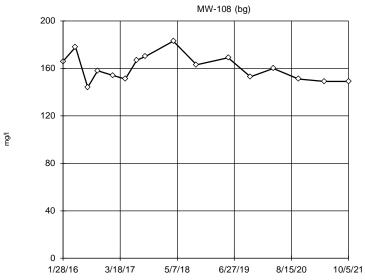
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run. No suspect values identified

or unable to establish


suspect values. Mean 160.3, std. dev.

11.18, critical Tn 2.443

Shapiro Wilk@alpha = 0.1 Calculated = 0.9513 Critical = 0.906 The distribution was found

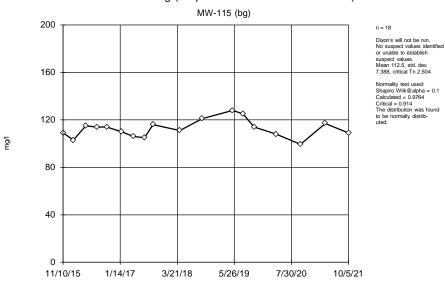
Normality test used:


to be normally distributed.

Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

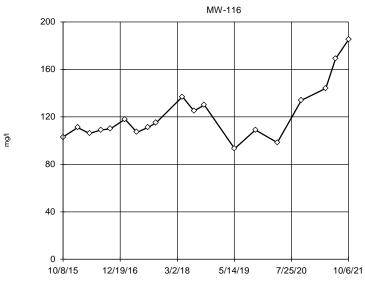
Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

No outliers found. Tukev's method used in

lieu of parametric test

normality test failed at the 0.1 alpha level.

Data were natural log

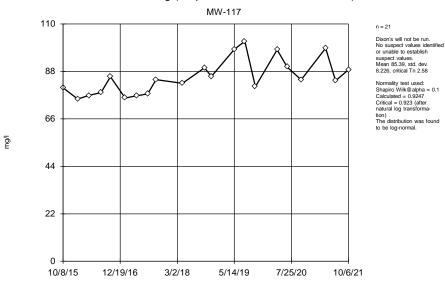

transformed to achieve best W statistic (graph shown in original units).

High cutoff = 263.2, low cutoff = 54.48, based

on IQR multiplier of 3.

because the Shapiro Wilk

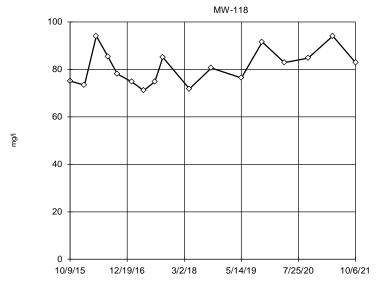
Tukey's Outlier Screening



Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

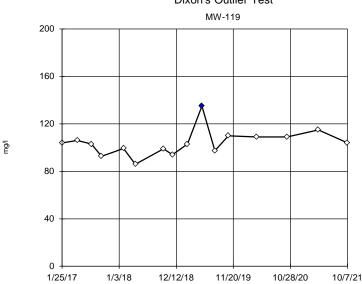

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 81, std. dev. 7.48, critical Tn 2.475

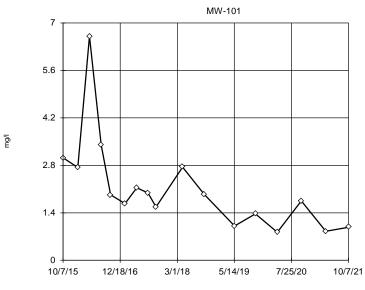

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9232 Critical = 0.91 The distribution was found to be normally distrib-

Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test



n = 16

Statistical outlier is drawn as solid.
Testing for 1 high outlier.
Mean = 104.1.
Std. Dev. = 11.01.
135: c = 0.6098
tabl = 0.507.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9772 Critical = 0.901 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Calcium Analysis Run 1/24/2022 3:09 PM

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 2.15, std. dev. 1.381, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9581 Critical = 0.91 (after natural log transforma-The distribution was found to be log-normal.

n = 17

Dixon's will not be run. No suspect values identified

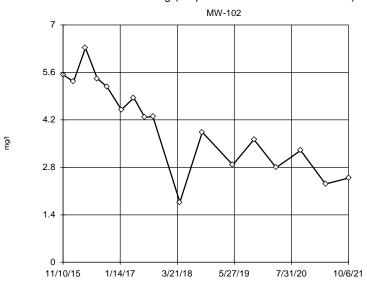
suspect values. Mean 4.04, std. dev. 1.312,

Shapiro Wilk@alpha = 0.1

Calculated = 0.9702
Critical = 0.91
The distribution was found

to be normally distrib-uted.

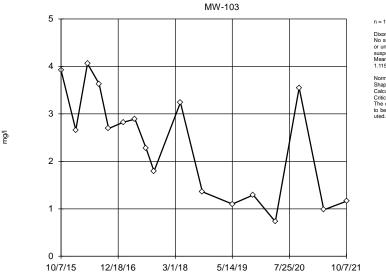
or unable to establish


critical Tn 2.475

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

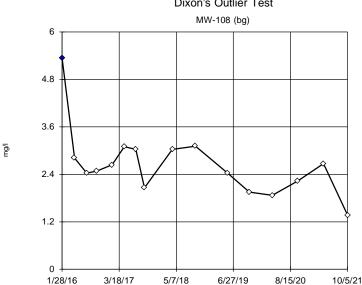

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 2.361, std. dev 1.115, critical Tn 2.475

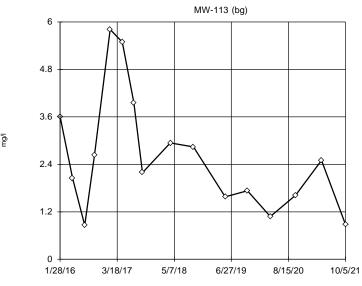

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9262 Critical = 0.91 The distribution was found to be normally distrib-

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test



n = 16

Statistical outlier is drawn as solid Testing for 1 high and 1 low outliers Mean = 2.66.Std. Dev. = 0.8697. 5.34: c = 0.6608 tabl = 0.507.1.37: c = 0.3353 tabl = 0.507Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9314 Critical = 0.895The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

critical Tn 2.443 Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9656 Critical = 0.906 (after natural log transforma-

n = 17

Statistical outlier is drawn as solid

Mean = 1.74.

Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1

Std. Dev. = 1.61

7.55; c = 0.7789 tabl = 0.49.

Calculated = 0.9113 Critical = 0.906The distribution, after

removal of suspect value, was found to be normally distributed.

Testing for 1 high outlier.

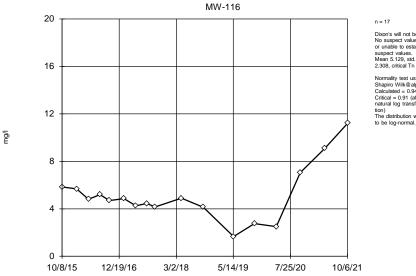
The distribution was found to be log-normal.

Dixon's will not be run. No suspect values identified

or unable to establish suspect values. Mean 2.61, std. dev. 1.489,

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

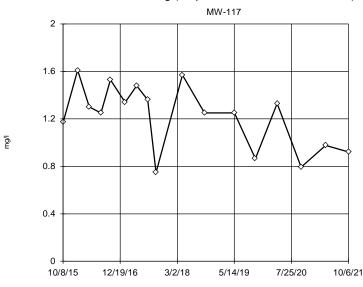
Dixon's Outlier Test MW-115 (bg) 8 6.4 4.8 mg/l 3.2 1.6 11/10/15 1/14/17 3/21/18 5/26/19 7/30/20 10/5/21

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 5.129, std. dev 2.308, critical Tn 2.475


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9458 Critical = 0.91 (after natural log transformation)
The distribution was found

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 17 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 1.22, std. dev. 0.2713, critical Tn 2.475

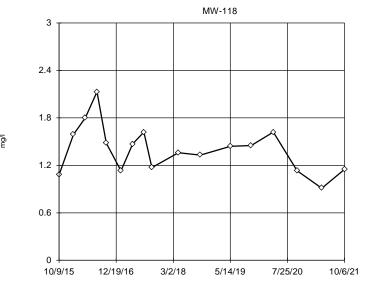
Shapiro Wilk@alpha = 0.1
Calculated = 0.9331
Critical = 0.91
The distribution was found to be normally distrib-uted.

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Dixon's will not be run. No suspect values identified

or unable to establish

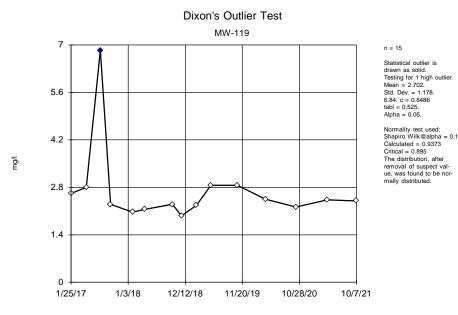
suspect values. Mean 1.404, std. dev.


Calculated = 0.9568

0.3011, critical Tn 2.475

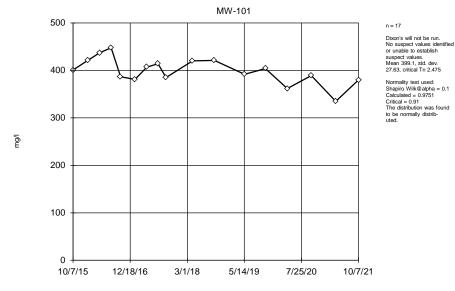
Normality test used: Shapiro Wilk@alpha = 0.1

Critical = 0.91
The distribution was found to be normally distrib-


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

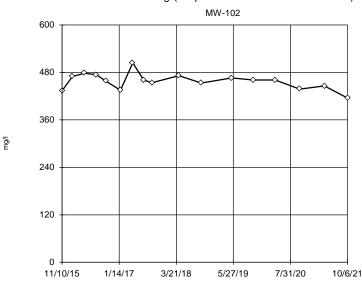
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Chloride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



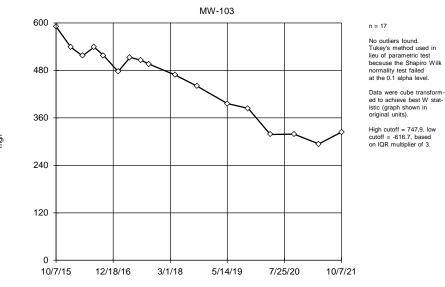
Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

to be normally distributed.


Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 457.6, std. dev. 20.52, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9734 Critical = 0.91 The distribution was found to be normally distributed.

Tukey's Outlier Screening

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 16

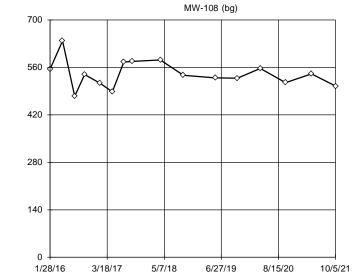
Dixon's will not be run. No suspect values identified

suspect values. Mean 541, std. dev. 40.32,

Shapiro Wilk@alpha = 0.1

The distribution was found to be normally distributed.

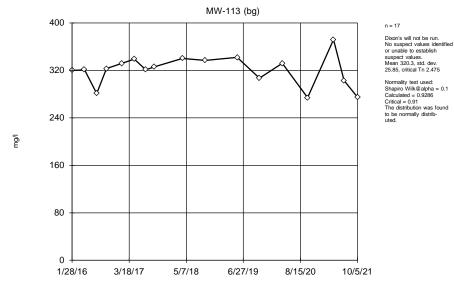
or unable to establish


critical Tn 2.443

Calculated = 0.9661 Critical = 0.906

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

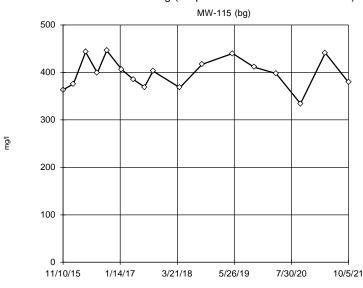
mg/l


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 398.7, std. dev. 32.24, critical Tn 2.475

Normality test used: Shapiro Wilk@ alpha = 0.1 Calculated = 0.9544 Critical = 0.91 The distribution was found to be normally distributed.

n = 17

n = 20

Dixon's will not be run. No suspect values identified

suspect values. Mean 298, std. dev. 24.27,

Shapiro Wilk@alpha = 0.1 Calculated = 0.9263 Critical = 0.92 The distribution was found

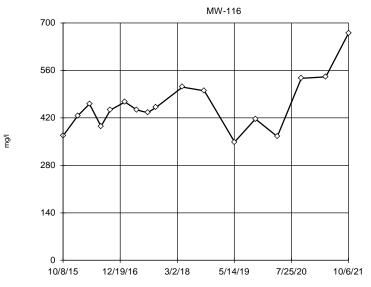
to be normally distrib-uted.

or unable to establish

critical Tn 2.557

Dixon's will not be run. No suspect values identified

or unable to establish

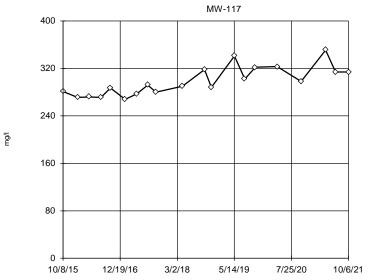

suspect values. Mean 457.5, std. dev.

Calculated = 0.9232

78.76, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1

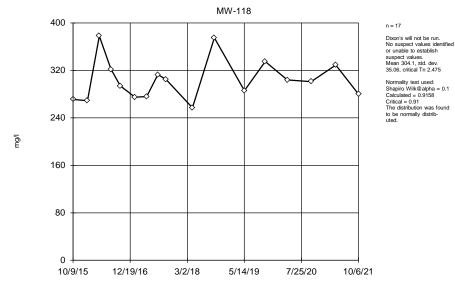
Critical = 0.91
The distribution was found to be normally distrib-



Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

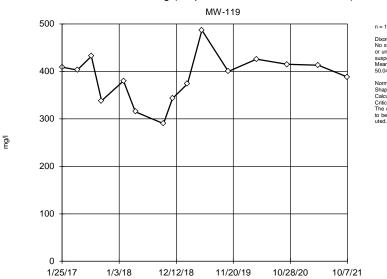
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Dissolved Solids Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 15

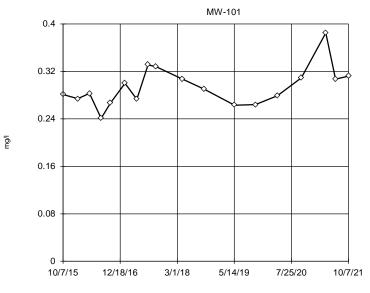
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 387.5, std. dev. 50.04 critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9666 Critical = 0.901 The distribution was found to be normally distrib-uted.

No statistical outliers. Testing for 1 high outlier.

Mean = 0.2941.

0.385: c = 0.4711 tabl = 0.475.

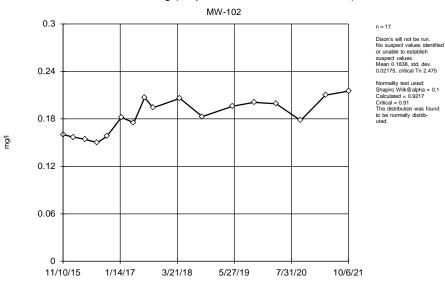

Alpha = 0.05.

Critical = 0.91 The distribution was found to be normally distrib-

Std. Dev. = 0.03299.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.969

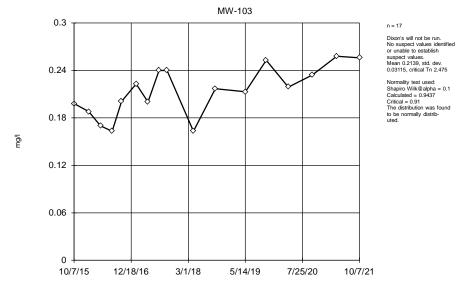
Dixon's Outlier Test



Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

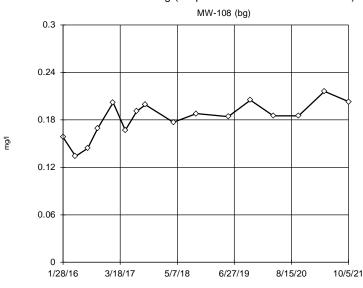
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

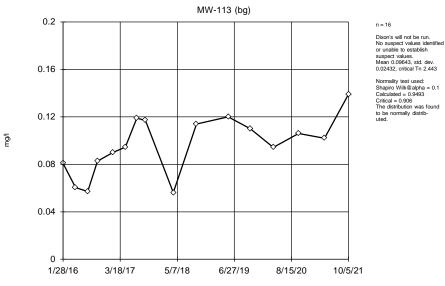


Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)


Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

n = 16

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.1817, std. dev. 0.02265, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9532 Critical = 0.906 The distribution was found to be normally distributed.

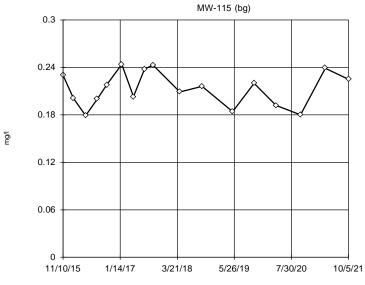
Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

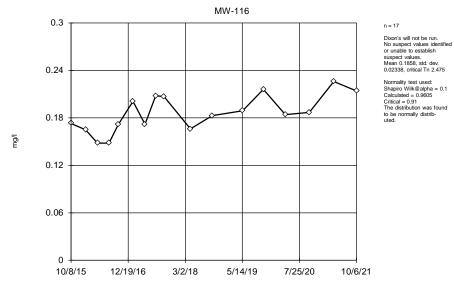
n = 17


Dixon's will not be run. No suspect values identified

or unable to establish suspect values. Mean 0.213, std. dev.

0.02184, critical Tn 2.475

Shapiro Wilk@alpha = 0.1 Calculated = 0.9423
Critical = 0.91
The distribution was found


to be normally distrib-uted.

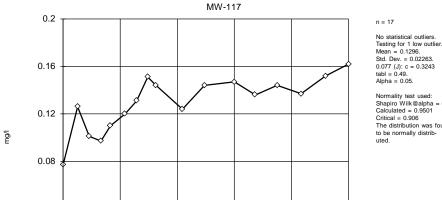
Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Fluoride Analysis Run 1/24/2022 3:09 PM Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Dixon's Outlier Test


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

0.04

0

10/8/15

12/19/16

0.077 (J): c = 0.3243tabl = 0.49Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1 Critical = 0.906 The distribution was found to be normally distrib-

10/6/21

7/25/20

Constituent: Fluoride Analysis Run 1/24/2022 3:10 PM

5/14/19

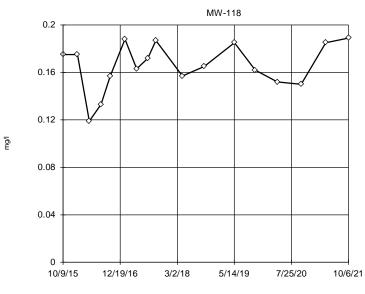
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

3/2/18

Dixon's Outlier Test

n = 17

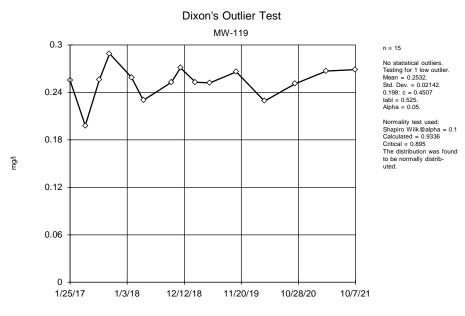
No statistical outliers. Testing for 1 low outlier. Mean = 0.1655.


Std. Dev. = 0.01986.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9368

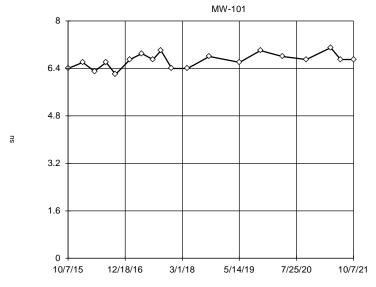
Critical = 0.906 The distribution was found to be normally distrib-

0.119: c = 0.4559 tabl = 0.49.


Alpha = 0.05.

Constituent: Fluoride Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

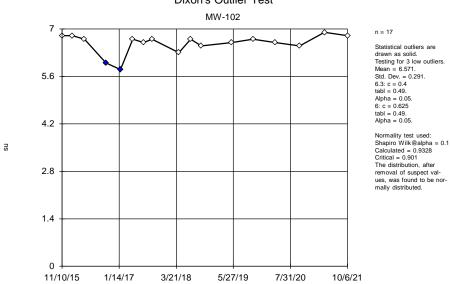

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Fluoride Analysis Run 1/24/2022 3:10 PM

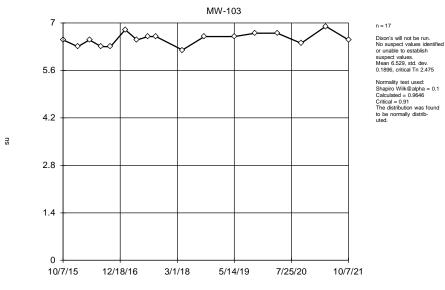
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.663, std. dev 0.2454, critical Tn 2.532

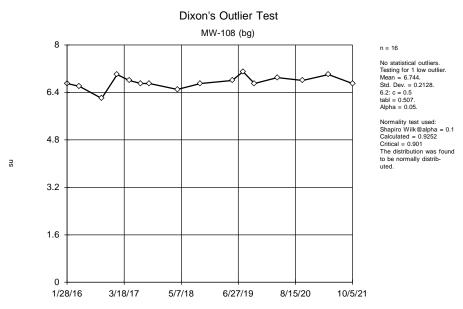

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9635 Critical = 0.917 The distribution was found to be normally distrib-

Constituent: pH Analysis Run 1/24/2022 3:10 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

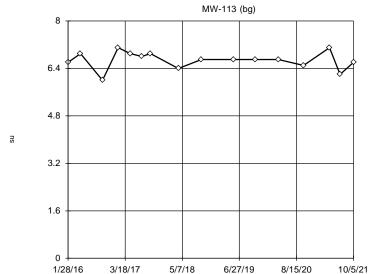
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test


Constituent: pH Analysis Run 1/24/2022 3:10 PM

Constituent: pH Analysis Run 1/24/2022 3:10 PM

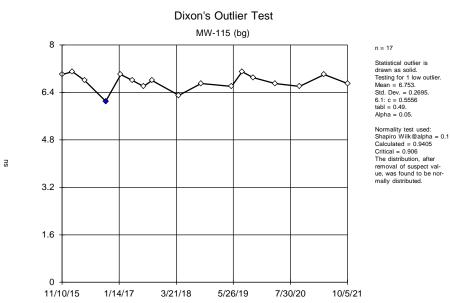
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: pH Analysis Run 1/24/2022 3:10 PM

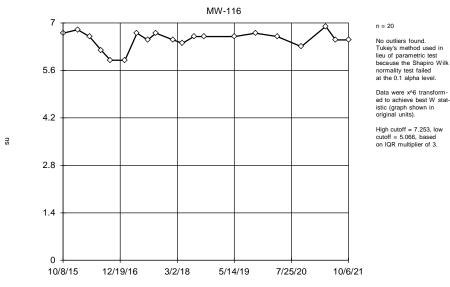
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)


Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.675, std. dev. 0.2978, critical Tn 2.443

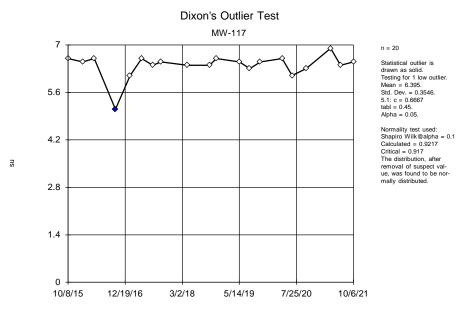
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9421 Critical = 0.906 The distribution was found to be normally distrib-

Constituent: pH Analysis Run 1/24/2022 3:10 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

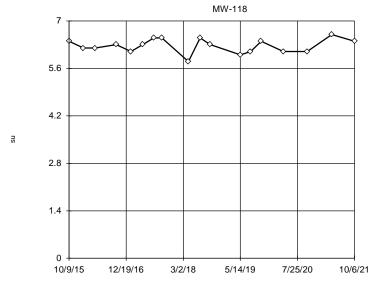
Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: pH Analysis Run 1/24/2022 3:10 PM


Tukey's Outlier Screening

Constituent: pH Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: pH Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run. No suspect values identified

or unable to establish

suspect values. Mean 6.619, std. dev.

Normality test used:

to be normally distrib-uted.

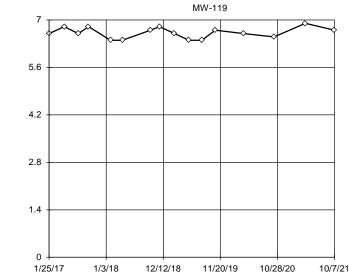
0.1642, critical Tn 2.443

Shapiro Wilk@alpha = 0.1
Calculated = 0.9133
Critical = 0.906

The distribution was found

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.267, std. dev 0.2086, critical Tn 2.504

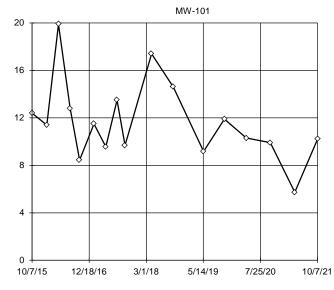
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9579 Critical = 0.914 The distribution was found to be normally distrib-


Constituent: pH Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

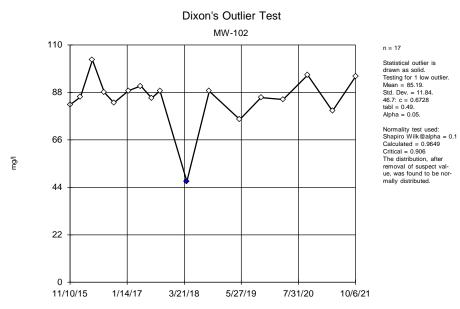
sn


EPA Screening (suspected outliers for Dixon's Test)

Constituent: pH Analysis Run 1/24/2022 3:10 PM

mg/l

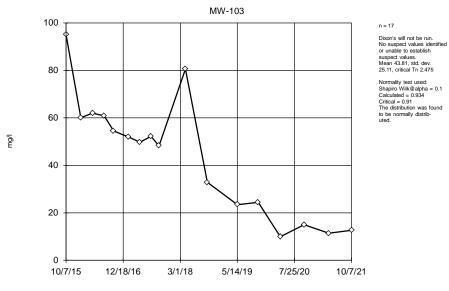
EPA Screening (suspected outliers for Dixon's Test)


Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 11.67, std. dev. 3.372, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9362 Critical = 0.91 The distribution was found to be normally distrib-

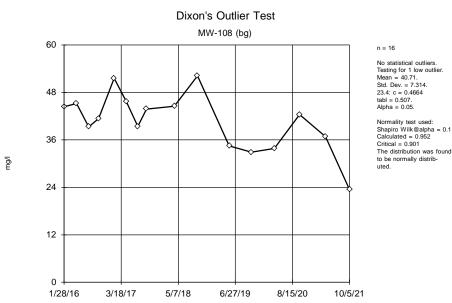
Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

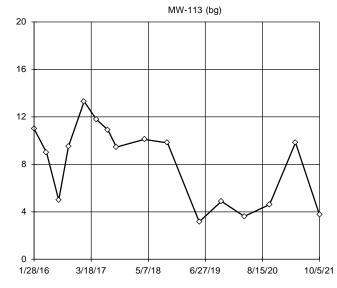
Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


EPA Screening (suspected outliers for Dixon's Test)

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database


Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Tukey's Outlier Screening

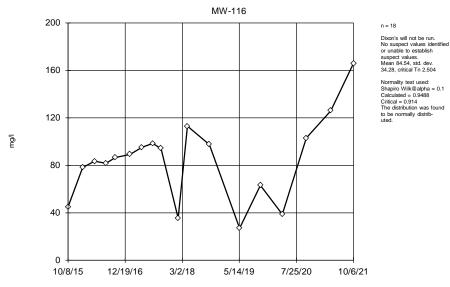
No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square transformed to achieve best W statistic (graph shown in original units).

High cutoff = 19.34, low cutoff = -15.53, based on IQR multiplier of 3.

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

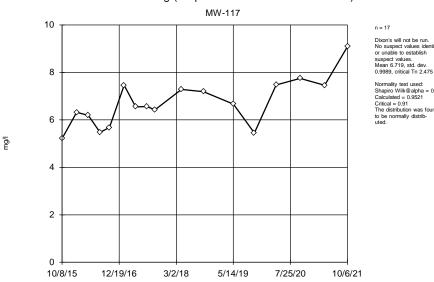

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Dixon's Outlier Test MW-115 (bg) 20 n = 17 Statistical outlier is drawn as solid Testing for 1 high and 1 low outliers. 16 Mean = 6.104. Std. Dev. = 2.555 14.8: c = 0.7542 tabl = 0.49.2.97 (J): c = 0.3923 tabl = 0.49Alpha = 0.05. 12 Normality test used: Shapiro Wilk@alpha = 0.1 mg/l Calculated = 0.9642 Critical = 0.901The distribution, after 8 removal of suspect value, was found to be normally distributed. 5/26/19 11/10/15 1/14/17 3/21/18 7/30/20 10/5/21

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

EPA Screening (suspected outliers for Dixon's Test)



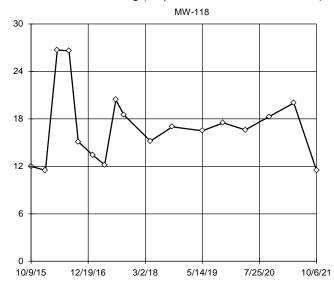
Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 17 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.719, std. dev.


Normality test used: Shapiro Wilk@alpha = 0.1
Calculated = 0.9521
Critical = 0.91
The distribution was found to be normally distrib-uted.

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

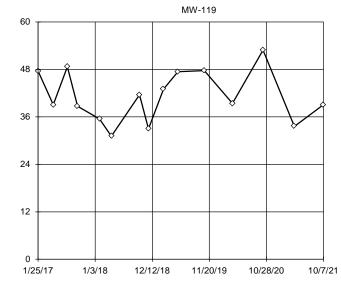
mg/l

mg/l

EPA Screening (suspected outliers for Dixon's Test)

n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 17, std. dev. 4.608, critical Tn 2.475


Normality test used:
Shapiro Wilk@alpha = 0.1
Calculated = 0.9395
Critical = 0.91 (after natural log transformation)
The distribution was found to be log-normal.

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

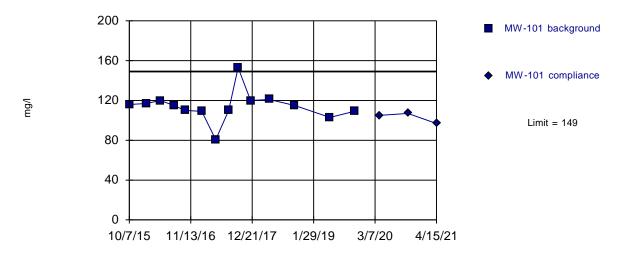
EPA Screening (suspected outliers for Dixon's Test)

n = 15

or unate to estanish suspect values. Mean 41.23, std. dev. 6.525, critical Tn 2.409 Normality test used: Shapiro Wilk@aipha = 0.1 Calculated = 0.9533 Critical = 0.901 The distribution was found to be normally distributed.

Dixon's will not be run. No suspect values identified or unable to establish

Constituent: Sulfate Analysis Run 1/24/2022 3:10 PM



Statistical Evaluation Results

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=114.2, Std. Dev.=15.14, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8396, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

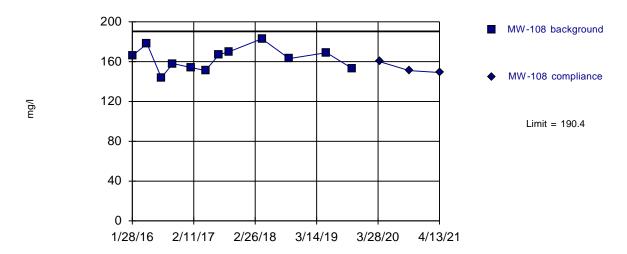
Constituent: Calcium Analysis Run 5/12/2021 8:34 AM View: 2021-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

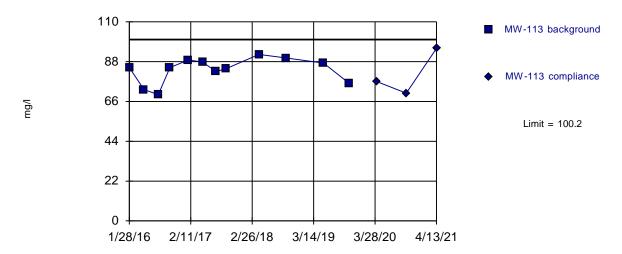
Background Data Summary: Mean=123.2, Std. Dev.=5.242, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8497, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=163, Std. Dev.=11.47, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9787, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

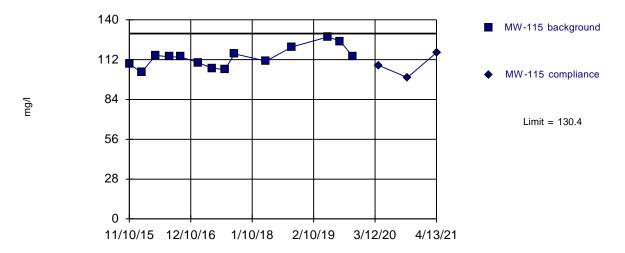
Constituent: Calcium Analysis Run 5/12/2021 8:34 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

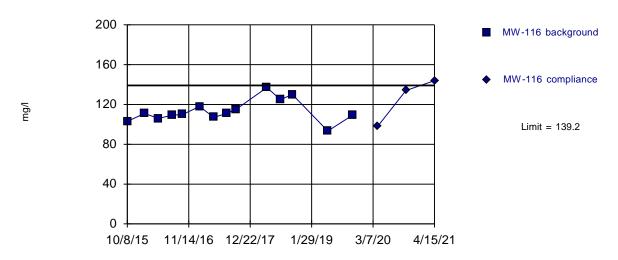
Background Data Summary: Mean=83.35, Std. Dev.=7.053, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8981, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=113.6, Std. Dev.=7.26, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9529, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 5/12/2021 8:34 AM View: 2021-1H PL

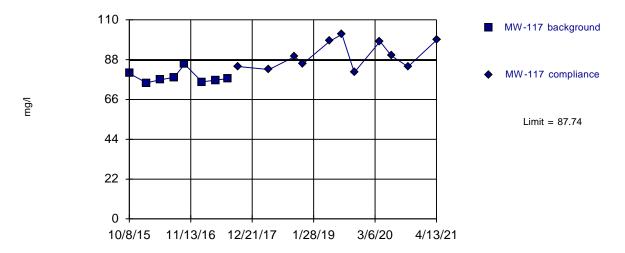

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric



Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

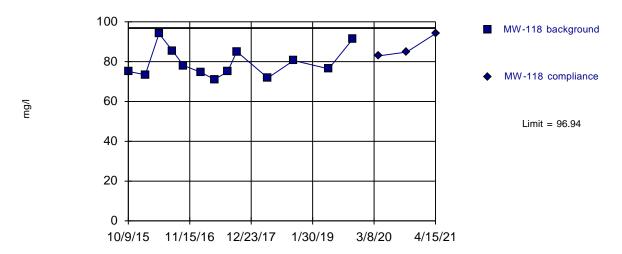
Exceeds Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=78.28, Std. Dev.=3.33, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8288, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

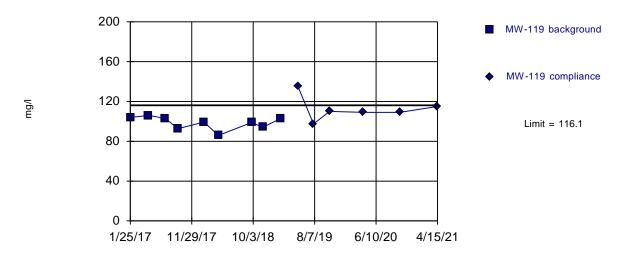
Constituent: Calcium Analysis Run 5/12/2021 8:34 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

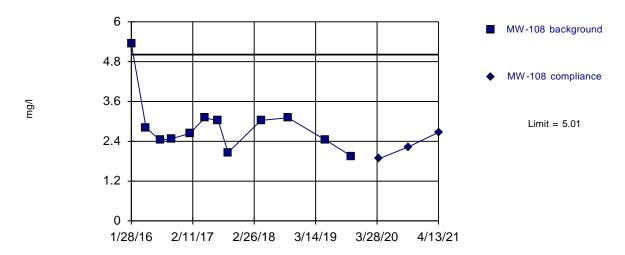
Background Data Summary: Mean=79.41, Std. Dev.=7.467, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8875, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=98.54, Std. Dev.=6.524, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9156, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

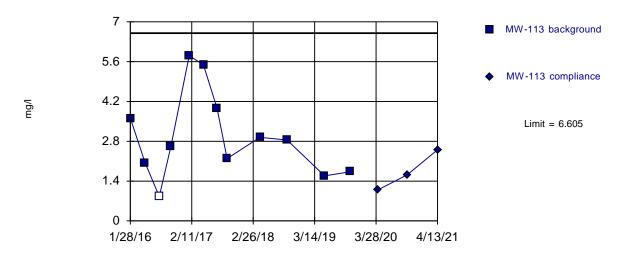
Constituent: Calcium Analysis Run 5/12/2021 8:34 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

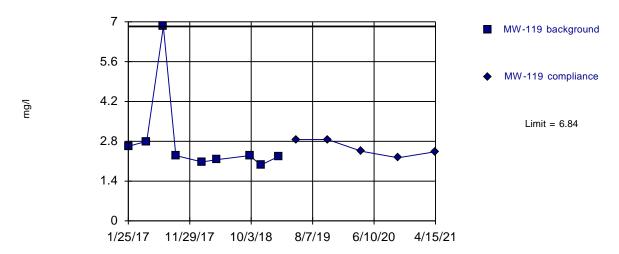
Background Data Summary (based on square root transformation): Mean=1.679, Std. Dev.=0.2339, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8197, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=2.974, Std. Dev.=1.518, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9319, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Chloride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

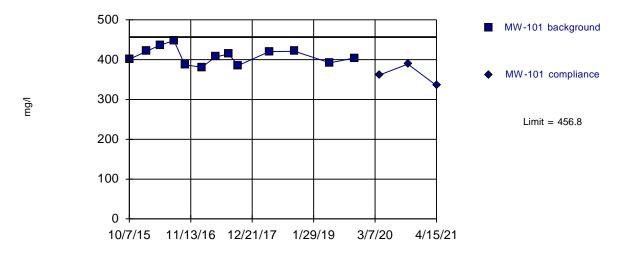

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 9 background values. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha = 0.01809 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

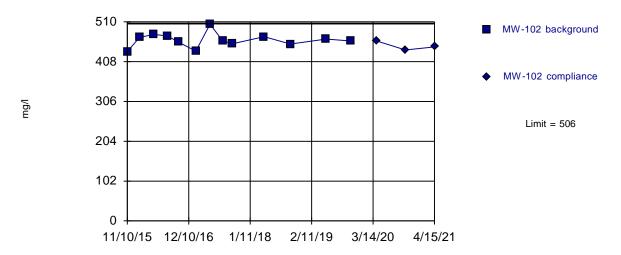
Constituent: Chloride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=409.1, Std. Dev.=20.34, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

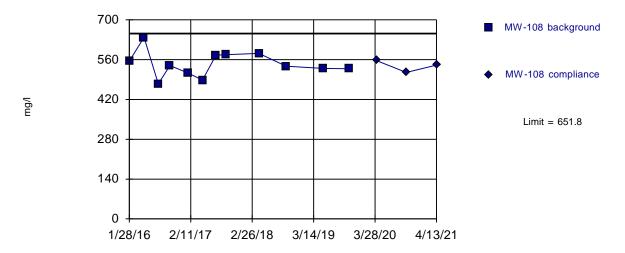
Constituent: Dissolved Solids Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

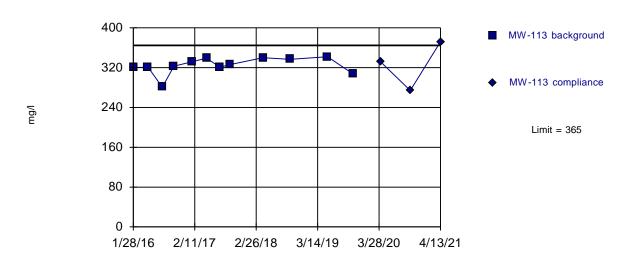
Background Data Summary: Mean=463.1, Std. Dev.=18.27, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9455, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=544.8, Std. Dev.=44.71, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

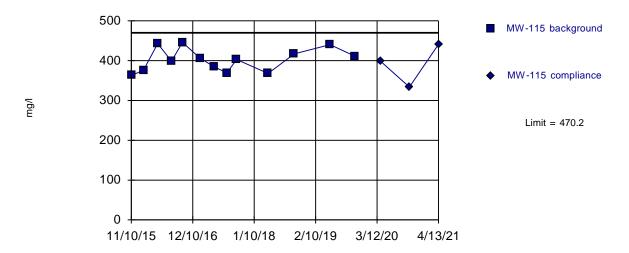
Constituent: Dissolved Solids Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit


Intrawell Parametric

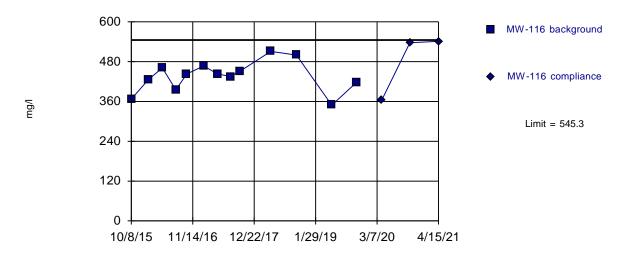
Background Data Summary: Mean=324.1, Std. Dev.=17.1, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8564, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=402, Std. Dev.=29.05, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9251, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Dissolved Solids Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

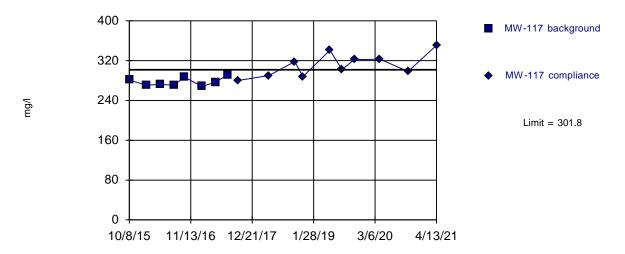

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Parametric



Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

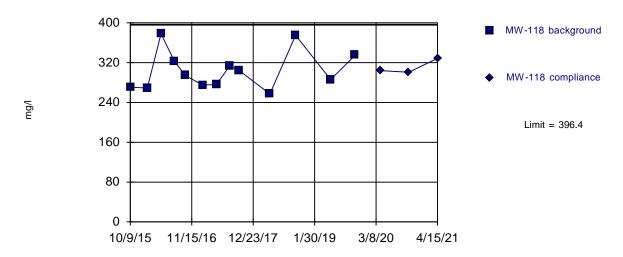
Exceeds Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

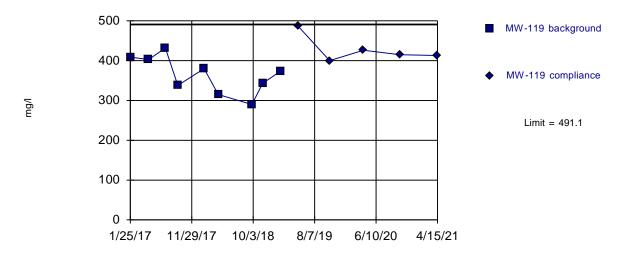
Constituent: Dissolved Solids Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

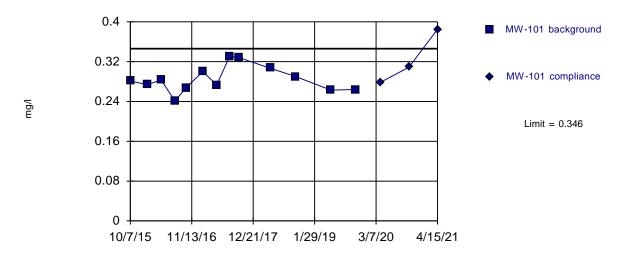
Background Data Summary: Mean=304.3, Std. Dev.=39.22, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8967, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=364.9, Std. Dev.=46.79, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9717, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

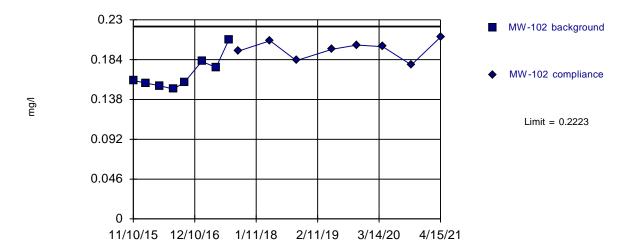
Constituent: Dissolved Solids Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit


Intrawell Parametric

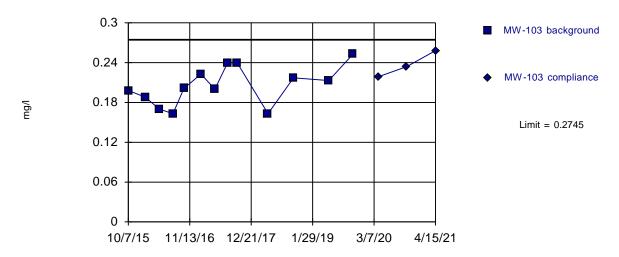
Background Data Summary: Mean=0.2848, Std. Dev.=0.02609, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1679, Std. Dev.=0.01916, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8449, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

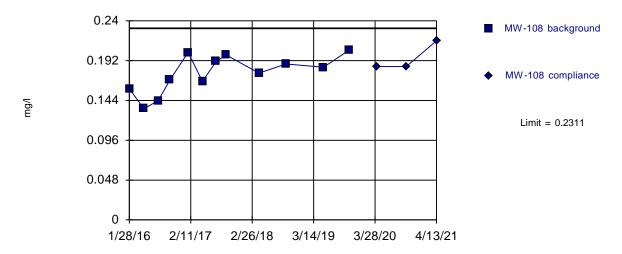
Constituent: Fluoride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

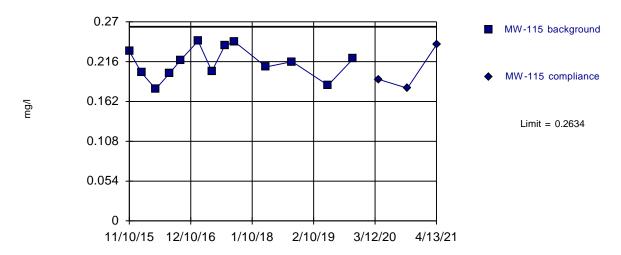
Background Data Summary: Mean=0.2053, Std. Dev.=0.02946, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.814. Kappa = 0.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1765, Std. Dev.=0.0228, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

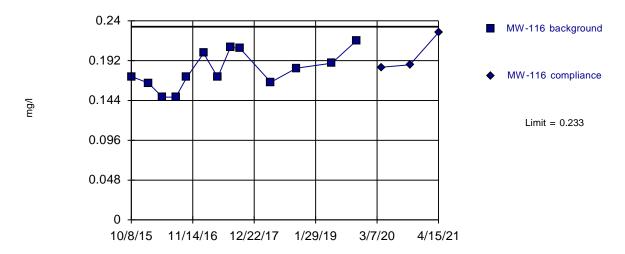
Constituent: Fluoride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

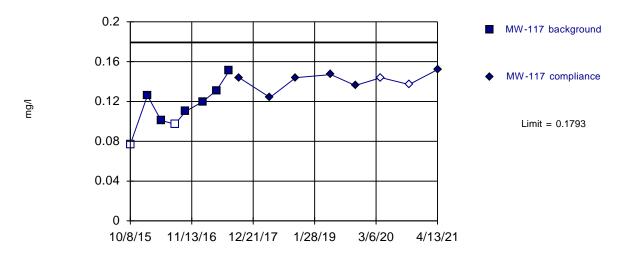
Background Data Summary: Mean=0.2142, Std. Dev.=0.02094, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9554, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1806, Std. Dev.=0.02233, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9394, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

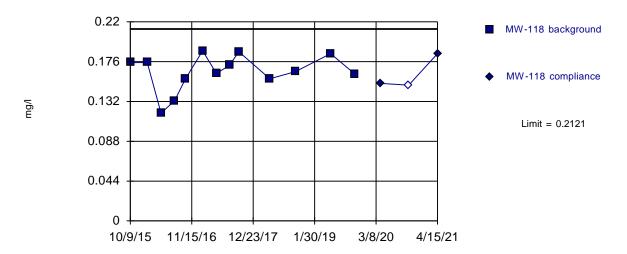
Constituent: Fluoride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\text{M}}$ v.9.6.28 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit


Intrawell Parametric

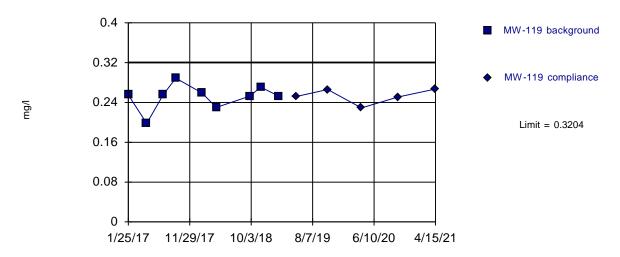
Background Data Summary: Mean=0.1141, Std. Dev.=0.02292, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.993, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1645, Std. Dev.=0.02029, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Fluoride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

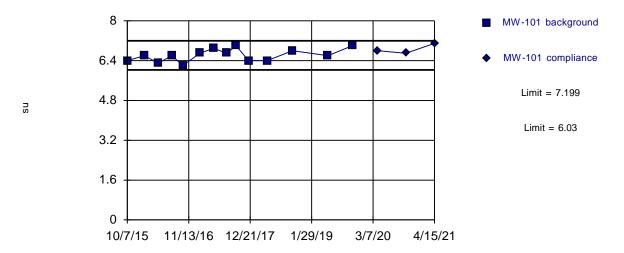

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Parametric


Background Data Summary: Mean=0.2516, Std. Dev.=0.02551, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8977, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Fluoride Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

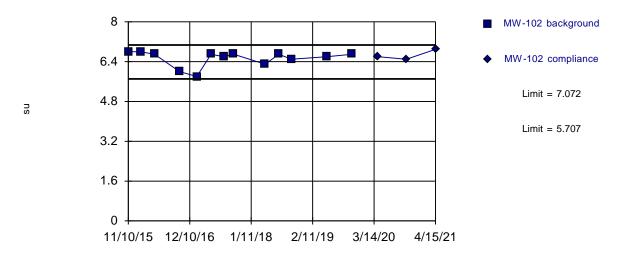
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.614, Std. Dev.=0.2538, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

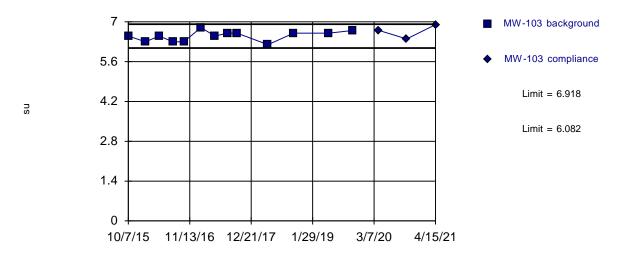
Constituent: pH Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

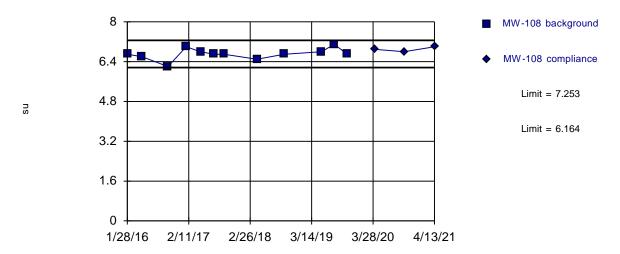
Background Data Summary (based on x^6 transformation): Mean=79846, Std. Dev.=19298, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8197, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.5, Std. Dev.=0.178, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.93, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

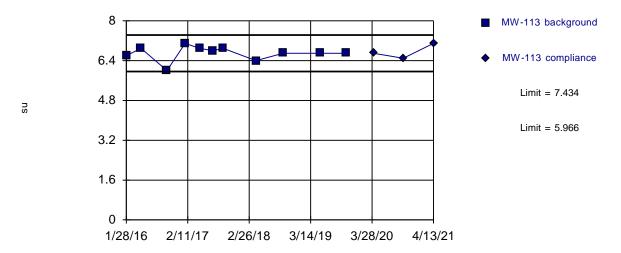
Constituent: pH Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

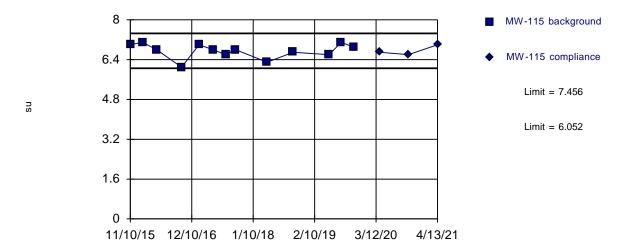
Background Data Summary: Mean=6.708, Std. Dev.=0.2275, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9154, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.7, Std. Dev.=0.2966, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8904, critical = 0.792. Kappa = 2.474 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

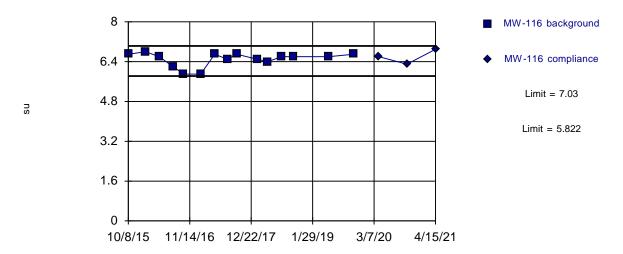
Constituent: pH Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

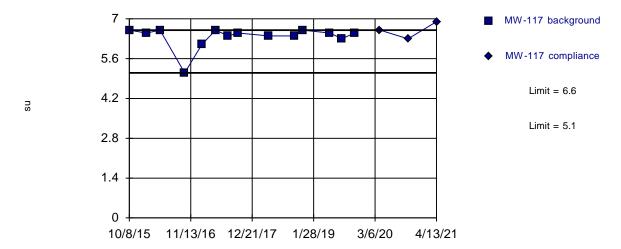
Background Data Summary: Mean=6.754, Std. Dev.=0.2989, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9115, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary (based on x^4 transformation): Mean=1796, Std. Dev.=286.4, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8382, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

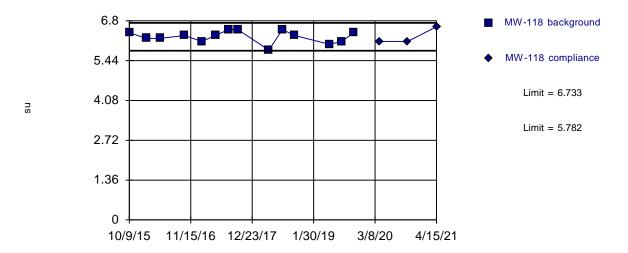
Constituent: pH Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Exceeds Limits

Prediction Limit


Intrawell Non-parametric

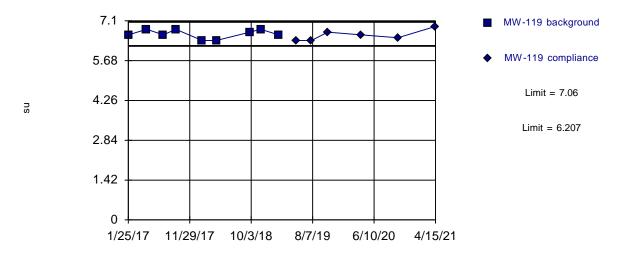
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.0343. Individual comparison alpha = 0.01722 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.257, Std. Dev.=0.2065, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9301, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

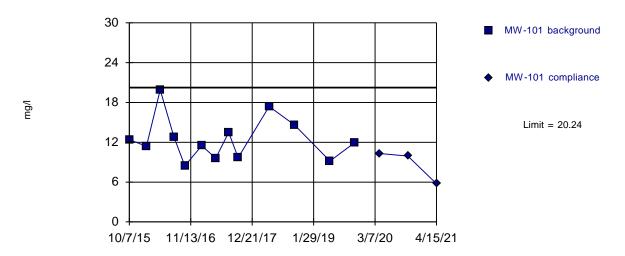
Constituent: pH Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

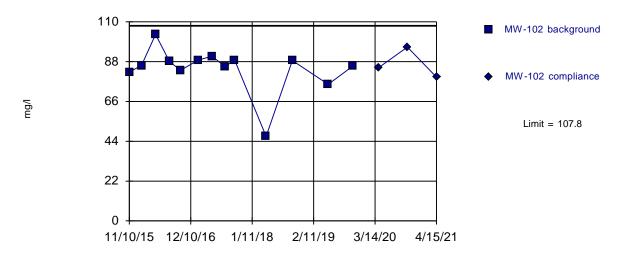
Background Data Summary: Mean=6.633, Std. Dev.=0.1581, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8581, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=12.48, Std. Dev.=3.303, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9149, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

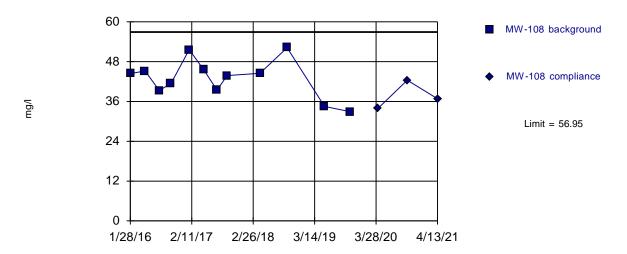
Constituent: Sulfate Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

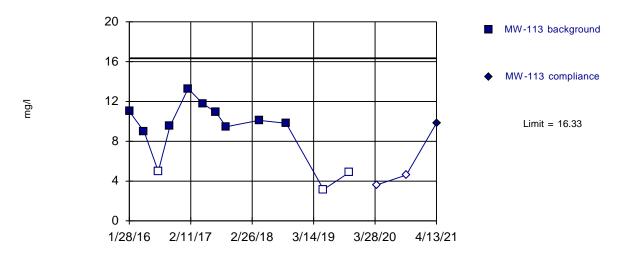
Background Data Summary (based on square transformation): Mean=7217, Std. Dev.=1876, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8224, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=42.91, Std. Dev.=5.869, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9505, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

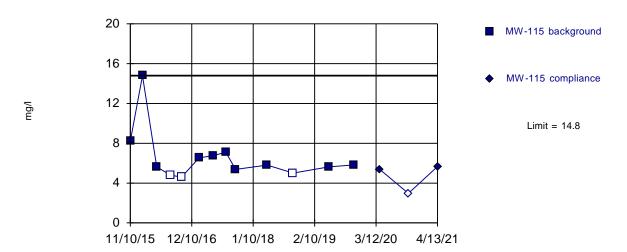
Constituent: Sulfate Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\text{\tiny{M}}}$ v.9.6.28 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit


Intrawell Parametric

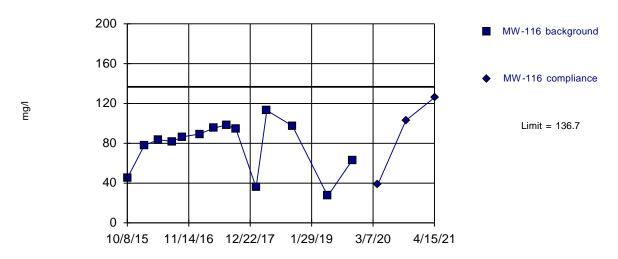
Background Data Summary: Mean=8.988, Std. Dev.=3.07, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8971, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Seasonality was not detected with 95% confidence.

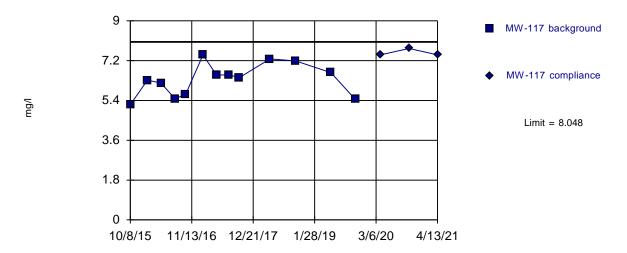
Constituent: Sulfate Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

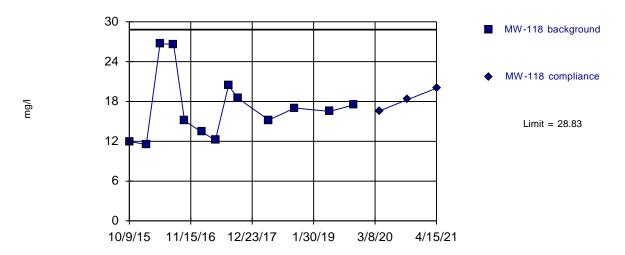
Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

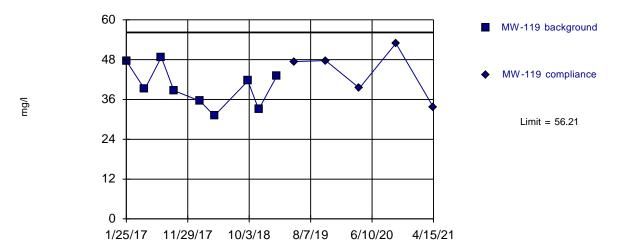
Constituent: Sulfate Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

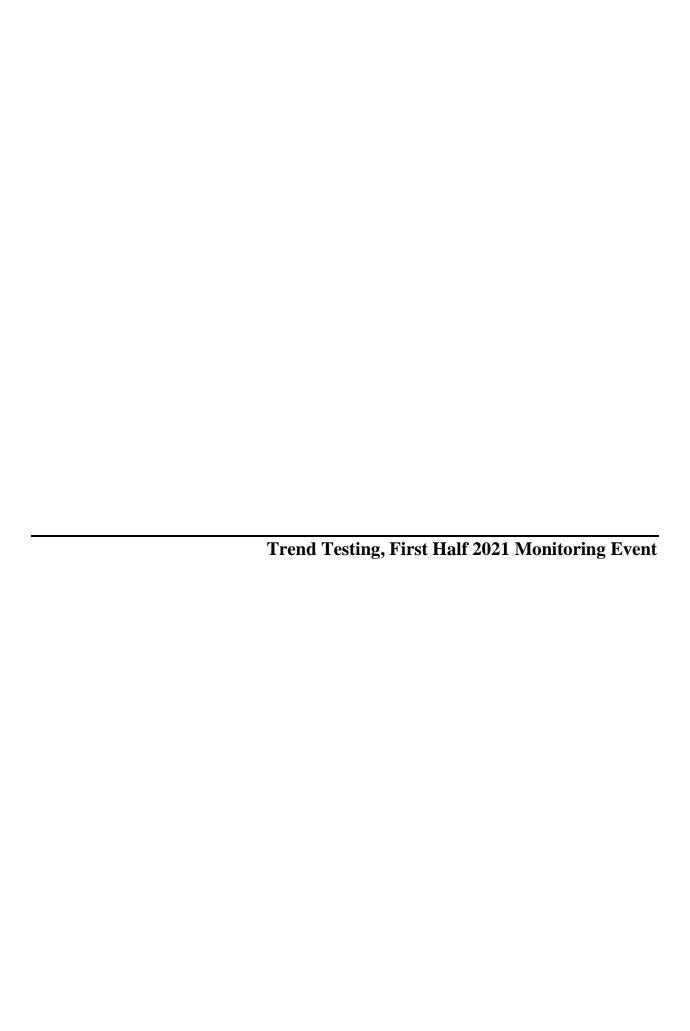
Within Limit

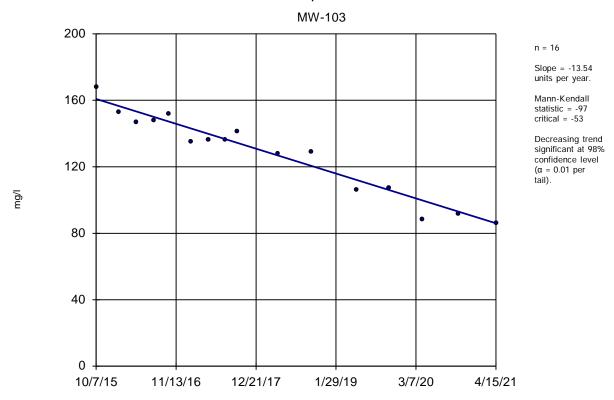
Prediction Limit


Intrawell Parametric

Background Data Summary: Mean=17.12, Std. Dev.=4.987, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8803, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

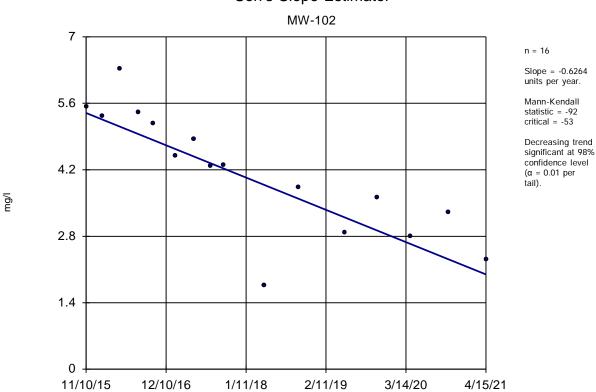

Intrawell Parametric


Background Data Summary: Mean=39.81, Std. Dev.=6.079, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.961, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Sulfate Analysis Run 5/12/2021 8:35 AM View: 2021-1H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

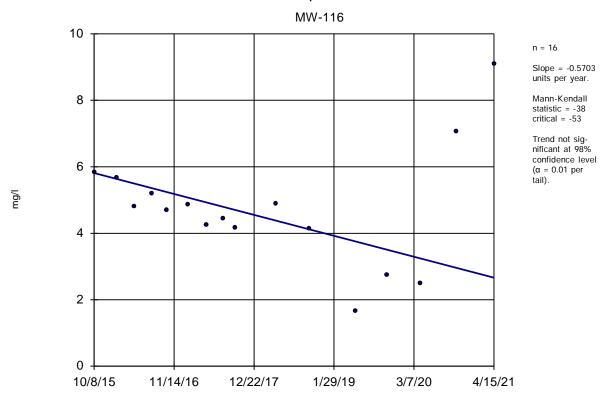
Sen's Slope Estimator



Constituent: Calcium Analysis Run 5/12/2021 8:37 AM View: 2021-1H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

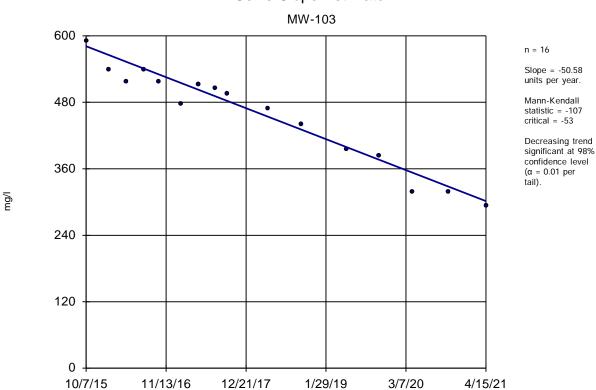
Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG


Sen's Slope Estimator

Constituent: Chloride Analysis Run 5/12/2021 8:37 AM View: 2021-1H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

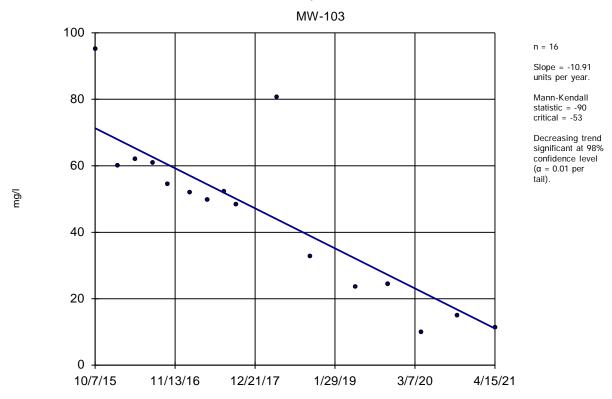
Sen's Slope Estimator



Constituent: Chloride Analysis Run 5/12/2021 8:37 AM View: 2021-1H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.28 Sanitas software licensed to FTN Associates. UG

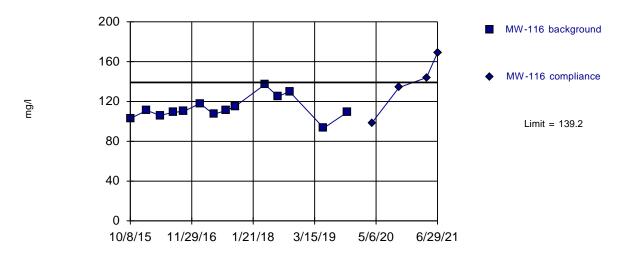

Sen's Slope Estimator

Constituent: Dissolved Solids Analysis Run 5/12/2021 8:37 AM View: 2021-1H Trend

Data: PPES EPA CCR Rule Groundwater Database

Sen's Slope Estimator

Constituent: Sulfate Analysis Run 5/12/2021 8:37 AM View: 2021-1H Trend


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

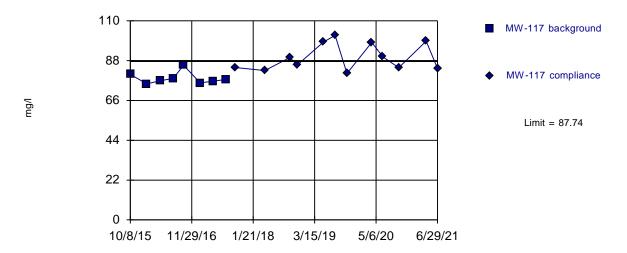
Exceeds Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

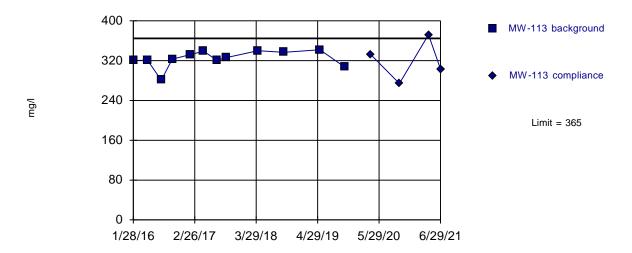

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.30 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Parametric


Background Data Summary: Mean=78.28, Std. Dev.=3.33, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8288, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

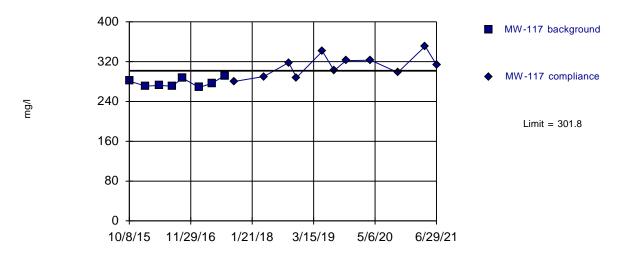
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=324.1, Std. Dev.=17.1, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8564, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Dissolved Solids Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

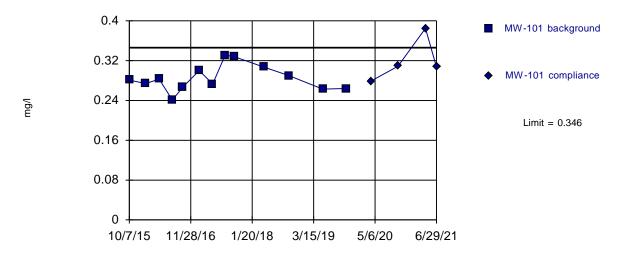

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.30 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric


Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

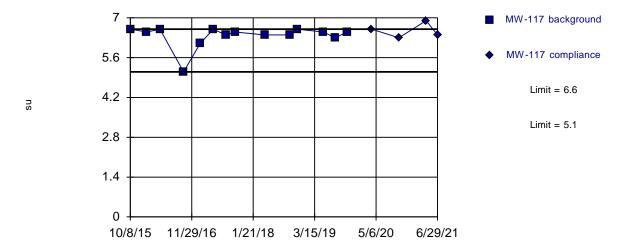
Constituent: Dissolved Solids Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

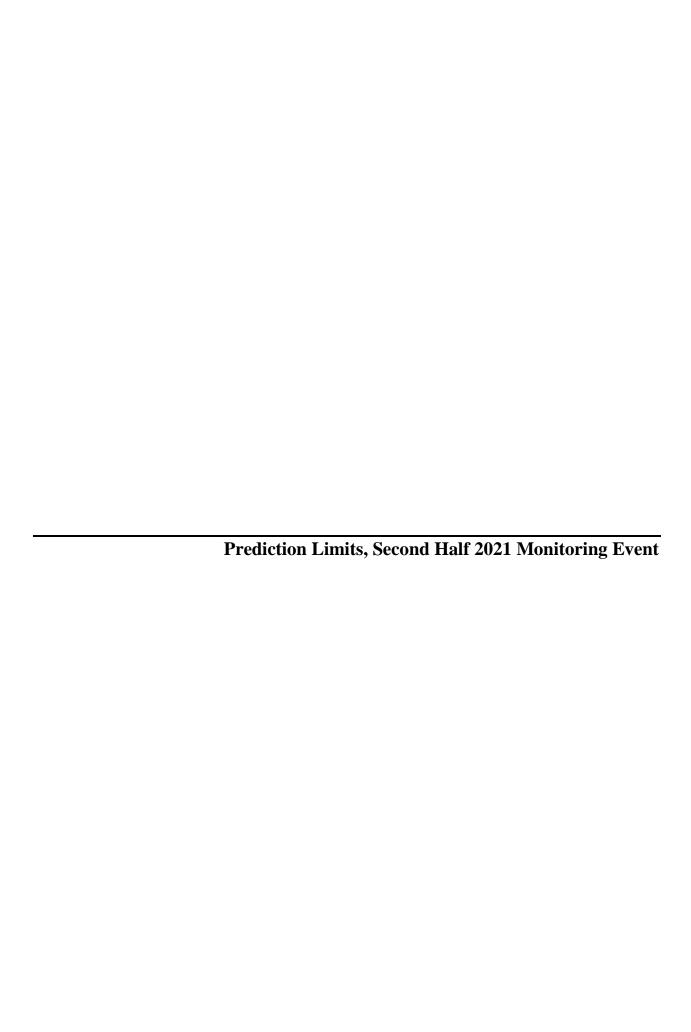
Intrawell Parametric

Background Data Summary: Mean=0.2848, Std. Dev.=0.02609, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

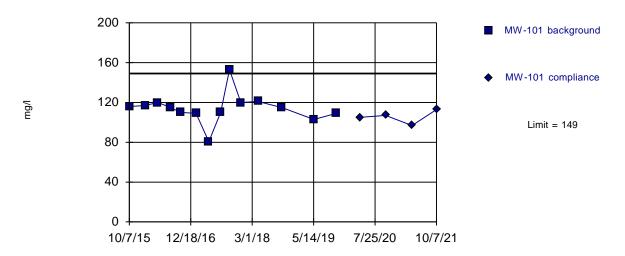

Constituent: Fluoride Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limits


Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.0343. Individual comparison alpha = 0.01722 (1 of 2). Seasonality was not detected with 95% confidence.

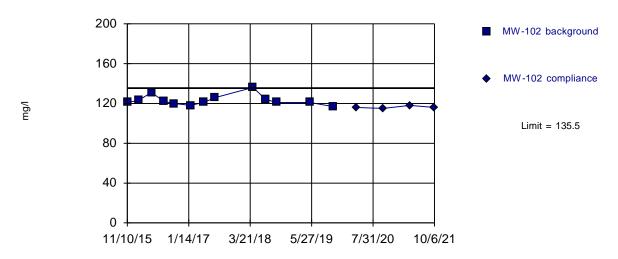
> Analysis Run 12/22/2021 11:29 AM View: 2021-1H PL verification Constituent: pH Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=114.2, Std. Dev.=15.14, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8396, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

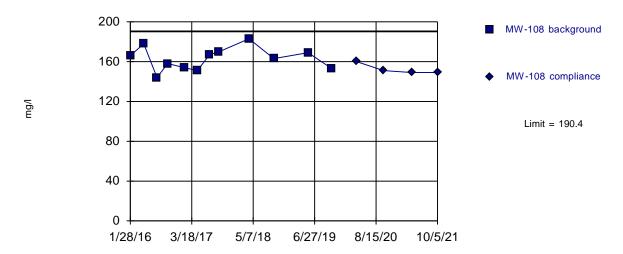
Constituent: Calcium Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

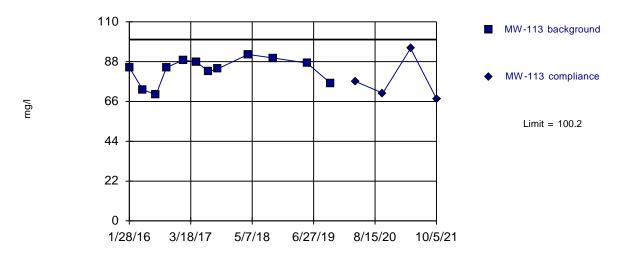
Background Data Summary: Mean=123.2, Std. Dev.=5.242, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8497, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=163, Std. Dev.=11.47, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9787, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

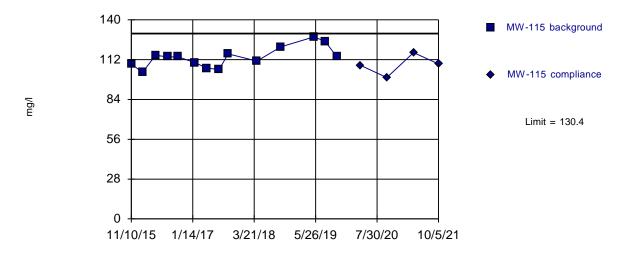
Constituent: Calcium Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

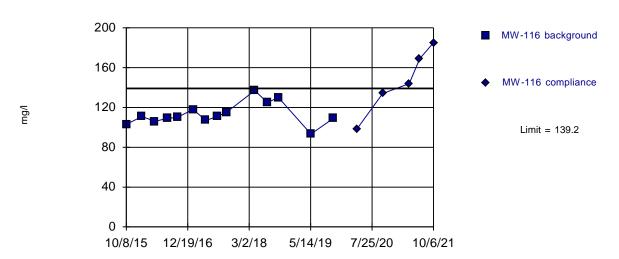
Background Data Summary: Mean=83.35, Std. Dev.=7.053, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8981, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=113.6, Std. Dev.=7.26, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9529, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL

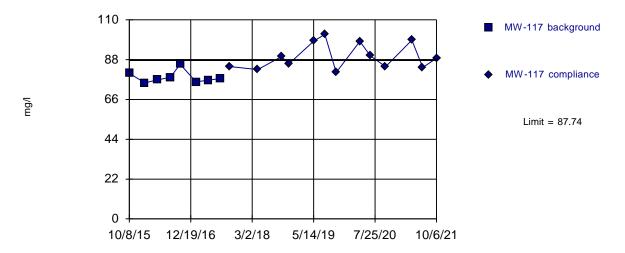

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric



Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

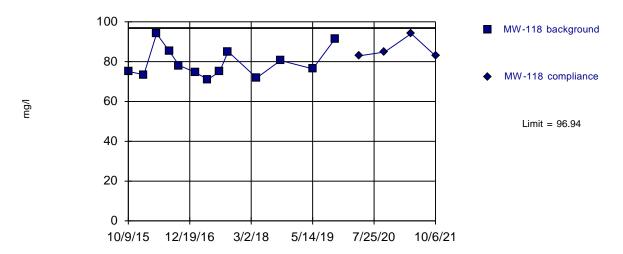
Exceeds Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=78.28, Std. Dev.=3.33, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8288, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

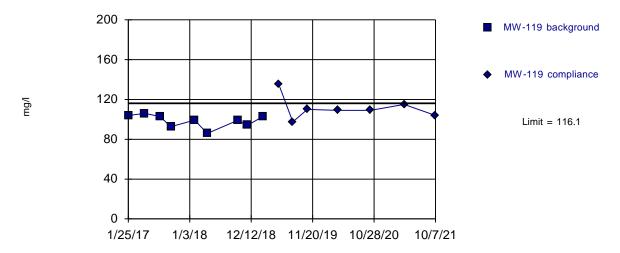
Constituent: Calcium Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

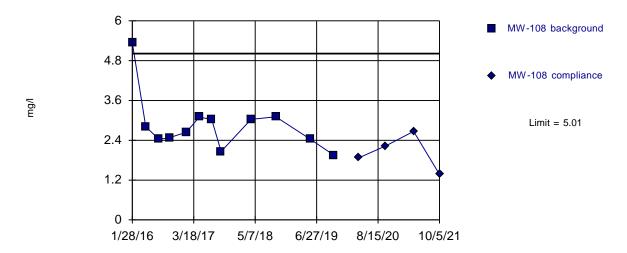
Background Data Summary: Mean=79.41, Std. Dev.=7.467, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8875, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=98.54, Std. Dev.=6.524, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9156, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

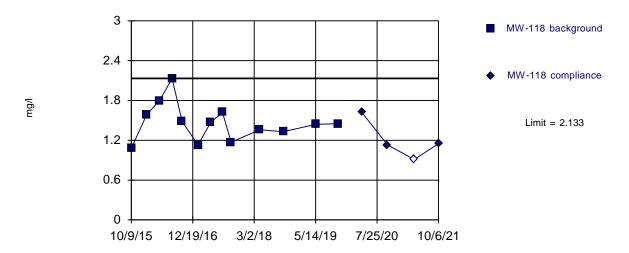
Constituent: Calcium Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

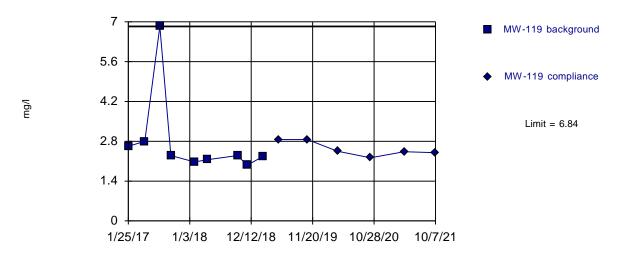
Background Data Summary (based on square root transformation): Mean=1.679, Std. Dev.=0.2339, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8197, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=1.465, Std. Dev.=0.2846, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9348, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Chloride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL

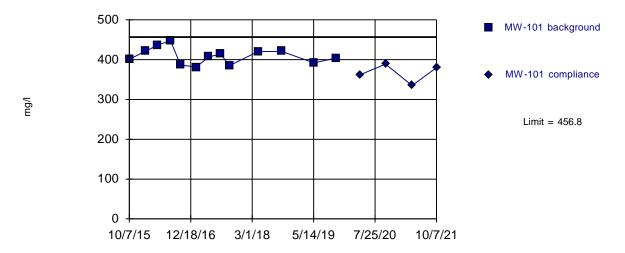

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 9 background values. Well-constituent pair annual alpha = 0.03586. Individual comparison alpha = 0.01809 (1 of 2). Insufficient data to test for seasonality: data were not deseasonalized.

Constituent: Chloride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL

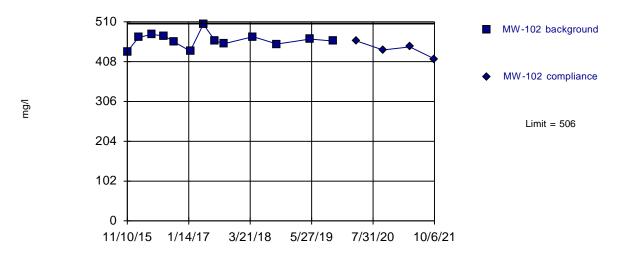
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=409.1, Std. Dev.=20.34, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9582, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

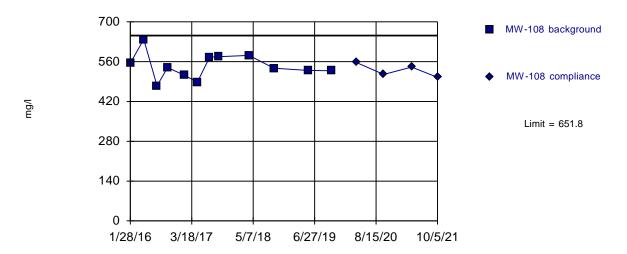
Constituent: Dissolved Solids Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

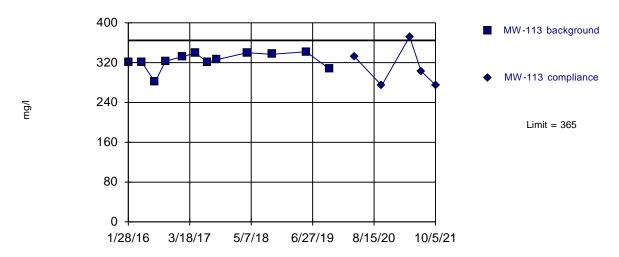
Background Data Summary: Mean=463.1, Std. Dev.=18.27, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9455, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=544.8, Std. Dev.=44.71, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

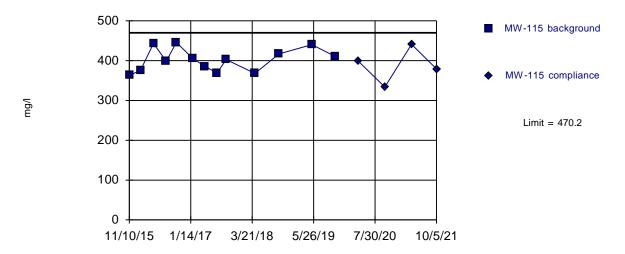
Constituent: Dissolved Solids Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

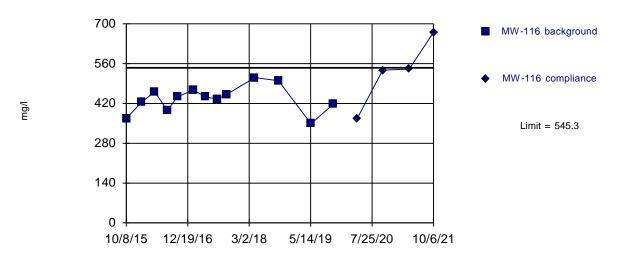
Background Data Summary: Mean=324.1, Std. Dev.=17.1, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8564, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=402, Std. Dev.=29.05, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9251, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Dissolved Solids Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL

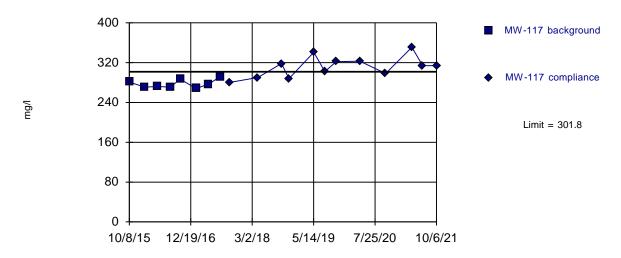

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric



Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

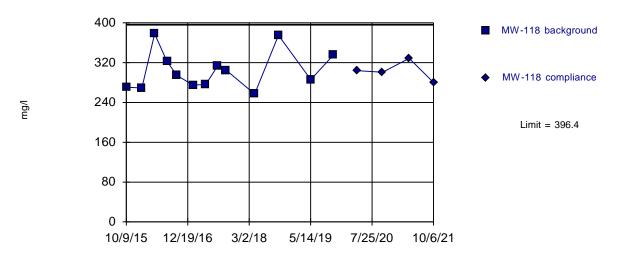
Exceeds Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

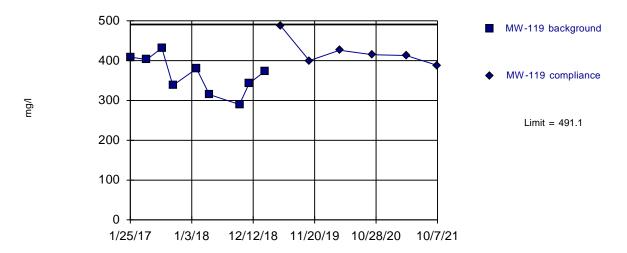
Constituent: Dissolved Solids Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

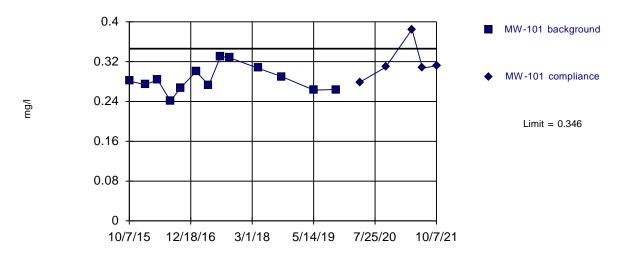
Background Data Summary: Mean=304.3, Std. Dev.=39.22, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8967, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=364.9, Std. Dev.=46.79, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9717, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

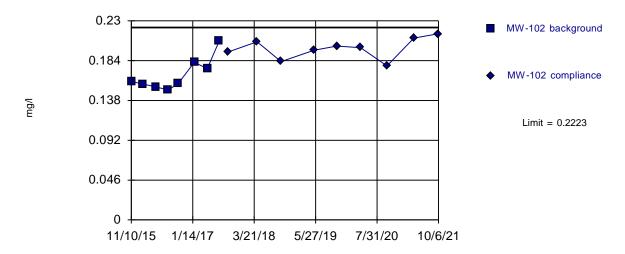
Constituent: Dissolved Solids Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

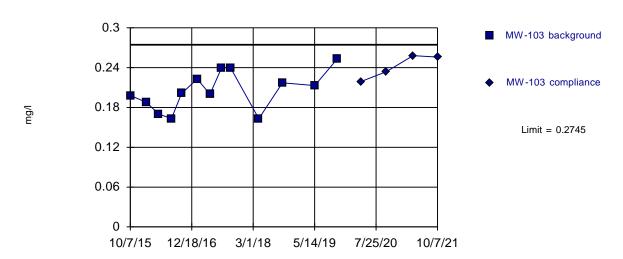
Background Data Summary: Mean=0.2848, Std. Dev.=0.02609, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1679, Std. Dev.=0.01916, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8449, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

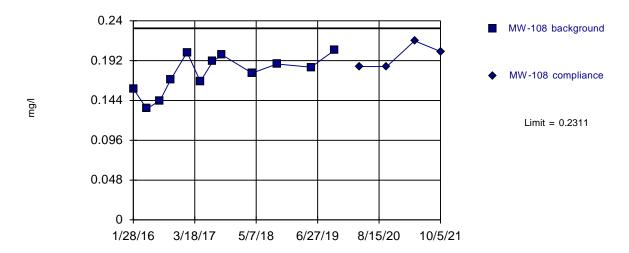
Constituent: Fluoride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

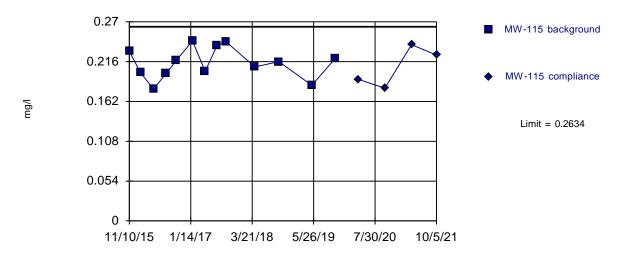
Background Data Summary: Mean=0.2053, Std. Dev.=0.02946, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.95, critical = 0.814. Kappa = 0.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1765, Std. Dev.=0.0228, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

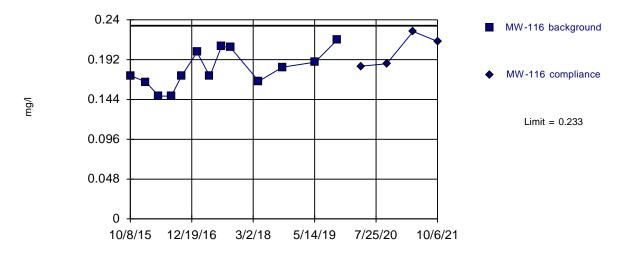
Constituent: Fluoride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

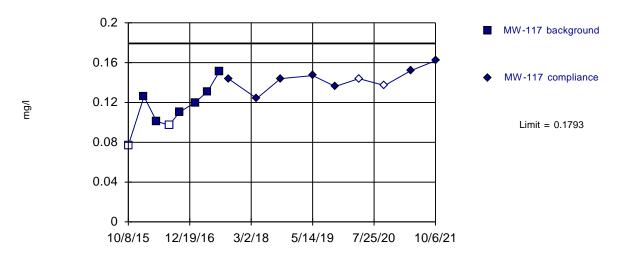
Background Data Summary: Mean=0.2142, Std. Dev.=0.02094, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9554, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1806, Std. Dev.=0.02233, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9394, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

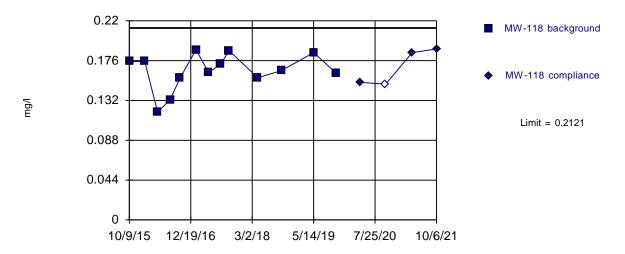
Constituent: Fluoride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas $^{\text{\tiny M}}$ v.9.6.31 Sanitas software licensed to FTN Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit


Intrawell Parametric

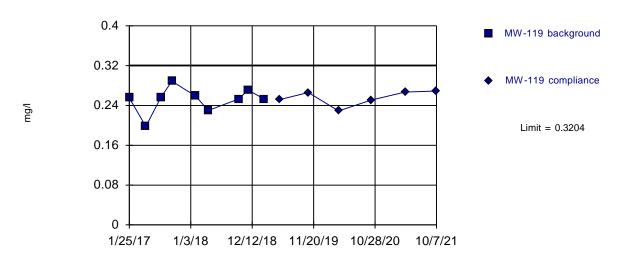
Background Data Summary: Mean=0.1141, Std. Dev.=0.02292, n=8. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.993, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.1645, Std. Dev.=0.02029, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Fluoride Analysis Run 11/2/2021 6:59 PM View: 2021-2H PL

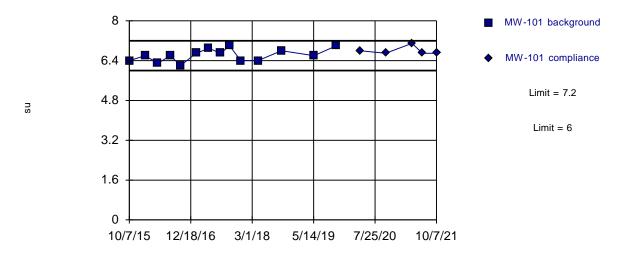

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Parametric


Background Data Summary: Mean=0.2516, Std. Dev.=0.02551, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8977, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Fluoride Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL

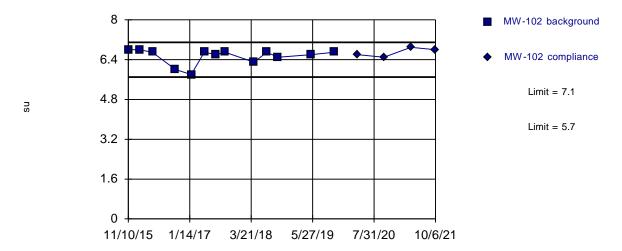
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.614, Std. Dev.=0.2538, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL

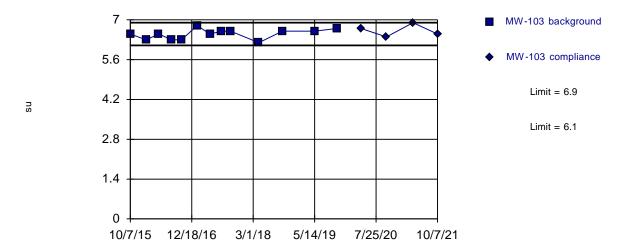

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit

Intrawell Parametric



Background Data Summary (based on x^6 transformation): Mean=79846, Std. Dev.=19298, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8197, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

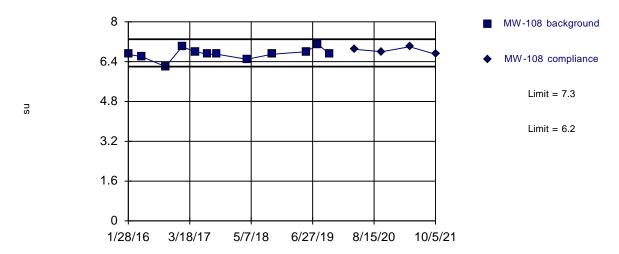
Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.5, Std. Dev.=0.178, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.93, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

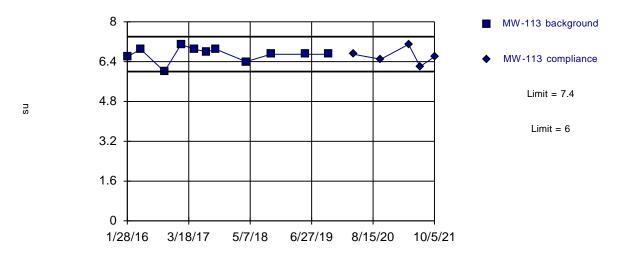
Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

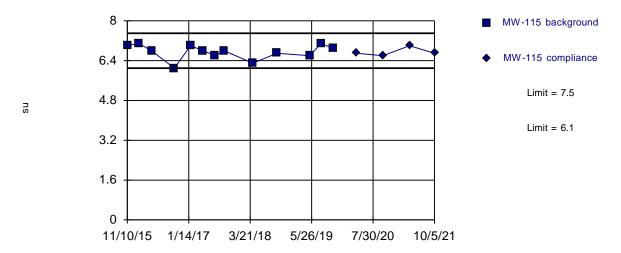
Background Data Summary: Mean=6.708, Std. Dev.=0.2275, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9154, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.7, Std. Dev.=0.2966, n=11. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8904, critical = 0.792. Kappa = 2.474 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

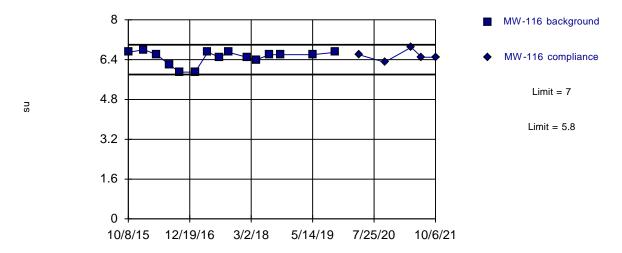
Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

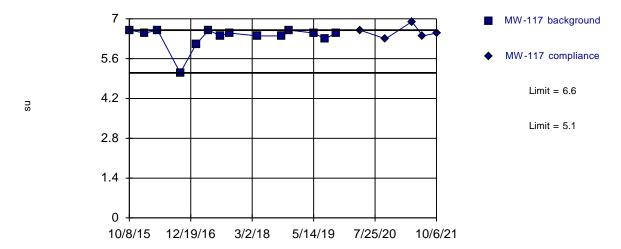
Background Data Summary: Mean=6.754, Std. Dev.=0.2989, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9115, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary (based on x^4 transformation): Mean=1796, Std. Dev.=286.4, n=15. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8382, critical = 0.835. Kappa = 2.257 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

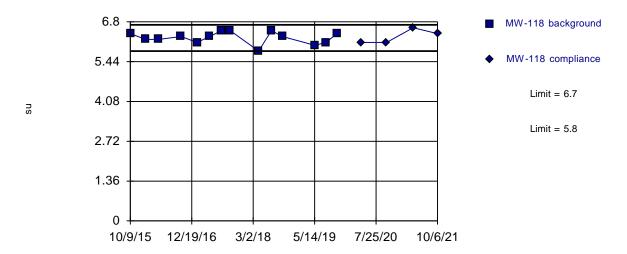
Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Non-parametric

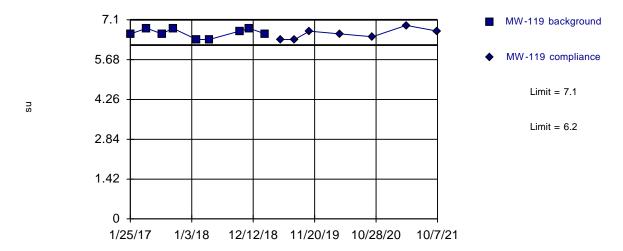
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 14 background values. Well-constituent pair annual alpha = 0.0343. Individual comparison alpha = 0.01722 (1 of 2). Seasonality was not detected with 95% confidence.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.257, Std. Dev.=0.2065, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9301, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

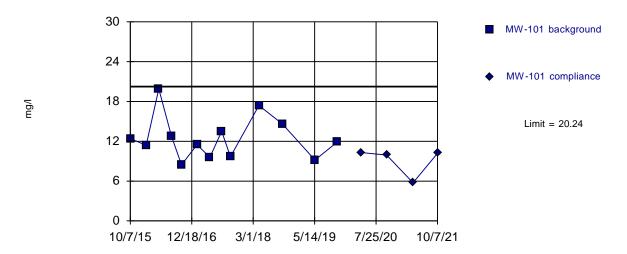
Constituent: pH Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limits

Prediction Limit


Intrawell Parametric

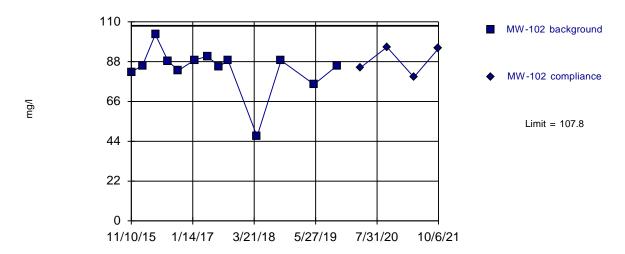
Background Data Summary: Mean=6.633, Std. Dev.=0.1581, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8581, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=12.48, Std. Dev.=3.303, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9149, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

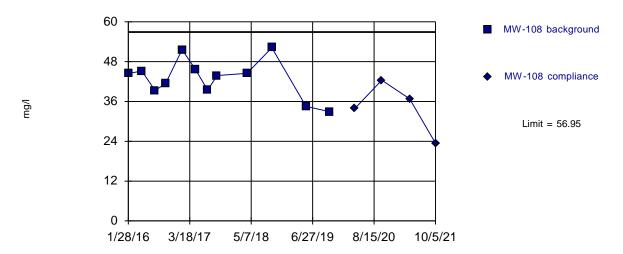
Constituent: Sulfate Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit


Intrawell Parametric

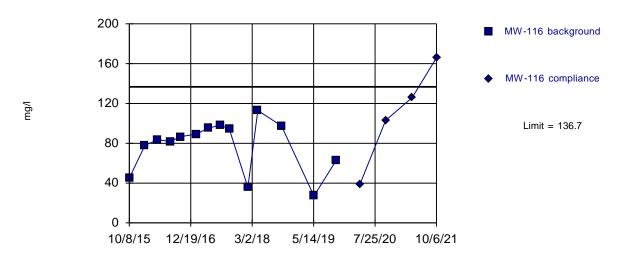
Background Data Summary (based on square transformation): Mean=7217, Std. Dev.=1876, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8224, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=42.91, Std. Dev.=5.869, n=12. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9505, critical = 0.805. Kappa = 2.393 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

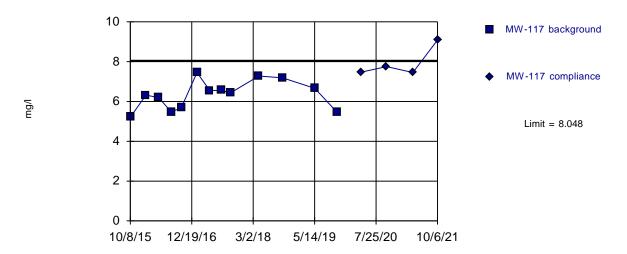
Constituent: Sulfate Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit


Intrawell Parametric

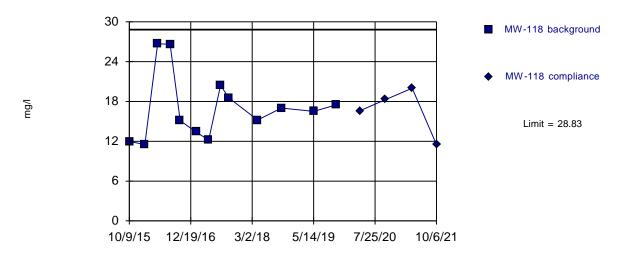
Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

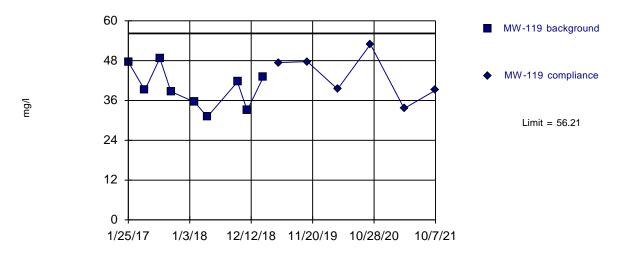
Constituent: Sulfate Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

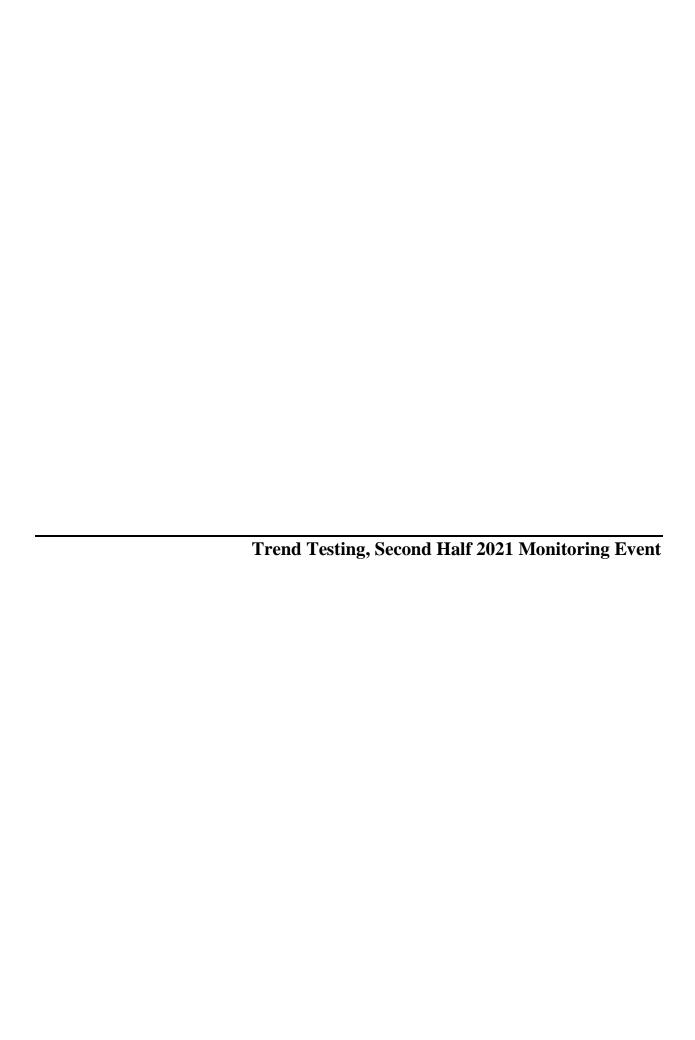
Within Limit

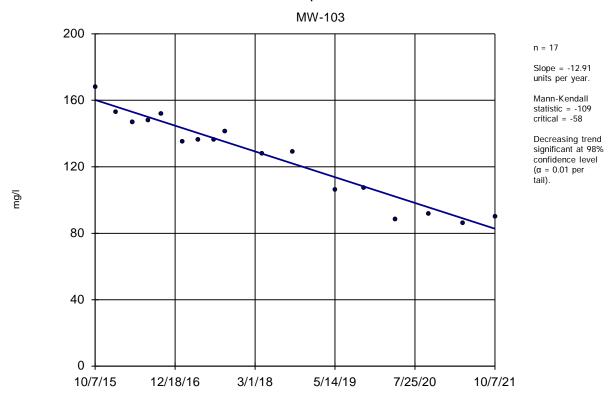
Prediction Limit


Intrawell Parametric

Background Data Summary: Mean=17.12, Std. Dev.=4.987, n=13. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8803, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Prediction Limit

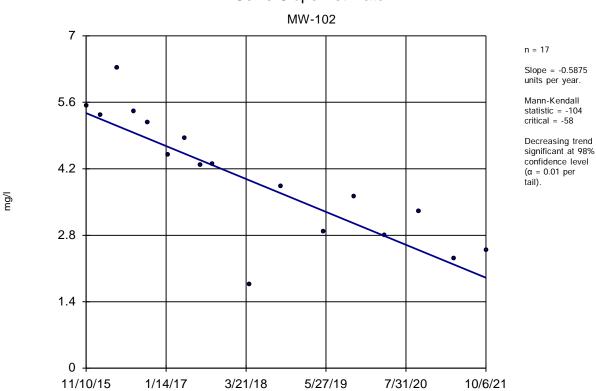

Intrawell Parametric


Background Data Summary: Mean=39.81, Std. Dev.=6.079, n=9. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.961, critical = 0.764. Kappa = 2.698 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Sulfate Analysis Run 11/2/2021 7:00 PM View: 2021-2H PL

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

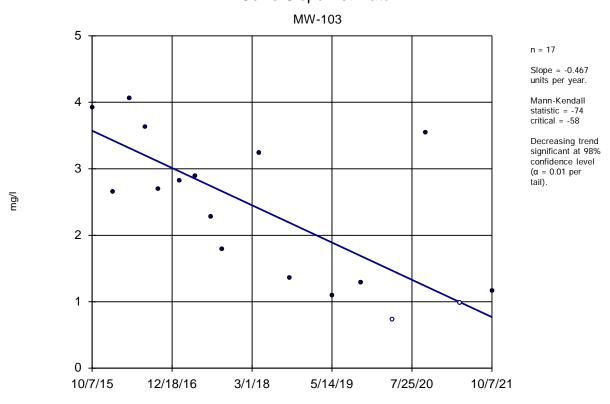
Sen's Slope Estimator



Constituent: Calcium Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

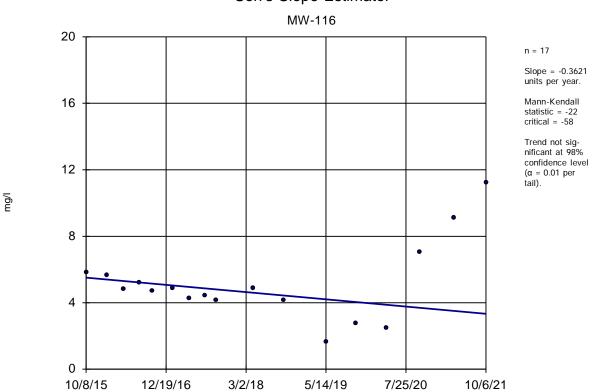
Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG


Sen's Slope Estimator

Constituent: Chloride Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

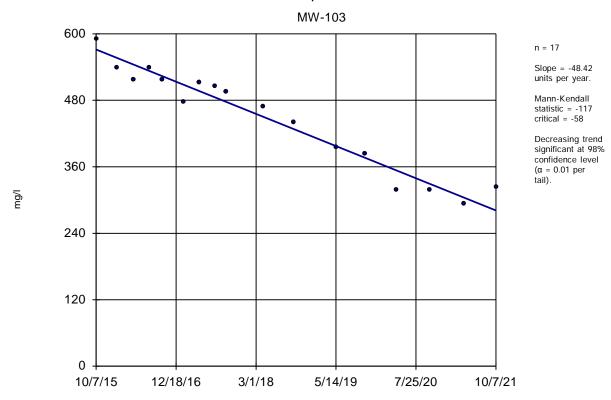
Sen's Slope Estimator



Constituent: Chloride Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

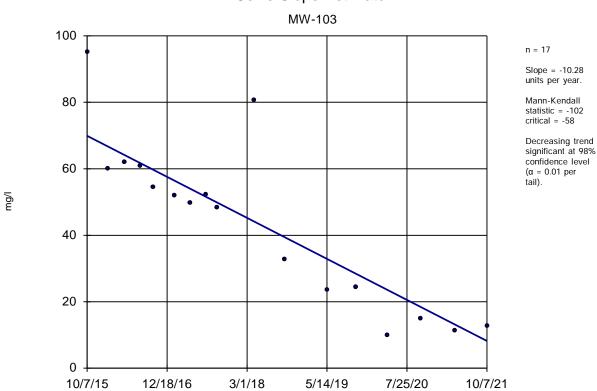
Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG


Sen's Slope Estimator

Constituent: Chloride Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: P

Sen's Slope Estimator



Constituent: Dissolved Solids Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.31 Sanitas software licensed to FTN Associates. UG

Sen's Slope Estimator

Constituent: Sulfate Analysis Run 11/2/2021 7:04 PM View: 2021-2H Trend

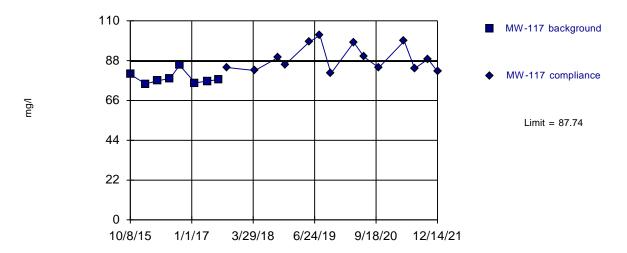
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

Within Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=78.28, Std. Dev.=3.33, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8288, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification

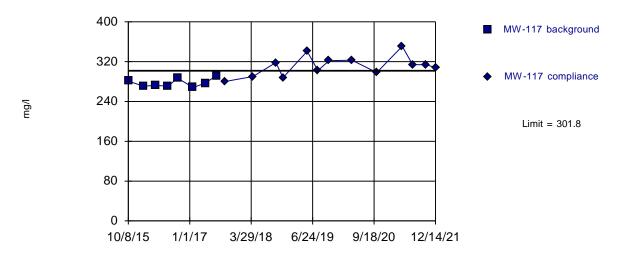
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=435.8, Std. Dev.=46.64, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9697, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Dissolved Solids Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification

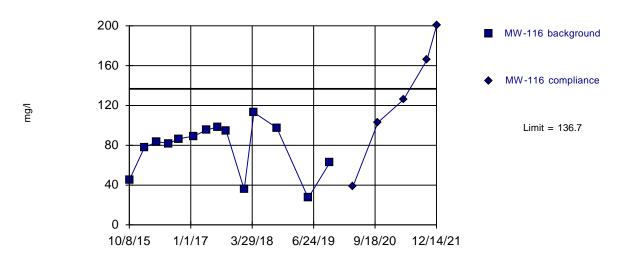

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.32 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric


Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

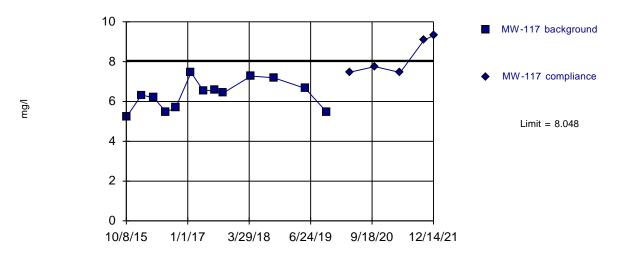
Constituent: Dissolved Solids Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Prediction Limit

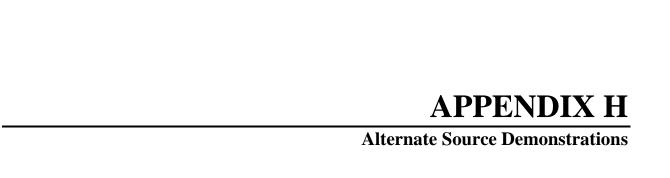
Intrawell Parametric

Background Data Summary: Mean=77.71, Std. Dev.=25.62, n=14. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8937, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.


Constituent: Sulfate Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas™ v.9.6.32 Sanitas software licensed to FTN Associates. UG

Exceeds Limit


Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=6.343, Std. Dev.=0.7263, n=13. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9459, critical = 0.814. Kappa = 2.348 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Analysis Run 1/20/2022 11:48 AM View: 2021-2H PL verification Constituent: Sulfate

3 Innwood Circle, Suite 220 • Little Rock, AR 72211 • (501) 225-7779 • Fax (501) 225-6738

TECHNICAL MEMORANDUM

DATE: October 6, 2021

TO: Matt Gray

Plum Point Services Company, LLC

FROM: Dana Derrington, PE, PG

FTN Associates, Ltd.

SUBJECT: Alternate Source Demonstration for Statistically Significant Increases

First Half of 2021 Monitoring Period, Plum Point Energy Station Landfill

FTN No. R14590-2496-001

FTN Associates, Ltd. (FTN), has prepared this technical memorandum for the Plum Point Services Company, LLC (PPSC), coal combustion residuals (CCR) landfill, which is regulated by the Environmental Protection Agency (EPA) Coal Combustion Residuals Rule, promulgated in Title 40 of the Code of Federal Regulations (40 CFR), Part 257. The landfill is also regulated by the Arkansas Pollution Control and Ecology Commission (APCEC) Regulation No. 22 and permitted by the Arkansas Department of Energy and Environment, Division of Environmental Quality (DEQ), under permit no. 0303-S3N-R1.

FTN was contracted to sample groundwater and to statistically evaluate the data from the first half of 2021 monitoring event. Based on statistical evaluation of the data, two confirmed statistically significant increases (SSIs) over background concentrations were identified. Pursuant to §257.94(e)(2), the landfill may demonstrate that a source other than the CCR unit caused an SSI over background levels for a constituent or that an SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. This memorandum, hereafter referred to as an alternate source demonstration (ASD), presents evidence that the confirmed SSIs are the result of off-site influence and/or natural fluctuations in groundwater quality.

1.0 BACKGROUND

FTN performed groundwater sampling for the first half 2021 semiannual groundwater monitoring period during April 2021. Sample collection, preservation, shipment, analytical procedures, chain-of-custody control, and data quality control for this sampling event followed protocol outlined in the landfill's groundwater sampling and analysis plan (GWSAP) (FTN 2017b). Statistical evaluation of the data set followed the most recent EPA guidance (EPA 2009) and the landfill's statistical analysis plan (SAP) (FTN 2017c). An intrawell prediction limit evaluation identified two previously confirmed SSIs: calcium at MW-116 and total dissolved solids (TDS) at MW-117. A site map showing the

Matt Gray October 6, 2021 Page 2

locations of these wells relative to the CCR unit (cells 1 and 3) is included as Figure 1 (all figures are included in Attachment 1). Intrawell prediction limit plots are included in Attachment 2.

In accordance with the landfill's SAP and EPA guidance (EPA 2009), verification sampling was performed during June 2021. As shown in Table 1 (Attachment 3), concentrations for calcium at MW-116 and TDS at MW-117 remain above their respective intrawell prediction limits. In accordance with §257.94(e)(2), prior ASDs have been prepared for the confirmed SSIs for calcium at MW-116 (FTN 2018, 2019a) and for TDS at MW-117 (FTN 2019a, 2019b, 2020), and each ASD successfully demonstrated that the SSIs were not the result of influence from the CCR unit.

Laboratory reports for the April and June sampling events are included in Attachment 4.

2.0 DISCUSSION

A review of the monitoring system with respect to onsite background wells, background groundwater quality, published literature, and landfill leachate was performed to determine if the confirmed SSIs for calcium at compliance well MW-116 and TDS at compliance well MW-117 were indicative of a release from the CCR unit. Findings from this review are discussed below.

2.1 Monitoring System Background Wells

As required by §257.91(c)(1), the groundwater monitoring network is required to contain a minimum of one monitoring well that is hydraulically upgradient of the CCR management area for the purpose of monitoring background water quality. However, there is not a hydraulically upgradient location at this facility because the direction of groundwater flow is seasonably variable. As allowed by §257.91(a)(1), a facility may utilize wells for background water quality that are not hydraulically upgradient of the CCR unit. For this reason, the facility incorporated monitoring wells MW-108, MW-113, and MW-115 (Figure 1) to monitor background water quality because those wells are positioned outside the potential zone of impact from the CCR unit. The rationale for this is based on the age of the landfill; the estimated maximum rate of groundwater flow; and the distance of MW-108, MW-113, and MW-115 from the CCR unit. Specifically:

- MW-108, MW-113, and MW-115 are located more than 2,300 ft from the eastern edge of cell 3;
- Groundwater at the landfill has historically exhibited a maximum flow rate of 40 ft/year; and
- The landfill became active during March 2010.

Using the information available above, a potential leachate plume would not be expected to have migrated more than 445 ft from the CCR unit as of the first half 2021 monitoring event. This estimate is conservative for the following reasons:

1. It assumes impact to groundwater occurred at the same time cell 1 was activated (March 2010) and does not account for travel time through the confining unit soils;

- 2. It assumes that groundwater flows in one direction; however, it is well-documented that groundwater flow at the landfill is multidirectional and reverses flow on a seasonal basis (FTN 2017a); and
- 3. It does not account for any physical or chemical properties of the constituents of concern that would cause them to travel at rates slower than groundwater (e.g., adsorption).

2.2 Comparison to Onsite Background Groundwater Quality

Period-of-record calcium and TDS data for compliance wells MW-116 and MW-117, respectively, are plotted on the time-series graphs and box-and-whiskers diagrams included in Attachment 2, along with period-of-record calcium and TDS data for background wells MW-108, MW-113, and MW-115. As is evident from these graphs and diagrams, concentrations for calcium at MW-116 and TDS at MW-117 are well within the range of values measured at the onsite background wells. This comparison provides supporting evidence that the currently measured values of calcium at MW-116 and TDS at MW-117 reflect natural fluctuations in groundwater quality.

2.3 **Comparison to Published Groundwater Quality for the Aquifer**

Each monitoring well is screened in the Mississippi River Valley alluvial aquifer, the uppermost aquifer in the vicinity of the landfill (FTN 2017b). The United States Geological Survey published a study of groundwater quality of the aquifer, specifically with respect to that of Holocene alluvium and Pleistocene valley train deposits, which are two of the major hydrogeologic units within the aquifer (Gonthier 2003). The landfill is located in Holocene alluvium, as shown on Figure 2. According to this study, the reported median and maximum calcium values in wells screened in Holocene alluvium were 77 mg/L and 130 mg/L, respectively. The reported median and maximum TDS values were 355 mg/L and 728 mg/L, respectively. As shown in Table 1 (Attachment 3), these levels are comparable to those measured at MW-116 and MW-117 and at background wells MW-108, MW-113, and MW-115. This comparison provides supporting evidence that the currently measured values of calcium at MW-116 and TDS at MW-117 reflect natural fluctuations in groundwater quality.

2.4 Comparison to Landfill Leachate

The major ion composition of leachate and groundwater samples collected during April 2021 was evaluated using the Stiff and Piper diagrams included in Attachment 2. These data are collected on a semiannual basis for the landfill's APCEC Regulation No. 22 monitoring program, as required by Permit No. 0303-S3N-R1, and are publicly available on the DEQ website¹. If groundwater has been impacted by landfill leachate, the relative proportions of major ions in groundwater will resemble those in leachate.

A review of the Stiff diagrams shows that the ionic distributions in groundwater at MW-116 and MW-117 are similar to those at background wells MW-108, MW-113, and MW-115. In contrast, the

¹ https://www.adeq.state.ar.us/sw/permits/facility_data.aspx

Matt Gray October 6, 2021 Page 4

leachate diagram is distinctly different. Specifically, the leachate sample exhibits concentrations of sodium, potassium, and sulfate ions that are comparatively absent in groundwater. The Piper diagram also illustrates the dissimilarity of groundwater quality to leachate, with data for MW-116, MW-117, MW-108, MW-113, and MW-115 clustered in the quadrant classified as calcium bicarbonate-type water and positioned apart from the leachate data, which is located in the sodium chloride quadrant. If leachate was mixing with groundwater at MW-116 or MW-117, the data for MW-116 or MW-117 would plot at an intermediate distance between the leachate data and the data for background wells MW-108, MW-113, and MW-115 on the Piper diagram.

The Stiff and Piper diagrams show that the relative proportions of major ions in groundwater at MW-116 and MW-117 are different than landfill leachate, providing a key line of evidence that the SSIs for calcium at MW-116 and TDS at MW-117 are not due to a release from the CCR unit.

3.0 CONCLUSIONS

In consideration of the information presented in this memorandum, FTN concludes that the SSIs for calcium at MW-116 and TDS at MW-117 are the result of off-site influence and/or natural fluctuations in groundwater quality.

This memorandum serves as the ASD prepared in accordance with §257.94(e)(2) and supports the position that the confirmed SSIs identified for calcium at MW-116 and TDS at MW-117 are not due to a release from the CCR unit. Therefore, no further action is required and the landfill will remain in detection monitoring.

If you have questions or comments regarding this memorandum, please do not hesitate to call Dana Derrington, PE, PG, at (314) 786-5855 or Heather Ferguson at (501) 225-7779.

DLD/hlf

Attachments

U:\WP_FILES\14590-2496-001\2021-10-06 FTN TO PPES - EPA ASD FOR 1H2021 SSIS\2021-10-06 FTN TO PPES - EPA ASD FOR 1H2021 EXCEEDANCES.DOCX \square

REFERENCES

- EPA [US Environmental Protection Agency]. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance [EPA 530-R-09-007]. Washington, DC: Office of Resource Conservation and Recovery, Program Implementation and Information Division, US Environmental Protection Agency. March 2009.
- FTN [FTN Associates, Ltd.]. 2017a. Groundwater Monitoring Network Evaluation, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd.
- ——. 2017b. *Groundwater Sampling and Analysis Plan, Plum Point Energy Station Landfill.* Little Rock, AR: FTN Associates, Ltd.
- ——. 2017c. Statistical Analysis Plan, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd.
- ——. 2018. Alternate Source Demonstration for Statistically Significant Increase, First Half of 2018 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 9, 2018.
- ——. 2019a. Alternate Source Demonstration for Statistically Significant Increase, Second Half of 2018 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. January 29, 2019.
- 2019b. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2019 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. October 24, 2019.
- ———. 2019c. Alternate Source Demonstration for Statistically Significant Increases, Second Half of 2019 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. December 17, 2019.
- ——. 2020. Alternate Source Demonstration for Statistically Significant Increases, First Half of 2020 Monitoring Period, Plum Point Energy Station Landfill. Little Rock, AR: FTN Associates, Ltd. August 3, 2020.
- Gonthier, G.J. 2003. *Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998* [Water-Resources Investigations Report 03-4202]. Jackson, MS: National Water-Quality Assessment Program, US Geological Survey.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. *Aquifers of Arkansas— Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas* [USGS Scientific Investigations Report 2014-5149]. Prepared in cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp. doi: http://dx.doi.org/10.3133/sir20145149.

Matt Gray October 6, 2021 Page 6

PROFESSIONAL ENGINEER'S CERTIFICATION

With this certification, I certify that I, as a professional engineer in the state of Arkansas, am a qualified professional engineer as defined in §257.53 of Title 40 of the Code of Federal Regulations (CFR), Part 257, that this technical memorandum has been prepared under my direction in accordance with generally accepted good engineering practices, that the findings are accurate to the best of my knowledge, and that the alternate source demonstration described herein meets the requirements of §257.94(e)(2) of 40 CFR Part 257.

Dana L. Derrington, Arkansas PE #16372

10/06/2021 Date

Figures

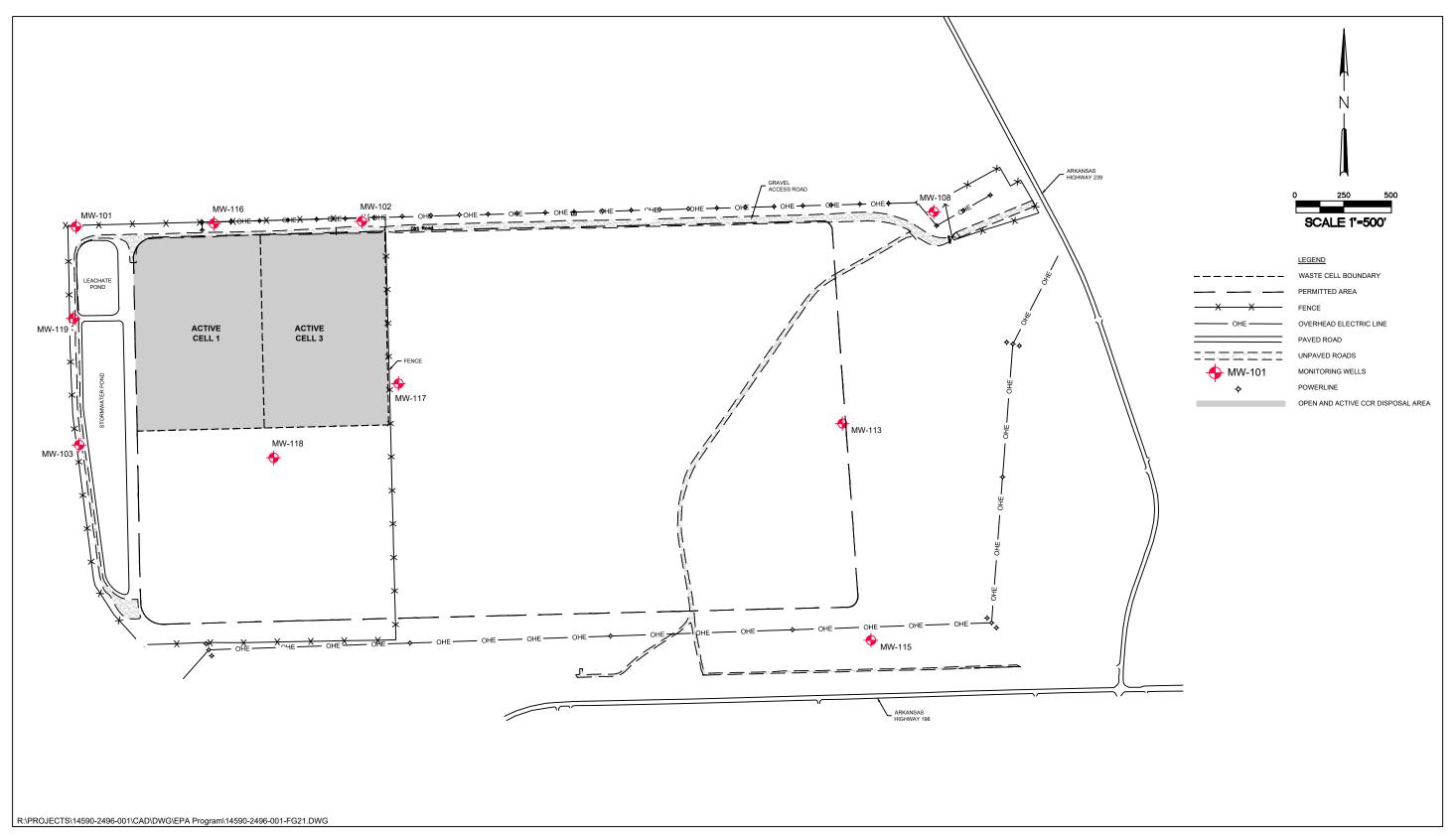


Figure 1. Monitoring well location map.

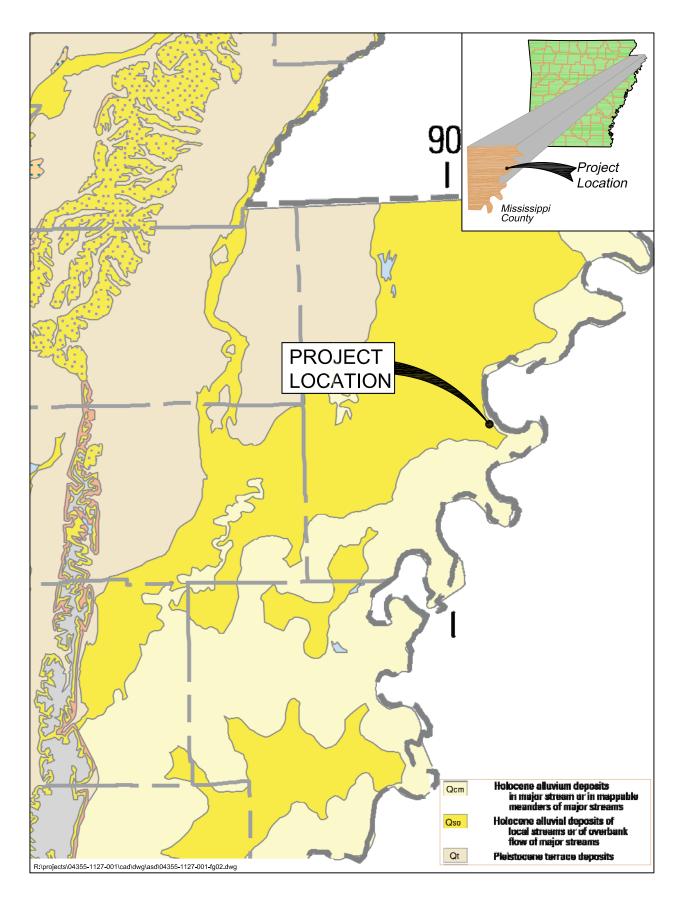
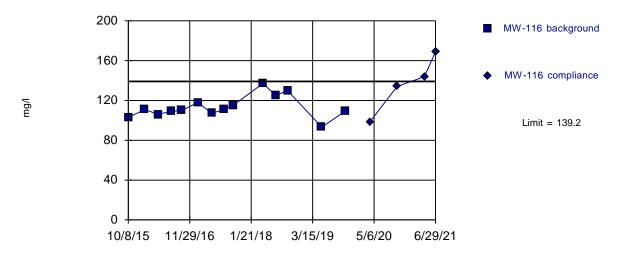



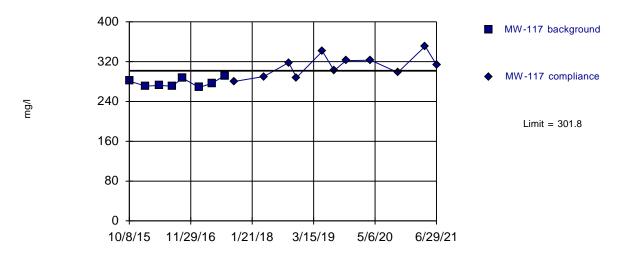
Figure 2. Surface geology of Mississippi County, Arkansas (adapted from Kresse et al. 2014).

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=113.2, Std. Dev.=11.31, n=14. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9391, critical = 0.825. Kappa = 2.302 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Calcium Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

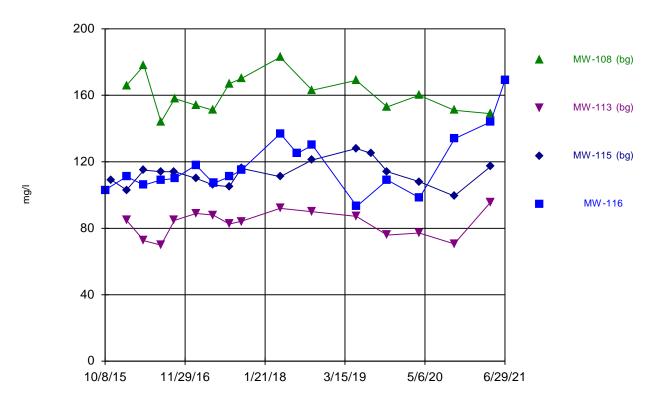

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

Sanitas[™] v.9.6.30 Sanitas software licensed to FTN Associates. UG

Exceeds Limit

Prediction Limit

Intrawell Parametric

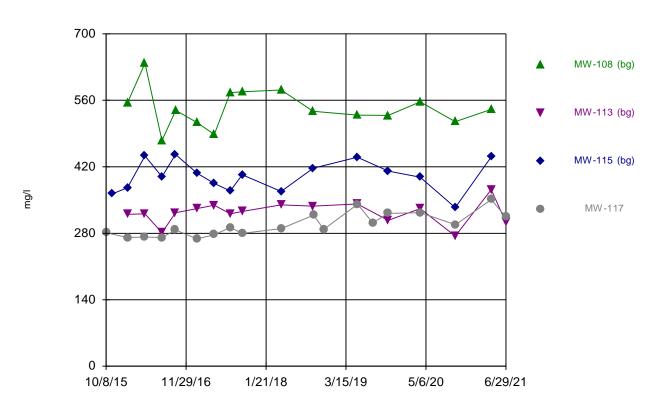


Background Data Summary: Mean=277.4, Std. Dev.=8.601, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9018, critical = 0.749. Kappa = 2.841 (c=6, w=7, 1 of 2, event alpha = 0.05132). Report alpha = 0.001254.

Constituent: Dissolved Solids Analysis Run 7/19/2021 10:41 PM View: 2021-1H PL verification

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

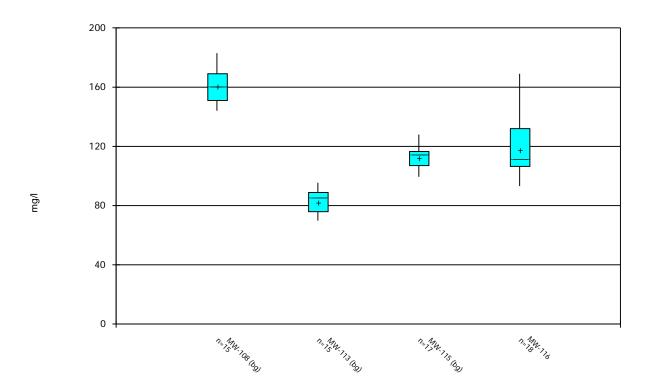
Time Series



Constituent: Calcium Analysis Run 8/10/2021 2:44 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

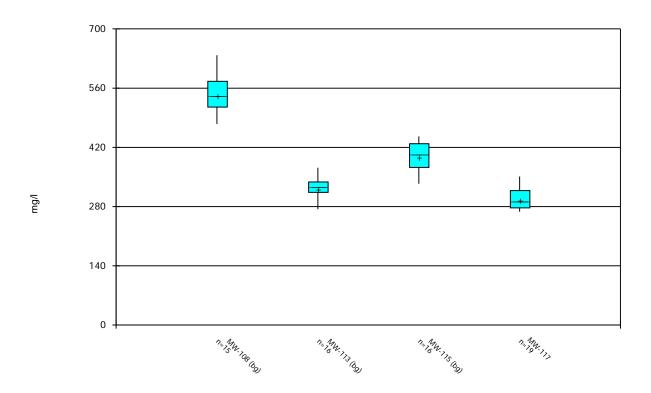
Sanitas[™] v.9.6.30 Sanitas software licensed to FTN Associates. UG


Time Series

Constituent: Dissolved Solids Analysis Run 8/10/2021 2:44 PM

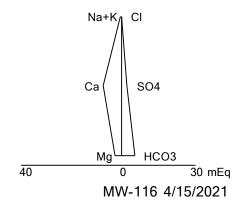
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

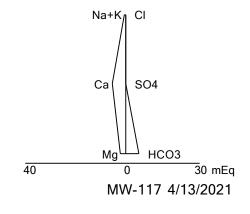
Box & Whiskers Plot

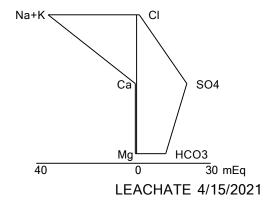


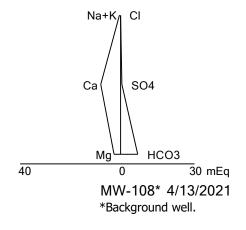
Constituent: Calcium Analysis Run 8/10/2021 2:53 PM

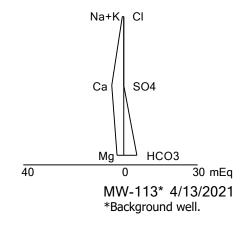
Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database

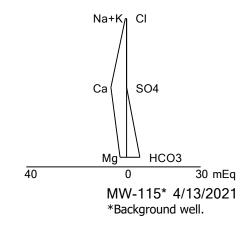

Sanitas™ v.9.6.30 Sanitas software licensed to FTN Associates. UG

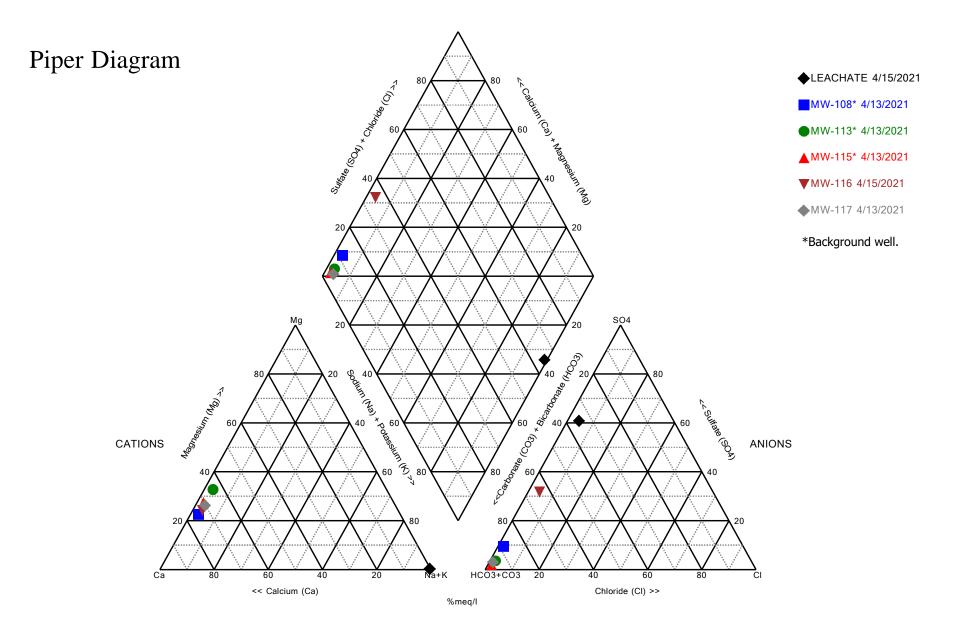

Box & Whiskers Plot




Constituent: Dissolved Solids Analysis Run 8/10/2021 2:54 PM


Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Rule Groundwater Database





Stiff Diagram Analysis Run 8/10/2021 3:22 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Analysis Run 8/10/2021 3:22 PM

Plum Point Energy Station Client: Plum Point Services Company, LLC Data: PPES EPA CCR Database (GWQ parameters)

Table 1. Summary of statistically significant results and maximum background and published levels.

Well ID	Parameter	Prediction Limit (mg/L)	April 2021 Initial Result (mg/L)	June 2021 Verification Result (mg/L)	SSI Confirmed?	Maximum Background Level ^(a) (mg/L)	Maximum Published Level ^(b) (mg/L)
MW-116	Calcium	139.2	144	169	Yes	190 (MW-108, May 2014)	130
MW-117	TDS	301.8	323	314	Yes	700 (MW-108, October 2016)	728

Notes:

REFERENCES

Gonthier, G.J. 2003. Quality of Groundwater in Pleistocene and Holocene Subunits of the Mississippi River Alluvial Aquifer, 1998 [Water-Resources Investigations Report 03-4202]. Jackson, MS: US Geological Survey, National Water-Quality Assessment Program.

a. Based on historical values at MW-108, MW-113, and MW-115.

b. From Gonthier 2003.

ATTACHMENT 4 Laboratory Reports

Pace Analytical® ANALYTICAL REPORT

April 29, 2021

Plum Point Services Co., LLC

L1340644 Sample Delivery Group: Samples Received: 04/17/2021

Project Number: R14590-2496-001

Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

Mark W. Beasley Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-101 L1340644-01	6
MW-102 L1340644-02	7
MW-103 L1340644-03	8
MW-108 L1340644-04	9
MW-113 L1340644-05	10
MW-115 L1340644-06	11
MW-116 L1340644-07	12
MW-117 L1340644-08	13
MW-118 L1340644-09	14
MW-119 L1340644-10	15
MW-117 DUP L1340644-11	16
EPA EB L1340644-12	17
Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 9056A	21
Metals (ICP) by Method 6010B	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25

PAGE:

2 of 27

26

Sc: Sample Chain of Custody

SAMPLE SUMMARY

MW-101 L1340644-01 GW			Collected by Michael Clayton	Collected date/time 04/15/21 13:05	Received da 04/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1658783	1	04/26/21 13:25	04/26/21 13:25	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:13	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-102 L1340644-02 GW			Michael Clayton	04/15/21 15:25	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1658783	1	04/26/21 13:48	04/26/21 13:48	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:15	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-103 L1340644-03 GW			Michael Clayton	04/15/21 11:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656129	1	04/21/21 14:13	04/21/21 17:54	MML	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:23	04/26/21 14:23	MCG	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:23	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-108 L1340644-04 GW			Michael Clayton	04/13/21 11:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:34	04/26/21 14:34	MCG	Mt. Juliet, TN
fetals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:26	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-113 L1340644-05 GW			Michael Clayton	04/13/21 10:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 14:46	04/26/21 14:46	MCG	Mt. Juliet, Th
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 03:57	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-115 L1340644-06 GW			Michael Clayton	04/13/21 09:15	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, Ti
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:20	04/26/21 15:20	MCG	Mt. Juliet, Th
Matala (ICD) by Mathad CO10D	WC1CE0000	4	0.4/0.0/04.04.00	0.4/20/24.04.20	005	NAC Indian TA

Metals (ICP) by Method 6010B

WG1659933

1

04/28/21 21:28

04/29/21 04:29

CCE

Mt. Juliet, TN

SAMPLE SUMMARY

					_	
NAVA 440 L 40 4 0 C 4 4 0 7 C VV			Collected by Michael Clayton	Collected date/time 04/15/21 14:05	Received da 04/17/21 09:0	
MW-116 L1340644-07 GW						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W0405047		date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:31	04/26/21 15:31	MCG	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1658783	5	04/26/21 17:03	04/26/21 17:03	MCG	Mt. Juliet, Ti
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:31	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-117 L1340644-08 GW			Michael Clayton	04/13/21 14:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, TI
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:43	04/26/21 15:43	MCG	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:34	CCE	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-118 L1340644-09 GW			Michael Clayton	04/15/21 09:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 15:54	04/26/21 15:54	MCG	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:37	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-119 L1340644-10 GW			Michael Clayton	04/15/21 12:10	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, TI
/et Chemistry by Method 9056A	WG1658783	1	04/26/21 16:06	04/26/21 16:06	MCG	Mt. Juliet, Ti
letals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:39	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-117 DUP L1340644-11 GW			Michael Clayton	04/13/21 14:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
ravimetric Analysis by Method 2540 C-2011	WG1654736	1	04/19/21 23:43	04/20/21 01:42	CAT	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 16:17	04/26/21 16:17	MCG	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1659933	1	04/28/21 21:28	04/29/21 04:42	CCE	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
EPA EB L1340644-12 GW			Michael Clayton	04/15/21 16:20	04/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1656117	1	04/21/21 14:08	04/21/21 15:38	MML	Mt. Juliet, T
Vet Chemistry by Method 9056A	WG1658783	1	04/26/21 16:40	04/26/21 16:40	MCG	Mt. Juliet, T
Mark (IOD) I Mark 1 COAOD	W01030763		0 1/20/21 10.40	0 1/20/21 10.40	IVICO	ivic. Juliet, II

Metals (ICP) by Method 6010B

WG1659933

04/28/21 21:28

04/29/21 04:45

CCE

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager

Collected date/time: 04/15/21 13:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	335000		10000	1	04/21/2021 17:54	WG1656129

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	855	<u>J</u>	379	1000	1	04/26/2021 13:25	WG1658783
Fluoride	385		64.0	150	1	04/26/2021 13:25	WG1658783
Sulfate	5730		594	5000	1	04/26/2021 13:25	WG1658783

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	60.8	<u>J</u>	20.0	200	1	04/29/2021 04:13	WG1659933
Calcium	96900		79.3	1000	1	04/29/2021 04:13	WG1659933

Collected date/time: 04/15/21 15:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	446000		10000	1	04/21/2021 17:54	WG1656129

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2310		379	1000	1	04/26/2021 13:48	WG1658783
Fluoride	210		64.0	150	1	04/26/2021 13:48	WG1658783
Sulfate	79400		594	5000	1	04/26/2021 13:48	WG1658783

Cn

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	96.6	<u>J</u>	20.0	200	1	04/29/2021 04:15	WG1659933
Calcium	118000		79.3	1000	1	04/29/2021 04:15	WG1659933

Αl

Collected date/time: 04/15/21 11:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	294000		10000	1	04/21/2021 17:54	WG1656129

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	976	J	379	1000	1	04/26/2021 14:23	WG1658783
Fluoride	258		64.0	150	1	04/26/2021 14:23	WG1658783
Sulfate	11400		594	5000	1	04/26/2021 14:23	WG1658783

³Ss

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	72.6	<u>J</u>	20.0	200	1	04/29/2021 04:23	WG1659933
Calcium	85900		79.3	1000	1	04/29/2021 04:23	WG1659933

Collected date/time: 04/13/21 11:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	541000		10000	1	04/20/2021 01:42	WG1654736

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2670		379	1000	1	04/26/2021 14:34	WG1658783
Fluoride	216		64.0	150	1	04/26/2021 14:34	WG1658783
Sulfate	36800		594	5000	1	04/26/2021 14:34	WG1658783

Cn

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	125	<u>J</u>	20.0	200	1	04/29/2021 04:26	WG1659933
Calcium	149000		79.3	1000	1	04/29/2021 04:26	WG1659933

Αl

Collected date/time: 04/13/21 10:20

1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	372000		10000	1	04/20/2021 01:42	WG1654736

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2500		379	1000	1	04/26/2021 14:46	WG1658783
Fluoride	102	J	64.0	150	1	04/26/2021 14:46	WG1658783
Sulfate	9830		594	5000	1	04/26/2021 14:46	WG1658783

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	67.3	<u>J</u>	20.0	200	1	04/29/2021 03:57	WG1659933
Calcium	95400	V	79.3	1000	1	04/29/2021 03:57	WG1659933

Collected date/time: 04/13/21 09:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	441000		10000	1	04/20/2021 01:42	WG1654736

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	789	J	379	1000	1	04/26/2021 15:20	WG1658783
Fluoride	239		64.0	150	1	04/26/2021 15:20	WG1658783
Sulfate	5670		594	5000	1	04/26/2021 15:20	WG1658783

Ss

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	37.9	<u>J</u>	20.0	200	1	04/29/2021 04:29	WG1659933
Calcium	117000		79.3	1000	1	04/29/2021 04:29	WG1659933

Collected date/time: 04/15/21 14:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	541000		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	9090		379	1000	1	04/26/2021 15:31	WG1658783
Fluoride	226		64.0	150	1	04/26/2021 15:31	WG1658783
Sulfate	126000		2970	25000	5	04/26/2021 17:03	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	85.4	<u>J</u>	20.0	200	1	04/29/2021 04:31	WG1659933
Calcium	144000		79.3	1000	1	04/29/2021 04:31	WG1659933

Collected date/time: 04/13/21 14:20

1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	351000		10000	1	04/20/2021 01:42	WG1654736

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	976	J	379	1000	1	04/26/2021 15:43	WG1658783
Fluoride	152		64.0	150	1	04/26/2021 15:43	WG1658783
Sulfate	7460		594	5000	1	04/26/2021 15:43	WG1658783

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Boron	70.5	<u>J</u>	20.0	200	1	04/29/2021 04:34	WG1659933	
Calcium	98800		79.3	1000	1	04/29/2021 04:34	WG1659933	

Cn

Collected date/time: 04/15/21 09:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	329000		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	911	J	379	1000	1	04/26/2021 15:54	WG1658783
Fluoride	185		64.0	150	1	04/26/2021 15:54	WG1658783
Sulfate	20000		594	5000	1	04/26/2021 15:54	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	66.3	<u>J</u>	20.0	200	1	04/29/2021 04:37	WG1659933
Calcium	94100		79.3	1000	1	04/29/2021 04:37	WG1659933

Collected date/time: 04/15/21 12:10

L1340644

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	413000		10000	1	04/21/2021 15:38	WG1656117

²Tc

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	2430		379	1000	1	04/26/2021 16:06	WG1658783
Fluoride	267		64.0	150	1	04/26/2021 16:06	WG1658783
Sulfate	33600		594	5000	1	04/26/2021 16:06	WG1658783

⁴Cn

⁵Sr

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	68.7	<u>J</u>	20.0	200	1	04/29/2021 04:39	WG1659933
Calcium	115000		79.3	1000	1	04/29/2021 04:39	WG1659933

MW-117 DUP

SAMPLE RESULTS - 11

Collected date/time: 04/13/21 14:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	353000		10000	1	04/20/2021 01:42	WG1654736

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	972	<u>J</u>	379	1000	1	04/26/2021 16:17	WG1658783
Fluoride	153	<u>P1</u>	64.0	150	1	04/26/2021 16:17	WG1658783
Sulfate	7410		594	5000	1	04/26/2021 16:17	WG1658783

Cn

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	70.8	<u>J</u>	20.0	200	1	04/29/2021 04:42	WG1659933
Calcium	99000		79.3	1000	1	04/29/2021 04:42	WG1659933

Collected date/time: 04/15/21 16:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	04/21/2021 15:38	WG1656117

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Chloride	U		379	1000	1	04/26/2021 16:40	WG1658783
Fluoride	U		64.0	150	1	04/26/2021 16:40	WG1658783
Sulfate	U		594	5000	1	04/26/2021 16:40	WG1658783

Cn

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Boron	U		20.0	200	1	04/29/2021 04:45	WG1659933
Calcium	U		79.3	1000	1	04/29/2021 04:45	WG1659933

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-04,05,06,08,11

Method Blank (MB)

(MB) R3644900-1	04/20/21 01:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

³Ss

L1340535-16 Original Sample (OS) • Duplicate (DUP)

(OS) L1340535-16 04/20/21 01:42 • (DUP) R3644900-3 04/20/21 01:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	836000	835000	1	0.120		5

L1340650-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1340650-09 04/20/21 01:42 • (DUP) R3644900-4 04/20/21 01:42

(00, 1.0 .0000 00 0 20,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	424000	422000	1	0.473		5

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3644900-2 04/20/21 01:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Dissolved Solids	8800000	8930000	101	77 4-123	

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-07,09,10,12

Method Blank (MB)

(MB) R3645394-1 04	/21/21 15:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

Ss

L1340644-07 Original Sample (OS) • Duplicate (DUP)

100		0.4/04/04 45:00	(D ID)	000450040	0.4/04/04 45:00
(O)	b) L1340644-07	04/21/21 15:38 •	(DUP) K3645394-3	04/21/21 15:38

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	541000	537000	1	0.742		5

L1340644-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-09 04/21/21 15:38 • (DUP) R3645394-4 04/21/21 15:38

(03) 210-100-1 03 0-1/21/2	Original Result	,			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l			%		%
Dissolved Solids	329000	3320	000 1	1	0.908		5

Laboratory Control Sample (LCS)

(LCS) R3645394-2 04/21/21 15:38

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1340644-01,02,03

Method Blank (MB)

(MB) R3645382-1 C	04/21/21 17:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

3 Ss

L1340602-06 Original Sample (OS) • Duplicate (DUP)

(OC) 1 12	10602 06	04/21/21 17:54 •	(DLID)	D264E202.2	0.4/21/21 17·E.4
(US) L13	40002-00	04/21/211/.54 •	(DUP)	1 K3043362-3	04/21/211/.54

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	319000	315000	1	1.26		5

[†]Cn

L1340602-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1340602-07 04/21/21 17:54 • (DUP) R3645382-4 04/21/21 17:54

(83) 218 18882 87 8 11/21/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	188000	171000	1	9.47	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3645382-2 04/21/21 17:54

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Dissolved Solids	8800000	8690000	98.8	77.4-123

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Wet Chemistry by Method 9056A

(MB) R3646883-1 04/26/2111:42

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Chloride	U		379	1000
Fluoride	U		64.0	150
Sulfate	П		594	5000

L1340644-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-01 04/26/21 13:25 • (DUP) R3646883-3 04/26/21 13:37

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	855	933	1	8.79	<u>J</u>	15
Fluoride	385	384	1	0.390		15
Sulfate	5730	5790	1	0.917		15

L1340644-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1340644-11 04/26/21 16:17 • (DUP) R3646883-6 04/26/21 16:29

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Chloride	972	1010	1	4.29		15
Fluoride	153	120	1	24.0	<u>J P1</u>	15
Sulfate	7410	7330	1	1.16		15

Sc

Laboratory Control Sample (LCS)

(LCS) R3646883-2 04	1/26/21 11:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chloride	40000	39200	97.9	80.0-120	
Fluoride	8000	8030	100	80.0-120	
Sulfate	40000	39900	99.6	80.0-120	

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Wet Chemistry by Method 9056A

L1340644-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1340644-02 04/26/21 13:48 • (MS) R3646883-4 04/26/21 14:00 • (MSD) R3646883-5 04/26/21 14:11

(,				(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Chloride	50000	2310	53000	52900	101	101	1	80.0-120			0.276	15
Fluoride	5000	210	5430	5440	104	105	1	80.0-120			0.0386	15
Sulfate	50000	79400	127000	127000	95.2	94 7	1	80 O-120	F	F	0 192	15

L1340644-12 Original Sample (OS) • Matrix Spike (MS)

(OS) L1340644-12 04/26/21 16:40 • (MS) R3646883-7 04/26/21 16:52

(,							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Chloride	50000	U	51900	104	1	80.0-120	
Fluoride	5000	U	5410	108	1	80.0-120	
Sulfate	50000	U	52300	105	1	80.0-120	

PAGE:

22 of 27

QUALITY CONTROL SUMMARY

L1340644-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB) R3648131-1 04	/29/21 03:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Boron	U		20.0	200
Calcium	II.		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3648131-2 04/29/2	21 03:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Boron	1000	934	93.4	80.0-120	
Calcium	10000	9510	95.1	80.0-120	

L1340644-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) 11240644 0E	04/20/21 02:E7 (MC) D2640121 4	04/29/21 04:02 • (MSD) R3648131-5 04/29/21 04:04
1031 L1340044-03	U4/29/21 U3.37 • UVI31 R3040131-4	U4/Z9/Z1 U4.UZ • IIVISDI K3046131-3 U4/Z9/Z1 U4.U4

(03) [1340044-03 04/29/	,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Boron	1000	67.3	1020	1000	95.3	93.6	1	75.0-125			1.68	20
Calcium	10000	95400	102000	103000	70.2	75.6	1	75.0-125	$\underline{\vee}$		0.525	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical I	Vational	12065 Lebanon	Rd Mount	Juliet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

			_			-									7 2	
Company Name/Address:			Billing Info	ormation:			-	1	1	Analysis /	Container /	Preservative	- European I	Chain of Custody	Page of 9	
Plum Point Services	Co., LLC		Account	ts Payable		Pres								0		
			P.O. Box			Chk			12					Phone	Inalitical®	
2739 SCR 623							100000	-	1					National Car	Inalytical "	
Osceola, AR 72370			Osceola	, AR 72370												
Report to:			Email To:	dld@ftn-assoc.co	m;mmv@ftn-									12065 Lebanon Road Mt	Juliet, TN 37122	
Dana Derrington			assoc.com	;hlf@ftn-assoc.co	m;hlf@ftn-									Phone: 615-758-5858 Alt Submitting a sample via t		
Project Description:		City/State			Please C	ircle:								constitutes acknowledge Pace Terms and Conditio	ent and acceptance of the ns found at:	
Plum Point Energy Station		Collected:	0500	ols An	PT MT (https://info.pacelabs.com	n/hubfs/pas-standard-	
501 030 0543	Client Project	t#	0)000	Lab Project #			S		3					SDG# 134	0(044	
Phone: 501-920-9642	R14590-24			NAESOAR-P	LUMPOINT		re		9					Cos		
							101	100	皇					Cos	93	
Collected by (print):	Site/Facility I	ID#		P.O. #			E-P	re	PE						THE PART OF THE PA	
Michael Classia	4			2020-00128			OP	OP	무					Acctnum: NAE	SOAR	
Collected by (signature):	Ruch2	(Lab MUST Be	Notified)	Quote#			王	Z	章					Template:T175	308	
111		Day Five					SO4 125mlHDPE-NoPres	250mlHDPE-NoPres	250mlHDPE-HNO3					Prelogin: P839	309	
Mulle 15	Next D		y (Rad Only)	Date Resu	ts Needed	T	12	I	75					PM: 134 - Mark		
Immediately	Two Da		ay (Rad Only)			No.	4	E	Ca					PB:		
Packed on Ice NY	Three I	Day				of	SO	550	8,						dEV Cround	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	u.	S	tal					Shipped Via: Fe	Annual Control of the	
						1	ם,	TDS	Total					Remarks	Sample # (lab only)	
MW-101	GRAS	GW		11/11/2	1305	3	X	X	X						-01	
MW-102	(SKA) =			1/15/01			BURNESS CO.	-	32000000000000000000000000000000000000						9	
		GW		4/15/21	1525	3	X	X	X						2	
MW-103		GW		4/15/1	1110	3	X	X	X						03	
MW-108		GW		11/12/2	1 .120	3	X	X	X						OV	
MW-113		GW		7//3/21	1/20	3	^	-	^						OV	
MW-113		GW		14/13/21	1020	3	X	X	X						05	
MW-115		GW		4/12/21	915	3	X	X	X						06	
MW-116				1113/2		-	\$6000000000000000000000000000000000000	-	D20000000							
		GW		4/15/21	1405	3	X	X	X						07	
MW-117		GW		4/13/21	1420	3	X	X	X						08	
MW-118		GW		111,000		3	X	X	X						09	
MW-119			-	7/15/21	910	13	^	^	E-1000						THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	
	V	GW		4/15/21	1210	3	X	X	X						10	
* Matrix:	Remarks:												S	ample Receipt Che	cklist	
SS - Soil AIR - Air F - Filter										pH _	Te	emp		Present/Intact: ed/Accurate:	VNP Y N	
GW - Groundwater B - Bioassay WW - WasteWater										Flow	0	ther	Bottles	arrive intact:	Y_N	
DW - Drinking Water									. 1				AND SHIPPERSONS CONTRACTORS	bottles used: nt volume sent:	$+\frac{1}{\lambda}-\frac{N}{N}$	
OT - Other	Samples returnedUPSFedEx			Track	ing#			501	6	1251.	372			If Applicabl	9	
Deliande de (61			17:		11 /6:) '						Headspace: tion Correct/Chec	cked: Y N	
Relinquished by : (Signature)	U	ate:	Time		ved by: (Signat	ture)				Trip Blank	Received:	HCL MeoH		en <0.5 mR/hr:	YY _N	
Michel 16	9	1/6/21	1/8	800				1		"-		TBR				
Relinquished by : (Signature)	D	ate:	Time	: Recei	ved by: (Signat	ture)				TeM30	of oc	Bottles Received:	If preserva	tion required by Logi	n: Date/Time	
							1			1.4.24.6 7						
Relinquished by : (Signature)	0	ate:	Time	Panal	ved for lab by:	(Signatu	ura)	. 1		Date:		ime:	Hold:		Condition; /	
	U	uto.	Timile	Kecei	rea for lab by.	(Signati	90	N	200	11-17	171	0900	noid.		NCF / OK	
								The second	100000000000000000000000000000000000000	V 1	-	UIW				

Company Name/Address:			Billing Info	rmation:	6				A	Analysis /	Contair	ner / Pre	servative			Chain of Custody	Page of	
Plum Point Services Co., LLC 2739 SCR 623 Osceola, AR 72370			P.O. Box	s Payable 567 , AR 72370		Pres Chk			12							Pace A	Analytical * ter for Testing & Innovation	
Osceola, AR 72370 Report to:			Email To: 6	ild@ftn-assoc.com	n;mmv@ftn-											12065 Lebanon Road Mt		
Dana Derrington		assoc.com;hlf@ftn-assoc.com;hlf@ftn-													Phone: 615-758-5858 Ah Submitting a sample via constitutes acknowledge			
Project Description: City/State Plum Point Energy Station Collected:			Osceo	Sceola AL Please Cir												Pace Terms and Condition https://info.pacelabs.com terms.odf		
Phone: 501-920-9642	Client Project R14590-24	t#		Lab Project # NAESOAR-P	LUMPOINT		oPres		HN03							SDG#		
Collected by (print): Mrshowl ClayTon	Site/Facility I	D#		P.O. # 2020-00128			DPE-N	NoPres	HDPE-							Acctnum: NAE		
Collected by (signature):		Lab MUST Be		Quote #	Date Results Needed		SO4 125mlHDPE-NoPres	250mlHDPE-NoPres	250mlHDPE-HN03							Preiogin: P839 PM: 134 - Mark	309	
Immediately Packed on Ice N Y	Two Da	2y 10 D Day	ay (Rad Only)	1	_	No. of Cntrs	F, 504	250m	al B, Ca							PB: Shipped Via: Fe	dEX Ground	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Liius	CI, F	TDS	Total							Remarks	Sample # (lab only)	
MW-117 DUP	GRAB	GW		4/13/21	1420	3	X	X	X								11	
EPA EB	T	GW		4/15/21	1620	3	X	X	X								12	
		GW				3	X	X	X									
		GW				3	X	X	X									
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH Flow		_ Temp		COC	Sample Receipt Checklist COC Seal Present/Intact: VNP Y N COC Signed/Accurate: Bottles arrive intact: Y N Correct bottles used: Y N			
DW - Drinking Water OT - Other	Samples returnedUPSFedEx			Track	ing#									Suf	Sufficient volume sent: Y _N If Applicable YOA Zero Headspace: Y _N N			
Relinquished by: (Signature)	, 0	late:	7 Time	da	ved by: (Signat	ture)				Trip Blar	nk Recei		es / No HCL / MeoH TBR			on Correct/Che	cked:N	
Relinquished by : (Signature)	0	date:	Time	THE RESIDENCE OF THE PERSONNELS.	ved by: (Signa	ture)	1			Temp: 1.4+.	2=16		les Reseived		eservatio	on required by Log	in: Date/Time	
Relinquished by : (Signature)	D	ate:	Time	e: Recei	ved for lab by:	(Signat	(A)	0		Date:	7.21	Tim	e: 0400	Hole)	l:		Condition:	

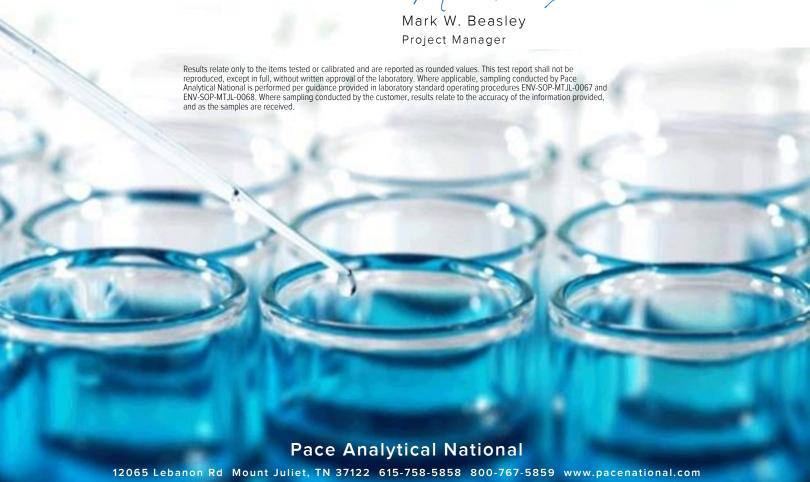
Pace Analytical® ANALYTICAL REPORT

Ss

Plum Point Services Co., LLC

L1373490 Sample Delivery Group: Samples Received: 07/01/2021

Project Number: R14590-2275-001


Description: Plum Point Energy Station

Report To: Dana Derrington

2739 SCR 623

Osceola, AR 72370

Entire Report Reviewed By:

TABLE OF CONTENTS

Cp: Cover Page	1					
Tc: Table of Contents	2					
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
MW-116 L1373490-01	5					
MW-117 L1373490-02	6					
MW-117 DUP L1373490-03	7					
EPA EB-1 L1373490-04	8					
MW-101 L1373490-05	9					
MW-113 L1373490-06	10					
Qc: Quality Control Summary	11					
Gravimetric Analysis by Method 2540 C-2011	11					
Wet Chemistry by Method 9056A	12					
Metals (ICP) by Method 6010B	13					
GI: Glossary of Terms	14					
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

SAMPLE SUMMARY

MW-116 L1373490-01 GW			Collected by Michael Clayton	Collected date/time 06/29/2115:55	Received da 07/01/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1706313	1	07/19/21 05:52	07/19/21 12:57	EL	Mt. Juliet, TN
MW-117 L1373490-02 GW			Collected by Michael Clayton	Collected date/time 06/29/2116:50	Received da 07/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Metals (ICP) by Method 6010B	WG1699630 WG1706313	1	07/03/21 02:27 07/19/21 05:52	07/03/21 05:11 07/19/21 13:46	VRP EL	Mt. Juliet, TN Mt. Juliet, TN
MW-117 DUP L1373490-03 GW			Collected by Michael Clayton	Collected date/time 06/29/2116:55	Received da 07/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Metals (ICP) by Method 6010B	WG1699630 WG1706313	1 1	07/03/21 02:27 07/19/21 05:52	07/03/21 05:11 07/19/21 13:48	VRP EL	Mt. Juliet, TN Mt. Juliet, TN
EPA EB-1 L1373490-04 GW			Collected by Michael Clayton	Collected date/time 06/29/2117:10	Received da 07/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1699630 WG1705405 WG1706313	1 1 1	07/03/21 02:27 07/15/21 17:58 07/19/21 05:52	07/03/21 05:11 07/15/21 17:58 07/19/21 13:56	VRP MCG EL	Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
MW-101 L1373490-05 GW			Collected by Michael Clayton	Collected date/time 06/29/2115:00	Received da 07/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1705405	1	07/15/21 18:47	07/15/21 18:47	MCG	Mt. Juliet, TN
MW-113 L1373490-06 GW			Collected by Michael Clayton	Collected date/time 06/29/2112:25	Received da 07/01/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Gravimetric Analysis by Method 2540 C-2011

WG1699630

date/time

07/03/21 02:27

date/time

07/03/21 05:11

VRP

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Mark W. Beasley Project Manager

Collected date/time: 06/29/21 15:55

L1373490

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	169000	O1 V	79.3	1000	1	07/19/2021 12:57	WG1706313

Collected date/time: 06/29/21 16:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	314000		10000	1	07/03/2021 05:11	WG1699630

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	83700		79.3	1000	1	07/19/2021 13:46	WG1706313

³Ss

MW-117 DUP

SAMPLE RESULTS - 03

Collected date/time: 06/29/21 16:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	321000		10000	1	07/03/2021 05:11	WG1699630

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	84400		79.3	1000	1	07/19/2021 13:48	WG1706313

Ss

Collected date/time: 06/29/21 17:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	ND		10000	1	07/03/2021 05:11	WG1699630

²Tc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	U		64.0	150	1	07/15/2021 17:58	WG1705405

Metals (ICP) by Method 6010B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Calcium	U		79.3	1000	1	07/19/2021 13:56	WG1706313

Cn

Collected date/time: 06/29/21 15:00

L1373490

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Fluoride	307		64.0	150	1	07/15/2021 18:47	WG1705405

Collected date/time: 06/29/21 12:25

L1373490

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Dissolved Solids	303000		10000	1	07/03/2021 05:11	WG1699630

QUALITY CONTROL SUMMARY

Gravimetric Analysis by Method 2540 C-2011

L1373490-02,03,04,06

Method Blank (MB)

(MB) R3677111-1 07/03/2	21 05:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Dissolved Solids	U		10000	10000

L1372527-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1372527-14 07/03/21 05:11 • (DUP) R3677111-3 07/03/21 05:11

(==,===================================	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	3690000	3680000	1	0.217		5

Ss

L1372994-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1372994-01 07/03/21 05:11 • (DUP) R3677111-4 07/03/21 05:11

(00, 2.0, 200 . 0. 0, 00, 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Dissolved Solids	129000	118000	1	8.91	<u>J3</u>	5

Laboratory Control Sample (LCS)

(LCS) R3677111-2 07/03/21 05:11

	Spike Amount LCS Result LCS	CS Rec. Rec. Limits
Analyte	ug/l ug/l %	%
Dissolved Solids	8800000 8950000 102	02 77.4-123

QUALITY CONTROL SUMMARY

L1373490-04,05

Wet Chemistry by Method 9056A

Method Blank (MB)

Fluoride

(MB) R3680269-1 07/15/21	11:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l

L1373161-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1373161-02 07/15/21 13:03 • (DUP) R3680269-3 07/15/21 13:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	66.4	71.1	1	6.84	J	15

64.0

150

L1373490-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1373490-04 07/15/21 17:58 • (DUP) R3680269-6 07/15/21 18:14

(03) [13/3490-04 0//13/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Fluoride	U	U	1	0.000		15

Laboratory Control Sample (LCS)

(LCS) R3680269-2 07/15/21 11:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Fluoride	8000	8040	101	80.0-120	

L1373161-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373161-02 07/15/21 13:03 • (MS) R3680269-4 07/15/21 13:35 • (MSD) R3680269-5 07/15/21 13:52

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Fluoride	5000	66.4	4880	4920	96.3	97.1	1	80.0-120			0.832	15	

L1373490-04 Original Sample (OS) • Matrix Spike (MS)

(OS) L1373490-04 07/15/21 17:58 • (MS) R3680269-7 07/15/21 18:31

(03) [13/3430-04 07/13/2	117.50 • (1015) 10	.3000203-7 07	7/13/21 10.31				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Fluoride	5000	U	5000	100	1	80.0-120	

QUALITY CONTROL SUMMARY

L1373490-01,02,03,04

Metals (ICP) by Method 6010B

Method Blank (MB)

(MB) R3681167-1	07/19/21 12:52

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Calcium	U		79.3	1000

Laboratory Control Sample (LCS)

(LCS) R3681167-2	07/19/21 12:54
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Calcium	10000	9400	94.0	80 O-120	

[†]Cn

L1373490-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373490-01 07/19/21 12:57 • (MS) R3681167-4 07/19/21 13:02 • (MSD) R3681167-5 07/19/21 13:04

(,		Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Calcium	10000	169000	175000	174000	55.7	47.6	1	75.0-125	V	V	0.462	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
01	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:				Billing Infor	mation:					A	nalvsis / C	ontaine	r / Prese	rvative			Chain of Custody	Page _ of _	
Plum Point Services Co., LLC				Accounts Payable P.O. Box 567 Osceola, AR 72370			Pres Chk	27									Pac	e Analytical [®]	
2739 SCR 623 Osceola, AR 72370																			
Report to: Email To: Cynthia Medlin				Email To: c	mail To: cynthia.medlin@ppenergy.net												12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-		
Project Description: Plum Point Energy Station			City/State Collected:			Please Ci PT MT C											terms.pdf	273497	
Phone: 501-920-9642	Client Project # R14590-2275-001 Site/Facility ID # Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only)			Lab Project # NAESOAR-PLUMPOINT P.O. # 2020-00128			3	125mIHDPE-NoPres	S						SDG# [1979470 Ta M195				
Collected by (print): Michael Classon							250mIHDPE-HNO3		250mlHDPE-NoPres							Acctnum: NAESOAR Template:T190044			
Collected by (signature)				Day	Quote # Date Results Needed											Prelogin: P85	66608 kw. Beasley		
Immediately Packed on Ice N Y		Two Da	y 10 D	Day (Rad Only)				P 250	FLUORIDE	250m						*	PB: 0 03 Shipped Via: F	edEX Ground	
Sample ID	Co	mp/Grab	Matrix *	Depth	Date	Time	Cntrs	CAICP	FLUC	TDS							Remarks	Sample # (lab only)	
MW-116	6	Mb	GW	74.00	6/29/2	1 1555	12	X			10		73			3,53	1227	-01	
MW-117			GW			1650	13	X		X								02	
MW-117 DUP			GW			1655	12	X		X	100						e e de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela	03	
EPA EB-1			GW	. zni		1710	3	X	X	X					-1	100		04	
MW-101			GW		V	1500	2		X				in Comp			pro-state	a series usos	09	
MW-113			GW			1225	12		T	X								06	
				E Contract												Samp	le Receipt C	hecklist ,	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remar	rks:											Temp_ Other_		COC S Bottl Corre	eal Pr igned/ es arr ct bot	esent/Intact Accurate: rive intact: tles used:	.: _NP \ N _N _N _N _N	
DW - Drinking Water OT - Other		es returned FedE		Tracking # 5 6376984					4974				Sufficient volume sent: If Applicable VOA Zero Headspace: Preservation Correct/Checked: N						
Relinquished by : (Signature)			Date: 6/30/2	Tim	100	ceived by: (Sign		43			Trip Blank	ot	HC TB	CL/MeoH IR	RAD S	creen	<0.5 mR/hr:	- F - N	
Relinquished by : (Signature) Date:		Tim	Re:	ature)		J*		Temp: 8+2	mp: °C Bottles Received:			If pres	If preservation required by Login: Date/Time						
Relinquished by : (Signature) Date:		Tim	ne: Re	cerved for lab by	1 STATE	ature)	m	2	Date:	121	Time:	7:00	Hold:			NCF OK			