

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Coal Combustion Residual Surface Impoundment Permitting Program

Application Form CCR 1:

General Provisions

This form must be submitted for all Construction and Operating Permit Applications. Two sets of the applications must be submitted. Items which are self-explanatory are omitted in these instructions. Signatures on at least one (1) submittal must be original.

The owner or operator must place in the facility's operating record all permit applications submitted to the Agency and all permits issued under 35 IAC 845 as required by 35 IAC 845.800(d)(1).

DESCRIPTION OF CCR PERMIT APPLICATIONS FORMS

The application forms for Coal Combustion Residual (CCR) Surface Impoundment permits include the following:

Form CCR 1 - General Provisions (included in this packet)

.Form CCR 2 - Forms Based on Activity Type (Not included in this packet):

- 2 CN New Construction
- 2 CA Corrective Active Construction
- 2 CC Closure Construction
- 2 N Initial Operating Permit for a <u>New</u> CCR surface impoundment and any lateral expansion of a CCR surface impoundment
- 2 R Renewal Operating Permit
- 2 E Initial Operating Permit for Existing or Inactive Surface Impoundments that have <u>not</u> completed an Agency approved closure before July 30, 2021
- 2 OE Initial Operating Permit for Existing, Inactive that <u>have</u> completed an Agency approved closure before July 30, 2021
- 2 OI Initial Operating Permit for inactive closed CCR surface impoundments

2. Are you performing corrective action under Subpart F of the Rule?
Yes → Complete Forms CCR 1 and 2 CA
4. Are you submitting an Initial Operating Permit for a new CCR surface impoundment and any lateral expansion of aCCR surface impoundment?
Yes → Complete Forms CCR 1 and 2N
6. Are you submitting a Post-Closure Care OperatingPermit?
Yes → Complete Forms CCR 1 and 2E
8. Are you submitting an Initial Operating Permit for Existing,Inactive, and Inactive Closed Surface Impoundments thathave completed an Agency approved closure before July 30, 2021?
Yes → Complete Forms 1 and 201

CONTENTS OF FORM CCR 1 PACKAGE

Form CCR 1 – General Instructions Form CCR 1 – Line-by-line Instructions Form CCR 1 - Application

FORM CCR 1 - GENERAL INSTRUCTIONS

Who Must Apply for an CCR Surface Impoundment Permit?

Owners and operators of new and existing CCR surface impoundments, including any lateral expansions of CCR surface impoundments that dispose of or otherwise engage in solid waste management of CCR generated from the combustion of coal at electric utilities and independent power producers.

What other forms must be completed?

Form CCR 1 collects general information only. You must also complete a more detailed application based uponyour proposed activity(s) as, follows:

- If your facility is building a new CCR Impoundment, lateral expansion of a CCR surface impoundment, or retrofit of an existing CCR impoundment; you must also complete Forms CCR CN for each new CCR Impoundment, lateral expansion of a CCR surface impoundment, or retrofit of an existing CCR surface impoundment.
- If your facility will be performing any corrective action under Subpart F of 35 IAC 845, you must also complete Form CCR 2CA for each CCR impoundment undergoing corrective action.
- If your facility is closing a CCR surface impoundment under Subpart G of 35 IAC 845, you must also complete Form CCR 2CC for each CCR impoundment that you will be closing.
- If your facility is applying for an initial operating permit for a new CCR surface impoundment and any lateral expansion of a CCR surface impoundment, you must also complete Form CCR 2N for each newCCR surface impoundment and any lateral expansion of a CCR surface impoundment.

listed if they have questions on the material submitted.

Item 1.8 Enter the address of the Owner/Operator

Section 2: Legal Description

Item 2.1 Provide the legal description of the facility boundary.

Section 3: Publicly Accessible Internet Site Requirement

Item 3.1 Enter the web address

Item 3.2 Select yes, to indicate that the website is titled, "Illinois CCR Rule Compliance Data and Information"

Section 4: Impoundment identification

Item 4.1 List all the Impoundment Identification numbers for your facility and check the corresponding box to indicate that you have attached a written description for each impoundment.

Section 5: Checklist and Certification

Item 5.1 Review the checklist provided. In Column 1, mark the sections of Form CCR1 that you have completed and are submitting with your application. In Column 2, indicate for each section whether you are submitting attachments.

Item 5.2 Certification Statement: The IEPA provides for severe penalties for submitting false information this application form. 415 ILCS provides that, "Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony."

All permit applications must be signed by the owner, operator, or a duly authorized agent of the operator. 35 IAC 845.210(b)(2)

An application submitted by a corporation must be signed by a principal executive officer of at least the level of vice president, or his or her duly authorized representative, if that representative is responsible for the overall operation of the facility described in the application form. In the case of a partnership or a sole proprietorship, the application must be signed by a general partner or the proprietor, respectively. In the case of a publicly owned facility, the application must be signed by either the principal executive officer, ranking elected official, or other duly authorized employee. 35 IAC 845.210(b)(3)

This form must be typewritten or printed legibly. This form may be completed manually or online using Adobe Reader, a copy of it saved locally, printed, and signed before it is submitted to:

Illinois EPA Bureau of Water, #15 Attn: CCR Rule Submittal P.O. Box 19276 Springfield, IL 62794-9276

4 () 2 . t	· · · · · · · · · · · · ·					n georgen och sin en
	nfo	1.7	Owner/Operator Contact Information	name and a state of		
	ēr		Name (first and last)	Title		Phone Number
	- Maria		Todd Mundorf	Plant Ma	nager	309-477-5212
			Email address			
	j, a	:	Todd.Mundorf@NRG.com		ang panang satur sa tu	
	erato	1.8	Owner/Operator Mailing Address	r Anna 1966 an 1970. An Anna 1977 an Anna		and the Lorent Discourse and the
	o		Street or P.O. box			
	iity		804 Carnegie Center			
	Fac		City or town		State	Zip Code
			Princeton		New Jersey	08540
			SECTION 2: LEGAL D	ESCRIPTION	(35 IAC 845.210(c))	
	ion	2.1	Legal Description of the facility bounda	агу		and a standard constrained of the Sheet of the Sheet of the standard of
	crip		SEC 9 T24N R5W LYING W OF	RR IN W 1/2	2 & W 50 X 2220.46	3 OF ADJ RR (EXC
	Des		2.05 AC TRACT) NW 1/4 300.7	AC		
	gal l					
	6					
		OFOT				(35 IAC 8/15 810)
		SECT	ION 5. PUBLICET ACCESSIBLE II	TENNET SI		(55 146 645 6 16)
		3.1 :	Web Address(es) to publicly accessibi	e internet site(s		ngeng ang ang ang ang ang ang ang ang ang a
	site		https://midwestgenerationllc.com	n/illinois-ccr-ri	ule-compliance-dat	a-and-information/
	let S					
	ter					
	-	32	Is/are the website(s) titled "Illinois CCF	Rule Compliar	nce Data and Informati	on"
		0.2		10		
			SECTION 4: IMPO	UNDMENT ID	ENTIFICATION	
		: 1941 - 1947	list all the Impoundment Identification	numbers for vo	ur facility and check th	e corresponding box to
	UO	4.1	indicate that you have attached a writt	en description f	or each impoundment.	
	cati		W1798010008-05	5	Attached writt	en description
	ntif	-			Attached writt	en description
	t lae				Attached writt	en description
	lmen		·		Attached writt	en description
	punc				Attached writt	en description
	ă		<u></u>		Attached writt	en description
					Attached writt	en description
	SUGAL SA					

IEPA Form CCR 1

Fo 20	rm	Illinois Environmental Protection Agency				
Č		CCR Surface Impoundment Permit Application				
	sure Construction					
Bu	reau of	Water ID Number:	For IEPA Use Only			
cc	R Perm	it Number:				
Fa	cility Na	ime:				
	;	SECTION 1: DESIGN AND CONSTRUCTION PL	ANS (35 III. Adm. Code 845.220)			
	1.1	CCR surface impoundment name.				
		Former Ash Basin				
	1.2	Identification number of the CCR surface impoundm	ent (if one has been assigned by the Agency).			
s (Construction History)		1798010008-05				
	1.3	Describe the boundaries of the CCR surface impour	ndment (35 III. Adm. Code 845.210 (c)).			
		SEC 9 T24N R5W LYING W OF RR IN W 1 2.05 AC TRACT) NW 1/4	/2 & W 50 X 2220.46 OF ADJ RR (EXC			
l Plai	1.4	State the purpose for which the CCR surface impou	ndment is being used.			
construction		Used as a former settling pond for sluiced CCR associated with the electrical power generating process. The surface impoundment is inactive.				
and (1.5	How long has the CCR surface impoundment been	in operation?			
sign		approximately 40-50 years				
De	1.6	List the types of CCR that have been placed in the 0	CCR surface impoundment.			
		unknown				

	SEC	TION 2: NARRATIV	E DESCRIPTION	OF THE FACILITY (35	III. Adm. Code 845.220)
	2.1	List the types of CCI	R expected in the CC	CR surface impoundments	
		Unknown. The FA	AB was used for H	nistorical CCR disposa	al
on	2.2	Have you attached a	a chemical analysis c	of each type of expected C	CR?
cript		Yes			۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰
Des	2.3	Estimate of the max	imum capacity of the	surface impoundment in	gallons or cubic yards.
ative		north portion =	465,000 cubi	c yards; south por	tion = 240,000 CY
Narre	2.4	The rate at which C(per day and dry tons	CR and non-CCR was	iste streams currently ente	r the CCR impoundment in gallons
		0	GPD	0	dTn
	2.5	Estimate length of ti	me the CCR surface	impoundment will receive	CCR and non-CCR waste streams.
		The surface in	npoundment is	inactive	
2.6 Have you attached an on-site transportation plan that includes all existing an facility that will be used during the operation of the CCR surface impoundme				existing and planned roads in the poundment?	
		Yes			
		SE	CTION 3: MAPS (3	35 III. Adm. Code 845.2	20)
	3.1	Check the corresponding boxes to indicate that you have attached the following maps:			
Maps		A site location map on the most recent United Sates Geological Survey (USGS) quadrangle of the area from the 7 ½ minute series (topographic) or on another map whose scale clearly shows the information required in 35 III. Adm. Code 845.220(a)(3).			
		Site plans m	naps satisfying the re	equirements of 35 Ill. Adm.	Code 845.220(a)(4).
			SECTION 4:	ATTACHMENTS	
	4.1	Check the correspon	nding boxes to indica	ate that you have attached	the following:
nents		A narrative impoundme waste strea	description of the pro nt and any projected ms.	posed construction of, or changes in the volume or	modification to, a CCR surface nature of the CCR or non-CCR
Vttachn		Plans and s each individ	pecifications fully de ual component of the	scribing the design, nature e facility.	e, function, and interrelationship of
4		The signatu	re and seal of a qual	ified professional enginee	r
		Certification notification	that the owner or or and public meetings	perator of the CCR surface required under 35 III. Adm	impoundment completed the public . Code 845.240.

	Capture zone modeling, if applicable.
\checkmark	Any necessary licenses and software needed to review and access both the model and the data contained within the model.

KPRG and Associates, Inc.

APPLICATION FOR CONSTRUCTION PERMIT – FORMER ASH BASIN

POWERTON GENERATING STATION MIDWEST GENERATION, LLC PEKIN, ILLINOIS

Illinois EPA Site No. 1798010008-05

October 26, 2022

Submitted To:

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Prepared For:

Midwest Generation, LLC 13082 East Manito Rd. Pekin, IL 61554

Prepared By:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

Table of Contents

Introduction	.1
1.0 History of Construction, 845.220(a)(1)	.2
1.1 CCR Surface Impoundment Identifying Information	.2
1.2 Purpose of CCR Impoundment	.2
1.3 CCR Impoundment Length of Operation	.2
1.4 Type of CCR in Impoundment	.2
1.5 Name and Size of the Watershed	.2
1.6 Description of CCR Impoundment Foundation	.2
1.6.1 Physical Properties of Foundation Materials	.3
1.6.2 Engineering Properties of Foundation Materials	.3
1.7 Description of the Construction Materials, Methods, and Dates	.3
1.7.1 Physical and Engineering Properties of Construction Materials	.3
1.7.2 Construction Methods	.4
1.7.3 Construction Dates	.4
1.8 Detailed Dimensional Drawings	.4
1.9 Instrumentation	.4
1.10 Area-Capacity Curve	.4
1.11 Spillway and Diversion Capacities and Calculations	.4
1.12 Surveillance, Maintenance, and Repair Construction Specifications	.4
1.13 Record of Structural Instability	.5
2.0 Narrative Description of the Facility, 845.220(a)(2)	.5
2.1 CCR Type and CCR Chemical Analysis	.5
2.2 Maximum Capacity	.5
2.3 Waste Streams	.5
2.4 On-Site Transportation Plan	.5
3.0 Site Location Map, 845.220(a)(3)	.6
4.0 Site Plan Map, 845.220(a)(4)	.6
5.0 Construction Description, 845.220(a)(5)	.6
5.1 Obtain EPA Construction Permit	.7
5.2 Site Clearing and Grubbing	.7
5.3 Dewatering	.7
5.4 North Portion CCR Removal	.8
5.5 South Portion Grading and Stabilization	.8
5.6 Installation of Final Cover System	.9
5.7 Post-Closure Groundwater Monitoring	11
6.0 Facility Component Plans and Specifications, 845.220(a)(6)	11
7.0 Closure Construction, 845.220(d)	12
7.1 Closure Categorization Category	12
7.2 Final Closure Plan	12
7.3 Closure Alternatives Analysis	13
7.4 Proposed Closure Schedule	13

7.5 Post-Closure Plan	13
8.0 Groundwater Modeling, 845.220(d)(3)	13
8.1 Groundwater Modeling Inputs and Assumptions	13
8.2 Groundwater Modeling Results	14
8.3 Capture Zone Modeling	14
8.4 Groundwater Modeling Software	14
9.0 Groundwater Monitoring Program, 845.220(a)(7)	15
9.1 Hydrogeologic Site Characterization	15
9.1.1 Geology	15
9.1.2 Hydrogeology	16
9.2 Groundwater Monitoring System Design and Construction Plans	19
9.3 Groundwater Sampling and Analysis Program	20
9.3.1 Sample Frequency	20
9.3.2 Sampling Preparation and Calibrations	21
9.3.3 Groundwater Sample Collection	21
9.3.4 Equipment Decontamination	23
9.3.6 Analytical Methods	24
9.3.7 Quality Assurance and Quality Control	24
9.3.8 Statistical Methods	24
9.4 Groundwater Monitoring Program	25
10.0 Professional Engineering Signature, 845.220(a)(8)	26
11.0 Owner Certification, 845.220(a)(9)	26

TABLES

- Table 2 Former Ash Basin CCR Chemical Constituents Analytical Results
- Table 9-1 Summary of Local Precipitation Data
- Table 9-2 FAB Groundwater Elevations
- Table 9-3 Hydraulic Gradient, Direction and Seepage Velocity
- Table 9-4 FAB CCR Groundwater Data
- Table 9-5 FAB Turbidity Measurements
- Table 9-6 Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods
- Table 9-7 FAB Proposed Groundwater Protection Standards

FIGURES

Figure 1 FAB Area-Capacity Curve Figure 2 Transportation Site Map Figure 9-1 Site Map Figure 9-2 Cross Section A-A' Figure 9-3 Cross Section A'-A" Figure 9-4 Cross Section B-B' Figure 9-5 Cross Section B'-B" Figure 9-6 Cross Section C-C' Figure 9-7 Cross Section D-D' Figure 9-8 FAB Hydrograph Figure 9-9 Sand Groundwater Flow Map 3Q2020

- Figure 9-10 Sand Groundwater Flow Map 4Q2020
- Figure 9-11 Sand Groundwater Flow Map 1Q2021
- Figure 9-12 Sand Groundwater Flow Map 2Q2021
- Figure 9-13 Groundwater Management Zone
- Figure 9-14 Potable Well Map

ATTACHMENTS

Attachment 1 – Cornette Engineering Drawing

Attachment 2 – CCR Laboratory Data Package

Attachment 3 – Site Location Map

Attachment 4 – Site Plan Maps

Attachment 5 – Closure Drawings and Specifications

Attachment 6 – No Attachment

Attachment 7-1 – Final Closure Plan

Attachment 7-2 – Closure Alternatives Analysis

Attachment 7-3 – Final Post-Closure Plan

Attachment 8 – Groundwater Modeling Report

Attachment 9-1 – Local Well Stratigraphy Information

Attachment 9-2 – Boring Logs

Attachment 9-3 – Historical CCA Groundwater Data

Attachment 9-4 – IL PE Stamp

Attachment 9-5 – CCR Compliance Statistical Approach

Attachment 9-6 – Statistical Evaluation Summary

Attachment 10 – No Attachment

Attachment 11 – Owner Certification

Introduction

Midwest Generation, LLC (Midwest Generation) currently operates the coal-fired generating station, referred to as Powerton Station, located in Pekin, Illinois ("site" or "generating station"). As part of generating electricity and managing coal combustion residuals (CCR), the station operates two active CCR surface impoundments (the Ash Surge Basin (ASB) and Ash Bypass Basin (ABB)). The station also operates the Metal Cleaning Basin (MCB), a CCR surface impoundment subject to the state CCR regulations. As part of the earlier historical operations at the station, the Former Ash Basin (FAB) was used for the management/storage of CCR and has been identified as an inactive CCR surface impoundment subject to Federal and State regulation.

The objective of this submittal is to apply for the initial construction permit for the FAB at the Powerton Generating Station. Midwest Generation seeks to receive the construction permit to close the FAB by closure in place in compliance with the State CCR Rule. The information required for a construction permit application for existing surface impoundments as specified under 35 Ill. Adm. Code 845.220 of the State CCR Rule is provided in the following sections.

This permit application is organized with supporting Tables and Figures that are referenced in the discussions being provided at the end of the full Permit text with the table numbers and figures tied to the Section number within which they are referenced with sequential numbering (e.g., Tables referenced in Section 9 are numbered 9-1, 9-2, etc. Figures referenced in Section 9 are numbered Figure 9-1, 9-2, etc.). Specific Attachments referenced within each Section are provided in a similar fashion (e.g., Attachment 1 information is tied to Section 1 of the Permit text, Attachment 2 information is tied to Section 2 of the Permit text, etc.). It should be noted that if a Section does not reference an Attachment, then that Attachment number is not included as part of the permit application. For example, Section 10 does not reference an Attachment; therefore, there is no Attachment 10 in this permit application.

1.0 History of Construction, 845.220(a)(1)

The history of construction of the CCR surface impoundment as specified in Section 845.220(a)(1) is presented below.

1.1 CCR Surface Impoundment Identifying Information

The identifying information associated with the CCR surface impoundment at the generating station is listed in the table below.

Name	Owner/Operator	Impoundment ID Number
Former Ash Basin	Midwest Generation 804 Carnegie Center Princeton, NJ 08540	W1798010008-05

1.2 Purpose of CCR Impoundment

The Former Ash Basin (FAB) is an inactive surface impoundment that was previously used for disposal of unknown types of ash. It is estimated that the FAB stopped receiving CCR by the 1970's.

1.3 CCR Impoundment Length of Operation

Due to the age of the FAB, there is no documentation of when it was constructed. The Powerton Station began operating its first generating unit in approximately 1928 and the FAB was used previously as a CCR impoundment. Midwest Generation has not sent coal ash to this basin since purchasing the station in 1999. Based on available information, it is estimated that the FAB stopped receiving CCR by the 1970's. If the FAB was used for CCR management since the station began operating, then the FAB operated for approximately 40-50 years.

1.4 Type of CCR in Impoundment

The FAB is currently inactive and was historically used for CCR disposal, however, the types of CCR placed into the FAB is not documented. According to Geosyntec's History of Construction, it has been estimated that it stopped receiving CCR in the 1970's. The chemical constituents that make up the CCR is discussed in further detail in Section 2.

1.5 Name and Size of the Watershed

The Former Ash Basin is located within the Pekin Lake-Illinois River subwatershed (HUC12 071300030304), which is approximately 28,847 acres (USGS 2015).

1.6 Description of CCR Impoundment Foundation

The following description of the Former Ash Basin's foundation is provided in the History of Construction created by Geosyntec.

"The FAB was constructed with fill embankments on the north, east, and west sides. The south side of the FAB is currently incised. Because no in-situ or native materials provide lateral structural support for the embankments, the basins do not contain abutments".

The following sections discuss the foundation materials' physical and engineering properties.

1.6.1 Physical Properties of Foundation Materials

The physical properties of the foundation materials in the vicinity generally consists of interlayering of sandy and clayey units. Soil borings performed in 2005 as part of a KPRG site investigation identified layers of sand with silt and gravel, silty sand with traces of clay from the ground surface to a depth of about 20 feet. Approximately 100 to 125 feet of alluvial sands and gravels with some minor clay underlies the Station based on publicly available geologic information. Silt and clay layers were observed beneath the fill material used to construct the basin's embankments based on logs from monitoring wells installed in the basin's embankments as well as borings and cone penetration test (CPT) soundings performed in the vicinity of the basin. This information was obtained from site investigation work performed by Patrick Engineering in 2011 and Geosyntec in 2016. The logs and CPT soundings show that the silt and clay layers range from 16 to 20 feet thick and these layers are underlain by approximately 34 to 43 feet of medium dense sand and gravel that is poorly graded. Geosyntec performed a soil boring and a CPT sounding east of the ASB that identified a layer of very hard lean clay below the above-mentioned poorly graded sand and gravel. No abutments are present.

1.6.2 Engineering Properties of Foundation Materials

Due to the age of the FAB, the engineering properties of the foundation materials are not available. Construction as-built drawings or construction completion reports were not available at the time of completing this construction permit application. No documentation of the actual materials and methods used to construct the FAB were available at the time of this construction permit application.

1.7 Description of the Construction Materials, Methods, and Dates

The descriptions of the construction materials, methods, and dates are based on available documentation from site investigations. The drawings discussed in the following sections are located in Attachment 1.

1.7.1 Physical and Engineering Properties of Construction Materials

There is no historical documentation available regarding the construction materials for the FAB. Site investigations identified that fill material was present in the embankments of the FAB and that sand and clay layers were present in the subsurface in the vicinity of the FAB.

1.7.2 Construction Methods

Due to the age of the FAB, no documents related to its construction are available for review. Prior to 2010, the FAB was one containment area with embankments on the north, west, and east sides and the south side is currently incised. In 2010, a railroad spur was constructed that split the FAB into two sections, north-half and south-half pursuant to a construction permit issued by the Illinois EPA. The railroad spur was placed on top of the embankment that was constructed using CCR material. Based on the available construction document from Cornette Engineering Services dated 2008, the side slopes for the rail spur embankment were designed at 2H:1V. The embankment was designed to be approximately 20 to 25 feet tall in relation to the surrounding site elevations with a crest width of approximately 23 feet.

1.7.3 Construction Dates

The construction dates for the FAB are unknown and no known construction documents are available. The available construction document for the railroad berm is dated 2010. A drawing dated 2019 showing the proposed closure of the FAB and the existing conditions of the basin shows the railroad spur bisecting the basin.

1.8 Detailed Dimensional Drawings

Construction documents for the railway crossing prepared by Cornette Engineering Services, dated 2008, are included in Attachment 1. There are no other construction documents available for the FAB.

1.9 Instrumentation

There is no instrumentation present at the FAB. A staff gauge has been installed in the basin to determine the water level visually.

1.10 Area-Capacity Curve

An area-capacity curve for the FAB created by Geosyntec is provided on Figure 1. It should be noted that without the original construction documents, the curve could not be developed for the estimated in-place 500,000 cubic yards of CCR.

1.11 Spillway and Diversion Capacities and Calculations

The FAB does not contain spillways.

1.12 Surveillance, Maintenance, and Repair Construction Specifications

As previously noted, specifications for the original construction of the FAB are not available.

1.13 Record of Structural Instability

There is no record or knowledge of structural instability associated with the FAB.

2.0 Narrative Description of the Facility, 845.220(a)(2)

2.1 CCR Type and CCR Chemical Analysis

The FAB is currently inactive and was historically used for CCR disposal, however, the types of CCR placed into the FAB is not documented. The CCR in the FAB was sampled and analyzed and the results are shown in Table 2. The laboratory data package is included in Attachment 2.

2.2 Maximum Capacity

The estimated maximum inventory of CCR on-site contained in the north portion of the FAB and south portion of the FAB are estimated at 465,000 cubic yards (CY) and 240,000 CY respectively.

2.3 Waste Streams

The FAB is not in service and does not receive CCR or non-CCR waste streams. The FAB has not received any CCR or non-CCR waste streams since the 1970's. Powerton Station began operation in the late 1920's with pulverized coal-fired boilers (Units 1 through 4) that burned Illinois coal. Units 1 through 4 were retired, presumably in the 1970's, the same decade that placement of CCR in the FAB ceased, before MWG began operating Powerton Station.

2.4 On-Site Transportation Plan

The Powerton Generating Station property is a secure facility. The property boundary is partially fenced and patrolled daily with one main entrance gate that is guarded 24 hours a day, 7 days a week, and 365 days a year. Access to the station property is controlled through the one main gate with visitors required to sign in and out with the guard personnel. Other gates are present at the facility, such as the fly ash gate, which is used during the day, but locked after hours and monitored by security.

The FAB is an inactive surface impoundment and upon approval of this permit, the FAB will be closed. During the closure activities that main gate access road, mentioned above, and the road that circumferences the FAB will be used for access by construction personnel to bring materials and equipment that will be used during closure, as shown on Figure 2. Since the FAB is inactive, there are no normal day-to-day operations associated with it. Midwest Generation personnel use the adjacent road to perform inspections as needed to ensure that no issues arise. On a quarterly basis, groundwater sampling is performed at the monitoring wells that surround the FAB and the adjacent roads are used to access the wells. Each sampling event requires about 4 days to complete.

As needed, intersections at the property are traffic controlled with stop signs and the speed limit on the property is 10 miles per hour.

3.0 Site Location Map, 845.220(a)(3)

A site location map on the most recent United States Geological Survey (USGS) quadrangle of the area from the 7 ½ minute topographic series has been included in Attachment 3. This map includes details regarding the facility and adjacent properties boundaries extending 1,000 meters (3,280 feet), surface waters, the prevailing wind direction, and the limits of all 100-year floodplains. All-natural areas designated as a Dedicated Illinois Nature Preserve under the Natural Areas Preservation Act, all historic and archaeological sites designated by the National Historic Preservation Act and the Illinois Historic Sites Advisory Council Act, and all areas identified as critical habitat under the Endangered Species Protection Act of 1973 and the Illinois Endangered Species Protection Act are not present at the site or within 1,000 meters of the site and, therefore, not shown on this map.

4.0 Site Plan Map, 845.220(a)(4)

Site plan map(s) in accordance with 845.220(a)(1)(4) are included in Attachment 4. The information required is depicted on multiple maps. Figure 4-1 shows the entire Powerton Station including the existing groundwater monitoring wells, the existing CCR surface impoundments and the main service corridors, transportation routes, and access roads. Cross-sectional maps showing the boundaries above and below ground level of the facility and CCR surface impoundments are included on Figures 4-2 through 4-5.

5.0 Construction Description, 845.220(a)(5)

The FAB is an inactive surface impoundment and the CCR from the north portion will be consolidated with the CCR in the south portion and then closed in place. The removal of the CCR from the north portion of the FAB will be conducted based on the closure by removal requirements in accordance with 845.740. The consolidated CCR in the south portion will then be closed in place with a Final Cover System (FCS) in accordance with 845.750(c). The anticipated steps to execute the removal of the north portion CCR, CCR consolidation, and closure in place for the south portion of the FAB are listed below.

- 1. Obtain a construction permit from the Illinois EPA for closing the FAB.
- 2. Clear and Grub the north portion of the FAB.
- 3. Dewater the south portion of the FAB into the Ash Surge Basin or into the north portion to be used as part of the hydraulic dredging of the north portion CCR. Promote additional drainage and dewatering by excavating sumps and trenches within the CCR material, using portable pumps as necessary to remove additional water by pumping water from the south portion of the FAB into the Ash Surge Basin.
- 4. Remove the CCR from the north portion of the FAB with placement in the south portion of the FAB.

- 5. Upon completion of dewatering and stabilization of the consolidated CCR, establishing the slopes of the final cover system by grading the stabilized CCR material to establish the slopes for the final cover system.
- 6. Installing an engineered final cover system (ClosureTurf), which consists of a structured geomembrane as the system's low permeability layer and a synthetic turf with sand infill as the system's final protective layer.
- 7. Initiating post-closure monitoring of groundwater and the final cover system's integrity.

The following sections detail the activities that will be executed to comply with the closure requirements.

5.1 Obtain EPA Construction Permit

This submittal is the application for an IEPA construction permit to close the FAB by consolidating the CCR from the northern portion in the southern portion and closing the southern portion with a final cover system.

5.2 Site Clearing and Grubbing

Vegetation will be removed from the site to execute the closure. Trees and grass from the north portion of the FAB and other areas around the south portion of the FAB as needed will be removed and disposed of either onsite or offsite. Any non-CCR soil on the north portion of the FAB will be scraped to expose the existing CCR material and stockpiled. As needed, the cleared areas around the south portion of the FAB will be graded and shaped to create a staging area for the contractor. If hydraulic dredging is used as part of transporting the CCR from the north portion to the south portion, a crane pad will be constructed.

5.3 Dewatering

The south portion of the FAB will be dewatered to an extent to allow the placement of CCR from the north portion of the FAB. Any standing water from the north portion of the FAB will also be removed through dewatering. The water will be removed through artificially pumping from the south portion and north portion of the FAB, as necessary. The water pumped from the south portion of the FAB will be discharged into the Ash Surge Basin and the water pumped from north portion of the FAB will be discharged to the northern grass area. Additional IEPA discharge permits will be applied for and obtained as necessary to discharge water towards the northern grass area. The water discharged to the Ash Surge Basin would be ultimately discharged through the process water treatment system, which is regulated by the Station's NPDES permit. The water discharged to the northern grass area will be in accordance with the appropriate IEPA permit and any discharge limits.

As much of the water as possible will be pumped from the south portion to expose the existing CCR and allow for the placement of the CCR from the north portion.

5.4 North Portion CCR Removal

The CCR from the north portion of the FAB would be either hydraulically dredged into the south portion of the FAB or mechanically excavated and dumped into the south portion of the FAB. The CCR in the north portion averages 16 feet in depth and the groundwater elevation ranges from 434 feet above mean sea level (ft amsl) to 439 ft amsl. Excavation of the north portion CCR may consist of mechanically excavating the CCR above the groundwater elevation, loading onto trucks and transporting to the south portion where they would place the CCR into the south portion of the FAB. If the CCR material requires it, CCR material may be temporarily stockpiled and allowed to drain. The embankment that surrounds the north portion of the FAB would also be excavated and placed in the south portion of the FAB. It is anticipated that the embankment would be mechanically excavated and transported to the south portion via trucks.

Excavation of the CCR below the groundwater elevation may occur through hydraulically dredging the CCR and discharging in the south portion of the FAB. The dredged CCR would be contained, allowing the CCR to settle and the water would be returned into the north portion of the FAB for reuse in the hydraulic dredging process. The water would be returned to the north portion of the FAB by mechanically pumping through a newly installed pipe through the berm that separates the north and south portions.

After CCR removal, the north portion of the FAB will be graded in accordance with the contours shown on Figure 2 to create a stormwater runoff management area for the south portion of the FAB. Dewatering will be necessary to finish grading the north portion of the FAB after CCR removal. Once grading is complete, a new gravel road will be constructed along the north perimeter to allow for access to the existing monitoring wells and the slopes of the north portion of the FAB will be permanently stabilized.

The gravel road is anticipated to be constructed using breaker run as an initial base to ensure the base of the road is above the groundwater elevation. The breaker run will then be covered with traffic bond or a similar type stone, graded, and compacted.

The amount of CCR that is either mechanically excavated or hydraulically dredged, or whether or not one method is chosen over the other will ultimately be decided by the contractor selected to perform the closure work. Having both methods of CCR removal approved in the construction permit allows flexibility to perform the CCR removal method that will be least impactful to the surrounding environment.

5.5 South Portion Grading and Stabilization

Once the CCR material placed in the south portion of the FAB is sufficiently dried, it will be graded to achieve the desired elevations needed for the FCS. The FCS would then be constructed on top of all the consolidated CCR. The south FAB FCS would be sloped to drain stormwater off, but not so steep as to cause erosion. In general, the CCR grades will be sloped towards the berm that divides the north and south portions to drain stormwater off the south portion FCS. The stormwater will then drain through a new pipe installed through the berm, which will discharge into the north portion of the FAB. This will minimize the potential for ponding and infiltration into

the CCR below. As the slopes are constructed, measures will be taken to prevent sloughing and movement of the material and final cover system during the post-closure period. The layer of fill material directly below the geomembrane will be free from large, protruding, or sharp objects that could potentially damage the geomembrane.

5.6 Installation of Final Cover System

The proposed FCS for the south portion of the FAB is the proprietary ClosureTurf cover system created by Watershed Geo, LLC. ClosureTurf consists of a geomembrane low permeability layer that also incorporates a drainage layer. The final protective layer is replaced with engineered synthetic turf that is infilled with sand/small aggregate to provide ballast to the synthetic turf. The infiltration layer will be a 60-mil HDPE geomembrane with a hydraulic conductivity that is no greater than 1×10^{-7} cm/sec. The engineered synthetic turf is comprised of polyethylene fibers that are tufted through a double layer of woven geotextiles that are highly UV and heat resistant. The engineered synthetic turf is then infilled with small aggregate that is approximately 1/8 inch to 1/4 inch diameter in size. The small aggregate is brushed into the synthetic turf to ensure that it settles to the bottom of the turf, which provides ballast and prevents the turf's movement during wind events.

Section 845.750(c)(1) requires that the low permeability layer must have a permeability less than or equal to the permeability of any bottom liner system present or a hydraulic conductivity no greater than 1 x 10^{-7} centimeters per second (cm/sec). The FAB does not have a bottom liner system; therefore, the structured geomembrane's permeability for the final cover system must be no greater than 1 x 10^{-7} cm/sec. As such, the structured geomembrane in the ClosureTurf final cover system will be a 60-mil HDPE structured geomembrane that combines a studded drain surface on the top side and a spiked friction surface on the bottom side into one geomembrane liner. This structured geomembrane has a permeability that has been independently tested at 1.5 x 10^{-13} cm/sec.

When using a geomembrane as the low permeability layer, it is required by 845.750(c)(1)(B)(i) to have a hydraulic flux equivalent or superior to a 3-foot layer of soil with a hydraulic conductivity of 1 x 10⁻⁷ cm/sec. The following table demonstrates that the geomembrane provides a superior performance at reducing the infiltration of liquid when compared to a 3-foot thick layer of earthen material. The following table is created here to demonstrate the geomembrane that will be used as part of the ClosureTurf final cover system is compliant with 845.750(c)(1)(B)(i).

Parameter	Symbol	Value		
Liquid Flow Rate Through Earthen Material				
Hydraulic Conductivity	k	$1 \times 10^{-7} \text{ m/sec}$		
Hydraulic Head Above Layer	h	0.14 m		
Layer Thickness	t	3 ft = 0.91 m		
Hydraulic Gradient Through Earthen Material	i = h / t	0.15		
Liquid Flow Rate Through Layer per Acre of Final Cover System	$q = k \times (i+1)$	$1.15 \times 10^{-7} \text{ m}^3/\text{sec}/\text{m}^2$		
Liquid Flow Rate Through Geomembrane				
Hole Area in Geomembrane	а	$3.1 \text{ mm}^2 / 4000 \text{ m}^2$		
Acceleration Due to Gravity	g	9.81 m/sec ²		
Hydraulic Head Above Layer	h	0.14 m		
Liquid Flow Rate Through Layer per Unit Area	$q = 0.6a(2gh)^{0.5}$	$7.71 \times 10^{-10} \text{ m}^3/\text{sec/m}^2$		

Table – Liquid Flow Rate Comparison Between Low Permeability Layers Constructed Using Geomembrane & Earthen Material

The geomembrane comes in rolls, which will be deployed with the spike side down and the stud side up on top of the graded general fill material. The rolls will be deployed perpendicular to the slope elevation contours and the deployment method will protect the geomembrane as well as the graded material below. Adequate anchoring will be used, such as sand bags, to prevent uplift by wind during the deployment of the geomembrane rolls. The edges of each roll are overlapped in the downgradient direction a minimum of three inches to form the seam that is then welded together. Welding is performed by either extrusion welding or hot wedge welding depending on manufacturer's recommendations and as construction of the geomembrane dictates.

The geomembrane will be covered with engineered synthetic turf and sand/aggregate infill, which will be the final protective layer. The engineered synthetic turf is green and replaces the need for an erosion layer and vegetation while providing a natural look and feel of grass and protecting the geomembrane from extreme weather. The engineered turf does not require as much maintenance as a vegetated final protective layer which needs to be mowed regularly and may need to be reseeded, refertilized, and/or regraded throughout the post-closure period. The engineered turf will be installed in accordance with the manufacturer's recommendations and equipment used during the installation will not damage the turf or the underlying geomembrane.

The engineered synthetic turf also comes in rolls, which will be rolled out on top of the geomembrane starting from the highest slope to the lowest slope. The rolls will be deployed so that the filaments of the engineered turf are pointed upslope and the edges of each roll touch each other so the seams can be joined together. The turf will be laid substantially smooth and it will be secured with sandbags at the top of any slope after it is deployed. The engineered synthetic turf

will cover all of the geomembrane and will follow the same slope as the geomembrane. The rolls of the engineered turf are joined together either by sewing with polyester thread or by fusion seaming with a fusion welder.

It's important to note that a thicker final protective layer is not needed for frost protection because the freeze-thaw cycle and freezing temperatures does not affect the hydraulic performance of the geomembrane liner that will be used as the final protective layer based on the Geosynthetic Institute's White Paper #28, titled "Cold Temperatures and Free[ze]-Thaw Cycling Behavior of Geomembranes and Their Seams."

A specified sand/aggregate infill will be placed between the blades of the engineered synthetic turf after the turf is in place on top of the geomembrane. The sand infill will be spread with a minimum thickness of 0.5 inches and a maximum thickness of 0.75 inches using conveyor systems and/or express blowers. The infill will be driven into the space between the synthetic blades and the sand/aggregate mixture will meet ASTM C-33-03 for fine aggregates. The infill thickness will be checked at approximately 100-foot grid intervals. The sand infill installation will be done as to not damage or displace previously installed ClosureTurf components and the placement will not occur with snow or ice on the engineered turf.

An anchor trench will be used on the perimeter of the FCS to anchor the ClosureTurf system. The anchor trench will bury the edge of the geomembrane and engineered turf beneath two feet of soil to anchor the geomembrane in place. The soil that is placed in the anchor trench will be compacted to prevent the potential pullout of the geomembrane and engineered turf.

QA/QC testing will be performed on the ClosureTurf cover system as part of the installation. Closure drawings and specifications are located in Attachment 5.

5.7 Post-Closure Groundwater Monitoring

Post-construction groundwater monitoring will be performed in accordance with the post-closure plan.

6.0 Facility Component Plans and Specifications, 845.220(a)(6)

The Powerton Generating Station is a coal-fired steam electric generating station that burns coal to generate electricity. The Station consists of four coal-fired boilers and two electric generating units (Units 5 and 6). Not much of the original history of the station is known, but some information was obtained from a Power Magazine article that was published in June 1930 and the existing station personnel.

The station became active in approximately 1928 with its first generating unit (Unit 1) and subsequently added an additional 3 generating units (Unit 2, Unit 3, and Unit 4) by the end of 1931. These original four units were pulverized-coal units compared to the cyclone units that the station currently uses. The original two units (Unit 1 and Unit 2) had pits at the bottom that collected bottom ash that would then be sluiced to outside pits. From the outside pits, a locomotive

crane transferred the bottom ash into rail cars, which placed the bottom ash on the premises to fill low areas. Based on historic drawings, it was observed that Unit 3 and Unit 4 have a similar base that would have collected bottom ash and sluiced it to an outside pit. The timeframe is unknown, but at some point, the bottom ash sluicing system was modified to sluice the bottom ash directly to the FAB where it was allowed to dewater and remain. As indicated in Section 1.3, the FAB stopped receiving bottom ash/CCR in the 1970's.

Subsequently, Units 1 through 4 have been retired and the station now operates Unit 5 and Unit 6 to generate electricity. Unit 5 and Unit 6 operate as cyclone style boilers as opposed to the pulverized-coal style boilers that were Unit 1 through Unit 4. The CCR generated by the units is now handled using bottom ash dewatering bins and fly ash silos to contain temporarily the CCR before it is hauled off-site.

7.0 Closure Construction, 845.220(d)

7.1 Closure Categorization Category

Based on Section 845.700(g), the category designation for the FAB is Category 6. The Category 6 designation for the FAB is based on the following:

- The FAB is an inactive CCR surface impoundment.
- There are no potable water supply wells or setbacks of existing potable water supply wells downgradient of the FAB. As such, Midwest Generation is not aware of any imminent threat to human health or the environment.
- The Illinois EPA EJ Start tool found at <u>https://illinois-epa.maps.arcgis.com/apps/webappviewer/index.html?id=f154845da68a4a3f837cd3b880b</u> 0233c was used to determine that the FAB is not within one mile of an area of environmental justice concern.
- Section 13 of this permit application has identified those groundwater concentrations downgradient of the FAB are not present above the standards provided in Section 845.600(a).

7.2 Final Closure Plan

The CCR from the north portion of the FAB will be removed and consolidated with the CCR in the south portion of the FAB. The consolidated CCR will be closed in place with a final cover system constructed in accordance with Section 845.750. The final cover system will be constructed consisting of a HDPE geomembrane infiltration-control layer and a synthetic turf/small aggregate infill erosion control layer. The written closure plan complies with Section 845.720 and is included as Attachment 7-1.

7.3 Closure Alternatives Analysis

A closure alternatives analysis (CAA) was completed for the FAB. The CAA evaluated closing the FAB by removal in accordance with 845.740 and closure in place in accordance with 845.750. The completed CAA is included in Attachment 7-2.

7.4 Proposed Closure Schedule

The proposed schedule to execute the closure of the FAB is included in the Final Closure Plan in Attachment 7-1. The initial closure activity is applying for and obtaining an IEPA construction permit and the final closure step is submitting a closure report and closure certification with the closure construction activities occurring in between. The total time to execute the closure activities is estimated to be up to 36 months, which includes time to obtain the construction permit and closure report approval.

7.5 Post-Closure Plan

The Post-Closure Plan for the FAB is included in Attachment 7-3. The Plan outlines the maintenance and inspection requirements for the final cover system.

8.0 Groundwater Modeling, 845.220(d)(3)

The groundwater modeling of the CCR surface impoundment as specified in Section 845.220(d)(3) is presented below.

8.1 Groundwater Modeling Inputs and Assumptions

The existing groundwater quality data do not indicate groundwater impacts above Section 845.600(a) groundwater protection standards (GWPS) downgradient of the FAB. Therefore, the modeling that was conducted is based on a theoretical distribution of dissolved contaminants beneath the FAB, assuming a source at the FAB. The modeling looks at theoretical, potential contamination from the FAB, and it assumes the FAB contains CCR and water and that a liner is non-existent.

To conduct the support modeling a theoretical unit source with a concentration of "1" was established beneath the FAB and projected forward in time 100 years with advection and dispersion to establish an equilibrated distribution of contaminants in groundwater if the FAB was the source. This equilibrated contaminant mass distribution was established as the initial conditions or base case. The equilibrated distribution (base case) of the mass was then used as the initial concentrations in the groundwater for model runs to simulate the closure alternatives to evaluate corresponding improvement in groundwater quality from the base case scenario.

The groundwater modeling inputs and parameters are discussed further in the groundwater modeling report in Attachment 8.

8.2 Groundwater Modeling Results

Four (4) closure scenarios were modeled involving the FAB and the scenarios are listed below.

- Scenario 1: Closure by removal of the both the north and south portions of the FAB;
- Scenario 2: Closure in place of both the north and south portions of the FAB;
- Scenario 3: Closure by removal of the north portion of the FAB with consolidation and closure in place of the south portion of the FAB;
- Scenario 4: In-situ Soil Stabilization of the north and south portion of the FAB.

The results of Scenario 1 indicate that removing the theoretical mass source reduces the hypothetical groundwater concentrations beneath the site approximately 40 to 50 percent at the Illinois River by 5 years and the dissolved mass was effectively removed from the groundwater within 25 years. The modeling indicates that the hypothetical groundwater source has moved completely through the groundwater at a point near the river within approximately 20 years.

The results of Scenario 2 indicate that preventing recharge within the footprint of the FAB reduces groundwater concentrations by approximately 10 percent at the river by 5 years with a slight reduction continuing until 25 years, when the groundwater plume reached steady state conditions.

The results of Scenario 3 indicate that removing the hypothetical source from the north portion of the FAB reduced groundwater concentrations in this area, and downgradient of, by 50 percent within 5 years, and the resulting plume reached a steady state after 25 years. Overall, the results of Scenario 3 show that the reduction in groundwater concentrations of approximately 15 to 40 percent are noted, depending on the observed location within the hypothetical area of impact.

The results of Scenario 4 indicate that groundwater concentrations between the FAB and the river are reduced by approximately 40 to 50 percent at the river by 5 years and the dissolved mass was effectively removed from the groundwater with 25 years. Overall, the results of Scenario 4 show that a reduction in groundwater concentrations of approximately 98% at a point approaching the river are observed within about 20 years.

8.3 Capture Zone Modeling

Capture zone modeling is not applicable based on the selected method of closure.

8.4 Groundwater Modeling Software

The groundwater modeling was completed using standard publicly available platforms, which included MODFLOW-NWT and for contaminant transport MT3D-USGS. The graphical user interface is Groundwater Vistas. Both MODFLOW-NWT and MT3D-USGS are publicly available programs that can be downloaded from the USGS website at <u>https://water.usgs.gov/water-</u>

resources/software/modflow-nwt/ and <u>https://www.usgs.gov/software/mt3d-usgs-groundwater-solute-transport-simulator-modflow</u>, respectively.

9.0 Groundwater Monitoring Program, 845.220(a)(7)

9.1 Hydrogeologic Site Characterization

9.1.1 Geology

The physiography of Tazewell County is made up of end moraines, plains (including flood plains), river terraces and valleys, alluvial fans and loess. The Illinois and Mackinaw River Valleys are the prominent landforms. Several small lakes are located near the western border of the county, which is bound by the Illinois River. Tazewell County is in the Till Plaines Section of the Central Lowland Province. Near surface soils near the subject impoundment have been grouped as Orthents, loamy and Urban Land. Urban Land units are primarily covered by pavement, railroad tracks, and buildings, which typically impede infiltration and are subject to surface runoff. The Orthents, loamy soils are fine to moderately coarse textured soils found in areas that have been modified by filling and leveling. Available water capacity is generally high, while permeability is typically high at the surface level and decreases with depth. Organic matter and plant nutrient content is low in the Orthents, loamy soils (Soil Survey of Tazewell County, Illinois).

Regionally, the stratigraphy in the area consists of approximately 100 to 125 feet of unconsolidated deposits consisting mainly of alluvial sands and gravels with some interspersed clays/silty clays. The unconsolidated deposits are underlain by alternating layers of limestone, shale, and coal of the Carbondale Formation. To evaluate local stratigraphy and as part of groundwater model development in support of the Construction Permit being submitted under separate cover, water and test well logs were obtained for wells in the general vicinity of the Powerton Generation Station. The stratigraphy data from these boring logs and the well locations are provided in Attachment 9-1. In addition, well logs from 21 monitoring wells that were installed in the vicinity of the subject surface impoundments were evaluated (MW-1 through MW-21; see Figure 9-1) with those borings ranging in depth from 30 feet to 41 feet. This information is also included in Attachment 9-1. Boring logs for these monitoring wells are included in Attachment 9-2. Based on an evaluation of this data, the following general site-specific stratigraphy is defined and geologic cross-sections are provided as Figures 9-2 through 9-7 based on the 21 on-site monitoring well boring logs:

- Fill (16' to 24.5' thick) Consisting of tan, brown and black fine to medium sand/silty sand with some gravel and clay seams. Several locations also included black cinders and brick fragments.
- Clay/silty clay/silts (0' to approximately 18' thick) Consisting of olive, brown and gray clays, silts and silty clays with some more organic rich layers. May locally contain fine silty sand and/or fine sand. This unit is not mappable across the site (i.e., discontinuous).

• Sand and gravel (thickness undetermined; borings terminate within unit) – Consisting of light brown, brown and/or gray medium to coarse sands and gravels.

Although no specific borings were extended into the sedimentary bedrock beneath this facility, water well logs obtained for water wells in the vicinity of the Powerton Generating Station indicate shale bedrock is encountered from approximately 35 to 140 feet bgs, depending on the location of the specific well. The boring logs indicate limestone was encountered from approximately 99 to 103 feet below grounds surface just northeast of the Powerton Generating Station and in close proximity to the Illinois River.

There are no underground mines beneath the subject CCR surface impoundment.

9.1.2 Hydrogeology

Based on information from the Soil Survey of Tazewell County, the average annual precipitation is approximately 36 inches with about 62% of that total falling between April and September of any given year. The average seasonal snowfall is approximately just over 26 inches. More site-specific precipitation data from a water station located in Peoria, Illinois, is provided in Table 9-1. The nearest natural surface water body is the Lost Creek which bends around the eastern edge of the FAB and property boundary. Lost Creek is an ephemeral stream that only flows during and after precipitation events. The Illinois River is located to the north of the subject CCR units. Powerton Lake is located to the west-northwest.

Groundwater beneath the Powerton Generating Station occurs under water table conditions. Saturated conditions are generally encountered between 18 to 32 feet bgs, depending on the well location. The FAB monitoring well network consists of monitoring wells (MW-01 [upgradient], MW-02, MW-03, MW-04, MW-05, and MW-10 [upgradient]). All wells associated with the FAB monitoring are screened within the extensive sand unit which underlies the area (i.e., the localized shallow clay/silty clay unit does not extend beneath the FAB). Table 9-2 provides groundwater elevation measurements obtained for the on-site monitoring wells in the vicinity of the subject CCR surface impoundment which includes data for the monitoring wells associated specifically with the ABB/ASB (upgradient wells MW-01, MW-09 and MW-19 and downgradient wells MW-08, MW- 11, MW-12, MW-15, MW-17 and MW-18) and FAB (upgradient wells MW-01 and MW-10 and downgradient wells MW-02 thru MW-05), respectively. FAB hydrographs of water levels are provided as Figure 9-8. A review of the hydrographs shows some temporal fluctuations with the highest water levels generally occurring within the first or second quarters of the year.

Groundwater flow maps for the four quarters from 3rd quarter 2020 through the 2nd quarter 2021 are provided as Figures 9-9 through 9-12. The maps include groundwater elevation data from all wells in the area, including the specific CCR monitoring wells associated with the subject FAB. The water levels from wells screened in the clay/silt unit and the water levels from monitoring wells screened within the sand unit were evaluated separately and used to generate groundwater flow maps for each unit. The water elevation data within the clay/silt unit indicates localized groundwater flow in a westerly direction. Groundwater flow within the more extensive sand unit shows some divergence with general flow in a northerly direction with flow components to the northwest and northeast towards the Illinois River. It is noted that MW-20 and MW-21 were

installed in March 2021 and are therefore not shown on groundwater flow maps from prior to that time.

The horizontal hydraulic gradient is steeper within the silt/clay unit than within the deeper sandy gravel unit. Table 9-3 provides a summary of the flow direction, gradients and an estimated rate of groundwater flow for each sampling event. The flow rate was calculated using the following equation:

$$V_s = \frac{Kdh}{n_e dl}$$

Where:

V_s is seepage velocity (distance/time) K is hydraulic conductivity (distance/time) *dh/dl* is hydraulic gradient (unitless) n_e is effective porosity (unitless)

Hydraulic conductivity (K) values were initially estimated for monitor wells MW-2, -5, -8, -9, and -10 from slug tests (Patrick Engineering 2011). The geometric mean of the test data for these wells was approximately 350 feet per day (ft/d; 4.05×10^{-3} ft/sec) for each well, as calculated by Patrick Engineering in the Hydrogeologic Assessment Report – Powerton Generating Station, February 2011. The slug test data were reviewed as part of the modeling study being completed for the Construction Permit application and the data were reanalyzed using corrected input values for the well casing and borehole dimensions and effective porosity of the sand filter pack material. The revised geometric mean of the test data for these wells decreased to approximately 120 ft/d (1.39 x 10^{-3} ft/sec) for each well. The hydraulic conductivity estimate for MW-8 should be used with caution as this monitoring well was screened through site fill and native silty clay. The aquifer properties derived from this well have likely been impacted by the more porous non-native fill material in the upper portion of the well screen and are likely not indicative of the silty clay aquifer. As such, this data was grouped with the more porous sand/gravel materials.

The hydraulic conductivity of 1.39×10^{-3} ft/sec was used for the sandy unit in Table 9-3 as discussed above. The average hydraulic conductivities of 6.38×10^{-7} ft/sec (silt/clay unit) in Table 9-3 is consistent with estimates from literature (Freeze and Cherry, 1979) and is the center of the range of conductivity values used in the modeling work (1.16 x 10^{-7} to 1.16 x 10^{-6} ft/sec). The estimated effective porosities of the silt/clay materials (0.40) and of the sandy materials (0.35) were obtained from literature (Applied Hydrogeology, Fetter, 1980).

At this time, based on the geology discussion in Section 9.1.1 and the site-specific hydrogeology discussion above, the groundwater beneath the CCR surface impoundments is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Groundwater Management Zone (GMZ) and an Environmental Land Use Control ("ELUC") have been established where the CCR surface impoundments are located as part of a Compliance Commitment Agreement (CCA) between Midwest Generation and Illinois EPA. The ELUC states that the groundwater shall not be used as potable water. The extent of the established and approved GMZ and ELUC are provided on Figure 9-13. The GMZ and ELUC occupy the same extent of the Powerton property.

A survey of all potable water sources within a 2,500 feet radius of the Midwest Generation Powerton Generating Station was completed by Natural Resources Technology (NRT) in 2009. The following databases and sources of information were utilized by NRT in order to determine community water source and water well locations and construction in the vicinity of the ash pond wastewater treatment systems:

- Illinois State Geological Survey (ISGS) -Water Well Database Query;
- Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and
- Illinois Division of Public Water Supply web-based Geographic System (GIS) files;

As part of this permit preparation, KPRG evaluated the NRT information and reviewed the new Illinois State Geological Survey database and interactive map references as "ILWATER". The survey results are provided on Figure 9-14. Twelve wells were identified within a 2,500-foot radius of the Station's subject CCR surface impoundments. The two wells off-site to the east are upgradient of the subject impoundments. There were eight wells identified on Powerton Station property on the ILWATER interactive map all of which were older construction wells installed by previous Ownership. Discussions with facility personnel indicate that all eight of these wells were taken out of service/abandoned. The two wells at the far western boundary of the 2,500 foot radius (identified as wells 9 and 10 from the NRT evaluation) are part of the six water wells currently on the Powerton Station property that are in use (the remaining four wells are located further west, outside the 2,500 foot search radius). These two wells are screened within the sand/gravel aquifer but are not directly downgradient of the surface impoundments and are separated from those units by the intake and outfall channels. They are regularly sampled and analyzed for potable water constituents. The sampling results consistently have complied with potable water regulations.

A search of the Illinois Department of Natural Resources dedicated nature preserve database (<u>https://www2.illinois.gov/dnr/INPC/Pages/NaturePreserveDirectory.aspx</u>) was performed to determine whether there may be a nearby-dedicated nature preserve. There were no identified dedicated nature preserves in the immediate vicinity of the subject surface impoundments.

Based on the geology of the site presented in Section 9.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from the subject CCR surface impoundments would be downward migration to groundwater within the unconsolidated silty clay or sand/gravel aquifer. Due to the proximity to the Illinois River and/or plant intake channel, which are hydrogeologic flow boundaries, minimal to no downward vertical flow mixing would be anticipated. There are no other utility or man-made preferential pathway corridors that would act to potentially intercept the flow to move any contamination in a direction other than under natural groundwater flow conditions. There are no potable water wells between the impoundments and anticipated flow discharge boundaries. In addition, as previously discussed, there are no potable surface water intakes on the Illinois River either along or within at least several miles downstream of the subject site.

There is quarterly groundwater quality data associated with the subject FAB surface impoundment dating back to December 2010. However, the parameter list was slightly different from that specified in Section 845.600 and included analysis of dissolved inorganic parameters rather than total inorganic parameters. That historical water quality data is provided in Attachment 9-3.

The FAB is subject to the federal requirements under Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule). As required under the Federal CCR Rule, eight rounds of background sampling were completed for the monitoring wells within the monitoring network for the subject CCR surface impoundments. This included the full list of Appendix III (detection monitoring) and IV (assessment monitoring) parameters. Since the effective date of the State CCR Rule, quarterly groundwater monitoring for the full list of parameters specified in Section 845.600, which includes all parameters in the Federal CCR Rule Appendix III/IV, has continued. This data is provided in Table 9-4 for the FAB. In addition, it is noted that Illinois EPA added turbidity measurements to the list with a required eight rounds of background of that parameter for each well in the monitoring network for the subject CCR surface impoundment. This data is provided in Table 9-5 for the FAB.

9.2 Groundwater Monitoring System Design and Construction Plans

A comprehensive monitoring well network that includes other basins in the vicinity of the FAB was established 2010 and expanded pursuant to the CCA. The well spacing was developed as part of a previous hydrogeologic assessment. The well depths were determined based on depth to groundwater and the base elevations of the basins being monitored and were approved by Illinois EPA. The groundwater monitoring network has been established for the FAB and is defined as:

• Upgradient wells MW-01 and MW-10 and downgradient wells MW-02 thru MW-05.

Groundwater data from the upgradient wells will be evaluated to provide a statistically representative upgradient water quality for the FAB prior to that water passing beneath the regulated unit. The proposed monitoring well networks will be utilized for determining whether potential leakage from the regulated unit may be causing or contributing to groundwater impacts in the vicinity of the units.

The monitoring wells MW-01 through MW-15 were installed in 2010 by Patrick Engineering, Inc. The remaining wells were installed by KPRG and Associates, Inc. at varying times since the initial 2010 well installations. Wells were drilled using 4.25-inch hollow stem augers. The wells were completed with standard 2-inch inner-diameter PVC casing with 10-feet of 0.010 slot PVC screen.

Filter sand pack around each screen was extended to approximately 2-feet above the top of the well screen. The remainder of the annulus was backfilled with bentonite. Surface completions include stick-up (above grade two to three feet) locking protector casings set in concrete aprons. The wells are further protected by traffic bollards, as necessary. Boring logs and well construction summaries for these wells are provided in Attachment 9-2. Ground surface and top-of-casing

elevations were surveyed by an Illinois licensed surveyor and are included in the previously referenced groundwater elevation table.

Each of the monitoring wells within the sampling network is outfitted with a dedicated sampling system. Specifically, each well has a QED Environmental Systems (QED) Well Wizard Model P1101M dedicated sampling pump with Model No. 37789 intake screens (0.010-inch slot). The screens are set within approximately one-foot of the base of the monitoring well.

In accordance with requirements under Section 845.630(g), Attachment 9-4 includes an Illinois licensed Professional Engineer certification of the above-defined monitoring system.

9.3 Groundwater Sampling and Analysis Program

9.3.1 Sample Frequency

The FAB is regulated under the Federal CCR Rule. As such all of the above defined monitoring wells (upgradient and down-gradient) have been sampled on a quarterly basis starting the 4th quarter of 2015 for eight consecutive quarters for both Appendix III and Appendix IV parameters specified in the Federal CCR Rule which is the same parameter listing as provided under the State CCR Rule Section 845.600(a) plus calcium. This dataset will facilitate the development of proper statistical evaluation procedures for the site and use in development of applicable GWPSs for each constituent pursuant to Section 845.600(b). Additional monitoring data collected since the initial eight rounds of background sampling will also be evaluated to determine whether an expanded dataset can be used in developing an appropriate and representative background for the State CCR Rule compliance. Illinois EPA added turbidity as an additional parameter that will require development of a statistical background. Since this parameter was not included within the Federal CCR Rule, eight rounds of turbidity measurements were obtained within the 180-day period since the effective date of the State Rule. However, this restricted period of background data collection does not facilitate evaluation of potential seasonal variations during the development of statistical background for this parameter.

Currently, all wells within this CCR monitoring network are being sampled on a quarterly basis for all parameters specified in Section 845.600(a) plus calcium and turbidity. Between quarterly monitoring events, groundwater level measurements from all designated CCR monitoring wells will be also obtained and recorded on a monthly basis. During the initial rounds of monthly groundwater level measurements after the enactment of the State CCR Rule, surface impoundment measurements were not collected because the instrumentation for these measurements was not yet in-place and available for recording the data.

Quarterly groundwater monitoring will continue during the active life of the impoundment and the post-closure care period or, if closure is by removal, then in accordance with monitoring frequency requirements under Section 845.740(b). It is noted that if after 5 years of quarterly monitoring it can be demonstrated that the facility meets the requirements specified in Section 845.650(b)(4), the owner can petition Illinois EPA to shift the monitoring frequency to semi-annual.

9.3.2 Sampling Preparation and Calibrations

Prior to any sampling event, the Station's designated Environmental Specialist shall be notified in advance of sampling crew arrival so that any arrangements can be made, including security clearance and training.

Prior to sampling activities, and at intervals recommended by the manufacturer, all non-dedicated equipment shall be cleaned and calibrated. Specifically, the field parameter water quality meter to be used for pH, specific conductance, turbidity and temperature will be calibrated using standard reference solutions. In addition, an operational check of the electronic water level probe will also be performed by placing the probe into a bucket of water and ensuring that the audio signal is triggered when the sensor meets the water interface. The associated tape measure of the probe will also be checked for wear.

The monitoring network consists of all dedicated sampling equipment (QED Well Wizard P1101M). The controller used to operate individual bladder pumps will be checked and maintained prior to arrival at the site based on manufacturer specifications.

All lab ware shall be obtained directly from an Illinois certified laboratory. Upon arrival to the site, the monitoring wells will be assessed for structural integrity. Each well cover (either stick-up or flush mount) will be inspected for proper labels, locks, any damage and be cleared of any flora or fauna that may be on the well or in the vicinity that would affect the sample or the sampling operation. In addition to any other notable observations, all of the above shall be entered on the sampling sheets. Once the well is uncovered and unlocked, and the well casing inspected, the well head shall be inspected for damage and cleanliness. At that point, the well will be considered ready for sampling per procedures described below.

9.3.3 Groundwater Sample Collection

Prior to initiating sampling, a round of groundwater levels will be collected from each monitoring well using an electronic water level probe. The timeframe over which these water levels are collected should be minimized and should not exceed 8 hours. The depth to water will be measured to the nearest one-hundredth of a foot from the top of casing using an electronic water level meter. The water level probe should be properly decontaminated between each reading using procedures specified in Section 9.3.4.

All of the monitoring wells at this Station are equipped with dedicated, down-hole, bladder pumps. At the top of casing for each well is a manifold with air and water quick connects and a port for a water level meter probe to fit so that an undisturbed water level can be obtained. Immediately prior to sampling, the depth to water will be measured again to the nearest one-hundredth of a foot from the top of casing using an electronic water level indicator and recorded onto the sampling sheets. Once recorded, an air compressor and flow controller will be attached to the air side quick connect and disposable tubing attached to the discharge connection. The discharge tubing will be run to a flow-through cell of the water quality meter. A discharge line from the flow-through cell will be placed into a vessel to allow for the measurement of the volume of groundwater removed. The water quality meter will be attached within the flow-through cell that allows for real time readings of pH, specific conductivity and temperature. It is noted that a calibration check of the water quality meter should be performed at the start and end of each day of sampling and recorded in the field

notes. If the meter calibration-check shows drift outside of manufacturer specifications, the meter should be recalibrated in the field using standard solutions per manufacturer requirements.

The air controller will be set to the necessary pressure and to the slowest pumping interval, approximately 50 second refill and 10 second pump (flow rates at this setting tend to be less than 100 milliliters/minute), and the compressor will be started. The intent of the low flow pumping will be to minimize drawdown in the well with an ideal goal of keeping the drawdown to 0.30 feet or less. Once the water has filled the flow-through cell, a reading of the parameters will be recorded. Readings will continue to be recorded until such time as all parameters are deemed stable for three consecutive measurements at which point a sample will be collected from the tubing prior to the flow-through cell. An unfiltered groundwater sample shall be collected directly from the water tubing after it is disconnected from the flow-through cell. The laboratory provided bottles shall be properly filled. Once the sample is collected, the bottles shall be properly labeled and placed on ice as necessary.

If the well would pump dry prior to stabilized field parameter readings, the well will be allowed to recover for up to 24-hours at which point water sample collection will be initiated.

In the event that a dedicated bladder pump fails to work, the following procedures should be implemented:

- Pull the dedicated tubing and pump from the well and ensure that the tubing does not come in contact with the ground.
- Visually inspect the intake of the pump for clogging from sedimentation. If clogging is noted, clean the intake with distilled water. If there is no clogging, dismantle the pump casing and inspect the bladder for any holes, cracks or tears.
- If the bladder is determined to be compromised (i.e., wear has resulted in cracking or tearing), remove the bladder and replace it with a new bladder. Properly clean all parts of the pump using procedures described in Section 9.3.4, reassemble the pump and slowly lower it back down hole. Continue sampling as described above.
- If the entire pump is determined to have failed, a new pump will need to be ordered for replacement and a modified sampling procedure will be implemented as described below.

In the case of bladder pump failure, at a specific well during a sampling event, the alternate sampling method will be the use of a portable peristaltic pump (the pump itself does not go downhole) assuming depth to water is less than 23 feet bgs. Clean disposable polyethylene tubing will be attached to the pump and the tubing will be slowly lowered down hole along with the water level probe. The pump will be operated at the lowest rate possible to achieve the same goals as for sampling described above (generally below 300 milliliters/minute which is within the range of standard low flow protocols). Water will be collected in a clean glass jar for field parameter readings. Once stable field parameters are recorded, the sample will be collected directly onto laboratory prepared containers for analysis. Upon completion of sample collection, the water level meter and tubing should be removed from the well. The polyethylene tubing should be

disconnected from the pump and discarded. The water level meter should be properly decontaminated as specified in Section 9.3.4. If depth to water is such that a peristaltic pump cannot be used, a submersible pump will need to be used. The submersible pump must be properly cleaned as specified in Section 9.3.4 prior to placement down the well. All subsequent procedures will be the same as above. The alternate sampling pump use will be recorded on the field data sheet for that well and noted in any subsequent reporting summary.

9.3.4 Equipment Decontamination

Any equipment that is used down-hole at more than one sampling location must be thoroughly decontaminated between uses. Based on procedures described above, only the water level meter is anticipated to be in this category, however, if a submersible pump needs to be used during a particular sampling event due to dedicated pump failure (see Section 9.3.3), these procedures will also apply. The water level meter probe and any measuring tape, or any other non-dedicated equipment that may need to be placed down the well that extended below the water surface will need to be cleaned with an Alconox solution, or equivalent, wash followed by a double rinse with distilled water. Any pump tubing that is not dedicated should be discarded and only clean tubing should be used down-hole.

9.3.5 Sample Preservation, Chain-of-Custody and Shipment

Since measurement of total recoverable metals is required by the State CCR Rule, the samples will not be filtered prior to collection. This will facilitate the analysis to capture both the particulate fraction and dissolved fraction of metals in natural groundwater. Groundwater samples will be collected directly into Illinois certified laboratory provided containers. Those containers will be prepared by the laboratory to contain any necessary chemical preservation. The samples shall be stored at temperatures required by the lab following sample collection. Table 9-6 includes a summary of sample bottle requirements, preservatives and holding times

All groundwater samples collected shall be transferred to the laboratory under proper COC procedures. The laboratory provided COC, completed with all pertinent information, shall be maintained from sample collection through receipt by the laboratory. The information shall include, but is not limited to, the following:

• Project name and number, state samples collected in, sample name and type, time and date collected, analysis requested, and printed name and signatures of person(s) sampling.

The COC shall be completed and properly relinquished by the field sampler(s) with all samples clearly printed or typed.

All samples will be either delivered directly to the laboratory or be shipped using Federal Express or a similar overnight service. It should be noted that Total Dissolved Solids (TDS) analysis has a 7-day holding time. TDS samples should be shipped to the laboratory within 72 hours after collection. All other holding times for the specified parameters are long enough to facilitate one shipment after the full round of sampling is complete.

9.3.6 Analytical Methods

A list of the analytical methods to be used by the laboratory for each specified parameter is included in the above referenced Table 9-9. Individual detection limits for the parameters may change slightly from sample to sample depending on potential matrix interferences with a sample (e.g., amount of suspended solids/sediment) and/or the concentration of the constituent in the sample. However, the base detection limits will be set below the applicable Illinois Class I Drinking Water Standards as defined in Section 845.600(a)(1) for that compound which are also provided in Table 9-6.

9.3.7 Quality Assurance and Quality Control Laboratory

Only an Illinois certified analytical laboratory will be used for sample analysis. The laboratory will be conducting their work under their specific approved Quality Assurance and Quality Control (QA/QC) program. A copy of their program can be available upon request. A standard Level II data documentation package will be included in all subsequent reporting, however, the lab will be requested to also provide a Level IV data documentation package (i.e., U.S. EPA Contract Laboratory Protocol equivalent) in the event more detailed data validation/evaluation is deemed necessary.

<u>Field</u>

The QA/QC program for fieldwork will include the collection of blind duplicates and the use of a laboratory supplied trip blank. The blind duplicate will be collected from a random well during every sampling event in which more than three (3) samples are collected. The duplicate will be blind in the manner that there will be no way for the laboratory to determine from which well or point the sample was collected.

Upon receipt of the analytical data, a determination will be made if the duplicate is consistent with the sample collected from the well/point. A generally acceptable range for groundwater samples is +/- 30 percent. If outside the acceptable range, a resample may be determined to be necessary and reanalyzed. The trip blank analytical data will be reviewed for any values other than non-detect. If there are any questions regarding the duplicate, trip blank, or other reported analytical QA/QC runs, the laboratory will be contacted to determine the effect on data quality, if any, and usability. If necessary, a specific well may need to be re-sampled.

9.3.8 Statistical Methods

A proposed statistical evaluation plan meeting the requirements specified in Section 845.640(f) is provided in Attachment 9-5 along with a certification of the plan by an Illinois licensed Professional Engineer.

9.4 Groundwater Monitoring Program

The groundwater sample and water level collection frequency is discussed in Section 9.3.1 above.

As previously noted, the monitoring well system for the subject surface impoundment consists of the following monitoring wells:

• FAB monitoring network - upgradient wells MW-01 and MW-10 and downgradient wells MW-02 thru MW-05

Eight rounds of background sampling for the purposes of statistical evaluation and background determination is available from the initial groundwater sampling which occurred starting in 2015 in compliance with the Federal CCR Rule requirements. Subsequent groundwater sampling has also occurred under the Federal CCR Rule detection and assessment monitoring requirements. All available CCR monitoring data through the end of the second quarter 2021 is summarized in Table 9-4 and the eight rounds of turbidity data collected since the enactment of the State CCR Rule in April 2021 in Table 9-5.

Using the currently available data for the subject CCR surface impoundment, proposed site specific Groundwater Protection Standards (GWPSs) have been established in accordance with Section 845.600(b) and are summarized in Table 9-7 for the FAB. The background concentrations noted in these tables were calculated using the statistical evaluation approach noted in Section 9.3.8 and provided in Attachment 9-5. A presentation of the statistical evaluations, which resulted in the background concentrations, is provided in Attachment 9-6.

Once the proposed GWPSs presented in this permit application are approved by Illinois EPA, these values will be used for all subsequent groundwater monitoring data comparisons. Monitoring will continue on a quarterly basis for all constituents specified in Section 845.600(a)(1) plus calcium and turbidity. In accordance with Section 845.610(b)(3)(D), a data summary report will be submitted to Illinois EPA within 60-days of receipt of all analytical data (including resample data if necessary as discussed below) which will include a groundwater flow map for the quarterly sampling event, summary of water level elevations collected during the reporting period (monthly measurements), and a data summary including summary data tables with a comparison against the established/approved GWPSs. This report will be placed the facility's operating record.

If during a monitoring event, a constituent(s) is/are detected above an established and approved GWPS, that well will be resampled for the specific constituent(s). If the resample data confirms that the constituent(s) concentration(s) is/are above the GWPS then the following will occur:

- Characterize the nature and extent of the potential release and any relevant site conditions that may affect the remedy evaluation/selection. This characterization must meet the requirements set forth under Section 845.650(d)(1).
- If groundwater impacts extend off-site, provide off-site landowner/resident notifications as specified under Section 845.650(d)(2) and place the notifications into the facility's
operating record. This must occur within no more than 30-days of determination that a GWPS has been exceeded.

- An Alternate Source Demonstration (ASD) may be initiated and completed for submittal to Illinois EPA review/approval as allowed under Section 845.650(e). Place the ASD into the facility's operating record.
- Within 90-days of determining that a constituent(s) was detected above an established/approved GWPS at a downgradient waste boundary monitoring point, initiate an assessment of corrective measures meeting the requirements specified under Section 845.660 unless an ASD is submitted in accordance with Section 845.650(d)(2) and subsequently approved by the Illinois EPA.

By no later January 31st of each year, an Annual Groundwater Monitoring and Corrective Action Report will be prepared for inclusion as part of an Annual Consolidated Report for the facility. The Annual Groundwater Monitoring and Corrective Action Report will meet the requirements set forth under Section 845.610(e)(1 through 4). The Annual Consolidated Report will be placed into the facility's operating record.

10.0 Professional Engineering Signature, 845.220(a)(8)

This construction permit application has been prepared to meet the requirements of 35 Ill. Adm. Code 845.220(a) and 845.220(d).

Joshua D. Davenport, P.E. Illinois Professional Engineer

11.0 Owner Certification, 845.220(a)(9)

A certification stating that the owner or operator of the CCR surface impoundment has completed the public notification and public meetings that are required under the Ill. Adm. Code Title 35, Part 845 Section 240 is included in Attachment 11. Also included is a summary of the issues raised by the public and a summary of any revisions, determinations, or other considerations made in response to those issues, and a list of interested persons in attendance who would like to be added to the Agent's list for the facility.

CONSTRUCTION PERMIT TABLES

Table 2 - Former Ash Basin CCR Chemical Constituents Analytical Results Powerton Generating Station

	Ash
Parameter Name	Sample
	6/23/2021
Antimony	<2.0
Arsenic	1.8
Barium	88
Beryllium	1.9
Boron	64
Cadmium	< 0.20
Calcium	13,000
Chloride	27
Chromium	34
Cobalt	5.2
Fluoride	1.3
Lead	4.1
Lithium	10
Mercury	0.032
Molybdenum	2.4
Selenium	< 0.99
Sulfate	52
Thallium	< 0.99

Notes:

All results are in milligrams per kilogram (mg/kg), except for percent solids, which is percent (%)

F1 - MS and/or MSD recovery exceeds control limits

V - Serial Dilution exceeds the control limits

Powerton Station								
Month	Average Monthly Precipitation* (inches)							
January	2.02							
February	1.90							
March	2.56							
April	3.98							
May	4.65							
June	3.76							
July	3.66							
August	3.44							
September	3.52							
October	3.16							
November	2.79							
December	2.20							

Notes:

* - Historical precipitation data was obtained from the National Oceanic and Atmospheric Administration. Precipitation data was averaged from thirteen stations located in and within close proximity to Pekin, Illinois. Dates of precipitation data range from 1991-2020.

Table 9-2. Former Ash Basin Groundwater Elevations - Midwest Generation, LLC, Powerton Station, Pekin, IL

Well ID	Date	Top of Casing Elevation (ft above MSL)	Depth to Groundwater	Groundwater Elevation (ft above MSL)
	11/16/2015	465.24	26.04	439.20
	2/22/2016	465.24	21.90	443.34
	5/16/2016	465.24	21.83	443.41
	8/15/2016	465.24	23.89	441.35
	11/14/2016	465.24	23.38	441.86
	2/13/2017	465.24	21.71	443.53
	5/1/2017	465.24	18.87	446.37
	6/20/2017	465.24	21.54	443.70
	8/25/2017	465.24	24.70	440.54
	11/8/2017	465.24	24.92	440.32
MW-01	5/17/2018	465.24	22.66	442.58
	8/8/2018	465.24	26.05	439.19
	10/30/2018	465.24	24.69	440.55
	2/25/2019	465.24	19.44	445.80
	4/29/2019	465.24	20.15	445.09
	8/26/2019	465.24	23.85	441.39
	2/24/2020	465.24	20.71	444.53
	4/27/2020	465.24	20.90	444.34
	12/7/2020	465.24	25.69	439.55
	4/7/2021	465.24	22.20	443.04
	5/10/2021	465.24	23.41	441.83
	6/20/2017	462.60	22.04	440.56
	8/23/2017	462.60	28.42	434.18
	11/7/2017	462.60	26.08	436.52
	5/17/2018	462.60	23.26	439.34
	8/7/2018	462.60	29.70	432.90
	10/30/2018	462.60	26.77	435.83
100	2/25/2019	462.60	17.02	445.58
WIW-02	4/29/2019	462.60	19.26	443.34
	8/26/2019	462.60	27.45	435.15
	2/24/2020	462.60	20.35	442.25
	4/27/2020	462.60	20.51	442.09
	12/7/2020	462.60	28.71	433.89
	4/7/2021	462.60	21.95	440.65
	5/10/2021	462.60	23.01	439.59
	6/20/2017	462.48	22.31	440.17
	8/23/2017	462.48	28.18	434.30
	11/7/2017	462.48	25.38	437.10
	5/17/2018	462.48	22.62	439.86
	8/7/2018	462.48	29.17	433.31
	10/30/2018	462.48	24.71	437.77
MW-03	2/25/2019	462.48	17.20	445.28
141 14 -0.5	4/29/2019	462.48	18.85	443.63
	8/26/2019	462.48	27.65	434.83
	2/24/2020	462.48	20.18	442.30
	4/27/2020	462.48	20.43	442.05
	12/7/2020	462.48	28.61	433.87
	4/7/2021	462.48	21.73	440.75
	5/10/2021	462.48	22.98	439.50

Well ID	Date	Top of Casing Elevation (ft above MSL)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (ft above MSL)
	6/20/2017	460.57	22.15	438.42
	8/28/2017	460.57	28.49	432.08
	11/7/2017	460.57	25.62	434.95
	5/17/2018	460.57	24.13	436.44
	8/7/2018	460.57	29.23	431.34
	10/30/2018	460.57	26.58	433.99
	2/25/2019	460.57	15.45	445.12
MW-04	4/29/2019	460.57	15.88	444.69
	8/26/2019	460.57	27.35	433.22
	2/24/2020	460.57	19.81	440.76
	4/27/2020	460.57	19.76	440.81
	12/7/2020	460.57	28.50	432.07
	4/7/2021	460.57	21.90	438.67
	5/10/2021	460 57	23.90	436.65
	11/16/2015	400.57	25.72	432.10
	2/22/2016	458.58	20.39	432.19
	5/16/2016	458.66	16.59	437.34
	3/16/2016	438.00	10.58	442.08
	8/15/2016	458.00	23.59	435.07
	11/14/2016	458.66	22.72	435.94
	2/13/2017	458.00	19.13	439.55
	5/1/2017	458.66	13.09	445.57
	6/20/2017	458.66	19.43	439.15
	8/28/2017	458.66	25.38	433.20
	11/7/2017	458.66	22.91	435.67
MW-05	5/17/2018	458.66	21.54	437.04
	8/7/2018	458.66	26.17	432.41
	10/30/2018	458.66	23.97	434.61
	2/25/2019	458.66	13.21	445.45
	4/29/2019	458.66	15.40	443.26
	8/26/2019	458.66	24.35	434.31
	2/24/2020	458.66	17.25	441.41
	4/27/2020	458.66	17.41	441.25
	12/7/2020	458.66	25.65	433.01
	4/7/2021	458.66	19.40	439.26
	5/10/2021	458.66	21.38	437.28
	6/22/2017	457.31	13.46	443.85
	8/24/2017	457.31	16.39	440.92
	11/9/2017	457.31	16.86	440.45
	5/16/2018	457.31	14.88	442.43
	8/8/2018	457.31	17.88	439.43
	10/30/2018	457.31	17.04	440.27
MW-10	2/25/2019	457.31	11.28	446.03
	4/29/2019	457.31	11.88	445.43
	8/26/2019	457.31	15.89	441.42
	2/24/2020	457.31	12.64	444.67
	4/27/2020	457.31	12.75	444.56
	12/7/2020	457.31	17.80	439.51
	4/7/2021	457.31	14.21	443.10
	5/10/2021	457.31	15.58	441.73

MSL - Mean Sea Level TOC - Top of Casing

Table 9-3. Hydraulic Gradient, Direction and Seepage	Velocity. Midwest Generation, LLC,	Powerton Station, Pekin, IL
--	------------------------------------	-----------------------------

DATE	Screened Unit	Groundwater Flow	Kavg (ft/sec)*	Average Hydraulic Gradient (ft/ft)	Porosity	Estimated Seepage
11/16/2015	Silt/clay	Westerly	6.380E-07	0.0093	0.4	0.001
11/16/2015	Sandy	North-Northwest	1.390E-03	0.0026	0.35	0.87
2/22/2016	Silt/clay	Westerly	6.380E-07	0.0098	0.4	0.001
2/22/2016	Sandy	North-Northwest	1.390E-03	0.0030	0.35	1.03
5/16/2016	Silt/clay	Westerly	6.380E-07	0.0124	0.4	0.002
5/16/2016	Sandy	North-Northwest	1.390E-03	0.0021	0.35	0.72
8/15/2016	Silt/clay	Westerly	6.380E-07	0.0093	0.4	0.001
8/15/2016	Sandy	North-Northwest	1.390E-03	0.0014	0.35	0.48
11/14/2016	Silt/clay	Westerly	6.380E-07	0.0083	0.4	0.001
11/14/2016	Sandy	North-Northwest	1.390E-03	0.0014	0.35	0.48
2/13/2017	Silt/clay	Westerly	6.380E-07	0.0091	0.4	0.001
2/13/2017	Sandy	Northeasterly - Northwesterly	1.390E-03	0.0049	0.35	1.68
5/1/2017	Silt/clay	Westerly	6.380E-07	0.0100	0.4	0.001
5/1/2017	Sandy	Northeasterly - Northwesterly	1.390E-03	0.0021	0.35	0.72
6/20/2017	Silt/clay	Westerly	6.380E-07	0.0088	0.4	0.001
6/20/2017	Sandy	Northeasterly - Northwesterly	1.390E-03	0.0057	0.35	1.96
8/25/2017	Silt/clay	Westerly	6.380E-07	0.0214	0.4	0.003
8/25/2017	Sandy	North-Northwest	1.390E-03	0.0174	0.35	5.97
11/8/2017	Silt/clay	Westerly	6.380E-07	0.0267	0.4	0.004
11/8/2017	Sandy	North-Northwest	1.390E-03	0.0157	0.35	5.39
5/17/2018	Silt/clay	Westerly	6.380E-07	0.0070	0.4	0.0010
5/17/2018	Sandy	North-Northwest	1.390E-03	0.0042	0.35	1.44
8/7/2018	Silt/clay	Westerly	6.380E-07	0.0263	0.4	0.004
8/7/2018	Sandy	North-Northwest	1.390E-03	0.0037	0.35	1.27
4/29/2019	Silt/clay	Westerly	6.380E-07	0.0129	0.4	0.0018
4/29/2019	Sandy	North-Northwest	1.390E-03	0.0022	0.35	0.75
11/11/2019	Silt/clay	Westerly	6.380E-07	0.0114	0.4	0.0016
11/11/2019	Sandy	North-Northwest	1.390E-03	0.0008	0.35	0.27
4/27/2020	Silt/clay	Westerly	6.380E-07	0.0114	0.4	0.0016
4/27/2020	Sandy	Northeasterly - Northwesterly	1.390E-03	0.0023	0.35	0.79
12/7/2020	Silt/clay	Westerly	6.380E-07	0.0137	0.4	0.0019
12/7/2020	Sandy	Northeasterly - Northwesterly	1.390E-03	0.0037	0.35	1.27
5/10/2021	Silt/clay	Westerly	6.380E-07	0.0208	0.4	0.0029
5/10/2021	Sandy	North-Northwest	1.390E-03	0.0041	0.35	1.41

* Kavg - See text discussion in Section 9.1.2 for average hydraulic conductivity values used (feet/second).
** - Porosity estimates from Applied Hydrogeology, Fetter, 1980.

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
	11/16/2015	1.0	98	44	0.17	7.07	93	530	< 0.003	< 0.001	0.057	^ < 0.001	< 0.0005	< 0.005	< 0.001	* < 0.0005	< 0.01	< 0.0002	< 0.0050	0.744	< 0.0025	* < 0.002
	2/25/2016	0.2	110	42	0.16	7.23	54	460	< 0.003	0.0025	0.053	< 0.001	< 0.0005	< 0.005	0.0014	0.0019	< 0.01	< 0.0002	< 0.005	< 0.722	0.0029	< 0.002
	5/20/2016	0.34	100	44	0.17	6.95	65	430	< 0.003	0.0081	0.062	< 0.001	< 0.0005	0.007	0.0053	0.011	< 0.01	< 0.0002	< 0.005	< 0.953	< 0.0025	< 0.002
	8/17/2016	0.27	78	39	0.25	7.16	50	530	< 0.003	0.0014	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.0014	< 0.01	< 0.0002	0.0057	< 0.491	< 0.0025	< 0.002
	11/16/2016	0.18	97	39	0.21	7.22	32	500	< 0.003	0.0051	0.056	< 0.001	< 0.0005	< 0.005	0.0044	0.0082	< 0.01	< 0.0002	0.0059	< 0.618	< 0.0025	< 0.002
	2/14/2017	0.18	120	55	0.17	7.30	60	550	< 0.003	0.0041	0.056	< 0.001	< 0.0005	< 0.005	0.0045	0.0076	< 0.01	< 0.0002	0.0056	< 0.837	< 0.0025	< 0.002
	5/3/2017	0.19	86	66	0.16	7.41	45	460	< 0.003	0.0015	0.045	< 0.001	< 0.0005	< 0.005	0.0033	0.0067	< 0.01	< 0.0002	< 0.005	0.574	< 0.0025	< 0.002
	6/21/2017	0.18	85	58	0.18	7.60	47	540	< 0.003	< 0.001	0.040	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	< 0.418	< 0.0025	< 0.002
MW-01	8/25/2017	0.56	86	41	0.18	7.41	63	490	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0059	0.775	< 0.0025	< 0.002
up-gradien	t 11/8/2017	0.57	130	38	0.12	6.69	61	640	< 0.003	< 0.001	0.083	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.343	< 0.0025	< 0.002
	5/17/2018	0.15	88	50	0.12	6.70	48	540	< 0.003	< 0.001	0.045	< 0.001	< 0.0005	< 0.005	< 0.001	0.00068	< 0.01	< 0.0002	< 0.005	< 0.396	< 0.0025	< 0.002
	8/8/2018	0.14	86	48	0.13	6.80	43	430	< 0.003	< 0.001	0.051	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.579	< 0.0025	< 0.002
	4/30/2019	0.07	78	54	0.17	7.20	27	450	< 0.003	0.0014	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	0.0017	< 0.01	< 0.0002	< 0.005	< 0.656	< 0.0025	< 0.002
	8/26/2019	0.57	100	39	0.13	7.15	71	550	< 0.003	< 0.001	0.053	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.802	< 0.0025	< 0.002
	2/24/2020	0.28	87	53	0.21	7.19	34	410	< 0.003	< 0.001	0.044	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.00057	< 0.01	< 0.0002	< 0.005	< 0.478	< 0.0025	< 0.002
	4/28/2020	0.33	110	46	0.19	7.17	41	470	NA	< 0.001	0.051	NA	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.628	< 0.0025	< 0.002
	12/7/2020	0.59	100	54	0.25	7.22	55	640	NA	< 0.001	0.058	NA	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0052	< 0.542	< 0.0025	< 0.002
	5/11/2021	0.21	85	51	0.21	7.52	37	450	< 0.003	< 0.001	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.01	0.521	< 0.0025	< 0.002
	6/22/2017	0.46	100	48	0.19	6.81	54	1.0	< 0.003	0.0023	0.250	< 0.001	< 0.0005	< 0.005	0.008	0.003	< 0.01	< 0.0002	< 0.005	0.408	0.0042	< 0.002
	8/24/2017	0.32	93	51	0.18	7.14	57	480	< 0.003	0.0020	0.220	< 0.001	< 0.0005	< 0.005	0.007	0.003	< 0.01	< 0.0002	< 0.005	0.564	0.0044	< 0.002
	11/9/2017	0.36	98	48	0.18	6.78	64	500	< 0.003	< 0.0010	0.220	< 0.001	< 0.0005	< 0.005	0.004	< 0.001	< 0.01	< 0.0002	< 0.005	1.020	0.0034	< 0.002
	5/16/2018	0.42	93	44	0.19	7.64	80	530	< 0.003	0.0010	0.220	< 0.001	< 0.0005	< 0.005	0.021	0.001	< 0.01	< 0.0002	< 0.005	1.550	0.0050	< 0.002
	8/8/2018	0.39	99	58	0.19	7.10	60	550	< 0.003	0.0012	0.220	<^ 0.001	< 0.0005	< 0.005	0.014	0.001	< 0.01	< 0.0002	< 0.005	< 0.551	0.0062	< 0.002
	10/30/2018	0.34	110	49	0.22	7.65	49	510	< 0.003	0.0110	0.410	< 0.001	0.0008	0.024	0.047	0.023	0.02	< 0.0002	< 0.005	3.00	0.0046	< 0.002
MW-10	2/26/2019	0.39	150	48	0.21	6.77	36	540	< 0.003	0.0220	0.590	< 0.005	0.0015	0.063	0.081	0.036	0.03	< 0.0002	0.007	4.130	0.0041	< 0.002
up-gradien	5/1/2019	0.35	92	50	0.22	6.81	30	470	< 0.003	0.0023	0.270	< 0.001	< 0.0005	< 0.005	0.011	0.0028	< 0.01	< 0.0002	< 0.005	1.330	0.0037	< 0.002
	8/26/2019	0.30	84	48	0.19	7.09	30	410	< 0.003	0.0017	0.190	< 0.001	< 0.001	< 0.005	0.007	0.0016	< 0.01	< 0.0002	< 0.005	1.540	0.0050	< 0.002
	2/25/2020	1.40	110	45	0.23	6.82	59	500	< 0.003	0.0033	0.280	<^ 0.001	< 0.0005	0.0086	0.011	0.0046	< 0.01	< 0.0002	< 0.005	1.07	0.0058	< 0.002
	4/28/2020	1.00	110	41	0.24	6.80	64	550	NA	0.0022	0.250	NA	NA	< 0.005	0.0065	0.0017	NA	NA	< 0.005	0.639	0.0054	NA
	12/8/2020	2.40	120	44	0.26	7.11	71	550	NA	0.0015	0.280	NA	NA	< 0.005	0.0089	0.0023	NA	< 0.0002	< 0.005	1.76	0.0031	NA
	5/11/2021	0.64	100	52	0.24	7.01	59	540	< 0.003	0.0011	0.260	< 0.001	< 0.001	< 0.005	0.008	0.0009	< 0.01	< 0.0002	< 0.005	1.42	0.0049	< 0.002
	6/20/2017	0.33	90	55	0.19	7.01	47	500	< 0.003	0.0012	0.075	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
	8/23/2017	V 1.30	86	49	0.19	7.40	61	440	< 0.003	< 0.001	0.062	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.833	< 0.0025	< 0.002
	11/7/2017	3.70	98	46	0.17	7.10	88	550	< 0.003	0.0014	0.091	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.309	0.0027	< 0.002
	5/15/2018	0.22	80	45	0.23	7.71	54	500	< 0.003	0.0013	0.065	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	0.0004	< 0.005	< 0.408	< 0.0025	< 0.002
	8/7/2018	1.50	89	54	0.15	7.09	51	530	< 0.003	0.0016	0.067	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.622	< 0.0025	< 0.002
MW 02	10/30/2018	0.23	86	43	0.17	7.83	34	480	< 0.003	0.0015	0.067	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.564	< 0.0025	< 0.002
down-	2/26/2019	0.07	69	49	0.16	7.82	23	400	< 0.003	0.0026	0.041	< 0.001	< 0.0005	< 0.005	< 0.001	0.0013	< 0.01	< 0.0002	< 0.005	< 0.425	< 0.0025	< 0.002
gradient	4/30/2019	0.12	79	48	0.16	7.60	30	440	< 0.003	0.0013	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.441	< 0.0025	< 0.002
	8/26/2019	0.51	86	50	0.18	7.13	32	400	< 0.003	0.0011	0.065	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	1.180	< 0.0025	< 0.002
	2/24/2020	0.33	89	53	0.20	7.43	37	410	< 0.003	0.0011	0.061	< ^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.485	< 0.0025	< 0.002
	4/28/2020	0.33	90	50	0.20	7.32	41	430	NA	0.0016	0.06	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	< 0.005	< 0.54	< 0.0025	NA
	12/9/2020	0.66	100	41	0.15	7.78	64	430	NA	< 0.001	0.076	NA	NA	< 0.005	< 0.001	< 0.0005	NA	< 0.0002	0.0059	< 0.471	< 0.0025	NA
	5/11/2021	0.23	79	51	0.21	7.70	37	370	< 0.003	0.0015	0.057	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.010	< 0.528	< 0.0025	< 0.002

NA - Not Analyzed

Notes: All units are in mg/l except pH is in standard units. V- Serial dilution exceeds control limits. H- Sample was prepped or analyzed beyond specified holding time

F1 - MS and/or MSD Recovery outside of limits. * - LCS or LCSD is outside acceptance limits. ^ - Denotes instrument related QC exceeds the control limits

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
	6/20/2017	0.4	76	54	0.29	7.26	49	480	< 0.003	0.0013	0.066	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.325	< 0.0025	< 0.002
	8/23/2017	0.40	79	52	0.28	7.44	52	430	< 0.003	0.0010	0.066	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	1.200	< 0.0025	< 0.002
	11/7/2017	0.31	79	62	0.26	7.04	61	460	< 0.003	0.0013	0.068	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.588	< 0.0025	< 0.002
	5/15/2018	0.35	87	66	0.27	7.53	77	520	< 0.003	0.0010	0.059	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.489	< 0.0025	< 0.002
	8/7/2018	0.40	82	67	0.22	6.60	49	500	< 0.003	0.0015	0.067	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
MW-03	10/30/2018	0.20	74	44	0.25	7.84	26	400	< 0.003	0.0014	0.056	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.354	< 0.0025	< 0.002
down-	2/26/2019	0.06	74	56	0.24	7.49	25	410	< 0.003	0.0013	0.054	< 0.001	< 0.0005	< 0.005	< 0.001	0.0007	< 0.01	< 0.0002	< 0.005	< 0.399	< 0.0025	< 0.002
gradient	4/30/2019	0.28	74	49	0.22	7.17	38	390	< 0.003	< 0.001	0.060	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.668	< 0.0025	< 0.002
	8/26/2019	0.31	75	50	0.26	7.17	14	380	< 0.003	0.0014	0.069	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.444	< 0.0025	< 0.002
	2/24/2020	0.33	87	53	0.22	7.10	65	470	< 0.003	< 0.001	0.066	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.400	< 0.0025	< 0.002
	4/28/2020	0.24	86	46	0.22	7.03	79	410	NA	0.0013	0.066	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	< 0.005	< 0.498	0.0036	NA
	12/9/2020	0.86	92	45	0.28	7.46	60	390	NA	< 0.001	0.086	NA	NA	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.432	< 0.0025	NA
	5/11/2021	0.22	75	49	0.21	7.33	38	390	< 0.003	< 0.001	0.070	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.519	< 0.0025	< 0.002
	6/20/2017	0.5	77	55	0.29	7.45	53	480	< 0.003	< 0.001	0.0025	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.343	< 0.0025	< 0.002
	8/28/2017	V 0.73	90	89	0.33	7.13	110	680	< 0.003	< 0.001	0.028	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.013	< 0.246	< 0.0025	< 0.002
	11/7/2017	0.60	110	94	0.24	6.80	130	650	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.332	0.0092	< 0.002
	5/15/2018	0.68	87	66	0.27	7.63	100	630	< 0.003	< 0.001	0.037	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.661	< 0.0025	< 0.002
	8/7/2018	0.79	84	71	0.32	6.72	49	510	< 0.003	0.0011	0.031	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.006	< 0.334	< 0.0025	< 0.002
MW-04	10/30/2018	0.54	100	80	0.24	7.55	91	690	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.423	< 0.0025	< 0.002
down-	2/26/2019	0.38	79	55	0.25	7.18	52	490	< 0.003	0.0013	0.033	< 0.001	< 0.0005	< 0.005	0.001	0.0012	< 0.01	< 0.0002	< 0.005	0.366	< 0.0025	< 0.002
gradient	4/30/2019	0.36	-74	48	0.25	7.08	35	380	< 0.003	< 0.001	0.026	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.684	< 0.0025	< 0.002
	8/26/2019	0.64	91	60	0.24	7.08	14	490	< 0.003	< 0.001	0.032	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.008	1.090	< 0.0025	< 0.002
	2/24/2020	0.34	81	49	0.20	7.05	67	440	< 0.003	< 0.001	0.024	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.595	< 0.0025	< 0.002
	4/28/2020	0.55	/6	52	0.27	7.03	4/	380	NA	< 0.001	0.025	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA . 0.0002	< 0.005	< 0.465	< 0.0025	NA
	5/11/2020	0.57	92	88	0.32	7.10	94	580	NA (0.002	< 0.001	0.034	NA (0.001	NA < 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.00/6	< 0.411	< 0.0025	NA (0.002
	5/11/2021	0.61	1//	44	0.33	7.22	/0	410	< 0.003	< 0.001	0.023	< 0.001	< 0.0005	< 0.003	< 0.001	< 0.0003	< 0.01	< 0.0002	< 0.003	0.333	< 0.0023	< 0.002
	5/1//2016	0.70	100	85	0.35	7.08	120	660	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.373	< 0.0025	< 0.002
	8/16/2016	0.69	110	9/	0.30	6.85	150	830	< 0.003	< 0.001	0.060	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.452	< 0.0025	< 0.002
	2/14/2017	0.93	100	100	0.23	7.25	170	760	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.250	< 0.0025	< 0.002
	5/1/2017	0.79	100	02	0.25	7.60	170	710	< 0.003	< 0.001	0.059	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.00051	< 0.01	< 0.0002	0.005	< 0.339	< 0.0025	< 0.002
	6/20/2017	0.70	89	63	0.28	7.32	78	550	< 0.003	< 0.001	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0000	< 0.455	< 0.0025	< 0.002
	8/28/2017	0.62	110	120	0.33	7.05	210	870	< 0.003	< 0.001	0.040	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0085	0.381	< 0.0025	< 0.002
MW-05	11/7/2017	0.51	99	110	0.33	6.87	160	990	< 0.003	< 0.001	0.058	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
down-	5/15/2018	0.61	130	89	0.29	7 70	210	910	< 0.003	< 0.001	0.062	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.390	< 0.0025	< 0.002
gradient	8/7/2018	0.49	110	120	0.32	6.56	180	890	< 0.003	< 0.001	0.054	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0069	0.523	< 0.0025	< 0.002
	4/30/2019	0.56	84	73	0.36	6.96	120	590	< 0.003	< 0.001	0.041	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	< 0.709	< 0.0025	< 0.002
	8/26/2019	0.57	110	75	0.29	7.01	110	660	< 0.003	< 0.001	0.050	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0067	0.651	< 0.0025	< 0.002
	2/24/2020	0.54	110	70	0,36	6,90	120	Н 700	< 0.003	< 0.001	0.057	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	0.506	< 0.0025	< 0.002
	4/28/2020	0.49	110	56	0.37	6.87	130	620	NA	0.001	0.052	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	0.0074	0.508	< 0.0025	NA
	12/9/2020	0.53	98	78	0.31	6.91	110	670	NA	< 0.001	0.05	NA	NA	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0072	0.569	< 0.0025	NA
	5/11/2021	0.5	83	52	0.38	7.20	100	530	< 0.003	< 0.001	0.04	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0062	< 0.525	< 0.0025	< 0.002

Notes: All units are in mg/l except pH is in standard units. V- Serial dilution exceeds control limits. H- Sample was prepped or analyzed beyond specified holding time

NA - Not Analyzed

F1 - MS and/or MSD Recovery outside of limits. * . LCS or LCSD is outside acceptance limits. ^ . Denotes instrument related QC exceeds the control limits

Well	Date	Turbidity (NTU)					
	2/23/2021	78.20					
	4/9/2021	6.96					
	5/10/2021	3.24					
MW 01	6/2/2021	3.80					
IVI VV -01	6/28/2021	4.30					
	7/19/2021	4.88					
	8/24/2021	3.34					
	9/30/2021	3.04					
	2/23/2021	257.70					
	4/9/2021	54.91					
	5/11/2021	24.74					
MW 10	6/2/2021	6.02					
101 00 - 10	6/28/2021	14.11					
	7/19/2021	17.53					
	8/24/2021	41.55					
	9/30/2021	17.07					
	2/22/2021	19.60					
	4/8/2021	4.55					
	5/11/2021	1.82					
MW 02	6/2/2021	2.06					
101 00 -02	6/28/2021	2.67					
	7/19/2021	3.56					
	8/24/2021	5.23					
	10/1/2021	2.76					
	2/22/2021	8.20					
	4/8/2021	4.00					
	5/11/2021	2.68					
MW-03	6/2/2021	3.63					
101 00 000	6/28/2021	3.32					
	7/19/2021	4.22					
	8/24/2021	5.75					
	10/1/2021	2.45					
	2/22/2021	4.20					
	4/8/2021	4.05					
	5/11/2021	4.33					
MW-04	6/2/2021	2.12					
	6/28/2021	8.21					
	7/19/2021	3.84					
	8/24/2021	2.92					
	10/1/2021	2.72					
	2/22/2021	1.72					
	4/8/2021	4.00					
	5/11/2021	1.82					
MW-05	6/2/2021	1.88					
	6/28/2021	3.49					
	7/19/2021	8.39					
	8/24/2021	3.20					
	10/1/2021	3.12					

Table 9-6. Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods. Midwest Generation, LLC, Powerton Station, Pekin, IL.

PARAMETER	ANALYTICAL METHOD	CONTAINER	PRESERVATION	HOLD TIME	METHOD DETECTION LIMIT (MG/L)	Section 845.600(a) Standards
Boron	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.0245	2
Calcium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.106	NS
Chloride	SM4500 CI-E	1 L plastic	None, < 6 °C	28 days	1.22	200
Fluoride	SM4500 F-C	1 L plastic	None, < 6 °C	28 days	0.019	4
рН	SM4500 H ⁺ -B	1 L plastic	None, < 6 °C	immediate *	Field Parameter	6.5 - 9.0 (secondary standard)
Sulfate	SM4500 SO ₄ -E	1 L plastic	None, < 6 °C	28 days	2	400
Total Dissolved Solids	SM2400 C	1 L plastic	None, < 6 °C	7 days	6.1	1200
Antimony	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00101	0.006
Arsenic	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000439	0.01
Barium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000841	2
Beryllium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000237	0.004
Cadmium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00019	0.005
Chromium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000608	0.1
Cobalt	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000189	0.006
Lead	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000141	0.0075
Lithium	6010 C	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00215	0.04
Mercury	7470 A	250 mL plastic	HNO ₃ , < 6 °C	28 days	0.0000611	0.002
Molybdenum	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00162	0.1
Selenium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000834	0.05
Thallium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000591	0.002
Radium 226	903.0	1 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **
Radium 228	904.0	2 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **

Notes: It is noted that some parameters may be combined with others within the same container.

* - The result for pH is obtained in the field and is not submitted to the laboratory.

** - Combined Radium 226/228

mL - milliliters

L - liters

°C - degrees Celsius

HNO3 - Nitric Acid

NS- No Standard

Upgradient Well(s)	Parameter	Section 845.600 Standards	Interwell Background Prediction Limit	Proposed GWPS
MW-01 & MW-10	Antimony	0.006	0.003	0.006
MW-10	Arsenic	0.01	0.04	0.04
MW-01	Barium	2	0.08	2
MW-01 & MW-10	Beryllium	0.004	0.001	0.004
MW-01	Boron	2.0	1.086	2
MW-01 & MW-10	Cadmium	0.005	0.0015	0.005
MW-01 & MW-10	Chloride	200	63.49	200
MW-01 & MW-10	Chromium	0.1	0.063	0.1
MW-10	Cobalt	0.006	0.143	0.143
MW-01	Combined Radium 226 + 228 (pCi/L)	5.0	0.953	5.0
MW-01	Fluoride	4.0	0.279	4.0
MW-10	Lead	0.0075	0.1164	0.1164
MW-01 & MW-10	Lithium	0.04	0.032	0.04
MW-01 & MW-10	Mercury	0.002	0.0002	0.002
MW-01 & MW-10	Molybdenum	0.10	0.01	0.1
MW-01 & MW-10	pH (standard units)	6.5-9.0	6.45 - 7.78	6.5 - 9.0
MW-10	Selenium	0.05	0.007	0.05
MW-01 & MW-10	Sulfate	400	89.86	400
MW-01 & MW-10	Thallium	0.002	0.002	0.002
MW-01 & MW-10	Total Dissolved Solids	1200	644.5	1200
MW-01 & MW-10	Calcium	NE	139	139
MW-10	Turbidity (NTU)	NE	581.2	581.2

All values are in mg/L (ppm) unless otherwise noted.

NE - Not Established

 ${\ensuremath{\textbf{Bold}}}$ - Site-specific Groundwater Protection Standard based on Section 845.600(a)(2)

CONSTRUCTION PERMIT FIGURES

FAB Pond

DΙΑΤΙΟ Ν	CROSS	SECTION A'-	-A"
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS		
e 262-781-0478	SEE SCALE	Date: Octobe	r 4, 2021
-325-1593	KPRG Project No. 1	9520.1	FIGURE 9-3

	ВМ\	N-03	MW-02
	$\diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond $		
455-	$\diamond \diamond \diamond \diamond \diamond \diamond$		\rightarrow \diamond
450-	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
445-			
440-	$\diamond \diamond $		
435-			
430-			
425- 420-			

IN FT AMSL

CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

DIATION	CROSS SECTION B-B'		
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS		
e 262-781-0478	SEE SCALE	Date: August	17, 2021
-325-1593	KPRG Project No. 1	9520.1	FIGURE 9-4

°≜°∘

FILL: CONSISTING OF TAN, BROWN AND BLACK FINE TO MEDIUM SAND WITH SOME GRAVEL AND CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

APPROXIMATE SCALE

DΙΑΤΙΟ Ν	CROSS	SECTION B'-	-B"
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS		
le 262-781-0478	SEE SCALE	Date: August	17, 2021
)-325-1593	KPRG Project No. 19520.1		FIGURE 9-5

FILL: CONSISTING OF TAN, BROWN AND BLACK FINE TO MEDIUM SAND WITH SOME GRAVEL AND CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

 $\mathbf{\nabla}$

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

WATER LEVEL (5/21)

POND OUTLINE

APPROXIMATE SCALE

DΙΑΤΙΟ Ν	CROSS SECTION C-C'		
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS		
le 262-781-0478	SEE SCALE	Date: Octobe	r 4, 2021
)-325-1593	KPRG Project No. 1	9520.1	FIGURE 9-6

FILL: CONSISTING OF TAN, BROWN AND BLACK FINE TO MEDIUM SAND WITH SOME GRAVEL AND CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

 \Box WATER LEVEL (5/21)

- PROJECTED POND OUTLINE

POND OUTLINE

DIATION	CROSS	S SECTION D-	-D'
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS		
e 262-781-0478	SEE SCALE	Date: Octobe	r 4, 2021
-325-1593	KPRG Project No. 1	9520.1	FIGURE 9-7

Midwest Generation Powerton Station, Pekin, IL. Figure 9-8. Former Ash Basin Hydrograph

CONSTRUCTION PERMIT ATTACHMENTS

ATTACHMENT 1 HISTORY OF CONSTRUCTION

FIGURE 3 - RAIL LAYOUT CROSS SECTION

<u>ATTACHMENT 2</u> NARRATIVE DESCRIPTION OF THE FACILITY

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-201436-1 Client Project/Site: Ash

For:

Midwest Generation EME LLC 13082 E Manito Road Pekin, Illinois 61554

Attn: Joseph Kotas

Veana Mockler

Authorized for release by: 7/12/2021 3:51:25 PM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

LINKS Review your project results through Total Access

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	9
QC Association	10
QC Sample Results	12
Chronicle	15
Certification Summary	17
Chain of Custody	18
Receipt Checklists	20

Job ID: 500-201436-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-201436-1

Comments

No additional comments.

Receipt

The samples were received on 6/24/2021 3:35 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.6° C.

Metals

Method 6010B: The following samples were diluted due to the abundance of non-target analytes: ASH BASIN (500-201436-2) and METALS CB (500-201436-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Method Summary

Client: Midwest Generation EME LLC Project/Site: Ash

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CHI
7471A	Mercury (CVAA)	SW846	TAL CHI
9056A	Anions, Ion Chromatography	SW846	TAL CHI
Moisture	Percent Moisture	EPA	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 F C	Fluoride	SM	TAL CHI
300_Prep	Anions, Ion Chromatography, 10% Wt/Vol	MCAWW	TAL CHI
3050B	Preparation, Metals	SW846	TAL CHI
7471A	Preparation, Mercury	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
500-201436-1	FAB	Solid	06/23/21 13:30	06/24/21 15:35	
500-201436-2	ASH BASIN	Solid	06/23/21 14:23	06/24/21 15:35	
500-201436-3	METALS CB	Solid	06/23/21 15:00	06/24/21 15:35	

5

6

Lab Sample ID: 500-201436-1 Matrix: Solid

Date Collected: 06/23/21 13:30 Date Received: 06/24/21 15:35

Client Sample ID: FAB

	>)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Arsenic	1.8		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Barium	88		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Beryllium	1.9		0.40		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Boron	64		4.9		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Cadmium	<0.20		0.20		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Calcium	13000		20		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Chromium	34		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Cobalt	5.2		2.5		mg/Kg		07/08/21 08:24	07/09/21 11:48	5
Lead	4.1		0.49		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Lithium	10		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Molybdenum	2.4		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Selenium	<0.99		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
Thallium	<0.99		0.99		mg/Kg		07/08/21 08:24	07/09/21 11:25	1
_ Method: 7471A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.032		0.016		mg/Kg		07/06/21 14:50	07/07/21 07:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	52		2.0		mg/Kg		07/12/21 11:07	07/12/21 12:47	1
Chloride	27		20		mg/Kg		07/05/21 13:55	07/05/21 16:18	1
Fluoride	1.3		1.0		mg/Kg		07/05/21 13:55	07/05/21 17:39	1

Client Sample ID: ASH BASIN Date Collected: 06/23/21 14:23 Date Resolved: 06/24/21 15:25

Lab Sample ID: 500-201436-2 Matrix: Solid

Date Collected: 06/23/21 14:23 Date Received: 06/24/21 15:35

Method: 6010B - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Antimony	<8.6		8.6		mg/Kg		07/08/21 08:24	07/09/21 11:51	5	
Arsenic	2.2		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	6
Barium	1800		4.3		mg/Kg		07/08/21 08:24	07/09/21 11:51	5	
Beryllium	0.90		0.34		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Boron	46		4.3		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Cadmium	<0.17		0.17		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	8
Calcium	39000		17		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Chromium	16		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	0
Cobalt	<11		11		mg/Kg		07/08/21 08:24	07/09/21 12:04	25	3
Lead	5.5		0.43		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Lithium	12		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Molybdenum	1.0		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Selenium	<0.86		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
_Thallium	1.2		0.86		mg/Kg		07/08/21 08:24	07/09/21 11:28	1	
Method: 7471A - Mercury (CVA	4)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.094		0.015		mg/Kg		07/06/21 14:50	07/07/21 07:02	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	230		9.7		mg/Kg		07/12/21 11:07	07/12/21 13:42	5	
Chloride	88		20		mg/Kg		07/05/21 13:55	07/05/21 16:18	1	
Fluoride	4.7		1.0		mg/Kg		07/05/21 13:55	07/05/21 17:42	1	

Job ID: 500-201436-1

5

6

Lab Sample ID: 500-201436-3 Matrix: Solid

Client Sample ID: METALS CB Date Collected: 06/23/21 15:00 Date Received: 06/24/21 15:35

Method: 6010B - Metals (IC	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.8		1.8		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Arsenic	7.6		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Barium	1900		8.9		mg/Kg		07/08/21 08:24	07/09/21 12:00	10
Beryllium	1.5		0.36		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Boron	100		4.5		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Cadmium	4.3		0.18		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Calcium	120000		180		mg/Kg		07/08/21 08:24	07/09/21 12:00	10
Chromium	52		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Cobalt	<22		22		mg/Kg		07/08/21 08:24	07/09/21 12:27	50
Lead	66		0.45		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Lithium	16		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Molybdenum	5.3		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Selenium	7.1		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
Thallium	4.0		0.89		mg/Kg		07/08/21 08:24	07/09/21 11:32	1
- Method: 7471A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.26		0.015		mg/Kg		07/06/21 14:50	07/07/21 07:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	21000		2000		mg/Kg		07/12/21 11:07	07/12/21 14:09	1000
Chloride	110		20		mg/Kg		07/05/21 13:55	07/05/21 16:18	1
Fluoride	22		0.99		mg/Kg		07/05/21 13:55	07/05/21 17:49	1

Definitions/Glossary

Client: Midwest Generation EME LLC Project/Site: Ash

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	J
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	7
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

- RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)
- TEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

QC Association Summary

Job ID: 500-201436-1

3 4 5 6 7 8 9

•	
-	
	13

Metals

Prep Batch: 607902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	7471A	
500-201436-2	ASH BASIN	Total/NA	Solid	7471A	
500-201436-3	METALS CB	Total/NA	Solid	7471A	
MB 500-607902/12-A	Method Blank	Total/NA	Solid	7471A	
LCS 500-607902/13-A	Lab Control Sample	Total/NA	Solid	7471A	
Analysis Batch: 6081	43				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500 201426 1		Total/NIA	Solid	7471 0	607002

500-201436-1	FAB	Total/NA	Solid	7471A	607902
500-201436-2	ASH BASIN	Total/NA	Solid	7471A	607902
500-201436-3	METALS CB	Total/NA	Solid	7471A	607902
MB 500-607902/12-A	Method Blank	Total/NA	Solid	7471A	607902
LCS 500-607902/13-A	Lab Control Sample	Total/NA	Solid	7471A	607902

Prep Batch: 608328

Lab Sample ID 500-201436-1	Client Sample ID FAB	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
500-201436-2	ASH BASIN	Total/NA	Solid	3050B	
500-201436-3	METALS CB	Total/NA	Solid	3050B	
MB 500-608328/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-608328/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 608625

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	6010B	608328
500-201436-1	FAB	Total/NA	Solid	6010B	608328
500-201436-2	ASH BASIN	Total/NA	Solid	6010B	608328
500-201436-2	ASH BASIN	Total/NA	Solid	6010B	608328
500-201436-2	ASH BASIN	Total/NA	Solid	6010B	608328
500-201436-3	METALS CB	Total/NA	Solid	6010B	608328
500-201436-3	METALS CB	Total/NA	Solid	6010B	608328
500-201436-3	METALS CB	Total/NA	Solid	6010B	608328
MB 500-608328/1-A	Method Blank	Total/NA	Solid	6010B	608328
LCS 500-608328/2-A	Lab Control Sample	Total/NA	Solid	6010B	608328

General Chemistry

Analysis Batch: 606811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	Moisture	
500-201436-2	ASH BASIN	Total/NA	Solid	Moisture	
500-201436-3	METALS CB	Total/NA	Solid	Moisture	

Prep Batch: 607760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	300_Prep	
500-201436-2	ASH BASIN	Total/NA	Solid	300_Prep	
500-201436-3	METALS CB	Total/NA	Solid	300_Prep	
MB 500-607760/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-607760/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
LCSD 500-607760/3-A	Lab Control Sample Dup	Total/NA	Solid	300_Prep	

Eurofins TestAmerica, Chicago

General Chemistry

Analysis Batch: 607876

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	SM 4500 F C	607760
500-201436-2	ASH BASIN	Total/NA	Solid	SM 4500 F C	607760
500-201436-3	METALS CB	Total/NA	Solid	SM 4500 F C	607760
MB 500-607760/1-A	Method Blank	Total/NA	Solid	SM 4500 F C	607760
LCS 500-607760/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 F C	607760
LCSD 500-607760/3-A	Lab Control Sample Dup	Total/NA	Solid	SM 4500 F C	607760

Analysis Batch: 607925

Analysis Batch: 6079	25					8
Lab Sample ID 500-201436-1	Client Sample ID	Prep Type Total/NA	Matrix	Method SM 4500 Cl- E	Prep Batch 607760	0
500-201436-2	ASH BASIN	Total/NA	Solid	SM 4500 CI- E	607760	3
500-201436-3	METALS CB	Total/NA	Solid	SM 4500 CI- E	607760	
MB 500-607760/1-A	Method Blank	Total/NA	Solid	SM 4500 CI- E	607760	
LCS 500-607760/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CI- E	607760	
LCSD 500-607760/3-A	Lab Control Sample Dup	Total/NA	Solid	SM 4500 CI- E	607760	
Prep Batch: 608902						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	13
500-201436-1	FAB	Total/NA	Solid	300 Prep		

Prep Batch: 608902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
500-201436-1	FAB	Total/NA	Solid	300_Prep
500-201436-2	ASH BASIN	Total/NA	Solid	300_Prep
500-201436-3	METALS CB	Total/NA	Solid	300_Prep
MB 500-608902/1-A	Method Blank	Total/NA	Solid	300_Prep
LCS 500-608902/2-A	Lab Control Sample	Total/NA	Solid	300_Prep

Analysis Batch: 608919

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-201436-1	FAB	Total/NA	Solid	9056A	608902
500-201436-2	ASH BASIN	Total/NA	Solid	9056A	608902
500-201436-3	METALS CB	Total/NA	Solid	9056A	608902
MB 500-608902/1-A	Method Blank	Total/NA	Solid	9056A	608902
LCS 500-608902/2-A	Lab Control Sample	Total/NA	Solid	9056A	608902

Job ID: 500-201436-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-608328/1-A Matrix: Solid Analysis Batch: 608625

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Arsenic	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Barium	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Beryllium	<0.40		0.40		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Boron	<5.0		5.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Cadmium	<0.20		0.20		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Calcium	<20		20		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Chromium	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Cobalt	<0.50		0.50		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Lead	<0.50		0.50		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Lithium	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Molybdenum	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Selenium	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1
Thallium	<1.0		1.0		mg/Kg		07/08/21 08:24	07/09/21 10:31	1

Lab Sample ID: LCS 500-608328/2-A Matrix: Solid Analysis Batch: 608625

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	48.6		mg/Kg		97	80 - 120	
Arsenic	10.0	9.39		mg/Kg		94	80 - 120	
Barium	200	194		mg/Kg		97	80 - 120	
Beryllium	5.00	4.65		mg/Kg		93	80 - 120	
Boron	100	85.0		mg/Kg		85	80 - 120	
Cadmium	5.00	4.62		mg/Kg		92	80 - 120	
Calcium	1000	967		mg/Kg		97	80 - 120	
Chromium	20.0	18.8		mg/Kg		94	80 - 120	
Cobalt	50.0	47.4		mg/Kg		95	80 - 120	
Lead	10.0	9.35		mg/Kg		94	80 - 120	
Lithium	50.0	50.9		mg/Kg		102	80 - 120	
Molybdenum	100	97.0		mg/Kg		97	80 - 120	
Selenium	10.0	8.53		mg/Kg		85	80 - 120	
Thallium	10.0	9.13		mg/Kg		91	80 - 120	

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 500-60790 Matrix: Solid Analysis Batch: 608143	2/12-A						Client Samp	le ID: Method Prep Type: To Prep Batch:	d Blank otal/NA 607902
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	< 0.017		0.017		mg/Kg		07/06/21 14:50	07/07/21 06:11	1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 608328

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 608328

Job ID: 500-201436-1

Lab Sample ID: LCS 500-6079	02/13-A							Clie	ent S	an	nple ID:	Lab Cont	rol S	ampl
Matrix: Solid Analysis Pataby 609142												Prep Type	3: 10 ahu 6	0tal/N/
Analysis Batch: 606143			Sniko		1.09	1.09						Ргер Бац		50790
Analyte					Result		lifior	Unit		n	%Rec	/intec.		
Mercury			0.167		0.174	Guu		ma/Ka		_	105	80 - 120		
Method: 9056A - Anions, I	on Chrom	atogra	phy											
Lab Sample ID: MR 500 60890	2/1 A									lia	nt Same		bod	Blan
Matrix: Solid	2/1-4									ne	nt Samp	Pron Tyne	To	tal/N
Analysis Batch: 608919												Pren Bat	ch' f	S0890
	МВ	МВ										Trop Dat		
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	epared	Analyze	d	Dil Fa
Sulfate	<2.0			2.0			mg/K	g	_ 07	7/12	2/21 11:07	07/12/21 12	2:20	
- 														_
Lab Sample ID: LCS 500-6089	02/2-A							Clie	ent S	an	nple ID:	Lab Cont	rol S	ampl
Matrix: Solid												Prep Type	e: To	otal/N/
Analysis Batch: 608919			Ouilles		1.00							Ргер Ват	cn: e	50890
Analyto			Spike		Bocult		lifior	Unit			% Boc	%Rec.		
Sulfate			50.0		53.7	Qua		ma/Ka		_	107	80 - 120		
-			00.0		00.7			iiig/itg			107	00-120		
Analysis Batch: 607925	МВ	МВ										Prep Bate	ch: 6	60776
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	epared	Analyze	d	Dil Fa
Chloride	<20			20			mg/K	g	- 07	7/05	5/21 13:55	07/05/21 16	6:17	
Lab Sample ID: LCS 500 6077	60/2 A							CII	nt C	20		Lab Cont		ampl
Matrix: Solid	00/2-A							Cin	ant S	an	inple ID.	Pron Type	01 3 2. To	anipi tal/N
Analysis Batch: 607925												Pren Bat	ch' f	0776
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	I	D	%Rec	Limits		
Chloride			200		205			mg/Kg		_	103	85 - 115		
Lab Sample ID: LCSD 500-607	760/3_4						·	liont S	ampl		ID: Lab	Control S		
Matrix: Solid	100/J-A						Ŭ	Sherit O	ampi			Pren Tyn	יב דיב	tal/N
Analysis Batch: 607925												Pren Bat	ch' f	0776
			Spike		LCSD	LCS	D					%Rec.		RP
Analyte			Added		Result	Qua	lifier	Unit	I	D	%Rec	Limits	RPD	Lim
Chloride			200		206			mg/Kg		_	103	85 - 115	0	2
Nethod: SM 4500 F C - Flu	oride													
Lab Sample ID: MB 500-60776	0/1-A								C	lie	nt Sam	ole ID: Met	hod	Blan
Matrix: Solid												Prep Type	e: To	otal/N
														20776
Analysis Batch: 607876												Prep Bate	cn: e	0110
Analysis Batch: 607876	МВ	МВ										Prep Bate	cn: e	0110
Analysis Batch: 607876 Analyte	MB Result	MB Qualifier		RL	I	MDL	Unit		D	Pr	epared	Analyze	cn: 6 d	Dil Fa

Job ID: 500-201436-1

Method: SM 4500 F C - Fluoride (Continued)

Lab Sample ID: LCS 500-607760/2-A Matrix: Solid Analysis Batch: 607876	Spike	LCS	LCS	Clier	ıt Sai	mple ID	: Lab Cor Prep Ty Prep Ba %Rec.	ntrol Sa pe: Tot ntch: 60	ample al/NA 07760
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Fluoride	100	112		mg/Kg		112	80 - 120		
Lab Sample ID: LCSD 500-607760/3-A			c	Client Sa	mple	ID: Lab	Control	Sample	e Dup
Matrix: Solid					· ·		Prep Ty	pe: İot	al/NA
Analysis Batch: 607876							Prep Ba	tch: 6	07760
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	100	112		mg/Kg		112	80 - 120	1	20

Eurofins TestAmerica, Chicago

Dilution

Run

Factor

1

Batch

Number

Prepared

or Analyzed

608328 07/08/21 08:24

608625 07/09/21 11:25 JJB

607760 07/05/21 13:55 MS

607925 07/05/21 16:18 MS

607760 07/05/21 13:55 MS

607876 07/05/21 17:42 MS

Analyst

BDE

Lab

TAL CHI

TAL CHI

Batch

Туре

Prep

Analysis

Batch

Method

3050B

6010B

Client Sample ID: FAB Date Collected: 06/23/21 13:30 Date Received: 06/24/21 15:35

Ргер Туре

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 500-201436-1 Matrix: Solid

5 10

-2

TAL CHI

TAL CHI TAL CHI

TAL CHI

Lab Sample ID: 500-201436-3

lid

Total/NA	тер								
Total/NA	Analysis	6010B		5	608625	07/09/21 11:48	JJB	TAL CHI	
Total/NA	Prep	7471A			607902	07/06/21 14:50	MJG	TAL CHI	
Total/NA	Analysis	7471A		1	608143	07/07/21 07:00	MJG	TAL CHI	
Total/NA	Prep	300_Prep			608902	07/12/21 11:07	PSP	TAL CHI	
Total/NA	Analysis	9056A		1	608919	07/12/21 12:47	EAT	TAL CHI	
Total/NA	Analysis	Moisture		1	606811	06/29/21 16:58	LWN	TAL CHI	
Total/NA	Prep	300_Prep			607760	07/05/21 13:55	MS	TAL CHI	
Total/NA	Analysis	SM 4500 CI- E		1	607925	07/05/21 16:18	MS	TAL CHI	
Total/NA	Prep	300_Prep			607760	07/05/21 13:55	MS	TAL CHI	
Total/NA	Analysis	SM 4500 F C		1	607876	07/05/21 17:39	MS	TAL CHI	
Date Collecte	d: 06/23/21 1 d: 06/24/21 1	4:23 5:35							Matrix: So
Date Collecte	d: 06/23/21 1 d: 06/24/21 1 Batch	4:23 5:35 Batch		Dilution	Batch	Prepared			Matrix: So
Date Collecte Date Receive Prep Type	d: 06/23/21 1 d: 06/24/21 1 Batch Type	4:23 5:35 Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	Matrix: So
Date Collecte Date Receive Prep Type Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch 	4:23 5:35 Batch Method 3050B	Run	Dilution Factor	Batch Number 608328	Prepared or Analyzed 07/08/21 08:24	Analyst BDE	– Lab TAL CHI	Matrix: So
Prep Type Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis	4:23 5:35 Batch Method 3050B 6010B	Run	Dilution Factor	Batch Number 608328 608625	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28	Analyst BDE JJB	Lab TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep	4:23 5:35 Batch Method 3050B 6010B 3050B	Run	Dilution Factor	Batch Number 608328 608625 608328	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24	Analyst BDE JJB BDE	– <mark>Lab</mark> TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep Analysis	4:23 5:35 Batch <u>Method</u> 3050B 6010B 3050B 6010B	Run	Dilution Factor 1	Batch Number 608328 608625 608328 608625	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51	Analyst BDE JJB BDE JJB	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep Analysis Prep	4:23 5:35 Batch Method 3050B 6010B 3050B 6010B 3050B	<u>Run</u>	Dilution Factor 1	Batch Number 608328 608625 608328 608625 608328	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24	Analyst BDE JJB BDE JJB BDE	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep Analysis Prep Analysis	4:23 5:35 Batch 3050B 6010B 3050B 6010B 3050B 6010B 3050B 6010B	Run	Dilution Factor 1 5 25	Batch Number 608328 608625 608328 608625 608328 608625	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24 07/09/21 12:04	Analyst BDE JJB BDE JJB BDE JJB	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep	4:23 5:35 Batch Method 3050B 6010B 3050B 6010B 3050B 6010B 3050B 6010B 7471A	Run	Dilution Factor 1 5 25	Batch Number 608328 608625 608328 608625 608328 608625 608328 608625	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24 07/09/21 12:04 07/09/21 12:04	Analyst BDE JJB BDE JJB BDE JJB MJG	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis	4:23 5:35 Batch Method 3050B 6010B 3050B 6010B 3050B 6010B 7471A 7471A	Run	Dilution Factor 1 5 25 1	Batch Number 608328 608625 608328 608625 608328 608625 607902 608143	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24 07/09/21 12:04 07/09/21 14:50 07/06/21 14:50	Analyst BDE JJB BDE JJB BDE JJB MJG MJG	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Batch Type Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep	4:23 5:35 Batch Method 3050B 6010B 3050B 6010B 3050B 6010B 7471A 7471A 7471A 300_Prep	Run	Dilution Factor 1 5 25 1	Batch Number 608328 608625 608328 608625 608328 608625 607902 608143 608902	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24 07/09/21 12:04 07/09/21 12:04 07/06/21 14:50 07/07/21 07:02 07/12/21 11:07	Analyst BDE JJB BDE JJB BDE JJB MJG MJG PSP	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So
Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	d: 06/23/21 1 d: 06/24/21 1 Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis	4:23 5:35 Batch Method 3050B 6010B 3050B 6010B 3050B 6010B 7471A 7471A 7471A 300_Prep 9056A	Run	Dilution Factor 1 5 25 1 5	Batch Number 608328 608625 608328 608625 608328 608625 608328 608625 607902 608143 608902 608919	Prepared or Analyzed 07/08/21 08:24 07/09/21 11:28 07/08/21 08:24 07/09/21 11:51 07/08/21 08:24 07/09/21 12:04 07/09/21 12:04 07/06/21 14:50 07/07/21 07:02 07/12/21 11:07 07/12/21 13:42	Analyst BDE JJB BDE JJB BDE JJB MJG MJG PSP EAT	Lab TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI TAL CHI	Matrix: So

Client Sample ID: METALS CB Date Collected: 06/23/21 15:00 Date Received: 06/24/21 15:35

Prep

Prep

Analysis

Analysis

300_Prep

300_Prep

SM 4500 CI- E

SM 4500 F C

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			608328	07/08/21 08:24	BDE	TAL CHI
Total/NA	Analysis	6010B		1	608625	07/09/21 11:32	JJB	TAL CHI
Total/NA	Prep	3050B			608328	07/08/21 08:24	BDE	TAL CHI
Total/NA	Analysis	6010B		10	608625	07/09/21 12:00	JJB	TAL CHI

Eurofins TestAmerica, Chicago

1

1

Matrix: Solid

Client Sample ID: METALS CB Date Collected: 06/23/21 15:00 Date Received: 06/24/21 15:35

Lab	Sample	ID:	500-201436-3
			Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			608328	07/08/21 08:24	BDE	TAL CHI
Total/NA	Analysis	6010B		50	608625	07/09/21 12:27	JJB	TAL CHI
Total/NA	Prep	7471A			607902	07/06/21 14:50	MJG	TAL CHI
Total/NA	Analysis	7471A		1	608143	07/07/21 07:04	MJG	TAL CHI
Total/NA	Prep	300_Prep			608902	07/12/21 11:07	PSP	TAL CHI
Total/NA	Analysis	9056A		1000	608919	07/12/21 14:09	EAT	TAL CHI
Total/NA	Analysis	Moisture		1	606811	06/29/21 16:58	LWN	TAL CHI
Total/NA	Prep	300_Prep			607760	07/05/21 13:55	MS	TAL CHI
Total/NA	Analysis	SM 4500 CI- E		1	607925	07/05/21 16:18	MS	TAL CHI
Total/NA	Prep	300_Prep			607760	07/05/21 13:55	MS	TAL CHI
Total/NA	Analysis	SM 4500 F C		1	607876	07/05/21 17:49	MS	TAL CHI

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

10

Eurofins TestAmerica, Chicago

Job ID: 500-201436-1

Laboratory: Eurofins TestAmerica, Chicago The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateIllinoisNELAPIL0003504-29-22

Eurofins TestAmerica, Chicago

Eurofins TestAmerica, Chicago

Chain of Custody Record

	eurofins	
\$ 22		Environment Testing
		America

2417 Bond Street University Park IL 60484 Phone 708-534-5200 Fax. 708-534-5211

-

Client Information	Sampler [.]		Lab P Moci	M kler Di	iana J				С	arrier Tr	acking	No(s):			COC No 500-92457-4119	5 1
Client Contact: Joseph Kotas	Phone E-Mail Diana M			i a Moci	Stat			State of Origin				Page Page 1 of 1				
Company PWSID				Analyzia Baguated			11426									
Address	Due Date Requested					Τ							Τ	Printer of	Preservation Code	is
City	TAT Requested (days)													No. No.	A HCL B NaOH	M Hexane N None
Pekin State Zip	4					ш		i.		Ē	жит	•			C Zn Acetate D Nitric Acid	O AsNaO2 P Na2O4S
LL, 61554	Compliance Project: A Y	es 🛆 No				6/228				Ľ					E NaHSO4 F MeOH	Q Na2SO3 R Na2S2O3
815-372-4589(Tel)	4502051132			(0)		SM45				E	K)	Ľ.			G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydrate
Email joseph kotas@nrg com	wo# 36733393			s or f No)		56A,				500-20	01436	coc		SI	I Ice J DI Water	U Acetone V MCAA
Project Name. Powerton Station	Project #: 50000647			e (Ye es or		Combi 1A, 90				I	F	1		Itaine	L EDA	W pH 4-5 Z other (specify)
Site:	SSOW# [.]			ampl SD (Y		PC - 0								of con	Other	
		Sample	Matrix	AS/M		28_GF 60101								nber (
		Туре	(₩=water S=solid,	i Filte orm 1	, 904.	6Ra2								I Nun		
Sample Identification	Samp Sample Date Time	G=grab)	O=waste/oil, BT=Tissue, A=Air)	Field	903.0	Ra22 4500								Tota	Special Ins	tructions/Note
	>	Preserva	tion Code:	XX	N I	N N				1			10	\perp		
FAB	6/23/2(13:3	D G	Solid		ÞĮ		┨									
FAB2	6[23/21:13]	10 C	Solid			×	ļ									
			Solid													
ASH BASIN G	23/21/42	3 C	_51			X						_		6		
	(
ASHZ 6	23/21/42	3 C	Sol		Х	<u> </u>				_						
1																
			0											(%) (%)		
Alptals7 bl	23(21 15:0	70 C	>ठर			X										
Metals CB 61	23/21 15.	2 or	Sol		X	X										
				Sar	mple [Dispos	al (Afe	e may	be ass	essed	if saı	nples	are r	etain	ed longer than 1 i	nonth)
Deliverable Requested I II III IV Other (specify)	on B — Unknown —	Radiological		Spe	Ret ecial In	struction	Client ons/QC	Require	ements	osal E	ly Lab)		Arch	ive For	_ Months
Empty Kit Relinguished by	Date		ſ	Time						Meth	od of S	hipmer	ıt:			
Relinquished by	Date/Time	1:30 1	Company		Receiv	ed by:	-	Ho		\mathbf{n}		Date/Tir	ne Na Y	71	1535	
Relinquished by	Date/Time		Company		Receiv	ed by	лщ	, IK	ALLA	IW	6	Date/Tir	LT ne	Н_	900	Company
Relinguished by	Date/Time		Company		Receiv	ed by						Date/Tir	ne			Company
Custody Seals Intact Custody Seal No.		<u>, , , , , , , , , , , , , , , , , , , </u>	-		Cocler	Tomoor	turo/a) or	2 204 (14	or Dore	arke		8 4				
Δ Yes Δ No					Cooler	rempera	iture(s) °C		ier Kem	arks.		4.	9	<u> </u>	4.Þ	

Page 19 of 2

printing this label

Use the Print button on this page to print your label to your laser or inkiet printer Fold the printed page along the horizontal line Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned

farning Use only the printed organal label for shipping Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing parges along with the cancellation of your FedEx account number. se of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex com FedEx will not be responsible if any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher alue, pay an additional charge, document your actual loss and file a timely claim Limitations found in the current FedEx Service Guide apply. Your right to recover om FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether rect, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented is Maximum for items of extraordinary value is \$1,000, e g jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide Written aims must be filed within strict time limits, see current FedEx Service Guide

Client: Midwest Generation EME LLC

Login Number: 201436 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td>7</td>	True		7
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		8
The cooler or samples do not appear to have been compromised or tampered with.	True		9
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	4.6	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		13
There are no discrepancies between the containers received and the COC.	True		10
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

List Source: Eurofins TestAmerica, Chicago

ATTACHMENT 3 SITE LOCATION MAP

ATTACHMENT 4 SITE PLAN MAPS

262-781-0478	SEE SCALE	Date: Octobe	r 26, 2022
25-1593	KPRG Project No. 1	19520.1	FIGURE 4-2

	В ми	V-03	MW-02
	$\diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond$		
455-	$\diamond \diamond \diamond \diamond \diamond \diamond$		\diamond
450-	$\diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond$		
+50			$^{\circ}$ \diamond \diamond $^{\circ}$ \diamond
445-	$\diamond \diamond \diamond \diamond \diamond \diamond \diamond$	<u> </u>	\diamond
440-			
435-			
4.30-			
405			
425-			

IN FT AMSL

CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

DIATION	CROSS	S SECTION B-	-В'			
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS					
e 262-781-0478	SEE SCALE Date: October 26, 2022					
-325-1593	KPRG Project No. 1	9520.1	FIGURE 4-3			

FILL: CONSISTING OF TAN, BROWN AND BLACK FINE TO MEDIUM SAND WITH SOME GRAVEL AND CLAY SEAMS. SEVERAL LOCATIONS ALSO INCLUDED BLACK CINDERS AND BRICK FRAGMENTS.

CLAY/SILTY CLAY: CONSISTING OF OLIVE, BROWN AND GRAY CLAYS, SILTS AND SILTY CLAYS WITH SOME MORE ORGANIC RICH LAYERS/PEAT. MAY LOCALLY CONTAIN FINE SILTY SAND AND/OR FINE SAND. THIS UNIT IS NOT MAPPABLE ACROSS THE SITE (I.E. DISCONTINUOUS).

SAND AND GRAVEL: CONSISTING OF LIGHT BROWN, BROWN AND/OR GRAY MEDIUM TO COARSE SANDS AND GRAVELS.

 \Box WATER LEVEL (5/21)

PROJECTED POND OUTLINE

POND OUTLINE

C'

DIATION	CROSS SECTION C-C'						
Associates, inc.	POWERTON STATION PEKIN, ILLINOIS						
e 262-781-0478	SEE SCALE Date: October 26, 2022						
-325-1593	KPRG Project No. 1	19520.1	FIGURE 4-4				

ATTACHMENT 5 FAB CLOSURE DRAWINGS AND SPECIFICATIONS

MIDWEST GENERATION POWERTON GENERATION STATION FORMER ASH BASIN CLOSURE

IEPA Site No. 1798010008-05

CLOSURE SPECIFICATIONS

SECTION 01011 SUMMARY OF WORK

1.0 INTRODUCTORY INFORMATION

- 1.1 <u>Project Title</u>: Former Ash Basin Closure
- 1.2 <u>Owner:</u> Midwest Generation, LLC
- 1.3 <u>Work Location:</u> Powerton Generating Station 1601 S. Manito Road, Pekin, IL
- 1.4 <u>Owner's Representative:</u> KPRG and Associates, Inc.
- 1.5 <u>Contracting agent:</u> Midwest Generation, LLC

2.0 SCOPE OF WORK

The Contractor shall furnish all supervision, labor, materials, equipment, services, personnel, testing services, fuel and consumable supplies to complete scope of work as detailed in this specification, other information disseminated during the bid meeting/walk down, and any addendums. This scope includes all work to mobilize, setup, execute, cleanup and demobilize Contractor's equipment The work is broken down and described in the Specifications and Drawings and generally includes but is not limited to the following:

- Dewatering of the north and south portions of the Former Ash Basin (FAB), as necessary;
- Clear and grub, which includes trees and grass/brush, the north and south portion of the FAB;
- Remove and stockpile topsoil from the north portion of the FAB to expose CCR material below;
- Excavation of the existing CCR material from the north portion of the FAB and disposal in the south portion of the FAB;
- Extension of the west access road;
- Installation of ClosureTurf cover system and components;
- Regrade stockpiled topsoil/clay over the regraded portion of the east side of the WFA;
- Rebuild east access road along east side of the property.

3.0 MATERIAL AND EQUIPMENT

3.1 EROSION CONTROL MATERIALS

- A. The following Illinois Urban Manual (IUM) documents were used as references:
 - 1. Practice Standard
 - a. Erosion blanket 830;
 - b. Erosion Blanket: Turf Reinforcement Mat (TRM) 831;

- c. Mulching for Seeding and Soil Stabilization 875;
- d. Permanent Vegetation 880.
- 2. Material Specification
 - a. Coconut Blankets 800;
 - b. Jute Netting 801;
 - c. Wood Fiber Blankets 802;
 - d. Straw Blankets 803.
- B. Mulch shall comply with Illinois Urban Manual (IUM) Practice Standard 875 with straw mulch consisting of oats, wheat, rye, or barley and hydraulic mulch consisting of wood, cotton, straw, or paper or a combination of the four. If compost is used it shall be thoroughly decomposed organic waste. Chemical mulch bonder shall be approved as safe for the ecosystem.
- C. The erosion control blanket shall comply with IUM Practice Standard Erosion Control Blanket 830 and shall be coconut blankets, jute netting, wood fiber blankets, straw blankets, or an approved equal.

3.2 SUPPORT ROAD MATERIALS

A. The material used to construct any support roads shall be IDOT gradation CA6 and shall conform to the following limits when tested by means of laboratory sieves:

CA6				
Sieve Size	Fotal Percent Passing by Weight			
1 1/2 inch	100			
1 inch	95±5			
¹ / ₂ inch	75±15			
No. 4	43±13			
No. 16	25±15			
No. 200	<u>8±4</u>			

B. The material used to repair the access roads, as needed, shall be IDOT gradation CA10 and shall conform to the following limits when tested by means of laboratory sieves:

CA10					
Sieve Size	Total Percent Passing by Weight				
1 inch	100				
3/4 inch	95±5				
1/2 inch	80±15				
No. 4	50±10				
No. 16	30±15				
No. 200	9±4				

4.0 GENERAL NOTES

- 4.1 General requirements for the performance of various phases of the Work are given in this Specification and the Drawings referred to herein. Contractor shall be governed by these requirements. If for any reason it is necessary to deviate there from, written permission shall first be obtained from Owner's Representative.
- 4.2 Contractor shall perform the Work in a manner consistent with recognized good practice for construction service and in accordance with such detailed instructions as may be submitted by Owner.
- 4.3 Contractor shall be held responsible and bear any and all expense for rework and/or additional work required due to Contractor's acts of commission or omission.
- 4.4 Existing railroad tracks, power lines, shrubbery, fences, water pipes, conduits, ditches, embankments and other structures in the vicinity of the work not authorized to be removed shall be supported and protected from damage by the CONTRACTOR during the construction and until completion of the work affecting them. The CONTRACTOR shall be liable for all damages done to such existing facilities and structures, as herein provided and he shall save the OWNER from any liability or expense for injuries, damages, or repairs to such facilities.
- 4.5 When required, the CONTRACTOR shall submit certified gradation test data verifying that the material and gradation of imported materials meet the requirements of these Specifications. Particle size analysis of soils and aggregates shall be determined in accordance with ASTM D422.
- 4.6 The CONTRACTOR is responsible for the stability of slopes during construction. Excavation and fill operations, as necessary to execute the Work, shall be coordinated with water control and stabilization measures to prevent unstable conditions. Water shall be clean and free from harmful substances. The amount of water used in compaction shall be sufficient to obtain the percent of compaction required.
- 4.7 CONTRACTOR shall be responsible to ensure that the material brought in from offsite meets the requirements of these Specifications. Any off site material that does not conform to these Specifications will be rejected by the OWNER'S REPRESENTATIVE and/or the CQA OFFICER and shall be replaced by the Contractor with material that conforms to these Specifications at no cost to the OWNER.
- 4.8 Where material is required to be compacted, the soil shall be mechanically compacted to an acceptable level to prevent settling. Where granular, cohesionless material is required to be compacted, the material shall be adequately compacted mechanically to prevent settling. If necessary, field density tests will be performed in accordance with ASTM D1556, ASTM D2922, or by other means acceptable to the CQA OFFICER.

4.9 The CONTRACTOR shall be responsible to ensure that CCR and stone placed and compacted shall conform to the dimensions, lines, grades, and sections indicated on the Drawings and in this Section. Any grades and compaction that does not conform to this Section will be rejected by the OWNER'S REPRESENTATIVE and/or the CQA OFFICER and shall be reworked by the CONTRACTOR at no cost to the OWNER.

5.0 CONTRACT SCHEDULE

The CONTRACTOR shall submit a schedule for construction upon awarding of the contract.

6.0 WORK SHIFTS

- 6.1 Contractor's Supervisory and Technical Personnel may work other shift schedules and durations as approved by Owner. However, CONTRACTOR, in performing the Work, shall adequately man and equip the job and work such hours and days as may be necessary to meet the Schedule. CONTRACTOR shall have sufficient infrastructure to complete any other Work on schedule requested by OWNER'S REPRESENTATIVE. CONTRACTOR shall bear all costs that may be incurred in procuring and/or maintaining the necessary labor force and equipment for the Work, including, but not limited to, such items as transportation and living expenses. No overtime will be worked unless preapproved by OWNER'S REPRESENTATIVE.
- 6.2 In the event CONTRACTOR determines it necessary to schedule his work force more than the normal work week, or to change his Work schedule, Contractor shall consult in advance with the OWNER'S REPRESENTATIVE to make certain that the proposed schedule will not conflict with other work being carried on and shall obtain written approval of the revised schedule prior to making the change.
- 6.3 CONTRACTOR shall take into consideration work by other contractors or by Owner's personnel that may be in progress at or near the site of the Work. CONTRACTOR shall cooperate with Owner's Representative in scheduling the performance of the Work in such a manner as to avoid interference with any other work being performed at the Premises.

7.0 STAFF PERSONNEL

7.1 As a minimum, CONTRACTOR shall supply and include in his pricing a Project Manager and/or Project Superintendent for this Project. The Project Manager and/or Project Superintendent shall be full time salaried employees of the Contractor. The Project Manager/Project Superintendent shall be responsible for the complete administration of the Contract for the Contractor. The primary responsibility shall be coordination between Contractor's home office support and field operations and with interface with the Owner. 7.2 Owner or Owner's Representative will not incur any Supervision, General Foreman, Foreman, Union Steward, Tool room man, Technician, Quality Assurance Representative, Welding Engineer, Home or Field Office Clerical, etc. charges for Time and Material, Cost Plus, or Out of Scope work unless the Work is performed outside the Contractor's established work schedule, or in the case of increased staffing, an additional foreman is required. Owner will not accept any charges for the above unless authorized by the Owner's Representative. Out of Scope, Time and Material and Cost Plus work is to be completed in the established period of the Contract unless the Owner's Representative grants an extension.

8.0 CONSTRUCTION QUALITY ASSURANCE OFFICER

The work being performed shall be monitored by the Construction Quality Assurance Officer (CQA OFFICER) and shall include documentation of the work. Documentation will include but is not limited to note taking and photography.

9.0 OWNER'S REPRESENTATIVE(S)

The following personnel represent the Owner in the subject matter indicated:

PERSONNEL	NAME	PHONE NUMBER
Owner's Representative	XXX XXXXXX	XXX-XXX-XXXX
Owner's Technical	Josh Davenport	262-781-0475 or
Representative	Josh Davenport	262-389-1655
Construction Quality Assurance (CQA) Officer	TBD	TBD
CQA Officer Agent	TBD	TBD
CQA Officer Agent	TBD	TBD

END OF SECTION

SECTION 01060 ClosureTurf PRODUCT & INSTALLATION

Part 1 GENERAL

1.1 SCOPE

This specification covers the technical requirements for the manufacturing and installation of HDPE and LLDPE MicroSpike®, Super Gripnet®, and MicroDrain® (GEOMEMBRANE). All materials meet or exceed the requirements of this specification, and all work will be performed in accordance with the procedures provided in these project specifications.

1.2 REFERENCES

A. American Society for Testing and Materials (ASTM)

- 1. D792 Method B, Density and Specific Gravity of Plastics by Displacement
- 2. D1004 Initial Tear Resistance of Plastic Film and Sheeting
- 3. D1238 Flow Rates of Thermoplastics by Extrusion Plastometer
- 4. D3895 Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry
- 5. D4218 Determination of Carbon Black in Polyethylene Compounds
- 6. D4833 Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products
- 7. D5199 Measuring Nominal Thickness of Geotextiles and Geomembranes
- 8. D5397 Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test
- 9. D5596 Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics
- 10. D5994 Measuring Core Thickness of Textured Geomembranes
- 11. D6392 Determining the Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods
- 12. D6693 Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes
- 13. D7466 Measuring Asperity Height of Textured Geomembranes
- B. Geosynthetic Research Institute
 - 1. GRI GM 13 Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes
 - 2. GRI GM 17 Test Properties, Test Properties and Testing Frequency for Linear Low Density Polyethylene (LLDPE) Smooth and Textured Geomembranes

1.3 DEFINITIONS

- A. Lot A quantity of resin (usually a rail car) used in the manufacture of geomembranes. Finished roll will be identified by a roll number traceable to the resin lot used.
- B. Construction Quality Assurance Consultant (CONSULTANT) Party, independent from

MANUFACTURER and INSTALLER that is responsible for observing and documenting activities related to quality assurance during the lining system construction.

- C. ENGINEER- The individual or firm responsible for the design and preparation of the project's Contract Drawings and Specifications.
- D. Geomembrane Manufacturer (MANUFACTURER) The party responsible for manufacturing the geomembrane rolls.
- E. Geosynthetic Quality Assurance Laboratory (TESTING LABORATORY) Party, independent from the OWNER, MANUFACTURER and INSTALLER, responsible for conducting laboratory tests on samples of geosynthetics obtained at the site or during manufacturing, usually under the direction of the OWNER.
- F. INSTALLER- Party responsible for field handling, transporting, storing, deploying, seaming and testing of the geomembrane seams.
- G. Panel Area of a geomembrane that will be seamed in the field that is larger than 100 ft2.
- H. Patch Area of a geomembrane that will be seamed in the field that is less than 100 ft2.
- I. Subgrade Surface Soil layer surface, which immediately underlies the geosynthetic material(s).

1.4 SUBMITTALS POST-AWARD

- A. Furnish the following product data, in writing, to ENGINEER prior to installation of the geomembrane material:
 - 1. Resin Data shall include the following.
 - a. Certification stating that the resin meets the specification requirements (see Table 2.1).
 - 2. Geomembrane Roll
 - a. Statement certifying no recycled polymer and no more than 10% rework of the same type of material is added to the resin (product run may be recycled).
- B. The INSTALLER shall furnish the following information to the ENGINEER and OWNER prior to installation:

1. Installation layout drawings

- a. Must show proposed panel layout including field seams and details
- b. Must be approved prior to installing the geomembrane
- 2. Approved drawings will be for concept only and actual panel placement will be determined by site conditions.
- 3. Installer's Geosynthetic Field Installation Quality Assurance Plan
- C. The INSTALLER will submit the following to the ENGINEER upon completion of installation:
- 1. Certificate stating the geomembrane has been installed in accordance with the Contract Documents
- 2. Material and installation warranties
- 3. As-built drawings showing actual geomembrane placement and seams including typical anchor trench detail and location of repairs.

1.5 QUALITY ASSURANCE

- A. Perform Work in accordance with these Specifications and the CQA Plan.
- B. Friction Angle Requirements and Testing
 - 1. The effective interface shear strength envelope at the interface between the geomembrane and the materials in direct contact with the geomembrane shall be verified by the CQA Officer by performing interface friction testing on representative materials to be used for construction of the liner system.
 - 2. The interface frictional resistance shall be determined by direct shear tests in general accordance with ASTM D5321.
 - 3. The interface frictional resistance for interfaces including GCLs shall be determined by direct shear tests in general accordance with ASTM D 6243.
 - 4. The interfaces and/or soil shall be tested saturated with water.
- C. The Manufacturer shall sample and test the HDPE geomembrane material, at minimum frequencies specified. General manufacturing procedures shall be performed in accordance with the Manufacturer's internal quality control guide and/or documents.
- D. All non-conductive geomembrane sheets shall be continuously spark tested during manufacturing.
 - 1. The spark tester shall be capable of detecting defects or pinholes less than 10 mils in diameter.
 - 2. All necessary repairs to the geomembrane shall be made by the manufacturer at the factory before shipment.
 - 3. The manufacturer shall provide written certification to the Owner and/or Engineer that all the geomembrane rolls delivered to the project were continuously spark tested and do not contain pinhole defects.
- E. The Engineer shall examine the rolls upon delivery to the site and report any deviations from these Specifications to the Contractor.
- F. If a geomembrane sample fails to meet the quality control requirements of this Section, the Contractor and/or Engineer shall require that the Geomembrane Manufacturer sample and test each roll manufactured in the same lot or batch, or at the same time, as the failing roll. Additional sampling and testing shall be completed at no additional cost to the Owner. Sampling and testing of rolls shall continue until a pattern of acceptable test results is established.

G. Any geomembrane sample that does not comply with this Section shall result in rejection of the roll from which the sample was obtained. The Contractor shall replace any rejected rolls at no additional cost to Owner. At the Geomembrane Manufacturer's discretion and expense, additional testing of individual rolls may be performed to more closely identify noncomplying rolls and to qualify individual rolls.

1.6 QUALIFICATIONS

A. MANUFACTURER

- 1. Geomembrane shall be manufactured by the following:
 - a. AGRU America, Inc.
 - b. approved equal
- 2. MANUFACTURER shall have manufactured a minimum of 10,000,000 square feet of polyethylene geomembrane during the last year.

B. INSTALLER

- 1. INSTALLER shall have installed a minimum of 5,000,000 square feet of HDPE geomembrane during the 5 last years.
- 2. INSTALLER shall have worked in a similar capacity on at least 10 projects similar in complexity to the project described in the contract documents, and with at least 250,000 square feet of HDPE geomembrane installation on each project.
- 3. The Installation Supervisor shall have worked in a similar capacity on projects similar in size and complexity to the project described in the Contract Documents.
- 4. The INSTALLER shall provide a minimum of one Master Seamer for work on the project. a. Must have completed a minimum of 1,000,000 square feet of geomembrane seaming work using the type of seaming apparatus proposed for the use on this Project.

1.7 MATERIAL LABELING, DELIVERY, STORAGE AND HANDLING

- A. Labeling Each roll of geomembrane delivered to the site shall be labeled by the MANUFACTURER. The label will identify:
 - a. manufacturer's name
 - b. product identification
 - c. thickness
 - d. length
 - e. width
 - f. roll number
- B. Delivery Rolls of liner will be prepared to ship by appropriate means to prevent damage to the material and to facilitate off-loading.
- C. Storage The on-site storage location for geomembrane material, provided by the CONTRACTOR to protect the geomembrane from punctures, abrasions and excessive dirt and moisture for should have the following characteristics:

- a. level (no wooden pallets)
- b. smooth
- c. dry
- d. protected from theft and vandalism
- e. adjacent to the area being lined
- D. Handling- Materials are to be handled to prevent damage.

1.8 WARRANTY

- A. Material shall be warranted, on a pro-rata basis against Manufacturer's defects for a period of 1 year from the date of geomembrane installation.
- B. Installation shall be warranted against defects in workmanship for a period of 1 year from the date of geomembrane completion.

Part 2 PRODUCTS

2.1 GEOMEMBRANE PROPERTIES

- A. Material shall be smooth, textured or structured polyethylene geomembrane as shown on the drawings. Geomembrane shall be flat die-cast extruded.
- B. Resin
 - 1. Resin shall be new, first quality, compounded and manufactured specifically for producing geomembrane.
 - 2. Natural resin (without carbon black) shall meet the following requirements:
- C. Geomembrane Rolls
 - 1. Do not exceed a combined maximum total of 1 percent by weight of additives other than carbon black.
 - 2. Geomembrane shall be free of holes, pinholes as verified by on-line electrical detection, bubbles, blisters, excessive contamination by foreign matter, and nicks and cuts on roll edges.
 - 3. Geomembrane material is to be supplied in roll form. Each roll is to be identified with labels indicating roll number, thickness, length, width and MANUFACTURER.
 - 4. All liner sheets produced at the factory shall be inspected prior to shipment for compliance with the physical property requirements listed in section 2.1 D and be tested by an acceptable method of inspecting for pinholes.
 - 5. All geomembrane shall contain edge markings, which shall denote the name of the manufacturer, the product thickness, the year of manufacture and the length of the roll. Theses marking shall occur at uniformly spaced intervals throughout the entire length of the roll.

- D. Smooth surfaced geomembrane shall not be used.
- E. Textured surface and structured surface geomembrane shall contain a smooth surface on each edge. Otherwise, texturing shall be uniform from edge to edge and roll to roll. Textured geomembrane shall be manufactured with an embossed surface to ensure uniformity of texture. Textured and/or structured geomembrane shall meet the requirements shown in the following tables:
 - 1. Table 2.2 for HDPE AGRU MicroSpike®
 - 2. Table 2.3 for HDPE AGRU Super Gripnet Liner
 - 3. Table 2.4 for HDPE AGRU MicroDrain
 - 4. Table 2.5 for LLDPE AGRU MicroSpike®
 - 5. Table 2.6 for LLDPE AGRU Super GripNet Liner
 - 6. Table 2.7 for LLDPE AGRU MicroDrain
- F. Extrudate Rod or Bead
 - 1. Extrudate material shall be made from same type resin as the geomembrane.
 - 2. Additives shall be thoroughly dispersed.
 - 3. Materials shall be free of contamination by moisture or foreign matter.

Part 3 EXECUTION

3.1 EQUIPMENT

- A. Welding equipment and accessories shall meet the following requirements:
 - 1. Gauges showing temperatures in apparatus such as extrusion welder or fusion welder shall be present.
 - 2. An adequate number of welding apparati shall be available to avoid delaying work.
 - 3. Power source must be capable of providing constant voltage under combined line load.

3.2 DEPLOYMENT

- A. Assign each panel a simple and logical identifying code. The coding system shall be subject to approval and shall be determined at the job site.
- B. Visually inspect the geomembrane during deployment for imperfections and mark faulty or suspect areas.
- C. Deployment of geomembrane panels shall be performed in a manner that will comply with the following guidelines:
 - 1. Geomembranes shall be installed according to site-specific specifications.
 - 2. Unroll geomembrane using methods that will not damage geomembrane and will protect underlying surface from damage (spreader bar, protected equipment bucket).
 - 3. Place ballast (commonly sandbags) on geomembrane, which will not damage geomembrane to prevent wind uplift.

- 4. Personnel walking on geomembrane shall not engage in activities or wear shoes that could damage it. Smoking will not be permitted on the geomembrane.
- 5. Do not allow heavy vehicular traffic directly on geomembrane. Low ground pressure, rubber-tired vehicles are acceptable.
- 6. Protect geomembrane in areas of heavy traffic by placing protective cover over the geomembrane.
- D. Sufficient material (slack) shall be provided to allow for thermal expansion and contraction of the material.

3.3 FIELD SEAMING

A. Seams shall meet the following requirements:

- 1. To the maximum extent possible, orient seams parallel to line of slope, i.e., down and not across slope.
- 2. Minimize number of field seams in corners, odd-shaped geometric locations and outside corners.
- 3. Slope seams (panels) shall extend a minimum of five-feet beyond the grade break into the flat area.
- 4. Use a sequential seam numbering system compatible with panel numbering system that is agreeable to the CONSULTANT and INSTALLER.
- 5. Align seam overlaps consistent with the requirements of the welding equipment being used. A 6-inch overlap is commonly suggested.
- B. During Welding Operations
 - 1. Provide at least one Master Seamer who shall provide direct supervision over other welders as necessary.

C. Extrusion Welding

- 1. Hot-air tack adjacent pieces together using procedures that do not damage the geomembrane.
- 2. Clean geomembrane surfaces by disc grinder or equivalent.
- 3. Purge welding apparatus of heat-degraded extrudate before welding.
- 4. On materials 80 mil and thicker, bevel the top edge of liner to be welded to avoid air pockets.

D. Hot Wedge Welding

- 1. Welding apparatus shall be a self-propelled device equipped with an electronic controller, which displays applicable temperatures.
- 2. Clean seam area of dust, mud, moisture and debris immediately ahead of hot wedge welder.
- 3. Protect against moisture build-up between sheets.
- E. Trial Welds
 - 1. Perform trial welds on geomembrane samples to verify welding equipment is operating properly.
 - 2. Make trial welds under the same surface and environmental conditions as the production

welds, i.e., in contact with subgrade and similar ambient temperature.

- 3. Minimum of two trial welds per day, per welding apparatus, one made prior to the start of work and one completed at mid shift.
- 4. Cut four, one-inch wide by six-inch long test strips from the trial weld.
- 5. Quantitatively test specimens for peel adhesion, and then for shear strength.
- 6. Trial weld specimens shall pass when the results shown in the following tables for HDPE and LLDPE are achieved in both peel and shear test.
- 7. Repeat the trial weld, in its entirety, when any of the trial weld samples fail in either peel or shear.
- 8. No welding equipment or welder shall be allowed to perform production welds until equipment and welders have successfully completed trial weld.
- 9. Seaming shall not proceed when ambient air temperature or adverse weather conditions jeopardize the integrity of the liner installation. INSTALLER shall demonstrate that acceptable seaming can be performed by completing acceptable trial welds.
- G. Defects and Repairs
 - 1. Examine all seams and non-seam areas of the geomembrane for defects, holes, blisters, undispersed raw materials, and any sign of contamination by foreign matter.
 - 2. Repair and non-destructively test each suspect location in both seam and non-seam areas. Do not cover geomembrane at locations that have been repaired until test results with passing values are available.

3.4 FIELD QUALITY ASSURANCE

- A. MANUFACTURER and INSTALLER shall participate in and conform to all terms and requirements of the Owner's quality assurance program. CONTRACTOR shall be responsible for assuring this participation.
- B. Quality assurance requirements are as specified in this Section and in the Field Installation Quality Assurance Manual if it is included in the contract.

C. Field Testing

- 1. Non-destructive testing may be carried out as the seaming progresses or at completion of all field seaming.
 - a. Vacuum Testing
 - 1) Shall be performed in accordance with ASTMD5641, Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber.
 - b. Air Pressure Testing
 - 1) Shall be performed in accordance with ASTMD5820, Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes.
 - c. Other approved methods.
- 2. Destructive Testing (performed by CONSULTANT with assistance from INSTALLER)
 - a. Location and Frequency of Testing
 - 1) Collect destructive test samples at a frequency of one per every 500 lineal feet of seam length.

- 2) Test locations will be determined after seaming.
- 3) Exercise Method of Attributes as described by GRI GM-14 (Geosynthetic Research Institute, http://www. geosynthetic-institute.org) to minimize test samples taken.
- b. Sampling Procedures are performed as follows:
 - 1) INSTALLER shall cut samples at locations designated by the CONSULTANT as the seaming progresses in order to obtain field laboratory test results before the geomembrane is covered.
 - 2) CONSULTANT will number each sample, and the location will be noted on the installation as-built.
 - 3) Samples shall be twelve (12) inches wide by minimal length with the seam centered lengthwise.
 - 4) Cut a 2-inch wide strip from each end of the sample for field-testing.
 - 5) Cut the remaining sample into two parts for distribution as follows:
 - a) One portion for INSTALLER, 12-inches by 12 inches
 - b) One portion for the Third Party laboratory, 12-inches by 18-inches
 - c) Additional samples may be archived if required.
 - 6) Destructive testing shall be performed in accordance with ASTMD6392, Standard Test Method for Determing the Integrity of Non-Reinforced Geomembrane Seams Produced Using Thermo-Fusion Methods.
 - 7) INSTALLER shall repair all holes in the geomembrane resulting from destructive sampling.
 - 8) Repair and test the continuity of the repair in accordance with these Specifications.
 - 9) CQA activities should not to be more than one day behind deployment.
- 3. Failed Seam Procedures
 - a) If the seam fails, INSTALLER shall follow one of two options:
 - 1) Reconstruct the seam between any two passed test locations.

2) Trace the weld to intermediate location at least 10 feet minimum or where the seam ends in both directions from the location of the failed test.

b) The next seam welded using the same welding device is required to obtain an additional sample

c) If sample passes, then the seam shall be reconstructed or capped between the test sample locations.

d) If any sample fails, the process shall be repeated to establish the zone in which the seam shall be reconstructed.

3.5 REPAIR PROCEDURES

A. Remove damaged geomembrane and replace with acceptable geomembrane materials if damage cannot be satisfactorily repaired.

B. Repair any portion of unsatisfactory geomembrane or seam area failing a destructive or nondestructive test.

C. INSTALLER shall be responsible for repair of defective areas.

D. Agreement upon the appropriate repair method shall be decided between CONSULTANT and INSTALLER by using one of the following repair methods:

- 1. Patching- Used to repair large holes, tears, undispersed raw materials and contamination by foreign matter.
- 2. Abrading and Re-welding- Used to repair short section of a seam.
- 3. Spot Welding- Used to repair pinholes or other minor, localized flaws or where geomembrane thickness has been reduced.
- 4. Capping- Used to repair long lengths of failed seams.
- 5. Remove the unacceptable seam and replace with new material.
- E. The following procedures shall be observed when a repair method is used:
 - 1. All geomembrane surfaces shall be clean and dry at the time of repair.
 - 2. Surfaces of the polyethylene which are to be repaired by extrusion welds shall be lightly abraded to assure cleanliness.
 - 3. Extend patches or caps at least 6 inches for extrusion welds and 4 inches for wedge welds beyond the edge of the defect, and around all corners of patch material.
- F. Repair Verification
 - 1. Number and log each patch repair (performed by CONSULTANT).
 - 2. Non-destructively test each repair using methods specified in this Specification.

Part 4 MEASUREMENT AND PAYMENT

- A. Payment for geomembrane installation will be as per contract unit price per square foot, including designed anchor trench material and is based upon net lined area.
- B. Net lined area is defined to be the true area of all surfaces to be lined plus designed burial in all anchor trenches, rubsheets, and sacrificial layers.
- C. Prices shall include full compensation for furnishing all labor, material, tools, equipment, and incidentals.
- D. Prices also include doing all the work involved in performing geomembrane installation completely as shown on the drawing, as specified herein, and as directed by the ENGINEER.

Part 2 PRODUCTS SUPPLEMENT

2.1GEOMEMBRANE PROPERTIES TABLES

Table 2.1: Raw Material Properties

Property	Test Method	HDPE	LLDPE
Density (g/cc)	ASTM D792, Method B	≥0.932	≥0.915
Melt Flow Index (g/10 min)	ASTM D 1238 (190/2.16)	≤1.0	≤1.0

		Test Mathed Freeman		Minimum Average Value			
Tested Property	l est Mietnoa	Frequency	40 mil	60 mil	80 mil	100 mil	
Thickness, (min. average) mil (mm) Lowest individual reading (-10%)	ASTM D5994	every roll	40 (1.0) 36 (0.90)	60 (1.5) 54 (1.35)	80 (2.0) 72 (1.8)	100 (2.5) 90 (2.25)	
Density, g/cm ³	ASTM D792 Method B	200,000 lb	0.94	0.94	0.94	0.94	
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Strength at Yield, lb/in-width (N/mm) Elongation at Break, % Elongation at Yield, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm) G.L. 1.3 in (33 mm)	20,000 lb	88 (15) 88 (15) 350 12	132 (23) 132 (23) 350 12	176 (31) 176 (31) 350 12	220 (38) 220 (38) 350 12	
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	30 (133)	45 (200)	60 (267)	72 (320)	
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	90 (400)	120 (534)	150 (667)	180 (801)	
Carbon Black Content, % (Range)	ASTM D4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	
Asperity Height, mil (mm)	ASTM D7466	second roll	20 (0.5)	20 (0.5)	18 (0.45)	18 (0.45)	
Notched Constant Tensile Load, hr	ASTM D5397, App.	200,000 lb	500	500	500	500	
Oxidative Induction Time, min	ASTM D 3895, 200° C; O2, 1 atm	200,000 lb	>140	>140	>140	>140	

Table 2.2: AGRU HDPE MicroSpike® Textured geomembrane

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

Table 2.3: AGRU HDPE Super Gripnet® Liner

		F	Minimum Average Value			
Tested Property	rest method rrequency		50 mil	60 mil	80 mil	100 mil
Thickness, (Nominal) mil (mm) Thickness, (average) mil (mm) Lowest individual reading 8 of 10 (-10%) Lowest Individual 2 of 10	ASTM D5994	every roll	50 (1.25) 47.5 (1.18) 45 (1.12) 42.5 (1.06)	60 (1.5) 57 (1.43) 54 (1.35) 51 (1.28)	80 (2.0) 76 (1.9) 72 (1.8) 68 (1.7)	100 (2.5) 95 (2.4) 90 (2.3) 85 (2.1)
Drainage Stud Height, mil (mm)	ASTM D7466	second roll	130 (3.3)	130 (3.3)	130 (3.3)	130 (3.3)
Friction Stud Height, mil (mm)	ASTM D7466	second roll	175 (4.45)	175 (4.45)	175 (4.45)	175 (4.45)
Density, g/cm ³	ASTM D792, Method B	200,000 lb	0.94	0.94	0.94	0.94
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Strength at Yield, lb/in-width (N/mm) Elongation at Break, % Elongation at Yield, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm) G.L. 1.3 in (33 mm)	20,000 lb	110 (19) 110 (19) 200 12	132 (23) 132 (23) 200 12	176 (30) 176 (30) 200 12	220 (38) 220 (38) 200 12
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	38 (169)	42 (187)	56 (249)	70 (312)
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	80 (356)	90 (400)	120 (534)	150 (667)
Carbon Black Content, % (Range)	ASTM D4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾
Notched Constant Tensile Load, hr	ASTM D5397, Appendix	200,000 lb	500	500	500	500
Oxidative Induction Time, min	ASTM D3895, 200°C; O ₂ , 1 atm	200,000 lb	>140	>140	>140	>140

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

Table 2.4: AGRU HDPE MicroDrain® Liner

		_	1	Minimum Average Value			
Tested Property	Test Method Frequency		50 mil	60 mil	80 mil	100 mil	
Thickness, (Nominal) mil (mm) Thickness, (average) mil (mm) Lowest individual reading 8 of 10 (-10%) Lowest Individual 2 of 10	ASTM D5994	every roll	50 (1.25) 47.5 (1.18) 45 (1.12) 42.5 (1.06)	60 (1.5) 57 (1.43) 54 (1.35) 51 (1.28)	80 (2.0) 76 (1.9) 72 (1.8) 68 (1.7)	100 (2.5) 95 (2.4) 90 (2.3) 85 (2.1)	
Drainage Stud Height, mil (mm)	ASTM D7466	second roll	130 (3.3)	130 (3.3)	130 (3.3)	130 (3.3)	
MicroSpike® Asperity Height, mil (mm)	ASTM D7466	second roll	20 (0.51)	20 (0.51)	18 (0.46)	18 (0.46)	
Density, g/cm ³	ASTM D792, Method B	200,000 lb	0.94	0.94	0.94	0.94	
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Strength at Yield, lb/in-width (N/mm) Elongation at Break, % Elongation at Yield, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm) G.L. 1.3 in (33 mm)	20,000 lb	110 (19) 110 (19) 300 12	132 (23) 132 (23) 300 12	176 (30) 176 (30) 300 12	220 (38) 220 (38) 300 12	
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	38 (169)	42 (200)	56 (267)	70 (300)	
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	80 (356)	95 (422)	126 (560)	158 (703)	
Carbon Black Content, % (Range)	ASTM D4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	
Notched Constant Tensile Load, hr	ASTM D5397, Appendix	200,000 lb	500	500	500	500	
Oxidative Induction Time, min	ASTM D3895, 200°C; O2, 1 atm	200,000 lb	>140	>140	>140	>140	

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

	Test Method			Minimum Average Value			
Tested Property		Frequency	40 mil	60 mil	80 mil	100 mil	
Thickness, (min. average) mil (mm) Lowest individual reading (-10%)	ASTM D5994	every roll	40 (1.0) 36 (0.9)	60 (1.5) 54 (1.35)	80 (2.0) 72 (1.8)	100 (2.5) 90 (2.25)	
Density, g/cm ³ – maximum	ASTM D792 Method B	200,000 lb	0.939	0.939	0.939	0.939	
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Elongation at Break, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm)	20,000 lb	112 (20) 400	168 (29) 400	224 (39) 400	280 (49) 400	
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	25 (111)	36 (160)	50 (222)	60 (267)	
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	50 (222)	70 (310)	90 (400)	115 (512)	
Carbon Black Content, % (Range)	ASTM D421 8	20,000 lb	2.0-3.0	2.0-3.0	2.0-3.0	2.0-3.0	
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	
Asperity Height, mil (mm)	ASTM D7466	second roll	20 (0.5)	20 (0.5)	18 (0.45)	18 (0.45)	
Oxidative Induction Time, min	ASTM D3895, 200° C; O ₂ ,1 atm	200,000 lb	>140	>140	>140	>140	

Table 2.5: AGRU LLDPE MicroSpike® Textured Geomembrane

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

Table 2.6: AGRU LLDPE Super Gripnet® Liner

	Transfer		Minimum Average Value				
Tested Property	Test Method	Frequency	50 mil	60 mil	80 mil	100 mil	
Thickness, (Nominal) mil (mm) Thickness, (average) mil (mm) Lowest individual reading 8 of 10 (-10%) Lowest Individual 2 of 10	ASTM D5994	every roll	50 (1.25) 47.5 (1.18) 45 (1.12) 42.5 (1.06)	60 (1.5) 57 (1.43) 54 (1.35) 51 (1.28)	80 (2.0) 76 (1.9) 72 (1.8) 68 (1.7)	100 (2.5) 95 (2.4) 90 (2.3) 85 (2.1)	
Drainage Stud Height, mil (mm)	ASTM D7466	second roll	130 (3.3)	130 (3.3)	130 (3.3)	130 (3.3)	
Friction Stud Height, mil (mm)	ASTM D7466	second roll	175 (4.45)	175 (4.45)	175 (4.45)	175 (4.45)	
Density, g/cm ³ – maximum	ASTM D792, Method B	200,000 lb	0.939	0.939	0.939	0.939	
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Elongation at Break, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm)	20,000 lb	105 (18) 300	126 (22) 300	168 (29) 300	210 (36) 300	
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	30 (133)	40 (178)	53 (236)	65 (285)	
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	55 (245)	70 (311)	90 (400)	110 (489)	
Carbon Black Content, % (Range)	ASTM D4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	
Oxidative Induction Time, min	ASTM D3895, 200°C; O ₂ , 1 atm	200,000 lb	>140	>140	>140	>140	

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

Table 2.7: AGRU LLDPE MicroDrain® Liner

	Total Made a	F	Minimum Average Value			
Tested Property	rest memou rrequency		50 mil	60 mil	80 mil	100 mil
Thickness, (Nominal) mil (mm) Thickness, (average) mil (mm) Lowest individual reading 8 of 10 (-10%) Lowest Individual 2 of 10	ASTM D5994	every roll	50 (1.25) 47.5 (1.18) 45 (1.12) 42.5 (1.06)	60 (1.5) 57 (1.43) 54 (1.35) 51 (1.28)	80 (2.0) 76 (1.9) 72 (1.8) 68 (1.7)	100 (2.5) 95 (2.4) 90 (2.3) 85 (2.1)
Drainage Stud Height, mil (mm)	ASTM D7466	second roll	130 (3.3)	130 (3.3)	130 (3.3)	130 (3.3)
MicroSpike® Asperity Height, mil (mm)	ASTM D7466 second ro		20 (0.51)	20 (0.51)	18 (0.46)	18 (0.46)
Density, g/cm ³ – maximum	ASTM D792, Method B	200,000 lb	0.939	0.939	0.939	0.939
Tensile Properties (each direction) Strength at Break, lb/in-width (N/mm) Elongation at Break, %	ASTM D6693, Type IV Dumbell, 2 ipm G.L. 2.0 in (51 mm)	20,000 lb	105 (18) 300	126 (22) 300	168 (29) 300	210 (36) 300
Tear Resistance, lb (N)	ASTM D1004	45,000 lb	30 (133)	40 (178)	53 (236)	67 (298)
Puncture Resistance, lb (N)	ASTM D4833	45,000 lb	55 (245)	70 (311)	90 (400)	110 (489)
Carbon Black Content, % (Range)	ASTM D4218	20,000 lb	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0	2.0 - 3.0
Carbon Black Dispersion	ASTM D5596	45,000 lb	Note ⁽¹⁾	Note (1)	Note (1)	Note (1)
Oxidative Induction Time, min	ASTM D3895, 200°C; O ₂ , 1 atm	200,000 lb	>140	>140	>140	>140

NOTES:

• ⁽¹⁾Dispersion only applies to near spherical agglomerates. 10 views shall be Category 1 or 2.

Table 2.12.A: Minimum	Weld	Values fo	or HDPE	Geomembranes
	i i ciu	v araco r		ocomonutor

Property	Test Method	30 (0.75)	40 (1.0)	60 (1.5)	80 (2.0)	100 (2.5)	120 (3.0)
Peel Strength (fusion), ppi (kN/m) Peel Strength (extrusion), ppi (kN/m)	ASTM D 6392 ASTM D 6392	45 (197) 39 (170)	60 (263) 52 (225)	91 (398) 78 (340)	121 (530) 104 (445)	151 (661) 130 (570)	181 (793) 156 (680)
Shear Strength (fusion & ext.), ppi (kN/m)	ASTM D 6392	57 (250)	80 (350)	120 (525)	160 (701)	200 (876)	240 (1050)

Table 2.12.B: Minimum Weld Values for LLDPE Geomembranes

Property	Test Method	30 (0.75)	40 (1.0)	60 (1.5)	80 (2.0)	100 (2.5)
Peel Strength (extrusion), ppi (kN/m) Peel Strength (fusion), ppi (kN/m)	ASTM D 6392 ASTM D 6392	38 (166) 34 (150)	50 (219) 44 (190)	75 (328) 66 (290)	100 (438) 88 (385)	125 (547) 114 (500)
Shear Strength (fusion & ext.), ppi (kN/m)	ASTM D 6392	45 (197)	60 (263)	90 (394)	120 (525)	150 (657)

a. The break, when peel testing, occurs in the liner material itself, not through peel separation (FTB).

b. The break is ductile.

SECTION 31022 GRADING

1.0 GRADING SCOPE OF WORK

- 1.1 The work covered in this Section shall include, but is not necessarily limited to the following:
 - 1. Moving, placing, and compacting CCR;
 - 2. Grading the Former Ash Basin (FAB) north portion slopes;
 - 3. Grading the CCR in the south portion of the FAB;
 - 4. Rebuild the north portion access road; and
 - 5. Install the riprap drainage channels on the north side of the railroad berm.
- 1.2 CONTRACTOR shall perform the required field and laboratory CQC tests described in this Section.
- 1.3 If Work is interrupted for reasons other than inclement weather, then the CONTRACTOR shall notify the OWNER'S REPRESENTATIVE and CQA OFFICER a minimum of 24 hours prior to the resumption of Work.

2.0 GRADING QUALITY ASSURANCE

- 2.1 All field density testing shall be done by an approved geotechnical firm at the CONTRACTOR'S expense.
- 2.2 Field density testing shall be performed in accordance with ASTM D6938 and occur with one (1) test performed every 10,000 square feet (sf) per lift (1 test/10,000 sf/lift). A special testing frequency will be used at the discretion of the OWNER'S REPRESENTATIVE or the CQA OFFICER when visual observations of construction performance indicate a potential problem.
 - 1. Additional testing will be considered when:
 - a. The rollers slip during rolling operation;
 - b. The lift thickness is greater than specified;
 - c. The soil is at improper and/or variable moisture content;
 - d. Fewer than the specified number of roller passes is made;
 - f. The rollers do not have optimum ballast; or
 - g. The degree of compaction is doubtful.
 - 2. During construction, the frequency of testing may also be increased by the OWNER'S REPRESENTATIVE or the CQA OFFICER in the following situations:
 - a. Adverse weather conditions;
 - b. Breakdown of equipment;
 - c. At the start and finish of grading;
 - d. If the material fails to meet specifications; or
 - e. The work area is reduced.

- 2.3 The CQA OFFICER shall monitor the placement and compaction of CCR, soils, and construction materials in accordance with the Specifications and Drawings. If a defective area is discovered, the following will occur:
 - 1. The CQA OFFICER will notify the CONTRACTOR who shall proceed to determine the extent and nature of the defect.
 - 2. If the defect is indicated by an unsatisfactory test result, then the CONTRACTOR will determine the extent of the defective area by additional tests, observations, a review of records, or other means that the CONTRACTOR deems appropriate.
 - 3. If the defect is related to adverse site conditions, such as overly wet soils or surface desiccation, then the CONTRACTOR will define the limits and nature of the defect.
 - 4. After the extent and nature of a defect has been determined, the CONTRACTOR shall correct the deficiency to the satisfaction of the OWNER'S REPRESENTATIVE and the CQA OFFICER. The cost of corrective actions shall be borne by the CONTRACTOR.
 - 5. Additional testing will be performed by the CONTRACTOR to verify that the defect has been corrected. This additional testing will be performed and submitted to the OWNER'S REPRESENTATIVE before any additional work is allowed in the area of deficiency.

3.0 MATERIALS

- 3.1 All material anticipated to be graded shall be considered CCR or unclassified soil; it is anticipated that bedrock will not be encountered. CCR or Unclassified soil grading shall include the removal and subsequent handling of any and all overburden materials and substances encountered in performance of the work, regardless of the type, character, composition, or condition thereof. Bedrock is considered the material that cannot be removed with standard grading techniques (hereby defined as grading with a CAT D9T bulldozer) or with standard excavation techniques (hereby defined as excavation with a CAT 315 excavator with standard teeth).The existing CCR in the north and south portions of the FAB shall be used for grading.
- 3.2 All material brought in from offsite shall be approved before use. Material brought in from offsite shall be free from rubbish, large stones, clods, roots, brush, debris, frozen lumps of earth, or other objectionable material, and shall be moistened as required.

1. CCR MATERIAL

- 1. Soil boring logs from previously completed wells at the site are available upon request.
- 2. With exception to the above-mentioned data, there has been no additional investigation into the types of subsurface materials to be encountered in the proposed areas of CCR grading.
- 2. NON-CCR MATERIAL
- 1. The non-CCR material that will be encountered may consist of gravel and topsoil present along the current north portion access road and the area surrounding the FAB.

- 2. Any topsoil or gravel removed will be used in constructing the north portion access road and to re-establish vegetation, as needed.
- 3. The vegetation for restoration will consist of native grasses that thrive in wet environments. All seed shall be of high quality and comply with Illinois Seed and Weed Laws.

3. EROSION CONTROL MATERIAL

Acceptable erosion control materials are as follows:

- 1. Mulch shall comply with Illinois Urban Manual Practice Standard 875 with straw mulch consisting of oats, wheat, rye, or barley and hydraulic mulch consisting of wood, cotton, straw, or paper or a combination of the four. If compost is used it shall be thoroughly decomposed organic waste. Chemical mulch bonder shall be approved as safe for the ecosystem.
- 2. The erosion control blanket shall comply with IUM Practice Standard Erosion Control Blanket 830 and shall be coconut blankets, jute netting, wood fiber blankets, straw blankets, or an approved equal.
- 3. The turf reinforcement mat (TRM) shall comply with IUM Material Specification Turf Reinforcement Mat 805 and shall be equal or greater to Landlok 435 or Enkamat 7020 brand TRMs or an approved equal.

4.0 MATERIAL PLACEMENT AND COMPACTION

- 4.1 Load, transport, place, and compact a minimum 12-inch thick CCR layer for materials compacted by heavy equipment and not more than 6 inches for materials compacted by hand equipment. Hand compaction of material shall be used in locations where larger compaction is inappropriate due to limited area.
- 4.2 Clod size must be reduced by construction disc or similar equipment. Remove materials greater than 3 inches in diameter.
- 4.3 Any cut CCR material will be compacted to 95% of its maximum dry density as determined by ASTM D698 with corresponding moisture content to within +/-5% of the optimum moisture content as determined by ASTM D2216.
- 4.4 Fill layers will be compacted to at least 95% of the maximum theoretical density as determined by ASTM D698. Moisture content shall be within +/-2% of optimum as determined by ASTM D2216.
- 4.4 Grading Tolerances are as follows:
 - 1. Horizontal grading points, plus or minus 0.2 feet.
 - 2. Vertical grading elevations, plus or minus 0.1 feet.
- 4.5 Compact final lift to the elevations shown on the Drawings. Final finish grades must not exceed the maximum grades and elevations shown on the Drawings unless specifically approved by the OWNER'S REPRESENTATIVE and/or CQA OFFICER.

- 4.6 Maintain stability of graded areas. Prevent surface and subsurface water from accumulating on areas that had been graded and areas that require grading.
- 4.7 Remove foreign materials (i.e., sticks, sharp objects, etc.) from finished surface
- 4.8 Protect newly graded areas from traffic and erosion. Recompact and regrade settled, disturbed and damaged areas as necessary to restore quality, appearance, and condition of work.
- 4.9 Protect newly graded areas from damage from stormwater. Recompact and regrade settled, disturbed and damaged areas as necessary to restore quality, appearance, and condition of work.
- 4.10 Compaction shall be performed using a vibratory soil compactor and/or tamping foot compactor, unless other equipment is approved by the OWNER'S REPRESENTATIVE.
- 4.11 Scarify and knead the interface of different material layers to facilitate adherence when compacting.
- 4.12 Place material when ambient temperature is above freezing.
- 4.13 Control erosion to prevent runoff that will cause damage to sloped or surfaced areas.
- 4.14 CONTRACTOR shall finish each day's work with a smooth-drum roller to create a smooth surface, free from ruts or indentations, which will minimize moisture penetration. The area shall be left in a manner to promote runoff at the end of each day.
- 4.15 Prior to continuing construction from the previous day's work, CONTRACTOR shall scarify the surface to provide a bond between the layers.
- 4.16 Control dust to prevent hazards to adjacent properties and vehicles. Immediately repair or remedy damage caused by dust including air filters in equipment and vehicles. Clean soiled surfaces.
- 4.17 Compacted properties will be verified from periodic in place nuclear density testing in accordance with ASTM D6938.

5.0 NORTH PORTION ACCESS ROAD CONSTRUCTION

5.1 The material used to construct the north portion access road shall consist of Mirafi 140/N fabric or an approved equal and IDOT gradation CA6 base course or an approved equal. The IDOT gradation CA base course material shall conform to the following limits when tested by means of laboratory sieves:

0	CA6
Sieve Size	Total Percent Passing by Weight
1 1/2 inch	100
1 inch	95±5
¹ / ₂ inch	75±15
No. 4	43±13
No. 16	25±15
No. 200	<u>8±4</u>

- 5.2 Compacted base course should be free of deleterious materials and placed in 6-inch lifts compacted to achieve at least 95% standard proctor density as determined by in-place density testing performed in accordance with ASTM D6938. Material should be graded and placed properly to avoid any open voids after compaction.
- 5.3 CONTRACTOR shall finish each day's work with a smooth-drum roller to create a smooth surface, free from ruts or indentations, which will minimize moisture penetration. The area shall be left in a manner to promote runoff at the end of each day.
- 5.4 Prior to continuing construction from the previous day's work, CONTRACTOR shall scarify the surface to provide a bond between the layers.

6.0 SUBGRADE PREPARATION

- 6.1 The subgrade is defined as the material that will be placed and compacted for the final one (1) foot lift that is necessary to achieve the final elevations shown on the Drawings. The surface of the subgrade will be in direct contact with the ClosureTurf System.
- 6.2 Load, transport, place, and compact the final one foot of subgrade in two (2) 6-inch thick lifts. Heavy equipment shall be used for compaction. Hand compaction of material shall be used in locations where larger compaction is inappropriate due to limited area.
- 6.3 The subgrade shall be moved, placed, and compacted to conform to the final grades indicated on the Drawings and to ensure the subgrade is acceptable for the placement of the ClosureTurf System.
- 6.4 Subgrade will be substantially smooth, uniform, firm and free from rocks or other debris.

- 6.5 No rocks or protrusions greater than 1 inch in diameter will be exposed at the subgrade surface.
- 6.6 Grading Tolerances are plus or minus 0.1 feet.
- 6.7 Smooth roll final surface to eliminate irregularities. The surface will be substantially free of foreign and organic material, sharp objects, particles or other deleterious material.

7.0 SUBGRADE EXAMINATION

- 7.1 The CQA OFFICER and the CONTRACTOR shall monitor the placement and compaction of CCR before and during deployment of the ClosureTurf components in accordance with the Specifications and Drawings. If a defective area is discovered, the CONTRACTOR shall complete the necessary actions to correct the defective area.
- 7.2 Responsibilities for the approval and maintenance of the subgrade are as follows:
 - 1. OWNER'S REPRESENTATIVE:
 - a. Verify in writing that the surface on which the geomembrane component will be installed is acceptable.
 - b. Approved subgrade to be capable of supporting the weight of geosynthetics installation equipment.
 - 2. GEOSYNTHETICS INSTALLER:
 - a. Keep the accepted subgrade surface in a condition conducive to the deployment of all ClosureTurf components.
 - b. Subgrade acceptance is determined when the deployment of the geomembrane component begins.
 - c. Maintain the previously accepted subgrade.
 - d. Identify any part of the subgrade that becomes non-compliant to the specifications during the course of construction.
 - e. Timely submission to the OWNER'S REPRESENTATIVE of subgrade acceptance certificates.
- 7.3 Daily evaluations shall occur to show no changes have occurred that would render the subgrade unacceptable.

8.0 GRADING WATER CONTROL AND DEWATERING

- 8.1 For all areas requiring grading activities, the CONTRACTOR shall provide suitable equipment to remove water, and the areas shall be kept dewatered so that grading activities can be carried out under dewatered conditions.
- 8.2 Prevent surface and subsurface water from accumulating on areas that had been graded and areas that require grading.

- 8.3 Water shall be disposed of in a suitable manner without damage to adjacent property or without being a menace to public health and convenience. No water shall be drained into work built or under construction without prior consent of the OWNER'S REPRESENTATIVE.
- 8.4 Control erosion to prevent runoff that will cause damage to sloped or surfaced areas.
- 8.5 Dewatering shall be accomplished by well points, pumping, or any other acceptable method which will ensure the areas requiring grading are dewatered sufficiently, so that the areas can dry to allow the CONTRACTOR'S operations to not be interrupted. Any dewatering method shall be subject to the approval of the OWNER'S REPRESENTATIVE.

9.0 REMOVAL OF UNSUITABLE MATERIAL

9.1 In areas where unsuitable or unstable material is encountered, the CONTRACTOR shall remove the unsuitable material and backfill and compact with material approved by the OWNER'S REPRESENTATIVE. Removal and replacement of unsuitable material will be done only upon authorization by the OWNER. Payment for authorized work will be negotiated by Change Order.

10.0 GENERAL RESTORATION

- 10.1 STREETS AND ROADWAYS: Any pavements disturbed during construction shall be repaired in accordance with the requirements of the OWNER.
- 10.2 ACCESS ROADS: Restore the access roads to conditions equal to or exceeding existing conditions if damage occurs during the Work outlined in this Section.
- 10.3 A mulch application is acceptable for erosion control on areas of slopes of 3H:1V or flatter. Erosion control blankets may be installed as needed instead of straw to prevent erosion. Erosion control blankets shall be installed on slopes flatter than or equal to 1.5H:1V. Turf reinforcement mat will be used in areas with a slope greater than 3H:1V.

11.0 **RESTORATION**

- 11.1 The CONTRACTOR may use the stockpiled topsoil for any areas of restoration. The topsoil shall be seeded and then covered to prevent erosion. If additional topsoil is needed, it shall be provided by the contractor from an approved source.
- 11.2 The topsoil shall not be replaced when the CCR subgrade is frozen or saturated.

11.3 SEEDING TOPSOIL PREPARATION:

- 1. The grading of the topsoil shall utilize techniques and equipment that minimize soil compaction. If the final graded site consists of subsoil that may have been compacted by heavy equipment during grading activities, the subgrade shall be scarified to a depth of at least four inches by chisel plowing, disking or harrowing.
- 2. After the grading operation, spread topsoil where needed following Natural Resources Conservation Service (NRCS) Illinois Urban Manual Practice Standard Topsoiling 981.

11.4 SEEDBED PREPARATION:

- 1. Prior to seeding or planting, the seedbed shall be relatively free of all weeds (> 80% weed free), stones, roots, sticks, rivulets, gullies, crusting and caking, or other debris which may interfere with seeding or planting operations or plant establishment.
- 2. Prior to seeding or planting the surface shall be disked or raked to a depth of 2-3 inches either by hand or mechanical means to create a smooth uniform seedbed.
- 3. In areas that have been regraded, which have grown up in weeds, or to be no-till seeded, an herbicide application may be necessary to reduce competition with the desired vegetation. An approved herbicide may be used to treat such areas to kill all existing vegetation. Herbicide application shall be done at least 15 days prior to seeding or planting.
- 11.5 If needed based upon soil conditions and desired vegetation type, incorporate the lime and fertilizer into the soil with a disk harrow, springtooth harrow, or similar tools to a depth of at least 3 inches. On sloping areas the final operation shall be on the contour.
- 11.6 Fertilizer or lime is generally not recommended for native vegetation establishment unless soil tests indicate pH < 5.5, P < 15 lb./ac., or K < 150 lb./ac. If levels are below this, apply lime and fertilizer according to a soil test and the needs of the vegetation selected.
- 11.7 Seeding may be done by conventional drilling, broadcast seeding, hydroseeding, dormant seeding, and/or no-till seeding. Refer to NRCS Illinois Urban Manual Practice Standard Permanent Vegetation 880 for specific requirements for each seeding method.

12.0 MAINTENANCE OF GRADED AREAS

12.1 All graded areas shall be maintained in a satisfactory condition and all places showing signs of settlement shall be filled and maintained during the life of the Contract and for a period of one year following the date of final acceptance of all work performed under the Contract. When the CONTRACTOR discovers or is notified by the OWNER'S REPRESENTATIVE or the OWNER that any graded area does not comply with the provision of this Contract, the CONTRACTOR shall correct such conditions at once. Any utilities and road surfacing damaged by such settlement shall be repaired by the CONTRACTOR to the satisfaction of the **OWNER** and OWNER'S REPRESENTATIVE. In addition, the CONTRACTOR shall be responsible for the cost to the OWNER of all claims for damages filed with the Court, actions brought against the said OWNER for, and on account of, such damage.

END OF SECTION

<u>ATTACHMENT 6</u> <u>FACILITY/COMPONENT PLANS AND SPECIFICATIONS</u>

Attachment 6 – No Attachment

<u>ATTACHMENT 7</u> <u>CLOSURE CONSTRUCTION</u>

Attachment 7-1 FAB Closure Plan

KPRG and Associates, Inc.

FINAL CLOSURE PLAN – FORMER ASH BASIN

POWERTON GENERATING STATION MIDWEST GENERATION, LLC PEKIN, ILLINOIS

Illinois EPA Site No. 1798010008-05

October 26, 2022

Submitted To:

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Prepared For:

Midwest Generation, LLC 13082 East Manito Rd. Pekin, IL 61554

Prepared By:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	CLOSURE NARRATIVE	. 2
3.0	CCR REMOVAL and DECONTAMINATION	. 2
4.0	CLOSURE with CCR LEFT IN PLACE	. 3
5.0	MAXIMUM INVENTORY of CCR	. 6
6.0	LARGEST AREA of CCR REQUIRING a FINAL COVER	. 6
7.0	CLOSURE SCHEDULE	. 6
8.0	CLOSURE PLAN AMENDMENTS	. 8
9.0	PROFESSIONAL ENGINEER'S CERTIFICATION	. 8

1.0 INTRODUCTION [845.720(a)(1)(A)]

The Midwest Generation, LLC (Midwest Generation) Powerton Generating Station is located at 13082 East Manito Road, Pekin, Tazewell County, Illinois. The facility is a coal-fired electric power generating station occupying approximately 1,710 acres. Units 5 and 6 began operating in 1972 and 1975, respectively. Electrical power is transmitted from the site to the area grid through overhead transmission power lines. In conjunction with the station is a man-made perched cooling pond known as Powerton Lake, which occupies approximately 1,440 acres and provides cooling water to the facility.

In conjunction with the ash handling system, the Powerton Station utilizes basins identified as the Ash Bypass Basin and the Ash Surge Basin, which are located on the northeast side of the facility. Settled water is then conveyed to the Service Water Basin for reuse or discharge in accordance with the NPDES permit. An inactive ash basin, referred to as the Former Ash Basin (FAB), is located to the northeast of the existing Ash Surge Basin. The FAB is a 25-acre inactive CCR surface impoundment and has not been used since the 1970's. The FAB was previously one inactive surface impoundment when it was divided by a railroad embankment constructed in 2010. The divided FAB is referred to as the north portion and the south portion in this document for reference purposes. Standing water is present in some areas of the north and south portions along with vegetation and trees that have grown over the CCR due to the length of inactivity.

As required by 845.700(b), Midwest Generation will be closing the FAB. A preliminary closure plan was submitted as part of the Powerton operating permit application and is finalized as part of this construction permit application to execute the closure of the FAB. This final closure plan has been executed in accordance with 845.720(b), which includes completing a closure alternatives analysis. Pursuant to 845.710, a closure alternatives analysis was completed prior to selecting the closure method that will be used for the FAB and described in this final closure plan. The closure alternatives analysis was performed to evaluate the closure methods involving closure by removal and closure in place. The closure alternatives analysis report evaluated four different closure methods. The four different methods evaluated consisted of the following:

- Scenario 1: Closure by removal in accordance with 845.740.
- Scenario 2: Closure in place in both the north and south portions of the FAB and installation of a final cover system.
- Scenario 3: Consolidate the CCR in the southern portion of the FAB and installation of a final cover system.
- Scenario 4: Closure in place via in-situ soil stabilization and installation of a soil cover.

The closure alternatives analysis identified that closure in place provides both short- and long-term protection to groundwater and surface water along with ensuring overall protection to the public health, welfare, and safety. Therefore, Midwest Generation has selected to close the FAB in place and construct an alternative final cover system as the closure method. This closure plan has been

prepared in accordance with 35 Ill. Adm. Code 845.720(b) and 845.750 for the FAB and describes the schedule and steps necessary for closure and methods for compliance with closure requirements.

2.0 CLOSURE NARRATIVE [845.720(a)(1)(A)]

The closure of the FAB will be accomplished by consolidating the CCR in place in the southern portion and covering with a final cover system in accordance with 35 Ill. Adm. Code 845.750. The closure will achieve the closure performance standards in accordance with 845.750(a) and listed as follows:

- 1. Control, minimize, or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;
- 2. Preclude the probability of future impoundment of water, sediment, or slurry;
- 3. Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period;
- 4. Minimize the need for further maintenance of the CCR surface impoundment; and
- 5. Be completed in the shortest amount of time consistent with recognized and generally accepted engineering practices.

3.0 CCR REMOVAL and DECONTAMINATION [845.740(a)]

The CCR from the north portion of the FAB will be either hydraulically dredged into the south portion of the FAB or mechanically excavated and dumped into the south portion of the FAB. The CCR in the north portion averages 16 feet in depth and the groundwater elevation ranges from 434 feet above mean sea level (ft amsl) to 439 ft amsl. Excavation of the north portion CCR may consist of mechanically excavating the CCR above the groundwater elevation, loading onto trucks and transporting to the south portion where they would end dump the CCR into the south portion of the FAB. Dumped CCR material may be stockpiled and allowed to drain, as necessary. The embankment that surrounds the north portion of the FAB would also be excavated and placed in the south portion of the FAB. It is anticipated that the embankment would be mechanically excavated and transported to the south portion via trucks.

Excavation of the CCR below the groundwater elevation may occur through hydraulically dredging the CCR and discharging in the south portion of the FAB. The dredged CCR would be contained, allowing the CCR to settle and the water would be returned into the north portion of the FAB for reuse in the hydraulic dredging process. The water would be returned to the north portion of the FAB by mechanically pumping through a newly installed pipe through the berm that separates the north and south portions. The hydraulic dredging will mix the CCR with the existing

standing water in the north portion and/or water from the south portion to create slurry, which will be pumped to the southern portion. This slurry will be pumped into the south portion through one of the culverts that will be directionally drilled and installed underneath the railroad tracks that separate the north portion and the south portion. The culverts are anticipated to be 18"ø highdensity polyethylene (HDPE) pipes. The decanted dredge water will be pumped from the south portion through the east culvert back into the north portion where it will be reused to slurry and pump CCR from the north portion. Using the two pipes under the railroad will prevent the need to suspend operations of the railroad during the closure activities.

After CCR removal, the north portion of the FAB will be graded to create a stormwater runoff management area for the south portion of the FAB. Dewatering will be necessary to finish grading the north portion of the FAB after CCR removal. Once grading is complete, a new gravel road will be constructed along the north perimeter to allow for access to the existing monitoring wells and the slopes of the north portion of the FAB will be permanently stabilized.

The gravel road is anticipated to be constructed using breaker run as an initial base to ensure the base of the road is above the groundwater elevation. The breaker run will then be covered with traffic bond or a similar type stone, graded, and compacted.

The amount of CCR that is either mechanically excavated or hydraulically dredged, or whether or not one method is chosen over the other will ultimately be decided by the contractor selected to perform the closure work. Having both methods of CCR removal approved in the construction permit allows flexibility to perform the CCR removal method that will be least impactful to the surrounding environment.

Permanent stabilization of the north portion will consist of installing erosion control blanket and seeding the disturbed areas. Erosion control blanket will be installed on all slopes equal to or greater than a three feet horizontal run to a one-foot vertical rise (3H to 1V). Areas disturbed by the execution of the CCR removal from the north portion will be seeded using grass and plants native to the Pekin area. However, those areas do not include the location of the consolidated CCR material. The stabilization of the consolidated CCR material is discussed in the following section. Fertilizer will be applied as necessary to facilitate grass growth.

4.0 CLOSURE with CCR LEFT IN PLACE [845.720(a)(1)(C)]

Once the CCR material placed in the south portion of the FAB is sufficiently dried, it will be graded to achieve the desired elevations needed for the FCS. The FCS would then be constructed on top of all the consolidated CCR. The south FAB FCS would be sloped to drain stormwater off but not so steep as to cause erosion. In general, the CCR grades will be sloped towards the perimeter to drain stormwater off the south portion FCS. The stormwater will then drain through newly installed pipes through the berm, which will discharge into the north portion of the FAB. This will minimize the potential for ponding and infiltration into the CCR below. As the slopes are constructed, measures will be taken to prevent sloughing and movement of the material and final cover system during the post-closure period. The layer of fill material directly below the geomembrane will be free from large, protruding, or sharp objects that could potentially damage

the geomembrane.

The proposed FCS for the south portion of the FAB is the proprietary ClosureTurf cover system created by Watershed Geo, LLC. ClosureTurf consists of a geomembrane low permeability layer that also incorporates a drainage layer. The final protective layer is replaced with engineered synthetic turf that is infilled with sand/small aggregate to provide ballast to the synthetic turf. The infiltration layer will be a 60-mil HDPE geomembrane with a hydraulic conductivity that is no greater than 1x10-7 cm/sec. The engineered synthetic turf is comprised of polyethylene fibers that are tufted through a double layer of woven geotextiles that are highly UV and heat resistant. The engineered synthetic turf is then infilled with small aggregate that is approximately 1/8 inch to 1/4 inch diameter in size. The small aggregate is brushed into the synthetic turf to ensure that it settles to the bottom of the turf, which provides ballast and prevents the turf's movement during wind events.

Section 845.750(c)(1) requires that the low permeability layer must have a permeability less than or equal to the permeability of any bottom liner system present or a hydraulic conductivity no greater than 1 x 10-7 centimeters per second (cm/sec). The FAB does not have a bottom liner system; therefore, the structured geomembrane's permeability for the final cover system must be no greater than 1 x 10-7 cm/sec. As such, the structured geomembrane in the ClosureTurf final cover system will be a 60-mil HDPE structured geomembrane that combines a studded drain surface on the top side and a spiked friction surface on the bottom side into one geomembrane liner. This structured geomembrane has a permeability that has been independently tested at $1.5 \times 10-13$ cm/sec.

When using a geomembrane as the low permeability layer, it is required by 845.750(c)(1)(B)(i) to have a hydraulic flux equivalent or superior to a 3-foot layer of soil with a hydraulic conductivity of 1 x 10-7 cm/sec. The following table demonstrates that the geomembrane provides a superior performance at reducing the infiltration of liquid when compared to a 3-foot thick layer of earthen material. The following table is created here to demonstrate the geomembrane that will be used as part of the ClosureTurf final cover system is compliant with 845.750(c)(1)(B)(i).

Parameter	Symbol	Value	
Liquid Flow Rate Through Earthen Material			
Hydraulic Conductivity	k	$1 \times 10^{-7} \text{ m/sec}$	
Hydraulic Head Above Layer	h	0.14 m	
Layer Thickness	t	3 ft = 0.91 m	
Hydraulic Gradient Through Earthen Material	i = h / t	0.15	
Liquid Flow Rate Through Layer per Acre of Final Cover System	$q = k \times (i+1)$	1.15×10 ⁻⁷ m ³ /sec/m ²	

Table – Liquid Flow Rate Comparison Between Low Permeability Layers Constructed Using Geomembrane & Earthen Material

Liquid Flow Rate Through Geomembrane			
Hole Area in Geomembrane	а	$3.1 \text{ mm}^2 / 4000 \text{ m}^2$	
Acceleration Due to Gravity	g	9.81 m/sec ²	
Hydraulic Head Above Layer	h	0.14 m	
Liquid Flow Rate Through Layer per Unit Area	$q = 0.6a(2gh)^{0.5}$	$7.71 \times 10^{-10} \text{ m}^3/\text{sec}/\text{m}^2$	

The geomembrane comes in rolls, which will be deployed with the spike side down and the stud side up on top of the graded general fill material. The rolls will be deployed perpendicular to the slope elevation contours and the deployment method will protect the geomembrane as well as the graded material below. Adequate anchoring will be used, such as sand bags, to prevent uplift by wind during the deployment of the geomembrane rolls. The edges of each roll are overlapped in the downgrade direction a minimum of three inches to form the seam that is then welded together. Welding is performed by either extrusion welding or hot wedge welding depending on manufacturer's recommendations and as construction of the geomembrane dictates.

The geomembrane will be covered with engineered synthetic turf and sand/aggregate infill, which will be the final protective layer. The engineered synthetic turf is green and replaces the need for an erosion layer and vegetation while providing a natural look and feel of grass and protecting the geomembrane from extreme weather. The engineered turf will be installed in accordance with the manufacturer's recommendations and equipment used during the installation will not damage the turf or the underlying geomembrane. The engineered synthetic turf also comes in rolls, which will be rolled out on top of the geomembrane starting from the highest slope to the lowest slope. The rolls will be deployed so that the filaments of the engineered turf are pointed upslope and the edges of each roll touch each other so the seams can be joined together. The turf will be laid substantially smooth and it will be secured with sandbags at the top of any slope after it is deployed. The engineered synthetic turf will cover all of the geomembrane and will follow the same slope as the geomembrane. The rolls of the engineered turf are joined together either by sewing with polyester thread or by fusion seaming with a fusion welder.

A specified sand/aggregate infill will be placed between the blades of the engineered synthetic turf after the turf is in place on top of the geomembrane. The sand infill will be spread with a minimum thickness of 0.5 inches and a maximum thickness of 0.75 inches using conveyor systems and/or express blowers. The infill will be driven into the space between the synthetic blades and the sand/aggregate mixture will meet ASTM C-33-03 for fine aggregates. The infill thickness will be checked at approximately 100-foot grid intervals. The sand infill installation will be done as to not damage or displace previously installed ClosureTurf components and the placement will not occur with snow or ice on the engineered turf.

An anchor trench will be used on the perimeter of the FCS to anchor the ClosureTurf system. The anchor trench will bury the edge of the geomembrane and engineered turf beneath two feet of soil to anchor the geomembrane in place. The soil that is placed in the anchor trench will be compacted to prevent the potential pullout of the geomembrane and engineered turf.
QA/QC testing will be performed on the ClosureTurf cover system as part of the installation.

5.0 MAXIMUM INVENTORY of CCR [845.720(a)(1)(D)]

The estimated maximum inventory of CCR on-site contained in the north portion and the south portion is estimated at approximately 465,000 cubic yards (CY) and 240,000 CY, respectively.

6.0 LARGEST AREA of CCR REQUIRING a FINAL COVER [845.720(a)(1)(E)]

The north portion of the FAB will be closed by removing the CCR in accordance with 845.740; therefore, this section is not applicable to the north portion. The south portion of the FAB will be closed with CCR in place and the FCS will cover a maximum area of approximately 15.3 acres.

7.0 CLOSURE SCHEDULE [845.720(a)(1)(F)]

Implementation of closure through removal and closure in place of CCR is estimated to require up to 42 months. However, this closure implementation time may vary because of the estimated time it will take to receive an approved construction permit. The closure activities are anticipated to begin in early 2023 with submittal of the construction permit application and completion is estimated to be by the end of 2026. The initial closure activity is applying for and obtaining an IEPA construction permit and the final closure step is submitting a closure report and closure certification with the closure construction activities occurring in between. Once the closure construction is complete, an acceptance report will be submitted to IEPA. An estimated schedule of anticipated closure activities is summarized in the table below:

Activity No.	Closure Activity	Schedule
1	Complete Closure Construction Documents and Obtain IEPA Closure Construction Permit	15 Months
2	Site Clearing & Install of Erosion Control Measures	2 Months
3	North Portion CCR Removal	15 Months
4	South Portion Grading and Compacting of CCR	3 Months
5	Installation of the Final Cover System & Permanent Stabilization	3 Months
6	Closure Certification and Report	4 Months

Closure Schedule

7.0 INITIATION AND COMPLETION OF CLOSURE ACTIVITIES [845.730 & 845.760]

Closure activities will commence when one or more of the following conditions have occurred:

- No later than 30 days after the date on which the CCR unit received the known final receipt of CCR or non-CCR waste;
- No later than 30 days after the removal of the known final volume of CCR for the purpose of beneficial use;
- Within two years of the last receipt of waste for a unit that has not received CCR or non-CCR waste; or
- Within two years of the last removal of CCR material for the purposes of beneficial use.

Upon completion of the IEPA approved closure activities, a closure report and closure certification will be submitted to IEPA in accordance with 845.760(e). The closure report will contain the following information:

1) Engineering and hydrogeology reports, including monitoring well completion reports and boring logs, all CQA reports, certifications, and designations of CQA officers-in-absentia required by 845.290;

2) Photographs, including time, date and location information of the photographs, of the final cover system, if applicable, and any other photographs relied upon to document construction activities;

3) A written summary of closure requirements and completed activities as stated in the closure plan and in Part 845; and

4) Any other information relied upon by the qualified professional engineer in making the closure certification.

In accordance with 845.760(f), notification of closure of a CCR unit will be made within 30 days of IEPA's approval of the submitted closure report and closure certification. The notification will include certification from a qualified professional engineer, as required by 845.760(e)(2) and will be placed in the facility's operating record.

8.0 CLOSURE PLAN AMENDMENTS [845.720(a)(3) & 845.720(b)(4)]

This Closure Plan may be amended in accordance with 845.720(a)(3) if a change in the operation of the FAB would substantially affect the content of this Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after closure activities have commenced. Amendments to this Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with 845.720(a)(4).

If this final Closure Plan requires revisions after closure activities have started for the FAB, then Midwest Generation will submit a request to modify the construction permit within 60 days following the triggering event.

9.0 **PROFESSIONAL ENGINEER'S CERTIFICATION** [845.720(a)(4)]

This Closure Plan for the FAB has been prepared to meet the requirements of 845.720(b).

Joshua D' Davenport, P.E. Illinois Professional Engineer

SEAL

Attachment 7-2 – Closure Alternatives Analysis

KPRG and Associates, Inc.

CCR COMPLIANCE FINAL CLOSURE ALTERNATIVES ANALYSIS REPORT POWERTON FORMER ASH BASIN

Midwest Generation, LLC Powerton Generating Station 13082 East Manito Road Pekin, Illinois

Prepared By: KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

October 26, 2022

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

1.0	INTR	ODUCTION1
2.0	PHYS	ICAL SITE CONDITIONS
2.1	Sun	nmary of Geology and Hydrogeology2
2	2.1.1	Geology2
2	.1.2	Hydrogeology
3.0	IDEN'	TIFICATION OF CLOSURE ALTERNATIVES
3.1	Alte	ernative Closure Scenario 1: Closure by Removal
3	.1.1	Availability of Nearby Landfill Space
3	.1.2	Modes of Transport9
3.2	Alterna	ative Closure Scenario 2: Closure in Place11
3.3	Alterna	ative Closure Scenario 3: Consolidation with Closure in Place
3.4	Alterna	ative Closure Scenario 4: Closure in place with In-Situ Solidification/Stabilization13
4.0	CLOS	URE ALTERNATIVES EVALUATION CRITERIA15
5.0	GROU	JNDWATER MODELING
5.1	Alte	ernative Closure Scenario 1 Modeling18
5.2	Alte	ernative Closure Scenario 2 Modeling18
5.3	Alte	ernative Closure Scenario 3 Modeling18
5.4	Alte	ernative Closure Scenario 4 Modeling19
5.5	Seas	sonal Variations Modeling19
6.0	SUMN	MARY
7.0	PROF	ESSIONAL ENGINEER'S CERTIFICATION

TABLES

- 1 Former Ash Basin Groundwater Elevations
- 2 Appendix III & IV Groundwater Analytical Results through 2nd Quarter 2021
- 3 Closure Alternatives Evaluation
- 4 Closure Alternatives Analysis Cost Estimates Comparison

FIGURES

- 1 Closure by Removal Site Map
- 2 Closure in Place on North & South FAB Portions Site Map
- 3 Closure in Place by Consolidation with Cover Site Map

- $4-Closure\ in\ Place\ by\ In-situ\ Solidification/Stabilization\ with\ Soil\ Cover\ Site\ Map$
- 5 Closure Scenario 4 5-Years Modeling Seasonality Test

ATTACHMENTS

1 – Groundwater Modeling Mass Distributions

1.0 INTRODUCTION

Midwest Generation, LLC (Midwest Generation) currently operates the coal-fired generating station, referred to as Powerton Generating Station, located in Pekin, Illinois ("site" or "generating station"). As part of generating electricity and managing the coal combustion residuals (CCR), the station operates two active CCR surface impoundments (the Ash Surge Basin (ASB) and Ash Bypass Basin (ABB.)). As part of the earlier historical operations at the station, the Former Ash Basin (FAB) was used for the management/storage of CCR up until approximately the 1970's and has been identified as an inactive CCR surface impoundment with no liquids or wastewater being directed into the basin. See Figure 1 for a site map of the Powerton Station as well as the FAB. The FAB is regulated as an inactive surface impoundment under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule).

In accordance with 35 Illinois Administrative Code Part 845.710(b), a Facility (Owner/Operator) is required to initiate and complete a closure alternatives analysis prior to selecting a final closure method.

This Closure Alternative Analysis is structured to provide the following information:

- The proposed closure alternatives that will be analyzed,
- An analysis of the closure alternatives that meets the requirements set forth in Section 845.710(b)(1) through 845.710(b)(4),
- The results of groundwater contaminant modeling including how the modeled closure alternative will comply with the applicable groundwater protection standards, and
- A description of the fate and transport of contaminants associated with each closure alternative over time, including seasonal variations.

This document presents the results of the closure alternatives analysis for the FAB that was completed in accordance with 845.710.

2.0 PHYSICAL SITE CONDITIONS

Due to the age of the FAB, there is no documentation of when it was constructed, the methods used to create it, or the specifications on how it may have been created. The FAB was formally used as a CCR storage area and constructed with fill embankments on the north, east, and west sides; the south side is incised. The ground surface around the FAB ranges from 455 ft above mean sea level (amsl) to 460 ft amsl. An access road is along the perimeter of the FAB in order to access the monitoring wells along the north side of the FAB and the access the other areas of the properties and monitoring wells around the south portion of the FAB. The north and south portions of the FAB were created by the construction of a railroad spur in 2010.

The surface area of the north portion of the FAB is approximately 18 acres. The interior of the north portion of the FAB slopes from the surrounding land to the base of this portion. The side slopes for the north portion are about 2H:1V to an elevation of 445 ft amsl, from which, there is a more gradual slope across the base. The majority of the base of the north portion of the FAB ranges from 444 ft amsl to 441 ft amsl with some low points throughout; the low point of the north portion is approximately 433 ft amsl. The exterior side slopes of the north portion slope gently towards the north and blend into the north low lands. The exterior slopes of the east side of the north FAB slope steeply towards Lost Creek at about 1H:1V. The south embankment of the north portion of the FAB that is adjacent to the railroad spur slopes at about 2.5H:1V.

The surface area of the south portion of the FAB is approximately 13 acres. The interior of the south portion of the FAB slopes from the surrounding land to the base of this portion. The side slopes for the south portion are about 4H:1V to an elevation of 450 ft amsl on the west side, with a lesser slope on the south and east sides. The north side that is adjacent to the railroad spur sloes at about 2.5H:1V. The base slopes gradually away from the base of the embankments, which is elevation 450 ft amsl, to the south portion's low point of 432 ft amsl. The west side of the FAB is adjacent to the Service Water Basin and the Ash Surge Basin, which creates a level surface on this side. The exterior side slopes of the east side slope gently towards Lost Creek at about 6H:1V. The exterior to the south consists of the access road and other necessary equipment.

2.1 <u>Summary of Geology and Hydrogeology</u>

2.1.1 Geology

The physiography of Tazewell County is made up of end moraines, plains (including flood plains), river terraces and valleys, alluvial fans and loess. The Illinois and Mackinaw River Valleys are the prominent landforms. Several small lakes are located near the western border of the county, which is bound by the Illinois River. Tazewell County is in the Till Plaines Section of the Central Lowland Province. Near surface soils in the vicinity of the subject impoundment have been grouped as Orthents, loamy and Urban Land. Urban Land units are primarily covered by pavement, railroad tracks, and buildings, which typically impede infiltration and are subject to surface runoff. The Orthents, loamy soils are fine to moderately coarse textured soils found in areas that have been modified by filling and leveling. Available water capacity is generally high, while permeability is typically high at the surface level and decreases with depth. Organic matter and plant nutrient content is low in the Orthents, loamy soils (Soil Survey of Tazewell County, Illinois).

Regionally, the stratigraphy in the area consists of approximately 100 to 125 feet of unconsolidated deposits consisting mainly of alluvial sands and gravels with some interspersed clays/silty clays. The unconsolidated deposits are underlain by alternating layers of limestone, shale, and coal of the Carbondale Formation. To evaluate local stratigraphy, water and test well logs were obtained for wells in the general vicinity of the Powerton Generating Station. In addition, well logs from 21 monitoring wells that were installed in the vicinity of the subject surface impoundments were evaluated with those borings ranging in depth from 30 feet to 41 feet. Based on an evaluation of this data, the following general site-specific stratigraphy is defined:

- Fill (16' to 24.5' thick) Consisting of tan, brown and black fine to medium sand/silty sand with some gravel and clay seams. Several locations also included black cinders and brick fragments.
- Clay/silty clay/silts (0' to approximately 18' thick) Consisting of olive, brown and gray clays, silts and silty clays with some more organic rich layers. May locally contain fine silty sand and/or fine sand. This unit is not mappable across the site (i.e., discontinuous).
- Sand and gravel (thickness undetermined; borings terminate within unit) Consisting of light brown, brown and/or gray medium to coarse sands and gravels.

Although no specific borings were extended into the sedimentary bedrock beneath this facility, water well logs obtained for water wells in the vicinity of the Powerton Generating Station indicate shale bedrock is encountered from approximately 35 to 140 feet bgs, depending on the location of the specific well. The boring logs indicate limestone was encountered from approximately 99 to 103 feet below ground surface just northeast of the Powerton Generating Station and in close proximity to the Illinois River.

There are no underground mines beneath the subject CCR surface impoundment.

2.1.2 Hydrogeology

Based on information from the Soil Survey of Tazewell County, the average annual precipitation is approximately 36 inches with about 62% of that total falling between April and September of any given year. The average seasonal snowfall is approximately just over 26 inches. The nearest natural surface water body is the Lost Creek which bends around the eastern edge of the FAB and property boundary. Lost Creek is an ephemeral stream that only flows during and after precipitation events. The Illinois River is located to the north of the subject CCR units. Powerton Lake is located to the west-northwest.

Groundwater beneath the Powerton Generating Station occurs under water table conditions. Saturated conditions are generally encountered between 18 to 32 feet bgs, depending on the well location. The monitoring wells at the station are used to monitor the three basins, Ash Surge Basin, Ash Bypass Basin, and the FAB, present at the Powerton Station. The FAB monitoring well network consists of upgradient monitoring wells MW-01 and MW-10, and downgradient monitoring wells MW-02, MW-03, MW-04, and MW-05. The Ash Bypass Basin/Ash Surge Basin CCR monitoring well network consists of upgradient monitoring wells MW-01, MW-09, and MW-09.

19, and downgradient monitoring wells MW-08, MW-11, MW-12, MW-15, MW-17, and MW-18.

CCR monitoring wells MW-08, MW-12, MW-15 and MW-17 are screened within the shallow, localized, saturated clay/silt unit. The remaining monitoring wells have deeper screens, within the more extensive sand and gravel unit. All the wells associated with the FAB monitoring network are screened within the extensive sand unit which underlies the area (i.e., the localized shallow clay/silty clay unit does not extend beneath the FAB). Table 1 provides groundwater elevation measurements obtained for the on-site monitoring wells surrounding the FAB (upgradient wells MW-01 and MW-10 and downgradient wells MW-02 thru MW-05). A review of the hydrograph shows some temporal fluctuations with the highest water levels generally occurring within the first or second quarters of the year.

Groundwater elevation data from all wells in the area, including the specific CCR monitoring wells associated with the subject FAB has been collected. The water levels from wells screened in the clay/silt unit and the water levels from monitoring wells screened within the sand unit were evaluated separately and used to determine the flow for each unit. Groundwater flow within the more extensive sand unit, which extends under the FAB, shows general flow in a northerly direction with flow components to the northwest and northeast towards the Illinois River. The groundwater elevation ranges from 442 ft amsl at the south end of the FAB to 438 ft amsl along the north side of the FAB. The groundwater elevations for the FAB monitoring wells are shown in Table 1. The groundwater flows north and discharges into the Illinois River.

The FAB is located within the sandy gravel soil unit. The horizontal hydraulic gradient, flow direction, and an estimated rate of groundwater flow was determined for each groundwater sampling event from 3rd quarter 2015 through 2nd quarter 2021. The average hydraulic gradient over this time is 0.0045 ft/ft with a minimum of 0.0008 ft/ft and a maximum of 0.0147 ft/ft. The average estimated seepage velocity is 1.56 ft/day with a minimum of 0.2745 ft/day and a maximum of 5.97 ft/day. The groundwater flow direction was consistently determined to be north/northwest over this time.

At this time, based on the geology and the site-specific hydrogeology discussions, the groundwater beneath the CCR surface impoundments is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Groundwater Management Zone (GMZ) and an Environmental Land Use Control ("ELUC") have been established where the CCR surface impoundments are located as part of a Compliance Commitment Agreement (CCA) between Midwest Generation and Illinois EPA. The ELUC states that the groundwater shall not be used as potable water. The GMZ and ELUC occupy the same extent of the Powerton property.

A survey of all potable water sources within a 2,500 feet radius of the Midwest Generation Powerton Generating Station was completed by Natural Resources Technology (NRT) in 2009. As part of the initial operating permit preparation, KPRG evaluated the previously completed water well survey by NRT and reviewed the new Illinois State Geological Survey database and interactive map references as "ILWATER". Twelve wells were identified within a 2,500-foot radius of the Station's subject CCR surface impoundments, which includes the FAB. Two wells were identified off-site to the east and upgradient of the FAB. There were eight wells identified on the Powerton Station property on the ILWATER interactive map all of which were older construction wells installed by previous Ownership. Discussions with facility personnel indicate that all eight of these wells were taken out of service/abandoned. Two wells are at the far western boundary of the 2,500 foot radius and are part of the six water wells currently on the Powerton Station property that are in use (the remaining four wells are located further west, outside the 2,500 foot search radius). These two wells are screened within the sand/gravel aquifer but are not directly downgradient of the surface impoundments and are separated from those units by the intake and outfall channels. They are regularly sampled and analyzed for potable water constituents. The sampling results consistently comply with potable water regulations.

Based on the geology of the site presented in Section 2.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from the subject CCR surface impoundments would be downward migration to groundwater within the unconsolidated silty clay or sand/gravel aquifer. Due to the proximity to the Illinois River and/or plant intake channel, which are hydrogeologic flow boundaries, minimal to no downward vertical flow mixing would be anticipated. There are no other utility or man-made preferential pathway corridors that would act to intercept potentially the flow to move any contamination in a direction other than under natural groundwater flow conditions. There are no potable water wells between the impoundments and anticipated flow discharge boundaries. In addition, as previously discussed, there are no potable surface water intakes on the Illinois River either along or within at least several miles downstream of the subject site.

The FAB is subject to the federal CCR Rule, 40 CFR Part 257, and the Illinois CCR Rule, 35 Ill. Adm. Code Part 845. As required under the Federal CCR Rule and the Illinois CCR Rule, groundwater sampling has been occurring for the monitoring wells within the monitoring network for the FAB. This data is provided in Table 2 for the FAB.

3.0 IDENTIFICATION OF CLOSURE ALTERNATIVES

The FAB is considered an inactive CCR surface impoundment subject to the State CCR Rule 35 Ill. Adm. Code Part 845. In accordance with Section 845.700(b), the FAB has been determined to be an unlined CCR surface impoundment and is required to close. Closure of the FAB must be completed either by leaving the CCR in place and installing a final cover system or through removal of the CCR and decontamination of the CCR surface impoundment, as described in Sections 845.720 through 845.760. Prior to selecting a closure method, a closure alternatives analysis must be completed in accordance with the requirements of 845.710.

The closure alternatives evaluated in accordance with Sections 845.710(b) through 845.710(d) are as follows:

- Alternative Closure Scenario 1: Complete removal of CCR including alternative modes of transporting the CCR in accordance with Sections 845.710(c) and 845.740.
- Alternative Closure Scenario 2: Leave CCR in both the north and south portions of FAB and install a final cover system.
- Alternative Closure Scenario 3: Consolidate the CCR in the southern portion of the FAB and install a final cover system.
- Alternative Closure Scenario 4: Leave the CCR in place via in-situ soil stabilization and install a final cover system.

Geosyntec and Patrick Engineering both created alternatives for closing the FAB. Geosyntec's alternative consisted of consolidating the CCR from the north portion with the CCR in the south portion and capping the consolidated CCR with a final cover system. Patrick Engineering's alternative was to construct two different final cover systems over the CCR with one on the north portion CCR and the other on the south portion CCR. Those two alternatives are included as part of this evaluation with Geosyntec's alternative included as Alternative Closure Scenario 3 and Patrick Engineering's alternatives were adjusted as necessary from their original designs to comply with 35 Ill. Adm. Code Part 845, since these closure alternatives were created prior to the state laws' enactment.

A brief description of each closure alternative is presented below.

3.1 Alternative Closure Scenario 1: Closure by Removal

The FAB was historically used for CCR disposal up until the 1970's. At that time, the FAB was one large area of approximately 40 acres (1,698,096 square feet) that was used to contain CCR. In 2010, a railroad was constructed through the FAB to allow railroad cars to enter onto the Powerton property. Soil borings conducted at the site have determined the horizontal and vertical extent of the deposited CCR material in both the north portion and south portion of the FAB. In general, the CCR in the north portion ranges from the ground surface (443 ft amsl to 434 ft amsl) to 18 feet

below ground surface (bgs) to 9 feet bgs (425 ft amsl). The CCR in the south portion ranges from the ground surface (447 ft amsl to 432 ft amsl) to 18 feet bgs to 3 feet bgs (429 ft amsl).

As stated in 845.740(a), closure by removal consists of removing all CCR and decontaminating all areas affected by releases of CCR from the CCR surface impoundment. CCR removal and decontamination of the CCR surface impoundment are complete when all CCR and CCR residues, containment system components such as the impoundment liner and contaminated subsoils, and CCR impoundment structures and ancillary equipment have been removed. To execute closure by removal of the FAB, the following activities would occur:

- Dewater any standing water in the north and south portions of the FAB along with dewatering during excavation;
- Install erosion control measures, prior to earthwork;
- Construct access roads into the FAB to allow for equipment access to the extent of the CCR for excavating and loading;
- Excavate and stage CCR to allow for additional dewatering;
- Load the CCR into haul trucks and transport for off-site disposal.

The estimated quantity of CCR material that would require excavation from the north portion of the FAB is 466,000 CY and the south portion is 241,000 CY; which is the bank/in-place quantity based upon the existing site elevations and the estimated depth of the CCR material using the boring logs performed along the perimeter of the FAB. The extent of the removal areas and post-excavation contours are shown on Figure 1. As the bank/in-place material is removed, it may be stockpiled and staged as necessary to allow for any additional dewatering from the CCR prior to it being loaded and transported offsite. As the CCR is excavated, it is expected to swell by approximately 30%, which creates a handling and transportation volume of 606,000 CY from the north portion and 314,000 CY from the south portion. The slopes of the north and south portions of the FAB will be sloped at approximately 2H:1V post excavation.

As part of this scenario, continuous dewatering will be necessary to remove material down to the lowest elevation. Dewatering would be necessary for an estimated 600 days, or up to 3 years based on 240 working days per year. A more detailed discussion of this closure alternative relative to established evaluation criteria is provided in Section 4.0. Detailed cost estimates in accordance with Section 845.710(d)(1) are provided in Table 4. The cost for closure by removal uses Indian Creek Landfill as the disposal facility; however, no discussions for disposal at Indian Creek Landfill have occurred at this time.

As part of closure by removal as required by 845.740(b), groundwater monitoring must continue for three (3) years or for three years after groundwater monitoring does not show an exceedance of the groundwater protection standard established under 845.600, whichever is longer. A discussion of this closure alternative option relative to established evaluation criteria is provided in Section 4.0.

3.1.1 Availability of Nearby Landfill Space

As stated above, closure by removal and disposal at an existing off-site landfill will require dewatering, excavation, loading, transportation, and disposal of an estimated combined 920,000 CY of CCR from the north (606,000 CY) and south (314,000 CY) portions of the FAB. There are three landfills within 64 miles of the Powerton station, 1) Indian Creek Landfill No. 2, 2) Peoria City/County Landfill No. 2, and 3) Envirofil of Illinois, Inc.

Indian Creek Landfill No. 2 is approximately 20 miles from the station and the closest of the three identified landfills. Peoria City/County Landfill No. 2 is approximately 25 miles and the second closest landfill and Envirofil of Illinois, Inc. is approximately 64 miles from the station and the farthest of the three landfills. In regards to the closure by removal scenario and off-site disposal of CCR, the available landfill capacity based on IEPA's 2020 Landfill Capacity Report at each facility is as follows:

- Indian Creek Landfill No. 2 35,912,756 CY with 31.8 years of life expectancy based on the current disposal rate.
- Peoria City/County Landfill No. 2 2,900,562 CY with 3.6 years of life expectancy based on the current disposal rate.
- Envirofil of Illinois, Inc. 17,078,304 CY with 94.3 years of life expectancy based on the current disposal rate.

GFL Environmental, Inc. operates Indian Creek Landfill No. 2 that accepts municipal waste and non-hazardous special industrial waste. As noted above the amount of material that would require disposal is 920,000 CY and the capacity of the landfill is greater than 35 million CY, which is enough to contain the amount of CCR requiring disposal. Access to this landfill would require truck traffic on county/state highways and local township roads. KPRG reached out to the landfill to request their potential acceptance of the CCR material. The landfill stated that it likely would not accept any CCR material, because of concerns over the interaction of the CCR with the municipal solid waste in the landfill.

The Peoria City/County Landfill No. 2 is jointly owned by the County and City of Peoria. The landfill is operated by Waste Management. This landfill is used for the disposal of municipal solid waste from County and City residents. Only 2.9 million CY of disposal capacity is available and this landfill is used for waste disposal by the City and the County. Therefore, this landfill is not a practical option for disposal of any CCR from the FAB.

Waste Management operates the Envirofil of Illinois, Inc. landfill. This landfill has a 5-year average disposal rate of 181,020 CY and accepted 174,717 CY in 2020. The amount of CCR from the FAB is 920,000 CY, which is five (5) times the 2020 disposal rate. The projected time to remove all of the CCR from the FAB is approximately 300 to 600 days, which is approximately 1.5 to 3 years based on 200 working days per year and a yearly disposal rate of 306,667 CY to 613,333 CY. It is unlikely this landfill will accept only waste from the FAB for up to three years, which will extend the time required for disposal. In addition, this landfill is 64 miles from the Powerton station, which creates a long turn-around time for each truck and decreases the loads per

day that can be disposed of. It should be noted that the Envirofil of Illinois, Inc. landfill is less than one mile from an environmental justice area. This landfill is not a practical option for disposal of CCR from the FAB.

3.1.2 Modes of Transport

As required by 845.710(c)(1), this closure by removal analysis includes evaluating whether the CCR can be transported from the site for disposal by rail, barge, low-polluting trucks, or some combination of these transportation modes. These are discussed below.

3.1.2.1 <u>Rail Transport</u>

The site currently has railroad access that is used to deliver coal to the station for use in the electricity generating process. The site coal delivery system is only designed to unload coal from the rail cars and store on site, but not designed to load the rail cars. In order to load rail cars a new permanent system would have to be designed and constructed or existing commercially available equipment would need to be evaluated to determine if a temporary loading system could be erected. In the event a temporary loading system could be erected, the closest landfill to the site is the Indian Creek Landfill and its location was evaluated in relation to the railroad system and the Powerton station. The location of the railroad that travels from the vicinity of the Powerton station does not go towards the Indian Creek Landfill, instead it travels southeast towards Green Valley and Delavan, which are the closest locations to the landfill, but they are still at least 10.5 miles and eight (8) miles, from the landfill, respectively. The ability to unload a railroad car at either of these locations is unknown, but in the event the CCR could be unloaded, it would still need to be loaded onto dump trucks to be taken to the CCR to the landfill. Transporting the CCR by rail is not a viable option because of the logistics necessary to use the rail system to load, unload, and transport the CCR.

3.1.2.2 <u>Barge Transport</u>

The Powerton station is close to the Illinois River, but no slip or loading point for a barge exists. A loading point could be constructed, but a structural evaluation of the bank would first be required. The landfills that are nearest to the Powerton station are not located near any major rivers that would be able to accommodate barge traffic. The Indian Creek Landfill is located near the Mackinaw River, but based on the mapped appearance of the river, it seems unlikely a barge would be able to traverse the river. In addition, the river does not enter the landfill complex and the CCR material would still need to be off loaded from the barge and loaded onto a truck for final disposal in the landfill. It is likely that loading and unloading facilities would need to be constructed at both ends of the barge trip. Not only will this require time for permitting, but also access agreements would be needed with landowners that may be unwilling to agree. Finding a location with the facilities needed to unload the CCR may require transporting it many miles downstream or upstream, which increases the chance an accident may occur. Based on these factors, transporting the CCR via barge is not a viable transportation option.

3.1.2.3 <u>New On-Site Landfill</u>

As required by 845.710(c)(2), this closure by removal analysis includes identifying whether an onsite landfill is present on the property or if an on-site landfill could be constructed. The Powerton station property does not have an existing onsite landfill or the existing available land to construct a new on-site landfill. The Powerton property consists of approximately 2,048 acres. The majority of the Powerton station property is occupied by Powerton Cooling Lake and the remainder of the property is occupied by the buildings that house the electricity generating equipment, coal storage area, CCR surface impoundments, non-CCR surface impoundments, FAB, low lands, and green space. Powerton Cooling Lake consists of 1,583 acres; the area occupied by the electrical substation, surface impoundments, parking lot, generating building, and ancillary areas associated with the electricity generating process is 214.4 acres; the coal storage area is 61.5 acres; the surface impoundments occupy 27.3 acres; the FAB is 23 acres; the southwest green space is 58.8 acres; and the northern low lands area is 80 acres.

The area necessary to construct a landfill to contain the 707,000 CY from the FAB is approximately 30 acres if the CCR was placed to a thickness of 20 feet. The majority of the CCR would have to be placed above ground because the groundwater elevation in the area is approximately 20 to 25 feet bgs and minimal excavation can occur to place CCR below the ground surface. As a result, berms must be constructed as a perimeter to contain the CCR. The 30 acres is only the space required for CCR storage, additional land would be needed for property line setbacks, the leachate collection equipment, access roads, groundwater monitoring network, and other necessary equipment. Because of the groundwater elevation, any landfill would be constructed with a base only ten feet bgs, which means any remaining portion of the landfill, would extend above ground up to 14 feet to allow for the necessary space for the CCR and the final cover construction. The only areas at the Powerton station where a landfill could be constructed are the green space to the southwest and the low land areas to the north. The southwest area is not acceptable for a landfill because this is where the water supply wells for the station are located and the entire area is within the floodplain. The low land area to the north is adjacent to the Illinois River, classified as a wetland, and within the floodplain. The only areas at the station that are not within the floodplain are already occupied by an electrical substation, surface impoundments, parking lot, generating building, and ancillary equipment associated with electricity generating process.

Since there is not adequate space within the current Powerton Station footprint to build a new onsite landfill, adjacent parcels that could potentially be purchased were also evaluated. Two properties to the south appear to be farmland or vacant land based on aerial photography. These properties are south and southeast of E. Manito Road and are not owned by Midwest Generation. The property to the south is approximately 111 acres and the property to the southeast is approximately 79 acres. As stated previously, the area necessary to construct a landfill to contain the 707,000 CY from the FAB is approximately 22 acres if the CCR was placed to a thickness of 20 feet. The 22 acres is only the space required for CCR storage, additional land would be needed for the leachate collection equipment, access roads, and other necessary equipment. These properties appear to be adequate based on the total property size; however, it is unlikely they are viable options to construct a landfill. First, the sale of these properties is not certain. Second, the construction of a new landfill includes the sitting process, which requires local approval and local approval is not guaranteed. The property to the south is still actively farmed and it is not certain the owner would want to forgo the yearly income of farming for the one-time sale of the land for the construction of a landfill.

These properties to the south have water wells located on them. The property directly to the south has two water wells that limit the available space of the property because of the setback

requirements when locating a new landfill. The property to the

3.2 Alternative Closure Scenario 2: Closure in Place

The closure in place scenario would consist of leaving the existing CCR in place and constructing a final cover system (FCS) over both the north and the south portions of the FAB in accordance with 845.750. This alternative was previously evaluated as a closure alternative in 2019 and has been reviewed and modified to comply with 35 Ill. Adm. Code Part 845. The final cover system would consist of a geomembrane low permeability layer, which is topped with an alternative final protective layer that provides equivalent performance to a soil final protective layer. The FCS would be sloped to allow for precipitation to runoff and drain off the FCS. The north FAB FCS would drain into the low lands to the north and the south FAB FCS would drain to the east and Lost Creek. The approximate FCS grades and contours for the north and south portions of the FAB are shown on Figure 2.

The FCS product that would be used is the proprietary ClosureTurf cover system created by Watershed Geo. The ClosureTurf FCS consists of a geomembrane low permeability layer that also incorporates a drainage layer. The final protective layer is replaced with engineered synthetic turf that is infilled with sand/small aggregate to provide ballast to the synthetic turf. The infiltration layer will be a 60-mil HDPE geomembrane with a hydraulic conductivity that is no greater than 1×10^{-7} cm/sec. The engineered synthetic turf is comprised of polyethylene fibers that are tufted through a double layer of woven geotextiles that are highly UV and heat resistant. The engineered synthetic turf is then infilled with small aggregate that is approximately 1/8 inch to 1/4 inch diameter in size. The small aggregate is brushed into the synthetic turf to ensure that it settles to the bottom of the turf, which provides ballast and prevents the turf's movement during wind events.

The FCS on the north portion of the FAB would be sloped from the existing perimeter embankment to a low point near the center to allow for drainage and collection of precipitation. Precipitation would then drain from the near center low point towards a drainage structure and from the drainage structure to the former inlet channel, west of the FAB. Trapezoidal shaped drainage channels on the surface of the FCS would be used to channel precipitation to the drainage structure. The drainage channels would be shaped as part of the grading process to create the necessary FCS contours and elevations. The embankment elevations range from 455 ft amsl to 457 ft amsl and will slope to a center elevation of approximately 442 ft amsl, at which point the FCS slopes towards the drainage structure. The drainage structure. The drainage structure would drain the precipitation from the FCS through an underground pipe that discharges into the former intake channel. Approximately 70,000 CY of additional fill material is needed over the existing CCR to achieve the desired elevations.

The FCS on the south portion of the FAB would be sloped from the existing perimeter embankment to a low point near the northwest corner of the FCS to allow for drainage of precipitation. From the northwest corner, precipitation would drain through a pipe under the existing railroad track and into the drainage structure in the north portion of the FAB. The south FAB FCS will also have trapezoidal shaped channels, like the north FAB FCS, on the surface that will allow precipitation to drain from the FCS. The drainage channels would be shaped as part of the grading process to create the necessary FCS contours and elevations. The south FAB embankment elevations range from 458 ft amsl on the west half to 452 ft amsl on the east half of the south FAB portion. The FCS on the south portion of the FAB will drain from the embankments towards a northwest corner elevation of approximately 440 ft amsl. Approximately 44,000 CY of additional fill material is needed over the existing CCR to achieve the desired elevations.

Each portion of the FAB will be dewatered to allow for the upper portion of the CCR to dry out so the fill material can be placed on top. As the fill material is placed, it will be graded as needed and compacted to prevent future settling. The soils used in the FCS will consist of clean material sourced from as close to the FAB as possible. Because of the quantity needed, multiple soil sources may be required. Once the desired grades have been achieved in each portion of the FAB, the ClosureTurf FCS would then be placed on top of the sloped surface with the geomembrane being attached to the discharge structure, the synthetic turf placed on top of the geomembrane, and the turf infilled with sand/small aggregate.

The promulgated Illinois State CCR Rule, 35 Ill. Adm. Code Part 845, requires that CCR surface impoundments not be located within a floodplain, which is different from the previously promulgated Federal CCR Rule, 40 CFR Part 257, which did not regulate the presence of CCR surface impoundments in floodplains. The existing FAB is present within the 100-year floodplain, which has an elevation of approximately 457 ft amsl. To prevent future ponding that may occur if a flood condition occurs at the FAB, the construction of an embankment adjacent to the north perimeter of the FAB is included in this closure scenario. The embankment will extend from the existing north FAB embankment up to an elevation of 460 ft amsl and then slope at 3H:1V down to the existing ground surface. The construction of this embankment will require 49,000 CY of clean fill material.

A discussion of this closure alternative option relative to established evaluation criteria is provided in Section 4.0.

3.3 <u>Alternative Closure Scenario 3: Consolidation with Closure in Place</u>

Scenario 3 consists of removing the CCR from the north portion of the FAB and placing in the south portion and constructing a final cover system. This alternative was previously evaluated as a FAB closure alternative in 2016, which has been reviewed and modified as needed based on Part 845. The CCR from the north portion of the FAB would be either hydraulically dredged into the south portion of the FAB or mechanically excavated and dumped into the south portion of the FAB. The dredged CCR would be contained, allowing for the CCR to settle and the water to drain into the excavated north portion of the FAB. Dumped CCR material would be stockpiled and allowed to drain as necessary. Once the CCR material placed in the south portion of the FAB is sufficiently dried, it will be graded to achieve the desired elevations needed for the FCS. The embankment that surrounds the north portion of the FAB would also be excavated and placed in the south portion of the FAB. The FCS would be crowned in the middle, sloping toward perimeter drainage channels. The perimeter drainage channels would drain towards the railroad berm, which would contain two storm pipes that traverse through the railroad berm and drain precipitation into the excavated former north portion of the FAB.

The FCS product that would be used is the proprietary ClosureTurf cover system created by Watershed Geo. The ClosureTurf FCS consists of a geomembrane low permeability layer that also incorporates a drainage layer. The final protective layer is replaced with engineered synthetic turf that is infilled with sand/small aggregate to provide ballast to the synthetic turf. The infiltration layer will be a 60-mil HDPE geomembrane with a hydraulic conductivity that is no greater than 1×10^{-7} cm/sec. The engineered synthetic turf is comprised of polyethylene fibers that are tufted through a double layer of woven geotextiles that are highly UV and heat resistant. The engineered synthetic turf is then infilled with small aggregate that is approximately 1/8 inch to 1/4 inch diameter in size. The small aggregate is brushed into the synthetic turf to ensure that it settles to the bottom of the turf, which provides ballast and prevents the turf's movement during wind events.

Two collection points would be located along the northwestern and northeastern perimeter of the FCS to transport runoff off the cover. The collection points would each drain water through a pipe that traverses trough the existing railroad berm and discharges into the north portion of the FAB. The pipes would discharge onto riprap to prevent erosion of the embankment slopes.

A discussion of this closure alternative option relative to established evaluation criteria is provided in Section 4.0.

3.4 Alternative Closure Scenario 4: Closure in place with In-Situ Solidification/Stabilization

The in-situ solidification/stabilization (ISS) treatment of the CCR in the north portion of the FAB would be completed over an approximate 763,000 square feet area and in the south portion of the FAB would be completed over an approximate 653,700 square feet area. This alternative would include the ISS of approximately 556,000 CY of CCR in the north portion and approximately 241,000 CY of CCR in the south portion. The ISS would be applied by soil mixing from the top of the CCR to the bottom most extent of the CCR as identified by site boring logs. The ISS treatment range in the north portion extends from elevation 440 ft amsl to elevation 424 ft amsl, which consists of a treatment thickness range of 16 feet. The ISS treatment range in the south portion extends ft amsl to elevation 428 ft amsl, which consists of a treatment thickness range of 12 feet. In areas where CCR is below a layer of clean overburden, excavation may be performed to allow ISS to be performed only at the targeted CCR layer. For purposes of this closure alternatives analysis, it is assumed the ISS will be implemented through auger mixing; however, bucket mixing may be used in some areas based on unknown site conditions.

ISS treatment consists of adding reagents to physically bind/solidify and/or chemically react/stabilize the CCR, resulting in a solidified or stabilized mass with reduced constituent mobility and leachability. The ISS will isolate the CCR from human contact and from groundwater by encapsulating in a low permeable monolith. Active reagents used in ISS can include pozzolanic compounds such as cement or blast furnace slag to produce a solidified material, reducing contact with groundwater and surface water. Other additives such as bentonite may be included to help lower permeability especially in sandy formations in which the FAB is located. The reagents and additives are typically mixed with water to create a flowable and pumpable slurry that is then mixed with the CCR. The effectiveness and reagent mix for solidification/stabilization would need

to be evaluated in a treatability study. Samples would be collected from the CCR in the north and south portions of the FAB and bench top testing would be performed to determine the proper mix design. It may be necessary to use multiple mix designs to treat the ISS based on site factors.

Performing ISS will result in expansion of the treated CCR. This expansion is typically 10% to 25% of the original treatment volume. Depending on the soil type, the expansion can range from 10% for sandy materials to 25% or more for clayey materials. Once such application of ISS to treat sandy silty fill material resulted in ISS swell of up to 40%. Testing during the ISS treatability study and the ISS pilot test will provide an estimate of the ISS swell expected from the CCR. For this closure alternative analysis, the swell volume estimate will be 30% to present a conservative estimate of the cost and volume of ISS.

The completed ISS treatment area would be covered with clean soil and seeded. The extent of the treatment area requiring additional clean soil is 1,434,200 square feet and requires approximately 95,000 CY to achieve the necessary grades to prevent ponding water. The clean soil cover would be sloped to allow water to drain towards the perimeter of the ISS treatment area. Conceptually, the cover installation would consist of direct placement of clean fill with six inches of topsoil on the treated ISS area, feathered to match adjacent grades. The cover will be at least two feet thick including topsoil thickness. The FCS will be graded to ensure positive drainage and minimize ponding. For the purposes of this report, it is assumed the cover will be vegetated to reduce soil erosion, thereby minimizing release of soil to the Illinois River. Material used for the surface barrier will consist of material imported from non-contaminated sites and/or sources. It is assumed 10% more material will be required to allow for compaction of the fill and topsoil to achieve a total of a two-foot cover. Stockpiles of on-site materials may be used in the FCS cover.

4.0 CLOSURE ALTERNATIVES EVALUATION CRITERIA

The closure alternatives were evaluated based on requirements under State CCR Rule Part 845.710(b)(1) through 845.710(b)(4). The evaluation criteria consisted of the following:

- Long- and short-term effectiveness and protectiveness, including reliability;
- Effectiveness of controlling future releases;
- Ease or difficulty of implementation; and
- The degree to which concerns of the community residents are addressed.

Each closure alternative was evaluated using the above criteria and that evaluation is provided in Table 3. The following highlights are provided from that evaluation. Groundwater modeling was performed in accordance with 845.710(d)(2) and 845.710(d)(3) to assist in evaluating the longand short-term effectiveness of each closure alternative. A discussion of the groundwater modeling and the results are presented in Section 5.

Alternative Closure Scenario 1: Closure by Removal

- Removing the CCR from the FAB would require excavating and hauling 920,000 CY, which would take about 920 days to execute based on 50 truckloads per day and 15 cubic yards per truck.
- Removing the CCR would remove any remaining amounts of the CCR mass. Groundwater monitoring has shown that impacts to groundwater are not present downgradient and any elevated constituents that have been detected in the groundwater are not from the FAB.
- Not removing the CCR would eliminate the volume of material disposed at a landfill, and reduce the number of trucks traveling to and from the station.
- Additionally, the truck traffic removing the CCR will negatively affect the neighboring properties, including air quality and noise pollution, since the entrance and egress for the trucking would be directly via E. Manito Road and not through any residential neighborhood.
- This option will require at least 3 years of post-closure monitoring.

Alternative Closure Scenario 2: Closure in Place

- ClosureTurf has successfully been used around the country to close CCR surface impoundments and landfills.
- The ClosureTurf final cover will require approximately 149,000 CY of clean fill material and more overall truck traffic to and from the site because the FAB has to be filled to achieve the necessary grades and elevations. It will require approximately 200 days to deliver clean fill to the site based on 50 truckloads per day and 15 CY per truck.

- The ClosureTurf and soil infill will cover the CCR, prevent infiltration into the CCR, and prevent any human or animal contact.
- The ClosureTurf option will require 30 years of post-closure monitoring.
- The existing CCR mass remaining will not cause groundwater impacts. Groundwater monitoring has shown that impacts to groundwater are not present downgradient and any elevated constituents that have been detected in the groundwater are not from the FAB.

Alternative Closure Scenario 3: Consolidation with Closure in Place

- ClosureTurf has successfully been used around the country to close CCR surface impoundments and landfills.
- The ClosureTurf final cover will require moving approximately 314,000 CY from the north FAB to the south FAB. Currently, the proposed method for moving the material is hydraulic dredging.
- In addition, 68,000 CY of clean fill material would be needed to achieve the necessary grades and elevations. It will require approximately 91 days to fill the FAB based on 50 truckloads per day and 15 CY per truck.
- The ClosureTurf and soil infill will cover the CCR, prevent infiltration into the CCR, and prevent any human or animal contact.
- The ClosureTurf option will require 30 years of post-closure monitoring.
- The existing CCR mass remaining will not cause groundwater impacts. Groundwater monitoring has shown that impacts to groundwater are not present downgradient and any elevated constituents that have been detected in the groundwater are not from the FAB.

Alternative Closure Scenario 4: Closure in place with In-Situ Solidification/Stabilization

- ISS is expected to contain and stabilize the CCR and is anticipated to be an adequate and reliable means of reducing the leaching potential of the CCR if it is exposed to groundwater and precipitation.
- Placement and maintenance of soil cover would provide adequate and reliable means of controlling erosion of and exposures to stabilized CCR.
- ISS and targeted excavation of mass material and installation of the cover would result in impacts to the community relative to truck traffic and noise during the construction. However, as materials requiring offsite disposal are minimized, this disturbance would be less than the first two alternatives.
- Approximately 707,000 in-place CY of CCR would be treated with ISS.

• The leaching potential of CCR would be irreversibly reduced through ISS. The mobility of CCR into surface water or via flooding (i.e., associated with erosion) would be further reduced by installation of the soil cover.

5.0 GROUNDWATER MODELING

This section discusses the results of the groundwater modeling and a description of the fate and transport of each closure alternative over time in accordance with 845.710(d)(2) and 845.710(d)(3). The modeling that was conducted is based on a theoretical distribution of dissolved contaminants beneath the FAB, assuming a mass, to demonstrate the impact of the alternative closure scenarios on the spread of contaminants.

To conduct the support modeling a theoretical unit mass with a concentration of "1" was established beneath the FAB and projected forward in time 100 years with advection and dispersion to establish an equilibrated distribution of contaminants in groundwater if the FAB were the mass. The equilibrated distribution (base case) of the mass was then used as the initial concentrations in the groundwater for model runs to simulate the closure alternatives to evaluate corresponding improvement in groundwater quality from the base case scenario. The modeling runs are provided on the slides included in Attachment 1.

5.1 <u>Alternative Closure Scenario 1 Modeling</u>

From this initial equilibrated model run, in Scenario 1, the mass was removed and the change in concentrations were modeled over 5-years, 25-years, 50-years, and 100-years. The modeling runs identified reductions in concentrations by 5 years and the mass had completely moved through the groundwater system by 25 years and beyond. These modeling runs are shown on Slides 6 and 7 located in Attachment 1. On each slide, the base case run is illustrated on the left side and the alternative closure scenario is illustrated on the right side. Since the results for the 25-years, 50-years, and 100-years modeling runs are the same, they are included on the same slide. Slide 7 illustrates the concentration decay over time at a hypothetical midpoint in the groundwater system between the FAB and the Illinois River.

5.2 <u>Alternative Closure Scenario 2 Modeling</u>

The modeling of Scenario 2 consisted of starting with the initial equilibrated model run, the mass remaining in the north and south portions of the FAB, and then removing the precipitation recharge into the mass by simulating the presence of a FCS on the north and the south. Reviewing Slide 9, which projects out 5-years, indicates that groundwater impacts near the Illinois River do not change from the initial equilibrated model run. The 25-years, 50-years, and 100-years projections on Slide 10 indicate no increases in groundwater concentrations at the river. It should be noted that the concentrations in the groundwater system reach steady state after 25 years, which is why the 25-years, 50-years, and 100-years modeling runs are combined on the same slide. Slide 11 illustrates the concentration decay over time at a hypothetical midpoint in the groundwater system between the FAB and the Illinois River.

5.3 <u>Alternative Closure Scenario 3 Modeling</u>

The modeling of Scenario 3 consisted of starting with the initial equilibrated model run, the mass consolidated and remaining in only the south portion of the FAB, and then removing the

precipitation recharge into the mass by simulating the presence of a FCS on the south portion of the FAB. The precipitation recharge in the north portion of the FAB is occurs in this scenario because the formerly present in the north portion of the FAB has been removed. Reviewing Slide 13, which projects out 5-years, indicates that groundwater impacts near the Illinois River have reduced by approximately 10% (from a theoretical maximum concentration of 0.9 to a concentration of 0.8) and the east-west width of the mass is reduced. The 25-years, 50-years, and 100-years projections on Slide 14 indicate a continued decrease in groundwater concentrations at the river, from a theoretical maximum concentration of 0.8 to a concentration of 0.7. It should be noted that the concentrations in the groundwater system reach steady state after 25 years, which is why the 25-years, 50-years, and 100-years modeling runs are combined on the same slide. Slide 15 illustrates the concentration decay over time at a hypothetical midpoint in the groundwater system between the FAB and the Illinois River.

5.4 <u>Alternative Closure Scenario 4 Modeling</u>

The modeling of Scenario 4 consisted of starting with the initial equilibrated model run, the mass remaining in the north and south portions of the FAB, removing the recharge into the mass by simulating the presence of a FCS on the north and the south, and having a hydraulic barrier around the perimeter of the FAB that reduces the permeability through the mass material. This scenario simulates the in-situ stabilization of the CCR, with a remedial objective permeability of the CCR mass equal to or less than 1×10^{-7} cm/sec. Reviewing Slide 18, which projects out 5-years, indicates that groundwater mass near the Illinois River decreased by 20% from a maximum theoretical concentration of 0.9 to a concentration of 0.7. The east-west width of the groundwater mass also decreases. The 25-years, 50-years, and 100-years projections on Slide 19 indicate the mass had completely moved through the groundwater system by 25 years and beyond. Slide 20 illustrates the concentration decay over time at a hypothetical midpoint in the groundwater system between the FAB and the Illinois River.

5.5 <u>Seasonal Variations Modeling</u>

As further required by the State CCR Rule, seasonal fluctuations of the groundwater system were considered. To estimate the potential impacts on contaminant migration under a seasonally varying groundwater flow system, a 100-year transient flow model was simulated with alternating periods of higher and lower recharge to groundwater. The flow model simulated 6 months of higher recharge (April through September) and 6 months of lower recharge (October through March), reflecting trends in the long-term average monthly precipitation records. The initial equilibrated contaminant distribution again served as the starting conditions, Scenario 2 and Scenario 4 were applied to the mass, and the concentrations were modeled with advection and dispersion. The results of the Scenario 2 modeling are the same for the 25+ years modeling events and the results for the 5-years seasonality modeling results are only slightly different from the results discussed in Section 5.4. The groundwater mass footprint is generally the same with slight variations in the mass gradations throughout the footprint. The results of the seasonal variation results for Scenario 4.

These modeling runs are used as part of evaluating the long- and short-term effectiveness of each closure option, as shown in Table 3.

6.0 SUMMARY

Four closure scenarios were evaluated as part of the closure alternatives analysis for closure of the FAB in accordance with 845.710(b). The four options evaluated are as follows:

- 1) Closure by removal;
- 2) Closure in place in both the north and south portions of the FAB with a FCS;
- 3) Closure in place by consolidating all CCR in south portion of FAB with a FCS;
- 4) Closure in place with in-situ solidification/stabilization in both north and south portions with a soil cover.

The options were evaluated based on effectiveness/protectiveness, ease of implementation, and addressing the concerns of the community residents.

Closure by removal would require the excavation, transportation, and disposal of 920,000 CY of warning layer material and take greater than 1,200 days to complete. The CCR removed is assumed to be disposed of at Indian Creek Landfill No. 2 for the purposes of evaluating this alternative. If this alternative were to move forward, discussions with the landfill would have to occur prior to selecting this alternative. The area of the removed CCR would be graded to prevent further erosion and slope degradation. Once the closure by removal is complete, groundwater monitoring in accordance 845.600 would occur for three (3) years.

The closure in place in both the north and south portions of the FAB scenario requires filling both the north and south portions to achieve the proper grades and constructing the FCS on this fill material. This scenario would require the north portion to be filled with approximately 70,000 CY of additional material in order to bring the grade up to the proper elevation to allow precipitation to gravity flow off the FCS. The south portion would require to be filled with approximately 44,000 CY of additional material in order to bring the grade up to the proper elevation to allow precipitation to gravity flow off the FCS. The South portion would require to be filled with approximately 44,000 CY of additional material in order to bring the grade up to the proper elevation to allow precipitation to gravity flow off the FCS. The ClosureTurf FCS system would then be placed on top of the fill material in both the north and south portions. Each FCS is sloped to drain towards a new discharge structure that will be installed in the southwest corner of the north portion FCS. From this drainage structure, a new underground pipe would be installed to drain water to the old intake channel. The south portion would drain through a pipe installed through the railroad spur berm and into the new drainage structure.

To prevent future ponding that may occur if a flood condition occurs at the FAB, the construction of an embankment adjacent to the north perimeter of the FAB is included in this closure scenario. The embankment will extend from the existing north FAB embankment up to an elevation of 460 ft amsl (the floodplain elevation is 457 ft amsl) and then slope at 3H:1V down to the existing ground surface. The construction of this embankment will require 49,000 CY of clean fill material.

This option would take approximately 200 days to complete and groundwater monitoring in accordance with 845.600 would occur for thirty (30) years.

The in-situ solidification/stabilization (ISS) treatment of the CCR in the north portion of the FAB would be completed over an approximate 763,000 square feet area and in the south portion of the FAB would be completed over an approximate 654,000 square feet area. This alternative would include the ISS of approximately 556,000 CY of CCR in the north portion and approximately 241,000 CY of CCR in the south portion. The ISS would be applied by soil mixing from the top of the CCR to the bottom most extent of the CCR.

The completed ISS treatment area would be covered with clean soil and seeded. The extent of the treatment area requiring additional clean soil is 1,417,000 square feet and requires approximately 95,000 CY to achieve the necessary grades to prevent ponding water. The clean soil cover would be sloped to allow water to drain towards the perimeter of the ISS treatment area. Conceptually, the cover installation would consist of direct placement of clean fill with six inches of topsoil on the treated ISS area, feathered to match adjacent grades. The FCS will be graded to ensure positive drainage and minimize ponding and it is assumed the cover will be vegetated to reduce soil erosion. Each soil cover will be sloped to drain towards a new discharge structure that will be installed in the southwest corner of the north portion. From this drainage structure, a new underground pipe would be installed to drain water to the old intake channel. The south portion would drain through a pipe installed through the railroad spur berm and into the new drainage structure.

7.0 PROFESSIONAL ENGINEER'S CERTIFICATION

This closure alternatives analysis has been prepared in accordance with 35 Ill. Adm. Code 845.710.

Joshua D. Davenport, P.E. Illinois Professional Engineer

SEAL

TABLES

Well ID	Date	Top of Casing Elevation	Depth to Groundwater	Groundwater Elevation
		(ft above MSL)	(ft below TOC)	(ft above MSL)
	11/16/2015	465.24	26.04	439.20
	2/22/2016	465.24	21.90	443.34
	5/16/2016	465.24	21.83	443.41
	8/15/2016	465.24	23.89	441.35
	11/14/2016	465.24	23.38	441.86
	2/13/2017	465.24	21.71	443.53
	5/1/2017	465.24	18.87	446.37
	6/20/2017	465.24	21.54	443.70
	8/25/2017	465.24	24.70	440.54
MW-01	11/8/2017	465.24	24.92	440.32
(Upgradient)	5/17/2018	465.24	22.66	442.58
	8/8/2018	465.24	26.05	439.19
	10/30/2018	465.24	24.69	440.55
	2/25/2019	465.24	19.44	445.80
	4/29/2019	465.24	20.15	445.09
	8/26/2019	465.24	23.85	441.39
	2/24/2020	465.24	20.71	444.53
	4/27/2020	465.24	20.90	444.34
	12/7/2020	465.24	25.69	439.55
	4/7/2021	465.24	22.20	443.04
	5/10/2021	465.24	23.41	441.83
	6/20/2017	462.60	22.04	440.56
	8/23/2017	462.60	28.42	434.18
	11/7/2017	462.60	26.08	436.52
	5/17/2018	462.60	23.26	439.34
	8/7/2018	462.60	29.70	432.90
	10/30/2018	462.60	26.77	435.83
MW-02	2/25/2019	462.60	17.02	445.58
(Downgradient)	4/29/2019	462.60	19.26	443.34
	8/26/2019	462.60	27.45	435.15
	2/24/2020	462.60	20.35	442.25
	4/27/2020	462.60	20.51	442.09
	12/7/2020	462.60	28.71	433.89
	4/7/2021	462.60	21.95	440.65
	5/10/2021	462.60	23.01	439.59
	6/20/2017	462.48	22.31	440.17
	8/23/2017	462.48	28.18	434.30
	11/7/2017	462.48	25.38	437.10
	5/17/2018	462.48	22.62	439.86
	8/7/2018	462.48	29.17	433.31
	10/30/2018	462.48	24.71	437.77
MW-03	2/25/2019	462.48	17.20	445.28
(Downgradient)	4/29/2019	462.48	18.85	443.63
	8/26/2019	462.48	27.65	434.83
	2/24/2020	462.48	20.18	442.30
	4/27/2020	462.48	20.43	442.05
	12/7/2020	462.48	28.61	433.87
	4/7/2021	462.48	21.73	440.75
	5/10/2021	462.48	22.98	439.50

Well ID	Date	Top of Casing Elevation	Depth to Groundwater	Groundwater Elevation
		(ft above MSL)	(ft below TOC)	(ft above MSL)
	6/20/2017	460.57	22.15	438.42
	8/28/2017	460.57	28.49	432.08
	11/7/2017	460.57	25.62	434.95
	5/17/2018	460.57	24.13	436.44
	8/7/2018	460.57	29.23	431.34
	10/30/2018	460.57	26.58	433.99
MW-04	2/25/2019	460.57	15.45	445.12
(Downgradient)	4/29/2019	460.57	15.88	444.69
	8/26/2019	460.57	27.35	433.22
	2/24/2020	460.57	19.81	440.76
	4/27/2020	460.57	19.76	440.81
	12/7/2020	460.57	28.50	432.07
	4/7/2021	460.57	21.90	438.67
	5/10/2021	460.57	23.92	436.65
	11/16/2015	458.58	26.39	432.19
	2/22/2016	458.66	21.12	437.54
	5/16/2016	458.66	16.58	442.08
	8/15/2016	458.66	23.59	435.07
	11/14/2016	458.66	22.72	435.94
	2/13/2017	458.66	19.13	439.53
	5/1/2017	458.66	13.09	445.57
	6/20/2017	458.66	19.43	439.15
	8/28/2017	458.66	25.38	433.20
	11/7/2017	458.66	22.91	435.67
MW-05	5/17/2018	458.66	21.54	437.04
(Downgradient)	8/7/2018	458.66	26.17	432.41
	10/30/2018	458.66	23.97	434.61
	2/25/2019	458.66	13.21	445.45
	4/29/2019	458.66	15.40	443.26
	8/26/2019	458.66	24.35	434.31
	2/24/2020	458.66	17.25	441.41
	4/27/2020	458.66	17.41	441.25
	12/7/2020	458.66	25.65	433.01
	4/7/2021	458.66	19.40	439.26
	5/10/2021	458.66	21.38	437.28
	6/22/2017	457.31	13.46	443.85
	8/24/2017	457 31	16 39	440.92
	11/9/2017	457 31	16.86	440.45
	5/16/2018	457 31	14.88	442.43
	8/8/2018	457 31	17.88	439.43
	10/30/2018	457 31	17.04	440.27
MW 10	2/25/2010	457 31	11.04	446.03
(Upgradient)	4/29/2019	457 31	11.20	445.43
	8/26/2010	457.21	15.80	443.43
	3/20/2019	457.21	13.89	441.42
	2/24/2020	457.31	12.04	444.07
	4/27/2020	457.31	12.75	444.30
	12/1/2020	457.31	17.80	439.51
	4///2021	457.31	14.21	443.10
	5/10/2021	457.31	15.58	441.73

MSL - Mean Sea Level TOC - Top of Casing

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
	11/16/2015	1.0	98	44	0.17	7.07	93	530	< 0.003	< 0.001	0.057	^ < 0.001	< 0.0005	< 0.005	< 0.001	* < 0.0005	< 0.01	< 0.0002	< 0.0050	0.744	< 0.0025	* < 0.002
	2/25/2016	0.2	110	42	0.16	7.23	54	460	< 0.003	0.0025	0.053	< 0.001	< 0.0005	< 0.005	0.0014	0.0019	< 0.01	< 0.0002	< 0.005	< 0.722	0.0029	< 0.002
	5/20/2016	0.34	100	44	0.17	6.95	65	430	< 0.003	0.0081	0.062	< 0.001	< 0.0005	0.007	0.0053	0.011	< 0.01	< 0.0002	< 0.005	< 0.953	< 0.0025	< 0.002
	8/17/2016	0.27	78	39	0.25	7.16	50	530	< 0.003	0.0014	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.0014	< 0.01	< 0.0002	0.0057	< 0.491	< 0.0025	< 0.002
	11/16/2016	0.18	97	39	0.21	7.22	32	500	< 0.003	0.0051	0.056	< 0.001	< 0.0005	< 0.005	0.0044	0.0082	< 0.01	< 0.0002	0.0059	< 0.618	< 0.0025	< 0.002
	2/14/2017	0.18	120	55	0.17	7.30	60	550	< 0.003	0.0041	0.056	< 0.001	< 0.0005	< 0.005	0.0045	0.0076	< 0.01	< 0.0002	0.0056	< 0.837	< 0.0025	< 0.002
	5/3/2017	0.19	86	66	0.16	7.41	45	460	< 0.003	0.0015	0.045	< 0.001	< 0.0005	< 0.005	0.0033	0.0067	< 0.01	< 0.0002	< 0.005	0.574	< 0.0025	< 0.002
	6/21/2017	0.18	85	58	0.18	7.60	47	540	< 0.003	< 0.001	0.040	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	< 0.418	< 0.0025	< 0.002
MW-01	8/25/2017	0.56	86	41	0.18	7.41	63	490	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0059	0.775	< 0.0025	< 0.002
up-gradien	11/8/2017	0.57	130	38	0.12	6.69	61	640	< 0.003	< 0.001	0.083	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.343	< 0.0025	< 0.002
	5/17/2018	0.15	88	50	0.12	6.70	48	540	< 0.003	< 0.001	0.045	< 0.001	< 0.0005	< 0.005	< 0.001	0.00068	< 0.01	< 0.0002	< 0.005	< 0.396	< 0.0025	< 0.002
	8/8/2018	0.14	86	48	0.13	6.80	43	430	< 0.003	< 0.001	0.051	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.579	< 0.0025	< 0.002
	4/30/2019	0.07	78	54	0.17	7.20	27	450	< 0.003	0.0014	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	0.0017	< 0.01	< 0.0002	< 0.005	< 0.656	< 0.0025	< 0.002
	8/26/2019	0.57	100	39	0.13	7.15	71	550	< 0.003	< 0.001	0.053	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.802	< 0.0025	< 0.002
	2/24/2020	0.28	87	53	0.21	7.19	34	410	< 0.003	< 0.001	0.044	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.00057	< 0.01	< 0.0002	< 0.005	< 0.478	< 0.0025	< 0.002
	4/28/2020	0.33	110	46	0.19	7.17	41	470	NA	< 0.001	0.051	NA	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.628	< 0.0025	< 0.002
	12/7/2020	0.59	100	54	0.25	7.22	55	640	NA	< 0.001	0.058	NA	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0052	< 0.542	< 0.0025	< 0.002
	5/11/2021	0.21	85	51	0.21	7.52	37	450	< 0.003	< 0.001	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.01	0.521	< 0.0025	< 0.002
	6/22/2017	0.46	100	48	0.19	6.81	54	1.0	< 0.003	0.0023	0.250	< 0.001	< 0.0005	< 0.005	0.008	0.003	< 0.01	< 0.0002	< 0.005	0.408	0.0042	< 0.002
	8/24/2017	0.32	93	51	0.18	7.14	57	480	< 0.003	0.0020	0.220	< 0.001	< 0.0005	< 0.005	0.007	0.003	< 0.01	< 0.0002	< 0.005	0.564	0.0044	< 0.002
	11/9/2017	0.36	98	48	0.18	6.78	64	500	< 0.003	< 0.0010	0.220	< 0.001	< 0.0005	< 0.005	0.004	< 0.001	< 0.01	< 0.0002	< 0.005	1.020	0.0034	< 0.002
	5/16/2018	0.42	93	44	0.19	7.64	80	530	< 0.003	0.0010	0.220	< 0.001	< 0.0005	< 0.005	0.021	0.001	< 0.01	< 0.0002	< 0.005	1.550	0.0050	< 0.002
	8/8/2018	0.39	99	58	0.19	7.10	60	550	< 0.003	0.0012	0.220	<^ 0.001	< 0.0005	< 0.005	0.014	0.001	< 0.01	< 0.0002	< 0.005	< 0.551	0.0062	< 0.002
	10/30/2018	0.34	110	49	0.22	7.65	49	510	< 0.003	0.0110	0.410	< 0.001	0.0008	0.024	0.047	0.023	0.02	< 0.0002	< 0.005	3.00	0.0046	< 0.002
MW-10	2/26/2019	0.39	150	48	0.21	6.77	36	540	< 0.003	0.0220	0.590	< 0.005	0.0015	0.063	0.081	0.036	0.03	< 0.0002	0.007	4.130	0.0041	< 0.002
up-gradien	5/1/2019	0.35	92	50	0.22	6.81	30	470	< 0.003	0.0023	0.270	< 0.001	< 0.0005	< 0.005	0.011	0.0028	< 0.01	< 0.0002	< 0.005	1.330	0.0037	< 0.002
	8/26/2019	0.30	84	48	0.19	7.09	30	410	< 0.003	0.0017	0.190	< 0.001	< 0.001	< 0.005	0.007	0.0016	< 0.01	< 0.0002	< 0.005	1.540	0.0050	< 0.002
	2/25/2020	1.40	110	45	0.23	6.82	59	500	< 0.003	0.0033	0.280	<^ 0.001	< 0.0005	0.0086	0.011	0.0046	< 0.01	< 0.0002	< 0.005	1.07	0.0058	< 0.002
	4/28/2020	1.00	110	41	0.24	6.80	64	550	NA	0.0022	0.250	NA	NA	< 0.005	0.0065	0.0017	NA	NA	< 0.005	0.639	0.0054	NA
	12/8/2020	2.40	120	44	0.26	7.11	71	550	NA	0.0015	0.280	NA	NA	< 0.005	0.0089	0.0023	NA	< 0.0002	< 0.005	1.76	0.0031	NA
	5/11/2021	0.64	100	52	0.24	7.01	59	540	< 0.003	0.0011	0.260	< 0.001	< 0.001	< 0.005	0.008	0.0009	< 0.01	< 0.0002	< 0.005	1.42	0.0049	< 0.002
	6/20/2017	0.33	90	55	0.19	7.01	47	500	< 0.003	0.0012	0.075	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
	8/23/2017	V 1.30	86	49	0.19	7.40	61	440	< 0.003	< 0.001	0.062	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.833	< 0.0025	< 0.002
	11/7/2017	3.70	98	46	0.17	7.10	88	550	< 0.003	0.0014	0.091	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.309	0.0027	< 0.002
	5/15/2018	0.22	80	45	0.23	7.71	54	500	< 0.003	0.0013	0.065	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	0.0004	< 0.005	< 0.408	< 0.0025	< 0.002
	8/7/2018	1.50	89	54	0.15	7.09	51	530	< 0.003	0.0016	0.067	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.622	< 0.0025	< 0.002
MW-02	10/30/2018	0.23	86	43	0.17	7.83	34	480	< 0.003	0.0015	0.067	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.564	< 0.0025	< 0.002
down-	2/26/2019	0.07	69	49	0.16	7.82	23	400	< 0.003	0.0026	0.041	< 0.001	< 0.0005	< 0.005	< 0.001	0.0013	< 0.01	< 0.0002	< 0.005	< 0.425	< 0.0025	< 0.002
gradient	4/30/2019	0.12	79	48	0.16	7.60	30	440	< 0.003	0.0013	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.441	< 0.0025	< 0.002
	8/26/2019	0.51	86	50	0.18	7.13	32	400	< 0.003	0.0011	0.065	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	1.180	< 0.0025	< 0.002
	2/24/2020	0.33	89	53	0.20	7.43	37	410	< 0.003	0.0011	0.061	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.485	< 0.0025	< 0.002
	4/28/2020	0.33	90	50	0.20	7.32	41	430	NA	0.0016	0.06	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	< 0.005	< 0.54	< 0.0025	NA
	12/9/2020	0.66	100	41	0.15	7.78	64	430	NA	< 0.001	0.076	NA	NA	< 0.005	< 0.001	< 0.0005	NA	< 0.0002	0.0059	< 0.471	< 0.0025	NA
1	5/11/2021	0.23	79	51	0.21	7.70	37	370	< 0.003	0.0015	0.057	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.010	< 0.528	< 0.0025	< 0.002

Notes: All units are in mg/l except pH is in standard units. V- Serial dilution exceeds control limits. H- Sample was prepped or analyzed beyond specified holding time

NA - Not Analyzed

F1 - MS and/or MSD Recovery outside of limits. * - LCS or LCSD is outside acceptance limits. ^ - Denotes instrument related QC exceeds the control limits

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
	6/20/2017	0.4	76	54	0.29	7.26	49	480	< 0.003	0.0013	0.066	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.325	< 0.0025	< 0.002
	8/23/2017	0.40	79	52	0.28	7.44	52	430	< 0.003	0.0010	0.066	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	1.200	< 0.0025	< 0.002
	11/7/2017	0.31	79	62	0.26	7.04	61	460	< 0.003	0.0013	0.068	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.588	< 0.0025	< 0.002
	5/15/2018	0.35	87	66	0.27	7.53	77	520	< 0.003	0.0010	0.059	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.489	< 0.0025	< 0.002
	8/7/2018	0.40	82	67	0.22	6.60	49	500	< 0.003	0.0015	0.067	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
MW-03	10/30/2018	0.20	74	44	0.25	7.84	26	400	< 0.003	0.0014	0.056	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.354	< 0.0025	< 0.002
down-	2/26/2019	0.06	74	56	0.24	7.49	25	410	< 0.003	0.0013	0.054	< 0.001	< 0.0005	< 0.005	< 0.001	0.0007	< 0.01	< 0.0002	< 0.005	< 0.399	< 0.0025	< 0.002
gradient	4/30/2019	0.28	74	49	0.22	7.17	38	390	< 0.003	< 0.001	0.060	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.668	< 0.0025	< 0.002
	8/26/2019	0.31	75	50	0.26	7.17	14	380	< 0.003	0.0014	0.069	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.444	< 0.0025	< 0.002
	2/24/2020	0.33	87	53	0.22	7.10	65	470	< 0.003	< 0.001	0.066	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.400	< 0.0025	< 0.002
	4/28/2020	0.24	86	46	0.22	7.03	79	410	NA	0.0013	0.066	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	< 0.005	< 0.498	0.0036	NA
	12/9/2020	0.86	92	45	0.28	7.46	60	390	NA	< 0.001	0.086	NA	NA	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.432	< 0.0025	NA
	5/11/2021	0.22	75	49	0.21	7.33	38	390	< 0.003	< 0.001	0.070	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.519	< 0.0025	< 0.002
	6/20/2017	0.5	77	55	0.29	7.45	53	480	< 0.003	< 0.001	0.0025	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.343	< 0.0025	< 0.002
	8/28/2017	V 0.73	90	89	0.33	7.13	110	680	< 0.003	< 0.001	0.028	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.013	< 0.246	< 0.0025	< 0.002
	11/7/2017	0.60	110	94	0.24	6.80	130	650	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.332	0.0092	< 0.002
	5/15/2018	0.68	87	66	0.27	7.63	100	630	< 0.003	< 0.001	0.037	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.661	< 0.0025	< 0.002
	8/7/2018	0.79	84	71	0.32	6.72	49	510	< 0.003	0.0011	0.031	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.006	< 0.334	< 0.0025	< 0.002
MW-04	10/30/2018	0.54	100	80	0.24	7.55	91	690	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.423	< 0.0025	< 0.002
down-	2/26/2019	0.38	79	55	0.25	7.18	52	490	< 0.003	0.0013	0.033	< 0.001	< 0.0005	< 0.005	0.001	0.0012	< 0.01	< 0.0002	< 0.005	0.366	< 0.0025	< 0.002
gradient	4/30/2019	0.36	74	48	0.25	7.08	35	380	< 0.003	< 0.001	0.026	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.684	< 0.0025	< 0.002
	8/26/2019	0.64	91	60	0.24	7.08	14	490	< 0.003	< 0.001	0.032	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.008	1.090	< 0.0025	< 0.002
	2/24/2020	0.34	81	49	0.20	7.05	67	440	< 0.003	< 0.001	0.024	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.595	< 0.0025	< 0.002
	4/28/2020	0.55	76	52	0.27	7.03	47	380	NA	< 0.001	0.025	NA	NA	< 0.005	< 0.001	< 0.0005	NA	NA	< 0.005	< 0.465	< 0.0025	NA
	12/9/2020	0.57	92	88	0.32	7.10	94	580	NA	< 0.001	0.034	NA	NA	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0076	< 0.411	< 0.0025	NA
	5/11/2021	0.61		44	0.33	7.22	76	410	< 0.003	< 0.001	0.025	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.533	< 0.0025	< 0.002
	5/17/2016	0.70	100	85	0.35	7.08	120	660	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.373	< 0.0025	< 0.002
	8/16/2016	0.69	110	97	0.30	6.85	150	830	< 0.003	< 0.001	0.060	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.452	< 0.0025	< 0.002
	11/15/2016	0.93	94	66	0.23	6.96	-77	620	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	0.449	< 0.0025	< 0.002
	2/14/2017	0.79	100	100	0.25	7.25	170	760	< 0.003	< 0.001	0.062	< 0.001	< 0.0005	< 0.005	< 0.001	0.00091	< 0.01	< 0.0002	< 0.005	< 0.359	< 0.0025	< 0.002
	5/1/2017	0.70	100	92	0.28	7.60	1/0	710	< 0.003	< 0.001	0.059	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0066	< 0.439	< 0.0025	< 0.002
	6/20/2017	0.64	89	63	0.28	7.32	/8	550	< 0.003	< 0.001	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	< 0.365	< 0.0025	< 0.002
MW-05	8/28/2017	0.62	110	120	0.33	7.05	210	8/0	< 0.003	< 0.001	0.064	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0085	0.381	< 0.0025	< 0.002
down-	5/15/2017	0.51	99	110	0.31	0.8/	160	990	< 0.003	< 0.001	0.058	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.341	< 0.0025	< 0.002
gradient	5/15/2018	0.61	130	89	0.29	1.10	210	910	< 0.003	< 0.001	0.062	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	< 0.005	< 0.390	< 0.0025	< 0.002
	8/7/2018	0.49	110	120	0.32	6.56	180	890	< 0.003	< 0.001	0.054	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0069	0.523	< 0.0025	< 0.002
	4/30/2019	0.56	84	/3	0.36	0.90	120	590	< 0.003	< 0.001	0.041	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	< 0.709	< 0.0025	< 0.002
1	8/20/2019	0.57	110	/5	0.29	7.01	110	00U	< 0.003	< 0.001	0.050	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0067	0.651	< 0.0025	< 0.002
1	2/24/2020	0.54	110	/0	0.36	6.90	120	H /00	< 0.005	< 0.001	0.057	<^ 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0061	0.506	< 0.0025	< 0.002
1	4/28/2020	0.49	110	20	0.37	6.8/	130	620	NA	0.001	0.052	NA NA	NA	< 0.005	< 0.001	< 0.0005	NA < 0.01	NA < 0.0002	0.0074	0.508	< 0.0025	NA
1	5/11/2020	0.53	98	/8	0.31	6.91	110	520	NA < 0.002	< 0.001	0.05	NA < 0.001	NA < 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0072	0.569	< 0.0025	NA < 0.002
	3/11/2021	0.5	83	52	0.38	7.20	100	530	< 0.003	< 0.001	0.04	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.0005	< 0.01	< 0.0002	0.0062	< 0.525	< 0.0025	< 0.002

NA - Not Analyzed

Notes: All units are in mg/l except pH is in standard units. V- Serial dilution exceeds control limits. H- Sample was prepped or analyzed beyond specified holding time

F1 - MS and/or MSD Recovery outside of limits. * . LCS or LCSD is outside acceptance limits. ^ . Denotes instrument related QC exceeds the control limits

Table 3 - Closure Alternatives Evaluation

35 Ill. Adm. Code Part 845.710(b)(1) through 845.710(b)(4) Requirements		Closure Alternatives										
		Closure by Removal for Pond Re-use	Closure-in-Place with a Final Cover System	Consolidation & Closure-in-Place with a Final Cover System	Closure-in-Place with Insitu Stabilization/Solidification							
845.710(b)(1)(A)	Magnitude of existing risk reduction	The excavation and removal of the CCR from the FAB would remove a potential source. This will prevent about 38 inches per year of precipitation from passing through the unsaturated CCR into the groundwater. The groundwater modeling has shown that by previously removing the CCR source material, a reduction of at least 90% would occur in groundwater concentrations after 25 years.	Closing the CCR in place with the ClosureTurf final cover system will prevent infiltration through the CCR material that may be present. The final cover system also eliminates human/animal exposure to any CCR, in addition to removing the hazard of an open area. The final cover system would be constructed by filling the FAB with clean material and covering with a geomembrane infiltration layer that has a permeability of 1×10^{-13} cm/s, which is covered with a synthetic turf/sand infill erosion layer. This type of cover system has been used throughout the country since 2009 to effectively close CCR surface impoundments. The existing groundwater monitoring (through second quarter 2021) has shown that groundwater impacts above the proposed GWPSs are not present. The groundwater modeling has shown that a reduction of 10% of groundwater concentrations would occur after 5 years and the groundwater concentrations would reach a steady state condition after 25 years with no further increases in groundwater concentrations.	Closing the CCR in place with the ClosureTurf final cover system will prevent infiltration through the CCR material that may be present. The final cover system also eliminates human/animal exposure to any CCR, in addition to removing the hazard of an open area. The final cover system would be constructed by first dredging the north FAB CCR into the south, filling the south FAB with clean material and covering with a geomembrane infiltration layer that has a permeability of 1 x 10 ⁻¹³ cm/s, which is covered with a synthetic turf/sand infill erosion layer. This type of cover system has been used throughout the country since 2009 to effectively close CCR surface impoundments. The existing groundwater monitoring (through second quarter 2021) has shown that groundwater impacts above the proposed GWPSs are not present. The groundwater modeling has shown that a reduction of 20% of groundwater concentrations would occur after 5 years and the groundwater concentrations would reach a steady state condition after 25 years with no further increases in groundwater concentrations.	Closing the CCR in place with treating the CCR with in-situ solidification/stabilization will prevent infiltration through the CCR material that may be present. The soil cover also eliminates human/animal exposure to any CCR, in addition to removing the hazard of an open area. The ISS would be conducted by mixing the CCR with reagents (cement, bentonite) using either an excavator bucket or a large diameter auger, followed up by filing over the ISS would have a permeability of less than 1×10^{-7} cm/s. This type of technology has been used throughout the country since the 1960's to effectively treat impacted soil throughout the country. The existing groundwater monitoring (through second quarter 2021) has shown that groundwater modeling has shown that a reduction of greater than 90% of groundwater concentrations would occur after 5 years and the groundwater conductions would reach a steady state condition after 25 years.							
845.710(b)(1)(B)	Likelihood of future CCR releases	Since the CCR would be removed, the likelihood of a future CCR release is eliminated. Groundwater monitoring results have shown that no concentrations existing above the proposed GWPSs.	Covering the CCR would prevent the future release of CCR because it would not be exposed to surface water runoff and the potential for erosion. Groundwater monitoring through second quarter 2021 does not show any groundwater concentrations greater than the proposed GWPSs. Releases of CCR to the Illinois River has not been identified. The material brought on-site would be evaluated to determine that it will not cause a future release.	Covering the CCR would prevent the future release of CCR because it would not be exposed to surface water runoff and the potential for erosion. Groundwater monitoring through second quarter 2021 does not show any groundwater concentrations greater than the proposed GWPSs. Releases of CCR to the Illinois River has not been identified. The material brought on-site would be evaluated to determine that it will not cause a future release.	Solidifiying and covering the CCR would prevent the future release of CCR because it would not be exposed to surface water runoff, infiltration, and the potential for erosion. Groundwater monitoring through second quarter 2021 does not show any groundwater concentrations greater than the proposed GWPSs. Releases of CCR to the Illinois River has not been identified. The material brought on-site would be evaluated to determine that it will not cause a future release.							
845.710(b)(1)(C)	Long-term management required	Long-term management of the FAB would be very minimal because the CCR would be removed. Therefore, there is no potential for future releases and no inspections required. Groundwater monitoring is required in accordance with 845.740(b) and 845.600. Groundwater monitoring is required for at least 3 years.	Post-closure activities will be required in accordance with 845.780 which includes regular inspections of the ClosureTurf FCS and groundwater monitoring. The posi closure period is at least 30 years.	 Post-closure activities will be required in accordance with 845.780 which t-includes regular inspections of the ClosureTurf FCS and groundwater monitoring. The post-closure period is at least 30 years. 	Post-closure activities will be required in accordance with 845.780 which includes regular inspections of the soil cover and groundwater monitoring. The post-closure period is at least 30 years.							
845.710(b)(1)(D)	Short-term risks to the community during closure activities	The short-term risk to the community is very minimal to non-existent. The only potential risk would be from an increase in truck traffic hauling the CCR for offsite disposal and truck traffic returning to the site because each truck will make multiple trips per day for disposal. Over 61,000 truck loads is required to haul the CCR off-site for disposal. This has the potential to cause 0.761 traffic accident injuries and 0.036 traffic accident fatalities based on a 40-mile round trip for each truckload. 61,000 truckloads has the potential to produce over 420 lbs of particulate matter emissions.	The short-tem risk to the community is minimal and would come from the increased truck traffic bringing the fill material and ClosureTurf FCS supplies to the site. Filling the FAB to the required elevations would require approximately 114,000 CY of additional clean material from off-site and approximately 7,600 trucks to transport this material. The north embankment construction would require approximately 78,000 CY of additional clean fill material from offsite and approximately 5,200 truckloads. This has the potential to cause 0.1894 traffic accident injuries and 0.0089 traffic accident fatalities based on a 20-mile round trip for each truckload. The total number of truckloads has the potential to produce approximately 61 lbs of particulate matter emissions.	The short-tem risk to the community is minimal and would come from the increased truck traffic bringing the fill material and ClosureTurf FCS supplies to the site. Filling the FAB to the required elevations would require approximately 68,000 CY of additional clean material from off-site and approximately 4,550 trucks to transport this material. This has the potential to cause 0.065 traffic accident injuries and 0.0031 traffic accident fatalities based on a 20-mile round trip for each truckload. The total number of truckloads has the potential to produce approximately 21 lbs of particulate matter emissions.	The short-tem risk to the community is minimal and would come from the increased truck traffic bringing the fill material and ClosureTurf FCS supplies to the site. Filling the FAB to the required elevations would require approximately 95,600 CY of additional clean material from off- site and approximately 6,375 trucks to transport this material. This has the potential to cause 0.1062 traffic accident injuries and 0.005 traffic accident fatalities based on a 20-mile round trip for each truckload. The total number of truckloads has the potential to produce approximately 34 lbs of particulate matter emissions.							
845.710(b)(1)(E)	Time to complete closure, post-closure or 845.740(b) groundwater monitoring	Excavation and disposal of the FAB's 920,000 CY of CCR is estimated to take over 1,200 days, based on disposing of 50 trucks/day of CCR. Post- closure activities are not required when closure by removal is performed, but groundwater monitoring must be conducted for at least 3 years after closure activities.	The total anticipated time to complete closure construction is 8 months and post closure activities will take 30 years, which includes groundwater monitoring.	The total anticipated time to complete closure construction is 12 months and post-closure activities will take 30 years, which includes groundwater monitoring.	The total anticipated time to complete closure construction up to 24 months and post-closure activities will take 30 years, which includes groundwater monitoring.							
845.710(b)(1)(F)	Potential threat to human health and environment	The potential threat to human health and the environment is minimal to non-existent because the CCR source material has been removed. Groundwater monitoring has shown that impacts to groundwater are not present.	The potential threat to human health and the environment is minimal to non- existent because the CCR has been covered and no exposure routes are available Groundwater monitoring through second quarter 2021 has shown that impacts to groundwater are not present.	The potential threat to human health and the environment is minimal to non- existent because the CCR in the north has been removed and consolidated with the CCR in south which is then covered and no exposure routes are available. Groundwater monitoring through second quarter 2021 has shown that impacts to groundwater are not present.	The potential threat to human health and the environment is minimal to non-existent because the CCR has been solidified and covered and no exposure routes are available. Groundwater monitoring through second quarter 2021 has shown that impacts to groundwater are not present.							
R			<u></u>		4							
Table 3 - Closure Alternatives Evaluation

35 Ill. Adm. Code Part 845.710(b)(1) through 845.710(b)(4) Requirements		e Part 845.710(b)(1) through	Closure Alternatives		
		(b)(4) Requirements	Closure by Removal for Pond Re-use	Closure-in-Place with a Final Cover System	Consolidation & Closure-in-Place with a Final Cover Syst
845.7	710(b)(1)(G)	Long-term reliability of engineering/institutional controls	Having removed all the CCR is the most reliable alternative because the potential for any source material to remain is non-existent.	Geomembrane final cover systems and specifically ClosureTurf have been used throughout the country to effectively prevent CCR and other solid wastes from impacting human health and the environment.	Geomembrane final cover systems and specifically ClosureTurf have used throughout the country to effectively prevent CCR and other so wastes from impacting human health and the environment.
845.7	710(b)(1)(H)	Potential for future corrective action	Because the CCR has already been removed, the need for future corrective actions is not present.	Groundwater concentrations above the proposed GWPSs are not present and groundwater modeling has shown that the concentrations will decrease with the closure alternative, so the potential for future correction is minimal.	Groundwater concentrations above the proposed GWPSs are not pr groundwater modeling has shown that the concentrations will decre the closure alternative, so the potential for future correction is mini
845.7	710(b)(2)(A)	The extent containment reduces further releases	The CCR has been removed from the FAB and the potential for further releases is non-existent. Groundwater monitoring has shown that impacts are not present.	The CCR would remain within the confinements of the FAB and below the FCS. Previous groundwater monitoring has shown that a release of CCR has not occurred. The geomembrane used in the FCS prevent the infiltration of water thereby preventing any further release.	The CCR would remain within the confinements of the south FAB an the FCS. Previous groundwater monitoring has shown that a release has not occurred. The geomembrane used in the FCS prevent the in of water thereby preventing any further release.
845.7	710(b)(2)(B)	Extent of the use of treatment technologies	Treatment will not be occurring as part of this closure alternative. The only technology used is the construction equipment to execute the removal.	Treatment will not be occurring as part of this closure alternative. ClosureTurf technology will be used to create the FCS. ClosureTurf consists of a geomembrane liner with synthetic turf and sand/small aggregate on top of the geomembrane. ClosureTurf has been successfully used at other CCR surface impoundments and landfills as cover systems.	Treatment will not be occurring as part of this closure alternative. Cl technology will be used to create the FCS. ClosureTurf consists of a geomembrane liner with synthetic turf and sand/small aggregate on the geomembrane. ClosureTurf has been successfully used at other surface impoundments and landfills as cover systems.
845.7	710(b)(3)(A)	Degree of difficulty associated with constructing technology	Removing and disposing of the CCR is not diffult work and many contractors are able to perform work. Finding a disposal location would be the most difficult beauce existing facilities may not accept the CCR and the permitting and constructing of a new landfill is difficult due to potential environmental and local resistance and available of materials.	Filling, grading, and compacting clean soil into the FAB is not difficult. This is a process that has been occurring for many years and several construction companies in the area are capable of performing this work. The installation of the ClosureTurf system is not difficult, but the provider of ClosureTurf requires a certified company perform the work. This limits the availability of installation contractors because the certified list of contractors is a limited number. ClosureTurf has been successfully installed in over 17 states throughout the country beginning in 2009. These states include New York, California, Minnesota, and Massachusetts.	Dredging, grading, and compacting clean soil into the FAB is not diff hydraulic dredging has routinely been performed throughout the co This is a process that has been occurring for many years and several construction companies in the area are capable of performing this w installation of the ClosureTurf system is not difficult, but the provide ClosureTurf requires a certified company perform the work. This lim availability of installation contractors because the certified list of con is a limited number. ClosureTurf has been successfully installed in our states throughout the country beginning in 2009. These states includ York, California, Minnesota, and Massachusetts.
845.7	710(b)(3)(B)	Expected operational reliability of the technologies	This closure alternative does not require the operation of any technologies. The construction equipment that would be used to excavate and haul the CCR are expected to operate without interruption.	ClosureTurf has operated reliably at the other installations around the country. ClosureTurf experienced a hurricane in South Carolina that produced a 26-inch rainfall, which did not damage the ClosureTurf and so minimally displaced the sand infill that no maintenance was required.	ClosureTurf has operated reliably at the other installations around t country. ClosureTurf experienced a hurricane in South Carolina that a 26-inch rainfall, which did not damage the ClosureTurf and so min displaced the sand infill that no maintenance was required.
845.7	710(b)(3)(C)	Need to coordinate with and obtain necessary approvals and permits from other agencies	This closure alternative would require approval from the Illinois EPA.	This closure alternative would require approval from the Illinois EPA.	This closure alternative would require approval from the Illinois EPA
845.7	710(b)(3)(D)	Availability of necessary equipment and specialists	Equipment and personnel are easily available to excavate the CCR. Locating a disposal location is the most difficult part of this alternative.	This closure alternative would require a contractor that is approved by Watershed Geo to install ClosureTurf. Several contractors throughout the country have been certified to install ClosureTurf. The availability of a certified ClosureTurf installer is less than an earthwork contractor, but it should not be a concern.	This closure alternative would require a contractor that is capable of performing hydraulic dredging and a contractor approved by Water to install ClosureTurf. Several contractors throughout the country has certified to install ClosureTurf. The availability of a hydraulic dredgin contractor and certified ClosureTurf installer is less than an earthwo contractor, but it should not be a concern.

ystem	Closure-in-Place with Insitu Stabilization/Solidification
ave been r solid	The ISS treatment creates a solidified/stabilized monolith of CCR with cement and sometimes bentonite to improve impermeability. The typical lifespan of concrete is greater than 30 years up to 100 years and the neutral pH of the groundwater will not degrade the monolith, extending its lifespan.
present and crease with inimal.	Groundwater concentrations above the proposed GWPSs are not present and groundwater modeling has shown that the concentrations will decrease greater than 90% after 10 years with this closure alternative, so the potential for future correction is minimal.
and below ase of CCR infiltration	The CCR would remain within the confinements of the FAB and solidified using cement. The permeability would be less than 1x10 ⁻⁷ cm/s, preventing groundwater and precipitation from traveling through the CCR thereby preventing any further release. Previous groundwater monitoring has shown that a release of CCR has not occurred. The soil cover minimizes the direct contact to the solidified CCR.
. ClosureTurf a on top of er CCR	ISS is the treatment technology that will be used as part of this scenario, No other technologies will be used. The completed ISS monolth will be covered with a soil cover that is then seeded.
difficult. country. ral is work. The rider of limits the contractors n over 17 clude New	ISS has been effectively used since the 1960's. The companies that routinely perform ISS treatment do not have difficulties with implementing this scenario.
d the nat produced ninimally	ISS has been effectively used to treatment soil impacts and CCR. QA/QC efforts as part of the treatment is constantly performed and has shown that permeabilites are routinely less than 1x10 ⁻⁷ cm/s. Unconfined compressive strength of the soil is typically greater than 50 psi.
EPA.	This closure alternative would require approval from the Illinois EPA.
e of atershed Geo / have been lging work	This closure alternative would require a contractor that is capable of performing in-situ solidification/stabilization. Several contractors throughout the country are able to perform this work. The availability of an ISS contractor is less than an earthwork contractor, but it should not be a concern.

Table 3 - Closure Alternatives Evaluation

35 Ill. Adm. Code Part 845.710(b)(1) through 845.710(b)(4) Requirements		Closure Alternatives				
		Closure by Removal for Pond Re-use	Closure-in-Place with a Final Cover System	Consolidation & Closure-in-Place with a Final Cover System	Closure-in-Place with Insitu Stabilization/Solidification	
845.710(b)(3)(E)	Available capacity and location of needed treatment, storage, and disposal services	The available capacity of disposal for 920,000 CY is expected to be difficult to obtain. The location for any disposal is unknown and would require contacting proper disposal facilities in the area to inquire about space availability. Based on the 2020 Landfill Capacity Report, Indian Creek Landfill No. 2 has capacity in excess of 35 million CY, but at this time it is unkown the existing contracted air space.	This closure alternative does not require treatment, storage, or disposal services. Any storage of materials would occur at the station	This closure alternative does not require treatment, storage, or disposal services. Any storage of materials would occur at the station	This alternative does not require any disposal or storage services. Any storage of materials would occur at the station. This alternative uses the ISS treatment technology performed by specialized contractors trained in this type of work. These contractors are specialized, however, there availability is not detrimental to the completion of this alternative.	
845.710(b)(4)	Degree to which community concerns are addressed	All the potential closure alternatives address the community concerns. The community is concerned about the potential for future groundwater contamination which is addressed by the closure alternatives. The groundwater monitoring through second quarter 2021 has shown that impacts are not present.	All the potential closure alternatives address the community concerns. The community is concerned about the potential for future groundwater contamination which is addressed by the closure alternatives. The installation of a FCS would prevent the infiltration of precipitation which would minimize contamination of groundwater from the remaining CCR.	All the potential closure alternatives address the community concerns. The community is concerned about the potential for future groundwater contamination which is addressed by the closure alternatives. The consolidation of CCR and installation of a FCS would prevent the infiltration o precipitation which would minimize contamination of groundwater from the remaining CCR.	All the potential closure alternatives address the community concerns. The community is concerned about the potential for future groundwate contamination which is addressed by the closure alternatives. The f stabilization/solidification would prevent the infiltration of precipitation which would minimize contamination of groundwater from the remaining CCR.	
845.710(d)(4)	Assessment of Impacts to Waters in the State	This closure alternative does not impact the Des Plaines River or the station's intake channel. The groundwater modeling performed in support of this analysis has shown that any theoretical impacts to the river are reduced to less than 90% of the original concentration after 25 years. Existing groundwater monitoring through second quarter 2021 has shown that impacts in downgradient monitoring wells are not present or not associated with the FAB.	This closure alternative does not impact the Des Plaines River or the station's intake channel. Existing groundwater monitoring through second quarter 2021 has shown that impacts in downgradient monitoring wells are not present or not associated with the FAB.	This closure alternative does not impact the Des Plaines River or the station's intake channel. Existing groundwater monitoring through second quarter 2021 has shown that impacts in downgradient monitoring wells are not present or not associated with the FAB.	This closure alternative does not impact the Des Plaines River or the station's intake channel. Existing groundwater monitoring through second quarter 2021 has shown that impacts in downgradient monitoring wells are not present or not associated with the FAB.	

Table 4: Closure Alternatives Analysis Cost Estimates Comparison

Scenario 1: Closure Costs for Closure By Removal & Disposal at Indian Creek Landfill

Construction Activity	Cost
Mobilization/Demobilization	\$25,000
Site Preparation	\$60,025
Dewatering	\$206,294
FAB North Excavation	\$17.208.428
FAB South Excavation	\$8 698 775
Indian Creek Landfill RDF Disposal	\$42.323.176
Construction Subtotal	\$68,521,699

Construction Management (4.5%)	\$3,083,476
Engineering & Design (10%)	\$2,619,852
Owner Construction Supervision	
(4.5%)	\$3,083,476
30% Contingency	\$20,556,510

Construction Management (4.5%)	\$449,056
Engineering & Design (10%)	\$800,686
Owner Construction Supervision	
(4.5%)	\$360,309
30% Contingency	\$2,993,707

CLOSURE TOTAL	\$97,865,013

Scenario 2: Closure Costs for Closure in Place with a Final Cover System		
Construction Activity	Cost	
Mobilization/Demobilization	\$25,000	

\$60,025

\$53,572

\$3,934,218

\$3,934,048

\$1,972,160

\$9,979,024

\$14,582,783

Site Preparation

FAB North & South Site Grading

North Embankment Construction

Construction Subtotal

CLOSURE TOTAL

ClosureTurf Cover System

Dewatering

Construction Activity	Cost
Mobilization/Demobilization & Site	
Preparation	\$1,019,837
Dewatering	\$128,330
Dredging from North FAB	\$1,446,000
South FAB Fill	\$383,575
South FAB Final Cover System	\$1,694,215
Restoration	\$2,738,008
Construction Subtotal	\$7,409,965

Scenario 3: Closure Costs for Closure in Place with

Consolidation & Final Cover System

Construction Management (4.5%)	\$333,448	Cor
Engineering & Design (10%)	\$467,196	Eng
Owner Construction Supervision		Ow
(4.5%)	\$333,448	(4.5
30% Contingency	\$2,222,989	309

|--|

Constr Engine Dwnei 4.5%) 80% C

Scenario 4: In-Situ Stabilzation with Soil Cover

Construction Activity	Cost
Mobilization/Demobilization & Site	
Preparation	\$25,000
Site Preparation	\$12,761
Dewatering	\$7,129
FAB North & South ISS	\$58,821,578
Soil Cover System	\$904,555
Discharge Structure & Drainage	
Piping	\$282,440
Construction Subtotal	\$60,053,464

ruction Management (4.5%)	\$2,702,406
eering & Design (10%)	\$5,977,102
er Construction Supervision	
)	\$2,702,406
Contingency	\$18,016,039

CLOSURE TOTAL	\$89,451,417

FIGURES

•

It actors of the second s	0.9	LEGEND
	A PART OF THE PARTY OF THE PART	SEASONALITY CONTOURS
Id Croundwater Figures Volter 45		0 150' APPROXIMATE SCALE
	ENVIRONMENTAL CONSULTATION & REMEDIATION	CLOSURE SCENARIO 4 5-YEARS MODELING SEASONALITY TEST
st generation (1	K P R G KPRG and Associates, inc.	FORMER ASH BASIN-POWERTON STATION PEKIN, ILLINOIS
	14665 West Llsbon Road, Sulte 1A Brookfield, Wisconsin 53005 Telephone 262–781–0475 Facsimile 262–781–0478	Scale: 1" = 150' Date: October 26, 2022
	414 Plaza Drive, Sulte 106 Westmont, Illinois 60559 Telephone 630-325-1300 Facsimile 630-325-1593	KPRG Project No. 19620.1 FIGURE 5

ATTACHMENT 1

Midwest Generation Groundwater Modeling Powerton

OCTOBER 2022

NVIRONMENTAL CONSULTATION & REMEDIATION

KPRG and Associates, Inc.

Model Scenarios

- From the calibrated, steady-state flow system:
 - Mass concentration of "1" beneath FAB, run forward for 100 years. Move mass with advection and dispersion
 - Model Scenarios:
 - Use the distribution of mass concentration from year 100 in base run as the initial concentrations
 - Steady-state flow models
 - 1. Remove the mass, run for 100 years.
 - 2. Keep mass concentration of "1" in North and South FAB, remove flux (recharge) in pond area. Run for 100 years.
 - 3. Keep mass concentration of "1" in the Southern FAB and remove from the Northern FAB. Set flux (recharge) through northern pond to background recharge. Remove flux (recharge) in the southern pond area. Run for 100 years.
 - 4. Keep mass concentration of "1" in the northern and southern FAB but reduce Kv of layers 1&2 (~20 ft) in the FAB area to 1E-07 cm/s (2.83E-04 ft/d) and put in a Horizontal Flow Barrier (HFB) surrounding the FAB with K of 1E-07 cm/s (2.83E-04 ft/d) in layers 1&2. Remove flux (recharge) in the pond area. Run for 100 years.

Starting Concentrations

Constant mass beneath FAB applied here:

Resulting plume after 100 years

Model Scenario #1

- Model Scenario 1
 - Use the distribution of mass concentration from year 100 in base run as the initial concentrations
 - Steady-state flow model
 - 1. Remove the mass, run for 100 years. *i.e.: if there were a continuous mass at FAB, that created an equilibrated (steady-state) plume from the pond toward the river then remove that mass, how would concentrations change over time.*

5-year plume distribution

Starting Conditions

5 Years

RG

25+ year plume distribution

Starting Conditions

25/50/100 Years

Decay over Time

Starting Conditions

Model Scenario #2

- Model Scenario 2
 - Use the distribution of mass from year 100 in base run as the initial concentrations
 - Steady-state flow model
 - 2. Keep mass in North and South FAB, remove flux in from both ponds. Run for 100 years.

5-year plume distribution

Starting Conditions

5 Years

25+ year plume distribution

Starting Conditions

25/50/100 Years

Concentrations reach steady state after 25 years

Decay over Time

Model Scenario #3

- Model Scenario 3
 - Use the distribution of mass from year 100 in base run as the initial concentrations
 - Steady-state flow model
 - 3. Keep mass concentration of "1" in the Southern FAB and remove from the Northern FAB (*see image*). Set flux in north pond area to background recharge. Remove flux (recharge) into south pond area. Run for 100 years.

5-year plume distribution

Starting Conditions

5 Years

25+ year plume distribution

Starting Conditions

25/50/100 Years

Concentrations reach steady state after 25 years

Decay over Time

Starting Conditions

KPRG

Model Scenario #4

- Model Scenario 4
 - Use the distribution of mass from year 100 in base run as the initial concentrations
 - Steady-state flow model
 - 4. Keep mass concentration of "1" in the northern and southern FAB but reduce Kv of layers 1&2 (~20 ft) in the FAB area to 1E-07 cm/s (2.83E-04 ft/d), and put in a HFB surrounding the FAB with K of 1E-07 cm/s (2.83E-04 ft/d) in layers 1&2. Remove flux (recharge) through both ponds. Run for 100 years.

Model Scenario #4

- Model Scenario 4
 - The HFB barrier wall was drawn around the entire footprint of the mass in the FAB, in model layers 1 & 2 (~20 feet deep).
 - The HFB was assigned a K of 1E-07 cm/s
 - Layers 1&2 were assigned a Kv of 1E-07 cm/s in this polygon area

5-year plume distribution

Starting Conditions

5 Years

25+ year plume distribution

Starting Conditions

25/50/100 Years

Decay over Time

Starting Conditions

Attachment 7-3 – FAB Post-Closure Plan

POST-CLOSURE PLAN FORMER ASH BASIN POWERTON STATION OCTOBER 2022

1.0 Introduction

This post-closure plan has been prepared in accordance with 845.780(d) for the Former Ash Basin (FAB) at the Powerton Generating Station, operated by Midwest Generation, LLC (Midwest Generation), in Pekin, IL. This post-closure plan describes the steps necessary for post-closure and methods for compliance with post-closure requirements for the FAB. The post-closure care period will begin once the closure report and closure certification documenting the closure of the FAB has been approved by the Illinois Environmental Protection Agency (IEPA) and Midwest Generation has placed the certified notification of closure as required by 845.760(f) in Powerton's operating record.

2.0 Post-Closure Monitoring and Maintenance Requirements [845.780(b)]

The post-closure monitoring and maintenance activities will be performed in compliance with 845.780(b). The post-closure care will consist of the following:

- Maintaining the integrity and effectiveness of the final cover system (FCS), including making repairs as necessary to correct the effects of settlement, subsidence, erosion, or other events, and preventing run-on and run-off from eroding or otherwise damaging the final cover.
- Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with the requirements of Subpart F.

3.0 Final Cover System Monitoring & Maintenance Description [845.780(d)(1)(A)]

The FCS will be inspected annually for settlement, subsidence, erosion or other damage throughout the post closure care period. Corrective measures will be implemented if any of the above conditions are observed and any repairs made to the FCS will be repaired in accordance with the manufacturer's recommendations. If rips/tears to the engineered turf and/or geomembrane are noted, then they will be repaired by an approved ClosureTurf installer. Erosion of the sand infill that causes the engineered turf backing to become exposed will be brushed back into the exposed turf backing areas.

4.0 Groundwater Monitoring [845.780(b)(2)]

Groundwater monitoring will be performed in accordance with Part 845 Subpart F for the duration of the post-closure period. The groundwater monitoring for the FAB will occur in accordance with Part 845 Subpart F. Groundwater sampling will be conducted quarterly during

the first five years of the post-closure period and groundwater elevations will be collected monthly. The groundwater monitoring frequency may be reduced to semi-annual monitoring by demonstrating compliance with 845.650(b)(4). The groundwater sampling and analysis methods will be appropriate for environmental groundwater monitoring.

This post-closure care plan is based upon the regulatory requirement to maintain and monitor the site for 30 years after closure. If at the end of the 30-year post-closure care period, the groundwater monitoring activities must continue until the groundwater monitoring data complies with 845.780(c)(2).

5.0 Post-Closure Care Contact Information [845.780(d)(1)(B)]

Environmental Specialist Powerton Generating Station 13082 East Manito Road, Pekin, IL 61554 309-346-2165

6.0 Planned Uses Of The Property [845.780(d)(1)(C)]

The FAB will not be developed during the post-closure care period. The FAB will be inactive during the post-closure care period and it will only be accessed to perform groundwater monitoring or inspections, as noted above. The groundwater monitoring will not involve access onto the FCS. Access onto the FCS for inspections will be kept to a minimum.

7.0 Post-Closure Plan Amendments [845.780(d)(4)]

This Post-Closure Plan may be amended in accordance with 845.780(d)(3) if a change in the operation of the FAB would substantially affect the content of this Post-Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Post-Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event. A request to modify the operating permit will be submitted within 30 days of the unexpected event. Amendments to this Post-Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with 845.780(d)(4).

<u>ATTACHMENT 8</u> GROUNDWATER MODELING REPORT

REPORT

NUMERICAL GROUNDWATER FLOW MODEL

Groundwater Flow Modeling in Support of CCR Compliance and Permitting *Powerton Generating Station* 13082 E Manito Road, Pekin, IL 61554

Submitted to:

KPRG and Associates, Inc. 14665 W. Lisbon Road, Suite 1A Brookfield, WI 53005

and:

Midwest Generation, LLC 13082 E. Manito Road Pekin, IL 61554

Prepared by:

BAS Groundwater Consulting Inc.

3649 Evergreen Parkway Ste 1510 Evergreen, Colorado 80437 +1 720 334-8249

October 27, 2022

NUMERICAL GROUNDWATER FLOW MODEL

Groundwater Flow Modeling in Support of CCR Compliance and Permitting *Powerton Generating Station* 13082 E Manito Road, Pekin IL 61554

BAS Project Number 21141401

Submitted to:

KPRG and Associates, Inc. 14665 W. Lisbon Road, Suite 1A

Brookfield, WI 53005

and: Midwest Generation, LLC

13082 E. Manito Road Pekin, IL 61554

Prepared by:

BAS Groundwater Consulting Inc.

3649 Evergreen Parkway Ste 1510 Evergreen, Colorado 80437 +1 720 334-8249

October 27, 2022

Author: Betsy Semmens, RG *President/BAS Groundwater Consulting Inc.*

Contributor:

Dacey Zelman-Fahm Senior GIS Analyst/BAS Groundwater Consulting Inc. Rochelle Destrampe, RG Senior Hydrogeologist/BAS Groundwater Consulting Inc.

DISTRIBUTION LIST

Midwest Generation, LLC

KPRG and Associates, Inc.

Executive Summary

This report documents the results of a numerical groundwater modeling analysis of groundwater flow in the vicinity of the Former Ash Basin (FAB) at the Midwest Generation, LLC (Midwest Generation) Powerton Generating Station (Powerton Station). The purpose of the numerical groundwater modeling was to create a tool capable of evaluating groundwater flow paths in the vicinity of the FAB and to provide a platform upon which proposed engineering scenarios for closure can be overlain and evaluated for their short and long-term effectiveness relative to improvements of groundwater quality. The results of the modeling are intended for input into the engineering considerations and evaluations of various closure alternatives being evaluated for the FAB. This modeling is a requirement under Illinois Administrative Code Title 35 Part 845.220(d)(3).

The model has a non-uniform grid spacing of 25 to 50 feet and has five layers. The groundwater flow model was run in the software MODFLOW-NWT and the transport model was run with the software MT3D-USGS. The model represents the regional flow direction to the Illinois River to the north with constant head and general head boundaries on the south and west sides of the model, respectively.

The model was calibrated to water levels measured in monitoring wells upgradient and downgradient of the FAB. The model achieved a good calibration, with a scaled root mean squared error in the site wells of less than 10 percent. The model was the most sensitive to the modeled values of hydraulic conductivity and vertical anisotropy and less sensitive to the regional recharge rate.

The existing groundwater quality data do not indicate groundwater impacts above Section 845.600(a) groundwater protection standards (GWPSs) downgradient of the FAB. Therefore, to meet the modeling requirements of Part 845.220(d)(3), a hypothetical initial situation was created in which a constant surrogate mass (relative concentration of "1") was modeled at the FAB and allowed to discharge freely to groundwater. The resulting hypothetical distribution of concentrations served as the initial concentrations to four predictive scenarios of in-place closure alternatives. The model scenarios indicate improvement to groundwater quality in all four closure alternatives. It is noted that this is improvement over existing conditions which, as previously noted, are already below the proposed GWPSs for the FAB.

Table of Contents

1.0	INTRO	INTRODUCTION1						
2.0	BACKGROUND1							
3.0 REPORT ORGANIZATION								
4.0	CONC	CONCEPTUAL MODEL						
	4.1	Climate	2					
	4.2	Geology	3					
	4.3 Aquifer Properties							
	4.4	Nature of Groundwater Flow	4					
	4.5	Impacted Groundwater	5					
	4.6	Water Budget	6					
	4.6.1	Recharge to Groundwater	6					
	4.6.2	Groundwater Inflow from the South	6					
	4.6.3	Inflow from Retention Ponds	7					
	4.6.4	Groundwater Outflow toward Powerton Lake	7					
	4.6.5	Groundwater Discharge to Illinois River	7					
5.0	NUME	ERICAL GROUNDWATER FLOW MODEL	8					
	5.1	Model Construction	8					
	5.1.1	Software Selection	8					
	5.1.2	Model Grid and Layering	8					
	5.1.3	Model Boundaries	9					
	5.1.4	Model Stresses	10					
	5.1.5	Numerical Parameters	11					
	5.2	Model Calibration	11					
	5.2.1	Approach	11					
	5.2.2 Model Calibration Results							

	5.3	Model Sensitivity	.15		
6.0 PREDICTIVE MODEL SIMULATIONS					
	6.1	Closure Alternative 1	.16		
	6.2	Closure Alternative 2	.17		
	6.3	Closure Alternative 3	.17		
	6.4	Closure Alternative 4	.18		
	6.5	Relation to Constituent Concentrations	.18		
	6.6	Seasonal Sensitivity	.20		
7.0	CONC	LUSIONS	.21		
8.0	REFE	RENCES	.22		

TABLES

Table 1	Precipitation Data near Waukegan, Illinois
Table 2	Compiled Borehole Lithology
Table 3	Hydraulic Conductivity Data for Site Wells
Table 4	Groundwater Elevation Data
Table 5	Calibrated Water Budget
Table 6	Calculation of Average River Stage
Table 7	Calibration Residuals
Table 8	Calibration Statistics
Table 9	Initial Concentrations Used for Surrogate Transport Modeling

FIGURES

Figure 1	Location Map
Figure 2	Powerton Station Site Monitoring Wells
Figure 3	Climate Stations near Powerton Station
Figure 4	Surface Geology
Figure 5	Wells with Borehole Lithology Data
Figure 6	Borehole Lithology Data
Figure 7	Wells with Water Level Data
Figure 8	Model Boundary Conditions
Figure 9	Model Grid
Figure 10	Model Layering
Figure 11a	Calibrated Hydraulic Conductivity Distribution in Model Layers 1&2
Figure 11b	Calibrated Hydraulic Conductivity Distribution in Model Layers 3&4
Figure 11c	Calibrated Hydraulic Conductivity Distribution in Model Layer 5
Figure 12	Calibrated Water Level Elevations
Figure 13	Calibrated Water Level Residuals
Figure 14	Calibration Scatter Plot
Figure 15	Area of Mass Definition Beneath FAB
Figure 16	Hypothetical Plume After 100 Years
Figure 17	Closure Alternative 1, 5-Year Plume Distribution
Figure 18	Closure Alternative 1, 25+ Year Plume Distribution
Figure 19	Closure Alternative 1, Decay Over Time
Figure 20	Closure Alternative 2, 5-Year Plume Distribution
Figure 21	Closure Alternative 2, 25+ Year Plume Distribution
Figure 22	Closure Alternative 2, Decay Over Time
Figure 23	Area of Mass Definition Beneath FAB in Closure Alternative 3
Figure 24	Closure Alternative 3, 5-Year Plume Distribution
Figure 25	Closure Alternative 3, 25+ Year Plume Distribution

- Figure 26 Closure Alternative 3, Decay Over Time
- Figure 27 Area of Barrier Wall for Closure Alternative 4
- Figure 28 Closure Alternative 3, 5-Year Plume Distribution
- Figure 29 Closure Alternative 3, 25+ Year Plume Distribution
- Figure 30 Closure Alternative 3, Decay Over Time
- Figure 31 Selected Monitoring Locations to Evaluate Decay
- Figure 32 Boron Concentrations Over Time
- Figure 33 Chloride Concentrations Over Time
- Figure 34 Sulfate Concentrations Over Time
- Figure 35 Arsenic Concentrations Over Time
- Figure 36 Lithium Concentrations Over Time
- Figure 37 Closure Alternative 2, 25+ Year Plume Distribution, Seasonality Test
- Figure 38 Closure Alternative 4, 25+ Year Plume Distribution, Seasonality Test

Table of Abbreviations

Abbreviation	Definition
А	Cross sectional area
ADAMP	Adaptive damping solution method
amsl	Above mean sea level
af/yr	Acre-feet per year
CCR	Coal Combustion Residuals
cfd	Cubic feet per day
cm/s	Centimeters per second
dh/dl	Hydraulic gradient
FAB	Former Ash Basin
ft bgs	Feet below ground surface
ft/d	Feet per day
ft²	Square feet
ft/ft	Feet per foot
GHB	General head boundary
GIS	Geographic information system
gpm	Gallons per minute
GWPS	Groundwater Protection Standard
HCLOSEXMD	Head change closure criterion
HFB	Horizontal Flow Boundary
ISGS	Illinois State Geological Survey
ILWATER	Illinois Water Well Database
ISWS	Illinois State Water Survey
in/yr	Inches per year
LINMETH	XMD linear solution method
К	Hydraulic conductivity
MAP	Mean annual precipitation
mg/l	Milligrams per liter

Abbreviation	Definition
PCGn	Preconditioned Conjugate Gradient
Q	Darcy Flux
RMS	Root Mean Squared
TDS	Total Dissolved Solids
%	Percent

1.0 INTRODUCTION

This report documents the results of a numerical groundwater modeling analysis of groundwater flow near the onsite ash basins at the Midwest Generation, LLC (Midwest Generation) Powerton Generating Station (Powerton Station), specifically in the vicinity of the Former Ash Basin (FAB). The numerical groundwater flow and transport modeling was conducted as required under the III. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals (CCR) in Surface Impoundments (State CCR Rule) Section 845.220(d)(3) in support of the engineering closure alternatives evaluation being completed for the FAB.

2.0 BACKGROUND

The Powerton Station is an active coal power generating station located along the southern bank of the Illinois River in Section 9, Township 24 North, Range 5 West, in the City of Pekin, Tazewell County, Illinois. The locations of the facility and ash basins are shown on Figure 1. Powerton Station is bordered on the north by the Illinois River, on the west by Lake Powerton, on the south by agricultural land, and on the east by industrial properties. The site has two active, lined basins named the Ash Surge Basin (ASB) and the Ash ByPass Basin (ABB), a lined basin called the Metal Cleaning Basin located immediately west of the ASB, and an unlined inactive basin called the Former Ash Basin (FAB) located to the northeast of the ASB (Figure 1). There are 21 monitoring wells located on site (MW-01 through MW-21), 17 of which are part of the CCR monitoring program (MW-01 through -05, MW-08 through -15, MW-17 and -18, and MW-20 and -21). The locations of the 21 monitor wells are shown on Figure 2. CCR monitoring wells specifically associated with the FAB are wells MW-01 through -05 and -10. Wells MW-01 and MW-10 are upgradient monitoring wells and wells MW-02 through MW-05 are downgradient monitoring wells.

The purpose of the numerical groundwater modeling was to create a tool capable of evaluating groundwater flow paths near the basins and to estimate impacts to contaminant concentrations at the Powerton site associated with various basin closure alternatives being considered. The focus of this report is on closure alternatives being considered specifically for the FAB.

3.0 REPORT ORGANIZATION

The remainder of this report is organized as follows:

- Section 4.0: Conceptual Model This section provides information that was used to refine the conceptual model of groundwater flow at Powerton Station. The conceptual model formed the basis for construction and calibration of the numerical model.
- Section 5.0: Numerical Groundwater Flow Model This section provides a description of the numerical model construction, calibration, and sensitivity analysis. The calibrated groundwater flow model was used as the basis to conduct predictive analyses of closure construction activities.
- Section 6.0: Predictive Model Simulations This section provides results of predictive analyses that were used to evaluate changes to the water table, groundwater flow paths, and contaminant concentrations beneath and adjacent to the ash basins.

- Section 7.0: Conclusions This section provides a summary of the modeling and predictive analysis.
- Section 8.0: References This section provides a list of references used in the analysis documented in this report.

Figures and tables follow the main text of the report.

4.0 CONCEPTUAL MODEL

Site data were compiled as part of this modeling study and used to update the conceptual model of groundwater flow at Powerton Station. The numerical model was constructed to represent the updated conceptual model.

Components of the conceptual model of groundwater flow include:

- climate
- lithology and geologic framework
- aquifer properties
- nature of groundwater flow
- water budget

Each of these components of the conceptual model is presented below.

4.1 Climate

Powerton Station is located within the humid continental climate zone with warm to hot and humid summers and cold and snowy winters. There are 13 weather stations located within approximately 20 miles of Powerton Station that provide data to evaluate long-term trends in precipitation. These stations are shown on Figure 3 and are listed here:

- Bartonville 5 SW, IL US
- Chillicothe, IL US
- General Wayne A Downing International Airport, IL US
- Germantown Hills, IL US
- Morton, IL US
- Morton 1.0 S, IL US
- Morton 1.0 SSE, IL US

- Pekin 1.2 NNW, IL US
- Peoria Airport 3 SW, IL US
- Peoria 1.7 SSE, IL US
- Peoria 5 NW, IL US
- Peoria Station
- Washington 2 W, IL US

Precipitation data from complete years from these stations were averaged for monthly and annual averages and are provided in Table 1. These stations provide data between 1991 and 2020. Long-term average monthly precipitation has ranged from approximately 2 inches in January and February to over 3 inches in late Spring and Summer (April through September). The long-term mean annual precipitation (MAP) from these data is 39.2 inches.

4.2 Geology

The geology surrounding Powerton Station was summarized in the Application for Initial Operating Permit submitted to IEPA on October 31, 2021 (Midwest Generation, 2021) as approximately 100 to 125 feet of unconsolidated deposits consisting mainly of alluvial sands and gravels with some interspersed clays and silty clays, underlain by alternating layers of limestone, shale, and coal of the Carbondale Formation. Local to Powerton Station, the site stratigraphy has been characterized to a depth of approximately 41 feet (ft) below ground surface (bgs) as:

- Fill (16 to 24.5 feet thick) consisting of tan, brown and black fine to medium sand/silty sand with some gravel and clay seams. Several locations also included black cinders and brick fragments.
- Clay/silty clay/silts (0 to 18 feet thick) consisting of olive, brown to gray clays, silts and silty clays with some more organic rich layers. May locally contain fine silty sand and/or fine sand. This unit is not mappable across the site (i.e. discontinuous).
- Sand and gravel (thickness undetermined; borings terminate within unit) consisting of light brown, brown and/or gray medium to coarse sands and gravels.

Surficial geology was obtained from the Surficial Geology of Tazewell County, Illinois (Johnstone, 2003) and is shown on Figure 4. Borehole logs for the site wells were compiled along with logs for nearby wells from the Illinois State Geological Survey's (ISGS) Water and Related Wells Database (ILWATER) and are presented in Table 2 and Figure 5. Lithology in the borehole logs is displayed in three dimensions in Figure 6 and includes the groups:

- Fill
- Topsoil
- Organics

- Clay
- Loam
- Silt and Clay
- Sandy Clay
- Clay, Sand, and Gravel
- Sand
- Coal
- Coarse sand and/or gravel
- Dirty coarse sand and/or gravel
- Hardpan
- Limestone
- Shale

Near the site the lithology is dominated by silt and clay, and sand and gravel. The lithologic intervals provided guidance on initial model calibration through the definition of zones of hydraulic conductivity that were later modified as discussed further in Section 5.2.1.

4.3 Aquifer Properties

Aquifer properties of hydraulic conductivity (K) and storage are important controls on groundwater movement and behavior and are necessary parameters to define in a numerical model. Hydraulic conductivity values were initially estimated for monitor wells MW-2, -5, -8, -9, and -10 from slug tests (Patrick Engineering, 2011). The geometric mean of the test data for these wells was approximately 350 feet per day (ft/d) for each well, as calculated by (Patrick Engineering, 2011). The slug test data were reviewed as part of this current modeling study and the data were reanalyzed using corrected input values for the well casing and borehole dimensions and effective porosity of the sand filter pack material. The revised hydraulic conductivity estimated values are summarized in Table 3 for comparison. The revised geometric mean of the test data for these wells decreased to approximately 120 ft/d for each well. The hydraulic conductivity estimate for MW-8 should be used with caution as this monitor well was screened through site fill and native silty clay. The aquifer properties derived from this well have likely been impacted by the more porous non-native fill material in the upper portion of the well screen and are likely not indicative of the silty clay aquifer.

4.4 Nature of Groundwater Flow

Groundwater occurs under unconfined conditions with depth to water ranging from approximately 12 feet at monitor well MW-10 to approximately 33 feet at monitor well MW-13 ((Midwest Generation, 2021b). Groundwater

contour maps provided within the 2021 Annual Consolidated Report for site wells (both CCR program and non-CCR program wells) show groundwater flow directions in both the silt/clay unit and the gravelly sand unit. Monitor wells MW-06, -08, -12, -14, -15, -17, -20 and -21 are screened in the shallow, discontinuous silt/clay unit indicating that this unit is present beneath and to the west of the ASB, and to the north of the Service Water Basin. The remaining site wells are screened in the underlying gravelly sand unit. Within the discontinuous silty clay unit, groundwater flow is generally from east to west. Within the underlying gravelly sand unit groundwater flow is generally to the north with some divergence to the northeast and northwest.

Groundwater level measurements from site wells since June 2011 were provided by KPRG. A summary of these data is provided in Table 4 including minimum and maximum measured water level elevations and the average water level elevation from the 1st and 3rd quartiles to eliminate statistical outliers. These average water levels were used as the water level calibration targets. These data from the site wells were supplemented with water levels in shallow wells obtained from the Illinois Domestic Wells Database and the Illinois Water and Related Wells Database (2021) (Table 4). These data are older, typically representing the depth to water at the time the well was drilled and were limited to those wells with water levels that were generally consistent with the groundwater elevation contour maps routinely generated by KPRG as part of groundwater monitoring. These water level data were deemed much less reliable and were given a low weight during model calibration.

4.5 Impacted Groundwater

As noted above, the CCR groundwater monitoring network for the FAB has six wells: MW-01 through -05, and well MW-10. Wells MW-01 and MW-10 are upgradient monitoring wells and wells MW-02 through MW-05 are downgradient monitoring wells. CCR sampling under the Federal Rule was initiated in 2015 for the identified Appendix III and Appendix IV parameters and assessment monitoring under that program is ongoing for Appendix III and Appendix IV parameters. Also, starting in second quarter 2021, sampling under the new State CCR Rule was initiated quarterly for all Federal CCR Rule Appendix III/IV parameters plus turbidity since the State Rule does not distinguish between detection and assessment monitoring parameter lists.

Relative to the most recent (November 2021) and more comprehensive sampling under the State CCR Rule, concentrations of all 22 monitored water quality parameters in the four downgradient monitoring wells were below the Proposed Groundwater Protection Standards (GWPSs) presented in the above referenced Application for Initial Operating Permit as well as in the subsequently submitted 2021 Annual Consolidated Report for Powerton. It is further noted that for the last four years of monitoring, there were no detections in downgradient FAB monitoring wells above the most stringent GWPSs under Section 845.600(a) which are based on Class I groundwater quality standards under Part 620.

4.6 Water Budget

A conceptual water budget was developed for Powerton Station to provide context of the results of the calibrated model water budget (ASTM D5447-17, 2017). The identified and estimated components of the conceptual water budget included:

- recharge to groundwater
- inflow of groundwater from the south
- inflow of water from retention ponds
- outflow of groundwater toward Powerton Lake
- discharge of groundwater to the Illinois River

The conceptualized estimate for each of these components of the water budget is discussed below. The conceptual water budget was used as an initial definition of the water budget in the numerical model, and components were adjusted during model calibration.

4.6.1 Recharge to Groundwater

Recharge from the infiltration of precipitation to the water table has been estimated in a regional, general context for central Illinois:

- A groundwater model of Kane County and Northeastern Illinois estimated recharge in the southwestern portion of the regional model near Peoria, Illinois at approximately 5 in/yr (Meyer, Roadcap, Lin, & Walker, 2009).
- A groundwater model of southwest McLean and southeast Tazewell counties estimated recharge between 0.8 and 1 in/yr (Wilson, 1998).
- A groundwater model developed near Bloomington estimated recharge at approximately 1 percent of MAP.
- The Illinois State Water Survey (ISWS) estimated shallow groundwater recharge using a geographic information system (GIS) approach coupled with pattern recognition (Interagency Coordinating Committee on Groundwater, 2010). A generalized map of potential recharge at Illinois power plants shows 'low' to 'very high' recharge potential near Powerton Station.

Recharge from precipitation was initially assumed in the groundwater model at 1.2 in/yr, which equates to approximately 3 percent of MAP. This rate over the model domain (Section 5.1) equates to approximately 100 acre-feet per year (af/yr) (11,887 cubic feet per day (cfd)).

4.6.2 Groundwater Inflow from the South

The boundaries to the groundwater model are discussed below in Section 5.1.3. Groundwater flow into the model domain from the south was estimated using Darcy's Law:

$$Q = KA \frac{dh}{dl}$$

where Q is the Darcy Flux, K is the hydraulic conductivity (ft/d), A is the cross-sectional area (feet), and dh/dl is the hydraulic gradient (ft/ft). Using the length of the southern model boundary (9,167 feet), an assumed thickness of unconsolidated materials above the shale of 75 feet, hydraulic conductivity of 116 ft/d (the geometric mean of test data from site wells, not including well MW-08 (Section 4.3)), and a hydraulic gradient of 0.0048 ft/ft (the average estimated hydraulic gradient in the sand and gravel unit (Midwest Generation, 2021b) a rough estimate of groundwater flow from the south in the unconsolidated sediments above the Carbondale Formation was calculated as 3,208 af/yr (382,842 cfd).

4.6.3 Inflow from Retention Ponds

There are several stormwater retention ponds that often contain water and for which there is no information regarding if the ponds have liners including:

- the off-property stormwater retention pond south of the site (and south of the railroad tracks), and
- the East Yard Runoff Basin located southwest of the ASB.

The volume of recharge to groundwater associated with these retention ponds is an uncertain variable. The initial assumption for their inclusion in the numerical model was that these ponds, and the FAB, provide seepage to groundwater and the seepage amount was estimated during model calibration and tested during sensitivity model runs

4.6.4 Groundwater Outflow toward Powerton Lake

Groundwater flow west toward Powerton Lake was estimated using Darcy's Law, similar to the estimate for flow in from the south. Using a length of the western model boundary where the heads within the model domain are greater than the GHB boundary of 440 feet (3,845 ft), a rough estimate of groundwater flow to Powerton Lake in the modeled area is approximately 1,345 af/yr (160,567 cfd).

4.6.5 Groundwater Discharge to Illinois River

Groundwater flow north to the Illinois River was estimated using Darcy's Law in a similar way as estimated for flow toward Lake Powerton with a revision for the length of the northern model domain along the river. A rough estimate of groundwater flow to the Illinois River in the modeled area is approximately 1,966 af/yr (234,677 cfd).

This discussion of the conceptual water budget is an order-of-magnitude, first approximation to estimate the components of the water budget that will be represented in the numerical model. The conceptual water budget will be used to compare to the modeled water budget, and to provide initial estimates for defined boundary conditions.

5.0 NUMERICAL GROUNDWATER FLOW MODEL

A numerical groundwater flow model was constructed for Powerton Station. This section describes the construction and calibration of the numerical model.

5.1 Model Construction

The numerical model was created to cover the area of the ash ponds at Powerton Station (Figure 8). The model domain extends west from the FAB approximately 0.35 miles, south and east from the ash basins approximately one-half mile and three-quarter miles, respectively, and north to the Illinois River. The selection of lateral boundaries to the model is further described below. The overall, active model area is approximately 1.6 square miles.

5.1.1 Software Selection

The groundwater flow system was simulated with MODFLOW-NWT (Niswonger, 2011), an advanced version of the widely used MODFLOW software. Groundwater Vistas (Version 8.0) (Environmental Simulaitons Inc. (ESI), 2020), a graphical user interface, was used to parameterize the model input, write MODFLOW files, and visualize results. MODFLOW-NWT was considered over MODFLOW-2000, MODFLOW-2005, or MODFLOW-USG because it has enhanced solvers that employ upstream weighting for non-linear problems, it is a relatively recent, widely-used, and non-proprietary release of MODFLOW, and it is coupled with the widely-used and non-proprietary transport model MT3DMS (Zheng, 2012), which was used for the transport simulations.

5.1.2 Model Grid and Layering

The model has a non-uniform grid spacing of 25 to 50 feet. The model grid is 25 feet square throughout the area of the basins and site wells and grows to 50 feet square away from the basins (Figure 9). The model has 295 rows and 242 columns and five layers, for a total of 231,802 active cells. The MODFLOW-NWT model was constructed with length and time units of feet and days, respectively. The coordinate system State Plane Illinois West, NAD 83, FIPS 1202 was used for all coordinates and for GIS data management. The model grid has an origin at coordinates 2,430,046, 1,408,525, without rotation.

Lithology data was compiled from site well logs and ISGS drill logs and organized into geological units as described in Section 4.2. Contacts were used to create a surface of the top of the Carbondale Formation using Seequent Leapfrog[™] software (Seequent Limited, 2021), as well as to visualize the borehole lithology. Model layers one through five represent the unconsolidated materials, including the gravelly sand unit and the silt/clay unit, which were differentiated in the model by assigning differing values of hydraulic conductivity.

The top of the model was defined with surface topography from the U.S. Geological Survey (U.S. Geological Survey, 2021). The volume of aquifer above the Carbondale Formation was divided into five model layers to simulate groundwater flow through the unconsolidated sediments. Model layers one through five each range in thickness from 2 to 70 feet, and around the site wells and basins generally range from approximately 20 to 35

feet. Representative sections through the model domain are provided in Figure 10 to show the layering in an eastwest model row (row 159) and a north-south model column (column 77) through the site.

5.1.3 Model Boundaries

The outside edges of the model domain must be defined with model boundaries to describe how groundwater inside the model domain interacts with groundwater outside the model domain. Additionally, boundaries can be defined interior to the model domain to represent sources and sinks of groundwater such as pumping wells or infiltration through a pond. Exterior boundaries of the numerical model are shown on Figure 8 and include:

- Constant Head boundary along the southern edge of the model domain
- River boundary along the northern edge of the model domain, aligned with the Illinois River
- No-flow boundary along the east side of the model
- General Head boundary along the west side of the model

The constant head boundary along the southern edge of the model allows for groundwater from the south to flow into the model domain. The boundary was generally aligned (roughly) parallel to the trend of the Illinois River and was placed where regional data from the Illinois Domestic Wells Database and the Illinois Water and Related Wells Database provide water levels to use to define the boundary, and far enough upgradient from the site to not potentially influence model results. The Constant Head boundary elevation was defined with an elevation of 450 feet in model layers 1 through 5.

The No-flow boundary along the east side of the model is aligned generally perpendicular to the trend of the river, to represent a streamline (groundwater flow direction) as expected from the conceptualized direction of regional groundwater flow toward the Illinois River.

The General Head boundary (GHB) along the west side of the model represents flow to the west toward Powerton Lake. The linear GHB boundary references an elevation of 440 feet for the lake (defined from surface elevations in the center of the lake from Google Earth) and variable conductance set from an assumed, average hydraulic conductivity of 50 ft/d, the dimensions of the model cells, and from the varying distance of the model boundary to the lake along its length.

The river boundary along the northern edge of the model allows for groundwater to discharge to the Illinois River, consistent with the conceptualized direction of groundwater flow. The river was defined in model layer 1 at a stage of 435.8 feet. This stage was calculated by comparing the recorded gage heights (converted to elevation) at the Illinois River at Kingston Mines gage (USGS gage no. 5568500, located approximately 5 miles downstream from the site) to the water levels measured in the site wells, when the data aligned on the same date. The river stage is typically lower than the groundwater elevations at the site, consistent with the conceptual model that groundwater flow directions are generally toward the river. There are times when the river flows are high and the river stage is

higher than the groundwater elevations at the site, indicating a transient reversal of hydraulic gradient. The river stage used in the model's River boundary condition must represent the long-term average conditions, consistent with the water levels used for model calibration. The stage of the river boundary was calculated as the average difference between the measured water level elevation in downgradient monitor well MW-04 and the recorded gage height from the same day, for all available periods of the data set (2011 through 2020) (Table 5). The average difference was 0.76 feet indicating that the river is, on average, at a lower elevation than the water levels on site. This average difference was subtracted from the long-term average water level in monitor well MW-04 and used as the stage in the model's River boundary condition. The river was assumed to be 10 feet deep, and the conductance was set from the model cell dimensions and an assumed hydraulic conductivity of 50 ft/d and a thickness of 1 foot, to represent relative ease of exchanging water between the river and groundwater.

5.1.4 Model Stresses

In addition to the exterior model boundaries described in Section 5.1.3, MODFLOW boundaries and properties were used in the interior of the model domain to simulate stresses (inflows and outflows) on the groundwater system as follows:

- General head boundaries (GHB) were defined for the FAB to represent the infiltration of surface water to the water table. The GHB was defined in model layer 1 at an elevation of 443 ft from surface elevations in Google Earth, and a conductance set from the dimensions of the model cells and assumed hydraulic conductivity.
- GHB were defined east of the area of the FAB representing an offsite surface water pond and channel connected to the Illinois River. The GHB was defined in model layer 1 at an elevation of 436 feet, amsl for the pond and 435.84 ft, amsl for the channel, representing the connection with the river.
- GHB were defined along the intake channels on the west side of the basins to allow for groundwater discharge to these local features, to improve the representation of hydraulic gradients during model calibration. The GHB was defined at an elevation of 435.84 ft, amsl to represent the connection with the river and assumed hydraulic conductivity representative of silty clay materials.
- Recharge from precipitation was defined throughout the model domain using MODFLOW's recharge package. Recharge was simulated at approximately 1.2 in/yr (2.64E-04 ft/d) or approximately 3 percent MAP, consistent with the conceptual model discussion in Section 4.5.1. No recharge from precipitation was assigned below the retention ponds, the canals, or the offsite surface water pond that are covered by the GHB or in the footprint of the basins which are lined. Recharge up to 5 in/yr was tested during model calibration.

5.1.5 Numerical Parameters

The Preconditioned Conjugate Gradient (PCGn) package was used with MODFLOW-NWT to solve the system of equations within the model domain. The type of solver was tested in early model runs and the PCGn solver provided a stable solution in a fast computational time compared to other solvers available with MODFLOW. The solver was used with adaptive damping (ADAMP) and the XMD linear solution method (LINMETH), again to provide a stable and computationally quick solution.

Optimal settings for the PCGn with XMD were found during model calibration. Key numerical parameters were a head change closure criterion (HCLOSEXMD) of 1E-04 feet for inner iterations and 1E-05 feet for outer iterations, 2000 maximum outer iterations and 200 maximum inner iterations.

5.2 Model Calibration

The following sections describe the approach taken to calibrate the model and the results of the model calibration.

5.2.1 Approach

The groundwater flow model was first calibrated through a trial-and-error approach by adjusting hydraulic conductivity and recharge rates until the model reasonably matched field measurements in site wells MW-01 through MW-21. Model calibration then continued with parameter estimation techniques in PEST software (Doherty, 2010), used with pilot points within Groundwater Vistas.

The flow model calibration relied on the measured water level data provided by KPRG for the site wells MW-01 through MW-21. The period of measured water levels from the site wells since 2011 were averaged, having removed outliers determined from the interquartile range, and used as model calibration targets (Table 4). The data from the site wells were considered reliable and were given a target weight of 1. This dataset was supplemented with water levels in regional wells downloaded from the ISGS ILWATER database. There are regional wells with water level data to the south and northeast of the ash pond area. The regional wells typically had one reported water level from when the well was drilled. These water level measurements are much older and were considered much less reliable for model calibration, and therefore were given a target weight of 0.1. These regional wells were included to provide coverage away from the site, but only in a general sense.

In addition to calibrating to measured water levels in the wells, qualitative considerations of model calibration included:

- General groundwater flow directions, and patterns in the hydraulic gradient including a western gradient from the ASB in the silt/clay unit and the gravelly sand and a northern gradient from the north end of the ASB in the gravelly sand,
- General consistency in the modeled hydraulic conductivity and the field-measured hydraulic conductivity,

- General consistency in the modeled water budget with the conceptual water budget, and
- Limiting or eliminating flooding above the surface of the model.

The measure of model calibration, other than the qualitative considerations, was to minimize the calibration residual, measured as the difference between measured and modeled groundwater elevations in wells. A negative residual indicates that the modeled groundwater elevation is higher than the measured elevation, and a positive residual indicates that the modeled groundwater elevation is lower. The statistical measures of average residual, sum of squared residuals, and root mean square (RMS) error were used to objectively evaluate the calibration.

The RMS error was calculated as:

RMS =
$$\left[\frac{1}{n}\sum_{i=1}^{n}(h_{o} - h_{s})^{2}\right]^{0.5}$$

where $h_o - h_s$ is the target residual and n is the number of observed groundwater elevation values. The RMS error is typically scaled against the range in observed groundwater elevations in the model area. A scaled RMS error of less than 10% is the standard calibration criteria that is generally considered acceptable throughout the industry (Anderson, 2015).

Initially, the borehole lithologic intervals were intersected with the model grid to define zones of hydraulic conductivity ("K zones") for the lithologic groups (i.e. grouped together areas of sand, areas of sand and gravel, etc). Hydraulic conductivity was defined for these K zones based on literature values and professional judgement for initial model calibration. After the basic model calibration was completed by varying the values of hydraulic conductivity and recharge, the model calibration was refined using pilot points and PEST software. The manual calibration suggested a relatively lower zone of hydraulic conductivity to the west of the ASB, consistent with where clay has been encountered in site wells. Pilot points were defined throughout model layers 1 through 5 to estimate the horizontal and vertical hydraulic conductivity values. Initial values of hydraulic conductivity (Table 3), and 1 ft/d in the gravelly sand, consistent with the revised estimates of hydraulic conductivity (Table 3), and 1 ft/d in the silty/clay. Horizontal hydraulic conductivity (Kv) was assumed initially to be equal to horizontal and vertical hydraulic conductivity (Kv) was assumed initially to be equal to horizontal and was allowed to vary up to a ratio (Kh:Kv) of 10 in the gravelly sand and up to 1000 in the silt/clay, typical vertical anisotropy ratios used in modeling applications (Anderson, 2015).

5.2.2 Model Calibration Results

The calibrated distribution of hydraulic conductivity in the model is shown for each model layer on Figures 11a through 11c. The calibrated model calculated groundwater level contours are shown on Figure 12. The spatial distribution of the calibration residuals is shown on Figure 13 and a scatter plot of the residuals are shown on Figure 14. The calibrated model water budget is provided in Table 6, the model calibration residuals are provided in Table 7, and the calibrated model statistics are provided in Table 8. Recharge from precipitation was simulated at approximately 1 in/yr (2.2E-04 ft/d), consistent with the conceptual model and equal to approximately 3 percent of MAP (Section 4.6.1)

5.2.2.1 Calibrated Hydraulic Conductivity

The model calibrated distribution of hydraulic conductivity ranges from 0.008 ft/d in the clay unit in model layer 1 to approximately 1,680 ft/d in the sand and gravel in model layers 1 through 5. Use of PEST software for the model calibration resulted in a krigged distribution of hydraulic conductivity rather than zones of hydraulic conductivity. A krigged surface is more defensible for the unconsolidated sediments above the carbonates because the bounds of the hydraulic conductivity zones were not defined based on contacts between geologic units shown on detailed geologic maps and cross sections as in bedrock settings, but rather, on available borehole logs, thereby making the definition of zones uncertain.

The resulting distribution of hydraulic conductivity has the lowest values (lower than 5 ft/d) beneath the site, in the clay unit. The calibrated vertical anisotropy ratios are up to approximately 900:1 in the silty clay unit beneath the site. The calibrated vertical anisotropy ratio is lower in the sand and gravels, with vertical hydraulic conductivity values (Kv) approximately one-half to one-third of the horizontal values (Kh), representing a vertical anisotropy ratio of 2:1 Kh:Kv or 3:1 Kh:Kv, appropriate for sands, gravelly sands, and silty sands.

The calibrated values of hydraulic conductivity at wells MW-02, -05, -08, -09, and -10 were compared to the field data for these wells (Table 3). The modeled values of hydraulic conductivity for these wells are consistent with the revised estimates of hydraulic conductivity from Patrick Engineering (Patrick Engineering, 2011) other than for monitor well MW-08, as discussed in Section 4.3. The calibrated hydraulic conductivity values for these well locations are as follows:

- MW-02: 466 ft/d,
- MW-05: 47 ft/d,
- MW-08: 0.4 ft/d,
- MW-09: 149 ft/d, and
- MW-10: 175 ft/d.

These values, other than for monitor well MW-08, are also consistent with the new estimates of hydraulic conductivity for these wells (Table 3).

5.2.2.2 Calibrated Water Budget

The model calibrated water budget is provided in Table 6. Groundwater flow in from the southern model boundary is the largest inflow component of the modeled water budget and equals 795 af/yr (94,858 cfd). Calibrated recharge from precipitation equals 84 af/yr (9,990 cfd), consistent with the conceptual water budget estimate of 100 af/yr. Calibrated infiltration from stormwater retention ponds and the FAB is 304 af/yr (36,232 cfd). The total, modeled inflow to groundwater is 1,182 af/yr (141,080 cfd).

Outflows from the groundwater model discharge toward Powerton Lake and to the Illinois River. Modeled discharges toward Powerton Lake equal 24 af/yr (2,808 cfd), The modeled discharge to the Illinois River equals 1,157 af/yr (138,056 cfd), including discharges to the canals west and east of the site that are connected to the river, and discounting water in through the GHB on the north end of western model boundary that subsequently discharges to the river. This is comparable to the conceptual model estimate of discharge to the river of 1,200 af/yr.

5.2.2.3 Statistics and Residuals

The weighted calibration residuals and modeled water level for each well is provided in Table 7. Calibration residuals for the site wells range from -0.65 feet in well MW-21 southwest of the FAB to 1.82 feet in well MW-01 east/southeast of the FAB. The average residual considering all calibration targets, with weighted residuals for the regional wells, is 0.37 feet, and is 0.36 feet for the site wells (Table 8). The site wells are further subdivided into those that are screened within the sand and gravel unit (average residual of 0.39 ft) and within the clay unit (average residual of 0.28 ft). The RMS error for all weighted calibration targets is 0.77 feet, or 2 percent of the change in hydraulic head across the model domain. The RMS error for the site wells is 0.70 feet, or 5 percent of the change in hydraulic head across the site. The RMS error in the site sand and gravel unit wells is 0.64 feet, or 7 percent of the change in hydraulic head across these wells, and in the clay is 0.34 feet, or 9 percent. These results are all below the recommended threshold of 10 percent for the scaled RMS error (Anderson, 2015).

The sum of squared residuals (phi) for the weighted calibration targets from the manual calibration was 377 square feet (ft²), representing the starting point for the PEST calibration. The final, calibrated phi was 19.5 ft², representing a significant improvement of the calibration by the PEST software (Table 8).

The modeled water level contours and water level elevation in each calibration target (well) is shown on Figure 12. The modeled water level contours match the overall northward groundwater flow direction in the sand and gravel as well as the overall westward groundwater flow direction through the clay unit. The calibration residuals for each calibration target (well) are shown on Figure 13. Generally, the modeled water level is slightly low on the downgradient side of the FAB, and high on the south and southwest end of the site.

A scatter plot of the calibration residuals is provided for the site wells on Figure 14. In a perfect model calibration, each point would fall on a 1:1 line. Ideally deviations from the line should be balanced between high and low representing a lack of bias in the model calibration toward over- or under-prediction of the groundwater system. The calibration residuals for all wells are close to the 1:1 line for the site wells, with the points falling above, on, and below the line, representing a relatively balanced, on whole, calibration to the site wells.

These results demonstrate that the model reasonably matches the overall groundwater elevations across the model domain, and the water balance reasonably represents the conceptual model of groundwater flow. The calibrated model is appropriate to use for predictive simulations.

5.3 Model Sensitivity

A sensitivity analysis was conducted as part of the model calibration. Calibrating the numerical model was an effort of fine-tuning the heterogeneity and distribution of the horizontal and vertical hydraulic conductivity values, the recharge rate, and the boundary conditions to represent seepage from the stormwater retention ponds to match measured water levels in the wells. During the PEST and manual trial-and-error calibration model runs, the model was the most sensitive to the values of hydraulic conductivity. The model calibration was particularly sensitive to the low hydraulic conductivity values in the clay unit, and to the hydraulic conductivity of the sediments near the river, both of which improved the model calibration to the site wells.

The model calibration is sensitive to the recharge rate, but to a lesser extent than it is to hydraulic conductivity. The model calibration was improved with seepage from the FAB, and from retention ponds near the site, represented with GHB, however the calibration was sensitive to the amount of seepage from these features and boundary conductance was kept moderate to prevent an excessive amount of infiltration that adversely affected the calibration.

A sensitivity model run was conducted in which the vertical hydraulic conductivity was set equal to the horizontal hydraulic conductivity. The calibrated values of vertical hydraulic conductivity are lower than the horizontal values, particularly in the clay unit where the ratio is as high as 1:900 horizontal to vertical. With the vertical hydraulic conductivity set equal to the horizontal, the model calibration was significantly worsened. Water levels were lowered, and the clay unit became significantly underestimated, with the RMS error increasing from 9 percent in the clay unit to 212 percent. The RMS error of the calibration to the site wells increased from 5 percent to 32 percent, indicating that higher vertical anisotropy of the hydraulic conductivity values is appropriate to best match the measured flow system at the Powerton station.

A sensitivity model run was conducted in which the highest values of hydraulic conductivity were limited to the upper end of the measured hydraulic conductivity values in site wells, and in which the distribution of hydraulic conductivity was smoothed. The distribution of calibrated hydraulic conductivity values shows highs and lows, an artifact of the PEST calibration, and particularly high values of hydraulic conductivity near the river and along the

edges of the model domain (Figures 11a through 11c). A sensitivity test was conducted in which the hydraulic conductivity was limited to 500 ft/d, the calibrated value of hydraulic conductivity near monitor well MW-02, and areas of local highs and lows were smoothed away. The calibration with these changes was worsened, particularly in the clay unit, in which the RMS error increased from 9 percent to 11 percent. Additionally, this model sensitivity test resulted in a bias in the calibration, with most site wells underpredicted by the model (water levels too low), and therefore was not deemed to be an appropriate distribution of hydraulic conductivity for the model.

6.0 PREDICTIVE MODEL SIMULATIONS

Four predictive, contaminant transport model runs were conducted to demonstrate the impact to potential impacted groundwater from FAB closure alternatives. The closure alternatives tested with the predictive model included combinations of removing all CCR materials and/or capping the FAB in place. Transport modeling was performed using the software MT3D-USGS, a widely used and accepted version of the MT3D software designed to be compatible with MODFLOW-NWT.

The calibrated, steady state groundwater flow model was used as the basis for a hypothetical 100-year transport simulation of a surrogate constituent from the FAB. As previously stated, the last four years of groundwater monitoring data from the downgradient monitoring wells around the FAB showed concentrations below the Part 845.600(a) groundwater protection standards. Therefore, to provide a platform upon which to evaluate potential closure alternative, a hypothetical release from the FAB was established. The hypothetical (artificial) release assumes that the FAB is full of ash and water with no liner present. The surrogate constituent was simulated by hypothetically introducing a concentration in groundwater of "1" beneath the FAB, as shown on Figure 15. The hypothetical mass was defined in groundwater beneath the FAB (model layer 1, 10 feet thick) using a constant source boundary condition and forward tracked for 100 years. Mass was moved through the groundwater system with advection and dispersion, and dispersion was simulated with a uniform value of 1 foot in all directions. The resulting hypothetical plume is shown on Figure 16 and shows mass extending from the FAB to the Illinois River. The mass in groundwater at the FAB is continuous in these runs, therefore the mass is shown at the relative concentration of "1" beneath the FAB. The results of the predictive modeling for the four closure alternatives are provided on Figures 17 through 36.

6.1 Closure Alternative 1

Closure Alternative 1 simulated the removal of the hypothetical mass from the FAB. In this scenario, the mass boundary condition was removed from the water table and the 100-year distribution of dissolved surrogate mass (Figure 17, left-hand side) was used as the initial concentrations. With this closure alternative, the distribution of dissolved contaminants that resulted from the hypothetical, continuous release of mass from the FAB was

reduced over time after the removal of the source mass at the FAB. These plumes are shown on the *right-hand side* of Figures 17 and 18 at 5 years and 25 years, respectively. As these figures show, the dissolved mass reduced to approximately 40 to 50 percent at the river by 5 years and the dissolved mass was effectively removed from groundwater within 25 years, with the removal of the source. Figure 19 shows a graph of relative concentration of the surrogate mass over time at a hypothetical monitoring point between the FAB and the river. This graph illustrates the decay of the surrogate mass over time, and shows that at a point approaching the river, the hypothetical mass is reduced to a relative concentration of about 0 within approximately 20 years, meaning the mass has been flushed through the shallow groundwater system within about 20 years.

6.2 Closure Alternative 2

Closure Alternative 2 simulated the closure-in-place of the FAB with the hypothetical mass remaining in place within groundwater in model layer 1 (10 feet thick). In this scenario, the mass boundary condition remained at the water table, but no recharge was simulated within the footprint of the FAB, representing an impermeable designed and placed cap/cover system. The 100-year distribution of dissolved surrogate mass (Figure 20, left-hand side) was used as the initial concentrations. With this model closure alternative, the distribution of dissolved contaminants that resulted from the hypothetical, continuous release of mass from the FAB was only slightly reduced over time after the capping of the pond. These plumes are shown on the right-hand side of Figures 20 and 21 at 5 years and 25 years, respectively. As these figures show, the dissolved mass reduced by approximately 10 percent at the river by 5 years and slightly more reduction by 25 years. The resulting plume reached a steady distribution after 25 years, so these figures were not repeated. In this scenario, the dissolved mass in groundwater is constant, therefore the plume is only slightly impacted by removing recharge from above. Figure 22 shows a graph of relative concentration of the surrogate mass over time at a hypothetical monitoring point between the FAB and the river. This graph illustrates the decay of the surrogate mass over time, and shows that at a point approaching the river, the hypothetical mass is reduced by approximately 10 percent within about 20 years, where it stabilizes at a relative concentration of approximately 90 percent. Overall, reductions in mass on the order of 5 to 20 percent are noted, depending on location within the hypothetical area of impact.

6.3 Closure Alternative 3

Closure Alternative 3 simulated the removal of the CCR materials from the northern portion of the FAB with placement and consolidation of that material on the south half of the FAB followed by capping. In this scenario, the mass boundary condition remained at the water table in the southern portion of the FAB as shown on Figure 23. No recharge was simulated within the footprint of the southern portion of the FAB, representing an impermeable designed and placed cap/cover system. The hypothetical mass was removed from the northern portion of the FAB in this scenario. The 100-year distribution of dissolved surrogate mass (Figure 24, left-hand side) was used as the initial concentrations. With this closure alternative, the distribution of dissolved contaminants that resulted from the hypothetical release of mass from the FAB was reduced over time after

removal of the mass from the northern portion of the FAB and the capping of the southern portion of the FAB. These plumes are shown on the *right-hand side* of Figures 24 and 25 at 5 years and 25 years, respectively. As these figures show, the initial plume is reduced throughout, and downgradient of, the northern portion of the FAB within 5 years, with concentrations reduced by approximately half in this area (Figure 24) and slightly more reduction by 25 years (Figure 25). The resulting plume reached a steady distribution after 25 years, so these figures were not repeated. Figure 26 shows a graph of relative concentration of the surrogate mass over time at a hypothetical monitoring point between the FAB and the river. This graph illustrates the decay of the surrogate mass over time, and shows that at a point approaching the river, the hypothetical mass is reduced by approximately 80 percent. Overall, reductions in mass on the order of 15 to 40 percent are noted, depending on location within the hypothetical area of impact.

6.4 Closure Alternative 4

Closure Alternative 4 simulated the isolation/stabilization of the hypothetical mass and closure-in-place at the FAB. In this scenario, the mass boundary condition remained at the water table in the FAB and a barrier wall was erected surrounding the FAB. The barrier wall was simulated using the MODFLOW Horizontal Flow Boundary (HFB) package with a permeability of 1x10⁻⁷ centimeters per second (cm/s) (2.83x10⁻⁴ feet per day (ft/d)) in model layers 1 and 2 representing the upper approximately 20 feet (Figure 27). Additionally, no flow cells were defined in model layer 2 beneath the FAB to represent that the ash has been stabilized in-place using a cement-bentonite mixture, or equivalent, resulting in a non-permeable solid mass. Lastly, no recharge was simulated within the footprint of the FAB, representing a perfect cover. The 100-year distribution of dissolved surrogate mass (Figure 28, left-hand side) was used as the initial concentrations.

With this closure alternative, the distribution of dissolved contaminants that resulted from the hypothetical, continuous release of mass from the FAB were reduced over time after the capping of the FAB and the in-situ stabilization of the mass isolating it from the surrounding groundwater system. These plumes are shown on the *right-hand side* of Figures 28 and 29 at 5 years and 25 years, respectively. As these figures show, the dissolved mass reduced between the FAB and the river by up to approximately 40 to 50 percent at the river by 5 years and the dissolved mass was effectively removed from groundwater within 25 years. Figure 30 shows a graph of relative concentration of the surrogate mass over time at a hypothetical monitoring point between the FAB and the river. This graph illustrates the decay of the surrogate mass over time, and shows that at a point approaching the river, the hypothetical mass is reduced to a relative concentration of about 2 percent within about 20 years.

6.5 Relation to Constituent Concentrations

The trends of predicted reduction in the surrogate mass concentrations discussed in Sections 6.1 through 6.4 for the four closure alternatives were related to the concentrations of several example CCR constituents being monitored in groundwater. Specifically, boron, chloride, sulfate, arsenic and lithium. The concentrations of these

constituents from the 4th quarter 2021 monitoring in downgradient monitoring wells MW-02 through MW-05 were used as the starting concentrations for this evaluation. The percent decrease in the surrogate concentrations from the starting concentrations was calculated through the 100-year simulation for each closure alternative, at four FAB CCR monitoring well locations (Figure 31):

- MW-02 on the east side of the northern portion of the FAB,
- MW-03 on the northeast, downgradient side of the FAB,
- MW-04 on the north, downgradient side of the FAB, and
- MW-05 on the northwest side of the FAB.

The relative reduction of the surrogate concentration over time can be related to the dissolved mass of any constituent by applying the percent decrease of the surrogate concentration to an initial concentration of a specific constituent of concern. As noted above, an initial concentration was assigned at each of these four monitoring well locations for specific constituents of concern based on the 4th quarter 2021 sampling event as provided in Table 9. It should be noted that the concentrations of each of these constituents were already below the proposed GWPSs presented in the Application for Initial Operating Permit submitted to Illinois EPA on October 31, 2021 (Midwest Generation, 2021):

- Boron,
- Chloride,
- Sulfate,
- Arsenic,and
- Lithium

The calculated percent decrease in the surrogate concentration over the 100-year model simulations was applied to the assigned initial concentration in each monitoring well. For example, the initial concentration for boron in monitoring well MW-02 is 0.22 milligrams per liter (mg/l) (Table 9). The initial, relative surrogate concentration in monitoring well MW-02 is 0.2 (relative to the source concentration of "1") (Figure 16). The decrease in the surrogate concentration throughout the 100-year closure scenario was calculated as a percentage of the initial, relative concentration in this monitoring well, and the percentage decrease was applied to the initial concentration of 0.22 mg/l to yield a curve of decreasing boron concentrations for the model scenario. The resulting concentrations for each constituent of concern in each monitoring well was compared to the Section 845.600(a) GWPSs for each constituent. The GWPSs are presented as dashed lines on each model scenario's concentration graphs.

The decay curves for boron concentrations are shown on Figure 32 for Closure Alternatives 1 through 4. The current concentrations of boron in all four monitoring wells are well below the GWPS of 2 mg/l. Concentrations further decrease and remain below the GWPS in all four closure alternative scenarios.

The decay curves for chloride concentrations are shown on Figure 33 for Closure Alternatives 1 through 4. The current concentrations of chloride in all four monitoring wells are well below the GWPS of 200 mg/l. Concentrations further decrease and remain below the GWPS in all four closure alternative scenarios.

The decay curves for sulfate concentrations are shown on Figure 34 for Closure Alternatives 1 through 4. The current concentrations of sulfate in all four monitoring wells are well below the GWPS of 400 mg/l. Concentrations further decrease and remain below the GWPS in all four closure alternative scenarios.

The decay curves for arsenic concentrations are shown on Figure 35 for Closure Alternatives 1 through 4. The current concentrations of arsenic in all four monitoring wells are well below the GWPS of 0.01 mg/l. Concentrations further decrease and remain below the GWPS in all four closure alternative scenarios.

The decay curves for lithium concentrations are shown on Figure 36 for Closure Alternatives 1 through 4. The current concentrations of lithium in all four monitoring wells are well below the GWPS of 0.04 mg/l. Concentrations further decrease and remain below the GWPS in all four closure alternative scenarios.

6.6 Seasonal Sensitivity

A model scenario was conducted to test the impacts of seasonal variations of climate on the predictions made for the Closure Alternatives. The typical precipitation pattern is for higher rainfall in the summer and less in the winter. A 100-year transient flow model was run with alternating stress periods of higher and lower recharge: 6 months of higher recharge to represent April through September, and 6 months of lower recharge to represent October through March. Three percent of the average, long-term precipitation measured at nearby climate stations for these two six-month periods was assumed for recharge. The seasonal variation test was conducted on Closure Alternatives 2 and 4. The same initial distribution of concentrations used in Closure Alternatives 2 and 4 was also used for this seasonal variation test. The setup of the model scenarios was the same as for Closure Alternatives 2 and 4, and the model was run with 6-month transient stress periods with alternating higher and lower recharge for a total simulation time of 100 years.

The results of the seasonality tests for Closure Alternatives 2 and 4 are shown on Figures 37 and 38, respectively. The resulting plume distributions for both Closure Alternative 2 and its seasonality test are shown on Figure 37 at 25 years and the results are identical. The resulting plume distribution is shown for both Closure Alternative 4 and its seasonality test on Figure 38 at 25 years and the results are identical. The results are identical. The results are identical. The sensitivity test of wet and dry recharge seasons did not impact the ultimate results of the predictive model runs of closure alternatives.

7.0 CONCLUSIONS

A numerical groundwater flow model was created for the vicinity of the FAB at the Powerton station. The model was calibrated to current water levels in site wells to reasonably replicate the groundwater flow patterns beneath the site. Groundwater flow paths from the site and the FAB are predicted to the north toward the Illinois River. Although the current groundwater data do not indicate groundwater impacts above Section 845.600(a) GWPSs downgradient of the FAB, to meet the requirements of the regulation, the model was used predictively to simulate a hypothetical release scenario to the underlying water table based upon which the effectiveness of engineering closure options can be evaluated. A hypothetical surrogate constituent was simulated at the FAB in the groundwater. The hypothetical surrogate mass travelled with the groundwater flow paths toward the Illinois River. This hypothetical distribution of mass served as the initial concentrations to four predictive scenarios of mass removal or various closure in-place alternatives at the FAB. The hypothetical scenarios assume that the FAB is full of ash and water with no liner allowing for impacts to discharge constituents to the water table. The predictive scenarios of mass removal or various in-place closure scenarios then illustrate the relative reduction in the concentrations in groundwater as a result. In summary, the modeling results indicate that all four evaluated alternatives for closure of the FAB resulted in improvement to groundwater guality with scenarios 1 and 4 providing a similar level of improvement and scenarios 2 and 3 providing a similar level of improvement. It is noted that this is improvement over existing conditions which as previously noted are already below the proposed GWPSs for the FAB.

8.0 **REFERENCES**

- Anderson, M. W. (2015). *Applied Groundwater Modeling, Simulation of Flow and Advective Transport.* San Diego, CA: Elsevier, Inc.
- ASTM D5447-17. (2017). Standard Guide for Application of a Numerical Groundwater Flow Model to a Site-Specific Problem. ASTM International, West Conshohocken, PA.
- Doherty, J. a. (2010). Approaches to highly parameterized inversion A guide to using PEST for groundwatermodel calibration. In U. G. 2010-5169, *Scientific Investigations Report 2010-5169* (p. 59). United States Department of the Interior.

Environmental Simulaitons Inc. (ESI). (2020). Groundwater Vistas v.8.0.

- Interagency Coordinating Committee on Groundwater. (2010). *Illinois Groundwater Protection Program Biennial Comprehensive Status and Self-Assessment Report.* Illinois Environmental Protection Agency, Bureau of Water.
- Johnstone, P. (2003). Surficial Geology of Tazewell County, Illinois. Illinois State Geological Survey (ISGS).
- Meyer, S., Roadcap, G., Lin, Y.-F., & Walker, D. (2009). *Kane County Water Resources Investigations: Simulation of Groundwater Flow in Kane County and Northeastern Illinois.* Champaign, Illinois: Illinois State Water Survey.
- Midwest Generation. (2021). Application for Initial Operating Permit, Powerton Generating Station, Pekin, Illinois, August 19, 2021.
- Midwest Generation. (2021b). Annual Consolidated Report Powerton Generating Station.
- Niswonger, R. P. (2011). MODFLOW-NWT, A Newton formulation for MODFLOW-2005. In U. G. Survey, *Techniques and Methods 6-A37* (p. 44). Reston, Virginia: U.S. Department of the Interior.
- Patrick Engineering. (2011). Hydrogeologic Assessment Report, Powerton Generating Station, Pekin, Illinois.

Seequent Limited. (2021, June 16). Leapfrog Works 2021.1.2. Brisbane, Australia.

- U.S. Geological Survey. (2021). 3D Elevation Program 1-Meter Resolution Digital Elevation Model. Retrieved from https://www.usgs.gov/core-science-systems/ngp/3dep/data-tools
- Wilson, S. G. (1998). Hydrogeology and Ground-Water Availability in Southwest McLean and Southeast Tazewell Counties, Part 2: Aquifer Modeling and Final Report. Champaign, IL: Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 19.
- Zheng, C. a. (1995). Applied Contaminant Transport Modeling. NY: Van Nostrand Reinhold.
- Zheng, C. M. (2012). MT3DMS: Model Use, Calibration, and Validation. *Transactions of the ASABE, Volume 55*.

Signature Page

BAS Groundwater Consulting Inc.

Betsy Demmers

Betsy Semmens, RG President/BAS Groundwater Consulting

TABLES

Table 1: Precipitation Data near Powerton Station

Month	Average Monthly Precipitaiton (inches) ^{1,2}
January	2.02
February	1.90
March	2.56
April	3.98
Мау	4.65
June	3.76
July	3.66
August	3.44
September	3.52
October	3.16
November	2.79
December	2.20
Average Annual Precipitation ¹	39.2

Notes:

¹Total annual precipitation data were averaged for the periods of complete annual records available for stations: Bartonville 5 SW IL, Chillicothe IL, General Wayne A. Downing International Airport, Germantown Hills IL, Morton IL, Morton 1.0 S IL, Morton 1.0 SSE IL, Pekin 1.2 NNW IL, Peoria Airport 3 SW IL, Peoria 5 NW IL, Peoria 1.7 SSE IL, Peoria Station, Washington 2 W IL,

²Periods of complete records were determined as months with 5 or less missing days and years without months with more than 5 missing days

21141401

Table 2: Compiled Borehole Lithology

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft, bgs	ft, bgs		
121792196100	0	2	top soil	topsoil
121792196100	2	27	fine sand	sand
121792196100	27	95	medium to coarse gravel	coarse sand and/or gravel
121792196100	95	95	rine sand at	sand
121790013100	28	60	sand and gravel, dry	coarse sand and/or gravel
121790013000	0	2	topsoil	topsoil
121790013000	2	35	coarse sand and gravel	coarse sand and/or gravel
121790013000	35	56	coarse sand, test 1m., 36 sec.	coarse sand and/or gravel
121790013000	56	70	medium sand, test 3m., 20 sec.	coarse sand and/or gravel
121790013000	70	70	shale at	shale
121790012900	0	4	topsoil	topsoil
121790012900	4	21	dry sand and gravel	coarse sand and/or gravel
121790012900	21	44	coarse sand and gravel 1m., 40 s.	coarse sand and/or gravel
121790012900	44	66	med coarse sand and gravel, 2m., 10s.	coarse sand and/or gravel
121790012900	66	74	medium sand and gravel, 2m. 20s.	coarse sand and/or gravel
121790012900	74	74	clay, white at	clay and silt
121790012800	0	2 14	cinders and brick	FILL
121790012800	2 1.4	14	sand, medium	coarse sand and/or gravel
121790012800	14	10		coal
121790012800	10	20	sand	sand
121790012800	20	39	sand coarse and gravel 3m	coarse sand and/or gravel
121790012800	39	48	sand, coal, and boulders. 9m	coarse sand and/or gravel
121790012800	48	50	clav and rock	silt and clay
121790012800	50	55	sand, coarse, 3m	coarse sand and/or gravel
121790012800	55	63	sand, coarse, 2m	coarse sand and/or gravel
121790012800	63	66	sand, medium, 5m	coarse sand and/or gravel
121790012800	66	76	sand, 3m, 10s	coarse sand and/or gravel
121790012800	76	76	shale at	shale
121790025600	0	3	clay	clay
121790025600	3	15	sand & gravel	coarse sand and/or gravel
121790025600	15	19	gravel, coarse	coarse sand and/or gravel
121790025600	19	27	sand and gravel	coarse sand and/or gravel
121790025600	27	29	clay	clay
121790025600	29	35	gravel and sinal stones	coarse sand and/or gravel
121790025600	35	12	sand coarse	coarse sand and/or gravel
121790025600	42	51	sand, coarse	coarse sand and/or gravel
121790013800	0	3	soil	Topsoil
121790013800	3	82	sand and gravel	coarse sand and/or gravel
121790013300	0	3	soil, black	Topsoil
121790013300	3	5	sand, soil	coarse sand and/or gravel
121790013300	5	80	sand and gravel	coarse sand and/or gravel
121790013200	0	14	gravel, sand and clay	clay, sand, gravel
121790013200	14	18	sand and clay	clay, sand
121790013200	18	24	sand and gravel	coarse sand and/or gravel
121790013200	24	35	gravel and sand	coarse sand and/or gravel
121790013200	35	45	gravel	coarse sand and/or gravel
121790013200	45	59	gravel and sand	coarse sand and/or gravel
121790013200	59	61	snale brown fill cand come reaks	snale
121790052800	1	2	block candy dirt	cond
121790052800	3	7	vellow sand-medium	coarse sand and/or gravel
121790052800	7	15	grav sand-medium	coarse sand and/or gravel
121790052800	15	28	gray sand & gravel	coarse sand and/or gravel
121790052800	28	49	gray sand & gravel-very coarse	coarse sand and/or gravel
121790052800	49	49	blue shale at	shale
121790050100	0	3	sandy loam	loam
121790050100	3	47	dirty sand & gravel	coarse sand and/or gravel
121790050100	47	81	yellow sand, trace gravel	coarse sand and/or gravel
121790048800	0	3	topsoil	topsoil
121790048800	3	8	yellow sand	sand

21141401

Well Name/Identifier	From ¹	To1	Description	Lithology Group
	ft, bgs	ft, bgs		
121790048800	8	20	gray silty clay	Silt and Clay
121790048800	20	21	brown clay	clay
121790048800	21	116	brown fine to med sand & gravel	coarse sand and/or gravel
121790048800	116	120	med to crs gravel, some coarse sand	coarse sand and/or gravel
121790048800	120	121	gray shale	shale
121/9004//00	0	3	brown sandy clay	clay, sand
121790047700	3	10	yellow clay - very sandy	clay, sand
121790047700	10	40	brown sand - coarse & clean	coarse sand and/or graver
121790047700	40	58	dirty sand & vellow clay	clay sand
121790047700	58	73	brown sand - fine to coarse	sand
121790047700	73	78	vellow sand - fine	sand
121790047700	78	87	fine to coarse sand - some pebbles	coarse sand and/or gravel
121790047700	87	93	fine to crs water sand-some pebbles	coarse sand and/or gravel
121790047700	93	96	med to coarse sand - some gravel	coarse sand and/or gravel
121790047700	96	101	fine to med sand-some rocks	coarse sand and/or gravel
121790047700	101	114	fine red sand	sand
121790047700	114	120	fine to coarse brown sand	sand
121790047700	120	127	f to crs sand with some fine gravel	coarse sand and/or gravel
121790047700	127	127	fine sand at	sand
121790012700	0	4	topsoil	topsoil
121790012700	4	15	sand, gravel, and clay	clay, sand, gravel
121790012700	15	32	sand, gravel, and boulders	coarse sand and/or gravel
121790012700	32	33	coal	coal
121790012700	33	36	hardpan	hardpan
121/90012/00	36	38	boulders	coarse sand and/or gravel
121790012700	30	40	Saliu aliu glavel, zili. 15 S.	coarse sand and/or gravel
121790012700	40	40 56	condiand gravel 2 m 15 c	coarse sand and/or gravel
121790012700	56	58	sand and gravely 2 milling 10 st.	sand
121790012700	58	66	sand, fine 5m, 20s	sand
121790012700	66	71	sand, 3m., 5s.	sand
121790012700	71	76	sand, 3m., 40 s.	sand
121790012700	76	76	shale at	shale
121790012600	0	18	muck	topsoil
121790012600	18	28	gravel, coarse and boulders	coarse sand and/or gravel
121790012600	28	36	sand, fine	sand
121790012600	36	36	shale at	shale
121790012500	0	85	sand & gravel	coarse sand and/or gravel
121790012500	85	85	shale at	shale
404700050500				
121790058500	0	4		topsoil
121790058500	4	71	sand & gravel	coarse sand and/or graver
121792462600	21	21	hlack & brown clay	cinuers
121792462600	26	39	fine sand w/soft clay mixed	clay sand
121792462600	39	41	large gravel & coarse sand	coarse sand and/or gravel
121792462600	41	52	coarse sand & some small gravel	coarse sand and/or gravel
121792462600	52	79	coarse sand w/streaks of small gvl	coarse sand and/or gravel
121792462600	79	98	fine to coarse sand w/some small gvl	sand
121792462600	98	99	fine silty sand	sand
121792462600	99	103	dk gray shale & hd dk color limestone	shale
121792456600	0	4	loam-sandy	Loam
121792456600	4	15	sand -yellow	sand
121792456600	15	53	sand & gravel	coarse sand and/or gravel
121792456600	53	83	sand & gravel-coarse	coarse sand and/or gravel
121790041500	0	85	Sand	sand
121/90041300	0	2	cinares, till	FILL
121/90041300	2	35	Time to coarse sand & gravel f to are cond, find to are gravel black	sand
121790041300	35	/4	f to crs sand	sand
121790041300	74 80	00	f to crs sand medium gravel	sand
121792453000	0	33	tonsoil	tonsoil
121792453000	3	22	It, med gravel	coarse sand and/or gravel
121792453000	22	44	med-large gravel	coarse sand and/or gravel
121792/153000	11	15	shale hedrock	shale

21141401

Well Name/Identifier	From ¹	To1	Description	Lithology Group
	ft, bgs	ft, bgs		
121792323500	0	4	topsoil	topsoil
121792323500	4	12	fine silty clay	Silt and clay
121792323500	12	48	medium sand	coarse sand and/or gravel
121792323500	48	93	medium to coarse gravel	coarse sand and/or gravel
121792323500	93	93	shale at	shale
121792489200	0	21	sand	sand
121792489200	21	38	sand & gravel	coarse sand and/or gravel
121792489200	38	56	sand medium	coarse sand and/or gravel
121792489200	56	61	sand coarse	coarse sand and/or gravel
121792489200	61	63	sand & gravel	coarse sand and/or gravel
121792489200	63	63	shale below	shale
121792486200	0	15	fine sand	sand
121792486200	15	20	gritty sand	sand
121792486200	20	30	fine to medium sand	sand
121792486200	30	35	medium-coarse sand with light gravel	coarse sand and/or gravel
121792486200	35	40	fine to medium sand	sand
121792486200	40	45	clay	clay
121792486200	45	60	light to medium sand	sand
121792486200	60	65	medium to coarse gravel	coarse sand and/or gravel
121792486200	65	88	fine sand	sand
121792486200	88	93	fine to medium sand	sand
121792486200	93	103	fine sand	sand
121/92486200	103	108	coarse sand with big gravel	coarse sand and/or gravel
121792486200	108	113	medium to coarse sand with gravel	coarse sand and/or gravel
121792486200	113	118	medium to coarse sand	coarse sand and/or gravel
121792486200	118	70	medium to big gravei	coarse sand and/or graver
121792465000	0	70	Joam	Sallu
121792377600	0	9 1E		coarso cand and/or gravel
121792377600	9	15	gravel very coarse	coarse sand and/or gravel
121792377600	60	85	cand & finer gravel	coarse sand and/or gravel
121792444600	0	2	tonsoil	tonsoil
121792444600	2	14	sand	sand
121792444600	14	75	sand & gravel	coarse sand and/or gravel
121792326500	0	2	loam sandy	Loam
121792326500	2	9	clay yellow sandy	clay, sand
121792326500	9	42	sand & gravel - coarse	coarse sand and/or gravel
121792326500	42	72	coarse sand	coarse sand and/or gravel
121792326500	72	82	sand & gravel	coarse sand and/or gravel
121792481400	0	2	topsoil	topsoil
121792481400	2	29	sand	sand
121792481400	29	70	sand & gravel	coarse sand and/or gravel
121792478800	0	21	cinders, black soil	cinders
121792478800	21	26	black & brown clay	clay
121792478800	26	39	fine sand clay mixed	clay, sand
121792478800	39	46	coarse sand gravel (boulders)	coarse sand and/or gravel
121792478800	46	48	black peat	Organic
121792478800	48	79	coarse sand gravel	coarse sand and/or gravel
121792478800	79	99	medium sand gravel	coarse sand and/or gravel
121792478800	99	104	gray shale	shale
121792477400	0	3	topsoil sandy	topsoil
121792477400	3	52	sand	sand
121792477400	52	70	sand & gravel	coarse sand and/or gravel
121792474300	0	4	topsoil	topsoil
121792474300	4	23	sand	sand
121792474300	23	60	sand & gravel	coarse sand and/or gravel
121792484700	0	4	topsoil	topsoil
121792484700	4	28	tine to medium sand & gravel	sand
121/92484700	28	88	coarse gravel & rocks	coarse sand and/or gravel
121/92481600	0	6		cinaers
121792481600	6	42	coarse sand & gravel	coarse sand and/or gravel
121/92481600	42	50	prown sitty sand & fine gravel	coarse sand and/or gravel
121/92481600	50	66	coarse sand & gravel	coarse sand and/or gravel
121/92481600	66	99	fine to coarse sand & gravel	sand
121792461000	102	102	dark gravishale	coarse sanu anu/or gravel

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft, bgs	ft, bgs		
121792478000	0	3	topsoil	topsoil
121792478000	3	26	sand	sand
121792478000	26	70	sand & gravel	coarse sand and/or gravel
121792467500	0	4	topsoil	topsoil
121792467500	4	10	red clay with light gravel	clay, sand, gravel
121792467500	10	14	tan sandy hardpan	hardpan
121792467500	14	24	light medium gray with coarse sand	coarse sand and/or gravel
121792467500	24	29	light gravel, coarse sand	coarse sand and/or gravel
121792467500	29	38	light tan clay, coarse sand	clay, sand
121792467500	38	71	medium coarse gravel	coarse sand and/or gravel
121792467500	71	72	medium sand with light gravel at	coarse sand and/or gravel
121792313900	0	4	loam	loam
121792313900	4	82	sand & gravel	coarse sand and/or gravel
121792313900	82	82	brown clay below	clay
121792534000	0	2	loam	loam
121792534000	2	12	sand - yellow, fine	sand
121792534000	12	60	sand & gravel - coarse	coarse sand and/or gravel
121792534000	60	67	sand	sand
121792534000	6/	70	sand & gravel	coarse sand and/or gravel
121792534000	70	70	poulders or bedrock at	snale
121792539500	10	10	sand, gravel, cinders	coarse sand and/or gravel
121792539500	10	14	sdilu, gravel, clay	clay, sand, gravei
121792559500	26	20	organic cit	Cidy Silt and clay
121792539500	20	34 //E	cand and gravel	source cand and/or gravel
121792539300	0	43	clay and gravel	clay sand gravel
121792539400	10	10	clayer sit	Silt and clay
121792539400	14	18	cinders	cinders
121792539400	18	28	organic silt and clay	Silt and clay
121792509100	0	12	black sand gravel & cement fill	FILL
121792509100	12	25	brown sand & small gravel	coarse sand and/or gravel
121792509100	25	27	gray clay with gravel	clay, sand, gravel
121792509100	27	104	coarse sand & gravel	coarse sand and/or gravel
121792497500	0	4	topsoil	topsoil
121792497500	4	18	sand	sand
121792497500	18	26	clay	clay
121792497500	26	86	sand & gravel	coarse sand and/or gravel
121792497400	0	4	black topsoil, rock	topsoil
121792497400	4	15	medium sand	sand
121792497400	15	45	medium sand - rocks	coarse sand and/or gravel
121792501800	0	2	topsoil	topsoil
121792501800	2	4	brown clay	clay
121792501800	4	73	medium sand & gravel	coarse sand and/or gravel
121792501800	73	73	shale at	shale
121792538900	0	10	cinders, gravel, clay	FILL
121792538900	10	18	cinders and sand	sand
121792538900	18	32	organic silt	Silt and clay
121792538900	32	34	silty clay, sand	clay, sand
121792538900	34	40	gravel	coarse sand and/or gravel
121792538800	0	10	gravel, sand, cinders	coarse sand and/or gravel
121792538800	10	16	clay and gravel	clay, sand, gravel
121792538800	16	20	silt and clay	Silt and clay
121/92538800	20	26	organic silt	Silt and clay
121792538800	26	33	silty clay	Silt and clay
121792538800	33	40	sand and gravel	coarse sand and/or gravel
121792538700	0	1		topsoll City and also
121792538700	1	16		Slit and clay
121/92538/00	10	20	sanu aroual	sailu
121792336/00	20	54 17	graver	coarse sand and/or gravel
121792492400	17	20		coarse sand and/or gravel
121792492400	20	20	sand fine	sand
121792492400	20	60	sand & gravel coarse	coarse sand and/or gravel
121792492400	60	85	hlue-green shale helow 60'	chalo
121792539300	0	2	tonsoil	tonsoil
121792539300	2	17	clay and silt with gravel	clay sand gravel

Well Name/Identifier	From ¹	To1	Description	Lithology Group
	ft, bgs	ft, bgs		
121792539300	17	31	sand and gravel	coarse sand and/or gravel
121792539200	0	10	gravel, sand, silt, clay fill	clay, sand, gravel
121792539200	10	25	cinders	cinders
121792539200	25	28	organic clay	clay
121792539200	28	30	organic silt	silt and clay
121792539100	0	10	cinders, gravel, clay	FILL
121792539100	10	20	cinders, gravel, sand	coarse sand and/or gravel
121792539100	20	24	fine sand	sand
121792539100	24	28	silt	silt and clay
121792539100	28	30	silty clay	silt and clay
121792539000	0	10	cinders, gravel, clay	FILL
121792539000	10	20	gravel and clay	clay, sand, gravel
121792539000	20	30	organic silt	silt and clay
121792565200	0	10	topsoil	topsoil
121792565200	10	16	fine sand	sand
121792565200	16	26	med to coarse sand & gravel	coarse sand and/or gravel
121792565200	26	39	super coarse gravel	coarse sand and/or gravel
121792564300	0	2	cinders	cinders
121792564300	2	7	black and dark gray peaty clay	clay
121792564300	7	38	brown sandy clay	clay

Table 3: Hydraulic Conductivity Data for Site Wells

Well Name	Screened Depth	Screened Geology	Test Name 2011 Hydraulic Conductivity Estimate 2021 Hydraulic Conductivity Estimate			nductivity Estimate	
	ft bgs			ft/s	ft/d	ft/s	ft/d
MW-2	23.5-33.5	Gravel with Sand	D3	9.24E-03	800	4.82E-03	420
MW-5	21-31	Gravel	D1	7.41E-04	60	3.21E-04	30
N/N/ 9	20.30	Fill/Clay/Silt	U1	4.00E-03	350	1.62E-03	140
10100-0	20-30	Fill/Clay/Slit	D1	3.21E-03	280	1.36E-03	120
MW-9	22-32	Sand	D2	3.35E-03	290	1.52E-03	130
MM 10	10.20	Clay/Sand/Graval	U2	2.26E-03	200	1.01E-03	90
10100-10	19-29	Clay/Salid/Glavel	D1	3.46E-03	300	1.58E-03	140

Notes:

ft bgs = feet below ground surface

ft/d = feet per day

ft/s = feet per second

Table 4: Groundwater Elevation Data

		Site Wells							
	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09
Groundwater Elevation:									
Minimum (ft)	435.06	431.12	429.944	430.279	430.981	443.116	431.377	445.67	439.766
Maximum (ft)	448.15	449.87	448.93	449.5	449.3	450.73	449.31	448.533	449.346
1st Quartile (ft)	439.78	434.78	434.3	432.379	433.28	446.7	433.88	446.763	443.12
3rd Quartile (ft)	443.53	442.09	442.05	440.76	441.25	449.34	441.37	447.76	446.31
IQR (ft)	3.75	7.31	7.75	8.381	7.97	2.64	7.49	0.997	3.19
Lower Bound (ft)	434.15	423.82	422.675	419.8075	421.325	442.74	422.645	445.2675	438.335
Upper Bound (ft)	449.16	453.05	453.675	453.3315	453.205	453.3	452.605	449.2555	451.095
Average (ft) ¹	441.70	438.20	438.20862	436.59464	437.201	447.9201	437.49879	447.27685	444.67959
Measurement Date ²									

Notes:

ft = feet

IQR = Interquartile range

¹The calculated average water level was used as the calibration head target in the numerical groundwater flow model

²The water levels for the site wells span the period 2011 through 2020. The regional wells had one water level reported with the well drilling log.

Table 4: Groundwater Elevation Data (continued)

		Site Wells								
	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-19
Groundwater Elevation:										
Minimum (ft)	435.786	437.089	447.83	436.842	441.69	446.05	441.164	440.83	440.86	440.76
Maximum (ft)	447.78	448.27	452.77	449.9	450.14	449.362	449.744	449	446.79	446.68
1st Quartile (ft)	440.006	440.57	449.53	437.93	445.81	446.732	443.995	446.0475	441.9575	441.42
3rd Quartile (ft)	441.45	444.13	451.33	443.74	447.4	448.1	447.69	448.3975	445.3175	445.335
IQR (ft)	1.444	3.56	1.8	5.81	1.59	1.368	3.695	2.35	3.36	3.915
Lower Bound (ft)	437.84	435.23	446.83	429.215	443.425	444.68	438.4525	442.5225	436.9175	435.5475
Upper Bound (ft)	443.616	449.47	454.03	452.455	449.785	450.152	453.2325	451.9225	450.3575	451.2075
Average (ft) ¹	441.22736	442.42131	450.43821	441.152	446.67354	447.50815	445.65673	447.32353	443.72111	443.59214
Measurement Date ²										

Notes:

ft = feet

IQR = Interquartile range

¹The calculated average water level was used as the calibration head target in the numerical groundwater flow model

²The water levels for the site wells span the period 2011 through 2020. The regional wells had one water level reported with the well drilling log.

Table 4: Groundwater Elevation Data (continued)

	Regional Wells											
	121790 025600	121790 013100	121790 012800	121790 012600	121792 379000	121792 379100	121792 378800	121792 378900	121792 237700	121792 237800	121792 564300	121792 515900
Groundwater Elevation:												
Water Level (ft)	438.00	442.00	460.51	443.88	452.00	451.50	454.00	440.29	445.28	441.28	425.00	443.00
Measurement Date ²	Jul-24	unk	Jan-26	Jan-41	unk	unk	unk	unk	Jul-93	Jul-93	Sep-17	Sep-07

Notes:

ft = feet

unk = unknown

²The water levels for the site wells span the period 2011 through 2020. The regional wells had one water level reported with the well drilling log.

Table 5: Calculation of Average River Stage

Date	Water Level in MW-04	Average Daily Gage Height ¹	Average Daily Stage ^{1,2}	Difference ³
	ft, amsl	ft	ft, amsl	ft
9/19/2011	431.63			
12/12/2011	433.28	5.46	433.13	0.15
3/19/2012	434.93	7.13	434.79	0.14
4/4/2012	434.15	6.28	433.94	0.21
6/25/2012	432.38	3.12	430.79	1.59
9/18/2012	430.34	2.29	429.95	0.39
12/12/2012	430.28	2.42	430.08	0.20
2/27/2013	434.36	6.75	434.42	-0.06
5/29/2013	443.93	15.99	443.66	0.27
7/31/2013	432.86	3.44	431.11	1.75
10/21/2013	430.6			
3/5/2014	442.09	14.05	441.71	0.38
5/27/2014	439.49			
8/25/2014	435.1	9.99	437.65	-2.55
10/27/2014	436.01			
2/25/2015	432.09	3.72	431.39	0.70
5/13/2015	439.29	12.60	440.27	-0.98
8/17/2015	436.02	4.30	431.97	4.05
11/16/2015	431.2	4.38	432.05	-0.85
2/22/2016	437.06	7.97	435.64	1.42
5/16/2016	441.95	14.53	442.20	-0.25
8/15/2016	434.1	7.11	434.77	-0.67
11/14/2016	435.14	6.35	434.02	1.12
2/13/2017	438.79			
5/1/2017	445.16	17.07	444.73	0.43
8/28/2017	432.08	4.01	431.68	0.40
11/7/2017	434.95	6.88	434.55	0.40
3/6/2018	449.5	20.44	448.11	1.39
5/15/2018	436.44	8.06	435.73	0.71
8/7/2018	431.34	2.68	430.35	1.00
10/30/2018	433.99	4.21	431.87	2.12
2/25/2019	445.12	16.73	444.39	0.73
4/29/2019	444.69	14.04	441.70	2.99
8/26/2019	433.22	3.61	431.27	1.95
11/11/2019	444.83	15.92	443.59	1.24
2/24/2020	440.76	12.84	440.50	0.26
4/27/2020	440.81	12.64	440.31	0.50
8/10/2020	435.17	4.38	432.04	3.13
12/7/2020	432.07	2.99	430.66	1.42
AVERAGE				0.76

Notes:

ft, amsl = feet above mean sea level

ft = feet

¹Gage data from USGS Gage 5568500, Illinois River at Kingston Mines, IL

²Gage elevation = 427.665 ft, amsl (corrected for vertical datum)

Table 6: Calibrated Water Budget

Component	Conceptual Flux	Modeled Flux			
	af/yr	af/yr	cfd		
INFLOWS					
Recharge	100	84	9,990		
Flow from South	3,208	795	94,858		
Inflow from Ponds and FAB	0	304	36,232		
Total Inflows		1182	141,080		
OUTFLOWS					
Discharge toward Lake Powerton	1,345	24	2,808		
Discharge to Illinois River	1,966	1,157	138,056		
Total Outflows		1180	140,865		

Notes:

af/yr = acre-feet per year

cfd = cubic feet per day

Table 7: Calibration Residuals

Well	Easting	Northing	Target Value ¹	Weight	Modeled Water Level	Residual ²
	NAD83, State P	lane, IL West, ft	ft		ft	ft
MW-01	2433690.62	1412998.05	441.70	1	439.9	1.82
MW-02	2433847.08	1413749.00	438.20	1	437.6	0.58
MW-03	2433616.58	1414290.06	438.21	1	436.8	1.44
MW-04	2433012.49	1414198.68	436.59	1	436.7	-0.08
MW-05	2432767.38	1413950.38	437.20	1	436.8	0.37
MW-06	2432559.16	1413578.06	447.92	1	447.3	0.62
MW-07	2432329.58	1413466.26	437.50	1	437.3	0.20
MW-08	2432586.83	1412982.06	447.28	1	446.9	0.40
MW-09	2432948.62	1411493.04	444.68	1	444.7	0.00
MW-10	2433292.14	1412489.79	441.23	1	441.2	0.08
MW-11	2432975.81	1412173.14	442.42	1	442.1	0.34
MW-12	2432791.46	1412104.65	450.44	1	450.2	0.25
MW-13	2432491.87	1412182.91	441.15	1	441.3	-0.12
MW-14	2432383.61	1412597.16	446.67	1	446.7	-0.03
MW-15	2432550.11	1412637.58	447.51	1	447.3	0.23
MW-16	2432376.86	1410843.75	445.66	1	445.8	-0.17
MW-17	2432588.25	1412428.59	447.32	1	447.1	0.17
MW-18	2432962.62	1413181.32	443.72	1	443.4	0.32
MW-19	2432813.27	1411759.49	443.59	1	443.6	-0.03
MW-20	2432390.14	1412415.84	441.79	1	440.1	1.72
MW-21	2432394.58	1412258.23	440.07	1	440.7	-0.65
121790025600	2435796.86	1415284.43	438.00	0.1	438.4	-0.04
121790013100	2431499.62	1410489.72	442.00	0.1	446.4	-0.44
121790012800	2435381.38	1414262.36	460.51	0.1	440.0	2.05
121790012600	2434919.57	1416219.75	443.88	0.1	436.1	0.78
121792379000	2432781.30	1410872.41	452.00	0.1	446.2	0.58
121792379100	2432781.30	1410872.41	451.50	0.1	446.2	0.53
121792378800	2432781.30	1410872.41	454.00	0.1	446.2	0.78
121792378900	2432781.30	1410872.41	440.29	0.1	446.2	-0.59
121792237700	2435040.77	1416653.97	445.28	0.1	436.0	0.93
121792237800	2435040.77	1416653.97	441.28	0.1	436.0	0.53
121792564300	2433669.16	1415617.07	425.00	0.1	436.0	-1.10
121792515900	2434760.01	1415047.22	443.00	0.1	436.8	0.62

Notes:

RMS = root mean squared

ft = feet

¹The target value for site-specific wells is the long-term average of measured water levels, discounting outliers, and for regional wells is the reported water level in well logs

²The residual for the regional (non-site) wells represents the weighted value

Table 8: Calibration Statistics

Parameter	All Wells ¹	Site Wells	Sand/Gravel ²	Clay ³
Average Residual (ft)	0.37	0.36	0.39	0.28
Minimum Residual (ft)	-1.10	-0.65	-0.65	-0.03
Maximum Residual (ft)	2.05	1.82	1.82	0.62
Sum of Squared Residuals (ft2)	19.53	10.25	6.17	0.70
RMS Error (ft)	0.77	0.70	0.64	0.34
%RMS ⁴	2%	5%	7%	9%

Notes:

RMS = root mean squared

¹Regional (non-site specific) wells were given a weight of 0.1

²MW-01 through MW-05, MW-07, MW-09 through -11, MW-13, MW-16, MW-18 through -21

³MW-06, MW-08, MW-12, MW-14, MW-15, MW-17

⁴Calculated by dividing the RMS error by the range in measured values

Table 9: Initial Concentrations Used for Surrogate Transport Modeling

Parameter	MW-02	MW-03	MW-04	MW-05	Standard
	mg/l	mg/l	mg/l	mg/l	mg/l
Boron	0.22	0.30	0.51	0.68	2.00
Chloride	41	47	56	67	200
Sulfate	36.00	23.00	62.00	92.00	400
Arsenic	0.0017	0.0014	0.0012	0.0011	0.01
Lithium	0.0045	0.0040	0.0035	0.0052	0.04

Notes:

mg/l = miligrams per liter

Concentrations are from the November 30, 2021 sampling event

FIGURES

Coordinate System: NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure6_LeapfrogGeology.qgz

LEGEND

Coordinate System: NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure10_ModelLayering.qgz

BAS	GROUNDWATER Consulting	K	PRG			
CLIENT	MIDW GENERA	EST TION				
^{SITE} POWERTON 13082 E MANITO ROAD, PEKIN, IL 61554						
TITLE	MODEL L	AYEF	RING			
SCALE AT ANSI A	DRAWN	DZF	10/27/2022			
	CHECKED	BAS	10/27/2022			
BAS PROJECT No.	21141401		FIGURE: 10			

GROUNDWATER Consulting

600

FEET

0

EGE	N	D	

- PERCENT CONCENTRATIONS OF A SURROGATE MASS
- MODEL DOMAIN
- SITE BOUNDARY

Coordinate System: NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure19_Scenario1_DecayOverTime.qgz

19

NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure22_Scenario2_DecayOverTime.qgz

21141401

Coordinate System: NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure24_Scenario3_5YearPlumeDistribution.qgz

Coordinate System: NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure28_Scenario4_5YearPlumeDistribution.qgz

NAD_1983_StatePlane_Illinois_West_FIPS_1202_Feet Project File: Figure30_Scenario4_DecayOverTime.qgz

21141401

30

31

LEGEND

- WELL LOCATION \bigcirc
- **100-YEAR RELATIVE SURROGATE CONCENTRATIONS**
- MODEL BOUNDARY
- SITE BOUNDARY

basgroundwater.com

ATTACHMENT 9 GROUNDWATER MONITORING INFORMATION

<u>Attachment 9-1 – Local Well Stratigraphy Information</u>

ID	Well_Count	Well_ID	From	To Original Logged Description	Grouped As_ToUseToDefine_K_interval	Base of Model	Notes	Ignored
11	3	121790013000	70	70 shale at	shale	х		
30	5	121790012800	76	76 shale at	shale	х		
51	9	121790013200	59	61 shale	shale	х		
58	10	121790052800	49	49 blue shale at	shale	х		
68	12	121790048800	120	121 gray shale	shale	х		
97	14	121790012700	76	76 shale at	shale	х		
101	15	121790012600	36	36 shale at	shale	х		
103	16	121790012500	85	85 shale at	shale	х		
114	18	121792462600	99	103 dk gray shale & hd dk color limestone	shale	х		
128	22	121792453000	44	45 shale bedrock	shale	х		
133	23	121792323500	93	93 shale at	shale	х		
139	24	121792489200	63	63 shale below	shale	х		
178	31	121792478800	99	104 gray shale	shale	х		
194	35	121792481600	102	103 dark gray shale	shale	х		
214	39	121792534000	70	70 boulders or bedrock at	shale	х		
238	45	121792501800	73	73 shale at	shale	х		
258	49	121792492400	60	85 blue-green shale below 60'	shale	х		
334	65	121792379400	61	65.5 light gray, hard, shale	shale	х		
352	70	121792361700	39	40 shale gray	shale	х		
358	72	121792552000	141	141 shale below	shale	х		
421	87	121792438000	45.5	50.25 clayey shale, gray & rust brown-extremely dense	shale	х		
442	90	121792440300	60	70 clayey shale;medium dark gray	shale	х		
451	91	121792440000	35	48.1 clayey shale-gray weathered-very dense	shale	х		
500	99	121792515900	72	72 gray shale at	shale	х		
508	100	121792515800	93	100 soft and hard shale	shale	х		
525	104	121792519900	56	58 shale	shale	х		
536	106	121792312100	103	103 shale at	shale	х		
540	107	121792200900	47	47 shale at	shale	х		
558	111	121792311900	106	106 shale at	shale	х		
572	114	121792180200	104	104 rocks	shale	х	(Assumed to be bedrock)	
581	115	121792179800	78	79 shale	shale	х		
584	116	121792179700	48	67 rock	shale	х	(Assumed to be bedrock)	
599	121	121792180500	88	88 shale	shale	х		
616	123	121792090700	105	107 shale	shale	х		
629	125	121792088600	54	54 cap rock & gray shale at	shale	х		
641	130	121792238000	105	105 rocks at	shale	х	(Assumed to be bedrock)	
650	131	121792237900	95	100 firm gray shale	shale	х		
661	133	121792237700	81	85 firm gray shale	shale	х		
667	135	121792157500	42	42 shale	shale	x		
669	136	121792156800	105	108 black shale	shale	х		
681	138	121792219300	136	136 shale at	shale	x		
693	141	121792138000	80	108 rocks	shale	x	(Assumed to be bedrock)	х
701	142	121792237600	118	120 gray shale	shale	x		
715	146	121792285300	133	133 shale at	shale	х		
730	148	121792204800	96	100 dark gray shale	shale	х		
750	152	121790067100	100	100 hardpan at	shale	x	(Assumed to be bedrock)	

Attachment 9-2 – Boring Logs

				BORING NUMBER		E	B-MW-1-Po	SHEET	1 OF 2
D		ICK		CLIEN	IT	Midw	est Generation		
	116	UN		PROJ	ECT & NO.	2105	3.070		
				ノLOCA	TION	Ρον	verton		
LOGG	ED B'	Y	MPG						
GROU	ND E	LEVA	ATION 461.7						
Z	Ē				SAMPLE		PL D water Co	ontent	
	H (F	A	SOIL/ROCK		TYPE & NO.	<u></u>		30 40 50	NOTES
N N	τ <u>ι</u>	AT	DESCRIPTION		DEPTH (FT)	<u>≷</u> S	Unconfined Co Strength	mpressive	TEST RESULTS
	DE	STI			RECOVERY(IN	비걸었	1 2	3 4 5	·
461.7	0.0	****	Brown coarse to fine sand, dry						
		****		FILL					
		****			SS-1	3			qu=NT
		****			1.0-2.5 14"R	4			
		****				_			
		***							Rentonite seal
		***			88.2				3.0'-18.0'. Stickup
		***			3.5-5.0	3			protective cover
		****			12"R	5			installed.
		***				-			qu-iti

		***			SS- 3	2			qu=NT
		****			6.0-7.5	6			
		***			12 R	°			
		****				7			

		****			SS-4	2			qu=NT
		****			10"R	8			
	, i	****				_			

		***			<u> </u>				au=NT
		****	Trace coarse graver		11.0-12.5	9			4
		****			8"R	10			
		***				-			
		***			SS-6	3			qu≔NT
		\otimes			13.5-15.0	6			
					12°R	6			
		\otimes				7			
		\bigotimes			SS-7	4			qu=NT
		XXX			16.0-17.5	7			
		***				_			
		××			1				Sand pack
443.2	18.5	×××	Drown converse to modium cound the	co fino	<u> </u>				18.0'-30.0'
			gravel, medium dense, saturated		18.5-20.0	5			qu=NT
				SW	/ 14"R	6			1
				$\overline{}$		<u></u>	<u> </u>		
	ING (TRACTOR Groff Testing	R	REMARKS		WATE	R LEVEL (ft.)
	ING I	METH	HOD 4.25" I.D. HSA	Ir	nstalled 2" diar	neter	PVC 🛛 🐺 22.0)	
DRILL	ING E	EQUI	PMENT CME 550 ATV	n	onitoring well	•	Ā		
	ING S	STAF	TED 10/4/10 ENDED 10/4/10	JL			<u>¥</u>		

Ċ		BORING NUMBER	B-MW-1-Po	SHEET	2	OF	2
		CLIENT	Midwest Generation				
	PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
l		LOCATION	Powerton				

LOGGED BY MPG GROUND ELEVATION 461.7

Z	F.				SAMPLE		PL r	Wal	er Con	lent 	LL	NOTES
ATI(TH (F	VTA	SOIL/ROCK		TYPE & NO.	V VTS			o 3 ad Con		0 50	NOTES &
LEV LEV	EPI	STR/	DESCRIPTION		RECOVERY(IN)		1	Stre	ngth (T	SF) >	К 1 5	TEST RESULTS
441.7	20.0		n					d				
						4						Set screen (slot 0.010") 20.5'-30.5'
439.7	22.0		∇		21.0-22.5	5						qu=NT
						3						
											:	
					SS-10 23.5-25.0	4						qu=NT
					18"R	4						
					SS-11 26.0-27.5	4						qu=NT
					18"R	6				-		
433.7	28.0	 101	Coorse to fine arrival come coarse said									
			medium dense, saturated	CP.	SS-12	4						qu≃NT
		00		GF	28.5-30.0 18"R	5 6						
		000			\$S-13	4						qu=NT
		00 00			31.0-32.5 18"R	6 7						
429.2	32.5	00	End of Boring at 32.5'									
								í.				
							l					
				REM				W			EL (ft)	
DRILL	ING I	METH	OD 4.25" I.D. HSA	Insta	illed 2" diam	eter I	PVC	Ţ	22.0			
DRILL	ING I	EQUI	PMENT CME 550 ATV	mon	itoring well.			Ť				
	JNG S	STAR	RTED 10/4/10 ENDED 10/4/10	\subseteq	· · · · · · · · · · · · · · · · · · ·			<u> </u>)

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-2-Po Midwest Generation 21053.070 Powerton	SHEET	1	OF	2
LOGGED BY MPG GROUND ELEVATION 459.2						
	SAMPLE TYPE & NO	PLO	tent $ \Delta$ LL 0 40 50	1	NOTE	S

	H (FT	۲	SOIL/ROCK	SAMPLE TYPE & NO.	ស	PL []- !?	20 30	$= -\Delta LL$	NOTES
ELEVA	DEPTH	STRAT	DESCRIPTION	DEPTH (FT) RECOVERY(IN)	BLOW	Unco 1	onfined Com Strength (T 2 3	pressive SF)米 45	TEST RESULTS
459.2	0.0		Dark brown topsoil, silty clay, dry FILL						
457.7	1.5			SS-1	4				qu≔NT
			Light brown coarse to fine sand, loose, dry	1.0-2.5 10"R	4				
		***		55-2	2				Bentonite seal 3.0'-20.0'. Stickup
				3.5-5.0	3				protective cover installed.
					2				qu=NT
								1	
				SS-3 6.0-7.5	3 3				qu=NT
				12"R	4				
			Dry		4				qu=NT
				8.5-10.0 14"R	5 4				
				88-5	2				ou≓NT
				11.0-12.5	2				40
			Some fine gravel						
				\$\$-6 13.5-15.0	36				qu=NT
				15"R	5				
				\$S-7	2				qu=NT
				16.0-17.5 18"R	5 6				
			Dry	SS-8	3				qu=NT
				18.5-20.0 18"R	3				
439.2	20.0	***							
	ING C	CONT	RACTOR Groff Testing	MARKS			WATER	LEVEL (ft.)	
	ING N	NETH	HOD 4.25" I.D. HSA	talled 2" diam nitoring well.	eter l	PVC	⊻ 24.0		
	ING E ING S	LQUII STAR	TED 10/5/10 ENDED 10/5/10	······			¥ ¥		}

				BC	ORING	NUMBER	· [B-MW-2-Po	SHEET	2 OF 2
p/	۵TR	ICK	ENGINEERING INC	CL	IENT		Midw	est Generation		
				PF	ROJEC	CT & NO.	2105	3.070		
		~		/ LC	DCATE	ON	Pov	verton		
GROU		1 1 FV/	MPG ATION 459.2							
z	6						Т	Water Cor	itent	
	4 (F	<	SOIL/ROCK			TYPE & NO.	တ		—— <u> </u>	NOTES
EVA	Ē	RAT	DESCRIPTION			DEPTH (FT)	SS .	Unconfined Con Strength (1	npressive	TEST RESULTS
EL	DE	ST				RECOVERY(IN)	1 2	3 4 5	
439.2	20.0		Light brown fine to medium sand, we graded, medium dense, dry	41						Sand pack 20.0'-33.5'
				I	FILL	SS-9	4			qu≕NT
						21.0-22.5	10			
						18'K				
435.7	23.5	<u>888</u>	Gray coarse to fine gravel, coarse sa	ind,		SS-10	- ş			qu≕NT
435.2	24.0	<u>دی</u> ،	-Y- trace fine sand and silt, poorly grade	d,		23.5-25.0	13			Set screen (slot
		200			GP					0.010 7 20.0 -00.0
		500				SS-11	4			gu≑NT
		600				26.0-27.5	6 8			· . ·
		60					ļ			
		600								
		607				SS-12	7			qu=NT
						28.5-30.0	10			
		50%					- ~			
		bo d					1			
						SS-13	7			qu≖NT
		00 00				31.0-32.5	8			
		20					- '			
		600								
						SS-14	6			qu≖NT
		٥Č،				33.5-35.0 18"R	9			
424.2	35.0	60	End of Poring at 35 0				-			
			End of borning at 53.9				1			
						l	<u> </u>	<u> </u>	1	
	ING C	CONT	RACTOR Groff Testing		REM	IARKS		WATER	LEVEL (ft.)	
DRILL	ING N	NETH	OD 4.25" I.D. HSA		Insta	lled 2" diam	eter F	PVC 👳 24.0		
DRILL	ING E	EQUI	PMENT CME 550 ATV		mon	itoring well.		Ā		
	ING S	STAR	TED 10/5/10 ENDED 10/5/10	J				¥.		

PATRICK	ENGINEERING	INC.

CLIENT PROJECT & NO. LOCATION

BORING NUMBER B-MW-3-Po **Midwest Generation** 21053.070

SHEET 1 OF 2

Powerton

LOGGED BY MPG

GROUND ELEVATION 459.1

N	Ŀ.			SAMPLE		PL r	Wat	er Con	itent	LL	NOTES
ATI	TH (F	ITA	SOIL/ROCK	TYPE & NO.	/ ITS	1		0 3		50	
ΓEΛ	EPT	TRA	DESCRIPTION	RECOVERY(IN)	SC SC	U	Stre	ea Con ngth (1	npress ISF)	ve K	TEST RESULTS
Ш 459.1	0.0	0 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Dark brown silty clay topsoil	· · ·	60				3	4 5	
455:6	0:5	***	Light brown coarse to medium sand, trace	4							
			fine gravel, trace fine sand, very loose to	SS-1	2						qu=NT
		***	ioose, ary FiLL	1.0-2.5 16"R	1 2						
					-						
		***									Bentonite seal
		***		SS-2	1						3.0'-20.0'. Stickup
		***		3.5-5.0	1 2						installed.
		***									qu=NT

		***		SS-3	2						qu=NT
		***		6.0-7.5 16"R	2						
		***			Ĭ						

		***		55-4	2						qu=NT
		***	Some fine sand	8.5-10.0	3						
		***			_						

		***	Light brown medium to fine sand, loose, dry	SS-5	1						qu=NT
		***	•	11.0-12.5	2						
		***			2						

		***		SS-6	4						qu=NT
		***		13.5-15.0	5						
		***		10 K	0						

		***		\$\$-7	2						qu=NT
		***		16.0-17.5	2						
		***		16"R	3						

	10.0	***			3						gu=NT
440.1	19 .0	XXX	Brown coarse sand, trace fine gravel, well	18.5-20.0	4				ł		
			graded, very loose, wet	16"R	3						
						••••	1.01 0	TEP		= 1 /#4 N	
				alled 2" diam	ator C	NC.		23 0		<u>-c (IL)</u>	
			PMENT CME 550 ATV	aitoring well.		••	_ <u>▼</u>	~U.V			
	ING S	TAR	TED 10/5/10 ENDED 10/5/10				⊥				ļ
									-		

					<u>אר</u>	DRING	NUMBER		B-MW-	3-Po		SF	IEET	2	OF	2
P		СК			CLIENT		Midw	est Ge	nerat	ion						
''	~				PF	ROJEC	CT & NO.	2105	3.070							
				·····	ノLC	CATI	ON	Pov	verton							
LOGG	ED B	Y 	MPG													
GROU			ATION 4	59.1				<u>т </u>	r	Wat	er Cor	itent			_ ,	
lo Vo	ET (_					SAMPLE			}	-0-	<u> </u>		N	OTE	s
VAT	H	AT/					DEPTH (FT)	NT		confini	ed Con	npresslv	/e		&	
	ЭËР	STR		DESCRIPTION			RECOVERY(IN		,	Stre	ngth (1	ſŚF) ≯ ₃ 4	€ ⊧ 5	TEST	RES	ULTS
439.1	20.0			······································		ŚW]				Sand p	ack	
														20.0'-34	4.0'	
							SS-9 21.0-22.5	1						qu≭NT		
							18"R	1								
136.1	23.0		∇					1								
+00.1	23.0		Saturated													
							SS-10 23 5-25 0	1						qu=NT	6	1_4
							0*R	2						0.010")	een (s 24.0'-	10t 34.0'
								-								
1							SS-11	1						qu≕NT		
							20.0-27.5 18"R	2								
							<u> </u>	1								
		•••••					SS-12	2						qu=NT		
							28.5-30.0 18"R	1		1						
								-								
							SS-13	1				1		qu=NT		
							31.0-32.5	2								
425.1	34.0							1								
TEU. 1				End of Boring at 34.0'												
							2									
							ŀ									
	i															
			I						ł							
			<u> </u>											ļ		
יייסת				Groff Testing		DEA			•	1.0/0	TED		1 /# \			
						Inst	alled 2" diam	eter ⁽	PVC		<u>.,</u> 23.0	<u>V_IC نما يند</u>	<u> (14.</u>]			1
DRILI	ING F		PMENT	CME 550 ATV		mon	itoring well.			Ţ						ļ
DRILL	ING S	STAR	TED 10/5/10	ENDED 10/5/10]	Į				Ī						}
					_	<u> </u>										

P	ATR	ICK	ENGINEERING INC.	BORING	G NUMBER CT & NO.	l Midw 2105 Pov	3-MW est Ge 3.070 vertor	-4-Po enera 1	tion	Sł	IEET	1	OF	2
LOGG GROU	ED B IND E	Y LEV	MPG Ation 457. 3											
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	€ BLOW COUNTS	PL 1 U	Wa 0 2 nconfin Stre	ter Cor O	itent npressi (SF)	LL 0 50 ve ₭ 4 5	TES	NOTE & T RES	ES SULTS
457.3 456.5	0.0 0.8		Brown silty clay, roots, topsoll	FILL										

456.5	0.8						
		Light brown sand, medium to fine brown silty	SS-1	6			
		Clay, line gravel, dry FILL	1.0-2.5	3			
				-			
							D
							Bentonite seal 3 0'-20 0' Stickun
			3.5-5.0	3			protective cover
			8"R	4			installed.
			SS-3	4			qu=4.0**tsf
			6.0-7.5	6			
			18"R	9			
		Brown clayey silt					
			SS-4	4			qu=4.0**tsf
			8.5-10.0	5			
							aug 2 Etitof
			11.0-12.5	3			qu-3.5 isi
			17"R	4			
			SS-6	2			qu=3.5**tsf
			13.5-15.0	2			
			17R	3			
		Black clayey silt to silty clay					
441.3	16.0						
		Light brown coarse to fine sand, fine gravel,	SS-7	2			
		SP	18"R	3			
			SS-8	2			
			18.5-20.0	3			
437.3	20.0		18"R	5			1
(200010202.0		1	1		1	<u> </u>
DRILL	ING CONTE	RACTOR Groff Testing	MARKS		WATER	EVEL (ft.	<u>)</u>
DRILL	ING METHO	DD 4.25" I.D. HSA Inst	alled 2" diame	ter PVC	☑ 24.0		
DRILL	ING EQUIPI	MENT CME 550 ATV	nitoring well.		Ā		
	ING START	モD 10/16/10 ENDED 10/16/10 丿し			¥)
	······						······································

					ך BO	RING	NUMBER	l	B-MW	4-Po		SH	EET	2 OF 2
		ICK	ENGINEE		CLI	ENT	1	Midw	est Go	enerat	tion			
「/	411	IGN			PR	OJEC	T & NO.	2105	3.070					
				· · · · · · · · · · · · · · · · · · ·	ノ10	CATIO	NC	Pov	vertor	1				
LOGG	ED B	Y	MPG											
GROU		LEVA	ATION 457.3	i					, <u> </u>	Wa	ter Con	tent		
é	(FT	~		SOIL/ROCK			SAMPLE		PL		-0-		LL 50	NOTES
	тн	EAT N	Г	ESCRIPTION			DEPTH (FT)	l≷Ľ		nconfin	ed Con	npressiv	ie	
ELE	DEF	STF	-				RECOVERY(IN)		.	Stre	ngth (1 ?	SF) # ३ 4	5	TEST RESULTS
437.3	20.0	20	Brown coarse	to fine gravel, trace o	oarse te	0		1						Sand pack
		20	poorly graded	loose to mealum den	se,		88.0			-				20.0-34.0
					4	GP	21.0-22.5	6						φ μ =141
							12"R	6						
		$\langle \hat{O} \rangle$						1						
		0 C					<u>66.15</u>	4						au=NT
433.3	24.0	$\mathbb{S}^{\mathbb{S}}$	⊻ Saturated				23.5-25.0	5						Set screen (slot
		ိုင်င					18"R	7						0.010") 24.0*-34.0*
		ΩÇ					99-11	<u>,</u>			ļ			ou=NT
							26.0-27.5	3						40-111
							14"R	3						
		٥,					55-12	5						ou=NT
		60					28.5-30.0	6						4 0 -111
		603					18"R	10						
		ပိုပ်]						
		\mathcal{O}^{v}					99-13	4			8			ou=NT
		, Ňď					31.0-32.5	4						qu tri
			Coarse to fine	gravel, trace silt			10"R	8	ļ					
	1	00°									ļ			
		20				-								
423.3	34.0		En	d of Boring at 34.0*			1							
												1		
							·····					,	,	
ייואם			RACTOR Gr	off Testing		REM				W	ATER		L (ft)	J
DRILL	ING N	/ETH	OD 4.2	5" I.D. HSA		Insta	alled 2" diam	eter F	PVC	<u>⊥</u>	24.0	<u></u> _	<u></u>	
DRILL	ING E	QUIF	MENT CM	E 550 ATV		mon	itoring well.			Ţ				
DRILL	ING S	STAR	TED 10/16/10	ENDED 10/16/1	ا (د					¥.	-			

				BORING	NUMBER	I	B-MW-5-Po	SHEET	1 OF 2
P		ICK	ENGINEERING INC	CLIENT		Midw	est Generation		
				PROJE	CT & NO.	2105	3.070		
				LOCATI	ON	Pov	verton		
LOGG	ED B	Y	MPG						
GROU	ND E	LEV	ATION 455.8		· · · · · · · · · · · · · · · · · · ·				
N	Ē				SAMPLE			ent ∧LL	NOTES
ATI) H	TA	SOIL/ROCK		TYPE & NO.	L SE	10 20 30	40 50	NOTES &
∐ A	EPT	L RA	DESCRIPTION		DEPTH (FT)	" §≧	Uncontined Comp Strength (TS	SF) 米	TEST RESULTS
		N.		•		" ਛੋਠੋ		4 5	
405.8	0.0		topsoil	iers,					
		***		FILL	SS-1	2			au=NT
					1.0-2.5	2			•
					12"R	3			Bentonite seal
		***				7			2.0'-19.0'. Stickup
			Dry						installed.
					SS-2 35-50	6			qu≕NT
		***			14"R	10			
			Coarse gravel, red coal cinders			-			
		888	Gray silty clay with coarse sand and	fine	SS-3	2			qu=1.25**tsf
			gravel, medium stiff, dry		6.0-7.5 16"P	3			
						ļĭ			
		***	x						
					<u>\$\$-4</u>	- 1			au=1 0**isf
					8.5-10.0	2			qu=1.0 tai
		***			18"R	2			
						-			
					SS-5	2			qu=0.5**tsf
		***			18"R	3			
			Trace black coal cinders Trace coarse sand, moist						
		***	-						
			Gray dayey silt		SS-6	-woh			
			• • •		13.5-15.0	2			
					18°R				
	,								
					16.0-17.5	6			
438.8	17.0	<u> </u>	Grav coarse to fine gravel, coarse to	fine	18"R	6			
1		60.J	sand, poorly graded, medium dense	dry	<u> </u>	-			
		ပိုင်		GP				1	
		ŀÇ,́{			SS-8	4			
		ိုင်			18.5-20.0 18"R	8			Sand pack
435.8	20.0	60.							
		CONT	RACTOR Groff Testing		ARKS		WATERI	EVEL (ft))
		AETH	OD 4.25" I.D. HSA	Inst	alled 2" diam	neter F	VC	<u> </u>	
	ING E		PMENT CME 550 ATV	mor	itoring well.		<u>v</u>		
	ING S	STAR	TED 10/5/10 ENDED 10/6/10	J			Ţ.		J

					BORIN	G NUMBER	I	B-MW-5-Po	SHEET	2 OF 2
P/		ICK			CLIEN	Γ	Midw	est Generation		
	~				PROJE	CT & NO.	2105	3.070		
			MBC		/ LOCAT	JON	Pov	venton		
GROU	ED B IND E	T LEV	ATION 45	5.8						
NO	ΞT)			· · · · · · · · · · · · · · · · · · ·		SAMPLE			ntent	NOTES
ATI	IH (I	VTA		SOIL/ROCK		TYPE & NO.	V JTS	10 20	30 40 50	
EV.	DEPI	STR/		DESCRIPTION		RECOVERY(IN		Strength (тSF) Ж з 4 5	TEST RESULTS
435:8	28:9 28:5		⊊ ^{Coarse to fi}	ine gravel, trace coarse to	fine		1		+ +	
			 sand, poorl saturated 	y graded, medium dense,		-22				au=NT
					GP	21.0-22.5	6			Set screen (slot
		$\dot{\circ}$				0°R	6			0.010") 21.0"-31.0"
		500								
		00				SS-10	4			qu=NT
						23.5-25.0 10"R	6			
							-			
		ိုင်	1			60.44				
		ပီ	Loose			55-11 26.0-27.5	4			ųu=™ I
		500				10"R	4			
		000								
		50,				\$\$-12	4			qu=NT
		, v v				28.5-30.0 10"R	5			
							- `			
424.8	31.0	50								
				End of Boring at 31.0'	ALC: NOT ALC					
						l 				
	ING	CONT	RACTOR 6	Groff Testing		MARKS		WATER)
DRILL	ING N	IETH	IOD 4	.25" I.D. HSA	Ins	talled 2" dian	neter l	PVC 20.5		
	ING E	QUI	PMENT C	ME 550 ATV	mo	nitoring well.		Ţ		
	ING S	TAR	TED 10/5/10	ENDED 10/6/10	Jl			X		J

							6 NUMBER	E Midw/	8-MW-6 est Gei	5-Po neration	SHEE	T 1 OF 2
P/	ATRI	ICK	ENGIN	EERING INC.	PF	ROJEC	CT & NO.	2105	3.070			
					JLC	CATI	ON	Pow	/erton			
LOGG	ED B	Y	MPG									
GROL			TION 4	161.2			1			Water Co	ntent	
VATION	тн (FT)	ATA		SOIL/ROCK			SAMPLE TYPE & NO.	NTS				L NOTES
	DEP	STR		DESCRIPTION			RECOVERY(IN	BLO COUC	1	Strength ((TSF) ¥ 3, 4	TEST RESULTS
461.2	0.0		Gravel, c	lay, coal cinders	F	= 1_L						
							SS-1	-				
							1.0-2.5					
								-				
												Bentonite seal 3.0'-18.0', Stickup
							3.5-5.0					protective cover
												instance.
							SS-3 6.0-7.5					
								1				
							SS-4	-				
							8.5-10.0					
451.2	10.0		Dark gray	y clayey silt, organics, very	soft,			-				
			moist		F	FILL	00 F					au-0.25*****
							11.0-12.5	1				qu=0.25 tsi
							17"R	1				
447.2	14.0		Disclara				SS-6	WOH				qu=0.25**tsf
			BIACK COS	al cinders, loose, wet	F	FILL	16"R	3				
							SS-7	2				
444.2	17.0		¥				16.0-17.5 14"R	3				
442.2	18.00											
44 0.2	10.00		Olive gra	y and gray organic silt, trac	ce clay	Ι,						Sand pack
			uace pea	n, iow plasticity, wet		OL	SS-8 18.5-20.0	2				qu=NT
								1				Set screen (slot 0.010") 19.0'-29.0'
	ING C	ONT	RACTOR	Groff Testing		REN	IARKS			WATER		ft.)
DRILL	ING M	1ETH	OD	4.25" I.D. HSA		Insta	alled 2" diam	neter F	vc	☑ 17.0		-
DRILL	ING E	QUIP	MENT	CME 550 ATV		mon	itoring well.			Ā		
(DRILL	ING S	TAR	TED 10/6/1	0 ENDED 10/6/10		U				Ţ)

		•		Ē	ORING	NUMBER	E	3-MW-6-	Ро	SHEET	2 OF 2
l d		ICK			LIENT		Midw	est Gen	eration		
	~			F F	ROJE	CT & NO.	2105	3.070			
				/L	OCATI	ON	Pov	verton			
LOGG	ED B	Y	MPG								
GROU	ND E	LEV	ATION 461.2								
Z	Ē					SAMPLE			Water Con	itent	
ATI(H (F	I ₹	SOIL/I	ROCK		TYPE & NO.	LS	10	20 3	30 40 50	NOTES
	ЪТ	RA	DESCR	IPTION		DEPTH (FT)	N N	Unco	onfined Con Strenath (1	npressive FSF) 米	TEST RESULTS
<u> </u>	B	ST				RECOVERY(IN		1	2	3 4 5	
441.2	20.0										
	, 	[- <u>-</u>				21.0-22.5	1				qu=0.25**tst
						16"R	2				
							-				
			Trace fine sand, dark g	ray mottled black	κ.						
			organic silt, trace fine s	and, wet		SS-10	1				qu=0.50**tsf
						23.5-25.0 18"R	2				
							ľ				
						SS-11	3				au=0.75**tef
						26.0-27.5	3				qu-0.70 to
433 7	27.5					18"R	3				
400.7	27.0		Dark gray organic clay,	trace fine sand,			1				
			medium stiff, moist		0						
					UL.	SS-12	2				qu=1.25**tsf
						20.5-30.0 18"R	3				
431.2	30.0		End of Bor	ing at 30.0'			-				
				ing at 66.6							
	I										
DRILL	ING C	ONT	RACTOR Groff Test	ing	REN	IARKS		1	WATER	LEVEL (ft.)	
DRILL	ING N	IETH	OD 4.25" I.D. I	ISA	Insta	alled 2" diam	eter F	VC	⊽ 17.0		
DRILL	ING E	QUIF	PMENT CME 550 A	ATV	mon	itoring well.			Ā		
	ING S	TAR	TED 10/6/10 ENDE	D 10/6/10					¥.		J

					B	ORING	NUMBER	B-MW-7-Po SHEET 1 OF 3							
P		СК	ENGIN			LIENT		Midw	est G	enera	tion				
''					PF	ROJEC	CT & NO.	2105	3.070						
					LC	DCAT	ON	Pov	vertor	ı					
LOGG	ED B	Y	MPG												
GROU	IND E	LEVA	TION	459.6											
NO	F						SAMPLE		PL I	Wa	ter Cor	ntent	LL		
ATI	Ц Д	A		SOIL/ROCK			TYPE & NO.	IS		0 2	20 :	30 4	0 50	NOTES	
Д	1 1 1	RA		DESCRIPTION			DEPTH (FT)		U U	nconfin Stre	ed Cor enath (1	npressi ISF) →	ve K	TEST RESULTS	
Ш	ä	<u>ତ</u>					RECOVERY(IN			1 :	2	3 4	4 5		
459.6	0.0		Sand, gr	ravel, black cinders, dry		F11 1									
								-			ļ				
							1.0-2.5		1						
								1							
														Bentonite seal	
							SS-2							3.0'-32.0'. Stickup protective cover	
							0.0-0.0							installed.	
								-							
							SS-3	1							
							6.0-7.5								
								4							
							SS-4	-							
							8.5-10.0								
449.6	10.0														
			Sand, gr	avel, clay, black coal cinders	\$	=]							
	Ŕ				ſ		00.5								
	Į.						11.0-12.5	3							
	Į.						6"R	3							
	ß							1							
446.1	13.5	<u> </u>													
			Dark gra	y organic clay, soft, moist		ОH	SS-6	2						qu=0.5**tsf	
						011	10"R	2							
							SS-7	2						qu=0.5**tsf	
							16.0-17.5	1							
			Moist												
			Trace fie	e cand organic silt moist											
			Trace III	e aanu, organiic siit, moist			SS-8	WOH						0u=0.75**tef	
							18.5-20.0	2						40-070 IBI	
<u>439</u> .6	20.0						18"R	2			i				
					7	 			<u>_</u>						
		ONTF	RACTOR	Groff Testing	Į	REM	ARKS			WA	TER	LEVE	L (ft.)		
		ETHO		4.25" I.D. HSA		Insta	Iled 2" diame	eter P	VC	ΙĀ ;	36.0				
		QUIP		CME 550 ATV			toring well.			Ā					
URILL	ING S	TART	ED 10/4/1	10 ENDED 10/5/10	J	\square				Ĭ					

Г

	-			BORING	NUMBER	E	3-MW-7-Po	SHEET	2 OF 3
				CLIENT	r.	Vidw	est Generation		
P/	41 K	IUN	ENGINEERING INC.	PROJEC	T & NO.	2105	3.070		
				LOCATIO	NC	Pov	verton		
LOGG	ED B	Y	MPG						
GROU	ND E	LEVA	TION 459.6						
Z	Ê						Water Con	tent	
	H (F		SOIL/ROCK		TYPE & NO.	S		<u>-</u> ∆ LL 0 40 50	NOTES
N N	Ë.	₹ 1	DESCRIPTION		DEPTH (FT)	≥t	Unconfined Corr	pressive	
	DEF	STF			RECOVERY(IN)	L L L L L L L L L L L L L L L L L L L	Strength (1	SF) # i 4 5	IESI RESULIS
439.6	20.0		Dark gray organic clay, mottled black	,					
			medium stiff, dry	011					
i				UH	SS-9	3			qu=1.0**tsf
					21.0-22.5	2			
					SS-10	2			au=1.25**tef
					23.5-25.0	3			qu-1.25 tsi
					18"R	4			
						1			
433.6	26.0								
			Gray organic silt, trace shells, fibers,	very	SS-11	2			qu=0.25**tsf
			soft, moist	0	26.0-27.5	2			
		1		UL		_			
			Dec						
		1	Dry		28.5-30.0	2			qu=1.75 tst
					18"R	3			
]				1			
428.6	31.0	1							
420.0	01.0		Dark gray organic clay, trace fine grav	vel,	SS-13	2			qu=1.25**tsf
			moist	04	31.0-32.5	4			
				ОП		3			Sand pack
									32.0-45.0
426.1	33.5				00.44				auto MT
			Gray clayey gravel, coarse sand, clay moist	, Siit,	33.5-35.0	2			qu≃nı
				GC	18"R	2			
						1			Set screen (slot
400.0	26.0		∇						0.010") 35.0'-45.0'
423.0	30.0	1	≚ Medium dense, saturated		SS-15	2			qu≖NT
					36.0-37.5	7			
					18"K	l o			
		/2,							
					SS-16 38.5-40.0	2			

419.6 40.0 7 10"R REMARKS WATER LEVEL (ft.) DRILLING CONTRACTOR Groff Testing DRILLING METHOD Installed 2" diameter PVC monitoring well. **∑** 36.0 4.25" I.D. HSA DRILLING EQUIPMENT Ţ CME 550 ATV DRILLING STARTED 10/4/10 Ţ ENDED 10/5/10

	· · ·			BORING	NUMBER	1	3-MW-8-I	Po	SHE	ET	1 OF 2		
		ICK		CLIENT		Midw	est Gene	eration					
║╹				PROJE	CT & NO.	2105	3.070						
					ION	Pov	verton						
		Y u rtvi	MPG										
			410N 400./			1		Water Cor	ntent	. 1			
<u>ě</u>	(FT	-	SOIL/ROCK			l v			∆ 30 40	LL 50	NOTES		
	тн	SAT/	DESCRIPTION		DEPTH (FT)	Ì≩Ĕ	Unco	nfined Cor	npressive		ھ TEST RESULTS		
ELE	Ш	STR			RECOVERY(IN) <u>ස</u> ිරි	1	əuengin (1 ²	ior)⊼ 3, 4	5			
468.7	0.0	***	Fine gravel, sand, silt, clay, black o	cinders,	1								
			dry	FILL		4							
					1.0-2.5								
							1						
						-							
						1					Bentonite seal		
					SS-2 3.5-5.0						protective cover		
											installed.		
						-							
					SS-3								
					0.0-7.0								
						-							
					SS-4								
					8.5-10.0								
458.7	10.0	۱	Black oladore	·		-							
			Diaux Ginuers	FILL									
					SS-5	15							
	ļ				11.0-12.5	28							
						-			1 1				
					SS-6	11							
					13.5-15.0 18"R	15							
						_							
			Silby clay seam 15 5'-16 5'										
			Silly blay searn 10.0 10.0			15							
			X Q		16.0-17.5	15							
					17°K	14							
											Sand pack		
	1					- ₇					18.0'-30.0'		
	40.				18.5-20.0	11							
449.2	19.	' 🗱	*		18"R								
					MADVO					(#+ `	<u> </u>		
		CON			iviARNO tailed 2" dia	notor	PVC	<u>₩ AIE</u>		(11.	L		
			HUU 4.23 I.U. HOA IDMENIT CME 550 ATV	mo	nitoring well			¥ 19.5					
		STAR	RTED 9/30/10 ENDED 9/30/1	0	-			Y					
UNIL				<u> </u>				L					
				<u>אר</u>	RING	NUMBER	I	B-MW-8-Po		SHEE	ĒT	2 OF 2	
------------	----------------	----------	--	-----------	------	---------------------------	--------------	------------	---------------------	-------------------	--------------	---------------------	--
Р/	ATR	ICK	ENGINEERING INC.	CL	IENT		Midw	est Genera	tion				
				PF		T & NO.	2105	3.070					
		v .	MPG		CATK	JN	Pov	venton					
GROU	NDE	LEV/	ATION 468.7										
Z	F					SAMPLE		PL	ter Conte	ent	L		
ATIC	H (F	Υ	SOIL/ROCK			TYPE & NO.	l s	10 2	0 30	40	50	NOTES	
	EPT	TRA	DESCRIPTION			DEPTH (FT) RECOVERY(IN	Ι <u></u> δδ	Unconfin	ed Com ength (TS	oressive SF) 米		TEST RESULTS	
ш 448.7	20.0	<i>S</i>	Black cinders		:	•			2 3		5	Set screen (slot	
447 7	21.0		∇	F	FILL		Į					0.010") 20.0'-30.0'	
	-1.0	***	Saturated			SS-9 21.0-22.5	5						
		***				18"R	3						
		***					-						

		***				SS-10 23.5-25.0							
444.2	24.5	1111	Dark gray organic clay, soft, moist			18"R	2						
					0H		1					qu=0.75**tsf	
						89-11	4					aust N*tef	
						26.0-27.5	ź	:				qu-1.0 6	
441.2	27.5					18"R	2						
			Dark gray organic silt, medium stiff to low plasticity, moist	to soft	ı								
			ion plaationy, moise		OL	SS-12	2					gu=1.25**tsf	
						28.5-30.0	4						
438.7	30.0					18"R	- 4						
			End of Boring at 30.0'										
					·								
											i		
					İ								
					(• • • • · · ·	<u> </u>	<u> </u>					
	ING C	ONT	RACTOR Groff Testing		REM				ATER L	.EVEL (<u>ft,)</u>		
	ING N INC 7				mon	itoring well.	ieter I	~VG ¥	21.U 19.6				
	ING 5	STAR	TED 9/30/10 ENDED 9/30/10		l	_		≚ ▼					

				$\overline{\mathcal{A}}_{B}$	ORING	NUMBER	E	3-MW-	9-Po	SHEET	1 OF 2
∥ р/		ICK	ENGINEERING INC.	C	LIENT		Midw	est Ge	eneration		
				P	ROJEC	CT & NO.	2105	3.070			
					DCATI	ON	Pov	verton			
LOGG	ED B.	Y 1 = 1 / /	MPG								
GROU			ATION 466.2			1	T		Water Co	ntent	
<u>ē</u>	E	_				SAMPLE]0-		NOTES
VAT	E	ATA					SEZ		20 Confined Col	30 40 50	&
ELE	Ĕ	STR.	DESCRIPTION			RECOVERY(IN)	SS		Strength (TSF) ¥	TEST RESULTS
466.2	0.0		Black cinders, fine gravel, crushed (rock.	drv			<u> </u>	— Î	3 4 5	
1		***		•	FILL						
		***				SS-1	1				
		***				1.0-2.5					
		***					4				
		****									Bentonite seal
		***					1				3.0'-20.0'. Stickup
		***				3.5-5.0					protective cover
		***									ingraneo.

		***				60.2	{ .				
		***				6.0-7.5					

		***					1				

		***				SS-4					
		***				0.0-10.0					
456.2	10.0		Black cinders, coarse to fine sand,	orick.	fine		-				
		***	gravel, dry	,			[
		***			FILL	SS-5	6				qu=NT
		***				11.0-12.5 14"R	12				

						SS-6	5				gu=NT
	Ŕ	***				13.5-15.0	6				
		***				18"R	1				
	k i										
						88-7	6				
440.0	17.00		Moist			16.0-17.5	9				4 4 -141
449.2	17.00		Brown clayey silt, trace fine sand, m	noist		18"R	10				
	ļ				CL		1				:
	i i i i i i i i i i i i i i i i i i i										
447.2	19.0		1			SS-8 18 5-20 0	3	i í			qu=NT
	-		graded	ose, v	veii	18"R	11				
	[<u>l</u>	<u>ا ا ا</u>	
DRILL	ING C	ONT	RACTOR Groff Testing		REM	ARKS			WATER	LEVEL (ft.)	
DRILL		IETH	OD 4.25" I.D. HSA		Insta	lied 2" diam	eter F	vc	⊽ 23.5		
DRILL	ING E	QUIF	MENT CME 550 ATV		mon	itoring well.			<u>▼</u> 21.6		
	ING S	TAR	TED 9/28/10 ENDED 9/28/10						¥		

P	ATR	ICK	ENGINEERING INC.	BORING CLIENT PROJEC LOCATI	NUMBER CT & NO. ON	i Midw 2105 Pov	B-MW-9-Po vest Generation 53.070 werton	SHEE	T 2 OF 2
	ed B Ind F	Y LEV	MPG ATION 466.2						
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	 	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW	PL Water C PL 10 20 Unconfined C Strength 1 2	ontent 30 40 ompressive (TSF) $\#$ 3 4	50 NOTES
446.2	20.0		Ā	SW	SS-9 21.0-22.5 18"R	3 3 4			Sand pack 20.0'-32.0' Set screen (slot
442.7	23.5		∑ Saturated		SS-10 23.5-25.0 18™R	138			0.010") 22.0-32.0
					SS-11 26.0-27.5 18"R	022			
			Medium dense		SS-12 28.5-30.0 18"R	2 6 13			
433.7	32.5		Trace fine grave! End of Boring at 32.5'	 	SS-13 31.0-32.5 18"R	2 5 10			
DRILL DRILL	ING C ING M ING F		RACTOR Groff Testing OD 4.25" I.D. HSA MENT CME 550 ATV	REM Insta mon	ARKS Iled 2" diam itoring well.	eter F	PVC ⊻ 23.5	<u> ≀ LEVEL (ft</u>	<u>.)</u>

⊉ 21.6

Ţ

DRILLING EQUIPMENT CME 550 ATV

ENDED 9/28/10

DRILLING STARTED 9/28/10

			٦B	ORING	NUMBER	-	3-MW-	10 -P o	SHEET	1 OF 2	
	лтр	ick		C	LIENT		Midw	est Ge	neration		
║╺	AIR	IUN	ENGINEERING INC.	P	ROJEC	CT & NO.	2105	3.070			
				L	OCATI	ON	Pov	verton			
LOGG	ED B	Y	MPG								
GROL	IND E	LEV/	ATION 454.1								
Z	E		w			0441015	1		Water Co	ontent	
19	Ŀ	A	SOIL/ROCK			TYPE & NO	0	10 10		<u>-</u> 30 40 50	NOTES
A A	H	MT	DESCRIPTION			DEPTH (FT)	l≥₹	Un	confined Co	ompressive	
EE		STF				RECOVERY(IN	비영	1	Strength 2	(ISF) ¥K 3 4 5	S S S S S S S S S S S S S S S S S S S
454.1	0.0		Black and brown silty clay topsoil				+				
					CL						
						SS-1	٦				
						1.0-2.5	i i				
											Destantia seet
							-				3.0'-17.0'. Stickup
ļ						3.5-5.0					protective cover
											installed.
							-				
1											
						SS-3	1				
						6.0-7.5					
							1				
							-				
Í						8.5-10.0					
							1				
444.1	10.0		Brown organic silt, some clay, trace	peat			-				
			soft, moist	•							
					OL	SS-5	1				qu=0.5**tsf
						11.0-12.5	2				
440.6	13.5		Rippk organic alou, medium plasticity			8.22	1,				au=1.5**tef
			medium stiff, dry	у,		13.5-15.0	3				Qu-115 161
			- -		OL	18"R	4				
							-{				
438.1	16.0										
			Brown and gray silty clay, trace to litt	tle		SS-7	4				qu=2.0**tsf
			coarse to fine sand, medium stiff, dr	у	CI	16.0-17.5	4				
					04						Sand pack
						1					17.0-20.0
							-				
						18.5-20.0					Set screen (slot
											0.010") 19.0'-29.0'
				_		ł		<u></u>	<u></u>		
DRILL	ING C	ONT	RACTOR Groff Testing		REM	IARKS			WATE	R LEVEL (ft.	2
DRILL	ING N	/ETH	OD 4.25" I.D. HSA		Insta	alled 2" diam	neter F	PVC	및 21.0	 ۲	
DRILL	ING E	QUI	PMENT CME 550 ATV		mon	itoring well.			Ā		
	ING S	TAR	TED 10/4/10 ENDED 10/4/10	J	l				¥)

						G NUMBER	Í I	B-MW	-10-Pc)	SH	EET	2 OF 2	!
р.					CLIENT	-	Midw	est G	enerat	ion				
F 4	AIR	IUN		NEEKING ING.	PROJE	CT & NO.	2105	3.070						
		_			LOCAT	ION	Pov	vertor	1					
LOGG	ED B	Y	MPG											
GROU	IND E	LEV	ATION	454.1										_
NC	Ĥ					SAMPLE		PL	Wat		tent	LL	NOTEO	
ATIC	H (F	Γ		SOIL/ROCK		TYPE & NO.	13		0 2	0 3	0 40	50	NOIES	
EV.	L L	R		DESCRIPTION		DEPTH (FT)		U	nconfin Stre	ed Con nath (T	npressiv 'SF) 米	e	TEST RESU	LTS
Ш	DE	ST				RECOVERY(IN	" 22		1	2	3 4	5	· .	
434.1	20.0						ł							
433.1	21.0		Graviat	area to fine cand trace fin	aravel	0.22			1				ou≓NT	
			silt, poo	riy graded, loose, saturated	5 graver, 1	21.0-22.5	2						و قرم مراجع	
				• -	SP	18"R	1							
							1							
ļ						SS-10	2						qu≂NT	
429.6	24.5						3							
		Ĩõ	Brown a	and gray coarse to fine grav loose saturated	/el, poorty		-1^{-}	1						
		0_0	graded,	10000, 001010100	GP									
						55-11	2						au≖NT	
		20				26.0-27.5	4					:		
		$\frac{1}{2}$				10"R	7							
		20					1							
		00				SS-12	5						qu=NT	
		200				28.5-30.0 14"R	8							
424.1	30.0						-							
				End of boning at 30.0										
							1							
						i								
		İ												
							1							
													F	
								1						
								1						
								1						
						1								
]							1	1						
						ľ	ļ			l				
-							1							
								<u> </u>	<u> </u>		ļ		<u> </u>	_
	ING C	CONT	RACTOR	Groff Testing	RE	MARKS			WA	TER	LEVE	L (ft.)		
DRILL	ING N	ЛЕТ⊢	IOD	4.25" I.D. HSA	Ins	talled 2" dian	neter	PVC	Ţ	21.0'				
	ING E		PMENT	CME 550 ATV	mo	nitoring well.			I					
	ING S	TAR	TED 10/4/	10 ENDED 10/4/1	b] [Ţ					j
					\sim \sim									_

						BORI	NG	NUMBER	1	B-MŴ	/-11-P	0	S⊦	IEET	1 OF 2
D	ATR	ICK	ENGIN	EERING II	NC	CLIE	T	I	Midw	est G	ienera	ition			
						PROJ	EC.	T & NO.	2105	3.070)				
\subseteq				·······		LOCA	\TIC)N	Pov	verto	n				
LOGG	ED B.	Y	MPÇ												
GROU	ND E	LEVA	ATION 4	68.1						<u>~</u>					
								SAMPLE		PL		O-		LL	NOTES
	æ	£		SOIL/RO	CK			TYPE & NO.	LS I	L	10	20 :	30 4	0 50	NOTES &
ΝE	E E	2		DESCRIPT	ION			DEPTH (FT)	NO NO	'	Jnconfi Str	ned Col ength (npressii TSF}	fe E	TEST RESULTS
Ъ	DE DE	ST							配び		1	2		5	
468.1	0.0		Cinders	s, gravel, sand	, silt	CO I	ľ				1]			
		***				T I III III	` -	<u>ee 1</u>	-			1			
		***						1.0-2.5							

		****					ł								
		***								i i					Bentonite seal
		***					ľ	SS-2	1						3.0'-28.0'. Stickup
		****						3.5-5.0]						installed.
		***							1						

		****					┝	66.3	ł						
		****						6.0-7.5							
												ſ			
		****					ŀ		1						

		***					ſ	SS-4	1		1				
		***						8.5-10.0		1	1				
458.1	10.0	****						<u></u>							
		****	Black a cinders	nd brown clay, bricks silt cr	, fine gra harse san	vel, Int			ļ		·				
		****	dry			,	⊦	<u>\$8-5</u>	8						gu=NT
		****	·			FILL		11.0-12.5	10		-				· · ·
		****						16"R	10						
		***					ľ		1				1		
		****										1			
		****						SS-6	2	1					qu≃2.5**tsf
		****						13.5-15.0 17"R	2						
		***					ŀ		ļ]
		***							l						1
452.1	16.0	<i>}}}</i>	Brown	and grav eithy c	lav trace	fine		 	1						au≂1,5**tsf
			gravel,	trace fine sand	d, stiff, dr	у У		16.0-17.5	3						
			- •			CL	.	18"R	4	ŀ					
							ľ		1						
449.6	18.5														
			Gray cl	ayey silt, orgar	nics, very	soft,	Ī	SS-8	MÖH	1					qu=0.5**tsf
			moist			ML		10.0-20.0 18"R	2			1			
DRIL		ONT	RACTOR	Groff Testing			EM	ARKS			W	ATER	LEVE	L (ft.)	, j
DRILL		IFTH		4.25" I.D. HS/	1		istal	lied 2" diam	eter i	PVC		32.5	while	drilli	na l
DRILL			MENT	CME 550 ATV	-	m	ioni	toring well.				26.5	after	12 h	ours
			TED 9/79/4		¥29/10							26.5	after	48 h	ours
	AL 4 C 7 C		0, 2,01			$\prime \sim$					-				

PATRICK ENGINEERING INC CLIENT Midwest Generation	
PROJECT & NO. 21053.070	
LOGGED BY MPG	
GROUND ELEVATION 468.1	
	NOTES
	ROTES &
Image: Strength (TSF) # Image: Strength (TSF) # Image: Strength (TSF) # Image: Strength (TSF) #	TEST RESULTS
448.1 20.0	
	qu=ri
0"R 3	
SS-10 WOH	qu=0.5**tsf
23.5-25.0 WOH	
442 1 26 0	
441.6 26.5 Tark gray silty clay, some organics, SS-11 1	qu=1.5**tsf
CL 18"R 4	
	Sand pack
S5-12 3 28 5-30 0 4	qu=2.5**tsf
18"R 6	
	Set screen (slot
<u> </u>	0.010) 30.0-40.0 au=2.6**tef
31.0-32.5 4	qu-2.5 (8)
435.6 32.5 ▽	
Brown and gray coarse to fine	
saturated SS-14 1	qu=NT
431.6 36.5 of 0 36.5	qu=NT
Light brown fine sand, well graded, 30.0-37.5 0	
sw	
SS-16 2 38.5-40.0 3	qu=N
428.1 40.0 End of Boring at 40.0 18"R 4	
	<u> </u>
DRILLING CONTRACTOR Groff Testing REMARKS WATER LEVEL (ft.)	ng
DRILLING EQUIPMENT CME 550 ATV	ours
DRILLING STARTED 9/28/10 ENDED 9/29/10)	ours

		<u> </u>			BORING	NUMBER	1	3-MW-1	12-Po	SHEET	1 OF 2	
P/	ATR	ICK	ENGI	NEERING INC.	CLIENT		Midw	est Ge	neration			
					PROJEC	CT&NO.	2105	3.070				
					LOCATI	ON	Pov	verton				
LOGG	ED B	ŕ	MPG									
GROU			ATION	470.0		l	–		Water Cor	tent		
						SAMPLE			<u>-</u>	LL	NOTES	
	H	AT A				DEPTH (FT)	NTS I		confined Cor	npressive	&	
LE/	EP1	E		DESCRIPTION		RECOVERY(IN	រទ្ធភ្ល		Strength (1	ſ\$F)¥ ₃	TEST RESULTS	
470.0	0.0	8888	Black	cinders fine gravel sil	ltv clav			┝──┤	<u>İ</u>		······································	
		****	dry	ondolo, me gidroi, oi								
		***			FILL	SS-1	1					
		****				1.0-2.5						
		***					4					
		****							·		Rentonite seal	
		***				SS-2	-				3.0'-18.0'. Stickup	
		****				3.5-5.0			ł		protective cover	
		****									N19(01164)	
		****							Ì			
		****				L	-					
		***				SS-3 60-75			l			
		***				0.0-7.0			1			
		****					-					

		****				\$S-4						
		****				8.5-10.0						
460.0	10.0	***					4					
		****	Black	CINCERS	FILL							
		***				SS-5	17				qu≖NT	
						11.0-12.5	18		ł			
		****				18"R] 11					

		****				13 5-15.0	20				qu=rv i	
		****				18"R	17					
		****					-					

			Seam	of I ight brown coarse	sand	SS-7	6		1		qu≔NT	
		***				16.0-17.5	6					
							- ["]					
	ا م						l				Sand pack	
451.5	18.5		Gravs	silt. little to some coars	e to	SS-8	11				18.0'-35.0'	
Ach e	10 E		_ fine sa	and, trace clay, very so	oft,	18.5-20.0	5				Qu=NT Set screen (slot	
400.5	19.5		- satura	ited		18"R	2				0.010") 19.0'-29.0'	
	ING (CONT	RACTOR	Groff Testing		MARKS			WAIER	<u>LEVEL (ft.)</u>		
DRILL	RILLING METHOD 4.25" I.D. HSA Installed 2" diameter PVC Q 20.5											
DRILL	ING E	EQUIF	PMENT	CME 550 ATV		ntoring wen.			⊉ 19.5			
	ING S	STAR	TED 9/29	10 ENDED 9/29/10	\square \square				¥)	

				BC	RING	NUMBER	E	8-MW-	12 - Po	SHEET	2	OF	2
P	4TR	IC	ENGINEERING INC.	CL	IENT		Midw	est Ge	neration				
				PR		T & NO.	2105	3.070					
					CATI	DN	Pov	verton					
	ED B	Y HEV	MPG Ation 470 d										
GRUU							<u> </u>	1	Water Co	ontent			
		a	SOIL/ROCK			SAMPLE	5		<u>}</u> -O-	∧ LL 30 40 54	ļ	OTE	5
N.	Ta C	E E	DESCRIPTION			DEPTH (FT)	a É	Un	confined Co	mpressive	TEST	& RES	
ELE	E E	STF				RECOVERY(IN)	E S	1	2 2 2	3 4 4			0210
459.9	28.9	Ш	∑		ML								
					1	88.0	4				0	25**te	F
						21.0-22.5	2				4 0-0	40 10	
						18"R	1						
							1						
						80.10					au=0	5**tof	
			Trace neat			23.5-25.0	2	1 1			40-0	Q 191	
						18"R	1						
							1	1					
444.0	26.0	Щ	Conversitied block slover oil	14		88.11]			au=0	5**tef	
			some organics, trace peat, ve	i, wiii Sry	13	26.0-27.5	WOF]			qu=0		
			soft, medium stiff, moist	•	പ	18"R	2						
					74		1						
						00.40					au=1	76****	r
						28.5-30.0	3				qu⇒ ≀	.73 05	
						18'R	4						
						00.48						OWNER	
						31.0-32.5	3				qu-z	v isi	:
427 6	30 E					18"R	3						
407.0	UZ.U		Dark brown and gray silty cla	у,			1						
			trace coarse sand, trace orga stiff to very stiff, dry	inics	•							******	
					CL	SS-14 33.5-35.0	6				qu=∠	.ə!si	
425.0	26.0					18"R	6						
400.0	-99.U		End of Boring at 35.0				1				1		-
						9							
		<u> </u>		7	<u> </u>	<u></u>						<u>.</u>	
ORILL	ING (CON	TRACTOR Groff Testing		REN	IARKS			WATE	<u>R LEVEL (ft.</u>	2		
DRILL	ING I	NET	10D 4.25" I.D. HSA		Insta	iled 2" diam itoring well	eter i	PVC	₩ 20.5	•			
	ING		PMENT CME 550 ATV						¥ 19.5	ł			1
DRILL	ING \$	STAF	TED 9/29/10 ENDED 9/29/10	J					17				

	<u></u>				B	ORING	NUMBER		B-MW	-13-P	0	SHEE	T 1 OF	2
P	ATR	СК	ENG			LIENT		Midw	øst G	enera	tion			
	-				'" P	ROJE	CT & NO.	2105	3.070					
					L	OCATI	ON	Ρο	vertor	1				
LOGG	ED B	Y	MPG											
GROL	IND E	LEVA	ATION	467.7					.					
							SAMPLE		PL	Wa −−−−	ter Cor 	ntent ∧ Ll	-	
	H	TA		SOIL/ROCK			TYPE & NO.	TS		0 2	2	30 40	50 NOTI - &	-5
		LRA		DESCRIPTION	1		BECOVERY(IN	MON	0	nconfin Stre	ed Cor Ingth (1	npressive TSF) X	TEST RE	SULTS
<u><u> </u></u>	8 C	<u>.</u>						E U			2	3 4	5	
407.7	0.0	****	Black	c cinders, sand, rock	, dry	FILL								
[***					SS-1	-						
		****					1.0-2.5							

		****					SS-2	1						
		***					2.5-4.0						Bentonite s	eal
													3.0'-28.0'.	Stickup
													installed.	
								{						1
1														1
							SS-3	1						
							6.0-7.5							
	Ř						00.4							
	Į						8.5-10.0			1				
457 7	10.0									1				
			Black	cinders, medium sa	Ind									
					F	FILL								
	Ŕ						SS-5	5					qu=NT	
1							11.0-12.5 14"R	9 7						
	Š.									[
	k													
							SS-6	3	1				au=NT	
							13.5-15.0	3					1	
	Ř						15"R	2		-				
	Ŕ		S	anania ailé maiaé			00 7 1							1
	X		Some	e organic siit, moist			55-7 16.0-17.5	/VОН 1		1			qu=N I	
460.2	17 =						18"R	1						
-JU.2	11.38		Gray/	olive gray organic si	t, very									
	ŀ		soft			~					ŀ			
	ŀ	_					SS-8	1					qu=0.0**tsf	
	Ē						18.5-20.0 18"R	0						
447.7	20.0												<u> </u>	
				Groff Teeting)	REM	ARKS			10/4)	
DRILL		ETH	31310F 00	4.25" I.D. HSA		Ineta	led 2" diama	ter D	VC		<u>1 CIX 1</u> 14 K	<u> V </u>	1	
DRILL			MENT	CME 550 ATV		moni	toring well.	WI P			9.5			
DRILL	NG SI	TART	ED 9/29	/10 ENDED 9/29/	10		_							
					····					1-				ノ

PATRICK ENGINEERING INC.

BORING NUMBERB-MW-13-PoCLIENTMidwest GenerationPROJECT & NO.21053.070LOCATIONPowerton

O SHEET 2 OF 2

LOGGED BY MPG GROUND ELEVATION 467.7

				SAMPLE		PL r	Water Cor	tent					
		A	SOIL/ROCK	TYPE & NO	S	· - L 1	20 8		NOTES				
>	臣	AT	DESCRIPTION	DEPTH (FT)	MU	Ur	confined Con	npressive	&				
1	造답	TR	BECOMINION	RECOVERY(IN)	38		Strength (1	`\$F) ₩	TEST RESULTS				
Ei H		S S			шŋ	1	2	3 4 5					
447.7	20.0		Dark gray and black organic clay,										
			very soft, moist				Į						
			Он	SS-9 1	NOH				qu=0.25**tsf				
				21.0-22.5	NOH				-				
445 2	22.5			18"R	2								
			Dark gray and black organic silt				1						
		1	very soft, moist										
			OL	SS-10	NOH				au=0.25**tef				
				23 5-25 0	1				qu-0.25 (8)				
		-1		18"R	i								
441.7	26.0												
			Dark gray and black organic clay,	SS-11	NOH				qu=1.0**tsf				
			soft, dry	26.0-27.5	1								
			OH	18 K	2								
			Medium stiff			1			Sand pack				
				SS-12	0				28.0'-40.0'				
			_	28.5-30.0	2				qu=1.5**tsf				
438.2	29.5		Ϋ́Υ	18"R	3								
	l l												
437.2	30.5	IIA				- 1			Set screen (slot				
			Gray silty clay, some coarse to fine						0.010) 30.0 -40.0				
436.2	31.5		∇ sand, trace line gravel, wet	SS-13	2	1			qu=2.0**tsf				
	Ē		UL CL	31.0-32.5	4								
				16"R	Э	1							
ľ						ļ							
						- 1							
422.7	24 0			SS-14	2				au=2.0**tef				
433.7	34.UZ	wa	∽_Stiff	33.5-35.0	3				44-2.0 (SI				
	in the second se	C°J	Brown coarse to fine gravel, trace	6"R	2								
	Pa Pa	રુપ્ર	coarse to medium sand, silt,										
	þ	7.4	medium dense, saturated			1							
	þ,	501	GP										
	þ	õq		SS-15	4				qu=NT				
	ľ	0.9		30.0-37.5	Ď	1							
	P	2일		OK	0								
	Þ	24			[
	þ	201											
	Þ	00		SS-16	5				au=NT				
	o	60		38.5-40.0	8								
407 -	in a la	ટ્રગ્રે	End of Boring at 40.01	8"R	8								
427.7													
	REMARKS <u>WATER LEVEL (T.)</u>												
DRILL	RILLING METHOD 4.25" I.D. HSA Installed 2" diameter PVC 👳 31.5												
DRILL	ING E	QUIP	MENT CME 550 ATV	onitoring well.			¥ 29.5						
DRILL	ING ST		ED 9/29/10 ENDED 9/29/10										
							[<u>+</u>						

						BORING	NUMBER		B-MW	-14-P	0	SF	IEET	1 OF	2
P	ΔTR	ICK	FNG		e l'	CLIENT		Midw	rest G	епега	tion				
• '						PROJE	CT & NO.	2105	53.070	1					
						LOCATI	ON	Ροι	verto	n					
LOGG	ED B	Y	MPG												
GROL	JND E	LEV/	ATION	467.7			·····	_							
							SAMPLE	1	PL	₩a 		ntent	LL		
.	H	TA T		SOIL/ROCK	C		TYPE & NO.	IS	·		20	30 4	50		S
Δ	L do	RA		DESCRIPTIO	N		DEPTH (FT)	Mo	U	nconfin Stre	ed Cor Inath (npressi∖ TSF) ≯	/e	TEST RES	ULTS
	ä E	ы С					RECOVERT	LE S		1	2	3 4	5		
467.7	0.0	***	Cind	lers, gravel, sand, s	ilt, dry	EU I									
							88.1	-							
		****					1.0-2.5				}				

		****						1		Į	[
		***												Bentonite s	eal
							SS-2						1	3.0'-18.0'. S	over
		***					3.5-5.0	1						installed.	
								{							

							SS-3	1							
		***					6.0-7.5								
							SS-4	{							
	Š						8.5-10.0	5					4		
457.7	10.0	***]		
	ŝ		Brow	n fine gravel, some	silty cla	ay									
	Ŕ		anu c	Joarse sand, dry		FILL	00.5								
	Į						55-5 11.0-12.5	4							
	Š						18"R	4							
	Ř														
	Į.														
	Į.						SS-6	4							
	8						13.5-15.0 16"R	3							
	Ŕ														
															-
							SS-7	2							
	Č.						16.0-17.5	3							
ĺ	i i i i i i i i i i i i i i i i i i i		Black	c cinders			10"K	3				1			
									ĺ			ļ		.	
	XX						<u> </u>	2	ļ					Sand pack 18.0'-30 0'	
448.9	48.8	XX .					18.5-20.0	3						44.4	
ㅋㅋㅋ 영 : 로	14:80		Gray	organic silt, some fi	ne san	d,	18"R	1							
													=		
DRILL	ING C	ONTF	RACTOR	R Groff Testing		REM	ARKS			WA	TER	LEVEL	<u>(ft.)</u>		
DRILL	ING M	ETHO	DD	4.25" I.D. HSA		Insta	lled 2" diame	ter P	VC	⊈ 1	9.5				
DRILL		QUIP	MENT	CME 550 ATV		moni	toring well.			Y 2	20.5				
DRILL	ING S	TART	ED 9/30	10 ENDED 9/30	/10					Ţ			_		기

P	ATR	ICK	ENGINEERING INC.	BORING	ONUMBER	Midw 2105 Pov	B-MW-14-Po est Generation 3.070 verton	SHEET	2 ()F 2
LOGG GROL	ED B	Y LEV/	MPG Ation 467.7							
ELEV.	DEPTH (ET)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS	PL Water Con 10 20 3 Unconfined Corr Strength (T 1 2 3	tent LL 0 40 50 pressive SF) # 4 5	NC TEST F	NTES & RESU
447.3	38.9		very loose, low plasticity, sa	turated					Set scre	en (sl

SLEV.	DEPTH (ET)	STRAT	DESCRIPTION		DEPTH (FT) RECOVERY(IN)	SOUNT	Unconfined Streng	Compressiv th (TSF) #	e E	& TEST RESULTS
447:3	20.5		y very loose, low plasticity, satura	ated OL				ŤŤ		Set screen (slot 0.010") 20.0'-30.0'
					SS-9 21.0-22.5 18"R	1 0 0				qu=NT
442.7	25.0			- 14	SS-10 23.5-25.0 18"R	1 1 2				qu=0.25**tsf
			Gray and mottled black organic trace fine sand, soft, low plastic moist	: silt, :ity, OL	SS-11 26.0-27.5 18"R	0 0 1				qu=0.25**tsf
438.7 437.7	29.0 30.0		Gray and black organic clay, medium stiff, moist	OH	SS-12 28.5-30.0 18"R	2 3 4				qu=1.25**tsf
DRILL DRILL DRILL DRILL	ing C ing M ing E ing S		RACTOR Groff Testing OD 4.25" I.D. HSA MENT CME 550 ATV TED 9/30/10 ENDED 9/30/10	REN Insta mon	IARKS Alled 2" diame Itoring well.	ter P	VC VC VC V 19. V 20. V	<u>ER LEVEL</u> 5 5	<u>(ft.)</u>	

P	ATR	ICK	ENGI	NEERING INC	- B P L	ORING LIENT ROJE OCATI	S NUMBER	Midw 2105 Pov	B-MW-15-F rest Genera 33.070 werton	'o Ition	SHEET	1 OF 2
LOGO	ED B	Y	MPG									
GROU.	DEPTH (FT)	STRATA		SOIL/ROCK			SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW	PL Unconfil Unconfil Str	ater Conte 20 30 1ed Comp ength (TS 2 3	ınt 40 50 100 50 1	NOTES
468.3	0.0		Black dry	cinders, fine gravel,	sand, F	silt, =ILL	SS-1 1.0-2.5 SS-2 3.5-5.0					Bentonite seat 3.0'-17.0'. Stickup protective cover installed.
458.3	10.0		Black	cinders fine gravel	Coarse		SS-3 6.0-7.5 SS-4 8.5-10.0					
			sand,	silt, dry	F	- ILL	SS-5 11.0-12.5 14"R	6 13 12				
							00-00 13.5-15.0 0"R SS-7 16.0-17.5 14"R	775				
448.8 448.3	19.5 20.0		¥				SS-8 18.5-20.0 18"R	211				Sand pack 17.0'-30.0'
DRILL DRILL DRILL DRILL	ING C ING M ING E ING S	ONTF IETHO QUIPI TART	RACTOR D MENT ED 9/30 /	Groff Testing 4.25" I.D. HSA CME 550 ATV /10 ENDED 9/30/1	10	REM Insta moni	ARKS lied 2" diama toring well.	eter P	vc ⊻ ¥	TER LI 20.0' 19.5	<u> EVEL (ft.)</u>	

					٦B	ORING	NUMBER		B-MW	-15-P	0	S	HEET	2	OF	2
P		ICK	ENGI			LIENT		Midv	vest Ge	enera	ition					
11 *	~ ! ! `				P	ROJE	CT & NO.	2108	53.070							
					ノレ	OCATI	ÓN	Po	werton	I I						
LOGG	ED B	Y	MPG												·	
GROL	IND E	LEV/	TION	468.3												-
							SAMPLE	ł	PL	WI 	ster Col	ntent	L			<u> </u>
.	н	£		SOIL/ROCK			TYPE & NO.	្រដ		ē	20 :	so 7	<u>і́р 60</u>		NOTE	5
Δ.	LA E	2		DESCRIPTION			DEPTH (FT)	8 S	Ur	iconfii Str	angth (npressi TSF)	ve K	TES	TRES	ULTS
	E	เข						1 E S			2	3	4 5			
448.3	20.0		Gray f	ine sand, trace medium saturated	n sa	and,						}		Set s	icreen 1 20 r	(slot V_30 A
			10030,	Saluidiou		SM	66.0	1			1				/) 20.1 IT	-30.0
							21.0-22.5	1						40-1		
							18"R	1						ľ		
								1					ļ	}		
444.8	23,5							1								
		=1	Gray s	ilit, mottled black, some	3		SS-10	1						qu=0	.75**ts	f
			organi	cs, soil, moist ly wet		OL	18"R	2								
		크						ł			Í		ł			
] .		크														
							SS-11	1			{			qu=1	.0**tsf	
		-1					26.0-27.5	2								
		크														
440.3	28.0		Grave	liby clay, some organice		off										
			mediu	m stiff, dry	ə, ə	on,	SS-12	1						au=1	0**tsf	ł
				• •		CL	28.5-30.0	3						4 0-1.		
438.3	30.0			·			18"R	2								
				End of Boring at 30.0'				}								
	ł															
	ł															
	1															
		[
		1														
	L	<u> </u>			5					1		<u> </u>				=
DRILL	ING C	ONT	RACTOR	Groff Testing		REM	ARKS			WA	TER	LEVE	<u>L. (ft.)</u>			
DRILL	ING M	ETH	DD	4.25" I.D. HSA		Insta	lled 2" diam	eter F	νc	¥	20.0'					
DRILL	ING E	QUIP	MENT	CME 550 ATV	ĺ	moni	toring well.			¥	19.5					
DRILL	ING S	TART	ED 9/30/*	10 ENDED 9/30/10	J					T						

<u> </u>	Midv	KPRG and Associates, fac. west Generation, LLC Powerton Station Pekin, Illinois project No. 15315.7	GEOLOGIC Date Started Date Well Set Drilling Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF MW-17 (Page 1 of 2) : 09/21/15 : 09/21/15 : 8 1/4 HSA : None : Geoprobe : Nick / Cabeno Env. Serv.	Total B Well Bo Surface TOC El Ground Riser M Screen Coordin Coordin Loggeo	oring Dept ottom Dept e Elev. lev. lwater Elev faterial Material mate N mate E I By	h : 30.0 h : 30.0 : xxx : xxx : 2" S : 2" S : : : : P. A	I feet feet above MSL feet above MSL feet above MSL feet above MSL ch 40 PVC ch 40 PVC, 0.010 slot llenstein
Depth in Feet	Surf. Elev. 575	Γ	DESCRIPTION		% RQD	% Recovery	Well Dia	agram:
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17	- 575 - 574 - 573 - 572 - 571 - 570 - 569 - 568 - 567 - 566 - 565 - 564 - 563 - 562 - 561 - 560 - 559 - 558	Asphalt Roadway over sand, si SILTY SAND, fine to coarse, bl - begin black with orange brow - some gray silt laminates	It, gravel mix, brown, d ack, slightly moist, occ	iry. : silty layers.				- Concrete with Flushmount Bentonite Grout - Riser 2" Sch 40 PVC
18-	- 556 - 555	SILT, gray, laminated with SILT	rY SAND, moist					—Filter Sand
21-	554	SILT, gray, laminated with light	brown silt, trace organ	nics, wet.				– Screen, 0.010 slot 2" Sch 40 PVC

	Midv	L CONSULTATION & REMEDIATION (PRC and Astociales, Inc. vest Generation, LLC Powerton Station Pekin, Illinois roject No. 15315.7	GEOLOGIC Date Started Date Well Set Drilling Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF MW-17 (Page 2 of 2) : 09/21/15 : 09/21/15 : 8 1/4 HSA : None : Geoprobe : Nick / Cabeno Env. Serv.	Total B Well Bd Surface TOC E Ground Riser M Screen Coordi Logged	oring Dep ottom Dep e Elev. lev. lwater Ele Material Material mate N mate E i By	th : 30.0 feet th : 30.0 feet : xxx feet above MSL : xxx feet above MSL : xxx feet above MSL : 2" Sch 40 PVC : 2" Sch 40 PVC, 0.010 slot : : : P. Allenstein
Depth in Feet 22-	Surf. Elev. 575 - 553	C	DESCRIPTION		% RQD	% Recovery	Well Diagram:
23- 24- 25-	- 552 - 551 - 550						-Filter Sand
26 27 28	- 549 - 548 - 547	SILTY SAND, black and dark gr	ay, fine to meduim, we	ət.			Screen, 0.010 slot 2" Sch 40 PVC
29- 30-	- 546 - 545	End of Boring at 30 feet.		<u>.</u> .			
32- 33-	- 543 - 542						
34 - 35 -	- 541 - 540 - 539						
37- 38-	- 538 - 537						
39 40 41	- 536 - 535 - 534						
42	- 533 - 532						

ENVIR	Midv Pi	PRG and Associates, Inc. vest Generation, LLC Powerton Station Pekin, Illinois roject No. 15315.7	GEOLOGIC Date Started Date Well Set Drilling Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF MW-18 (Page 1 of 2) : 09/21/15 : 09/21/15 : 8 1/4 HSA : None : Geoprobe : Nick / Cabeno Env. Serv.	Total B Well Bo Surface TOC E Ground Riser M Screen Coordin Logged	oring Dept ottom Dept e Elev. lev. dwater Elev Material naterial nate N nate E d By	h : 30.0 feet h : 30.0 feet : xxx feet above MSL : xxx feet above MSL : xxx feet above MSL : 2" Sch 40 PVC : 2" Sch 40 PVC, 0.010 slot : : : : P. Allenstein
Depth in Feet	Surf. Elev. 575	Ē	DESCRIPTION		% RQD	% Recovery	Well Diagram:
0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21-	- 575 - 574 - 573 - 572 - 571 - 570 - 569 - 568 - 567 - 566 - 565 - 564 - 565 - 564 - 565 - 564 - 565 - 564 - 559 - 558 - 558 - 555 - 555	SILTY CLAY, brown, trace grav SILTY SAND, fine to coarse, bla moist. - clayey from 7-8, followed by c	el, slightly moist.	aray, dry to slightly			-Bentonite Grout Riser 2" Sch 40 PVC

EN VIR	Midv Pi	PRG and Associates, lac. vest Generation, LLC Powerton Station Pekin, Illinois roject No. 15315.7	GEOLOGIC LOG OF M (Page 2) Date Started : 09/21/15 Date Well Set : 09/21/15 Drilling Tools : 8 1/4 HSA Reaming Tools : None Drill Rig : Geoprobe Driller Name/Co : Nick / Cabeno E	W-18 e of 2)	Total B Well Bo Surface TOC E Ground Riser M Screen Coordin Logged	oring Dept ottom Dept e Elev. lev. laterial Material mate N mate E l By	h : 30.0 feet h : 30.0 feet : xxx feet above MSL : xxx feet above MSL : xxx feet above MSL : 2" Sch 40 PVC : 2" Sch 40 PVC, 0.010 slot : : : P. Allenstein
Depth in Feet	Surf. Elev. 575	Ē	ESCRIPTION		% RQD	% Recovery	Well Diagram:
22 23 24 25	- 553 - 552 - 551 - 550						Riser 2" Sch 40 PVC
26 27 28 29	- 549 - 548 - 547 - 546						
30 - 31 -	- 545 - 544	CLAY, gray, some black, moist.					Filter Sand
32- 33- 34-	- 543 - 542 - 541	CLAY, dark gray, trace organics	, moist.				Screen, 0.010 slot 2" Sch 40 PVC
35- 36- 37-	- 540 - 539 - 538	CLAY, greenish gray, trace orga	inics, moist.				
39- 40-	- 536	SILTY SAND, tan, some gravel End of Boring at 40 feet.	very moist.		_		
41- 42- 43- 44-	- 534 - 533 - 532						

ENVIR	Midv	PRG and Associates, Inc. vest Generation, LLC Powerton Station Pekin, Illinois	GEOLOGIC Date Started Date Well Set Drilling Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF MW-19 (Page 2 of 2) : 10/05/16 : 10/05/16 : 8 1/4 HSA : None : Geoprobe : Nick / Cabeno Env. Serv.	Total B Well Ba Surface TOC E Ground Riser M Screen Coordi Logged	loring Dept ottom Dept e Elev. lev. dwater Elev Aaterial naterial nate N nate E d By	th : 41.0 feet : 41.0 feet : xxx feet above MSL : xxx feet above MSL : xxx feet above MSL : 2" Sch 40 PVC : 2" Sch 40 PVC, 0.010 slot : : : P. Allenstein
Depth in Feet	Surf. Elev. 575	C	DESCRIPTION		% RQD	% Recovery	Well Diagram:
22-	- 553						
23-	- 552						
24-	550						
25-	549						Bentonite Grout
27-	- 548						Riser 2" Sch 40 PVC
28-	- 547						
29-	- 546	SAND, fine to medium, gray, tra	ce gravel, moist.				
30-	- 545	SAND, fine to medium, brown, v	very moist.				
31-	- 544						
32-	- 543						
33-	- 542						
34-	- 541						
35-	- 540						Filter Sand
36-	- 539						Screen, 0.010 slot
37-	- 538						
38-	537						
39-	536						
40-	535						
41-	534						
42-	533	End of Boring at 41 feet.					
43-	532						
44-							

Attachment 9-3 - Historical CCA Groundwater Data

Temperatura 'C dopuse Coklas Conductivity noviste' militairense/corritoren Dissolved Origina ngl. militarare/bar Origina Radacine Poundi (CRP) nV militavolo

10/30	0/2018	2/25/	2019	4/30	/2019	8/27	2019	11/13	/2019	2/24	2020	5/19	/2020	8/10	2020	12/7	/2020	2/23	/2021	5/11	/2021
DL.	Result	DL.	Result	DL	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DI.	Result
0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	0.0086	0.003	ND	0.003	ND	0.003	ND	0.003	ND
0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
0.0025	0.066	0.0025	0.045	0.0025	0.036	0.0025	0.056	0.0025	0.05	0.0025	0.042	0.0025	0.059	0.0025	0.057	0.0025	0.058	0.0025	0.046	0.0025	0.045
0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND ^+
0.05	0.17	0.05	0.057	0.05	0.061	0.05	0.53	0.05	0.53	0.05	0.24	0.5	2	0.25	0.82	0.05	0.53	0.05	0.34	0.05	0.17
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND ^	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
2	42	2	67	2	55	2	38	2	46	2	54	10	36	2	39	2	53	- 4	61	2	49
0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	0.0064 *	0.005	ND	0.005	ND
0.1	0.12	0.1	0.15	0.1	0.16	0.1	0.13	0.1	0.2	0.1	0.24	0.1	0.17	0.1	0.17	0.1	0.26	0.1	0.18	0.1	0.18 H
0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.35	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0.0025	ND	0.0025	0.0059	0.0025	ND	0.0025	ND	0.0025	0.013	0.0025	0.0029	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.008	0.0025	ND
0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
0.1	3.4	0.1	4.6	0.1	3.8	0.1	5.1	0.1	5.7	0.1	4.5	0.1	2.4	0.1	1.3	0.1	8.4	0.1	5.5	0.1	3.3
0.2	3.4	0.5	4.6	0.5	3.8	0.5	5.1	0.5	5.7 ^	0.5	4.5	0.5	2.4	0.1	1.3	0.5	8.4	0.5	5.5	0.5	3.3 F1
0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.0054	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	39	25	33	5	28	5	89	5	46	5	32	25	98 H	25	64	15	57 F1	10	41	10	38
0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	530	10	470	10	410	10	580	10	380	10	410	10	500	30	440	10	420	10	430	10	380
0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
0.02	ND	0.02	ND	0.02	ND ^	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
NA	7.59	NA	7.32	NA	7.20	NA	7.15	NA	7.51	NA	7.19	NA	7.10	NA	6.86	NA	7.22	NA	7.52	NA	7.52
NA	17.91	NA	5.80	NA	6.10	NA	12.10	NA	16.07	NA	9.90	NA	10.00	NA	13.90	NA	11.90	NA	5.70	NA	8.00
NA	0.68	NA	0.85	NA	0.47	NA	0.14	NA	0.69	NA	0.28	NA	0.76	NA	0.82	NA	0.86	NA	0.55	NA	0.77
NA	6.29	NA	9.35	NA	7.43	NA	3.51	NA	2.88	NA	4.50	NA	3.28	NA	5.33	NA	4.36	NA	8.66	NA	3.41
NA	15.5	NA	66.1	NA	119.1	NA	110.7	NA	-48	NA	52.7	NA	73.9	NA	139.9	NA	-4.8	NA	37.3	NA	116

10/30	/2018	2/26	2019	4/30	/2019	8/27	2019	11/12	2/2019	2/24	2020	5/19/	2020	8/10	2020	12/9	/2020	2/22	/2021	5/11	2021
XL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL	Result	DL.	Result
003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	0.0036	0.003	ND	0.003	ND	0.003	ND	0.003	ND
001	ND	0.001	0.0012	0.001	0.0017	0.001	ND	0.001	0.0011	0.001	ND	0.001	0.0012	0.001	ND	0.001	ND	0.001	ND	0.001	0.001
025	0.068	0.0025	0.038	0.0025	0.046	0.0025	0.066	0.0025	0.066	0.0025	0.061	0.0025	0.057	0.0025	0.078	0.0025	0.071	0.0025	0.054	0.0025	0.057
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND ^+
.05	0.092	0.05	0.064	0.05	0.13	0.05	0.49	0.05	0.43	0.05	0.3	0.05	0.33	0.25	1.1	0.05	0.56	0.05	0.25	0.05	0.19
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND ^	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
2	42	2	51	2	51	2	49	2	46	2	55	10	47	2	42	2	43	4	44	2	50
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND												
u	0.17	0.1	0.16	0.1	0.18	0.1	0.17	0.1	0.19	0.1	0.23	0.1	0.2	0.1	0.22	0.1	0.15	0.1	0.15	0.1	0.18 H
u	ND	0.1	ND																		
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND FI	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
1025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
u	3.4	0.1	3.7	0.1	1.2	0.1	0.71	0.1	2.4	0.1	2.1	0.1	4.1	0.1	6.3	0.1	9.5	0.1	7.9	0.1	3.4
12	3.4	0.5	3.7	0.1	1.2	0.1	0.71	0.5	2.4	0.5	2.1	0.5	4.1	1	6.3	0.5	9.5	0.5	7.9	0.5	3.4
.02	ND	0.02	ND ^1+	0.02	ND																
004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
1025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND F2	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	33	1	24	5	30	5	38	5	43	5	39	5	37 H	25	68	15	65	15	51	10	39
002	ND	0.002	ND	0.002	ND	0.002	ND FI	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	480	10	400	10	440	10	420	10	420	10	380	10	390	30	450	10	340	10	540	10	300
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
.02	ND	0.02	ND	0.02	ND ^	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
IA .	7.83	NA	7.82	NA	7.60	NA	7.13	NA	7.66	NA	7.43	NA	7.33	NA	6.96	NA	7.78	NA	7.65	NA	7.70
iA.	12.91	NA	1.60	NA	4.90	NA	15.20	NA	13.75	NA	6.80	NA	10.10	NA	17.90	NA	9.50	NA	2.40	NA	12.30
IA .	0.57	NA	0.70	NA	0.48	NA	0.13	NA	0.71	NA	0.33	NA	0.64	NA	0.84	NA	0.84	NA	0.50	NA	0.76
iA.	8.30	NA	8.28	NA	4.19	NA	0.45	NA	0.61	NA	1.11	NA	0.55	NA	1.03	NA	5.30	NA	11.49	NA	0.68

10/30	/2018	2/26	/2019	4/30	/2019	8/26	2019	11/12	2/2019	2/24	2020	5/19/	2020	8/10	2020	12/9	2020	2/22	/2021	5/11/	2021
XL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL	Result	DL.	Result
003	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND
001	ND	0.001	ND	0.001	0.0011	0.001	ND	0.001	0.0012	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
1025	0.054	0.0025	0.049	0.0025	0.058	0.0025	0.071	0.0025	0.075	0.0025	0.063	0.0025	0.053	0.0025	0.056	0.0025	0.081	0.0025	0.088	0.0025	0.076
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND *+
.05	0.18	0.05	ND	0.05	0.27	0.05	0.28	0.05	0.3	0.05	0.3	0.05	0.15	0.05	0.49	0.05	0.76	0.05	0.6	0.05	0.18
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND ^	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
2	44	2	56	2	48	2	51	2	50	2	53	10	49	2	47	2	44	4	53	4	49
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND												
u	0.26	0.1	0.25	0.1	0.23	0.1	0.25	0.1	0.27	0.1	0.25	0.1	0.3	0.1	0.26	0.1	0.29	0.1	0.24	0.1	0.19 H
u	ND	0.1	ND																		
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
1025	ND	0.0025	ND	0.0025	ND	0.0025	0.014	0.0025	0.0036	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
11	1	0.1	3.7	0.1	0.22	0.1	ND	0.1	0.46	0.1	ND	0.1	4.6	0.1	0.39	0.1	4.3	0.1	6.1	0.1	4.1
u.	1	0.5	3.7	0.1	0.22	0.1	ND	0.1	0.46	0.1	ND	0.5	4.6	0.1	0.39	0.5	4.3	0.5	6.1	0.5	4.1
.02	ND	0.02	ND ^1+	0.02	ND																
004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
1025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.0032	0.0025	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
5	29	25	27	5	39	5	15	5	32	5	71	5	34	5	43	25	59	25	54	5	40
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	410	10	400	10	420	10	420	10	390	10	410	10	340	30	350	10	410	10	520	10	370
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
.02	ND	0.02	ND	0.02	ND ^	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
iA.	7.84	NA	7.49	NA	7.17	NA	7.17	NA	7.55	NA	7.10	NA	7.09	NA	7.00	NA	7.46	NA	7.34	NA	7.33
iA.	14.63	NA	2.80	NA	10.50	NA	25.0	NA	19.0	NA	10.0	NA	12.0	NA	21.5	NA	17.8	NA	13.9	NA	7.2
iA.	0.51	NA	0.72	NA	0.44	NA	0.73	NA	0.72	NA	0.71	NA	0.19	NA	0.42	NA	0.25	NA	0.68	NA	0.73
iA.	4.20	NA	8.66	NA	4.53	NA	0.24	NA	0.43	NA	0.30	NA	3.61	NA	0.28	NA	1.15	NA	1.12	NA	5.90
iA.	9.6	NA	116.4	NA	117.8	NA	30.3	NA	-50.3	NA	147.8	NA	53.2	NA	77.8	NA	148.9	NA	148.2	NA	143.3

 Sample: MWe4
 Das
 0.15/200
 9/8/201
 9/12/201
 9/8/201
 0.12/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/2/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201
 5/1/201

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A< Chloride Manganese

رو المعاملة المناخل 21:8 3 (September 21:

Temperature 'C dogross Calcius Conductivity mexicat' millioinnens continens Dissolved Orygen ng.t. milljerase fare Oronen Radacine Proceedia (ORP) nV milliovits

Sample: MW-05	Date	12/15/2	010 3/	25/2011	6/16/20	911 9	/19/2011	12/12/2011	3/19/201	2 6/25/2	012 9/1	18/2012	12/12/2012	2/27/201	013 5/25	9/2013	7/31/2013	10/21/201	013 :	3/5/2014	5/27/2014	8/25/2	014 10	0/27/2014	2/25/201	5 5/1	3/2015	8/17/2015	11/17	2015 2/	23/2016	5/17/2016	8/16/2016	5 11/15	5/2016 2/	14/2017	5/1/2017	8/28/20	17 11/	7/2017	3/6/2018	5/15/2018	8/7/2018	10/30	0/2018	2/26/2019	4/30/2019	8/26/2	J19 11/J	12/2019	2/24/2020	4/28/2020	8/10/20	.20 12/9	/2020	2/22/2021	5/11/2021
Parameter	Standards	DI.	Result DL	. Result	DL F	Result D	L. Result	DL Rest	alt DL Re	valt DL	Result DL	Result	DL Result	t DL R	Result DL	Result	DL Result	DL R	Result DL	. Result	DL Resu	t DL	Result DI	. Result	DL B	esult DL	Result	DL Resu	it DL	Result DL	Result	DL Result	DL Rei	sult DL	Result DL	Result	DL Result	h DL i	Result DL	Result	DL Result	DL Result	DL Rei	ult DL	Result 1	DL Result	DL Res	alt DL	Result DL	Result	DL Result	DL Resul	t DL	Result DL	Result	DL Result	DL. Result
Antimony	0.006	NP	ND 0.00	6 ND	0.003	ND 0.0	03 ND	0.003 NE	0.003 N	D 0.003	ND 0.003	3 ND 0.	0.0050 ND	0.003	ND 0.0030	ND 0	0.0030 ND	0.0030	ND 0.00	30 ND	0.0030 ND	0.0030	ND 0.00	30 ND	0.0030	ND 0.0030	ND	0.0030 ND	0.0030	ND 0.003	0 ND	0.0030 ND	0.0030 N	D 0.0030	ND 0.003	0 ND	0.0030 ND	0.003	ND 0.003	ND 0	1003 ND	0.003 ND	0.003 N	D 0.003	ND 0.	.003 ND	0.003 NF	0.003	ND 0.003	ND (0.003 ND	0.003 ND	0.003	ND 0.003	ND ©	x003 ND '	0.003 ND
Arsenic	0.010	NP	0.0011 0.00	I ND	0.001	ND 0.0	01 ND	0.001 0.00	01 0.001 N	D 0.001	ND 0.001	I ND 0.	0.0050 ND	0.001	ND 0.0010	ND 0	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.001	0 ND	0.0010 ND	0.0010 N	D 0.0010	ND 0.001	0 ND ^	0.0010 ND	0.001	ND 0.001	ND 0	1001 ND	0.001 ND	0.001 N	D 0.001	ND 0.	.001 ND	0.001 NF	0.001	ND 0.001	ND (0.001 ND	0.001 ND '	0.001	ND 0.001	ND (x001 ND	0.001 ND
Barium	2.0	NP	0.053 0.00	0.048	0.001 0	0.046 0.0	01 0.071	0.001 0.06	65 0.001 0.0	0.001	0.058 0.001	0.066 0	0.040 0.077	7 0.001 0	0.061 0.0025	0.089 0	0.0025 0.092	0.0025 0.	0.088 0.00	25 0.059	0.0025 0.053	0.0025	0.069 0.003	25 ND	0.0025 0	041 0.0025	0.055	0.0025 0.07	3 0.0025	0.060 0.002	5 0.043	0.0025 0.051	0.0025 0.0	155 0.0025	0.051 0.002	5 0.052	0.0025 0.055	5 0.0025 0	0.063 0.0025	0.057 0	0025 0.072	0.0025 0.057	0.0025 0.0	51 0.0025	0.07 0.0	0.054 0.054	0.0025 0.04	41 0.0025	0.053 0.0025	0.049 0	J.0025 0.055	0.0025 0.05	0.0025	0.059 0.0025	0.048 0	.0025 0.045 f	0.0025 0.039
Beryllium	0.004	NP	ND 0.00	I ND	0.001	ND 0.0	01 ND	0.001 NE	0.001 N	D 0.001	ND 0.001	I ND 0.	0.0010 ND	0.001	ND 0.0010	ND ^ 0	0.0010 ND	0.0010	ND 0.00	00 ND	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.000	0 ND	0.0010 ND	0.0010 N	D 0.0010	ND 0.003	0 ND ^	0.0010 ND	0.001	ND 0.001	ND 0	1001 ND	0.001 ND	0.001 N	D 0.001	ND 0.	.001 ND	0.001 NF	0.001	ND 0.001	ND (0.001 ND	0.001 ND	0.001	ND 0.001	ND ^l+ C	x001 ND ^+	0.001 ND ^+
Boron	2.0	NP	0.95 0.01	1 0.93	0.01	0.79 0.0	01 0.79	0.01 0.7	7 0.01 0.	82 0.01	0.74 0.01	0.65	0.40 0.66	0.01 0	0.66 0.050	0.70	0.050 0.64	0.050 0	0.83 0.05	50 0.70	0.050 0.76	0.050	0.71 0.05	0 ND	0.050	1.1 0.050	0.72	0.050 1.3	0.050	0.74 0.050	0.59	0.050 0.63	0.050 0.0	66 0.10	0.83 0.050	0 0.59	0.050 0.68	0.05	0.57 0.05	0.45	0.05 0.34	0.05 0.56	0.05 0.	15 0.05	0.5 0	1.05 0.56	0.05 0.f	i 0.05	0.47 0.05	0.56	0.05 0.52	0.05 0.48	0.05	0.68 0.05	0.46 f	1.05 0.53	0.05 0.48
Cadmium	0.005	NP	ND 0.00	I ND	0.001	ND 0.0	01 ND	0.001 NE	0.001 N	D 0.001	ND 0.001	I ND 0.	0.0010 ND	0.001	ND 0.00050	ND 0.	100050 ND	0.00050	ND 0.000	150 ND	1.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	ND I	0.00050 0.000	50 0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	0 ND	0.00050 ND	0.0005	ND 0.0005	ND 0	0005 0.00053	0.0005 ND	0.0005 N	D 0.0005	ND 0.1	0005 ND	0.0005 NF	0.0005	ND 0.0005	ND 0	1.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0	.0005 ND f	0.0005 ND
Chloride	200.0	NP	150 25	120	10	89 2	5 160	25 140	0 10 8	2 50	100 50	150	25 170	50	110 10	92	10 150	10	170 10	120	10 80	10	140 10	120	10	79 10	120	2.0 60	10	110 2.0	54	10 88	10 10	00 2.0	66 10	98	10 92	10	120 10	110	10 110	10 90	10 12	10 10	120	10 87	2 74	10	78 2	72	2 80	2 56	2	70 10	80	6 70	4 53
Chromium	0.1	NP	0.0044 0.004	4 0.0042	0.004	ND 0.0	04 0.0066	0.004 NE	0.004 N	D 0.004	ND 0.004	4 0.0058 0.	0.0030 0.0049	9 0.004 0.	0.0053 0.0050	ND 0	0.0050 ND	0.0050	ND 0.00	50 ND ^A	0.0050 ND	0.0050	ND 0.002	50 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 ND	0.0050 N	D 0.0050	ND 0.005	0 ND	0.0050 ND	0.005	ND 0.005	ND 0	1.005 ND	0.005 ND	0.005 N	D 0.005	ND 0.	.005 ND	0.005 NT	0.005	ND 0.005	ND (0.005 ND	0.005 ND	0.005	ND 0.005	ND 0	.005 ND /	0.005 ND
Cobalt	1.0	NP	0.0025 0.000	2 0.0023	0.002	ND 0.0	02 0.0027	0.002 0.00	22 0.002 N	D 0.002	ND 0.002	2 0.002 0.	0.0030 ND	0.002	ND 0.0010	0.0022 0	0.0010 0.0015	0.0010 0.	0.0015 0.00	10 ND	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.001	0 ND	0.0010 ND	0.0010 N	D 0.0010	ND 0.001	0 ND	0.0010 ND	0.001	ND 0.001	ND 0	1001 ND	0.001 ND	0.001 N	D 0.001	ND 0.	.001 ND	0.001 NF	0.001	ND 0.001	ND (0.001 ND	0.001 ND	0.001	ND 0.001	ND 0	.001 ND /	0.001 ND
Copper	0.65	NP	ND 0.00	6 ND	0.003	ND 0.0	03 0.0036	0.003 0.00	61 0.003 N	D 0.003	0.0031 0.003	3 ND 0	0.010 ND	0.003	ND 0.0020	ND 0	0.0020 ND	0.0020 0.	0.0027 0.00	20 ND ^A	0.0020 ND	0.0020	0.0023 0.003	20 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.002	0 ND	0.0020 ND	0.0020 N	D 0.0020	ND 0.002	0 ND	0.0020 ND	0.002	ND 0.002	ND 0	0.0022	0.002 ND	0.002 N	D 0.002	ND 0.	.002 ND	0.002 NF	0.002	ND 0.002	0.0039 (0.002 ND	0.002 ND	0.002	ND 0.002	ND 0	.002 ND /	0.002 ND
Cyanide	0.2	NP	ND 0.005	50 ND	0.0050	ND 0.00	150 ND	0.0050 NE	0.0050 N	D 0.0050	ND 0.0050	0 ND 0.	0.0050 ND	0.005	ND 0.010	ND (0.010 ND	0.010	ND 0.01	10 ND	0.010 ND	0.010	ND 0.01	0 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND	0.010 ND	0.010 N	D 0.010	ND 0.010	ND ND	0.010 ND	0.01 3	ND H 0.01	ND	0.01 ND	0.01 ND	0.01 N	D 0.01	ND 0	1.01 ND	0.01 NF	0.01	ND 0.01	ND	0.01 ND	0.01 ND	0.005	ND 0.005	ND 0	.005 0.0069 '	0.005 ND
Fluoride	4.0	NP	0.27 0.25	5 0.36	0.25	0.43 0.3	25 0.25	0.25 NE	0.25 N	D 0.25	ND 0.25	0.32	0.25 0.32	0.25	ND 0.10	0.23	0.10 0.24	0.10 0	0.24 0.1	0 0.35	0.10 0.29	0.10	0.32 0.1	0.28	0.10	1.38 0.10	0.37	0.10 0.26	i 0.10	0.27 0.10	0.27	0.10 0.35	0.10 0.	30 0.10	0.25 0.10	0.27	0.10 0.27	0.1	0.33 0.1	0.32	0.1 0.21	0.1 0.29	0.1 0.	3 0.1	0.29 0	0.1 0.34	0.1 0.3	7 0.1	0.29 0.1	0.35	0.1 0.39	0.1 0.37	0.1	0.26 0.1	0.31	0.1 0.33	0.1 0.34 H
Iron	5.0	NP	0.13 0.01	0 0.050	0.010	0.046 0.0	10 0.082	0.010 0.03	6 0.010 N	D 0.010	ND 0.010	0 ND 0	0.010 0.43	0.01 0	0.052 0.10	0.20	0.10 ND	0.10	ND 0.1	0 ND	0.10 ND	0.10	ND 0.1	0 ND	0.10	ND 0.10	ND	0.10 ND	0.10	ND 0.10	ND	0.10 ND	0.10 N	D 0.10	ND 0.10	ND	0.10 ND	0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1 N	D 0.1	ND 0	0.1 ND	0.1 NF	0.1	ND 0.1	ND	0.1 ND ^	0.1 ND	0.1	ND 0.1	ND	0.1 ND	0.1 ND
Lead	0.0075	NP	ND 0.00	I ND	0.001	ND 0.0	01 ND	0.001 NE	0.001 N	D 0.001	ND 0.001	I ND 0.	0.0050 ND	0.001	ND 0.00050	ND 0.	100050 ND	0.00050	ND 0.000	150 ND	1.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	ND ND	0.00050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	0 ND	0.00050 ND	0.0005	ND 0.0005	ND 0	.0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.1	0005 ND	0.0005 NT	0.0005	ND 0.0005	ND 0	1.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.	.0005 ND (*	0.0005 ND
Manganese	0.15	NP	0.51 0.00	0.49	0.001	0.48 0.0	01 0.64	0.001 0.9	0 0.001 0.	26 0.001	0.41 0.001	1 1.00 0	0.040 0.59	0.001 0	0.21 0.0025	0.67 0	0.0025 0.29	0.0025 0	0.62 0.00	25 0.077	0.0025 0.04	0.0025	0.016 0.003	25 ND	0.0025 0	058 0.0025	0.0078	0.0025 0.13	0.0025	0.084 0.002	5 0.044	0.0025 0.039	0.0025 0.0	0.0025	0.0040 0.002	5 0.0068	0.0025 0.024	4 0.0025 0	0.0025	ND 0	.0025 0.77	0.0025 0.015	0.0025 0.	12 0.0025	ND 0.1	0.0076	0.0025 0.07	99 0.0025	0.037 0.0025	0.053 0	1.0025 0.028	0.0025 0.03	0.0025	0.042 0.0025	0.04 0.1	.0025 0.0084 F	۵.0025 0.018
Mercury	0.002	NP	ND 0.000	02 ND	0.0002	ND 0.0	002 ND	0.0002 NE	0.0002 N	D 0.0002	ND 0.0002	12 ND 0.	0.0002 ND	0.0002	ND 0.00020	ND 0.	100020 ND	0.00020	ND 0.000	120 ND	1.00020 ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.0002	ND ND	0.00020 ND	0.00020	ND 0.0002	9 ND	0.00020 ND	0.00020 N	D 0.00020	ND 0.000	9 ND	0.00020 ND	0.0002 0.	00021 0.0002	ND 0	.0002 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.1	0002 ND	0.0002 NF	0.0002	ND 0.0002	0.00047 0	3.0002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.	.0002 ND (0.0002 ND
Nickel	0.1	NP	0.014 0.003	6 0.013	0.005 0	0.0077 0.0	05 0.014	0.005 0.01	14 0.005 0.0	0.005	0.0095 0.005	5 0.013 0	0.010 ND	0.005 0	0.009 0.0020	0.0055 0	0.0020 0.0059	0.0020 0.	0.00	20 0.0038	0.0020 0.003	6 0.0020	0.0041 0.003	20 ND	0.0020 0.	0025 0.0020	0.0023	0.0020 0.005	1 0.0020	0.0027 0.002	0 0.0032	0.0020 0.0027	0.0020 0.0	020 0.0020	ND 0.002	0 ND	0.0020 0.0022	2 0.002 0	0.0027 0.002	ND 0	0.0039	0.002 ND	0.002 0.0	03 0.002	ND 0.	.002 ND	0.002 NF	0.002	0.0025 0.002	0.0022	0.002 0.0026	0.002 0.002	2 0.002	3.0023 0.002	0.0022 0	.002 ND /	0.002 ND
Nitrogen/Nitrate	10.0	NP	ND 0.02	2 ND	0.02	0.08 0.0	02 ND	0.02 NE	0.02 1	.6 0.02	0.04 0.02	0.04	0.02 0.04	0.02 0	0.19 0.10	ND	0.10 ND	0.10 0	0.34 0.1	0 0.74	0.10 2.2	0.10	0.11 0.1	0.20	0.10	174 0.10	ND	0.10 ND	0.10	ND 0.10	0.27	0.10 ND	0.10 N	D 0.10	0.12 0.10	ND	0.10 ND	0.1	ND 0.1	0.22	0.1 3.7	0.1 ND	0.1 0.	13 0.1	0.28 0	0.1 0.48	0.1 0.2	4 0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1	ND 0.1	ND	0.1 0.33	0.1 0.92
Nitrogen/Nitrate,	Nitr NA	NR	NR NR	NR NR	NR	NR N	R NR	NR NB	k NR N	R NR	NR NR	NR	NR NR	NR	NR 0.10	ND	0.10 ND	0.10 0	0.34 0.1	0 0.77	0.50 2.2	0.10	0.11 0.10	0.20	0.10	174 0.10	ND	0.10 ND	• 0.10	ND 0.10	0.27	0.10 ND	0.10 N	D 0.10	0.12 0.10	ND	0.10 ND	0.1	ND 0.1	0.22	0.2 3.7	0.1 ND	0.1 0.	13 0.1	0.28 0	0.1 0.48	0.1 0.2	4 0.1	ND 0.1	ND	0.1 0.1	0.1 ND	0.1	ND 0.1	ND	0.1 0.33	0.1 0.92
Nitrogen/Nitrite	NA	NR	NR NR	NR NR	NR	NR N	R NR	NR NB	R NR N	R NR	NR NR	NR	NR NR	NR	NR 0.020	ND (0.020 ND	0.020	ND 0.02	0.033	0.020 0.02	0.020	ND 0.02	10 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020 N	D 0.020	ND 0.020) ND	0.020 ND	0.02	ND 0.02	ND	0.02 ND	0.02 ND ^	0.02 N	D 0.02	ND 0	1.02 ND	0.02 NF	0.02	ND 0.02	ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND f	3.02 ND ^1+	0.02 ND
Perchlorate	0.0049	NR	NR NR	NR NR	NR	NR N	R NR	NR NB	R NR N	R NR	NR NR	NR	NR NR	NR	NR 0.0040	ND 0	0.0040 ND	0.0040	ND 0.00	40 ND	0.0040 ND	0.0040	ND 0.00	40 ND	0.0040	ND 0.0040	ND	0.0040 ND	0.0040	ND 0.004	0 ND	0.0040 ND	0.0040 N	D 0.0040	ND 0.004	0 ND	0.0040 ND	0.004	ND 0.004	ND 0	1004 ND	0.004 ND	0.004 N	D 0.004	ND 0.	.004 ND	0.004 NF	0.004	ND 0.004	ND (0.004 ND	0.004 ND	0.004	ND 0.004	ND 0	.004 ND (0.004 ND
Selenium	0.05	NP	0.0019 0.00	0.003	0.001	ND 0.0	01 0.0045	0.001 0.000	23 0.001 0.0	028 0.001	0.0033 0.001	1 0.0031 0.	0.0050 ND	0.001 0.	0.0025 0.0025	ND 0	0.0025 ND	0.0025	ND 0.00	25 ND	0.0025 ND	0.0025	0.0028 0.003	25 ND	0.0025	ND 0.0025	ND	0.0025 ND	0.0025	ND 0.002	5 ND	0.0025 ND	0.0025 N	D 0.0025	ND ^ 0.002	5 ND ^	0.0025 ND	0.0025	ND 0.0025	ND 0	.0025 0.0031	0.0025 ND	0.0025 N	D 0.0025	0.0032 0.0	0025 ND	0.0025 NF	0.0025	ND 0.0025	ND 0	3.0025 ND	0.0025 ND '	0.0025	ND 0.0025	ND 0.	.0025 ND (0.0025 ND
Silver	0.05	NP	ND 0.00	6 ND	0.005	ND 0.0	05 ND	0.005 NE	0.005 N	D 0.005	ND 0.005	5 ND 0	0.010 ND	0.005	ND 0.00050	ND 0.	L00050 ND	0.00050	ND 0.000	150 ND	1.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	ND I	0.00050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	60 ND	0.00050 ND	0.0005	ND 0.0005	ND 0	0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0	0005 ND	0.0005 NF	0.0005	ND 0.0005	ND 0	1.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.'	.0005 ND ©	3.0005 ND
Sulfate	400.0	NP	160 25	170	25	110 2	5 250	25 170	0 25 1	20 50	130 50	200	25 200	50	180 100	310	100 290	100	260 50	180	50 150	50	200 50	310	20	110 50	150	50 250	50	180 25	130	25 140	50 16	90 25	94 50	130	50 180	50	230 50	140	20 64	50 230	50 14	0 50	130 1	130 140	5 13/	0 5	140 5	120	5 140	5 130 4	25	92 15	110	25 110	15 100
Thallium	0.002	NP	ND 0.00	I ND	0.001	ND 0.0	01 ND	0.001 NE	0.001 N	D 0.001	ND 0.001	I ND 0.	0.0010 ND	0.001	ND 0.0020	ND 0	0.0020 ND	0.0020	ND 0.00	20 ND	0.0020 ND	0.0020	ND 0.00	20 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.002	0 ND	0.0020 ND	0.0020 N	D 0.0020	ND 0.002	0 ND	0.0020 ND	0.002	ND 0.002	ND 0	1002 ND	0.002 ND	0.002 N	D 0.002	ND 0.	.002 ND	0.002 NF	0.002	ND 0.002	ND (0.002 ND	0.002 ND	0.002	ND 0.002	ND 0	.002 ND (0.002 ND
Total Dissolved S	iolic 1,200	NP	740 17	680	17	640 l'	7 890	17 820	0 17 5	90 17	700 17	890	26 840	26	790 10	990	10 1000	10 1	1100 10	840	10 640	10	870 10	910	10	570 10	730	10 860	10	810 10	550	10 690	10 80	10 10	630 10	720	10 720	10	880 10	690	10 570	10 1000	10 7	0 10	890	10 660	10 59/	0 10	660 10	590	10 660	10 600	30	650 10	580	10 650	10 540
Vanadium	0.049	NR	NR NR	NR NR	NR	NR N	R NR	NR NB	R NR N	R NR	NR NR	NR 0.	0.0080 ND	0.005	ND 0.0050	ND 0	0.0050 ND	0.0050	ND 0.00	50 ND	0.0050 ND	0.0050	ND 0.002	50 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 ND	0.0050 N	D 0.0050	ND 0.005	0 ND	0.0050 ND	0.005	ND ^ 0.005	ND 0	1005 ND	0.005 ND	0.005 N	D 0.005	ND 0.	.005 ND	0.005 NF	0.005	ND 0.005	ND (0.005 ND	0.005 ND '	0.005	ND 0.005	ND 0	.005 ND (0.005 ND
Zinc	5.0	NP	ND 0.00	6 ND	0.006	ND 0.0	06 ND	0.006 NE	0.006 N	D 0.006	ND 0.006	6 ND 0	0.020 ND	0.006	ND 0.020	ND (0.020 ND	0.020	ND 0.02	30 ND	0.020 ND	0.020	ND 0.02	0 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020 N	D 0.020	ND 0.020) ND ^	0.020 ND	0.02	ND 0.02	ND	0.02 ND	0.02 ND	0.02 N	D 0.02	ND 0	1.02 ND	0.02 ND	^ 0.02	ND 0.02	ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND f	x.02 ND	0.02 ND
Benzene	0.005	NR	NR NR	: NR	NR	NR N	R NR	NR NB	K NR N	R NR	NR NR	NR 0	0.005 ND	0.005	ND 0.00050	ND 0.	100050 ND	0.00050	ND 0.000	150 ND	1.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005) ND	0.00050 ND	0.00050	0.00068 0.0005	0 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	0 ND	0.0005 ND	0.0005	ND 0.0005	ND 0	.0005 ND	0.0005 ND	0.0005 0.00	056 0.0005	ND 0.1	0005 ND	0.0005 NT	0.0005	ND 0.0005	ND 0	1.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.	.0005 ND (3.0005 ND
BETX	11.705	NR	NR NR	NR NR	NR	NR N	R NR	NR NB	R NR N	R NR	NR NR	NR	0.03 ND	0.03	ND 0.0025	ND 0	0.0025 ND	0.0025 3	ND 0.00	25 ND	0.0025 ND	0.0025	ND 0.00	25 ND	0.0025	ND 0.0025	ND	0.0025 ND	0.0025	0.00278 0.002	5 ND	0.0025 0.0011	0.0025 0.0	006 0.0025	ND 0.002	5 ND	0.0025 ND	0.0025	ND 0.0025	0.0021 0	.0025 0.00092	0.0025 0.0007	0.0025 0.00	896 0.0025	ND 0.1	0025 ND	0.0025 NF	0.0025	ND 0.0025	ND 0	10025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.	3025 ND ©	3.0025 ND
pH	6.5 - 9.0	NA	7.24 NA	7.36	NA	7.29 N	A 7.05	NA 6.3	4 NA 7.	14 NA	7.00 NA	6.94	NA 6.94	NA 8	8.01 NA	6.87	NA 6.82	NA 6	6.89 NA	A 7.69	NA 7.01	NA	6.86 NJ	7.30	NA	7.52 NA	7.26	NA 7.35	5 NA	6.65 NA	7.18	NA 7.08	NA 6.1	85 NA	6.96 NA	7.25	NA 7.60) NA	7.05 NA	6.87	NA 7.10	NA 7.70	NA 6.	56 NA	7.57 1	NA 6.99	NA 6.9	6 NA	7.01 NA	7.85	NA 6.90	NA 6.87	NA	6.79 NA	6.91	.£A 7.14	NA 7.20
Temperature	NA	NA	14.80 NA	14.35	NA	15.83 N.	A 15.80	NA 15.6	54 NA 17	.03 NA	16.99 NA	16.03	NA 14.38	8 NA 1	14.50 NA	16.36	NA 17.75	NA I-	14.79 NA	A 12.62	NA 20.5	NA	21.14 NJ	21.18	NA	5.51 NA	17.46	NA 25.4	2 NA	15.07 NA	11.30	NA 13.85	NA 19.	41 NA	15.32 NA	13.93	NA 12.43	3 NA 1	16.90 NA	13.03	NA 10.12	NA 16.71	NA 17.	48 NA	15.77 2	NA 14.50	NA 14.7	10 NA	17.70 NA	15.40	NA 14.20	NA 13.50	NA	16.70 NA	15.00	AA 15.60	NA 14.60
Conductivity	NA	NA	1.33 NA	1.16	NA	1.00 N	A 1.21	NA L1	0 NA 0.	85 NA	0.94 NA	1.19	NA 1.17	NA	1.17 NA	1.14	NA 1.25	NA 1	1.33 NA	4 0.28	NA 1.01	NA	1.28 NJ	1.38	NA	1.69 NA	1.06	NA 1.32	NA NA	1.06 NA	0.75	NA 0.83	NA Li	02 NA	0.77 NA	0.87	NA 0.82	NA	1.06 NA	0.82	NA 0.63	NA 0.83	NA L	14 NA	1.01 2	NA 1.13	NA 0.6	2 NA	0.15 NA	0.96	NA 0.34	NA 0.26	NA	1.12 NA	0.19	NA 0.86	NA 0.89
Dissolved Oxyger	a NA	NA	NM NA	3.95	NA	0.07 N.	A 0.06	NA 0.0	6 NA 0.	05 NA	0.07 NA	0.01	NA 0.46	NA (0.40 NA	0.28	NA 0.36	NA 0	0.32 NA	L17	NA 0.53	NA	1.01 NJ	2.20	NA	2.50 NA	1.54	NA 2.24	NA	1.32 NA	1.99	NA 2.58	NA 2.1	88 NA	1.33 NA	1.93	NA 3.43	NA	0.49 NA	4.09	NA 1.68	NA 4.33	NA 2.	17 NA	8.36	NA 0.10	NA 0.2'	1 NA	0.35 NA	0.51	NA 0.21	NA 0.23	NA	0.20 NA	0.21	AA 1.12	NA 0.21
ORP	NA	NA	NM NA	110.1	NA	70.5 N	A -274	NA -26	5 NA 2	37 NA	128 NA	152	NA 30	NA 9	99.2 NA	-50.9	NA 55.5	NA ·	-197 NA	51	NA -59.6	NA	64.8 NJ	6.8	NA	9.8 NA	23.5	NA -27.3	7 NA	-4.8 NA	-103.8	NA -65.0	NA -9	9.8 NA	-34.7 NA	-18.4	NA -142.5	5 NA :	232.2 NA	-9.6	NA -43.3	NA -9.7	NA 41	.I NA	17.8 2	NA 109.7	NA 116	A NA	139.4 NA	-58.1	NA 40.3	NA 17.0	NA	-0.9 NA	56.3	AA 146.2	NA 116.7
N	nes: Standards obtained Section 620.410 - Resource Groundy	from IAC, Title 3 icoundwater Qualit	Chapter 1, Part 63 Standards for Clas	00, Subpart D, ss I: Potable	DL - Der NA - Nor ND - Nor	tection limit e Applicable e Detocted	NR - 1 NS - 1	ot Required of Sampled	t held time	FI- M F2- M	IS and/or MSD Recew IS/MSD RPD exceeds itid Collumnics Verific	wery outside of limits. Is control limits.	s.	ineri	A. •	Denotes instrume Median Value (5x LCS or LCSD in	nt related QC exceeds (r temp)	the control limits			Tempera Conducti Discolared One	en 'C de Ry moion' m	ognes Calcius illeianens icentineter illerenselter																																		
	All values are in m	L (ppm) unless of	servise noted.		NM - Not	e Measured	v- 1	real Dilution Exceed	Is Control Limits	^+- C	ontinuing Calibration V	Verification is outside	le acceptance limits, hij	tigh blaved		and a block at	count and party and	-		Oxygen 3	induction Potential (O	2) nV n	divoits																																		

7/	2018	10/30	/2018	2/26	2019	4/30/	2019	8/26/	2019	11/12	2/2019	2/24	2020	4/28	2020	8/10	2020	12/9	/2020	2/22	/2021	5/11	/2021
	Result	DL	Result																				
1	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^	0.001	ND	0.001	ND	0.001	ND	0.001	ND
	0.03	0.0025	0.048	0.0025	0.025	0.0025	0.024	0.0025	0.034	0.0025	0.028	0.0025	0.024	0.0025	0.024	0.0025	0.03	0.0025	0.033	0.0025	0.032	0.0025	0.024
	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND ^+
	0.74	0.05	0.53	0.05	0.35	0.05	0.37	0.05	0.58	0.05	0.25	0.05	0.32	0.05	0.52	0.05	0.69	0.05	0.5	0.05	0.47	0.05	0.56
	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	69	10	86	2	55	2	47	2	58	2	53	2	51	2	50	2	56	10	88	6	62	4	44
	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.33	0.1	0.24	0.1	0.26	0.1	0.25	0.1	0.24	0.1	0.27	0.1	0.22	0.1	0.25	0.1	0.25	0.1	0.32	0.1	0.31	0.1	0.30 H
	ND	0.1	ND																				
	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	0.054	0.0025	0.013	0.0025	0.033	0.0025	ND	0.0025	0.086	0.0025	0.1	0.0025	0.041	0.0025	0.0098	0.0025	0.024	0.0025	0.22	0.0025	0.059	0.0025	0.0036
	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	0.0022	0.002	ND	0.002	ND
	ND	0.1	0.44	0.1	0.18	0.1	ND	0.1	ND	0.1	ND	0.1	0.1	0.1	ND	0.1	ND	0.1	0.23	0.1	0.36	0.1	ND
	ND	0.1	0.44	0.1	0.18	0.1	ND	0.1	ND	0.1	ND	0.1	0.1	0.1	ND	0.1	ND	0.1	0.23	0.1	0.36	0.1	ND
	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND ^1+	0.02	ND
	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND ^	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	50	50	100	50	59	5	36	5	15	5	66	5	71	5	54 ^	5	23	15	97	15	86	15	80
	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
	460	10	710	10	450	10	380	10	520	10	440	10	390	10	380	30	420	10	530	10	560	10	430
	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	ND	0.02	ND	0.02	ND	0.02	ND ^	0.02	0.035	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	0.004	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
	6.72	NA	7.55	NA	7.18	NA	7.08	NA	7.08	NA	7.78	NA	7.05	NA	7.03	NA	6.92	NA	7.10	NA	7.23	NA	7.22
	21.89	NA	17.42	NA	8.90	NA	11.70	NA	25.10	NA	18.93	NA	6.70	NA	12.50	NA	23.60	NA	16.60	NA	13.20	NA	13.50
	0.75	NA	0.85	NA	0.83	NA	0.44	NA	0.91	NA	0.72	NA	0.65	NA	0.23	NA	0.77	NA	0.19	NA	0.73	NA	0.72
	2.47	NA	1.28	NA	1.00	NA	2.32	NA	3.98	NA	6.90	NA	2.92	NA	2.51	NA	5.96	NA	1.92	NA	4.10	NA	3.07
	51.2	NA	-7.4	NA	107.7	NA	117.8	NA	15.9	NA	-56.0	NA	138.9	NA	62.1	NA	111.5	NA	60.5	NA	143.4	NA	136.2

10/25	/2018	2/25	/2019	5/1/	2019	8/27	2019	11/12	/2019	2/25	2020	4/27/	2020	8/11	2020	12/9	/2020	2/23	2021	5/10	2021
XL.	Result	DL	Result	DL	Result	DL.	Result	DL.	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DL.	Result
003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
001	ND	0.001	ND	0.001	0.0017	0.001	0.0023	0.001	0.0022	0.001	ND	0.001	ND ^	0.001	0.0016	0.001	0.0017	0.001	0.0011	0.001	ND
1025	0.083	0.0025	0.071	0.0025	0.073	0.0025	0.081	0.0025	0.07	0.0025	0.055	0.0025	0.063	0.0025	0.062	0.0025	0.052	0.0025	0.049	0.0025	0.047
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^1+	0.001	ND ^+	0.001	ND ^+
.05	0.31	0.05	0.24	0.05	0.33	0.05	0.35	0.05	0.26	0.05	0.22	0.05	0.31	0.05	0.49	0.05	0.23	0.05	0.25	0.05	0.32
005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	170	10	170	10	180	10	160	10	150	10	150	10	140	10	140	10	140	10	130	10	130
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	0.002	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND												
u	0.6	0.1	0.43	0.1	0.42	0.1	0.49	0.1	0.51	0.1	0.46	0.1	0.42	0.1	0.47	0.1	0.57	0.1	0.41	0.1	0.44 H FI
LI .	0.47	0.1	1.2	0.1	1.8	0.1	1.1	0.1	0.87	0.1	1.4	0.1	1.1	0.1	0.65	0.1	1.2	0.1	1	0.1	0.45
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
1025	0.75	0.0025	0.78	0.0025	1.1	0.0025	0.77	0.0025	0.73	0.0025	0.7	0.0025	0.7	0.0025	0.57	0.0025	0.57	0.0025	0.66	0.0025	0.47
002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
u.	ND	0.1	0.13 H																		
11	ND	0.1	ND	0.1	ND ^	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.13
.02	ND	0.02	ND																		
004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
1025	ND	0.0025	0.0036	0.0025	ND	0.0025	ND	0.0025	0.0063	0.0025	ND	0.0025	0.012	0.0025	0.0025	0.0025	ND	0.0025	0.0069	0.0025	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
00	410	20	350	20	390	20	360 F1	20	280	20	280	50	400	100	280	50	220	50	240	50	400
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	1100	10	1000	10	1100	10	970	10	920	10	830	10	1200	30	790	10	640	10	790	10	680
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
.02	ND	0.02	ND																		
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
iA.	7.75	NA	7.55	NA	7.36	NA	7.52	NA	8.03	NA	7.76	NA	7.52	NA	7.50	NA	7.65	NA	7.90	NA	7.74
iA.	21.39	NA	12.10	NA	12.40	NA	22.80	NA	18.25	NA	10.50	NA	11.90	NA	18.90	NA	16.00	NA	10.70	NA	12.40
iA.	1.37	NA	1.60	NA	1.02	NA	1.50	NA	1.35	NA	1.21	NA	0.34	NA	0.66	NA	1.21	NA	0.94	NA	1.49
iA.	7.50	NA	0.75	NA	0.19	NA	0.23	NA	0.22	NA	0.22	NA	0.24	NA	0.36	NA	0.11	NA	0.34	NA	0.20
iA.	-63.3	NA	-125.9	NA	-49.2	NA	-159.0	NA	-132.2	NA	-193.2	NA	-173.0	NA	-102.4	NA	-217.5	NA	-171.7	NA	37.5

 Sample MMW7
 Dag
 32501
 64620
 919301
 212201
 319202
 612201
 912001
 53201
 912001
 524207
 58200
 918201
 58201
 918201
 58201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201
 518201 DL Resh DL REsh DL REs
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.
 No.</th

ng hadra hadra hadra 19 hC Ta N. Dapor J An U. Dapor J An U. Dapor J An U. S. Sta Land P. Standard Difference and share strained and the strain barrier barray of the strain barr Temperatura 'C dogross Cakias Conductivity maxim" militaineum/contineum Dissobred Organa mgt. militgrane/tarr Oraven Reduction Postenial (ORP) mV militorias

r					-																					-	-										-	-				-					-							
Sample: MW-08	Date	12/15/2010	3/25/201	6/16/20	1 9/19/20	011 12/12	2011 3/19/201	12 6/25/	2012 9/	/18/2012	12/12/2012	2/27/2013	3 5/30/201	113 7/3	1/2013	10/23/2013	3/3/2014	5/28	2014	/27/2014	10/28/201	2/26/	2015 5	/11/2015	8/18/2015	11/18/20	15 2/2	25/2016	5/18/2016	8/17/2016	11/15/2	2016 2/1	6/2017	5/2/2017	8/29/2017	11/8/20	17 3/7/20	8 5/1	/2018	8/8/2018	10/31/2018	2/25/20	19 5	/1/2019 8	/27/2019	11/13/2019	2/25/2	J20 5/19	9/2020	8/11/2020	12/9/2020	2/23/2027	.1 5/11/	./2021
Parameter	Standards I	DL. Result	DL R	Result DL R	sult DL	Result DL	Result DL. R	esult DL	Result DL	L Result	DL. Result	DL Res	ult DL R	Result DL	Result	DL Result	DL Res	alt DL	Result D	. Result	DL Re	alt DL	Result DL	. Result	DL Rest	t DL i	esult DL	Result	DL Result	DL Resul	t DL	Result DL	Result	DL Result	DL Result	h DL i	lesult DL	Result DL	Result DI	. Result	DL. Result	DL B	Result DL	Result Di	Result	DL Resr	h DL	Result DL	Result	DL Result	DL Resu	alt DL Rr	zsult DL.	Result
Antimony	0.006 2	NP ND	0.003 2	ND 0.003	4D 0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.003	03 ND	0.0050 ND	0.003 N	D 0.0030 1	ND 0.0030	ND 0	.0030 ND	0.0030 N	0.0030	ND 0.0	30 ND	0.0030 N	D 0.0030	ND 0.003	IO ND	0.0030 NE	0.0030	ND 0.0030	0 ND 0	.0030 ND	0.0030 ND	0.0030	ND 0.0030	ND 0	1.0030 ND	0.003 ND	0.003	ND 0.003	ND 0.003	ND 0.00	6 ND	0.003 ND	0.003	ND 0.00	8 ND 0.0	.6 ND	0.003 NT	0.003	ND 0.003	ND 0	.003 ND	0.003 ND	/ 0.003 N	AD 0.003	ND
Arsenic	0.010 2	NP 0.0052	0.001 0.0	0.0039 0.001 0	0044 0.001	0.0036 0.001	0.0052 0.001 0.	0038 0.001	0.004 0.001	01 0.0041	0.0050 0.0062	0.001 0.0	05 0.0010 0.	0.0036 0.0010	0.0041 0	.0010 0.0037	0.0010 0.0	30 0.0010	ND 0.0	0.0025	0.0010 0.0	0.0010	0.0026 0.003	0 0.0024	0.0010 0.00	4 0.0010 0	0.0010	0 0.0015 0	.0010 0.0028	0.0010 0.001	6 0.0010	ND 0.0010	ND^ 0	0.0010 0.0025	0.001 ND	0.001 0	.0016 0.001	0.0038 0.001	ND 0.00	1 ND	0.001 ND	0.001 0	0.0014 0.00	0.0023 0.0	al ND	0.001 0.00	7 0.001	0.0011 0.001	0.0027 0	.001 ND	0.001 0.00?	46 0.001 0.0	.0015 0.001	0.0014
Barium	2.0 2	NP 0.11	0.001 0	0.12 0.001	.11 0.001	0.11 0.001	0.13 0.001 0	0.001	0.14 0.001	01 0.14	0.040 0.16	0.001 0.1	14 0.0025 0	0.14 0.0025	0.13 0	.0025 0.13	0.0025 0.	1 0.0025	0.11 0.0	25 0.13	0.0025 0.	3 0.0025	0.12 0.002	15 0.10	0.0025 0.05	0.0025	14 0.0025	5 0.093 0	.0025 0.17	0.0025 0.12	0.0025	0.068 0.0025	0.071 0	0.0025 0.12	0.0025 0.062	2 0.0025	0.11 0.0025	0.088 0.0025	0.055 0.00	25 0.062	0.0025 0.06	0.0025 (0.002	5 0.066 0.00	.25 0.11	0.0025 0.07	2 0.0025	0.08 0.0025	0.096 0.	.0025 0.1	0.0025 0.17	2 0.0025 f	0.1 0.0025	0.09
Beryllium	0.004 1	NP ND	0.001 2	ND 0.001	(D 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	01 ND	0.0010 ND	0.001 N	D 0.0010 N	ND ^ 0.0010	ND 0	.0010 ND	0.0010 N	0.0010	ND 0.0	10 ND	0.0010 N	0.0010 C	ND 0.001	10 ND	0.0010 NE	0.0010	0.0010) ND 0	.0010 ND	0.0010 ND	0.0010	ND 0.0010	ND^ 0	1.0010 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.00	1 ND	0.001 ND	0.001	ND 0.00	ND 0.0	.01 ND	0.001 NT	0.001	ND 0.001	ND ^ 0	.001 ND	0.001 ND ^	-1+ 0.001 Nr	.D ^+ 0.001	ND ^+
Boron	2.0 1	NP 0.93	0.01 0	0.72 0.012	.64 0.01	0.82 0.01	0.82 0.01 0	0.01	0.57 0.01	1 1	0.40 0.93	0.01 1.	1 0.050 0	0.91 0.050	1.2	1.050 0.93	0.050 0.1	3 0.050	0.44 0.0	0.80	0.050 0.1	2 0.050	0.81 0.05	0 0.74	0.050 1.5	0.050	L4 0.25	1.8 0	1.050 1.4	0.050 0.86	0.25	1.2 0.050	0.87 (0.050 0.68	0.25 1.4	0.05	0.52 0.1	0.63 0.05	0.84 0.0	5 0.89	0.05 0.69	0.05	0.67 0.05	0.6 0.3	.5 1.2	0.5 0.9	0.5	0.82 0.05	0.62 (0.25 0.96	0.05 0.7.*	2 0.05 0	J.58 0.05	0.5
Cadmium	0.005	NP ND	0.001 2	ND 0.001	(D 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	01 ND	0.0010 ND	0.001 N	D 0.00050	ND 0.00050	ND 0	00050 ND	0.00050 N	0.00050	ND 0.00	150 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0:	00050 ND	0.00050 ND	0.00050	ND 0.0005	0 ND 0.	.00050 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.00	16 ND	0.0005 ND	0.0005	ND 0.000	5 ND 0.00	.05 ND	0.0005 NT	0.0005	ND 0.0005	ND ^ 0.	.0005 ND	0.0005 ND	J 0.0005 ?	ND 0.0005	ND
Chloride	200.0 2	NP 180	50 2	210 50	40 50	210 50	190 50	170 50	200 50	210	50 220	50 20	00 10 3	230 10	220	10 260	10 23	0 10	340 5	380 ^	10 34	0 10	260 10	270	10 250	10	160 10	190	10 130	10 260	10	300 10	360	10 300	50 380	10	280 10	250 10	180 10	250	10 220	10	100 2	73 14	J 100	10 87	10	78 10	130	10 220	10 207	a 10 7	130 10	100
Chromium	0.1 2	NP 0.0059	0.004 0.0	0.0081 0.004 0	0.004	0.0084 0.004	0.0053 0.004 1	ND 0.004	0.0056 0.004	04 0.0066	0.0030 0.012	0.004 0.0	046 0.0050 1	ND 0.0050	ND 0	.0050 ND	0.0050 N	0.0050	ND 0.0	50 ND	0.0050 N	D 0.0050	ND 0.005	60 ND	0.0050 NE	0.0050	ND 0.0050) ND 0	.0050 ND	0.0050 ND	0.0050	ND 0.0050	ND 0	1.0050 ND	0.005 ND	0.005	ND 0.005	ND 0.005	ND 0.00	6 ND	0.005 ND	0.005	ND 0.00	5 ND 0.0	.15 ND	0.005 NT	0.005	ND 0.005	ND 0	.005 ND	0.005 ND	J 0.005 ?	ND 0.005	ND
Cobalt	1.0 1	NP ND	0.002 2	ND 0.002	(D 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.002	02 ND	0.0030 ND	0.002 N	D 0.0010	ND 0.0010	ND 0	.0010 ND	0.0010 N	0.0010	ND 0.0	10 ND	0.0010 N	0.0010 C	ND 0.001	10 ND	0.0010 NE	0.0010	0.0010) ND 0	.0010 ND	0.0010 ND	0.0010	ND 0.0010	ND 0	1.0010 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.00	1 ND	0.001 ND	0.001	ND 0.00	ND 0.0	.01 ND	0.001 NT	0.001	ND 0.001	ND 0	.001 ND	0.001 ND	J 0.001 ?	ND 0.001	ND
Copper	0.65	NP ND	0.003 2	ND 0.003 0	036 0.003	0.0037 0.003	0.01 0.003 1	ND 0.003	ND 0.003	03 0.0032	0.010 ND	0.003 N	D 0.0020 3	ND 0.0020	ND 0	.0020 ND	0.0020 N	0.0020	ND 0.0	20 ND^	0.0020 N	D 0.0020	ND 0.002	10 ND	0.0020 NE	0.0020	ND 0.0020) ND 0	.0020 ND	0.0020 ND	0.0020	ND 0.0020	ND 0	1.0020 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.00	2 ND	0.002 ND	0.002	ND 0.00	ND 0.0	32 ND	0.002 N/	0.002	ND 0.002	ND 0	1.002 ND	0.002 NF	י 0.002 د	ND 0.002	ND
Cyanide	0.2 2	NP ND	0.0050	ND 0.0050	4D 0.0050	ND 0.0050	ND 0.0050 1	ND 0.0050	ND 0.005	150 ND	0.0050 ND	0.005 N	D 0.010 1	ND 0.010	ND	1.010 ND	0.010 N	0.010	ND 0.0	10 ND	0.010 N	0.010 C	ND 0.05	0 ND	0.010 NE	0.010	0.010 D	ND 0	1.010 ND	0.010 ND	0.010	ND 0.010	ND (0.010 ND	0.01 ND	0.01	ND 0.01	ND 0.01	ND 0.0	I ND	0.01 ND	0.01	ND 0.01	ND 0.0	A ND	0.01 NT	0.01	ND 0.01	ND 0	1.005 ND	0.005 ND	0.005 ?	ND 0.005	ND
Fluoride	4.0 2	NP 0.77	0.25 0	0.76 0.25	81 0.25	0.84 0.25	0.75 0.25 0	1.70 0.25	0.63 0.25	15 0.53	0.25 0.63	0.25 0.3	28 0.10 0	0.74 0.10	0.68	0.10 0.74	0.10 0.1	7 0.10	0.65 0.	0 0.73	0.10 0.1	1 0.10	0.63 0.10	0.66	0.10 0.3	0.10	.44 0.10	0.33	0.10 0.33	0.10 0.33	0.10	0.36 0.10	0.32	0.10 0.34	0.1 0.48	0.1	0.43 0.1	0.46 0.1	0.39 0.1	0.32	0.1 0.36	0.1	0.36 0.1	0.35 0.	4 0.22	0.1 0.7	0.1	0.35 0.1	0.37	0.1 0.26	0.1 0.3'	-8 0.1 Γ	J.36 0.1	0.36 H
Iron	5.0 2	NP 0.56	0.010	2.1 0.010	1.7 0.010	0.97 0.010	0.94 0.010	2.3 0.010	1.2 0.010	10 1.3	0.010 2.1	0.01 6.	5 0.10	2.3 0.10	6.6	0.10 1.3	0.10 0.1	9 0.10	0.24 0.	0 0.62	0.10 0.1	3 0.10	0.17 0.10	0 0.12	0.10 0.8	0.10	.89 0.10	0.23	0.10 1.7	0.10 1.5	0.10	ND 0.10	0.26	0.10 2.4	0.1 ND	0.1	0.7 0.1	0.71 0.1	0.2 0.1	0.33	0.1 0.2	0.1	0.44 0.1	1.4 0.	4 0.61	0.1 11	0.1	2.5 0.1	3.5 ^	0.1 2.5	0.1 4	0.1 /	4.6 0.1	3.3
Lead	0.0075	NP ND	0.001	ND 0.001	(D 0.001	ND 0.001	ND 0.001 1	ND 0.001	ND 0.001	01 ND	0.0050 ND	0.001 N	D 0.00050 1	ND 0.00050	ND 0	00050 ND	0.00050 N	0.00050	ND 0.00	150 ND	0.00050 N	0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0:	00050 ND	0.00050 ND	0.00050	ND 0.0005	0 ND 0.	.00050 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.00	16 ND	0.0005 ND	0.0005	ND 0.000	5 ND 0.00	.05 ND	0.0005 N/	0.0005	ND 0.0005	ND 0.	.0005 ND	0.0005 NF	0.0005 ?	ND 0.0005	ND
Manganese	0.15	NP 0.15	0.001 0	0.27 0.001	29 0.001	0.18 0.001	0.2 0.001 0	0.001	0.2 0.001	01 0.2	0.0020 0.23	0.001 0.4	43 0.0025 0	0.25 0.0025	0.48 (0025 0.16	0.0025 0.3	0 0.0025	0.70 0.0	25 0.17	0.0025 0.	3 0.0025	0.11 0.002	15 0.11	0.0025 0.7	0.0025	21 0.0025	5 0.23 0	.0025 0.23	0.0025 0.28	0.0025	0.38 0.0025	0.43 0	0.0025 0.58	0.0025 0.3	0.0025	0.33 0.0025	0.35 0.0025	0.16 0.00	25 0.3	0.0025 0.43	0.0025	0.32 0.002	5 0.35 0.00	125 0.5	0.0025 0.7	0.0025	0.77 0.0025	0.65 0.	.0025 0.65	0.0025 0.6	s 0.0025 C	J.74 0.0025	0.52
Mercury	0.002 2	NP ND	0.0002 2	ND 0.0002	D 0.0002	ND 0.0002	ND 0.0002 3	ND 0.0002	ND 0.000	102 ND	0.00020 ND	0.0002 N	D 0.00020 1	ND 0.00020	ND 0	00020 ND	0.00020 N	0.00020	ND 0.00	120 ND	0.00020 N	0.00020	ND 0.000	20 ND	0.00020 NE	0.00020	ND 0.0002	0 ND 0:	00020 ND	0.00020 ND	0.00020	ND 0.0002	0 ND 0.	.00020 ND	0.0002 0.0002	25 0.0002	ND 0.0002	ND 0.0002	ND 0.00	12 ND	0.0002 ND	0.0002	ND 0.000	2 ND 0.00	.02 ND	0.0002 N/	0.0002	ND 0.0002	ND 0.	.0002 ND	0.0002 NF	0.0002 ?	ND 0.0002	ND
Nickel	0.1 2	NP 0.011	0.005 0.	0.013 0.005 0	0076 0.005	0.007 0.005	0.009 0.005 0.	0054 0.005	0.0075 0.005	0.009	0.010 ND	0.005 0.00	057 0.0020 1	ND 0.0020	ND (.0020 ND	0.0020 N	0.0020	ND 0.0	20 ND	0.0020 N	D 0.0020	ND 0.002	10 ND	0.0020 0.00	0 0.0020	ND 0.0020	0.0038 0	.0020 ND	0.0020 ND	0.0020	0.0024 0.0020	0.0026 0	1.0020 ND	0.002 0.003	2 0.002	ND 0.002	ND 0.002	ND 0.00	2 0.0022	0.002 ND	0.002	ND 0.00	ND 0.0	J2 0.0026	0.002 NT	0.002	ND 0.002	ND 0	1.002 ND	0.002 ND	a 0.002 ?	ND 0.002	ND
Nitrogen/Nitrate	10.0 2	NP ND	0.02 2	ND 0.02	10 1.0	1.6 0.02	ND 0.02 3	ND 0.02	ND 0.02	02 ND	0.02 ND	0.02 N	D 0.10	ND 0.10	ND	0.10 ND	0.10 N	0.10	ND 0.	0 ND	0.10 N	0.10 C	ND 0.10) ND	0.10 NE	0.10	SD 0.10	0.19	0.10 ND	0.10 ND	0.10	0.44 0.10	ND	0.10 ND	0.1 1.3	0.1	ND 0.1	0.14 0.1	0.17 0.1	ND	0.1 ND	0.1	ND 0.1	ND 0.	4 ND	0.1 NJ	0.1	ND 0.1	ND	0.1 0.12	0.1 NP	? 0.1 د	ND 0.1	ND
Nitrogen/Nitrate, Nitr	NA NA	NR NR	NR !	NR NR	KR NR	NR NR	NR NR I	NR NR	NR NR	R NR	NR NR	NR N	R 0.10	ND 0.10	ND	0.10 ND	0.10 N	0.10	ND 0.	0 ND	0.10 N	D 0.10	ND 0.10) ND	0.10 NE	0.10	0.10	0.19	0.10 ND	0.10 ND	0.10	0.44 0.10	ND	0.10 ND	0.1 1.3	0.1	ND 0.1	0.14 0.1	0.17 0.1	ND	0.1 ND	0.1	ND 0.1	ND ^ 0.	4 ND	0.1 NF	0.1	ND 0.1	ND	0.1 0.12	0.1 ND	J 0.1 ?	ND 0.1	ND
Nitrogen/Nitrite	NA NA	NR NR	NR I	NR NR	R NR	NR NR	NR NR I	NR NR	NR NR	R NR	NR NR	NR N	R 0.020	ND 0.020	ND	1.020 ND	0.020 N	0.020	ND 0.0	90 ND	0.020 N	0.020	ND 0.02	9 ND	0.020 NE	0.020	SD 0.020	ND 0	1.020 ND	0.020 ND	0.020	ND 0.020	ND (0.020 ND	0.02 0.034	4 0.02	ND 0.02	ND 0.02	ND 0.0	2 ND	0.02 ND	0.02	ND 0.02	ND 0.0	£ ND	0.02 N/	0.02	ND 0.02	ND (0.02 ND	0.02 NF	? 0.02 ک	ND 0.02	ND
Perchlorate	0.0049	NR NR	NR !	NR NR	KR NR	NR NR	NR NR I	NR NR	NR NR	R NR	NR NR	NR N	R 0.0040	ND 0.0040	ND (.0040 ND	0.0040 N	0.0040	ND 0.0	40 ND	0.0040 N	D 0.0040	ND 0.004	IU ND	0.0040 NE	0.0040	ND 0.0040) ND 0	.0040 ND	0.0040 ND	0.0040	ND 0.0040	ND 0	1.0040 ND	0.004 ND	0.004	ND 0.004	ND 0.004	ND ^ 0.00	4 ND	0.004 ND	0.004	ND 0.00	4 ND 0.0	34 ND	0.004 NT	0.004	ND 0.004	ND 0	1.004 ND	0.004 ND	0.004 ?	ND 0.004	ND
Selenium	0.05 2	NP 0.0036	0.001 0.0	0.0013 0.001	D 0.001	0.0031 0.001	0.0036 0.001 0.	0018 0.001	0.0018 0.001	01 ND	0.0050 ND	0.001 0.0	02 0.0025 0.	0.0029 0.0025	ND 0	0025 0.0048	0.0025 N	0.0025	ND 0.0	25 ND	0.0025 N	D 0.0025	ND 0.002	IS ND	0.0025 NE	0.0025	ND 0.0025	5 ND 0	.0025 ND	0.0025 ND	0.0025	ND ^ 0.0029	ND^ 0	1.0025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0025	ND 0.00	25 ND	0.0025 ND	0.0025	ND 0.002	5 ND 0.00	425 ND	0.0025 N/	0.0025	ND 0.0025	0.0053 0.	.0025 ND	0.0025 NF	0.0025 ?	ND 0.0025	ND
Silver	0.05	NP ND	0.005	ND 0.005	4D 0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.005	05 ND	0.010 ND	0.005 N	D 0.00050 1	ND 0.00050	ND 0	00050 ND	0.00050 N	0.00050	ND 0.00	150 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0.	00050 ND	0.00050 ND	0.00050	ND 0.0005	0 ND 0.	.00050 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.00	16 ND	0.0005 ND	0.0005	ND 0.000	5 ND 0.00	.05 ND	0.0005 NT	0.0005	ND 0.0005	ND 0.	.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005	ND
Sulfate	400.0	NP 160	50 2	240 50	40 50	200 50	200 50 3	300 50	440 50	330	50 360	50 33	30 100 4	460 100	380	100 350	100 33	0 100	300 5	240	50 25	0 50	160 50	160	50 310	100	30 50	250	100 290	100 360	50	290 50	300	100 350	50 310	50	240 50	250 50	230 50	140	50 130	130	130 5	88 21	J 280	5 11	5	59 25	86 H	25 110	15 88	25	69 15	110
Thallium	0.002 2	NP ND	0.001	ND 0.001	(D 0.001	ND 0.001	ND 0.001 1	ND 0.001	ND 0.001	01 ND	0.0010 ND	0.001 N	D 0.0020 1	ND 0.0020	ND (.0020 ND	0.0020 N	0.0020	ND 0.0	20 ND	0.0020 N	D 0.0020	ND 0.002	10 ND	0.0020 NE	0.0020	ND 0.0020) ND 0	.0020 ND	0.0020 ND	0.0020	ND 0.0020	ND 0	1.0020 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.00	2 ND	0.002 ND	0.002	ND 0.00	ND 0.0	42 ND	0.002 NT	0.002	ND 0.002	ND 0	1.002 ND	0.002 ND	a 0.002 ?	ND 0.002	ND
Total Dissolved Solid	1,200 2	NP 890	17 5	990 17	70 17	940 17	990 17 1	200 17	1200 17	7 1200	26 1200	26 11	00 10 1	1300 10	1300	10 1300	10 12	0 10	1400 1	1400	10 12	10 10	1100 10	1100	10 120	10	200 10	1100	10 1200	10 1400	10	1300 10	1400	10 1300	10 1500	0 10	1100 10	1100 10	1100 10	1100	10 1000	10	780 10	640 10	J 950	10 70	10	610 10	680	60 880	10 74	a 10 (630 10	660
Vanadium	0.049	NR NR	NR !	NR NR	KR NR	NR NR	NR NR I	NR NR	NR NR	R NR	0.0080 ND	0.005 N	D 0.0050	ND 0.0050	ND 0	.0050 ND	0.0050 N	0.0050	ND 0.0	50 ND	0.0050 N	D 0.0050	ND 0.005	60 ND	0.0050 NE	0.0050	ND 0.0050) ND 0	.0050 ND	0.0050 ND	0.0050	ND 0.0050	ND 0	1.0050 ND	0.005 ND *	^ 0.005	ND 0.005	ND 0.005	ND 0.00	6 ND	0.005 ND	0.005	ND 0.00	5 ND 0.0	.15 ND	0.005 NT	0.005	ND 0.005	ND 0	.005 ND	0.005 ND	J 0.005 ?	ND 0.005	ND
Zinc	5.0 1	NP ND	0.006 2	ND 0.006	(D 0.006	ND 0.006	ND 0.006	ND 0.006	ND 0.008	06 ND	0.020 ND	0.006 N	D 0.020	ND 0.020	ND	1.020 ND	0.020 N	0.020	ND 0.0	30 ND	0.020 N	D 0.020	ND 0.02	0 ND	0.020 NE	0.020	ND 0.020	ND 0	1.020 ND	0.020 ND	0.020	ND 0.020	ND^ (0.020 ND	0.02 ND	0.02	ND 0.02	ND 0.02	ND 0.0	2 ND	0.02 ND	0.02	ND 0.03	ND 0.0	.2 ND	0.02 NF	0.02	ND 0.02	ND (0.02 ND	0.02 ND	J 0.02 ?	ND 0.02	ND
Benzene	0.005	NR NR	NR !	NR NR	KR NR	NR NR	NR NR I	NR NR	NR NR	R NR	0.005 ND	0.005 N	D 0.00050 1	ND 0.00050	ND 0	00050 ND	0.00050 N	0.00050	ND 0.00	150 ND	0.00050 N	D 0.00050	ND 0.000	60 ND	0.00050 NE	0.00050 0.	0.0005	0 ND 0.	00050 ND	0.00050 ND	0.00050	ND 0.0005	0 ND 0	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.00	0.0021	0.0005 ND	0.0005	ND 0.000	5 ND 0.00	.05 ND	0.0005 NT	0.0005	ND 0.0005	ND 0.	.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005	ND
BETX	11.705	NR NR	NR !	NR NR	KR NR	NR NR	NR NR I	NR NR	NR NR	R NR	0.03 ND	0.03 N	D 0.0025	ND 0.0025	ND (.0025 ND	0.0025 N	0.0025	ND 0.0	25 ND	0.0025 0.0	40 0.0025	ND 0.002	25 ND	0.0025 NE	0.0025 0.	0.00251 0.0025	5 0.00068 0	.0025 0.0015	0.0025 ND	0.0025	ND 0.0025	ND 0	0.0025 ND	0.0025 ND	0.0025 0	0013 0.0025	0.0017 0.0025	0.0013 0.00	25 0.016	0.0025 ND	0.0025	ND 0.002	5 ND 0.00	125 ND	0.0025 NT	0.0025	ND 0.0025	ND 0.	.0025 ND	0.0025 ND	0.0025 ?	ND 0.0025	ND
pH	6.5 - 9.0 N	NA 8.24	NA 8	8.17 NA	.66 NA	8.24 NA	7.87 NA 7	7.97 NA	8.20 NA	A 8.23	NA 8.09	NA 7.3	72 NA 7	7.81 NA	7.39	NA 8.16	NA 8.4	6 NA	7.72 N	k 8.12	NA 7.	9 NA	8.62 NA	7.90	NA 7.3	NA	.61 NA	7.00	NA 7.67	NA 7.33	NA	6.90 NA	7.00	NA 7.30	NA 7.29	NA	7.27 NA	7.17 NA	6.79 NJ	6.93	NA 7.38	NA	7.13 NA	7.60 N	A 6.92	NA 7.f	i NA	7.43 NA	7.40	NA 7.09	NA 7.4	0 NA 7	1.70 NA	7.64
Temperature	NA NA	NA 19.95	NA II	18.15 NA 1	1.82 NA	17.95 NA	19.20 NA 19	9.73 NA	18.28 NA	A 19.15	NA 18.34	NA 17.	10 NA 1	18.11 NA	17.58	NA 15.62	NA 11.	14 NA	19.53 N	A 19.84	NA 16	22 NA	6.86 NA	15.81	NA 19.6	NA	4.72 NA	10.91	NA 19.30	NA 22.16	i NA	16.05 NA	14.27	NA 14.28	NA 15.50	0 NA	4.04 NA	8.99 NA	18.33 NJ	18.22	NA 12.40	NA	13.30 NA	14.30 N	A 15.00	NA 13.5	4 NA	14.10 NA	13.80	NA 14.40	NA 14.€	30 NA 1/	4.30 NA	14.10
Conductivity	NA N	NA 1.62	NA 1	1.67 NA	.61 NA	1.40 NA	1.47 NA 1	1.57 NA	1.65 NA	A 1.79	NA 1.82	NA L	78 NA 1	1.55 NA	1.60	NA 1.62	NA LI	9 NA	1.94 N	1.95	NA L	19 NA	1.19 NA	1.55	NA L8	NA	.56 NA	1.32	NA 1.55	NA 1.80	NA	2.01 NA	1.89	NA 1.63	NA 1.81	NA	L47 NA	1.22 NA	1.36 NJ	1.59	NA 1.22	NA	1.42 NA	0.70 N	A 1.57	NA 1.J	NA	0.34 NA	0.23	NA 0.72	NA 1.3	7 NA F	J.98 NA	1.15
Dissolved Oxygen	NA NA	NA NM	NA 0	0.25 NA	.08 NA	0.05 NA	0.03 NA 0	1.03 NA	0.06 NA	A 0.09	NA 0.64	NA 0.3	33 NA 0	0.32 NA	0.16	NA 0.25	NA L	9 NA	0.59 N	0.51	NA 0.	6 NA	1.22 NA	2.97	NA 1.0	NA	1.72 NA	1.09	NA 0.41	NA 2.22	NA	1.36 NA	2.26	NA 1.71	NA 1.89	NA	1.83 NA	1.28 NA	3.53 NJ	4.71	NA 2.59	NA	0.06 NA	0.13 N	A 0.31	NA 0.4	NA	0.16 NA	0.24	NA 2.16	NA 0.1."	2 NA 0	J.56 NA	0.12
ORP	NA N	NA NM	NA -1	190.8 NA -	81.5 NA	-271 NA	-238 NA -	222 NA	-228 NA	A -231	NA -210	NA -18	3.8 NA -2	225.9 NA	-182	NA -225	NA 14	2 NA	-65.2 N	-148.4	NA -6	.6 NA	-154.2 NA	-97.9	NA -81.	NA	30.2 NA	-46.8	NA -139.2	NA -96.6	NA	-24.8 NA	-41.8	NA -110.0	NA 37.2	NA	81.1 NA	-92.1 NA	-36.6 NJ	-103.2	NA -35.5	NA	38.6 NA	-176.8 N	A -19.3	NA -90	5 NA	-191.8 NA	-231.6	NA -57.9	NA -194	47 NA -J	178.0 NA	-174.6
		1		1 1				1		1 1										1	-	1		1					1									1											1			تحلنات		<u> </u>

Nex: Standbaland India Ch. Tar. N. Dayor (Frid), Saper D. B. - Sonara Bana Standbaland India Ch. Tar.

Sample: MW-	9 Date	12/	16/2010	3/25/2011	6/16/2	2011	9/19/2011	12/12	/2011	3/19/2012	6/25/2	2012	9/18/2012	12/12/2	012 2/2	27/2013	5/30/201	13	7/30/2013	10/22	/2013	3/3/2014	5/	9/2014	8/26/20	014	10/30/2014	2/2	4/2015	5/12/2	015	8/19/2015	11/1	8/2015	2/25/201	16 5	/19/2016	8/17/2	016	11/17/2016	6 2	/15/2017	5/3/20	17	8/25/2017	11/8	2017	3/7/2018	5/1	5/2018	8/8/2018	11/	1/2018	2/27/2019	1 5	1/2019	8/28/201	9 11/	14/2019	2/25/202	4/2	9/2020	8/12/202	0 12/	8/2020	2/24/2021	5/13/2	/2021
Parameter	Standa	ds DL	Result	DL Resu	ik DL	Result 1	DL. Resul	t DL	Result	DL Result	DL	Result	DL Resul	t DL I	Result DL	. Result	DL Ra	Result D	IL Result	t DL	Result	DL Re	sult DL	Result	DL.	Result	DL Res	ult DL	Result	DL	Result I	M. Res	it DL	Result	DL B	Result DL	. Result	DL.	Result	DL Res	ult DL	Result	DL	Result E	DL Result	t DL	Result	DL Res	ult DL	Result	DL Res	ult DL	Result	DL Re	.sult DL	Result	DL Re	sult DL	Result	DL R	sult DL	Result	DL R	rsult DL	Result	DL Result	ak DL	Result
Antimony	0.00	5 NP	ND	0.003 ND	0.003	ND 0.	.003 ND	0.003	ND	.003 ND	0.003	ND (0.003 ND	0.0050	ND 0.003	6 ND	0.0030	ND 0.00	030 ND	0.0030	ND	0.0030 N	(D 0.003	ND	0.0030	ND 0.1	0030 NI	0.0030	ND	0.0030	ND 0.0	0030 NE	0.0030	ND	0.0030	ND 0.003	30 ND	0.0030	ND 0.	1.0030 NI	D 0.003	80 ND	0.0030	ND 0.0	003 0.0037	7 0.003	ND	0.003 N	D 0.003	ND	0.003 N	0.003	ND	0.003 N	D 0.00	ND	0.003	ID 0.003	ND	0.003	D 0.003	ND	0.003	ND 0.003	ND	0.003 ND	0.003	ND
Arsenic	0.01) NP	ND	0.001 0.001	18 0.001	0.0017 0.	.001 ND	0.001	0.0012	.001 ND	0.001	0.0017 (0.001 ND	0.0050	ND 0.001	0.0013	0.0010	ND 0.00	010 ND	0.0010	ND	0.0010 0.0	0.001	ND	0.0010	ND 0.1	0010 NI	0.0010	ND	0.0010	ND 0.0	0010 NI	0.0010	ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.	1.0010 N	D 0.001	10 ND ^	0.0010	ND 0.0	001 0.0043	3 0.001	ND	0.001 N	D 0.001	ND	0.001 N	0.001	ND	0.001 N	D 0.00'	ND	0.001	ID 0.001	ND	0.001	D 0.001	ND ^	0.001	0.001 D	ND	0.001 ND	0.001	ND
Barium	2.0	NP	0.038	0.001 0.04	2 0.001	0.038 0.	.001 0.03	0.001	0.038	0.035	0.001	0.038 (0.001 0.038	0.040	0.062 0.001	0.049	0.0025 0.	0.042 0.00	025 0.050	0.0025	0.048	0.0025 0.0	0.002	0.044	0.0025	0.039 0.1	0025 0.04	17 0.0025	0.043	0.0025	0.026 0.0	0.05 0.03	4 0.0025	0.023	0.0025 0	0.034 0.003	25 0.030	0.0025	0.036 0.	0.0025 0.0	87 0.002	5 0.038	0.0025	0.085 0.0	0.046	0.0025	0.047 (0.0025 0.0	55 0.0025	0.04	0.0025 0.0	38 0.0025	0.042	0.0025 0.0	.051 0.007	0.039	0.0025 0	04 0.002	0.044	0.0025 0	03 0.0025	0.033	0.0025 0	0.0025	0.037	0.0025 0.032	.2 0.0025	0.03
Beryllium	0.00	4 NP	ND	0.001 ND	0.001	ND 0.	.001 ND	0.001	ND	.001 ND	0.001	ND (0.001 ND	0.0010	ND 0.001	I ND	0.0010 N	ND ^ 0.00	010 ND	0.0010	ND	0.0010 N	(D 0.001)	ND	0.0010	ND 0.1	0010 NI	0.0010	ND	0.0010	ND 0.0	0050 NI	0.0010	ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.	1.0010 N	D 0.001	10 ND ^	0.0010	ND 0.0	001 ND	0.001	ND	0.001 N	D 0.001	ND	0.001 N	0.001	ND	0.001 N	D 0.007	ND	0.001 3	ID 0.001	ND	0.001	D 0.001	ND	0.001	0.001 D	ND ^l+	0.001 ND ^-	·+ 0.001	ND
Boron	2.0	NP	2.1	0.01 1.9	0.012	1.9 0	0.01 2.5	0.01	2.7	0.01 2.6	0.01	2.6	0.01 2.9	1.0	3.2 0.01	1 43	0.050	3.2 0.0	150 2.5	0.050	1.6	0.050 1	.7 0.25	2.5	0.050	2.4 0.	.050 1.4	5 0.050	3.0	0.050	3.2 0	25 3.3	0.050	2.2	0.25	2.3 0.05	0 1.5	0.050	2.7 (0.50 3.1	8 0.05	0 3.0	0.050	3.4 0	1.5 3.8	0.05	3.4	1 4	1 1	4.1	1 42	4 0.5	5.2	0.05 4.	5 1	4.8	0.5 3	.8 0.5	2.4	0.5	.4 0.05	2.1	0.5	1.8 0.25	2.2	0.25 2.2	0.25	1.9
Cadmium	0.00	5 NP	ND	0.001 ND	0.001	ND 0.	.001 ND	0.001	ND	.001 ND	0.001	ND (0.001 ND	0.0010	ND 0.001	I ND	0.00050 2	ND 0.00	0050 ND	0.00050	ND	1.00050 N	(D 0.0005) ND	0.00050	ND 0.0	00050 NI	0.00050	ND	0.00050	ND 0.0	0050 NI	0.00050	ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.1	.00050 NI	D 0.000	50 ND	0.00050	ND 0.0	0005 ND	0.0005	ND (0.0005 N	0.0005	ND	0.0005 N	0.0005	ND	0.0005 N	D 0.000	ND	0.0005 5	D 0.000	ND	0.0005	D 0.0005	ND	0.0005	ND 0.0005	ND	0.0005 ND	. 0.0005	ND
Chloride	200.) NP	25	10 28	10	28	10 30	25	30	10 30	10	27	10 28	10	31 10	27	2.0	29 2	.0 33	2.0	42	2.0 2	25 2.0	34	2.0	33	2.0 32	2.0	34	2.0	37 3	10 36	2.0	30	2.0	35 2.0	36	2.0	41	2.0 38	8 2.0	38	2.0	37	2 37	2	38	2 3	7 2	37	2 36	5 2	39	2 3	.7 2	39	2	16 2	32	2	8 2	35	2	34 2	33	2 32	2	32
Chromium	0.1	NP	ND	0.004 ND	0.004	ND 0.	.004 ND	0.004	ND	.004 ND	0.004	ND (0.004 ND	0.0030	0.01 0.004	4 0.0046	0.0050 2	ND 0.00	050 ND	0.0050	ND	0.0050 N	D^ 0.005	ND	0.0050	ND 0.1	0050 NE	0.0050	ND	0.0050	ND 0.0	050 NI	0.0050	ND	0.0050	ND 0.003	50 ND	0.0050	ND 0.	1.0050 NI	D 0.005	50 ND	0.0050	ND 0.0	005 ND	0.005	ND	0.005 N	D 0.005	ND	0.005 NI	0.005	ND	0.005 N	.D 0.00*	ND	0.005 3	ID 0.005	ND	0.005	D 0.005	ND	0.005	ND 0.005	ND	0.005 ND	0.005	ND
Cobalt	1.0	NP	ND	0.002 ND	0.002	ND 0.	.002 ND	0.002	ND	.002 ND	0.002	ND (0.002 ND	0.0030	ND 0.002	2 ND	0.0010	ND 0.00	010 ND	0.0010	ND	0.0010 0.0	0.001	ND	0.0010	ND 0.1	0010 NI	0.0010	ND	0.0010	ND 0.0	0010 NI	0.0010	ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.	0.0010 NI	D 0.001	10 ND	0.0010	ND 0.0	001 ND	0.001	ND	0.001 N	0.001	ND	0.001 N	0.001	ND	0.001 N	D 0.007	ND	0.001	ID 0.001	ND	0.001	D 0.001	ND	0.001	0.001	ND	0.001 ND	. 0.001	ND
Copper	0.65	NP	ND	0.003 ND	0.003	ND 0.	.003 ND	0.003	ND	1003 ND	0.003	ND (0.003 ND	0.010	ND 0.003	6 ND	0.0020 2	ND 0.00	020 ND	0.0020	ND	0.0020 N	D^ 0.002	ND	0.0020	ND ^ 0.1	0020 NE	0.0020	ND	0.0020	ND 0.0	020 NE	0.0020	ND	0.0020	ND 0.002	20 ND	0.0020	ND 0.	1.0020 NI	D 0.002	30 ND	0.0020	ND 0.0	002 ND	0.002	ND	0.002 N	D 0.002	ND	0.002 N	0.002	ND	0.002 N	.D 0.00*	ND	0.002 3	ID 0.002	ND	0.002	D 0.002	ND	0.002	ND 0.002	ND	0.002 ND	0.002	ND
Cyanide	0.2	NP	ND	0.0050 ND	0.0050	ND 0.1	0050 ND	0.0050	ND (0050 ND	0.0050	ND 0	0.0050 ND	0.0050	ND 0.005	6 ND	0.010 2	ND 0.0	010 ND	0.010	ND	0.010 N	(D 0.010	ND	0.010	ND 0.	:010 NI	0.010	ND	0.010	ND 0:	010 NI	0.010	ND	0.010	ND 0.01	0 ND	0.010	ND 0	0.010 NI	D 0.01	0 ND	0.010	ND 0.	101 ND	0.01	ND	0.01 N	0.01	ND	0.01 N	D 0.01	ND	0.01 N	D 0.01	ND	0.01 3	ID 0.01	ND	0.01	D 0.01	ND	0.005	ND 0.005	ND *	0.005 ND	. 0.005	ND
Fluoride	4.0	NP	ND	0.25 0.31	0.25	0.34 0	0.25 0.25	0.25	ND	0.25 ND	0.25	ND	0.25 ND	0.25	0.3 0.25	5 ND	0.10 0	0.21 0.1	10 0.18	0.10	0.17	0.10 0.	16 0.10	0.20	0.10	0.19 0	1.10 0.1	5 0.10	0.18	0.10	0.16 0	10 0.1	0.10	0.19	0.10	0.20 0.10	0.16	0.10	0.15 (0.10 0.1	15 0.10	0.14	0.10	0.13 0	0.14	0.1	0.13	0.1 0.1	6 0.1	0.15	0.1 0.1	4 0.1	0.16	0.1 0.	.16 0.1	0.17	0.1 0	14 0.1	0.18	0.1	.2 0.1	0.19	0.1 0	.17 0.1	0.23	0.1 0.2	. 0.1	0.18
Iron	5.0	NP	ND	0.010 0.06	6 0.010	ND 0.	.010 ND	0.010	ND	0.014	0.010	ND (0.010 ND	0.010	ND 0.01	1 0.024	0.10	ND 0.1	10 ND	0.10	ND	0.10 N	(D 0.10	ND	0.10	ND 0	10 NE	0.10	ND	0.10	ND 0	10 NI	0.10	ND	0.10	ND 0.10	0 ND	0.10	ND (0.10 N	D 0.10) ND	0.10	ND 0	0.1 ND	0.1	ND	0.1 N	D 0.1	ND	0.1 NI	D 0.1	ND	0.1 N	.D 0.1	ND	0.1	ID 0.1	ND	0.1 N	0.1 ^ C	ND	0.1	ND 0.1	ND	0.1 ND	0.1	ND
Lead	0.00	5 NP	ND	0.001 ND	0.001	ND 0.	.001 ND	0.001	ND	.001 ND	0.001	ND (0.001 ND	0.0050	ND 0.001	II ND	0.00050	ND 0.00	0050 ND	0.00050	ND	0.00050	0.00051 0.0005) ND	0.00050	ND 0.0	00050 NE	0.00050	ND	0.00050	ND 0.0	0050 NE	0.00050	ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.1	.00050 NI	D 0.000	50 ND	0.00050	ND 0.0	1005 ND	0.0005	ND (0.0005 N	0.0005	ND	0.0005 N	0.0005	ND	0.0005 N	.D 0.007	ND	0.0005 5	D 0.000	ND	0.0005	D 0.0005	ND	0.0005	ND 0.0005	ND	0.0005 ND	0.0005	ND
Manganese	0.1	NP	0.23	0.001 0.45	5 0.001	0.48 0.	.001 0.14	0.001	0.28	0.22	0.001	0.34 (0.001 0.11	0.0020	0.1 0.001	0.19	0.0025 0.	0.053 0.00	025 0.038	8 0.0025	0.019	0.0025 0.	.84 0.002	0.36	0.0025	0.031 0.0	0025 0.02	2 0.0025	0.024	0.0025	0.086 0.0	0.025 0.02	0 0.0025	0.076	0.0025 0	0.084 0.003	25 0.079	0.0025	0.11 0.	0.0025 0.1	10 0.002	5 0.088	0.0025	0.12 0.0	0025 0.21	0.0025	0.16	0.0025 0.0	84 0.0025	0.085	0.0025 0.0	75 0.0025	0.077	0.0025 0.	.19 0.002	0.077	0.0025 0.	0.002	0.1	0.0025	.1 0.0025	0.11	0.0025 0	0.0025	0.069	0.0025 0.096	6 0.0025	0.083
Mercury	0.00	2 NP	ND	0.0002 ND	0.0002	ND 0.0	0002 ND	0.0002	ND (0002 ND	0.0002	ND 0	0.0002 ND	0.00020	ND 0.000	02 ND	0.00020	ND 0.00	0020 ND	0.00020	ND	1.00020 N	(D 0.0002) ND	0.00020	ND 0.0	0020 NI	0.00020	ND	0.00020	ND 0.0	0020 NE	0.00020	ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.1	.00020 NI	D 0.000	20 ND	0.00020	ND 0.0	1002 ND	0.0002	ND (0.0002 N	D 0.0002	ND	0.0002 N	0.0002	ND	0.0002 N	.D 0.000	ND	0.0002 5	D 0.000	ND	0.0002	D 0.0002	ND	0.0002	ND 0.0002	ND	0.0002 ND	0.0002	ND
Nickel	0.1	NP	0.01	0.005 0.005	93 0.005	0.0063 0.	.005 0.006	5 0.005	0.0088	1005 ND	0.005	ND (0.005 0.006	7 0.010	ND 0.005	6 ND	0.0020 2	ND 0.00	020 ND	0.0020	ND	0.0020 0.0	0.002	ND	0.0020	ND 0.1	0020 NE	0.0020	ND	0.0020	ND 0.0	0020 NE	0.0020	ND	0.0020	ND 0.002	20 ND	0.0020	ND 0.	.0020 NI	D 0.002	30 ND	0.0020	ND 0.0	002 ND	0.002	ND	0.002 N	D 0.002	ND	0.002 N	0.002	ND	0.002 N	.D 0.00*	ND	0.002	ID 0.002	ND	0.002	D 0.002	ND	0.002	ND 0.002	ND	0.002 ND	0.002	ND
Nitrogen/Nitrati	10.0	NP	2.9	0.20 5.6	0.20	5.6 0	0.20 3.7	0.50	2.6	0.20 5.0	0.20	2.8	0.20 6.3	0.20	10 0.2	12	0.10	11 0.1	10 7.9	0.10	4.6	0.10 3	1.2 0.10	11	0.10	1.6 0	1.10 5.5	0.10	13	0.10	9.3 0	10 11	0.10	0.74	0.10	1.0 0.10	5.9	0.10	5.7 (0.10 4.	4 0.10	5.2	0.10	9.9 0	0.1 5.7	0.1	2.1	0.1 6.	6 0.1	10	0.1 10	0.1	2.9	0.1 2.	.4 0.1	6.2	0.1 4	.2 0.1	2.1	0.1	D 0.1	1.7	0.1	5.9 0.1	0.83	0.1 1	0.1	2.1
Nitrogen/Nitrati	Nitr NA	NR	NR	NR NR	NR	NR 3	NR NR	NR	NR	NR NR	NR	NR	NR NR	NR	NR NR	: NR	1.0	11 0.5	50 7.9	0.50	4.6	0.50 3	1.2 2.5	11	0.10	1.6 0	1.50 5.5	1.0	13	1.0	9.3	10 11	0.10	0.74	0.10	1.0 0.50	5.9	0.50	5.7 (0.50 4.	4 0.50	5.2	1.0	9.9 0	1.5 5.7	0.2	2.1	0.5 6.	6 1	10	1 10	0 0.2	2.9	0.5 2	.4 0.5	6.2	0.5 4	.2 0.5	2.1	0.5	D 0.1	1.7	1	5.9 0.5	0.83	0.1 1	0.2	2.1
Nitrogen/Nitrite	NA	NR	NR	NR NR	NR	NR !	NR NR	NR	NR	NR NR	NR	NR	NR NR	NR	NR NR	: NR	0.020	ND 0.0	120 ND	0.020	ND	0.020 N	(D 0.020	ND	0.020	ND 0.	.020 NE	0.020	ND	0.020	ND 0:	020 NE	0.020	ND	0.020	ND 0.02	0 ND	0.020	ND 0	0.020 NI	D 0.02	0 ND	0.020	ND 0.	.02 ND	0.02	ND	0.02 N	D 0.02	ND	0.02 N	0.02	ND	0.02 N	.D 0.02	ND	0.02 5	ID 0.02	ND	0.02	D 0.02	ND	0.02	ND 0.02	ND	0.02 ND	0.02	ND
Perchlorate	0.00	9 NR	NR	NR NR	NR	NR 3	NR NR	NR	NR	NR NR	NR	NR	NR NR	NR	NR NR	: NR	0.0040 2	ND 0.00	040 ND	0.0040	ND	0.0040 N	(D 0.004	ND	0.0040	ND 0.1	0040 NI	0.0040	ND	0.0040	ND 0.0	0040 NI	0.0040	ND	0.0040	ND 0.004	40 ND	0.0040	ND 0.	1.0040 NI	D 0.004	40 ND	0.0040	ND 0.0	004 ND	0.004	ND	0.004 N	D 0.004	ND	0.004 N	0.004	ND	0.004 N	D 0.004	ND	0.004 3	ID 0.004	ND	0.004	D 0.004	ND	0.004	ND 0.004	ND	0.004 ND	0.004	ND
Selenium	0.0	NP	0.0024	0.001 0.007	72 0.001	0.0017 0.	.001 0.004	3 0.001	0.0041	0.0072	0.001	0.0047 (0.001 0.004	4 0.0050	0.009 0.001	0.015	0.0025 0.	0.016 0.00	025 0.014	0.0025	0.0047	0.0025 0.0	0.002	0.0074	0.0025 (0.0061 0.1	0025 0.00	84 0.0025	0.0091	0.0025	0.014 0.0	0.025 0.01	0 0.0025	0.0028	0.0025	ND 0.002	25 0.0047	0.0025	0.0034 0.	0.0025 0.00	035 0.002	15 0.0063	0.0025	0.011 0.0	0.0053	3 0.0025	ND (0.0025 0.0	135 0.0025	0.0069	0.0025 0.00	186 0.0025	0.0026	0.0025 0.0	.028 0.002	0.005	0.0025 0.0	027 0.0025	ND	0.0025	D 0.0025	ND ^	0.0025	ND 0.0025	ND	0.0025 ND	0.0025	ND
Silver	0.0	NP	ND	0.005 ND	0.005	ND 0.	.005 ND	0.005	ND	.005 ND	0.005	ND (0.005 ND	0.010	ND 0.005	6 ND	0.00050	ND 0.00	0050 ND	0.00050	ND	1.00050 N	(D 0.0005) ND	0.00050	ND 0.0	00050 NE	0.00050	ND	0.00050	ND 0.0	0050 NI	0.00050	ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0	.00050 NI	D 0.000	50 ND	0.00050	ND 0.0	1005 ND	0.0005	ND	0.0005 N	0.0005	ND	0.0005 N	0.0005	ND	0.0005 N	D 0.007	ND	0.0005 3	D 0.000	ND	0.0005	D 0.0005	ND	0.0005	ND 0.0005	ND	0.0005 ND	0.0005	ND
Sulfate	400.) NP	110	25 110	25	110	25 130	25	110	25 120	50	130	25 120	25	130 50	140	50 1	140 2	5 130	25	90	25 1	10 50	110	25	100	50 16	0 25	130	50	140	50 16	25	130	25	140 25	100	50	130	50 14	40 50	120	50	180 5	50 160	50	170	50 20	0 50	210	50 15	0 50	130	10 18	30 10	190	5 1	50 5	88	5	7 5	130 ^	25	120 15	64	25 80	25	120
Thallium	0.00	2 NP	ND	0.001 ND	0.001	ND 0.	.001 ND	0.001	ND	.001 ND	0.001	ND (0.001 ND	0.0010	ND 0.001	I ND	0.0020 2	ND 0.00	020 ND	0.0020	ND	0.0020 N	(D 0.002)	ND	0.0020	ND 0.1	0020 NE	0.0020	ND	0.0020	ND 0.0	0020 NE	0.0020	ND	0.0020	ND 0.003	20 ND	0.0020	ND 0.	1.0020 NI	D 0.002	30 ND	0.0020	ND 0.0	002 ND	0.002	ND	0.002 N	D 0.002	ND	0.002 N	0.002	ND	0.002 N	D 0.007	ND	0.002 3	ID 0.002	ND	0.002	D 0.002	ND	0.002	ND 0.002	ND	0.002 ND	0.002	ND
Total Dissolves	Solic 1,20) NP	500	17 510	17	540	17 500	17	520	17 530	17	520	17 580	26	560 26	520	10 é	600 1	0 610	10	430	10 5	60 10	540	10	490	10 63	0 10	570	10	620	10 67	10	410	10	480 10	490	10	760	10 60	10 10	590	10	690 1	10 600	10	620	10 65	0 10	780	10 64	0 10	700	10 63	30 10	630	10 é	10 10	500	10	00 10	520	30	180 10	220	10 360	/ 10	370
Vanadium	0.04) NR	NR	NR NR	NR	NR 1	NR NR	NR	NR	NR NR	NR	NR	NR NR	0.0080	ND 0.005	6 ND	0.0050 2	ND 0.00	050 ND	0.0050	ND	0.0050 N	D ^A 0.005	ND	0.0050	ND 0.1	0050 NE	0.0050	ND	0.0050	ND 0.0	0050 NE	0.0050	ND	0.0050	ND 0.005	50 ND	0.0050	ND 0.	1.0050 NI	D 0.005	50 ND	0.0050	ND 0.0	005 ND	0.005	ND	0.005 N	D 0.005	ND	0.005 N	0.005	ND	0.005 N	D 0.005	ND	0.005 3	ID 0.005	ND	0.005	D 0.005	ND *	0.005	ND 0.005	ND	0.005 ND	0.005	ND
Zinc	5.0	NP	ND	0.006 ND	0.006	ND 0.	.006 ND	0.006	ND	.006 ND	0.006	ND (0.006 ND	0.020	ND 0.006	6 ND	0.020 2	ND 0.0	120 ND	0.020	ND	0.020 N	(D 0.020	ND	0.020	ND 0.	:020 NE	0.020	ND	0.020	ND 0:	020 NI	0.020	ND	0.020	ND 0.02	0 ND	0.020	ND 0	0.020 NI	D 0.02	0 ND ^	0.020	ND 0.	102 ND	0.02	ND	0.02 N	D 0.02	ND	0.02 N	0.02	ND	0.02 N	£D 0.02	ND	0.02 3	ID 0.02	ND	0.02	D 0.02	ND	0.02	ND 0.02	ND	0.02 ND	0.02	ND
Benzene	0.00	5 NR	NR	NR NR	NR	NR 3	NR NR	NR	NR	NR NR	NR	NR	NR NR	0.005	ND 0.005	6 ND	0.00050	ND 0.00	0050 ND	0.00050	ND	1.00050 N	(D 0.0005) ND	0.00050	ND 0.0	00050 NI	0.00050	ND	0.00050	ND 0.0	0050 NI	0.00050	0.00089	0.00050	ND 0.000	50 ND	0.00050	ND 0.0	.00050 NI	D 0.000	50 ND	0.0005	ND 0.0	1005 ND	0.0005	ND	0.0005 N	0.0005	ND	0.0005 0.00	0.0005	ND	0.0005 N	D 0.007	ND	0.0005 3	D 0.000	ND	0.0005	D 0.0005	ND	0.0005	ND 0.0005	ND	0.0005 ND	0.0005	ND
BETX	11.7	5 NR	NR	NR NR	NR	NR 3	NR NR	NR	NR	NR NR	NR	NR	NR NR	0.03	ND 0.03	3 ND	0.0025 2	ND 0.00	025 ND	0.0025	ND	0.0025 N	(D 0.002	ND	0.0025	ND 0.	0025 NI	0.0025	ND	0.0025	ND 0.0	025 NI	0.0025	0.00379	0.0025 0.	00063 0.002	25 ND	0.0025	ND 0.	1.0025 NI	D 0.002	IS ND	0.0025	ND 0.0	0025 ND	0.0025	ND (0.0025 0.0	0.0025	ND	0.0025 0.01	689 0.0025	0.00329	0.0025 N	D 0.002	ND	0.0025 3	D 0.002	ND	0.0025	D 0.0025	ND	0.0025	ND 0.0025	ND	0.0025 ND	0.0025	ND
pH	6.5 - 9	:0 NA	7.22	NA 7.34	4 NA	7.10 2	NA 7.32	NA	6.31	NA 7.28	NA	7.30	NA 7.18	NA	7.10 NA	8.00	NA 7	7.21 N	A 6.63	NA	7.19	NA 7.	.53 NA	6.99	NA	7.09	NA 7.2	9 NA	7.53	NA	7.44 3	6A 7.3	5 NA	7.15	NA	7.34 NA	7.30	NA	7.32	NA 7.3	37 NA	6.94	NA	7.48 N	4A 7.30	NA	6.92	NA 6.5	6 NA	7.83	NA 7.3	I NA	7.09	NA 7.	13 NA	7.11	NA 7	34 NA	7.49	NA 7	23 NA	7.19	NA	.22 NA	7.29	NA 7.35	, NA	7.33
Temperature	NA	NA	14.61	NA 13.1	9 NA	14.51	NA 14.08	8 NA	14.56	NA 18.11	NA	15.72	NA 16.55	NA	13.91 NA	16.40	NA 17	17.38 N	IA 14.49	NA	14.68	NA 11	.20 NA	19.42	NA	20.80	NA 12.	73 NA	11.65	NA	14.26 3	6A 18.5	8 NA	16.51	NA I	10.02 NA	20.82	NA	22.91	NA 17.	20 NA	9.91	NA	13.52 N	4A 14.20	NA	14.50	NA 10.	71 NA	16.88	NA 19.	90 NA	13.00	NA 14.	.80 NA	14.80	NA 13	.70 NA	14.87	NA I	.10 NA	13.20	NA 1	2.50 NA	15.60	NA 14.50	ð NA	13.20
Conductivity	NA	NA	0.91	NA 0.85	5 NA	0.84	NA 0.66	NA	0.66	NA 0.73	NA	0.67	NA 0.72	NA	0.77 NA	0.82	NA 0	0.72 N	A 0.76	NA	0.66	NA 0.	.66 NA	0.78	NA	0.79	NA 1.0	5 NA	0.67	NA	0.79 3	6A 0.8	8 NA	0.67	NA	0.55 NA	0.76	NA	0.85	NA 0.7	70 NA	0.65	NA	0.70 N	KA 0.76	NA	0.77	NA 0.1	i5 NA	0.74	NA 0.8	3 NA	0.75	NA 1.1	d3 NA	0.64	NA 0	96 NA	0.79	NA 0	67 NA	0.72	NA (147 NA	0.24	NA 0.62	: NA	0.79
Dissolved Oxy	n NA	NA	NM	NA 0.27	7 NA	0.49 2	NA 0.16	NA	0.08	NA 0.07	NA	0.11	NA 0.56	NA	1.10 NA	0.87	NA 0	0.64 N.	A 0.29	NA	1.01	NA L	.27 NA	2.11	NA	0.80	NA 1.5	2 NA	1.37	NA	2.20 3	6A 0.6	8 NA	1.42	NA	1.47 NA	4.29	NA	2.87	NA 4.6	07 NA	2.52	NA	3.10 N	4A 0.17	NA	2.43	NA 1.5	I NA	2.48	NA 5.6	7 NA	2.21	NA 0.	.05 NA	0.23	NA 0	34 NA	5.80	NA 0	35 NA	0.24	NA 3	.26 NA	0.53	NA 0.42	2 NA	0.10
ORP	NA	NA	NM	NA 21.2	2 NA	148.2	NA -268	NA	20	NA 68	NA	47	NA 168	NA	210 NA	77.2	NA -é	-68.3 N.	A 117.2	NA	-159.8	NA 31	6.1 NA	41.5	NA	22.3	NA 16.	3 NA	25.0	NA	35.5 3	6A -22	6 NA	72.9	NA -	-37.1 NA	-54.3	NA	-76.3	NA -40	1.5 NA	69.1	NA	-74.4 N	4A 127.0	NA	-51.7	NA -43	.0 NA	-20.5	NA -73	.1 NA	16.0	NA 22	.5 NA	10.6	NA 3	8.5 NA	-36.5	NA	.2 NA	-12.6	NA 1	12.4 NA	88.3	NA 4.7	NA	61.9
	ous: Standards of Section 620. Resource Go All values ar	tained from IAC, 1 110 - Groundwater sandwater in mgT. (ppm) ur	ide 35, Chapter I, Quality Standards loss otherwise note	Part 620, Subpart D, for Class I: Potable d.	DL - 1 NA - 3 ND - 3 NM - 3	Attection limit for Applicable for Detected for Measured	NS NS 1	R - Not Raquitos S - Not Sampled R - Propped'ana V - Serial Dilutio	red past hold tie Exceeds Contro	Links	F1- 5 F2- 5 *1+- 5	MS and/or MSD MS/MSD RPD o Initial Calibration Continuing Calibr	Recovery outside of inceeds control limits is Verification is outsi ration Verification is	f links. r. de acceptance linits, outvide accertance li	high blased		* - Dano * - Madi * - LCS	otes instrument o dan Value (Sor te S or LCSD is out	wated QC exceeds mp) tide acceptance lat	s the control limits nits			Oxygen Reductio	Temperature Conductivity Neobod Oxygen Presental (ORP)	'C dag nacin' nil ngL nil nV nil	gues Calcius Beiernens (contine Byrans/Bor Bachy	an .																																									

bes for for <th>8/.</th> <th>2018</th> <th>8/10</th> <th>/2018</th> <th>10/25</th> <th>/2018</th> <th>2/25</th> <th>2019</th> <th>5/1/</th> <th>2019</th> <th>8/27</th> <th>2019</th> <th>11/12</th> <th>/2019</th> <th>2/25</th> <th>2020</th> <th>4/27</th> <th>2020</th> <th>8/11</th> <th>2020</th> <th>12/9</th> <th>/2020</th> <th>2/23</th> <th>/2021</th> <th>5/10</th> <th>2021</th>	8/.	2018	8/10	/2018	10/25	/2018	2/25	2019	5/1/	2019	8/27	2019	11/12	/2019	2/25	2020	4/27	2020	8/11	2020	12/9	/2020	2/23	/2021	5/10	2021
No No No No		Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result
bit bi	T	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
1 1 1 0 0 0 0 <	1	0.16 V	0.001	0.17 V	0.001	0.2	0.001	0.14	0.001	0.21	0.001	0.17	0.001	0.16	0.001	0.11	0.001	0.2	0.001	0.15	0.001	0.13	0.001	0.12	0.001	0.14
No 0.90 No		0.5	0.0025	0.48	0.0025	0.5	0.0025	0.51	0.0025	0.45	0.0025	0.48	0.0025	0.44	0.0025	0.47	0.0025	0.49	0.0025	0.52	0.0025	0.49	0.0025	0.46	0.0025	0.47
1 1 1 1 0	I	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^1+	0.001	ND ^+	0.001	ND ^+
No 0.000 No 0.00 No<		0.37	0.05	0.33	0.05	0.31	0.05	0.33	0.1	0.58	0.05	0.38	0.05	0.58	0.05	0.53	0.05	0.44	0.05	0.59	0.05	0.46	0.05	0.47	0.05	0.34
110 100 <td></td> <td>ND</td> <td>0.0005</td> <td>ND</td>		ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 No 0.00 0.00 No 0.00<		150	10	170	10	160	10	170	10	170	10	170	10	150	10	170	10	170	10	170	10	170	10	150	10	130
bow and bow <td></td> <td>ND</td> <td>0.005</td> <td>ND</td>		ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No. 0.000 No.00 0.000 No.00 No.000 No.000 <td></td> <td>0.0061</td> <td>0.001</td> <td>0.006</td> <td>0.001</td> <td>0.0056</td> <td>0.001</td> <td>0.0058</td> <td>0.001</td> <td>0.0044</td> <td>0.001</td> <td>0.005</td> <td>0.001</td> <td>0.0043</td> <td>0.001</td> <td>0.0052</td> <td>0.001</td> <td>0.0052</td> <td>0.001</td> <td>0.0044</td> <td>0.001</td> <td>0.0056</td> <td>0.001</td> <td>0.0051</td> <td>0.001</td> <td>0.0054</td>		0.0061	0.001	0.006	0.001	0.0056	0.001	0.0058	0.001	0.0044	0.001	0.005	0.001	0.0043	0.001	0.0052	0.001	0.0052	0.001	0.0044	0.001	0.0056	0.001	0.0051	0.001	0.0054
No. endi No. N		ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
bit bit <td>I</td> <td>ND</td> <td>0.01</td> <td>ND</td> <td>0.005</td> <td>ND</td> <td>0.005</td> <td>ND</td> <td>0.005</td> <td>ND FI</td> <td>0.005</td> <td>0.0053</td>	I	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND FI	0.005	0.0053
11 11 11 11 01 11 01 11 01 11 01 11 01 11 01<		0.41	0.1	0.39	0.1	0.42	0.1	0.41	0.1	0.45	0.1	0.37	0.1	0.44	0.1	0.44	0.1	0.44	0.1	0.31	0.1	0.5	0.1	0.48	0.1	0.46 H
No. 0.000 No. 0.000 0.00 0.00 0.000 0.00 0.000<		15	0.1	15	0.1	19	0.1	11	0.1	13	0.1	19	0.1	10	0.1	14	0.1	- 11	0.1	20	0.1	15	0.1	12	0.1	11
6.4. 0.101 1.2 0.101 4.5 0.001 5.5 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.6 0.017 5.0 0.017 5.0 0.017 5.0 0.017 5.0 0.017 5.0 0.017		ND	0.0005	ND	0.0005	ND	0.0005	0.0012	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	0.00054	0.0005	ND
No ender No		6.6	0.013	7.7	0.013	8.6	0.0025	4.9	0.005	5.9	0.013	7.5	0.013	5.3	0.013	11	0.013	5.1	0.013	7.3	0.013	5.2	0.0025	4.9	0.013	5.5
bes alor		ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
No 11 No 12 No 14. No <		0.006	0.002	0.0059	0.002	0.0053	0.002	0.0073	0.002	0.0055	0.002	0.0053	0.002	0.0054	0.002	0.0068	0.002	0.0064	0.002	0.005	0.002	0.0064	0.002	0.0061	0.002	0.0055
No 4.1 No <		ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND H
No 6.02 No 0.02 No		ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND ^	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND
ND* 6094 ND 6094 ND <td></td> <td>ND</td> <td>0.02</td> <td>ND</td>		ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
61000 8000 </td <td></td> <td>ND ^</td> <td>0.004</td> <td>ND</td>		ND ^	0.004	ND	0.004	ND																				
No 60000 No 6000 No 6000 <td></td> <td>0.0029</td> <td>0.0025</td> <td>ND</td> <td>0.0025</td> <td>ND</td> <td>0.0025</td> <td>0.0041</td> <td>0.0025</td> <td>0.0077</td> <td>0.0025</td> <td>ND</td> <td>0.0025</td> <td>0.0094</td> <td>0.0025</td> <td>ND</td> <td>0.0025</td> <td>0.011</td> <td>0.0025</td> <td>0.0063</td> <td>0.0025</td> <td>ND</td> <td>0.0025</td> <td>0.0035</td> <td>0.0025</td> <td>ND</td>		0.0029	0.0025	ND	0.0025	ND	0.0025	0.0041	0.0025	0.0077	0.0025	ND	0.0025	0.0094	0.0025	ND	0.0025	0.011	0.0025	0.0063	0.0025	ND	0.0025	0.0035	0.0025	ND
AC B V		ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
ND 6002 ND		62	10	26	10	34	2	49	5	48	5	18	5	87	5	64	5	30	25	57	15	52	10	82	10	59
100 100 <td></td> <td>ND</td> <td>0.002</td> <td>ND</td>		ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
No. ender No. field No. field <th< td=""><td></td><td>1300</td><td>10</td><td>1200</td><td>10</td><td>1300</td><td>10</td><td>1100</td><td>10</td><td>1100</td><td>10</td><td>1100</td><td>10</td><td>1100</td><td>10</td><td>1100</td><td>10</td><td>1100</td><td>60</td><td>1100</td><td>10</td><td>1000</td><td>10</td><td>1000</td><td>10</td><td>970</td></th<>		1300	10	1200	10	1300	10	1100	10	1100	10	1100	10	1100	10	1100	10	1100	60	1100	10	1000	10	1000	10	970
No 642 No 643 No		ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND *	0.005	ND	0.005	ND	0.005	ND	0.005	ND
ND 6.0805 ND 6.0805 <th< td=""><td></td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td><td>0.02</td><td>ND</td></th<>		ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
64007 64007 64007 64007 64007 64007 64007 64007 64007 64007 6400 800 64007 64007 64007 6400 800 6400 800 6400 800 <t< td=""><td></td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td><td>0.0005</td><td>ND</td></t<>		ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
551 NA 651 NA 610 NA 710 NA 651 NA 650 NA 160		0.00077	0.0025	0.0011	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1750 KA 21.77 KA 17.67 KA 16.39 KA 16.89 KA 16.89 KA 16.58 KA 16.59 KA 16.39 KA 16.99 KA 16.89 KA 16.80 KA 16.89 KA 16.		6.74	NA	6.83	NA	7.13	NA	6.61	NA	6.58	NA	6.68	NA	7.32	NA	6.64	NA	6.58	NA	6.55	NA	6.51	NA	6.76	NA	6.76
15: NA 170 NA 167 NA 166 NA 125 NA 126 NA 177 NA 642 NA 160 NA 126 NA 125 NA 177 NA 642 NA 160 NA 126 NA 645 NA 160 NA 640 NA 160 NA 641 NA 760 NA 454 NA 346 NA 645 NA 160 NA 642 NA 645 NA 645 NA 160 NA 645 NA 645 NA 160 NA 645 NA 645 NA 645 NA 645 NA 646 NA 646 NA 646 NA 646 NA 646 NA 647 NA 646 NA 4616 NA 4516 NA 647 NA 646 NA 646 NA 646 NA		17.83	NA	21.77	NA	17.67	NA	16.20	NA	16.50	NA	18.80	NA	15.85	NA	15.50	NA	15.90	NA	16.20	NA	15.20	NA	14.80	NA	15.50
7.09 NA 7.47 NA 3.48 NA 0.00 NA 0.25 NA 0.47 NA 0.20 NA 0.21 NA 0.41 NA 4614 NA 454 NA 410. NA -127.6 NA -102.7 NA -130. NA -620. NA -127.3 NA -120.9 NA		1.52	NA	1.70	NA	1.67	NA	1.96	NA	1.26	NA	2.05	NA	1.77	NA	0.42	NA	1.69	NA	0.82	NA	0.23	NA	1.64	NA	1.91
-61.4 NA -45.4 NA -41.0 NA -103.7 NA -127.6 NA -102.7 NA -113.0 NA -162.0 NA -153.6 NA 127.3 NA -119.8 NA -126.9 NA		7.09	NA	7.47	NA	3.48	NA	0.00	NA	0.25	NA	0.67	NA	0.55	NA	0.20	NA	0.31	NA	5.14	NA	0.29	NA	0.41	NA	0.23
		-61.4	NA	-45.4	NA	-41.0	NA	-103.7	NA	-127.6	NA	-102.7	NA	-113.0	NA	-162.0	NA	-153.6	NA	127.3	NA	-119.8	NA	-126.9	NA	-97.5

 <tr DL Result DL Result DL Result DL Result DL Result DL Result DL Rest DL REST DL RES Chloride N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N</ Manganese

w: Standards obtained from IAC, Talo X, Chupter L, Part 623, Subpart D, Socion 620:410 - Groundware Quality Standards for Class I: Potable Resource Groundwater All values are in mg/L (ppn) unless otherwise nond.

Dc. Dourine Mill. No. Nr. Regional Fr. Mit andre MDD Recovery section of Netro. Nr. No. Nr. Nr. Strangendon Fr. Mit andre MDD Recovery section of Netro. Nr. Strangendon Fr. S Temperature 'C degrees Cokies Cossilactivity mccm' millelemens/cardineters Disobed Organ mgL millgranether Organ Radaction Powerful (087) m V millerobs *- Denotes instrument related QC exceeds the control limits *- Median Value (for samp) *- LCS or LCSD is conside acceptance limits

The second

Nacio Statubi Antari Mark 76, 20, 70 April 1970. Bighton 56. Descisabati NJ, 56. Antaria 17. Statistical Discompositio diffusio Scattor Guillo Construction Davil Statubi for Davil 1974 56. No Statighto 17. Statistical Discomposition Davil Research Guillo Construction Davil Statubi for Davil 1974 56. No Statistical Discomposition Davil Statistical Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Statistical Discomposition Davil Discomposit

 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg
 Sample Murg

 Dest
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 U
 Nitrogen/Nitrite NA es darke index fan K. Y. B. N. Speer J. Fer (3), Saper J. Fer (4), Saper J. Fer (4),

_	10/30	/2018	2/26	2019	5/1/	2019	8/27	2019	11/12	2/2019	2/25	2020	4/28	2020	8/11	2020	12/8	/2020	2/23	/2021	5/11	/2021
	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result
	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
	0.001	ND	0.001	0.0013	0.001	ND	0.001	ND	0.001	0.0011	0.001	ND	0.001	ND ^	0.001	ND	0.001	ND	0.001	ND	0.001	ND
	0.0025	0.2	0.0025	0.25	0.0025	0.19	0.0025	0.16	0.0025	0.24	0.0025	0.21	0.0025	0.21	0.0025	0.2	0.0025	0.22	0.0025	0.18	0.0025	0.2
	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND ^+
	0.05	0.32	0.05	0.35	0.05	0.41	0.05	0.26	0.05	0.31	0.05	1.3	0.05	0.94	0.25	1	0.5	2.3	0.05	0.97	0.05	0.59
	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	2	54	2	49	2	48	2	50	2	44	2	47	2	40	2	42	2	45	4	42	10	56
	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.001	0.0058	0.001	0.0028	0.001	0.0017	0.001	0.0015	0.001	0.0027	0.001	0.0023	0.001	0.0018	0.001	0.0021	0.001	0.002	0.001	0.0016	0.001	0.0019
	0.002	0.0061	0.002	0.0027	0.002	ND	0.002	ND	0.002	0.0026	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND *	0.005	ND	0.005	ND
	0.1	0.2	0.1	0.22	0.1	0.22	0.1	0.19	0.1	0.24	0.1	0.21	0.1	0.23	0.1	0.19	0.1	0.26	0.1	0.25	0.1	0.21 H
	0.1	0.88	0.1	1.5	0.1	0.1	0.1	ND	0.1	0.13	0.1	0.26	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	0.11
	0.0005	0.0027	0.0005	0.0015	0.0005	ND	0.0005	ND	0.0005	0.00068	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	0.0025	1.9	0.0025	2.6	0.0025	1.9	0.0025	1.3	0.0025	2.7	0.0025	1.9	0.0025	2	0.0025	1.9	0.0025	1.9	0.0025	1.3	0.0025	1.7
	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
	0.002	0.0065	0.002	0.0079	0.002	0.0042	0.002	0.0031	0.002	0.0055	0.002	0.0048	0.002	0.0041	0.002	0.0033	0.002	0.0039	0.002	0.0032	0.002	0.0031
	0.1	0.64	0.1	ND	0.1	1.2	0.1	2.2	0.1	1.6	0.1	4	0.1	3.6	0.1	1.5	0.1	2.6	0.1	4.2	0.1	4.7
	0.1	0.68	0.1	ND	0.1	1.2	0.5	2.3	0.1	1.6	0.1	4.1	0.5	3.6	0.1	1.5	0.5	2.6	0.5	4.3	0.5	4.7
	0.02	0.04	0.02	ND	0.02	0.036	0.02	0.053	0.02	0.02	0.02	0.061	0.02	0.046	0.02	ND	0.02	0.044	0.02	0.055	0.02	0.048
	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
	0.0025	0.0031	0.0025	ND	0.0025	0.0062	0.0025	0.0056	0.0025	0.006	0.0025	0.0045	0.0025	0.0077	0.0025	0.0048	0.0025	0.0032	0.0025	0.0035	0.0025	0.005
	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	20	48	2	37	5	32	5	32	5	49	5	63	5	67 ^	25	57	15	71	10	64	25	58
	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
	10	550	10	500	10	470	10	420	10	530	10	520	10	460	30	480	10	450	10	430	10	530
	0.005	ND	0.005	0.008	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.02	ND	0.02	ND	0.02	ND ^	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
3	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
8	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
	NA	7.65	NA	6.77	NA	6.81	NA	7.09	NA	7.72	NA	6.82	NA	6.80	NA	6.85	NA	7.11	NA	7.08	NA	7.01
	NA	16.86	NA	11.80	NA	12.60	NA	14.10	NA	12.61	NA	11.80	NA	12.30	NA	12.90	NA	12.30	NA	12.80	NA	13.00
	NA	0.64	NA	0.96	NA	0.49	NA	0.19	NA	0.84	NA	0.79	NA	0.24	NA	0.90	NA	0.19	NA	0.71	NA	0.89
	NA	8.63	NA	0.01	NA	0.24	NA	0.48	NA	1.30	NA	0.26	NA	0.22	NA	2.35	NA	0.16	NA	0.57	NA	0.15
	NA	-62.8	NA	118.0	NA	7.2	NA	10.1	NA	-37.0	NA	-14.5	NA	8.6	NA	26.1	NA	33.9	NA	22.4	NA	137.2

11/1	2018	2/27	/2019	5/1/	2019	8/28	2019	11/14	1/2019	2/26	/2020	4/29	/2020	8/12	2020	12/8	2020	2/25	/2021	5/13	/2021
DL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result
0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
0.001	0.064	0.001	0.015	0.001	0.0068	0.001	0.0041	0.001	0.013	0.001	0.0087	0.001	0.0081	0.001	0.0075	0.001	0.0085	0.001	0.0073	0.001	0.011
0.0025	0.28	0.0025	0.19	0.0025	0.11	0.0025	0.11	0.0025	0.14	0.0025	0.16	0.0025	0.14	0.0025	0.13	0.0025	0.15	0.0025	0.15	0.0025	0.15
0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND
0.05	1.3	0.05	1.5	0.25	3.2	0.25	2.5	0.25	1.7	0.25	1.4	0.05	1.3	0.25	1.5	0.25	1.3	0.25	1.3	0.25	1.1
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	92	10	100	2	62	2	50	2	75	2	100	10	110	10	84	10	91	10	120	6	120
0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
0.001	0.0029	0.001	0.0022	0.001	0.0011	0.001	0.0016	0.001	0.0015	0.001	0.0018	0.001	0.0015	0.001	0.0015	0.001	0.0016	0.001	0.0017	0.001	0.0016
0.002	0.0048	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	0.0056	0.005	ND *	0.005	ND	0.005	0.0053
0.1	0.61	0.1	0.54	0.1	0.62	0.1	0.53	0.1	0.54	0.1	0.55	0.1	0.6	0.1	0.52	0.1	0.67	0.1	0.64	0.1	0.66
0.1	10	0.1	1.7	0.1	0.23	0.1	ND	0.1	1.1	0.1	1.1	0.1	0.64	0.1	1.1	0.1	1.3	0.1	0.95	0.1	1.3
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0.0025	4.6	0.0025	4	0.0025	2.1	0.0025	3	0.0025	3.2	0.0025	3.3	0.0025	2.7	0.0025	3.5	0.0025	3.4	0.0025	3.3	0.0025	3.4
0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
0.002	0.0045	0.002	0.0037	0.002	0.0024	0.002	0.0028	0.002	0.0028	0.002	0.004	0.002	0.0033	0.002	0.0023	0.002	0.0034	0.002	0.0033	0.002	0.0025
0.1	ND	0.1	ND	0.1	3.6	0.1	1.9	0.1	ND												
0.1	ND	0.1	ND	0.5	3.6	0.1	1.9	0.1	ND	0.1	ND ^	0.1	ND	0.1	ND	0.1	ND ^+	0.1	ND	0.1	ND
0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND ^	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
50	170	20	320	10	210	5	160	20	230	20	350	50	300	25	210	50	210	25	240	25	240
0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	970	10	1100	10	740	10	710	10	880	10	1000	10	1100	30	750	10	780	10	890	10	830
0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
0:02	ND	0.02	ND	0.02	ND ^	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
NA	7.49	NA	7.05	NA	7.08	NA	7.19	NA	7.43	NA	7.18	NA	7.08	NA	6.95	NA	7.26	NA	7.26	NA	7.26
NA	14.03	NA	12.90	NA	15.90	NA	17.00	NA	14.82	NA	15.20	NA	15.50	NA	16.50	NA	14.70	NA	15.50	NA	16.90
NA	1.15	NA	1.53	NA	0.85	NA	1.25	NA	1.39	NA	1.39	NA	0.30	NA	0.60	NA	0.22	NA	1.21	NA	1.42
NA	7.23	NA	0.15	NA	0.26	NA	0.30	NA	0.58	NA	0.16	NA	0.20	NA	3.83	NA	0.16	NA	0.35	NA	0.11
NA	-26.9	NA	-83.6	NA	-50.1	NA	-23.5	NA	-105.0	NA	-131.1	NA	-126.3	NA	-98.6	NA	-154.4	NA	-109.5	NA	-101.1

11/1	2018	2/27	/2019	5/1/	2019	8/28	2019	11/14	/2019	2/26	2020	4/29/	2020	8/12	2020	12/8	2020	2/25	2021	5/13/	2021
XL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DI.	Result
003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
001	0.0063	0.001	0.0015	0.001	0.002	0.001	0.0045	0.001	0.01	0.001	ND	0.001	ND ^	0.001	0.0059	0.001	0.0079	0.001	ND	0.001	ND
025	0.058	0.0025	0.044	0.0025	0.052	0.0025	0.057	0.0025	0.058	0.0025	0.028	0.0025	0.035	0.0025	0.051	0.0025	0.053	0.0025	0.031	0.0025	0.053
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND
.05	0.64	0.05	0.4	0.05	0.44	0.05	0.57	0.05	0.67	0.05	0.24	0.05	0.37	0.05	0.5	0.05	0.56	0.05	0.31	0.05	0.34
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	150	10	160	10	170	10	180	10	150	10	140	10	150 F1	10	150	10	160	10	130	10	140
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND *	0.005	ND	0.005	ND
u	0.48	0.1	0.44	0.1	0.38	0.1	0.41	0.1	0.47	0.1	0.31	0.1	0.34	0.1	0.48	0.1	0.57	0.1	0.27	0.1	0.19
LI .	0.23	0.1	0.88	0.1	0.94	0.1	1	0.1	0.92	0.1	0.28	0.1	0.64	0.1	1.7	0.1	0.77	0.1	0.61	0.1	0.69
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
1025	0.84	0.0025	0.11	0.0025	0.042	0.0025	0.42	0.0025	0.69	0.0025	0.029	0.0025	0.043	0.0025	0.52	0.0025	0.55	0.0025	0.046	0.0025	0.079
002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
002	0.002	0.002	0.0029	0.002	ND	0.002	0.0043	0.002	0.0028	0.002	ND	0.002	ND	0.002	ND	0.002	0.002	0.002	ND	0.002	ND
11	0.27	0.1	ND	0.1	ND	0.1	0.13	0.1	ND	0.1	ND	0.1	ND	0.1	0.98	0.1	ND	0.1	ND	0.1	ND
1	0.72	0.1	ND	0.1	ND	0.1	0.13	0.1	ND	0.1	ND ^	0.1	ND	0.1	0.98	0.1	ND	0.1	ND	0.1	ND
11	0.45	0.02	ND																		
004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.0025	0.0025	ND ^	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
00	260	20	390	20	360	20	390	20	360 F1	20	250	50	350	100	370	50	320	100	270	50	340
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	1100	10	1000	10	1000	10	1200	10	1100	10	800	10	1000	60	1000	10	920	10	850	10	920
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
1005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
025	0.00259	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
iA.	7.70	NA	7.43	NA	7.68	NA	7.37	NA	7.61	NA	8.00	NA	7.96	NA	7.18	NA	7.36	NA	7.91	NA	7.39
iA.	13.39	NA	12.20	NA	14.00	NA	15.10	NA	14.41	NA	8.80	NA	10.00	NA	13.20	NA	14.00	NA	9.90	NA	11.10
iA.	1.19	NA	1.60	NA	0.99	NA	1.70	NA	1.52	NA	1.16	NA	1.33	NA	0.63	NA	0.29	NA	0.95	NA	1.45
iA.	6.50	NA	0.05	NA	0.25	NA	0.57	NA	1.10	NA	0.18	NA	0.24	NA	3.94	NA	0.16	NA	0.45	NA	0.18
IA.	-11.6	NA	-110.4	NA	-179.2	NA	-0.3	NA	-60.7	NA	-193.5	NA	-220.4	NA	-79.4	NA	-78.8	NA	-160.7	NA	-70.4

DL Result DL Result DL Result DL Result DL Result DL Result 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10 DL Result DL Result DL Result DL Result DL Result DL Result DL Result DL Result DL Result DL Result DL Result Chloride Manganese

DELE: Standards obtained from LAC, Talle 35, Chapter 1, Part 620, Subpart D, Sociation 620, e1(1) - Geometroare Quality Standards for Class E Potable Resource Geometroarter All values are in mg1. (ppm) unless otherwise noted. DL - Datection limit NR - Net Required NA - Net Applicable NS - Net Stampid ND - Net Distocted Hi - Purpoultaulyzed past hold time NM - Net Massand V - Setti Dateine Exceeds Coursel Limits

F1- MS and/or MSD Recovery outside of limits. F3- MSMSD 87D seconds control limits. ⁴¹+ - hold Calibration Verification is outside accentance limits, high based ^w- Contenies Collibration Verification is conside accentance limits, high based Denotes instrument related QC exceeds the cor
 Madian Value (for samp)
 LCS or LCSD is conside acceptance limits

 And
 - Comparison state (QC excels for contribute
 Temperature
 C
 degen Cakate

 - Dames instance state (QC excels for contribute
 Contribution state (GC excels for contribute
 addiatate instance
 addiatate instance

 - A Main Value
 Contribution state (GC excels for contribute
 Contribution state (GC excels for addiatate instance
 addiatate instance

 - List of List of List (List excels for the contribution of the contris andiameter of the contris and the contribution of the

New: Standard scheduler fram JAC 1967 3. Couper 1. ProvICM Scheme D. R. - Descrivability Science 67(10) - Verol Segmed J. Strate 67(10) - Couperson Science 70(20) ProvIde No. - Star Specific Scienc F1- MS and/or MSD Recovery outside of limits.
 T2- MEMSD PDP seconds control limits.
 *(+- hatid Calibration VerEcation is conside acceptance limits, high blassed
 ^+_{+} Containing Calibration VerEcation is conside acceptance limits, high blassed

	10/31	/2018	2/28	2019	5/2/	2019	8/28	2019	11/14	1/2019	2/26	2020	4/30	2020	8/11	2020	12/10	/2020	2/24	/2021	5/13	2021
Ι	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL.	Result
T	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
Τ	0.001	0.022	0.001	0.022	0.001	0.024	0.001	0.022	0.001	0.024	0.001	0.02	0.001	0.027	0.001	0.022	0.001	0.022	0.001	0.023	0.001	0.023
Ι	0.0025	0.1	0.0025	0.17	0.0025	0.12	0.0025	0.14	0.0025	0.095	0.0025	0.1	0.0025	0.17	0.0025	0.14	0.0025	0.19	0.0025	0.18	0.0025	0.21
	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND
	0.05	2.7	0.05	2.4	0.25	3.2	0.25	2.7	0.5	2.9	0.5	2.5	0.05	2.8	0.5	3.1	0.25	1.4	0.25	2.8	0.5	3.2
	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	10	170	10	160	10	160	10	160	10	150	10	150	10	140	10	160	10	140	10	130	10	130
	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
1	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.1	0.35	0.1	0.35	0.1	0.34	0.1	0.3	0.1	0.35	0.1	0.36	0.1	0.39	0.1	0.34	0.1	0.41	0.1	0.38	0.1	0.38
4	0.1	0.72	0.1	0.76	0.1	0.64	0.1	0.93	0.1	0.79	0.1	1	0.1	0.91	0.1	1.3	0.1	1.3	0.1	1	0.1	0.87
1	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
4	0.0025	3.8	0.0025	3.9	0.0025	3.8	0.0025	4.1	0.0025	4.4	0.0025	4.1	0.0025	3.9	0.0025	4.8	0.0025	4.4	0.0025	4.1	0.0025	3.4
1	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
4	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
1	0.1	0.21	0.1	ND																		
4	0.1	0.21	0.1	ND																		
	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
4	0.004	ND	0.004	ND	0.004	ND	0.008	ND	0.008	ND	0.008	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.008	ND
	0.0025	0.01	0.0025	0.006	0.0025	ND	0.0025	ND	0.0025	0.017	0.0025	ND	0.0025	0.029	0.0025	0.0093	0.0025	ND	0.0025	0.011	0.0025	ND
4	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
1	500	950	1000	1700	40	1500	40	1700	50	1500	50	1300	50	1300 ^	250	1600	250	1300	250	1400	250	1500
4	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
4	13	3100	13	3000	10	2800	10	2800	10	2800	10	2500	10	2600	150	2700	10	2300	10	2500	10	2600
4	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
4	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
4	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
4	0.0025	0.00075	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1	NA	8.29	NA	7.74	NA	7.71	NA	7.71	NA	8.11	NA	7.75	NA	7.66	NA	7.43	NA	7.62	NA	7.79	NA	7.86
1	NA	14.94	NA	12.50	NA	13.60	NA	13.90	NA	12.68	NA	13.20	NA	14.10	NA	14.80	NA	14.30	NA	14.00	NA	14.80
1	NA	2.68	NA	3.69	NA	2.25	NA	0.23	NA	3.24	NA	0.53	NA	0.36	NA	3.47	NA	3.27	NA	2.75	NA	3.25
1	NA	5.01	NA	0.04	NA	0.18	NA	0.30	NA	8.63	NA	0.18	NA	0.19	NA	7.18	NA	1.91	NA	0.44	NA	0.24
1	NA	-132.7	NA	-153.9	NA	-176.9	NA	-171.5	NA	-123.8	NA	-232.8	NA	-226.3	NA	-180.5	NA	-218.5	NA	-182.0	NA	-160.2

9/.	2018	10/3	1/2018	2/28	/2019	5/2/	2019	8/2//	2019	11/14	1/2019	2/26	2020	4/30	/2020	8/11	/2020	12/10	/2020	2/24	/2021	5/12/	2021
	Result	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL.	Result
	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
	0.0011	0.001	0.0013	0.001	0.0013	0.001	0.0019	0.001	0.0014	0.001	0.002	0.001	ND	0.001	ND ^	0.001	0.001	0.001	ND	0.001	ND	0.001	ND
	0.052	0.0025	0.047	0.0025	0.056	0.0025	0.053	0.0025	0.06	0.0025	0.049	0.0025	0.043	0.0025	0.04	0.0025	0.039	0.0025	0.039	0.0025	0.036	0.0025	0.033
	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND ^+
	1.6	0.05	1.6	0.05	1.5	0.25	2	0.25	1.8	0.25	2	0.25	2	0.05	2.2	0.5	2.4	0.25	1.1	0.25	2.2	0.25	2.1
	ND	0.0005	ND	0.0005	0.00083	0.0005	0.00071	0.0005	0.001	0.0005	0.00073	0.0005	0.00064	0.0005	0.00062	0.0005	0.00076	0.0005	ND	0.0005	ND	0.0005	ND
	140	2	120	10	130	10	130	10	180	10	160	10	150	10	130	10	120	10	140	10	110	10	96
	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.01	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
	0.95	0.1	1.1	0.1	0.91	0.1	0.91	0.1	0.85	0.1	0.92	0.1	0.97	0.1	1	0.1	0.81	0.1	1.1	0.1	1.1	0.1	1
	ND	0.1	ND	0.1	0.18	0.1	1.7	0.1	ND	0.1	0.42	0.1	0.83	0.1	0.35	0.1	ND	0.1	ND	0.1	ND	0.1	ND
	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	0.11	0.0025	0.64	0.0025	0.89	0.0025	0.84	0.0025	0.26	0.0025	0.63	0.0025	0.75	0.0025	0.53	0.0025	0.59	0.0025	0.034	0.0025	ND	0.0025	0.86
	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
	0.0025	0.002	0.0021	0.002	0.003	0.002	0.0031	0.002	0.0044	0.002	0.0034	0.002	0.0034	0.002	0.0031	0.002	0.0025	0.002	ND	0.002	ND	0.002	ND
	0.51	0.1	ND	0.1	0.51	0.1	1.2	0.1	ND	0.1	0.11	0.1	ND	0.1	1.5	0.1	ND	0.1	0.16	0.1	ND	0.1	ND
	0.51	0.1	ND	0.1	0.51	0.1	1.2	0.1	ND	0.1	0.11	0.1	ND ^	0.1	1.5	0.1	ND	0.1	0.16	0.1	ND	0.1	ND
	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
	ND	0.004	ND	0.004	ND	0.004	ND 0.010	0.004	ND 0.003/	0.004	ND 0.012	0.004	ND 0.007	0.004	ND	0.004	ND 0.00027	0.004	ND	0.004	ND	0.004	0.0001
	ND	0.0005	ND	0.00025	0.016 ND	0.0025	ND ND	0.0025	0.0036 ND	0.0005	0.012 ND	0.0025	0.007	0.0025	0.045	0.0025	0.0027	0.0025	ND	0.0005	ND	0.0025	ND
	500	250	550	40	670	40	1100	40	.00	60	900	60.0000	980	60	700.0	100	730	250	760	260	200	100	660
	390	230	330	40	970	40	0.0036	40	990	30	990	30	980	30	0.0026	0.002	0.0042	230	0.0021	230	700 ND	0.002	0.0021
	2000	10	1000	10	2200	10	2400	10	2200	10	2200	10	2200	10	2100	150	1200	10	1900	10	1800	10	1600
1	ND	0.005	ND	0.005	0.0054	0.005	ND	0.005	0.0059	0.005	0.0058	0.005	ND	0.005	ND ^	0.005	0.0051	0.005	ND	0.005	ND	0.005	ND
1	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND
1	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
	0.006	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
1	7.18	NA	7.48	NA	6.88	NA	6.86	NA	6.92	NA	7.33	NA	6.97	NA	6.82	NA	6.80	NA	6.73	NA	7.20	NA	7.13
1	20.77	NA	13.09	NA	13.60	NA	14.40	NA	15.70	NA	14.88	NA	14.80	NA	14.60	NA	16.00	NA	15.70	NA	15.20	NA	15.20
	2.15	NA	1.79	NA	3.58	NA	2.53	NA	0.26	NA	3.01	NA	2.54	NA	2.36	NA	0.78	NA	2.53	NA	2.07	NA	2.35
1	4.66	NA	4.70	NA	0.37	NA	0.39	NA	0.29	NA	0.48	NA	0.24	NA	0.27	NA	8.57	NA	1.73	NA	1.05	NA	0.15
1	-25.6	NA	-3.7	NA	-18.4	NA	-72.3	NA	18.1	NA	-66.0	NA	-93.1	NA	-58.6	NA	60.6	NA	63.0	NA	-12.9	NA	70.3

10/31	/2018	2/28	/2019	5/2/	2019	8/28	2019	11/14	/2019	2/26	2020	4/29	2020	8/11	2020	12/8	/2020	2/24	2021	5/12/	2021
DL.	Result	DL	Result	DL	Result	DL.	Result	DL.	Result	DL.	Result	DL.	Result	DL	Result	DL.	Result	DL.	Result	DI.	Result
003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND	0.003	ND
001	ND	0.001	0.0018	0.001	0.0025	0.001	ND	0.001	0.0017	0.001	0.0012	0.001	0.0026	0.001	ND	0.001	0.0025	0.001	0.001	0.001	0.0013
0025	0.045	0.0025	0.058	0.0025	0.052	0.0025	0.055	0.0025	0.05	0.0025	0.057	0.0025	0.064	0.0025	0.084	0.0025	0.074	0.0025	0.057	0.0025	0.066
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND ^l+	0.001	ND ^+	0.001	ND
.05	1.8	0.05	1.4	0.25	1.8	0.25	1.8	0.25	1.7	0.25	1.4	0.05	1.2	0.5	2.6	0.25	1.3	0.25	1.2	0.25	1.3
0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
10	170	10	190	10	210	10	170	10	160	10	160	10	190	10	210	10	200	10	160	10	180
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND	0.001	ND
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
:01	ND	0.01	ND	0.005	0.0052 *	0.005	ND	0.005	ND												
0.1	0.54	0.1	0.55	0.1	0.53	0.1	0.5	0.1	0.51	0.1	0.5	0.1	0.55	0.1	0.41	0.1	0.56	0.1	0.52	0.1	0.49
1.0	ND	0.1	0.83	0.1	0.49	0.1	0.11	0.1	0.39	0.1	0.5	0.1	0.65	0.1	ND	0.1	2.7	0.1	0.43	0.1	0.65
0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0025	0.16	0.0025	0.69	0.0025	0.43	0.0025	0.17	0.0025	0.32	0.0025	0.63	0.0025	0.65	0.0025	0.063	0.0025	1.1	0.0025	0.45	0.0025	0.5
0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND	0.0002	ND
002	0.0048	0.002	0.0035	0.002	0.0048	0.002	0.0057	0.002	0.0043	0.002	0.0046	0.002	0.0044	0.002	0.0084	0.002	0.0049	0.002	0.0026	0.002	0.004
0.1	0.36	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	ND	0.1	1.6	0.1	0.12	0.1	0.13	0.1	ND
0.1	0.36	0.1	ND	0.1	ND ^	0.1	ND	0.1	ND	0.1	ND ^	0.1	ND	0.1	1.6	0.1	0.12	0.1	0.13	0.1	ND
:02	ND	0.02	ND	0.02	ND	0.02	ND														
004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND	0.004	ND
0025	0.014	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.0046	0.0025	0.0031	0.0025	ND ^	0.0025	0.046	0.0025	0.0077	0.0025	0.025	0.0025	0.0058
0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
00	200	20	330	20	450	40	420	20	340	20	360	50	360	100	700	100	550	50	440	50	470
002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND	0.002	ND
10	1300	10	1300	10	1500	10	1400	10	1200	10	1200	10	1300	150	1800	10	1500	10	1300	10	1500
005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ^	0.005	ND	0.005	ND	0.005	ND	0.005	ND
:02	ND	0.02	ND	0.02	ND	0.02	ND														
0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND	0.0005	ND
0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND
€A.	7.54	NA	7.03	NA	6.89	NA	6.95	NA	7.24	NA	6.73	NA	6.90	NA	6.53	NA	7.04	NA	7.00	NA	6.97
¢A 🗌	14.49	NA	14.20	NA	15.50	NA	16.30	NA	14.53	NA	15.00	NA	15.30	NA	16.00	NA	15.10	NA	15.60	NA	16.70
€A.	1.50	NA	1.98	NA	1.33	NA	0.23	NA	1.76	NA	1.67	NA	1.72	NA	2.62	NA	0.31	NA	1.67	NA	2.06
¢A 🗌	8.52	NA	0.16	NA	0.29	NA	0.53	NA	1.06	NA	0.42	NA	0.22	NA	1.12	NA	0.64	NA	1.12	NA	1.41
éA.	4.5	NA	-58.7	NA	-65.7	NA	1.6	NA	-39.1	NA	-48.8	NA	-81.5	NA	111.7	NA	-84.7	NA	-27.4	NA	-9.5

Sample: MW-16 Date	12/15/2010	2/15/2011	4/25/2011	6/16/20	8/9/20	011 10/	13/2011	2/12/2011	4/10/2012	12/12/2	2012 2/	/27/2013	5/29/2013	7/29/2	2013	10/22/2013	3/3/20	014 5	5/30/2014	8/26/20	14 10	0/30/2014	2/24/2	015	5/12/2015	8/18	/2015	11/16/2015	5 2/24	4/2016	5/16/201	6 8/1	2016	11/16/2016	2/15/20	17 5/	/2/2017	8/23/2017	11/9	2017	3/8/2018	5/17/20	18 8	8/2018	10/31/2018	2/27/.	2019 5	5/2/2019	8/27/2014	.9 11/?	14/2019	2/25/2020	4/27/202	20 8/11/2	.020 12/10/2/	20 2/23/	/2021 5/	/10/2021
Parameter Standards	DL Result	DL Rest	h DL Res	alt DL I	Result DL	Result DL	Result I	M. Result	DL Res	ult DL	Result DL	L Result	DL Resul	alt DL	Result 7	DL Result	DL	Result DI	L Result	DL	Result DL	Result	DL.	Result D	DL Resu	à DL	Result	DL Res	ult DL	Result	DL R	sult DL	Result 1	M. Result	DL F	Result DL	Result	DL Rest	ult DL	Result	DL Resu	à DL	Result DL	Result	DL Rest	it DL	Result Df	JL Result	DL R	tesult DL	Result	DL Result	DL F	lesult DL	Result DL	arsult DL	Result DI	. Result
Antimony 0.006	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0050	ND 0.00	03 ND	0.0030 ND	/ 0.0030	ND 0.1	0030 ND	0.0030	ND 0.00	60 ND	0.0030	ND 0.003	30 ND	0.0030	ND 0.00	030 ND	0.0030	ND	0.0030 NE	D 0.0030	ND	0.0030	CD 0.0030	ND 0.1	030 ND	0.0030	ND 0.0030	0 ND	0.003 0.00	131 0.003	ND 0	0.003 ND	0.003	ND 0.003	ND	0.003 ND	0.003	ND 0.0'	.03 ND	0.003 ?	ND 0.003	ND /	.003 ND	0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.07	ß ND
Arsenic 0.010	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0050	ND 0.00	01 ND	0.0010 ND	0.0010	ND 0.	0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.00	010 ND	0.0010	ND	0.0010 NE	0.0010	ND	0.0010	CD 0.0010	ND 0.1	010 ND	0.0010	ND ^ 0.0010	0 ND	0.001 0.00	04 0.001	ND 0	0.001 ND	0.001	ND 0.00	ND	0.001 ND	0.001	ND 0.0'	.01 ND	0.001 7	ND 0.001	ND F1 (.001 ND	0.001 7	CD ^ 0.001	ND 0.001	ND 0.001	ND 0.00	A ND
Bariam 2.0	NS NS	NS NS	NS N	5 NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.020	0.039 0.00	01 0.042	0.0025 0.038	.8 0.0025	0.035 0/	0025 0.037	0.0025	0.060 0.00	25 0.036	0.0025	0.035 0.002	25 0.034	0.0025	0.038 0.00	0.03	7 0.0025	0.039	0.0025 0.03	38 0.0025	0.043	0.0025 0	043 0.0025	0.039 0.1	025 0.041	0.0025 0	0.0025	5 0.039	0.0025 0.03	39 0.0025	0.045 0	0.0025 0.04	1 0.0025	0.041 0.002	5 0.038	0.0025 0.04	1 0.0025	0.045 0.00	.025 0.039	0.0025 0	1.039 0.0025	i 0.046 (*	.0025 0.042	0.0025	0.04 0.0025	0.04 0.0025	.041 0.0025	0.038 0.00'	25 0.041
Beryllium 0.004	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0010	ND 0.00	01 ND	0.0010 ND '	^ 0.0010	ND 0.1	0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.00	010 ND	0.0010	ND	0.0010 NE	0.0010	ND	0.0010	CD 0.0010	ND 0.1	010 ND	0.0010	ND ^ 0.0010	0 ND	0.001 NE	D 0.001	ND 0	0.001 ND	0.001	ND 0.00	ND	0.001 ND	0.001	ND 0.0'	.01 ND	0.001 ?	ND 0.001	ND /	.001 ND	0.001	ND 0.001	ND 0.001 ?	D ^1+ 0.001	ND ^+ 0.00	A ND *+
Boron 2.0	NS NS	NS NS	NS N	5 NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.20	ND 0.01	0.13	0.050 0.20	.0.050	0.26 0	050 0.35	0.050	0.17 0.05	50 0.17	0.050	0.15 0.05	0 0.14	0.050	0.17 0.0	0.15	0.050	0.25	0.050 1.0	0 0.050	0.63	0.050 0	23 0.050	0.19 0.	150 0.18	0.050	0.17 0.050	0.14	0.05 0.1	14 0.05	0.19	0.05 0.13	8 0.05	0.14 0.05	0.15	0.05 0.11	8 0.05	0.17 0.0	.05 0.2	0.05 (*	0.16 0.05	0.22	1.05 0.16	0.05	0.15 0.05	0.14 0.05	0.12 0.05	0.12 0.0'	5 0.091
Cadmium 0.005	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0010	ND 0.00	01 ND (0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	150 ND	0.00050	ND 0.0002	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (1.00050 NE	D 0.00050	0 ND	0.00050 3	4D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	i0 ND	0.0005 NE	D 0.0005	ND 0	0.0005 ND	0.0005	ND 0.000	5 ND	0.0005 ND	0.0005	ND 0.07	J05 ND	0.0005 7	ND 0.0005	/ ND @	.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.00'	J5 ND
Chloride 200.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 10	26 10	0 18	2.0 19	2.0	21 2	2.0 35	10	230 2.0	0 20	2.0	25 2.0	24	2.0	24 2	.0 29	2.0	29	2.0 33	3 2.0	45	2.0	33 2.0	33	.0 26	2.0	29 2.0	33	2 22	2 2	29	2 28	2	23 2	23	2 24	2	25 2	2 22	2	31 2	26	2 26	2	18 2	21 2	23 2	24 2	25
Chromium 0.1	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0030	0.0047 0.00	04 0.0052	0.0050 ND	/ 0.0050	ND 0.1	0050 ND	0.0050	ND ⁴ 0.00	60 ND	0.0050	ND 0.005	50 ND	0.0050	ND 0.00	050 ND	0.0050	ND	0.0050 NE	D 0.0050	ND	0.0050	4D 0.0050	ND 0.1	050 ND	0.0050	ND 0.0050	0 ND	0.005 NE	D 0.005	ND 0	0.005 ND	0.005	ND 0.005	ND	0.005 ND	0.005	ND 0.0'	.05 ND	0.005 7	ND 0.005	ND /	.005 ND	0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.00	.6 ND
Cobalt 1.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0030	ND 0.00	02 ND	0.0010 ND	/ 0.0010	ND 0.1	0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.00	010 ND	0.0010	ND	0.0010 NE	0.0010	ND	0.0010	CD 0.0010	ND 0.1	010 ND	0.0010	ND 0.0010	0 ND	0.001 NE	D 0.001	ND 0	0.001 ND	0.001	ND 0.00	ND	0.001 ND	0.001	ND 0.0'	.01 ND	0.001 ?	ND 0.001	ND /	.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.00	A ND
Copper 0.65	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.010	ND 0.00	03 ND	0.0020 ND	/ 0.0020	ND 0.f	0020 ND	0.0020	ND ⁴ 0.00	20 ND	0.0020	ND ^ 0.002	30 ND	0.0020	ND 0.00	620 ND	0.0020	ND	0.0020 NE	D 0.0020	ND	0.0020 3	4D 0.0020	ND 0.1	020 ND	0.0020	ND 0.0020	0 ND	0.002 NE	D 0.002	ND 0	0.002 ND	0.002	ND 0.000	ND	0.002 ND	0.002	ND 0.05	.02 ND	0.002 5	ND 0.002	ND f	.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.00'	.2 ND
Cyanide 0.2	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0050	ND 0.00	05 ND	0.010 ND	/ 0.010	ND 0	010 ND	0.010	ND 0.0	10 ND	0.010	ND 0.01	0 ND	0.010	ND 0.0	010 ND	0.010	ND	0.010 NE	D 0.010	ND	0.010	4D 0.010	ND 0.	110 ND	0.010	ND 0.010	ND ND	0.01 NE	D 0.01	ND	0.01 ND	0.01	ND 0.01	ND	0.01 ND	0.01	ND 0.0	JI ND	0.01 7	ND 0.01	ND	1.01 ND	0.01 NF	F1 F2 0.005	ND 0.005	ND 0.005	ND 0.00	.6 ND
Fluoride 4.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.25	ND 0.25	5 ND	0.10 ND	/ 0.10	0.11 0	.10 0.11	0.10	ND 0.1	0 0.11	0.10	0.11 0.10	0.10	0.10	0.10 0.1	10 0.11	0.10	0.10	0.10 0.1	1 0.10	0.11	0.10 0	.10 0.10	0.10 0	.10 ND	0.10	ND 0.10	ND	0.1 NE	D 0.1	ND	0.1 ND	0.1	ND 0.1	ND	0.1 ND	0.1	ND 0.7	.1 ND	0.1 5	ND 0.1	0.11	0.1 0.1	0.1 /	0.12 0.1	ND 0.1	a.11 0.1	0.1 0.1	0.10 H
Iron 5.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	is NS	NS NS	S 0.010	0.012 0.01	0.019	0.10 ND	/ 0.10	ND 0	10 ND	0.10	ND 0.1	0 ND	0.10	ND 0.10) ND	0.10	ND 0.1	10 ND	0.10	ND	0.10 NE	0.10	ND	0.10	4D 0.10	ND 0	.10 ND	0.10	ND 0.10	ND	0.1 NE	D 0.1	ND	0.1 ND	0.1	ND 0.1	ND	0.1 ND	0.1	0.23 0.7	.1 ND	0.1 5	ND 0.1	0.13	0.1 ND ^	0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	ND
Lead 0.0075	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0050	ND 0.00	01 ND (0.00050 ND	/ 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	150 ND	0.00050	ND 0.0002	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (1.00050 NE	0.00050	0 ND	0.00050	4D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	i0 ND	0.0005 NE	D 0.0005	ND 0	1.0005 ND	0.0005	ND 0.000	5 ND	0.0005 NE	0.0005	ND 0.00	J05 ND	0.0005 9	ND 0.0005	, ND 0	.0005 ND	0.0005	ND 0.0005	ND 0.0005	AD 0.0005	ND 0.000	.15 ND
Manganese 0.15	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0020	0.022 0.00	01 0.0053	0.0025 ND	/ 0.0025	ND 0.5	0025 ND	0.0025	0.0035 0.00	25 ND	0.0025	ND 0.002	25 ND	0.0025	0.0025 0.00	025 ND	0.0025	ND	0.0025 NE	0.0025	ND	0.0025 3	4D 0.0025	ND 0.1	025 0.0059	0.0025	ND 0.0025	5 ND	0.0025 NE	D 0.0025	0.028 0	0.0025 ND	0.0025	ND 0.002	5 ND	0.0025 NE	0.0025	0.014 0.00	J25 ND	0.0025 0.	.027 0.0025	0.019 0	.0025 0.0051	0.0025	ND 0.0025	ND 0.0025	ND 0.0025	0.0058 0.007	25 ND
Mercury 0.002	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.00020	ND 0.000	02 ND (0.00020 ND	/ 0.00020	ND 0.0	0020 ND	0.00020	ND 0.000	120 ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.00	0020 ND	0.00020	ND (1.00020 NE	D 0.00020	0 ND	0.00020	4D 0.00020	ND 0.0	0020 ND	0.00020	ND 0.00021	10 ND	0.0002 NE	D 0.0002	ND 0	0.0002 ND	0.0002	ND 0.000	2 ND	0.0002 NE	0.0002	ND 0.00	J02 ND	0.0002 9	ND 0.0002	. ND 0	.0002 ND	0.0002	ND 0.0002	ND 0.0002	AD 0.0002	ND 0.000	.32 ND
Nickel 0.1	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.010	ND 0.00	05 ND	0.0020 ND	/ 0.0020	ND 0.5	0020 ND	0.0020	ND 0.00	20 ND	0.0020	ND 0.002	30 ND	0.0020	ND 0.00	020 ND	0.0020	ND	0.0020 NE	0.0020	ND	0.0020 3	4D 0.0020	ND 0.1	020 ND	0.0020	ND 0.0020	0 ND	0.002 NE	D 0.002	ND 0	0.002 ND	0.002	ND 0.000	ND	0.002 NE	0.002	ND 0.0F	.02 ND	0.002 N	ND 0.002	ND f	.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.00"	.2 ND
Nitrogen/Nitrate 10.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.50	18 0.5	5 23	0.10 20	0.10	13 0	10 19	0.10	16 0.1	0 21	0.10	22 0.10	28	0.10	28 0.1	10 24	0.10	19	0.10 17	7 0.10	16	0.10	22 0.10	25 0	10 27	0.10	23 0.10	27	0.1 22	2 0.1	24	0.1 26	0.1	25 0.1	24	0.1 22	0.1	23 0.1	.1 20	0.1	12 0.1	19	à.1 22	0.1	23 0.1	18 0.1	29 0.1	22 0.1	. 22 H
Nitrogen/Nitrate, Nitr NA	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NR	NR NR	R NR	2.5 20	2.5	, 13 T	1.0 19	2.0	16 2.1	5 21	2.0	22 2.5	28	2.0	28 2	.0 24	2.0	19	1.0 17	7 1.0	16	2.0	22 2.0	25 2	.0 27	2.5	23 2.5	27	2 22	2 2	24	2 26	2	25 2	24	2 22	2.5	23 2.5	.5 20	2.5	12 2.5	19 ^	2.5 22	2	23 1	18 5	29 2	22 2.5	. 22
Nitrogen/Nitrite NA	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NR	NR NR	R NR	0.020 ND	0.020	ND 0.1	020 ND	0.020	ND 0.03	20 ND	0.020	ND 0.02	0 ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 NE	D 0.020	ND	0.020 3	4D 0.020	ND 0.	120 ND	0.020	ND 0.020	ND ND	0.02 NE	D 0.02	ND	0.02 ND	0.02	ND 0.02	ND	0.02 NE	0.02	ND 0.0'	J2 ND	0.02 5	ND 0.02	ND	.02 ND	0.02 N	D F1 0.02	ND 0.02	AD 0.02	ND 0.07	2 ND
Perchlorate 0.0049	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NR	NR NR	R NR	0.0040 ND	/ 0.0040	ND 0.6	0040 ND	0.0040	ND 0.00	40 ND	0.0040	ND 0.004	40 ND	0.0040	ND 0.00	040 ND	0.0040	ND	0.0040 NE	0.0040	ND	0.0040	6D 0.0040	ND 0.1	040 ND	0.0040	ND 0.0040	0 ND	0.004 NE	D 0.004	ND 0	0.004 ND	0.004	ND ^ 0.00	ND	0.004 ND	0.004	ND 0.06	.04 ND	0.004 9	ND 0.004	ND f	.004 ND	0.004	ND 0.004	ND 0.004	AD 0.004	ND 0.00	.4 ND
Selenium 0.05	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0050	ND 0.00	01 0.0015	0.0025 ND	0.0025	ND 0.6	0025 ND	0.0025	ND 0.00	25 ND	0.0025	ND 0.002	25 ND	0.0025	ND 0.00	025 ND	0.0025	ND	0.0025 NE	D 0.0025	ND	0.0025 3	4D 0.0025	ND 0.1	025 ND ^	0.0025 3	ND ^ 0.0025	5 ND	0.0025 NE	D 0.0025	ND 0	0.0025 ND	0.0025	ND 0.002	5 ND	0.0025 NE	0.0025	ND 0.00'	J25 ND	0.0025 9	ND 0.0025	ND F1 0	3025 ND	0.0025 N	ND ^ 0.0025	ND 0.0025	AD 0.0025	ND 0.007	25 ND
Silver 0.05	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.010	ND 0.00	05 ND (0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	150 ND	0.00050	ND 0.0002	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (1.00050 NE	0.00050	0 ND	0.00050 3	4D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	i0 ND	0.0005 NE	D 0.0005	ND 0	0.0005 ND	0.0005	ND 0.000	5 ND	0.0005 ND	0.0005	ND 0.00'	,05 ND	0.0005 У	ND 0.0005	. ND 0	3005 ND	0.0005	ND 0.0005	ND 0.0005	AD 0.0005	ND 0.000	15 ND
Salfate 400.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 10	37 10	31	20 50	20	55 7	20 55	10	34 10	0 40	10	35 10	54	10	27 1	10 33	20	64	25 57	7 10	50	10	40 10	43	10 38	10	33 10	43	10 34	4 20	38	20 41	20	30 10	29	10 25	25	36 5	, 33	5 7	35 5	32	5 29	5	29 5	25 5	27 5	25 5	30
Thallium 0.002	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0010	ND 0.00	01 ND	0.0020 ND	0.0020	ND 0.6	0020 ND	0.0020	ND 0.00	20 ND	0.0020	ND 0.002	30 ND	0.0020	ND 0.00	020 ND	0.0020	ND	0.0020 NE	D 0.0020	ND	0.0020 3	4D 0.0020	ND 0.1	020 ND	0.0020	ND 0.0020	0 ND	0.002 NE	D 0.002	ND 0	0.002 ND	0.002	ND 0.000	ND	0.002 ND	0.002	ND 0.00	42 ND	0.002 У	ND 0.002	ND f	.002 ND	0.002	ND 0.002	ND 0.002	AD 0.002	ND 0.00'	2 ND
Total Dissolved Solis 1,200	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 26	520 26	5 420	10 460	/ 10	440 7	10 540	10	800 10	390	10	440 10	510	10	490 1	10 530	10	540	10 460	0 10	510	10 5	30 10	620	0 540	10	520 10	560	10 46	0 10	530	10 530	10	540 10	470	10 590	10	520 10	J 550	10 4	470 10	480	10 440	10	500 30	400 10	.90 10	500 10	210
Vanadium 0.049	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.0080	ND 0.00	05 ND	0.0050 ND	0.0050	ND 0.6	0050 ND	0.0050	ND ⁴ 0.00	50 ND	0.0050	ND 0.005	50 ND	0.0050	ND 0.00	050 ND	0.0050	ND	0.0050 NE	D 0.0050	ND	0.0050 3	4D 0.0050	ND 0.1	050 ND	0.0050	ND 0.0050	0 ND	0.005 NE	D 0.005	ND 0	0.005 ND	0.005	ND 0.005	ND	0.005 ND	0.005	ND 0.00	45 ND	0.005 У	ND 0.005	ND f	.005 ND	0.005 N	VD ^ 0.005	ND 0.005	AD 0.005	ND 0.00'	5 ND
Zinc 5.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.020	ND 0.00	06 ND	0.020 ND	0.020	ND 0./	.020 ND	0.020	ND 0.02	20 ND	0.020	ND 0.02	0 ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 NE	D 0.020	ND	0.020 3	GD 0.020	ND 0.	120 ND	0.020	ND ^ 0.020	ND ND	0.02 NE	D 0.02	ND	0.02 ND	0.02	ND 0.02	ND	0.02 NE	0.02	ND 0.0	12 ND	0.02 5	ND 0.02	ND	.02 ND	0.02 7	ND 0.02	ND 0.02	ND 0.02	ND 0.02	2 ND
Benzene 0.005	NS NS	NS NS	NS N	5 NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.005	ND 0.00	05 ND (0.00050 ND	0.00050	ND 0.07	0050 ND	0.00050	ND 0.000	050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (0.00050 NI	D 0.00050	0 ND	0.00050 3	CD 0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	6 ND	0.0005 NE	D 0.0005	ND 0	0.0005 ND	0.0005	ND 0.000	5 0.00056	0.0005 NE	0.0005	ND 0.00	.05 ND	0.0005 N	AD 0.0005	. ND 0	J005 ND	0.0005	ND 0.0005	ND 0.0005	AD 0.0005	ND 0.000	.6 ND
BETX 11.705	NS NS	NS NS	NS N	5 NS	NS NS	NS NS	NS 2	IS NS	NS NS	S 0.03	ND 0.03	13 ND	0.0025 ND	0.0025	ND 0.0	0025 ND	0.0025	ND 0.00	25 ND	0.0025	ND 0.003	25 ND	0.0025	ND 0.0	1025 ND	0.0025	ND	0.0025 0.00	0.0025	ND	0.0025 0.1	0.0025	ND 0.1	025 ND	0.0025	ND 0.0025	5 ND	0.0025 NE	D 0.0025	ND 0	0.0025 0.001	14 0.0025	0.002	5 0.00866	0.0025 0.000	0.0025	ND 0.007	./25 ND	0.0025 N	AD 0.0025	. ND 0	J025 ND	0.0025	ND 0.0025	ND 0.0025	AD 0.0025	ND 0.002	.5 ND
pH 6.5 - 9.0	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NA	7.38 NA	A 8.31	NA 7.10	/ NA	7.18 N	NA 7.27	NA	7.85 NJ	A 7.20	NA	7.41 NA	1 7.30	NA	7.56 N	(A 7.35	5 NA	7.19	NA 6.7	78 NA	7.23	NA 7	.13 NA	7.09 3	IA 6.93	NA	6.72 NA	7.14	NA 7.4	14 NA	6.95	NA 6.93	8 NA	6.76 NA	7.19	NA 7.8	5 NA	7.00 NA	4 6.94	NA 7	.03 NA	7.29	4A 7.02	NA f	6.94 NA	6.94 NA	44 NA	7.21 NA	7.20
Temperature NA	NS NS	NS NS	NS N	i NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NA	12.84 NA	A 13.10	NA 15.28	/ NA	16.61 N	NA 12.74	NA	9.98 NJ	A 17.83 *	NA	22.10 NA	13.09	NA	8.21 N	6A 12.5	6 NA	19.75	NA 13.0	05 NA	9.13	NA I	1.63 NA	22.11 1	IA 16.10	NA	9.78 NA	13.99	NA 16.1	10 NA	13.06	NA 6.8	NA	17.97 NA	18.67	NA 14.8	3 NA	12.30 NA	4 12.40	NA 14	4.20 NA	12.45	4A 12.30	NA I'	2.70 NA	13.60 NA	1.30 NA	12.70 NA	12.70
Conductivity NA	NS NS	NS NS	NS N	6 NS	NS NS	NS NS	NS 2	IS NS	NS NS	S NA	0.61 NA	A 1.17	NA 0.60	/ NA	0.59 N	NA 0.63	NĂ	0.89 NJ	4 0.88	NA	0.75 NA	0.94	NA	0.57 N	6A 0.67	NA	0.80	NA 0.6	SZ NA	0.59	NA 0	.68 NA	0.80	IA 0.67	NA	U.61 NA	0.65	NA 0.6	NA NA	0.66	NA 0.53	S NA	0.67 NA	0.67	NA 0.6	s NA	0.89 NA	x 0.53	NA 0		0.82	(A 0.29	NA (0.72 NA	0.81 NA	.84 NA	0.64 NA	0.80
opp NA	NO NS	NO NO	NS N	145	NS NS	no NS	NS 1	IS NS	85 82	S NA	9.34 NA	4 6.53	NA 6.78	NA NA	4.71 N	NA 6.24	NA	0.30 NJ	6.99	NA	0.54 NA	2.05	NA	0.44 N	GA 7.97	NA NA	1.43	NA 7.6	NA NA	/.95	NA 8	.20 NA	1.30	6.51	24	8.00 NA	8.04	NA 7.6	D NA	8.20	NA 7.5:	SA NA	8.80 NA	6.20	NA 8.5	7 NA	6.10 NA	6.89	204 8	33 NA	6.72	24 7.14	NA 7	7.20 NA	7.04 NA	.21 NA	6.17 NA	8.64
ORF NA	765 NS	NO NO	765 N		75 15	no NS	NS 1	15 NS	NS N2	5 NA	110 NA	4 -38	NA 70.2	NA	24.7 N	NA -83.4	NÅ	313.3 NJ	4.8	NĂ	36.7 NA	2/	-NA	70.0 N	04 1053	0 NA	-9.1	3A 188	NA NA	+3.3	34 3	I.B NA	67.0	os 17.0	34 3	214.2 NA	39.1	NA 170	IU NA	-34.5	AA -16.	9 NA	12.6 NA	3.4	NA 24	NA	81.3 NA	4 75.8	34 10	20.0 NA	-16.7	on 28.9	NA I	13.0 NA	133.3 NA	7.9 NA	38.8 NA	172.1
Nouse: Standards obtained Section 620.410 - 1	es IAC, Title 35, Chapte inductor Onality Stands	I, Part 620, Subpart D Is for Class I: Potable	DL - Detect	on limit	NR - Not Required			FI- MS and/or 2	MSD Recovery outside	of limits.			A - Denotes	instrument related Q ^e	fC encode the control	d limits			Temperature	°C day	tus Calcius																																					
Resource Groundy	r	Contraction of the second	ND - Not D	tected	H - Propped analyz	eed past hold time		1+ - Initial Calls	ration VerFication is out	nas. mádo acceptance limite	s, high Naved		* - LCS or 1	LCSD is outside accr	optance limits				Disahed Oxyge	ngt ni	grane liter																																					
All values are in m	(ppm) unless otherwise a	ned.	NM - Not M	asarod	V - Serial Dilution I	Exceeds Control Limit	DS .	^+ - Continuing	Calibration Verification	k outside acceptance	limits, high biased							Oxygen Reduct	tion Potential (ORP)	nV mi	lvolts																																					

Attachment 9-4 – IL PE Stamp

CERTIFICATION 35 III. Adm. Code 845.630

In accordance with Section 35 III. Adm. Code 845.630(g), I hereby certify based on review of the information contained within the Initial Operating Permit Application for Powerton Station dated October 29, 2021, the groundwater monitoring system has been designed and constructed to satisfy the requirements of 35 III. Adm. Code 845.630. For this site the minimum number of wells required is deemed sufficient based on the following: 1) The number of wells, placement and screened intervals are based on a hydrogeologic assessment performed for the site; 2) hydrogeologic considerations included aquifer characteristics affecting flow velocity and physical transport processes; 3) available historical groundwater flow data indicate consistent flow conditions over time; and 4) Illinois Environmental Protection Agency (IEPA) approved the overall hydrogeologic assessment as part of a larger study.

Certified by:

Date:

10/29/21

Joshua Davenport, P.E. Professional Engineer Registration No.: <u>062-061945</u> KPRG and Associates, Inc.

Attachment 9-5 – CCR Compliance Statistical Approach

KPRG and Associates, Inc.

ILLINOIS STATE CCR RULE COMPLIANCE STATISTICAL APPROACH FOR GROUNDWATER DATA EVALUATION

Midwest Generation, LLC Powerton Generating Station 13082 Manito Rd. Pekin, Illinois

PREPARED BY:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

August 23, 2021

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

SECTION/DESCRIPTION

PAGE

1.0	INTRODUCTION	1
2.0	STATISTICAL METHOD SELECTION and BACKGROUND DATA	
EVAI	LUATION	2
2.1	Outlier Testing	2
2.2	Spatial Variability	2
2.3	Temporal Variability	
2.4	Trend Testing	
2.5	Test of Normality	
2.6	Non-Detects	4
2.7	Prediction Limit Calculation for Normally Distributed Data	
2.8	Prediction Limit Calculation for Non-Normally Distributed Data	5
3.0	GROUNDWATER MONITORING	6
4.0	CERTIFICATION	

<u>FIGURE</u>

Figure 1 – Monitoring Well Location Map

TABLE

Table 1 - Section 845.600 Parameters

1.0 INTRODUCTION

On April 21, 2021, the Illinois Pollution Control Board (IPCB) and Illinois Environmental Protection Agency (Illinois EPA) enacted a final rule regulating coal combustion residuals (CCR) as part of Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). The State CCR Rule specifically requires that the owner or operator of a CCR unit must develop an Operating Permit that will specify a sampling and analysis program that includes procedures and techniques for sample collection, sample preservation and shipment, analytical procedures, chain of custody (COC) control, and quality assurance and quality control. As a result, each regulated facility must develop a program that meets the State CCR Rule. At the Powerton facility, the Ash Bypass Basin/Ash Surge Basin (ABB/ASB) the Former Ash Basin (FAB) and the Metals Cleaning Basin (MCB) require monitoring under the State CCR Rule. The monitoring well networks around these basins consist of the following wells:

- Combined ABB/ASB monitoring network upgradient wells MW-01, MW-09 and MW-19 and downgradient wells MW-08, MW-11, MW-12, MW-15, MW-17 and MW-18.
- FAB monitoring network upgradient wells MW-01 and MW-10 and downgradient wells MW-02 thru MW-05.
- MCB monitoring network upgradient wells MW-15 and MW-17 and downgradient wells MW-14, MW-20 and MW-21.

The well locations are shown on Figure 1.

Section 845.640(f) of the State CCR Rule requires the development of the statistical approach that will be used for assessing the data and determining whether a statistically significant increase over background concentrations in groundwater has occurred at identified downgradient monitoring points. Potential statistical methods that can be applied to the data are listed in Section 845.640(f) and performance standards are provided in 845.640(g).

This narrative of the statistical approach that will be used for the Powerton facility's groundwater monitoring data is intended to fulfill certification requirements under Section 845.640(f)(2). The professional engineer's certification of this statistical approach is provided in Section 4.0 of this document.

2.0 STATISTICAL METHOD SELECTION and BACKGROUND DATA EVALUATION

Section 845.640(f)(1) identifies five statistical data evaluation methods that can be used for assessing site groundwater data. Relative to the subject site, the prediction interval procedure identified in 845.640(f)(1)(C) will be used. This approach is robust and conforms to varying data distributions and facilitates various non-detect frequencies. U.S. EPA identifies this method as preferred over establishment of tolerance intervals (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, March 2009 [Unified Guidance]).

Total recoverable metals groundwater data has been collected for this site at many of the monitoring well locations since 2015 as part of Federal CCR Rule requirements. Under the Federal CCR Rule, the initial eight rounds of quarterly data generated were used to develop a representative background concentration with which to develop applicable prediction limits for subsequent statistical downgradient monitoring well data comparisons. Since additional data has been generated since the initial eight rounds of groundwater monitoring under the Federal CCR Rule, the full, currently available data set through the second quarter 2021 will be evaluated for potential use in developing a representative background dataset. If appending this additional data to the original eight rounds of background sampling is determined to be not statistically appropriate, then the background calculations will be reverted to using the initial eight rounds of background data for subsequent calculations. The established, representative background concentration for the upgradient well locations will be used to develop prediction limits for the regulated unit for each constituent listed in Section 845.600(a) and (b) as provided in Table 1.

Statistical evaluations will be performed with the assistance of the SanitasTM software package.

2.1 Outlier Testing

The background dataset will be first checked for potential outliers for each constituent. Potential causes of outliers can be, but are not limited to:

- Changes in sampling technique;
- Changes in analytical methods;
- Data transcription errors;
- Unnatural localized event such as a spill; or
- Natural but extreme variations in constituent concentration.

The Unified Guidance does not recommend removing an outlier from the data set unless it can be shown that the outlier is not caused by extreme natural variation. If the outlier can be traced to other than natural causes, the data set will be adjusted appropriately.

2.2 Spatial Variability

If more than one background well is being used for the monitored unit, an evaluation of spatial variability will be performed to determine whether the mean concentration of a constituent varies statistically between the background points. This is generally accomplished by performing an Analysis of Variance (ANOVA). If statistically significant spatial variation is determined to be
present, the background points will not be combined between the wells. If the spatial variability is determined to be natural, an intrawell data evaluation approach may be considered for both upgradient and downgradient wells.

2.3 Temporal Variability

Temporal variability in groundwater data from a specific monitoring point occurs when a consistent fluctuation of constituent concentrations occurs over time. The most common example is seasonal variation. If such a variation is noted in the data, the dataset should be corrected to account for the trend; however, any such corrections must be applied judiciously and would be completed in accordance with the Unified Guidance recommended procedures.

2.4 Trend Testing

As discussed above, it is intended to expand the initial background dataset collected under the Federal CCR Rule which consisted of eight rounds of quarterly sampling, with any additional data collected for a specific well since that time to facilitate a larger background data set upon which to develop subsequent interwell, and if necessary intrawell, prediction limits. The expanded background dataset for each upgradient well, for each constituent listed in Table 1, will undergo trend analysis to determine if there may be a potential statistically significant trend in the data. Linear regression will be the primary trend analysis tool, however, other methods such Sen's Slope Estimator may also be used. If a statistically significant trend is identified in the larger combined background dataset, the new data cannot be added to the initial background dataset, and only the original eight rounds of data can be used for that well in background development and associated subsequent calculations.

2.5 Test of Normality

The main underlying assumption in parametric data evaluations, such as establishing prediction limits, is that the underlying data distribution is normal. A quick approximation can be made by calculating the Coefficient of Variance (CV) which is the quotient of the standard deviation divided by the sample mean. In general, if this quotient is greater than 1, the underlying data distribution is probably not normal. The new Unified Guidance is more conservative and suggests that if this quotient is greater than 0.5, the dataset may not be normal and a more robust distribution evaluation should be performed. Therefore, for any CV value greater than 0.5 for a specific dataset, normality will be evaluated using the Shapiro-Wilk Test with an alpha (α) value of 0.05 (or 95%).

If the dataset does not pass this initial test, the data will undergo a log transformation and the test will be repeated for the natural log values of the dataset. If it is determined that this dataset is log-normal, statistical evaluations will be completed on those values and the result converted back to the standard value. If the underlying distribution is also determined not to be log-normal, the Unified Guidance provides for a number of other data transformations that can be performed to evaluate whether those underlying distributions may be normal at which point the entire dataset would be transformed for subsequent calculations.

If a normal underlying distribution can not be determined, non-parametric statistical evaluations will need to be considered which do not rely on a specific underlying distribution.

2.6 Non-Detects

It is not uncommon in environmental datasets to have parameters being detected at low concentrations during one sampling event and being not detected in other sampling events. Having a consistent approach to the handling of non-detect values is an important part of the statistical evaluation process. The handling of non-detect values will be accomplished as follows:

- 100 Percent Non-Detects Assumed that the constituent is not present and no statistical evaluations will be performed. The upper prediction limit will be set at the Reporting Limit (RL) established by the analytical laboratory.
- 50 Percent or Greater Non-Detects A non-parametric evaluation will be performed where the confidence interval will be constructed using the highest detected concentration as the upper prediction limit.
- 15 to 50 Percent Non-Detects Aitchison's Adjustment will be used with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 0 to 15 Percent Non-Detects The non-detect values will be replaced with RL/2 and the dataset will be evaluated for distribution normality with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 2.7 Prediction Limit Calculation for Normally Distributed Data

For datasets where the distribution or underlying transformed distribution is normal, a parametric statistical approach will be used for establishing the prediction limit at the required 95% statistical confidence. In accordance with Unified Guidance, the following equation will be used:

95% Prediction Limit =
$$\bar{x} + t_{1-0.05/m,n-1}s \sqrt{1 + \frac{1}{n}}$$

Where:

\$\vec{x}\$ = the sample mean of the detected or adjusted results
\$\vec{s}\$ = sample standard deviation of the detected or adjusted results
\$t_{1-0.05/m,n-1}\$ = the students t-coefficient for degrees of freedom (n-1) and confidence level (1-0.05/m)
\$n\$ = the number of samples
\$m\$ = the number of future samples

The number of future sampling events (m) will be set at 2 which will account for one sampling event and a confirmation resampling. This will assist in limiting the potential number of false

positives. An acceptable site-wide false positive (SWFP) rate of 10% or less is acceptable under the Unified Guidance.

2.8 Prediction Limit Calculation for Non-Normally Distributed Data

If the dataset distribution or underlying distribution is determined not to be normal, a nonparametric approach will need to be used for the establishment of the prediction limit. The nonparametric evaluation will use the highest detected concentration as the upper prediction limit for the specific constituent.

3.0 GROUNDWATER MONITORING

The State CCR Rule does not distinguish between detection monitoring or assessment monitoring as was defined under the Federal CCR Rule. To meet the requirements set forth in Section 845.650(b), a minimum of eight rounds of groundwater data need to be collected for establishing background. As noted above, if more than eight rounds of data are available, then the larger dataset will be evaluated to determine whether the background dataset can be expanded to provide a more robust statistical assessment. At that point, statistical evaluation of the background dataset will be performed to establish the upper prediction limits for each Section 845.600(a) and (b) constituent. It is noted that in the case of pH, a lower prediction limit will also be established since this parameter has an established upper and lower value range for compliance.

Site specific Groundwater Protection Standards (GWPSs) will be developed in accordance with Section 845.600(a)(2) as follows:

- If the constituent has an established State standard listed in Section 845.600(a)(1) and the standard is greater than the calculated background upper prediction limit, then the standard will serve as the GWPS. If the background upper prediction limit is greater than the standard, the upper prediction limit will serve as the GWPS.
- If the constituent does not have an established standard (i.e., calcium and turbidity) then the calculated upper prediction limit will serve as the GWPS.

Once the proposed GWPSs are determined and approved by Illinois EPA, subsequent downgradient well concentrations will be compared against the upper prediction limit (and lower prediction limit in the case of pH), and the GWPSs. If an exceedance of the GWPS is identified during a quarterly sampling event, an immediate resampling of the specific well(s) will be completed for those specific parameters. If the exceedance is confirmed by the resampling, the Illinois EPA will be notified of the exceedance(s) and the notification will be placed in the facilities operating record in accordance with 845.800(d)(16). It is noted that there are some constituents that historically may have had no detections (i.e., 100% non-detects). In this case, in accordance with the Unified Guidance, if there is a detection of such a constituent, then the Double Quantification Rule will be applied. Under this rule, a confirmed exceedance is registered if any well-constituent pair in the 100% non-detect group exhibits quantified measurements (i.e., at or above the Reporting Limit in two consecutive sample and resample events.

If an exceedance of the GWPS is recorded and reported to Illinois EPA, an Alternate Source Demonstration (ASD) may be completed within 60-days of the confirmed exceedance in accordance with Section 845.650(e) and submitted to the Illinois EPA as well as placing the ASD on the facility's publically accessible CCR website. Illinois EPA will review and approve or disapprove the ASD.

If it is decided not to complete an ASD or if Illinois EPA does not concur with and approve the ASD, a characterization of the nature and extent of the potential release must be completed in

accordance with Section 845.650(d)(1) as well as meeting the requirements of Sections 845.660, 845.670 and 845.680.

4.0 CERTIFICATION

In accordance with Section 845.640(f)(2) of the State CCR Rule, I hereby certify based on a review of the information contained within this Illinois State CCR Rule Compliance Statistical Approach for Groundwater Data Evaluation dated August 23, 2021, the statistical procedures developed and selected for evaluation of groundwater data associated with the Midwest Generation Powerton Station CCR Units are adequate and appropriate for evaluating the groundwater data.

Certified by: 8/23/21 Date:

Joshua Davenport, P.E.

Professional Engineer Registration No. 662-061945

KPRG and Associates, Inc.

FIGURE

TABLE

Parameter	Section 845.600 Standards
Antimony	0.006
Arsenic	0.01
Barium	2
Beryllium	0.004
Boron	2.0
Cadmium	0.005
Chloride	200
Chromium	0.1
Cobalt	0.006
Combined Radium 226 + 228 (pCi/L)	5.0
Fluoride	4.0
Lead	0.0075
Lithium	0.04
Mercury	0.002
Molybdenum	0.10
pH (standard units)	6.5-9.0
Selenium	0.05
Sulfate	400
Thallium	0.002
Total Dissolved Solids	1200
Calcium	NE
Turbidity	NE

Table 1. Section	845.600	Groundwater	Monitoring	Parameter	List
ruble r. beetion	015.000	Of Ound Water	monitoring	1 unumeter	LIDE

All vaues in mg/l unless otherwise specified. NE- Not Established <u>Attachment 9-6 – Statistical Evaluation Summary</u>

ATTACHMENT 9-6

BACKGROUND STATISTICAL EVALUATION SUMMARY STATE RULE CCR GROUNDWATER MONITORING POWERTON GENERATING STATION

The newly enacted Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule) requires development of proposed Groundwater Protection Standards (GWPSs) for inclusion within the Operating Permit for the regulated surface impoundments at the facility. Upon Illinois Environmental Protection Agency (EPA) review, concurrence and approval of these site-specific proposed GWPSs, subsequent quarterly downgradient groundwater monitoring data will be compared against these standards to determine whether standard quarterly monitoring is to continue or whether additional evaluations need to occur to in accordance with Section 845.650(d), 845.650(e), 845.660 and 845.670. The overall statistical approach to be used for the development of the proposed GWPSs is provided in Attachment 9-5 of the Operating Permit.

Powerton Generating Station has four separate regulated units. Two of the units will be referred to as the combined Ash Bypass Basin and Ash Surge Basin (ABB/ASB), the third unit is the Former Ash Basin (FAB) and the fourth unit is the Metals Cleaning Basin (MCB). The ABB/ASB and the FAB are the subjects of this Operating Permit submittal. The MCB Operating Permit will be submitted under separate cover. The ABB/ASB and the FAB are treated as having distinct monitoring networks and therefore, for the development of GWPSs, will be discussed separately. The proposed site-specific GWPSs for the Powerton Generating Station are summarized in Section 9 of this Operating Permit. Table 9-10 summarizes GWPSs for the ABB/ASB and Table 9-11 summarizes GWPSs for the FAB. The background Prediction Limit values presented in those tables were developed, where possible, by combining or "pooling" as many background data points as possible from the various upgradient monitoring wells. This includes evaluating whether the initial eight rounds of data generated as part of Federal CCR Rule compliance can be combined with subsequent available data from ongoing groundwater monitoring since that time at a specific upgradient monitoring well location, and whether datasets from individual upgradient monitoring points can also be combined or "pooled". The initial eight rounds were completed for the ABB/ASB between 2015 and 2017, while the initial eight rounds for the FAB were completed between 2017 and 2019. The initial eight rounds of turbidity were completed this calendar year (2021) since this was a new state requirement that was not part of the Federal CCR Rule. The following general decision process was followed to determine whether background data from within a well and/or between upgradient wells can be pooled for background calculations:

• If the combined dataset (original eight rounds of data plus any subsequent data generated since the initial background sampling) at a specific well location (intrawell evaluation) for a specific parameter does not show a statistically trend, the data for that specific parameter at that well location can be pooled. If a statistically significant trend in the data is noted to exist, only the original eight rounds of background sampling can be used for subsequent calculations. If there is more than one background monitoring well, and one of the

combined datasets for a specific parameter shows a statistically significant trend but the other does not, then the specific parameter data for the well that did not indicate a trend can potentially be used for subsequent evaluations.

- If there is more than one upgradient monitoring well, then datasets for individual parameters between the wells (interwell evaluation) must pass an analysis of variance to determine whether there may be a statistically significant variation between the two datasets. If no statistically significant variance is noted between the two (or more) upgradient monitoring points, and the individual parameter data passes the intrawell trend evaluation noted above, then the datasets for that parameter can be pooled between the wells to establish a larger background dataset. If there is a statistically significant variation noted between the two (or more) upgradient monitoring points, then the specific parameter datasets from those wells cannot be combined.
- If it is determined that datasets from upgradient monitoring points cannot be combined, then a decision needs to be made as to which monitoring point will be used for a specific parameter for background calculations. At this point some professional judgement needs to be used by considering the number of data points within each dataset, any potential statistical outliers, any statistical seasonality, the distribution and/or underlying distribution of that data, number of detects versus non-detects, etc.

With the above decision process in mind, the various statistical evaluations performed are summarized below. The evaluations were performed with the assistance of the Sanitas[®] statistical software package.

Outlier Testing

Outlier tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring.

Ash Bypass Basin and Ash Surge Basin

Wells MW-01, MW-09 and MW-19 are designated background wells. The following statistically significant outliers (dates in parentheses) were noted:

- Arsenic MW-18 (5/5/17 and 12/7/20)
- Cadmium MW-15 (5/19/16 and 8/18/2016)
- Chloride MW-15 (2/25/17), MW-17 (11/13/2019), and MW-19 (11/13/2019)
- Combined Radium 226/228 MW-08 (12/14/20) and MW-18 (2/22/2016)
- Lead MW-19 (5/5/17)
- Lithium MW-18 (2/22/16)
- Molybdenum MW-01 (5/11/21) and MW-18 (12/7/20)
- pH MW-11 (2/16/17 and 5/16/18), MW-17 (5/14/2018) and MW-18 (2/22/2016)
- Total Dissolved Solids MW-15 (5/19/16)

• Turbidity – MW-01 (2/23/21)

Since the outliers cannot be attributed to either lab error, transcription error or field sampling error, the outlier values were not removed from the datasets at this time but may be considered during subsequent data evaluations. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Former Ash Basin

Wells MW-01 and MW-10 are designated background wells. The following statistically significant outliers were noted.

- Arsenic MW-02 (2/26/19) and MW-10 (10/30/18 and 2/26/19)
- Barium MW-01 (11/8/17) and MW-10 (10/30/18 and 2/26/19)
- Boron MW-03 (12/9/20)
- Calcium MW-10 (2/26/19)
- Chromium MW-10 (10/30/18 and 2/26/19)
- Combined Radium 226/228 MW-03 (8/23/17)
- Molybdenum MW-01 (5/11/21)
- Turbidity MW-01 (2/23/21)

Since the outliers cannot be attributed to either lab error, transcription error or field sampling error, the outlier values were not removed from the datasets at this time but may be considered during subsequent data evaluations. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Seasonality/Temporal Variability Testing

Seasonality/temporal variability tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. Statistically significant seasonal/temporal variations were noted in both ABB/ASB and FAB monitoring wells.

Ash Bypass Basin and Ash Surge Basin

Wells MW-01, MW-09 and MW-19 are designated background wells. The following statistically significant seasonal/temporal variations were noted:

- Arsenic MW-09
- Barium MW-01
- Boron MW-12 and MW-18

Former Ash Basin

Wells MW-01 and MW-10 are upgradient wells. The following statistically significant seasonal/temporal variations were noted.

• pH – MW-05

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion. The turbidity database to date is insufficient to evaluate potential seasonal/temporal variability at this time.

Trend Analysis

To determine whether data generated since the initial eight rounds of background groundwater sampling since the enactment of the Federal Rule can potentially be pooled at a specific upgradient monitoring well location, trend analysis for each constituent at each designated background well location was performed. The results are summarized as flows:

Ash Bypass Basin and Ash Surge Basin

- MW-01 No statistically significant trends were noted any parameter.
- MW-09 Statistically significant trend was noted for molybdenum.
- MW-19 Statistically significant trends were noted for fluoride, selenium, sulfate and TDS.

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Former Ash Basin

- MW-01 Statistically significant trend was noted for arsenic.
- MW-10 Statistically significant trends were noted for boron and fluoride.

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Spatial Variability Testing

To determine whether the background data sets from background wells can be pooled to establish a representative statistical background, spatial variability testing was performed on the datasets using a parametric analysis of variance (ANOVA). This analysis was done for each of the monitoring parameters. The following observations are made:

Ash Bypass Basin and Ash Surge Basin

• Background wells MW-01, MW-09 and MW-19 all parameter values pooled – No statistically significant variance between the full datasets for chromium, cobalt, lithium, mercury, pH and turbidity.

- Background wells MW-01 and MW-09 all parameter values pooled No statistically significant variance between full datasets for arsenic, cadmium, chromium, fluoride, lithium, mercury and pH.
- Background wells MW-01 and MW-19 all parameter values pooled No statistically significant variance between full datasets for cadmium, calcium, chromium, combined radium 226/228, lithium and pH.
- Background MW-09 and MW-19 all parameter values pooled No statistically significant variance between full datasets for boron, chloride, cobalt, combined radium 226/228, fluoride, lead, mercury, pH, selenium, sulfate and TDS

It is noted that antimony, beryllium and thallium had no detections at any of the designated background well locations during any sampling event, therefore, although an analysis of variance cannot be formally completed, these data sets can be pooled since there is no variation in the reporting limits.

Statistical run summaries which include the specific statistical method used for each parameter for each of the dataset comparisons are provided at the end of this discussion.

Former Ash Basin

- Background wells MW-01 and MW-10 all parameter values pooled No statistically significant variance between the full datasets for beryllium, cadmium, calcium, chloride chromium, cobalt, lithium, molybdenum, pH, sulfate and TDS.
- Background wells MW-01 and MW-10 original eight background values pooled No statistically significant variance between full datasets for arsenic, beryllium, boron, calcium, chloride, chromium, combined radium 226/228, fluoride, lead, molybdenum, pH, sulfate and TDS.

It is noted that antimony, mercury and thallium had no detections at any of the upgradient well locations during any sampling event, therefore, although an analysis of variance cannot be formally completed, these data sets can be pooled since there is no variation in the reporting limits.

Statistical run summaries which include the specific statistical method used for each parameter for each of the dataset comparisons are provided at the end of this discussion.

Test of Normality

The Shapiro-Wilk Normality Test with an alpha (α) value of 0.05 (or 95%) was used to evaluate the distribution of the background datasets for each constituent at each background well location and the distribution of pooled datasets for both background wells. A Test of Ladders was also run to evaluate other potential underlying transformational distributions in the case that the nontransformed dataset was found not to be normally distributed. The statistical runs are provided for the various combinations of upgradient wells by parameter at the end of this discussion.

Prediction Limits

Based on the various statistical evaluations discussed above, the following background data sets were used for background prediction limit calculations:

Ash Bypass Basin and Ash Surge Basin

- Background wells MW-01, MW-09 and MW-19 all parameter values pooled for antimony, beryllium, cadmium, chromium, cobalt, lithium, mercury, pH, thallium and turbidity. As noted above there were no detections of antimony, beryllium or thallium at any of the three upgradient well locations and the reporting limits were the same. Relative to the other parameters, there were no statistically significant trends within wells for the combined data observations and there was no statistically significant variance noted between the datasets.
- Background wells MW-01 and MW-09 all parameter values were pooled for fluoride. For this combined parameter dataset, there was no individual trend within each well and there was no statistically significant variance noted between the datasets.
- Background wells MW-01 and MW-19 all parameter values were pooled for calcium and combined radium 226/228. For these combined parameter datasets, there were no individual trends within each well and there was no statistically significant variance noted between the datasets.
- Background wells MW-09 and MW-19 all parameter values were pooled for boron, chloride and lead. For this combined parameter dataset, there were no individual trends within each well and there was no statistically significant variance noted between the datasets.
- Background well MW-01 all parameter values were used for arsenic, selenium, sulfate, and TDS. None of these parameters indicated statistically significant trends within this well and none of these parameters were noted as statistical outliers at this well location. Sulfate and TDS had normal or underlying normal distributions, while distributions for arsenic and selenium for all upgradient wells were found not to be normal.
- Background well MW-19 all parameter values were used for barium and molybdenum. None of these parameters indicated statistically significant trends within this well and none of these parameters were noted as statistical outliers at this well location. Both had normal or underlying normal distributions.

Former Ash Basin

- Background wells MW-01 and MW-10 all parameter values pooled for antimony, beryllium, cadmium, calcium, chloride, chromium, lithium, mercury, molybdenum, pH, sulfate, thallium and TDS. As noted above there were no detections of antimony, mercury or thallium at any of the two upgradient well locations and the reporting limits were the same. Relative to the other parameters, there were no statistically significant trends within wells for the combined data observations and there was no statistically significant variance noted between the datasets.
- Background well MW-01 all parameter values were used for barium, boron, combined radium 226/228 and fluoride. None of these parameters indicated statistically

significant trends within this well and all had normal or underlying normal distributions. Barium was noted to have an outlier value at well MW-01 (0.083 mg/l) and two outliers were also noted at well MW-10 (0.41 mg/l and 0.59 mg/l). Since the noted barium outlier concentration at MW-01 was still substantially below the Section 845.600 standard of 2.0 mg/l, and as stated above there is no known laboratory or field sampling error basis on which to remove this data point, it was decided to include the full available barium dataset for MW-01 in the statistical background calculation.

Upgradient well MW-10 all parameter values were used for arsenic, cobalt, lead, selenium and turbidity. None of these parameters indicated statistically significant trends within this well. Cobalt, lead, selenium and turbidity had normal or underlying normal distributions, while distributions for arsenic for both background wells were found not to be normal. Arsenic was noted to have two outlier values at well MW-10 (0.011 mg/l and 0.022 mg/l), however there was a statistically significant data trend noted in the other background well (MW-01) for arsenic precluding that expanded dataset to be pooled. While the noted arsenic outlier concentrations are above the 845.600 standard of 0.01 mg/l, there is no site wide data trend for arsenic in other compliance wells during the two sampling periods with the outlier values and there is no known laboratory or field sampling error basis on which to remove these data points. The dataset for arsenic at MW-10 contains only 13 background data points. The Unified Guidance Section 5.2.3 states: "Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples". Based on this guidance and some of the other above stated reasons, it was decided to include these outliers in the statistical background calculation for arsenic at well MW-10. This background calculation may be re-evaluated at a later date after at least 20 background data points have been collected.

The calculated prediction limits under the various background dataset selection scenarios for the ABB/ASB and FAB are summarized in Tables 9-10 and 9-11, respectively, in Section 9 of this permit application. A prediction limit statistical run summary which includes the specific statistical method used for each parameter for each well scenario noted above are provided at the end of this discussion.

				0							
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
Antimony (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-17	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	15	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.003	0	unknown	ShapiroWilk
Arsenic (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	0.003653	0.006819	unknown	ShapiroWilk
Arsenic (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	0.002706	0.001081	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-09 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	0.001806	0.001442	unknown	ShapiroWilk
Arsenic (mg/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	0.1044	0.1631	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	0.12	0.1385	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	0.01944	0.03049	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-17	No	n/a	n/a	NP (nrm)	NaN	17	0.1784	0.1477	unknown	ShapiroWilk
Arsenic (mg/L)	MW-18	Yes	0.0032,0	5/5/2017,	NP (nrm)	NaN	17	0.001312	0.000721	unknown	ShapiroWilk
Arsenic (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001031	0.0001109	unknown	ShapiroWilk
Barium (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	0.05453	0.01389	unknown	ShapiroWilk
Barium (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	0.1035	0.03184	normal	ShapiroWilk
Barium (mg/L)	MW-09 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.038	0.007374	normal	ShapiroWilk
Barium (mg/L)	MW-11	No	n/a	n/a	NP (nrm)	NaN	17	0.57	0.6928	unknown	ShapiroWilk
Barium (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	0.2187	0.2331	ln(x)	ShapiroWilk
Barium (mg/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	0.06435	0.02348	ln(x)	ShapiroWilk
Barium (mg/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	0.1255	0.1072	ln(x)	ShapiroWilk
Barium (mg/L)	MW-18	No	n/a	n/a	NP (nrm)	NaN	17	0.1271	0.01105	unknown	ShapiroWilk
Barium (mg/L)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.07792	0.01082	normal	ShapiroWilk
Beryllium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)	NaN	15	0.00102	0.0000	unknown	ShapiroWilk
Beryllium (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-17	n/a	n/a	n/a	NP (nrm)	NaN	15	0.00102	0.0000	unknown	ShapiroWilk
Beryllium (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	15	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.001	0	unknown	ShapiroWilk
Boron (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.3353	0.2393	ln(x)	ShapiroWilk
Boron (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	1.06	0.3921	normal	ShapiroWilk
Boron (mg/L)	MW-09 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	3.194	0.9763	unknown	ShapiroWilk
Boron (mg/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	1.484	0.4286	normal	ShapiroWilk
Boron (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	0.6047	0.1908	normal	ShapiroWilk
Boron (mg/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	1.747	0.423	ln(x)	ShapiroWilk
Boron (mg/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	1.384	0.2918	normal	ShapiroWilk
Boron (mg/L)	MW-18	No	n/a	n/a	EPA 1989	0.05	17	0.6618	0.1215	normal	ShapiroWilk
Boron (mg/L)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	13	3.392	0.8301	normal	ShapiroWilk
Cadmium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Cadmium (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Cadmium (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Cadmium (mg/L)	MW-12	No	n/a	n/a	NP (nrm)	NaN	17	0.001597	0.001927	unknown	ShapiroWilk

		0.11			••••				011 0		N
		Outlier	<u>value(s)</u>	Date(s)		<u>Alpna</u>	N	<u>Mean</u>	Std. Dev.	Distribution	Normality lest
	MVV-15	Yes	0.00098,0	5/19/2016	NP (nrm)	NaN	17	0.000	0.0008708	unknown	Snapirowiik
	MVV-17	NO ,	n/a	n/a	NP (nrm)	NaN	17	0.001012	0.0006228	unknown	Snapirovviik
Cadmium (mg/L)	MVV-18	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0005	0	unknown	Shapirovviik
	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.0005	0	unknown	Shapirovviik
Calcium (mg/L)	MW-01 (bg)	NO	n/a	n/a	EPA 1989	0.05	17	95.94	14.66	normai	Shapirovviik
Calcium (mg/L)	MVV-08	NO	n/a	n/a	NP (nrm)	NaN	17	135.4	22.1	unknown	Snapirovviik
Calcium (mg/L)	MW-09 (bg)	NO	n/a	n/a	NP (nrm)	NaN	17	79.18	8.033	unknown	ShapiroWilk
Calcium (mg/L)	MVV-11	NO	n/a	n/a	EPA 1989	0.05	17	128.5	21.15	normal	Snapirovviik
Calcium (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	123.6	26.48	normal	ShapiroWilk
Calcium (mg/L)	MW-15	No	n/a	n/a	NP (nrm)	NaN	17	195.9	45.42	unknown	ShapiroWilk
Calcium (mg/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	185.3	39.39	normal	ShapiroWilk
Calcium (mg/L)	MW-18	No	n/a	n/a	NP (nrm)	NaN	17	127.1	9.852	unknown	ShapiroWilk
Calcium (mg/L)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	13	94.31	15.57	normal	ShapiroWilk
Chloride (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	17	48.12	7.737	normal	ShapiroWilk
Chloride (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	230.9	121.5	normal	ShapiroWilk
Chloride (mg/L)	MW-09 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	36.35	2.234	unknown	ShapiroWilk
Chloride (mg/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	104.4	26.68	normal	ShapiroWilk
Chloride (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	180.6	20.45	normal	ShapiroWilk
Chloride (mg/L)	MW-15	Yes	110	2/25/2016	Dixon`s	0.05	17	187.1	27.1	normal	ShapiroWilk
Chloride (mg/L)	MW-17	Yes	600	11/13/2019	NP (nrm)	NaN	17	237.6	98.27	unknown	ShapiroWilk
Chloride (mg/L)	MW-18	No	n/a	n/a	EPA 1989	0.05	17	191.8	25.55	normal	ShapiroWilk
Chloride (mg/L)	MW-19 (bg)	Yes	53	11/13/2019	Dixon`s	0.05	13	37.92	5.204	normal	ShapiroWilk
Chromium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.006294	0.004845	unknown	ShapiroWilk
Chromium (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-17	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	15	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.005	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.002667	0.00363	unknown	ShapiroWilk
Cobalt (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	17	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.001135	0.0005326	unknown	ShapiroWilk
Cobalt (mg/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	0.002988	0.0009493	normal	ShapiroWilk
Cobalt (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)	NaN	17	0.001018	0.0000	unknown	ShapiroWilk
Cobalt (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	17	0.001012	0.0000	unknown	ShapiroWilk
Cobalt (mg/L)	MW-17	No	n/a	n/a	NP (nrm)	NaN	17	0.001388	0.000511	unknown	ShapiroWilk
Cobalt (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	17	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001023	0.0000	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.6338	0.172	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-08	Yes	1.31	12/14/2020	Dixon`s	0.05	17	0.6072	0.2317	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-09 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	0.4845	0.1213	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	0.9534	0.6105	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-12	No	n/a	n/a	NP (nrm)	NaN	17	0.9695	0.8136	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	0.5055	0.1451	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	1.853	1.944	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-18	Yes	1.88	2/22/2016	Dixon`s	0.05	17	0.6792	0.3539	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.5295	0.1765	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.1771	0.03704	normal	ShapiroWilk

			r owenton Genera		ent. NICO Data. I owerton	1 miled 0/12/20	21, 10.5				
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Fluoride (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	0.3594	0.05414	normal	ShapiroWilk
Fluoride (mg/L)	MW-09 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.1647	0.02853	normal	ShapiroWilk
Fluoride (mg/L)	MW-11	No	n/a	n/a	EPA 1989	0.05	17	0.5729	0.08971	normal	ShapiroWilk
Fluoride (mg/L)	MW-12	No	n/a	n/a	Dixon`s	0.05	17	0.4412	0.08528	normal	ShapiroWilk
Fluoride (mg/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	0.5335	0.04987	normal	ShapiroWilk
Fluoride (mg/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	0.6294	0.09653	normal	ShapiroWilk
Fluoride (mg/L)	MW-18	No	n/a	n/a	EPA 1989	0.05	17	0.6047	0.07001	normal	ShapiroWilk
Fluoride (mg/L)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.15	0.0216	normal	ShapiroWilk
Lead (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.004516	0.008072	unknown	ShapiroWilk
Lead (mg/L)	MW-08	No	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0001655	unknown	ShapiroWilk
Lead (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Lead (mg/L)	MW-11	No	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0004384	unknown	ShapiroWilk
Lead (mg/L)	MW-12	No	n/a	n/a	NP (nrm)	NaN	17	0.001191	0.001114	unknown	ShapiroWilk
Lead (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0005	0	unknown	ShapiroWilk
Lead (mg/L)	MW-17	No	n/a	n/a	NP (nrm)	NaN	17	0.000	0.000415	unknown	ShapiroWilk
Lead (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Lead (mg/L)	MW-19 (bg)	Yes	0.0012	5/5/2017	NP (nrm)	NaN	13	0.000	0.0001944	unknown	ShapiroWilk
Lithium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.01012	0.0004851	unknown	ShapiroWilk
Lithium (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	0.01982	0.007577	normal	ShapiroWilk
Lithium (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	17	0.01012	0.0004851	unknown	ShapiroWilk
Lithium (mg/L)	MW-12	No	n/a	n/a	EPA 1989	0.05	17	0.01388	0.003407	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-15	No	n/a	n/a	EPA 1989	0.05	17	0.029	0.007408	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-17	No	n/a	n/a	EPA 1989	0.05	17	0.02035	0.005862	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-18	Yes	0.022	2/22/2016	Dixon`s	0.05	17	0.01382	0.002675	normal	ShapiroWilk
Lithium (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.01	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	0.000	0.0000	unknown	ShapiroWilk
Mercury (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-17	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)	NaN	17	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.0002	0	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-01 (bg)	Yes	0.01	5/11/2021	NP (nrm)	NaN	17	0.005724	0.001328	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-08	No	n/a	n/a	EPA 1989	0.05	17	0.01624	0.008238	ln(x)	ShapiroWilk
Molybdenum (mg/L)	MW-09 (bg)	No	n/a		EDA 1080	0.05	17	0.03318	0.007452	ln(x)	ShapiroWilk
Molybdenum (mg/L)		NO	11/ 64	n/a	LFA 1909	0.05					
	MW-11	No	n/a	n/a n/a	NP (nrm)	NaN	17	0.01634	0.006475	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-11 MW-12	No No	n/a n/a	n/a n/a n/a	NP (nrm) NP (nrm)	NaN NaN	17 17 17	0.01634 0.02012	0.006475 0.006679	unknown unknown	ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L)	MW-11 MW-12 MW-15	No No No	n/a n/a n/a	n/a n/a n/a n/a	NP (nrm) NP (nrm) EPA 1989	0.05 NaN NaN 0.05	17 17 17 17	0.01634 0.02012 0.02612	0.006475 0.006679 0.006809	unknown unknown normal	ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-11 MW-12 MW-15 MW-17	No No No No	n/a n/a n/a n/a	n/a n/a n/a n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989	0.05 NaN NaN 0.05 0.05	17 17 17 17 17	0.01634 0.02012 0.02612 0.07559	0.006475 0.006679 0.006809 0.03481	unknown unknown normal normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-11 MW-12 MW-15 MW-17 MW-18	No No No No Yes	n/a n/a n/a 0.061	n/a n/a n/a n/a 12/7/2020	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm)	0.03 NaN 0.05 0.05 NaN	17 17 17 17 17 17	0.01634 0.02012 0.02612 0.07559 0.008529	0.006475 0.006679 0.006809 0.03481 0.01352	unknown unknown normal normal unknown	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg)	No No No No Yes No	n/a n/a n/a n/a 0.061 n/a	n/a n/a n/a n/a 12/7/2020 n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989	0.03 NaN 0.05 0.05 NaN 0.05	17 17 17 17 17 17 13	0.01634 0.02012 0.02612 0.07559 0.008529 0.039	0.006475 0.006679 0.006809 0.03481 0.01352 0.007778	unknown unknown normal normal unknown normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH (n/a)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg) MW-01 (bg)	No No No Yes No No	n/a n/a n/a n/a 0.061 n/a n/a	n/a n/a n/a n/a 12/7/2020 n/a n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989 EPA 1989	0.03 NaN NaN 0.05 0.05 NaN 0.05 0.05	17 17 17 17 17 17 13 17	0.01634 0.02012 0.02612 0.07559 0.008529 0.039 7.186	0.006475 0.006679 0.006809 0.03481 0.01352 0.007778 0.2747	unknown unknown normal normal unknown normal normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH (n/a) pH (n/a)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg) MW-01 (bg) MW-08	No No No Yes No No No	n/a n/a n/a n/a 0.061 n/a n/a n/a	n/a n/a n/a n/a 12/7/2020 n/a n/a n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989 EPA 1989 NP (nrm)	0.03 NaN NaN 0.05 0.05 NaN 0.05 0.05 NaN	17 17 17 17 17 17 13 17 17	0.01634 0.02012 0.02612 0.07559 0.08529 0.039 7.186 7.308	0.006475 0.006679 0.006809 0.03481 0.01352 0.007778 0.2747 0.2953	unknown unknown normal normal unknown normal normal unknown	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH (n/a) pH (n/a) pH (n/a)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg) MW-01 (bg) MW-08 MW-09 (bg)	No No No Yes No No No No	n/a n/a n/a n/a n/a n/a n/a n/a n/a	n/a n/a n/a n/a 12/7/2020 n/a n/a n/a n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989	0.03 NaN NaN 0.05 0.05 NaN 0.05 NaN 0.05	17 17 17 17 17 17 13 17 17	0.01634 0.02012 0.02612 0.07559 0.008529 0.039 7.186 7.308 7.312	0.006475 0.006679 0.006809 0.03481 0.01352 0.007778 0.2747 0.2953 0.2248	unknown unknown normal normal unknown normal unknown normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH (n/a) pH (n/a) pH (n/a) pH (n/a) pH (n/a)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg) MW-01 (bg) MW-04 MW-09 (bg) MW-09 (bg)	No No No Yes No No No Yes	n/a n/a n/a 0.061 n/a n/a n/a n/a 7.89,6.62	n/a n/a n/a 12/7/2020 n/a n/a n/a n/a n/a 5/16/2018	NP (nrm) NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989 EPA 1989 NP (nrm) EPA 1989 Dixon`s	0.03 NaN NaN 0.05 0.05 NaN 0.05 NaN 0.05 0.05	17 17 17 17 17 17 13 17 17 17 17	0.01634 0.02012 0.02612 0.07559 0.008529 0.039 7.186 7.308 7.312 7.312	0.006475 0.006679 0.03481 0.01352 0.007778 0.2747 0.2953 0.2248 0.2541	unknown unknown normal normal unknown normal unknown normal normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) pH (n/a) pH (n/a) pH (n/a) pH (n/a) pH (n/a)	MW-11 MW-12 MW-15 MW-17 MW-18 MW-19 (bg) MW-01 (bg) MW-08 MW-09 (bg) MW-09 MW-11 MW-12	No No No Yes No No No Yes No	n/a n/a n/a 0.061 n/a n/a n/a n/a 7.89,6.62 n/a	n/a n/a n/a 12/7/2020 n/a n/a n/a n/a 5/16/2018 n/a	NP (nrm) NP (nrm) EPA 1989 EPA 1989 EPA 1989 EPA 1989 EPA 1989 NP (nrm) EPA 1989 Dixon`s EPA 1989	0.03 NaN NaN 0.05 0.05 NaN 0.05 NaN 0.05 0.05 0.05	17 17 17 17 17 17 13 17 17 17 17 17	0.01634 0.02012 0.02612 0.07559 0.008529 0.039 7.186 7.308 7.312 7.312 7.498	0.006475 0.006679 0.03481 0.01352 0.07778 0.2747 0.2953 0.2248 0.2541 0.2921	unknown unknown normal normal unknown normal unknown normal normal normal	ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk ShapiroWilk

			Powerton Gene	aung Station	Client: NRG Data: P	owenton	Printed 6/12/2	021, 10.	35 AIVI			
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method		<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
pH (n/a)	MW-17	Yes	7.79	5/14/2018	Dixon`s		0.05	17	7.233	0.2064	normal	ShapiroWilk
pH (n/a)	MW-18	Yes	7.06	2/22/2016	Dixon`s		0.05	17	7.821	0.2939	normal	ShapiroWilk
pH (n/a)	MW-19 (bg)	No	n/a	n/a	EPA 1989		0.05	13	7.346	0.2818	normal	ShapiroWilk
Selenium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002524	0.0000	unknown	ShapiroWilk
Selenium (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)		NaN	17	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-09 (bg)	No	n/a	n/a	NP (nrm)		NaN	17	0.004224	0.002535	unknown	ShapiroWilk
Selenium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)		NaN	17	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)		NaN	17	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-15	No	n/a	n/a	EPA 1989		0.05	17	0.01685	0.02215	ln(x)	ShapiroWilk
Selenium (mg/L)	MW-17	n/a	n/a	n/a	NP (nrm)		NaN	17	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)		NaN	17	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-19 (bg)	No	n/a	n/a	NP (nrm)		NaN	13	0.003792	0.001512	unknown	ShapiroWilk
Sulfate (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989		0.05	17	50.76	15.29	normal	ShapiroWilk
Sulfate (mg/L)	MW-08	No	n/a	n/a	EPA 1989		0.05	17	230.9	115.8	normal	ShapiroWilk
Sulfate (mg/L)	MW-09 (bg)	No	n/a	n/a	EPA 1989		0.05	17	137.9	38.26	normal	ShapiroWilk
Sulfate (mg/L)	MW-11	No	n/a	n/a	EPA 1989		0.05	17	241.2	69	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-12	No	n/a	n/a	EPA 1989		0.05	17	478.2	136.7	normal	ShapiroWilk
Sulfate (mg/L)	MW-15	No	n/a	n/a	NP (nrm)		NaN	17	630	278.2	unknown	ShapiroWilk
Sulfate (mg/L)	MW-17	No	n/a	n/a	EPA 1989		0.05	17	689.4	147.7	normal	ShapiroWilk
Sulfate (mg/L)	MW-18	No	n/a	n/a	EPA 1989		0.05	17	290.6	80.89	normal	ShapiroWilk
Sulfate (mg/L)	MW-19 (bg)	No	n/a	n/a	Dixon`s		0.05	13	148.2	34.32	normal	ShapiroWilk
Thallium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-08	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-09 (bg)	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-11	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-12	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-15	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-17	No	n/a	n/a	NP (nrm)		NaN	17	0.003129	0.001857	unknown	ShapiroWilk
Thallium (mg/L)	MW-18	n/a	n/a	n/a	NP (nrm)		NaN	17	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-19 (bg)	n/a	n/a	n/a	NP (nrm)		NaN	13	0.002	0	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989		0.05	17	500	69.73	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-08	No	n/a	n/a	EPA 1989		0.05	17	1106	361.1	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-09 (bg)	No	n/a	n/a	EPA 1989		0.05	17	581.2	112.2	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-11	No	n/a	n/a	EPA 1989		0.05	17	927.6	161.7	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-12	No	n/a	n/a	EPA 1989		0.05	17	1251	190.9	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-15	Yes	2800	5/19/2016	Dixon`s		0.05	17	1735	380.7	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-17	No	n/a	n/a	EPA 1989		0.05	17	1700	327.9	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-18	No	n/a	n/a	NP (nrm)		NaN	17	1135	123.5	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-19 (bg)	No	n/a	n/a	NP (nrm)		NaN	13	643.1	115.9	unknown	ShapiroWilk

Outlier Analysis FAB

				5			- ,				
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
Antimony (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	16	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	11	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	11	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	11	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	14	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.003	0	unknown	ShapiroWilk
Arsenic (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.00195	0.001931	unknown	ShapiroWilk
Arsenic (mg/L)	MW-02	Yes	0.0026	2/26/2019	Dixon`s	0.05	13	0.0014	0.0004183	normal	ShapiroWilk
Arsenic (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001192	0.0001935	unknown	ShapiroWilk
Arsenic (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001031	0.0000	unknown	ShapiroWilk
Arsenic (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	16	0.001	1.2e-11	unknown	ShapiroWilk
Arsenic (mg/L)	MW-10 (bg)	Yes	0.011,0.022	10/30/201	Dixon`s	0.05	13	0.004046	0.006002	normal	ShapiroWilk
Barium (mg/L)	MW-01 (bg)	Yes	0.083	11/8/2017	Dixon`s	0.05	18	0.05183	0.01011	normal	ShapiroWilk
Barium (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	0.06423	0.0125	normal	ShapiroWilk
Barium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	13	0.06562	0.007943	unknown	ShapiroWilk
Barium (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	0.03285	0.008591	ln(x)	ShapiroWilk
Barium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	0.05369	0.007153	normal	ShapiroWilk
Barium (mg/L)	MW-10 (bg)	Yes	0.41,0.59	10/30/201	Dixon`s	0.05	13	0.2815	0.1071	normal	ShapiroWilk
Beryllium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	16	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	11	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	11	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	11	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	14	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.001364	0.001206	unknown	ShapiroWilk
Boron (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.3339	0.2358	ln(x)	ShapiroWilk
Boron (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	0.7333	0.9931	ln(x)	ShapiroWilk
Boron (ma/L)	MW-03	Yes	0.86	12/9/2020	Dixon`s	0.05	13	0.3328	0.1844	normal	ShapiroWilk
Boron (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	0.5585	0.1403	normal	ShapiroWilk
Boron (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	0.6169	0.1222	ln(x)	ShapiroWilk
Boron (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	13	0.6746	0.61	unknown	ShapiroWilk
Cadmium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	11	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	11	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	11	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	14	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-10 (bq)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.000	0.0003086	unknown	ShapiroWilk
Calcium (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	95.78	14.37	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	86.23	8.228	normal	ShapiroWilk
Calcium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	13	79.23	5.847	unknown	ShapiroWilk
Calcium (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	86	10.54	normal	ShapiroWilk
Calcium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	102.3	11.89	normal	ShapiroWilk
Calcium (mg/L)	MW-10 (bg)	Yes	150	2/26/2019	Dixon`s	0.05	13	104.5	16.72	normal	ShapiroWilk
Chloride (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	47.83	7.846	normal	ShapiroWilk
Chloride (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	48.77	4.166	normal	ShapiroWilk
Chloride (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	13	53.23	7.452	normal	ShapiroWilk
Chloride (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	65.46	17.28	normal	ShapiroWilk
Chloride (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	84.13	21.28	normal	ShapiroWilk
Chloride (mg/L)	MW-10 (ba)	No	n/a	n/a	EPA 1989	0.05	13	48.15	4.279	normal	ShapiroWilk
Chromium (mg/L)	MW-01 (bq)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.005111	0.0004714	unknown	ShapiroWilk
Chromium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005	0	unknown	ShapiroWilk

Outlier Analysis FAB

		10	Weiten General			T TILLEG O/ TC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.17 1 101			
<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
Chromium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	16	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	MW-10 (bg)	Yes	0.024,0.063	10/30/201	NP (nrm)	NaN	13	0.0112	0.01643	unknown	ShapiroWilk
Cobalt (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.001772	0.001476	unknown	ShapiroWilk
Cobalt (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	13	0.001015	0.0000	unknown	ShapiroWilk
Cobalt (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	16	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	13	0.01793	0.02202	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.6154	0.1656	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	0.5498	0.2315	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-03	Yes	1.2	8/23/2017	Dixon`s	0.05	13	0.5121	0.2291	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-04	No	n/a	n/a	Dixon`s	0.05	13	0.5114	0.2117	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	0.4712	0.1076	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	13	1.46	1.056	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.1767	0.03896	normal	ShapiroWilk
Fluoride (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	0.1815	0.02444	normal	ShapiroWilk
Fluoride (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	13	0.2446	0.02727	normal	ShapiroWilk
Fluoride (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	0.2731	0.04171	normal	ShapiroWilk
Fluoride (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	0.3131	0.04332	normal	ShapiroWilk
Fluoride (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.2108	0.02629	normal	ShapiroWilk
Lead (mg/L)	MW-01 (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.002458	0.003375	unknown	ShapiroWilk
Lead (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	13	0.000	0.0002219	unknown	ShapiroWilk
Lead (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.000	0.0000	unknown	ShapiroWilk
Lead (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	13	0.000	0.0001941	unknown	ShapiroWilk
Lead (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	16	0.000	0.0001025	unknown	ShapiroWilk
Lead (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.006195	0.01074	ln(x)	ShapiroWilk
Lithium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	12	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	15	0.01	0	unknown	ShapiroWilk
Lithium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.01242	0.006487	unknown	ShapiroWilk
Mercury (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	12	0.000	0.0000	unknown	ShapiroWilk
Mercury (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	15	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-01 (bg)	Yes	0.01	5/11/2021	NP (nrm)	NaN	18	0.005522	0.001183	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005415	0.001252	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005	0	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-04	No	n/a	n/a	NP (nrm)	NaN	13	0.006123	0.002316	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-05	No	n/a	n/a	NP (nrm)	NaN	16	0.006112	0.00107	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	13	0.005123	0.0004438	unknown	ShapiroWilk
pH (n/a)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	7.166	0.2539	normal	ShapiroWilk
pH (n/a)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	7.455	0.3042	normal	ShapiroWilk
pH (n/a)	MW-03	No	n/a	n/a	EPA 1989	0.05	13	7.266	0.3052	normal	ShapiroWilk
pH (n/a)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	7.155	0.263	normal	ShapiroWilk

Outlier Analysis FAB

				0							
<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
pH (n/a)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	7.068	0.2899	normal	ShapiroWilk
pH (n/a)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	13	7.041	0.3036	unknown	ShapiroWilk
Selenium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.002522	0.0000	unknown	ShapiroWilk
Selenium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	13	0.002515	0.0000	unknown	ShapiroWilk
Selenium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	13	0.002585	0.0003051	unknown	ShapiroWilk
Selenium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	13	0.003015	0.001858	unknown	ShapiroWilk
Selenium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	16	0.0025	0	unknown	ShapiroWilk
Selenium (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	13	0.0046	0.0009129	normal	ShapiroWilk
Sulfate (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	51.44	16	normal	ShapiroWilk
Sulfate (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	46.08	17.59	normal	ShapiroWilk
Sulfate (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	13	48.69	19.97	normal	ShapiroWilk
Sulfate (mg/L)	MW-04	No	n/a	n/a	Dixon`s	0.05	13	70.62	33.04	normal	ShapiroWilk
Sulfate (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	138.4	41.77	normal	ShapiroWilk
Sulfate (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	13	54.85	15.14	normal	ShapiroWilk
Thallium (mg/L)	MW-01 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-02	n/a	n/a	n/a	NP (nrm)	NaN	11	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	11	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	11	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	14	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.002	0	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-01 (bg)	No	n/a	n/a	EPA 1989	0.05	18	503.9	66.87	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-02	No	n/a	n/a	EPA 1989	0.05	13	452.3	54.95	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	13	433.1	47.33	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	13	523.8	111.1	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	16	722.5	138.1	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	13	513.8	41.94	unknown	ShapiroWilk

Powerton Generating Station Client: NRG Data: Powerton Printed 8/12/2021, 11:30 AM

Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	df	N	<u>Alpha</u>
Antimony (mg/L)	MW-01 (bg)	No	0	0	0	15	0.05
Antimony (mg/L)	MW-08	No	0	0	0	15	0.05
Antimony (mg/L)	MW-09 (bg)	No	0	0	0	15	0.05
Antimony (mg/L)	MW-11	No	0	0	0	15	0.05
Antimony (mg/L)	MW-12	No	0	0	0	15	0.05
Antimony (mg/L)	MW-15	No	0	0	0	15	0.05
Antimony (mg/L)	MW-17	No	0	0	0	15	0.05
Antimony (mg/L)	MW-18	No	0	0	0	15	0.05
Arsenic (mg/L)	MW-01 (bg)	No	1.208	7.815	3	17	0.05
Arsenic (mg/L)	MW-08	No	1.554	7.815	3	17	0.05
Arsenic (mg/L)	MW-09 (bg)	Yes	10.11	7.815	3	17	0.05
Arsenic (mg/L)	MW-11	No	2.369	7.815	3	17	0.05
Arsenic (mg/L)	MW-12	No	1.787	7.815	3	17	0.05
Arsenic (mg/L)	MW-15	No	0.267	7.815	3	17	0.05
Arsenic (mg/L)	MW-17	No	3.792	7.815	3	17	0.05
Arsenic (mg/L)	MW-18	No	3.6	7.815	3	17	0.05
Arsenic (mg/L)	MW-19 (bg)	No	3.6	7.815	3	13	0.05
Barium (mg/L)	MW-01 (bg)	Yes	8.186	7.815	3	17	0.05
Barium (mg/L)	MW-08	No	0.971	7.815	3	17	0.05
Barium (mg/L)	MW-09 (bg)	No	2.492	7.815	3	17	0.05
Barium (mg/L)	MW-11	No	2.728	7.815	3	17	0.05
Barium (mg/L)	MW-12	No	1.138	7.815	3	17	0.05
Barium (mg/L)	MW-15	No	0.9203	7.815	3	17	0.05
Barium (mg/L)	MW-17	No	2.487	7.815	3	17	0.05
Barium (mg/L)	MW-18	No	0.8944	7.815	3	17	0.05
Barium (mg/L)	MW-19 (bg)	No	0.8944	7.815	3	13	0.05
Beryllium (mg/L)	MW-01 (bg)	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-08	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-09 (bg)	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-11	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-12	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-15	No	0	0	3	15	0.05
Beryllium (mg/L)	MW-17	No	2	7.815	3	15	0.05
Beryllium (mg/L)	MW-18	No	0	0	3	15	0.05
Boron (mg/L)	MW-01 (bg)	No	5.32	7.815	3	17	0.05
Boron (mg/L)	MW-08	No	1.843	7.815	3	17	0.05
Boron (mg/L)	MW-09 (bg)	No	1.146	7.815	3	17	0.05
Boron (mg/L)	MW-11	No	0.1714	7.815	3	17	0.05
Boron (mg/L)	MW-12	Yes	11.55	7.815	3	17	0.05
Boron (mg/L)	MW-15	No	1.834	7.815	3	17	0.05
Boron (mg/L)	MW-17	No	4.522	7.815	3	17	0.05
Boron (mg/L)	MW-18	Yes	8.235	7.815	3	17	0.05
Boron (mg/L)	MW-19 (bg)	No	8.235	7.815	3	13	0.05
Cadmium (mg/L)	MW-01 (bg)	No	2.4	7.815	3	17	0.05
Cadmium (mg/L)	MW-08	No	4.667	7.815	3	17	0.05
Cadmium (mg/L)	MW-09 (bg)	No	0	0	3	17	0.05
Cadmium (mg/L)	MW-11	No	4.667	7.815	3	17	0.05
Cadmium (mg/L)	MW-12	No	1.16	7.815	3	17	0.05
Cadmium (mg/L)	MW-15	No	1.687	7.815	3	17	0.05
Cadmium (mg/L)	MW-17	No	3.274	7.815	3	17	0.05

	0						
Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Cadmium (mg/L)	MW-18	No	0	0	3	17	0.05
Cadmium (mg/L)	MW-19 (bg)	No	0	0	3	13	0.05
Calcium (mg/L)	MW-01 (bg)	No	6.203	7.815	3	17	0.05
Calcium (mg/L)	MW-08	No	1.076	7.815	3	17	0.05
Calcium (mg/L)	MW-09 (bg)	No	1.145	7.815	3	17	0.05
Calcium (mg/L)	MW-11	No	1.224	7.815	3	17	0.05
Calcium (mg/L)	MW-12	No	2.379	7.815	3	17	0.05
Calcium (mg/L)	MW-15	No	3.219	7.815	3	17	0.05
Calcium (mg/L)	MW-17	No	2.514	7.815	3	17	0.05
Calcium (mg/L)	MW-18	No	0.9169	7.815	3	17	0.05
Calcium (mg/L)	MW-19 (bg)	No	0.9169	7.815	3	13	0.05
Chloride (mg/L)	MW-01 (bg)	No	5.385	7.815	3	17	0.05
Chloride (mg/L)	MW-08	No	1.77	7.815	3	17	0.05
Chloride (mg/L)	MW-09 (bg)	No	3.489	7.815	3	17	0.05
Chloride (mg/L)	MW-11	No	2.13	7.815	3	17	0.05
Chloride (mg/L)	MW-12	No	1.251	7.815	3	17	0.05
Chloride (mg/L)	MW-15	No	0.5227	7.815	3	17	0.05
Chloride (mg/L)	MW-17	No	0.9027	7.815	3	17	0.05
Chloride (mg/L)	MW-18	No	3.277	7.815	3	17	0.05
Chloride (mg/L)	MW-19 (bg)	No	3.277	7.815	3	13	0.05
Chromium (mg/L)	MW-01 (bg)	No	1.5	7.815	3	17	0.05
Chromium (mg/L)	MW-08	No	1.5	7.815	3	15	0.05
Chromium (mg/L)	MW-09 (bg)	No	1.5	7.815	3	15	0.05
Chromium (mg/L)	MW-11	No	1.5	7.815	3	15	0.05
Chromium (mg/L)	MW-12	No	1.5	7.815	3	15	0.05
Chromium (mg/L)	MW-15	No	1.5	7.815	3	15	0.05
Chromium (mg/L)	MW-17	No	0	0	3	15	0.05
Chromium (mg/L)	MW-18	No	0	0	3	15	0.05
Cobalt (mg/L)	MW-01 (bg)	No	2.105	7.815	3	18	0.05
Cobalt (mg/L)	MW-08	No	0	0	3	17	0.05
Cobalt (mg/L)	MW-09 (bg)	No	2.567	7.815	3	17	0.05
Cobalt (mg/L)	MW-11	No	2.874	7.815	3	17	0.05
Cobalt (mg/L)	MW-12	No	4.667	7.815	3	17	0.05
Cobalt (mg/L)	MW-15	No	2.4	7.815	3	17	0.05
Cobalt (mg/L)	MW-17	No	2.92	7.815	3	17	0.05
Cobalt (mg/L)	MW-18	No	0	0	3	17	0.05
Cobalt (mg/L)	MW-19 (bg)	No	0	0	3	13	0.05
Combined Radium 226 + 228 (pCi/L)	MW-01 (bg)	No	2.439	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-08	No	3.765	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-09 (bg)	No	0.7268	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-11	No	3.758	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-12	No	3.178	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-15	No	1.02	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-17	No	1.035	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-18	No	2.092	7.815	3	17	0.05
Combined Radium 226 + 228 (pCi/L)	MW-19 (bg)	No	2.092	7.815	3	13	0.05
Fluoride (mg/L)	MW-01 (bg)	No	0.963	7.815	3	17	0.05
Fluoride (mg/L)	MW-08	No	2.688	7.815	3	17	0.05
Fluoride (mg/L)	MW-09 (bg)	No	1.539	7.815	3	17	0.05
Fluoride (mg/L)	MW-11	No	1.814	7.815	3	17	0.05

Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Fluoride (mg/L)	MW-12	No	6.835	7.815	3	17	0.05
Fluoride (mg/L)	MW-15	No	0.7717	7.815	3	17	0.05
Fluoride (mg/L)	MW-17	No	1.867	7.815	3	17	0.05
Fluoride (mg/L)	MW-18	No	0.6421	7.815	3	17	0.05
Fluoride (mg/L)	MW-19 (bg)	No	0.6421	7.815	3	13	0.05
Lead (mg/L)	MW-01 (bg)	No	1.446	7.815	3	18	0.05
Lead (mg/L)	MW-08	No	5.607	7.815	3	17	0.05
Lead (mg/L)	MW-09 (bg)	No	2.4	7.815	3	17	0.05
Lead (mg/L)	MW-11	No	1.14	7.815	3	17	0.05
Lead (mg/L)	MW-12	No	3.988	7.815	3	17	0.05
Lead (mg/L)	MW-15	No	0	0	3	17	0.05
Lead (mg/L)	MW-17	No	2.171	7.815	3	17	0.05
Lead (mg/L)	MW-18	No	2.4	7.815	3	17	0.05
Lead (mg/L)	MW-19 (bg)	No	2.4	7.815	3	13	0.05
Lithium (mg/L)	MW-01 (bg)	No	2.4	7.815	3	17	0.05
Lithium (mg/L)	MW-08	No	2.667	7.815	3	17	0.05
Lithium (mg/L)	MW-09 (bg)	No	0	0	3	17	0.05
Lithium (mg/L)	MW-11	No	1.833	7.815	3	17	0.05
Lithium (mg/L)	MW-12	No	4.438	7.815	3	17	0.05
Lithium (mg/L)	MW-15	No	0.7891	7.815	3	17	0.05
Lithium (mg/L)	MW-17	No	0.2949	7.815	3	17	0.05
Lithium (mg/L)	MW-18	No	5.078	7.815	3	17	0.05
Lithium (mg/L)	MW-19 (bg)	No	5.078	7.815	3	13	0.05
Mercury (mg/L)	MW-01 (bg)	No	0	0	3	17	0.05
Mercury (mg/L)	MW-08	No	0	0	3	17	0.05
Mercury (mg/L)	MW-09 (bg)	No	1.833	7.815	3	17	0.05
Mercury (mg/L)	MW-11	No	0	0	3	17	0.05
Mercury (mg/L)	MW-12	No	0	0	3	17	0.05
Mercury (mg/L)	MW-15	No	0	0	3	17	0.05
Mercury (mg/L)	MW-17	No	0	0	3	17	0.05
Mercury (mg/L)	MW-18	No	0	0	3	17	0.05
Mercury (mg/L)	MW-19 (bg)	No	0	0	3	13	0.05
Molybdenum (mg/L)	MW-01 (bg)	No	1.562	7.815	3	17	0.05
Molybdenum (mg/L)	MW-08	No	3.185	7.815	3	17	0.05
Molybdenum (mg/L)	MW-09 (bg)	No	1.154	7.815	3	17	0.05
Molybdenum (mg/L)	MW-11	No	1.561	7.815	3	17	0.05
Molybdenum (mg/L)	MW-12	No	2.713	7.815	3	17	0.05
Molybdenum (mg/L)	MW-15	No	5.93	7.815	3	17	0.05
Molybdenum (mg/L)	MW-17	No	7.677	7.815	3	17	0.05
Molybdenum (mg/L)	MW-18	No	1.674	7.815	3	17	0.05
Molybdenum (mg/L)	MW-19 (bg)	No	1.674	7.815	3	13	0.05
pH (n/a)	MW-01 (bg)	No	0.9435	7.815	3	17	0.05
pH (n/a)	MW-08	No	1.471	7.815	3	17	0.05
pH (n/a)	MW-09 (bg)	No	2.499	7.815	3	17	0.05
pH (n/a)	MW-11	No	2.06	7.815	3	17	0.05
pH (n/a)	MW-12	No	6.169	7.815	3	17	0.05
pH (n/a)	MW-15	No	0.09162	7.815	3	17	0.05
pH (n/a)	MW-17	No	4.866	7.815	3	17	0.05
pH (n/a)	MW-18	No	3.609	7.815	3	17	0.05
pH (n/a)	MW-19 (bg)	No	3.609	7.815	3	13	0.05

Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Selenium (mg/L)	MW-01 (bg)	No	3.25	7.815	3	17	0.05
Selenium (mg/L)	MW-08	No	0	0	3	17	0.05
Selenium (mg/L)	MW-09 (bg)	No	6.582	7.815	3	17	0.05
Selenium (mg/L)	MW-11	No	0	0	3	17	0.05
Selenium (mg/L)	MW-12	No	0	0	3	17	0.05
Selenium (mg/L)	MW-15	No	0.9603	7.815	3	17	0.05
Selenium (mg/L)	MW-17	No	0	0	3	17	0.05
Selenium (mg/L)	MW-18	No	0	0	3	17	0.05
Selenium (mg/L)	MW-19 (bg)	No	0	0	3	13	0.05
Sulfate (mg/L)	MW-01 (bg)	No	0.8146	7.815	3	17	0.05
Sulfate (mg/L)	MW-08	No	1.534	7.815	3	17	0.05
Sulfate (mg/L)	MW-09 (bg)	No	3.164	7.815	3	17	0.05
Sulfate (mg/L)	MW-11	No	3.964	7.815	3	17	0.05
Sulfate (mg/L)	MW-12	No	2.582	7.815	3	17	0.05
Sulfate (mg/L)	MW-15	No	0.2204	7.815	3	17	0.05
Sulfate (mg/L)	MW-17	No	0.4915	7.815	3	17	0.05
Sulfate (mg/L)	MW-18	No	3.727	7.815	3	17	0.05
Sulfate (mg/L)	MW-19 (bg)	No	3.727	7.815	3	13	0.05
Thallium (mg/L)	MW-01 (bg)	No	0	0	3	17	0.05
Thallium (mg/L)	MW-08	No	0	0	3	17	0.05
Thallium (mg/L)	MW-09 (bg)	No	0	0	3	17	0.05
Thallium (mg/L)	MW-11	No	0	0	3	17	0.05
Thallium (mg/L)	MW-12	No	0	0	3	17	0.05
Thallium (mg/L)	MW-15	No	0	0	3	17	0.05
Thallium (mg/L)	MW-17	No	3.634	7.815	3	17	0.05
Thallium (mg/L)	MW-18	No	0	0	3	17	0.05
Thallium (mg/L)	MW-19 (bg)	No	0	0	3	13	0.05
Total Dissolved Solids (mg/L)	MW-01 (bg)	No	1.281	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-08	No	2.318	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-09 (bg)	No	5.057	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-11	No	2.211	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-12	No	3.959	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-15	No	1.996	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-17	No	3.007	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-18	No	1.28	7.815	3	17	0.05
Total Dissolved Solids (mg/L)	MW-19 (bg)	No	1.28	7.815	3	13	0.05

Seasonality FAB

Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Antimony (mg/L)	MW-01 (bg)	No	0	0	3	16	0.05
Antimony (mg/L)	MW-05	No	0	0	3	14	0.05
Arsenic (mg/L)	MW-01 (bg)	No	1.38	7.815	3	18	0.05
Arsenic (mg/L)	MW-02	No	1.38	7.815	3	13	0.05
Arsenic (mg/L)	MW-03	No	1.38	7.815	3	13	0.05
Arsenic (mg/L)	MW-04	No	1.38	7.815	3	13	0.05
Arsenic (mg/L)	MW-05	No	3	7.815	3	16	0.05
Arsenic (mg/L)	MW-10 (bg)	No	3	7.815	3	13	0.05
Barium (mg/L)	MW-01 (bg)	No	7.255	7.815	3	18	0.05
Barium (mg/L)	MW-02	No	7.255	7.815	3	13	0.05
Barium (mg/L)	MW-03	No	7.255	7.815	3	13	0.05
Barium (mg/L)	MW-04	No	7.255	7.815	3	13	0.05
Barium (mg/L)	MW-05	No	1.252	7.815	3	16	0.05
Barium (mg/L)	MW-10 (bg)	No	1.252	7.815	3	13	0.05
Beryllium (mg/L)	MW-01 (bg)	No	0	0	3	16	0.05
Beryllium (mg/L)	MW-05	No	0	0	3	14	0.05
Boron (mg/L)	MW-01 (bg)	No	4.364	7.815	3	18	0.05
Boron (mg/L)	MW-02	No	4.364	7.815	3	13	0.05
Boron (mg/L)	MW-03	No	4.364	7.815	3	13	0.05
Boron (mg/L)	MW-04	No	4.364	7.815	3	13	0.05
Boron (mg/L)	MW-05	No	0.7946	7.815	3	16	0.05
Boron (mg/L)	MW-10 (bg)	No	0.7946	7.815	3	13	0.05
Cadmium (mg/L)	MW-01 (bg)	No	0	0	3	18	0.05
Cadmium (mg/L)	MW-05	No	0	0	3	14	0.05
Calcium (mg/L)	MW-01 (bg)	No	4.731	7.815	3	18	0.05
Calcium (mg/L)	MW-02	No	4.731	7.815	3	13	0.05
Calcium (mg/L)	MW-03	No	4.731	7.815	3	13	0.05
Calcium (mg/L)	MW-04	No	4.731	7.815	3	13	0.05
Calcium (mg/L)	MW-05	No	5.122	7.815	3	16	0.05
Calcium (mg/L)	MW-10 (bg)	No	5.122	7.815	3	13	0.05
Chloride (mg/L)	MW-01 (bg)	No	6.964	7.815	3	18	0.05
Chloride (mg/L)	MW-02	No	6.964	7.815	3	13	0.05
Chloride (mg/L)	MW-03	No	6.964	7.815	3	13	0.05
Chloride (mg/L)	MW-04	No	6.964	7.815	3	13	0.05
Chloride (mg/L)	MW-05	No	4.177	7.815	3	16	0.05
Chloride (mg/L)	MW-10 (bg)	No	4.177	7.815	3	13	0.05
Chromium (mg/L)	MW-01 (bg)	No	2.6	7.815	3	18	0.05
Chromium (mg/L)	MW-02	No	2.6	7.815	3	13	0.05
Chromium (mg/L)	MW-03	No	2.6	7.815	3	13	0.05
Chromium (mg/L)	MW-04	No	2.6	7.815	3	13	0.05
Chromium (ma/L)	MW-05	No	0	0	3	16	0.05
Chromium (mg/L)	MW-10 (bg)	No	0	0	3	13	0.05
Cobalt (mg/L)	MW-01 (ba)	No	2.121	7.815	3	18	0.05
Cobalt (mg/L)	MW-02	No	2.121	7.815	3	13	0.05
Cobalt (mg/L)	MW-03	No	2.121	7.815	3	13	0.05
Cobalt (mg/L)	MW-04	No	2.121	7.815	3	13	0.05
Cobalt (mg/L)	MW-05	No	0	0	3	16	0.05
Cobalt (mg/L)	MW-10 (bg)	No	0	0	3	13	0.05
Combined Radium 226 + 228 (pCi/L)	MW-01 (ba)	No	2.153	7.815	3	18	0.05
Combined Radium 226 + 228 (pCi/L)	MW-02	No	2.153	7.815	3	13	0.05

Seasonality FAB

Powerton Generating Station	Client: NRG	Data: Powerton FAB	Printed 8/12/2021, 11:37 AM
0			,

	U U						
Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Combined Radium 226 + 228 (pCi/L)	MW-03	No	2.153	7.815	3	13	0.05
Combined Radium 226 + 228 (pCi/L)	MW-04	No	2.153	7.815	3	13	0.05
Combined Radium 226 + 228 (pCi/L)	MW-05	No	1.704	7.815	3	16	0.05
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	No	1.704	7.815	3	13	0.05
Fluoride (mg/L)	MW-01 (bg)	No	0.4979	7.815	3	18	0.05
Fluoride (mg/L)	MW-02	No	0.4979	7.815	3	13	0.05
Fluoride (mg/L)	MW-03	No	0.4979	7.815	3	13	0.05
Fluoride (mg/L)	MW-04	No	0.4979	7.815	3	13	0.05
Fluoride (mg/L)	MW-05	No	1.98	7.815	3	16	0.05
Fluoride (mg/L)	MW-10 (bg)	No	1.98	7.815	3	13	0.05
Lead (mg/L)	MW-01 (bg)	No	2.793	7.815	3	18	0.05
Lead (mg/L)	MW-02	No	2.793	7.815	3	13	0.05
Lead (mg/L)	MW-03	No	2.793	7.815	3	13	0.05
Lead (mg/L)	MW-04	No	2.793	7.815	3	13	0.05
Lead (mg/L)	MW-05	No	3	7.815	3	16	0.05
Lead (mg/L)	MW-10 (bg)	No	3	7.815	3	13	0.05
Lithium (mg/L)	MW-01 (bg)	No	0	0	3	18	0.05
Lithium (mg/L)	MW-02	No	0	0	3	12	0.05
Lithium (mg/L)	MW-03	No	0	0	3	12	0.05
Lithium (mg/L)	MW-04	No	0	0	3	12	0.05
Lithium (mg/L)	MW-05	No	0	0	3	15	0.05
Lithium (mg/L)	MW-10 (bg)	No	0	0	3	12	0.05
Mercury (mg/L)	MW-01 (bg)	No	0	0	3	18	0.05
Mercury (mg/L)	MW-02	No	0	0	3	12	0.05
Mercury (mg/L)	MW-03	No	0	0	3	12	0.05
Mercury (mg/L)	MW-04	No	0	0	3	12	0.05
Mercury (mg/L)	MW-05	No	0	0	3	15	0.05
Mercury (mg/L)	MW-10 (bg)	No	0	0	3	12	0.05
Molybdenum (mg/L)	MW-01 (bg)	No	1.442	7.815	3	18	0.05
Molybdenum (mg/L)	MW-02	No	1.442	7.815	3	13	0.05
Molybdenum (mg/L)	MW-03	No	1.442	7.815	3	13	0.05
Molybdenum (mg/L)	MW-04	No	1.442	7.815	3	13	0.05
Molybdenum (mg/L)	MW-05	No	2.004	7.815	3	16	0.05
Molybdenum (mg/L)	MW-10 (bg)	No	2.004	7.815	3	13	0.05
pH (n/a)	MW-01 (bg)	No	1.95	7.815	3	18	0.05
pH (n/a)	MW-02	No	1.95	7.815	3	13	0.05
pH (n/a)	MW-03	No	1.95	7.815	3	13	0.05
pH (n/a)	MW-04	No	1.95	7.815	3	13	0.05
pH (n/a)	MW-05	Yes	8.69	7.815	3	16	0.05
pH (n/a)	MW-10 (bg)	No	8.69	7.815	3	13	0.05
Selenium (mg/L)	MW-01 (bg)	No	2.6	7.815	3	18	0.05
Selenium (mg/L)	MW-02	No	2.6	7.815	3	13	0.05
Selenium (mg/L)	MW-03	No	2.6	7.815	3	13	0.05
Selenium (mg/L)	MW-04	No	2.6	7.815	3	13	0.05
Selenium (mg/L)	MW-05	No	0	0	3	16	0.05
Selenium (mg/L)	MW-10 (bg)	No	0	0	3	13	0.05
Sulfate (mg/L)	MW-01 (bg)	No	3	7.815	3	18	0.05
Sulfate (mg/L)	MW-02	No	3	7.815	3	13	0.05
Sulfate (mg/L)	MW-03	No	3	7.815	3	13	0.05
Sulfate (mg/L)	MW-04	No	3	7.815	3	13	0.05

Seasonality FAB

	Powerton Generating Station	Client: NRG	Data: Po	werton FAB	Printed 8/12/2021, 11:37 AM			
<u>Constituent</u>	Well		<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Sulfate (mg/L)	MW-05		No	2.399	7.815	3	16	0.05
Sulfate (mg/L)	MW-10 (bg)		No	2.399	7.815	3	13	0.05
Thallium (mg/L)	MW-01 (bg)		No	0	0	3	18	0.05
Thallium (mg/L)	MW-05		No	0	0	3	14	0.05
Total Dissolved Solids (mg/L)	MW-01 (bg)		No	4.39	7.815	3	18	0.05
Total Dissolved Solids (mg/L)	MW-02		No	4.39	7.815	3	13	0.05
Total Dissolved Solids (mg/L)	MW-03		No	4.39	7.815	3	13	0.05
Total Dissolved Solids (mg/L)	MW-04		No	4.39	7.815	3	13	0.05
Total Dissolved Solids (mg/L)	MW-05		No	2.629	7.815	3	16	0.05
Total Dissolved Solids (mg/L)	MW-10 (bg)		No	2.629	7.815	3	13	0.05

Powerton ABB ASB Trend Test

<u>Constituent</u>	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-01 (bg)	0	0	58	No	17	100	n/a	n/a	0.02	NP (NDs)
Antimony (mg/L)	MW-09 (bg)	0	0	48	No	15	100	n/a	n/a	0.02	NP (NDs)
Antimony (mg/L)	MW-19 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Arsenic (mg/L)	MW-01 (bg)	0	-51	-68	No	19	57.89	n/a	n/a	0.02	NP (Nor
Arsenic (mg/L)	MW-09 (bg)	0	-3	-58	No	17	52.94	n/a	n/a	0.02	NP (Nor
Arsenic (mg/L)	MW-19 (bg)	0	6	39	No	13	92.31	n/a	n/a	0.02	NP (NDs)
Barium (mg/L)	MW-01 (bg)	-0.00	-27	-68	No	19	0	n/a	n/a	0.02	NP (Nor
Barium (mg/L)	MW-09 (bg)	0.001422	1.341	2.249	No	17	0	Yes	no	0.02	Param.
Barium (mg/L)	MW-19 (bg)	-0.00	-27	-39	No	13	0	n/a	n/a	0.02	NP (Nor
Beryllium (mg/L)	MW-01 (bg)	0	0	58	No	17	100	n/a	n/a	0.02	NP (NDs)
Beryllium (mg/L)	MW-09 (bg)	0	0	48	No	15	100	n/a	n/a	0.02	NP (NDs)
Beryllium (mg/L)	MW-19 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Boron (mg/L)	MW-01 (bg)	-0.00	-0.00	2.224	No	19	0	Yes	square	0.02	Param.
Boron (mg/L)	MW-09 (bg)	-0.06533	-0.4427	2.249	No	17	0	Yes	no	0.02	Param.
Boron (mg/L)	MW-19 (bg)	-0.305	-2.218	2.328	No	13	0	Yes	no	0.02	Param.
Cadmium (mg/L)	MW-01 (bg)	0	10	68	No	19	94.74	n/a	n/a	0.02	NP (NDs)
Cadmium (mg/L)	MW-09 (bg)	0	0	58	No	17	100	n/a	n/a	0.02	NP (NDs)
Cadmium (mg/L)	MW-19 (bg)	0	0	39	No	13	100	n/a	n/a	0.02	NP (NDs)
Calcium (mg/L)	MW-01 (bg)	-1.248	-0.6301	2.224	No	19	0	Yes	no	0.02	Param.
Calcium (mg/L)	MW-09 (bg)	-0.5163	-0.425	2.249	No	17	0	Yes	no	0.02	Param.
Calcium (mg/L)	MW-19 (bg)	-1.775	-0.5807	2.328	No	13	0	Yes	no	0.02	Param.
Chloride (mg/L)	MW-01 (bg)	1.199	1.131	2.224	No	19	0	Yes	no	0.02	Param.
Chloride (mg/L)	MW-09 (bg)	-4272480	-1.71	2.249	No	17	0	Yes	x^5	0.02	Param.
Chloride (mg/L)	MW-19 (bg)	-0.3565	-9	-39	No	13	0	n/a	n/a	0.02	NP (Nor
Chromium (mg/L)	MW-01 (bg)	0	-3	-68	No	19	89.47	n/a	n/a	0.02	NP (NDs)
Chromium (mg/L)	MW-09 (bg)	0	0	48	No	15	100	n/a	n/a	0.02	NP (NDs)
Chromium (mg/L)	MW-19 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	MW-01 (bg)	0	-38	-73	No	20	65	n/a	n/a	0.02	NP (Nor
Cobalt (mg/L)	MW-09 (bg)	0	-3	-58	No	17	88.24	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	MW-19 (bg)	0	-8	-39	No	13	84.62	n/a	n/a	0.02	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-01 (ba)	-0.01553	-0.643	2.224	No	19	52.63	Yes	no	0.02	Param.
Combined Radium 226 + 228 (pCi/L)	MW-09 (bg)	0.01962	30	58	No	17	82.35	n/a	n/a	0.02	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-19 (ba)	0.00533	0.2342	2.328	No	13	53.85	Yes	square	0.02	Param.
Fluoride (mg/L)	MW-01 (bg)	0.004035	0.7664	2.224	No	19	0	Yes	no	0.02	Param.
Fluoride (mg/L)	MW-09 (bg)	0.008285	2.194	2.249	No	17	0	Yes	no	0.02	Param.
Fluoride (mg/L)	MW-19 (bg)	0.009155	2.773	2.328	Yes	13	0	Yes	no	0.02	Param.
Lead (mg/L)	MW-01 (bg)	-0.00	-46	-73	No	20	45	n/a	n/a	0.02	NP (Nor
Lead (mg/L)	MW-09 (bg)	0	10	58	No	17	94 12	n/a	n/a	0.02	NP (NDs)
Lead (mg/L)	MW-19 (bg)	0	-26	-39	No	13	69.23	n/a	n/a	0.02	NP (Nor
Lithium (mg/L)	MW-01 (bg)	0	10	68	No	19	94 74	n/a	n/a	0.02	NP (NDs)
Lithium (mg/L)	MW-09 (bg)	0	0	58	No	17	100	n/a	n/a	0.02	
Lithium (mg/L)	MW-00 (bg)	0	0	39	No	13	100	n/a n/a	n/a n/a	0.02	
Mercury (mg/L)	MW-13 (bg)	0	0	68 68	No	10	100	n/a n/a	n/a n/a	0.02	
Mercury (mg/L)	MW-01 (bg)	0	0	58	No	17	0/ 12	n/a	n/a	0.02	
Mercury (mg/L)	MW-19 (bg)	0	- 0	30	No	13	100	n/a	n/a	0.02	
Molybdenum (mg/L)	MW-13 (Dg)	0	17	68	No	10	57 80	n/a	n/a	0.02	ND (Nor
	MW 00 (bg)	0.00	5 319	2 240	Voc	17	01.09	Voc	equare	0.02	Daram
Molybdenum (mg/L)	MW_{-10} (bg)	0.002316	1 67/	- 2.24 3 2.328	No	13	0	Voc	square	0.02	Falalli. Daram
norybaerian (mg/L)	M_{-01} (bg)	0.002310	0.7533	2.320	No	10	0	Vec	no	0.02	r aralli. Daram
pH (n/a)	MM_{-00} (bg)	0.02140	0.7000	2.224	No	17	0	Vec	no	0.02	r⁻aralii. Daram
pri(ii/a)	1919 CO- (DQ)	0.009009	0.2300	2.243	INU	17	U	100	10	0.02	r⁻aralii.

Powerton ABB ASB Trend Test

Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
pH (n/a)	MW-19 (bg)	-0.04872	-0.899	2.328	No	13	0	Yes	no	0.02	Param.
Selenium (mg/L)	MW-01 (bg)	0	-16	-68	No	19	94.74	n/a	n/a	0.02	NP (NDs)
Selenium (mg/L)	MW-09 (bg)	0	-6	-58	No	17	47.06	n/a	n/a	0.02	NP (Nor
Selenium (mg/L)	MW-19 (bg)	-0.00	-2.557	-2.328	Yes	13	38.46	Yes	no	0.02	Param.
Sulfate (mg/L)	MW-01 (bg)	-4.185	-2.092	2.224	No	19	0	Yes	no	0.02	Param.
Sulfate (mg/L)	MW-09 (bg)	-3.501	-0.6088	2.249	No	17	0	Yes	no	0.02	Param.
Sulfate (mg/L)	MW-19 (bg)	-15.6	-3.145	-2.328	Yes	13	0	Yes	no	0.02	Param.
Thallium (mg/L)	MW-01 (bg)	0	0	68	No	19	100	n/a	n/a	0.02	NP (NDs)
Thallium (mg/L)	MW-09 (bg)	0	0	58	No	17	100	n/a	n/a	0.02	NP (NDs)
Thallium (mg/L)	MW-19 (bg)	0	0	39	No	13	100	n/a	n/a	0.02	NP (NDs)
Total Dissolved Solids (mg/L)	MW-01 (bg)	-3.804	-0.3814	2.224	No	19	0	Yes	no	0.02	Param.
Total Dissolved Solids (mg/L)	MW-09 (bg)	-27.14	-1.743	2.249	No	17	0	Yes	no	0.02	Param.
Total Dissolved Solids (mg/L)	MW-19 (bg)	-46.02	-2.495	-2.328	Yes	13	0	Yes	no	0.02	Param.

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Antimony Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-09 (bg) 0.02 n = 15 Slope = 0 units per year Mann-Kendall 0.016 statistic = 0 critical = 48 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.012 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.008 0.004 Λ 11/18/15 12/24/16 1/31/18 3/9/19 4/15/20 5/23/21

Constituent: Antimony Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Antimony Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-19 (bg) 0.006 n = 13 Slope = 0 units per year 0.0048 Mann-Kendall statistic = 6 critical = 39 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.0036 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.0024 . 0.0012 Λ 11/18/16 10/12/17 9/5/18 7/31/19 6/23/20 5/18/21

Constituent: Arsenic Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton
Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-01 (bg) 0.005 n = 17 Slope = 0 units per year 0.004 Mann-Kendall statistic = 0 critical = 58 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.003 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.002 0.001 Λ 11/16/15 12/22/16 1/29/18 3/7/19 4/13/20 5/21/21

Constituent: Beryllium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas¹¹⁴ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Beryllium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Linear Regression and 95% Confidence Band

Constituent: Boron Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

n = 17 Slope = -0.06533 units/year.

alpha = 0.02 t = -0.4427 critical = 2.249

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.916, critical = 0.892.

Constituent: Boron Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Boron Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Cadmium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas¹⁹ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-19 (bg) 0.003 n = 13 Slope = 0 units per year 0.002 Mann-Kendall statistic = 0 critical = 39 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.002 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.001 0.001 Λ 11/18/16 10/12/17 9/5/18 7/31/19 6/23/20 5/18/21

Constituent: Cadmium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Calcium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

n = 17 Slope = -0.5163 units/year.

alpha = 0.02 t = -0.425 critical = 2.249

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.9245, critical = 0.892.

Constituent: Calcium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Calcium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

mg/L

Linear Regression and 95% Confidence Band

Constituent: Chloride Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Chloride Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Chloride Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Slope = 1.199 units/year. alpha = 0.02

critical = 2.224 No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.9447, critical

Constituent: Chromium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band

Constituent: Chromium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas¹¹⁴ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Cobalt Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-19 (bg) 0.006 n = 13 Slope = 0 units per year Mann-Kendall 0.0048 statistic = -8 critical = -39 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.0036 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.0024 0.0012 Λ 11/18/16 10/12/17 9/5/18 7/31/19 6/23/20 5/18/21

Constituent: Cobalt Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Combined Radium 226 + 228 Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Combined Radium 226 + 228 Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Combined Radium 226 + 228 Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Linear Regression and 95% Confidence Band

Constituent: Fluoride Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Fluoride Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Fluoride Analysis Run 8/10/2021 9:38 AM

n = 19 Slope = 0.004035 units/year.

alpha = 0.02 t = 0.7664 critical = 2.224

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.9285, critical = 0.901.

Powerton Generating Station Client: NRG Data: Powerton

Constituent: Lead Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-09 (bg) 0.004 n = 17 Slope = 0 units per year 0.0032 Mann-Kendall statistic = 10 critical = 58 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.0024 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.0016 0.0008 Λ 11/18/15 12/24/16 1/31/18 3/9/19 4/15/20 5/23/21

Constituent: Lead Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas¹¹⁴ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Lead Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Lithium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band

Constituent: Lithium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Mercury Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Mercury Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Mercury Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-01 (bg) 0.01 n = 19 Slope = 0 units per year 0.008 Mann-Kendall statistic = 17 critical = 68 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.006 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because the Shapiro Wilk 0.004 normality test showed the residuals to be non-normal at the 0.05 alpha level, calculated = 0.711, critical 0.002 = 0.901. Λ 11/16/15 12/22/16 1/29/18 3/7/19 4/13/20 5/21/21

Constituent: Molybdenum Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Molybdenum Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Molybdenum Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

n/a

Linear Regression and 95% Confidence Band

Constituent: pH Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: pH Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: pH Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Selenium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

units/year. alpha = 0.02 t = 0.2965 critical = 2.249

Slope = 0.009659

n = 17

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.958, critical = 0.892.

Constituent: Selenium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas^w v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Sulfate Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

n = 17 Slope = -3.501 units/year.

alpha = 0.02 t = -0.6088 critical = 2.249

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.927, critical = 0.892.

Constituent: Sulfate Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Sulfate Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas $^{\mbox{\tiny W}}$ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-01 (bg)

Constituent: Thallium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Total Dissolved Solids Analysis Run 8/10/2021 9:38 AM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

mg/L

Linear Regression and 95% Confidence Band

Constituent: Total Dissolved Solids Analysis Run 8/10/2021 9:38 AM

Powerton Generating Station Client: NRG Data: Powerton

n = 17 Slope = -27.14 units/year.

alpha = 0.02 t = -1.743 critical = 2.249

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.9759, critical = 0.892.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

 Constituent: Total Dissolved Solids
 Analysis Run 8/10/2021 9:38 AM

 Powerton Generating Station
 Client: NRG
 Data: Powerton

Powerton FAB Trend Test

Powerton Generating Station Client: NRG Data: Powerton FAB Printed 8/12/2021, 11:52 AM

Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-01 (bg)	0	0	53	No	16	100	n/a	n/a	0.02	NP (NDs)
Antimony (mg/L)	MW-10 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Arsenic (mg/L)	MW-01 (bg)	-0.00	-2.343	-2.235	Yes	18	61.11	Yes	cube root	0.02	Param.
Arsenic (mg/L)	MW-10 (bg)	-0.00	-2	-39	No	13	7.692	n/a	n/a	0.02	NP (Nor
Barium (mg/L)	MW-01 (bg)	-0.00	-1.098	2.235	No	18	0	Yes	square	0.02	Param.
Barium (mg/L)	MW-10 (bg)	0.01021	16	39	No	13	0	n/a	n/a	0.02	NP (Nor
Beryllium (mg/L)	MW-01 (bg)	0	0	53	No	16	100	n/a	n/a	0.02	NP (NDs)
Beryllium (mg/L)	MW-10 (bg)	0	2	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Boron (mg/L)	MW-01 (bg)	-0.00692	-0.2524	2.235	No	18	0	Yes	square	0.02	Param.
Boron (mg/L)	MW-10 (bg)	0.3052	2.62	2.328	Yes	13	0	Yes	no	0.02	Param.
Cadmium (mg/L)	MW-01 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Cadmium (mg/L)	MW-10 (bg)	0	3	31	No	11	81.82	n/a	n/a	0.02	NP (NDs)
Calcium (mg/L)	MW-01 (bg)	-1.226	-0.5871	2.235	No	18	0	Yes	no	0.02	Param.
Calcium (mg/L)	MW-10 (bg)	0.04912	0.8838	2.328	No	13	0	Yes	cube root	0.02	Param.
Chloride (mg/L)	MW-01 (bg)	1.164	1.044	2.235	No	18	0	Yes	no	0.02	Param.
Chloride (mg/L)	MW-10 (bg)	-0.8939	-0.8886	2.328	No	13	0	Yes	no	0.02	Param.
Chromium (mg/L)	MW-01 (bg)	0	-13	-63	No	18	94.44	n/a	n/a	0.02	NP (NDs)
Chromium (mg/L)	MW-10 (bg)	0	3	39	No	13	76.92	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	MW-01 (bg)	-0.00	-2.017	2.235	No	18	72.22	Yes	no	0.02	Param.
Cobalt (mg/L)	MW-10 (bg)	-0.0169	-0.08084	2.328	No	13	0	Yes	natura	0.02	Param.
Combined Radium 226 + 228 (pCi/L)	MW-01 (bg)	-0.02977	-1.285	2.235	No	18	55.56	Yes	no	0.02	Param.
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	0.08318	0.8868	2.328	No	13	7.692	Yes	square	0.02	Param.
Fluoride (mg/L)	MW-01 (bg)	0.004756	0.8497	2.235	No	18	0	Yes	no	0.02	Param.
Fluoride (mg/L)	MW-10 (bg)	0.01859	6.036	2.328	Yes	13	0	Yes	no	0.02	Param.
Lead (mg/L)	MW-01 (bg)	-0.00	-2.129	2.235	No	18	50	Yes	no	0.02	Param.
Lead (mg/L)	MW-10 (bg)	-0.00	-0.01643	2.328	No	13	7.692	Yes	natura	0.02	Param.
Lithium (mg/L)	MW-01 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Lithium (mg/L)	MW-10 (bg)	0	1	35	No	12	83.33	n/a	n/a	0.02	NP (NDs)
Mercury (mg/L)	MW-01 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Mercury (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Molybdenum (mg/L)	MW-01 (bg)	0	5	63	No	18	61.11	n/a	n/a	0.02	NP (Nor
Molybdenum (mg/L)	MW-10 (bg)	0	0	39	No	13	92.31	n/a	n/a	0.02	NP (NDs)
pH (n/a)	MW-01 (bg)	0.01803	0.487	2.235	No	18	0	Yes	no	0.02	Param.
pH (n/a)	MW-10 (bg)	-0.00	-3	-39	No	13	0	n/a	n/a	0.02	NP (Nor
Selenium (mg/L)	MW-01 (bg)	0	-15	-63	No	18	94.44	n/a	n/a	0.02	NP (NDs)
Selenium (mg/L)	MW-10 (bg)	0.000	0.3664	2.328	No	13	0	Yes	no	0.02	Param.
Sulfate (mg/L)	MW-01 (bg)	-4.134	-1.958	2.235	No	18	0	Yes	no	0.02	Param.
Sulfate (mg/L)	MW-10 (bg)	0.09615	0.02609	2.328	No	13	0	Yes	no	0.02	Param.
Thallium (mg/L)	MW-01 (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Thallium (mg/L)	MW-10 (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Total Dissolved Solids (mg/L)	MW-01 (bg)	-0.4106	-0.0418	2.235	No	18	0	Yes	no	0.02	Param.
Total Dissolved Solids (mg/L)	MW-10 (bg)	3.701	0.3647	2.328	No	13	0	Yes	no	0.02	Param.

Constituent: Antimony Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-10 (bg) 0.02 n = 11 Slope = 0units per year 0.016 Mann-Kendall statistic = 0 critical = 31 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.012 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.008 0.004 Λ 6/22/17 4/3/18 1/13/19 10/25/19 8/5/20 5/18/21

Constituent: Antimony Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Arsenic Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas¹¹⁴ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Beryllium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Slope = 0.3052 units/year. alpha = 0.02 t = 2.62

n = 13

critical = 2.328

Significant increasing trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.9283, critical = 0.866.

Constituent: Boron Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Constituent: Boron Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Linear Regression and 95% Confidence Band Linear Regression and 95% Confidence Band MW-01 (bg) MW-10 (bg) 200 200 n = 18 Slope = -1.226 units/year. alpha = 0.02 160 160 t = -0.5871 critical = 2.235 No significant trend. • Normality test on residuals: Shapiro Wilk @alpha 120 120 = 0.05, calculated = 0.9347, critical • • mg/L mg/L ٠ = 0.897. • 80 80 40 40 0 0 11/16/15 12/25/16 2/4/18 3/16/19 4/25/20 6/5/21 6/22/17 4/5/18 1/17/19 10/31/19 8/13/20 Constituent: Calcium Analysis Run 8/12/2021 11:50 AM

n = 13 Slope = 0.04912 cube root units/year

alpha = 0.02 t = 0.8838critical = 2.328 No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.8752 after cube root transformation, critical = 0.866.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Chloride Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Calcium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Chloride Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Chromium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band MW-10 (bg) 0.07 n = 13 Slope = 0 units per year 0.056 Mann-Kendall statistic = 3 critical = 39 Trend not sig-nificant at 98% confidence level (α = 0.01 per 0.042 tail). Sen's Slope/Mannmg/L Kendall used in lieu of Linear Regression because censored data exceeded 75% 0.028 • 0.014 ٠ Λ 6/22/17 4/3/18 1/13/19 10/25/19 8/5/20 5/18/21

Constituent: Chromium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Cobalt Analysis Run 8/12/2021 11:50 AM

Powerton Generating Station Client: NRG Data: Powerton FAB

n = 13 Slope = -0.0169 natural log units/year

alpha = 0.02 t = -0.08084 critical = 2.328

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.8857 after natural log transformation, critical = 0.866.

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Linear Regression and 95% Confidence Band

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Fluoride Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Fluoride Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Lead Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Linear Regression and 95% Confidence Band

alpha = 0.02

Shapiro Wilk @alpha

= 0.8903 after natural

Constituent: Lead Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Lithium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Mercury Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Sen's Slope and 95% Confidence Band

Constituent: Mercury Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Molybdenum Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Molybdenum Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: pH Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Sen's Slope and 95% Confidence Band

Constituent: pH Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Selenium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Sulfate Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

mg/L

Linear Regression and 95% Confidence Band

n = 13 Slope = 0.09615 units/year.

alpha = 0.02 t = 0.02609 critical = 2.328

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.927, critical = 0.866.

Constituent: Sulfate Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas¹¹⁴ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Constituent: Thallium Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

mg/L

Linear Regression and 95% Confidence Band

Slope = 3.701 units/year.

alpha = 0.02 t = 0.3647 critical = 2.328

No significant trend.

Normality test on residuals: Shapiro Wilk @alpha = 0.05, calculated = 0.8663, critical = 0.866.

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 11:50 AM Powerton Generating Station Client: NRG Data: Powerton FAB

Constituent: Arsenic Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 17, al	pha = 0.05)			
	no	0.4462	0.892	No
	square root	0.5854	0.892	No
	square	0.3068	0.892	No
	cube root	0.6329	0.892	No
	cube	0.2729	0.892	No
	natural log	0.7088	0.892	No
	x^4	0.2649	0.892	No
	x^5	0.2629	0.892	No
	х^б	0.2624	0.892	No
MW-09 (bg) (n = 17, al	pha = 0.05)			
	no	0.6283	0.892	No
	square root	0.6473	0.892	No
	square	0.5802	0.892	No
	cube root	0.6532	0.892	No
	cube	0.5189	0.892	No
	natural log	0.6648	0.892	No
	x^4	0.4571	0.892	No
	x^5	0.4053	0.892	No
	х^б	0.3658	0.892	No
IW-19 (bg) (n = 13, al	pha = 0.05)			
	no	0.3111	0.866	No
	square root	0.3111	0.866	No
	square	0.3111	0.866	No
	cube root	0.3111	0.866	No
	cube	0.3111	0.866	No
	natural log	0.3111	0.866	No
	x^4	0.3111	0.866	No
	x^5	0.3111	0.866	No
	х^б	0.3111	0.866	No
Pooled Background (bg)	(n = 47, alpha =	0.05)		
	no	0.3354	0.946	No
	square root	0.4843	0.946	No
	square	0.1872	0.946	No
	cube root	0.5305	0.946	No
	cube	0.1564	0.946	No
	natural log	0.5972	0.946	No
	x^4	0.15	0.946	No
	x^5	0.1486	0.946	No
	x^6	0 1483	0 946	No

Sanitas™ v.9.6.10 S

to KPRG and

Constituent: Barium Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 17, a	lpha = 0.05)			
	no	0.83	0.892	No
	square root	0.8727	0.892	No
	square	0.738	0.892	No
	cube root	0.8859	0.892	No
	cube	0.6509	0.892	No
	natural log	0.91	0.892	Yes
	x^4	0.5783	0.892	No
	x^5	0.5219	0.892	No
	x^6	0.4798	0.892	No
MW-09 (bg) (n = 17, a	lpha = 0.05)			
	no	0.9437	0.892	Yes
	square root	0.9654	0.892	Yes
	square	0.8809	0.892	No
	cube root	0.9709	0.892	Yes
	cube	0.8008	0.892	No
	natural log	0.9795	0.892	Yes
	x^4	0.7152	0.892	No
	x^5	0.6337	0.892	No
	x^6	0.5621	0.892	No
MW-19 (bg) (n = 13, a	lpha = 0.05)			
	no	0.9654	0.866	Yes
	square root	0.9668	0.866	Yes
	square	0.9509	0.866	Yes
	cube root	0.9664	0.866	Yes
	cube	0.9223	0.866	Yes
	natural log	0.9642	0.866	Yes
	x^4	0.8829	0.866	Yes
	x^5	0.8368	0.866	No
	x^6	0.7875	0.866	No
Pooled Background (bg) (n = 47, alpha =	0.05)		
	no	0.9242	0.946	No
	square root	0.9447	0.946	No
	square	0.8671	0.946	No
	cube root	0.9498	0.946	Yes
	cube	0.8009	0.946	No
	natural log	0.957	0.946	Yes
	x^4	0.7346	0.946	No
	x^5	0.6719	0.946	No
	√^ 6	0 6138	0 946	No

v.9.6.10

Inc. UG

Constituent: Molybdenum Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 17	, alpha = 0.05)			
	no	0.6121	0.892	No
	square root	0.6406	0.892	No
	square	0.5533	0.892	No
	cube root	0.6498	0.892	No
	cube	0.4969	0.892	No
	natural log	0.6675	0.892	No
	x^4	0.4471	0.892	No
	x^5	0.4058	0.892	No
	x^6	0.3729	0.892	No
MW-09 (bg) (n = 17	, alpha = 0.05)			
	no	0.8912	0.892	No
	square root	0.9179	0.892	Yes
	square	0.8207	0.892	No
	cube root	0.9253	0.892	Yes
	cube	0.7366	0.892	No
	natural log	0.9379	0.892	Yes
	x^4	0.6508	0.892	No
	x^5	0.5725	0.892	No
	x^6	0.5062	0.892	No
MW-19 (bg) (n = 13	, alpha = 0.05)			
	no	0.9817	0.866	Yes
	square root	0.9742	0.866	Yes
	square	0.9753	0.866	Yes
	cube root	0.97	0.866	Yes
	cube	0.9459	0.866	Yes
	natural log	0.959	0.866	Yes
	x^4	0.9011	0.866	Yes
	x^5	0.8478	0.866	No
	x^6	0.7914	0.866	No
Pooled Background	(bg) (n = 47, alpha =	0.05)		
	no	0.8579	0.946	No
	square root	0.8165	0.946	No
	square	0.8772	0.946	No
	cube root	0.8004	0.946	No
	cube	0.8174	0.946	No
	natural log	0.768	0.946	No
	x^4	0.7292	0.946	No
	x^5	0.6429	0.946	No
	x^6	0.568	0.946	No

Sanitas[™] v.9.6.10 Sc

ed to KPRG and A

Constituent: Selenium Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n =	17, alpha = 0.05)			
	no	0.2622	0.892	No
	square root	0.2622	0.892	No
	square	0.2622	0.892	No
	cube root	0.2622	0.892	No
	cube	0.2622	0.892	No
	natural log	0.2622	0.892	No
	x^4	0.2622	0.892	No
	x^5	0.2622	0.892	No
	x^6	0.2622	0.892	No
MW-09 (bg) (n =	17, alpha = 0.05)			
	no	0.7404	0.892	No
	square root	0.7646	0.892	No
	square	0.6553	0.892	No
	cube root	0.7696	0.892	No
	cube	0.5494	0.892	No
	natural log	0.7758	0.892	No
	x^4	0.4581	0.892	No
	x^5	0.3924	0.892	No
	x^6	0.3485	0.892	No
MW-19 (bg) (n =	13, $alpha = 0.05$)			
	no	0.832	0.866	No
	square root	0.847	0.866	No
	square	0.785	0.866	No
	cube root	0.8505	0.866	No
	cube	0.7262	0.866	No
	natural log	0.855	0.866	No
	x^4	0.6688	0.866	No
	x^5	0.6195	0.866	No
	x^6	0.5799	0.866	No
Pooled Backgroun	nd (bg) (n = 47 , alpha =	0.05)		
	no	0.6219	0.946	No
	square root	0.6509	0.946	No
	square	0.5291	0.946	No
	cube root	0.6578	0.946	No
	cube	0.4161	0.946	No
	natural log	0.6683	0.946	No
	x^4	0.3213	0.946	No
	x^5	0.2569	0.946	No
	x^6	0 2167	0 946	No

Sanitas™ v.9.6.10 S

s, Inc. UG

to KPRG and

Constituent: Sulfate Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 17, a)	lpha = 0.05)			
	no	0.9274	0.892	Yes
	square root	0.9662	0.892	Yes
	square	0.8018	0.892	No
	cube root	0.9743	0.892	Yes
	cube	0.6581	0.892	No
	natural log	0.9824	0.892	Yes
	x^4	0.5357	0.892	No
	x^5	0.4458	0.892	No
	x^6	0.3843	0.892	No
MW-09 (bg) (n = 17, a)	lpha = 0.05)			
	no	0.9361	0.892	Yes
	square root	0.9278	0.892	Yes
	square	0.93	0.892	Yes
	cube root	0.9226	0.892	Yes
	cube	0.9091	0.892	Yes
	natural log	0.9084	0.892	Yes
	x^4	0.8848	0.892	No
	x^5	0.8613	0.892	No
	x^6	0.8397	0.892	No
MW-19 (bg) (n = 13, a)	lpha = 0.05)			
	no	0.9049	0.866	Yes
	square root	0.8837	0.866	Yes
	square	0.9315	0.866	Yes
	cube root	0.8753	0.866	Yes
	cube	0.9422	0.866	Yes
	natural log	0.8564	0.866	No
	x^4	0.9421	0.866	Yes
	x^5	0.9343	0.866	Yes
	x^6	0.9206	0.866	Yes
Pooled Background (bg) (n = 47, alpha =	0.05)		
	no	0.8903	0.946	No
	square root	0.8965	0.946	No
	square	0.8603	0.946	No
	cube root	0.8964	0.946	No
	cube	0.8232	0.946	No
	natural log	0.8921	0.946	No
	x^4	0.7884	0.946	No
	x^5	0.7581	0.946	No
	w^6	0 7217	0 946	No

v.9.6.10

Inc. UG

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 3:01 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 17, al	pha = 0.05)			
	no	0.9296	0.892	Yes
	square root	0.9426	0.892	Yes
	square	0.8968	0.892	Yes
	cube root	0.9464	0.892	Yes
	cube	0.8568	0.892	No
	natural log	0.953	0.892	Yes
	x^4	0.8126	0.892	No
	x^5	0.7666	0.892	No
	х^б	0.7212	0.892	No
4W-09 (bg) (n = 17, al	pha = 0.05)			
	no	0.9497	0.892	Yes
	square root	0.9461	0.892	Yes
	square	0.9474	0.892	Yes
	cube root	0.9442	0.892	Yes
	cube	0.9335	0.892	Yes
	natural log	0.9393	0.892	Yes
	x^4	0.91	0.892	Yes
	x^5	0.8796	0.892	No
	x^6	0.8447	0.892	No
4W-19 (bg) (n = 13, al	pha = 0.05)			
	no	0.8879	0.866	Yes
	square root	0.8598	0.866	No
	square	0.931	0.866	Yes
	cube root	0.8497	0.866	No
	cube	0.9514	0.866	Yes
	natural log	0.8288	0.866	No
	x^4	0.9476	0.866	Yes
	x^5	0.9229	0.866	Yes
	x^6	0.8834	0.866	Yes
Pooled Background (bg)	(n = 47, alpha =	0.05)		
	no	0.9441	0.946	No
	square root	0.9457	0.946	No
	square	0.9327	0.946	No
	cube root	0.9457	0.946	No
	cube	0.9107	0.946	No
	natural log	0.9447	0.946	No
	x^4	0.879	0.946	No
	x^5	0.839	0.946	No
	x^6	0 7929	0 946	No

Sanitas™ v.9.6.10 S

ed to KPRG and

Constituent: Arsenic Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 18,	alpha = 0.05)			
	no	0.579	0.897	No
	square root	0.6302	0.897	No
	square	0.4685	0.897	No
	cube root	0.645	0.897	No
	cube	0.3833	0.897	No
	natural log	0.6698	0.897	No
	x^4	0.3302	0.897	No
	x^5	0.2989	0.897	No
	x^6	0.2805	0.897	No
4W-10 (bg) (n = 13,	alpha = 0.05)			
	no	0.5495	0.866	No
	square root	0.6674	0.866	No
	square	0.4205	0.866	No
	cube root	0.7142	0.866	No
	cube	0.365	0.866	No
	natural log	0.8093	0.866	No
	x^4	0.3382	0.866	No
	x^5	0.3247	0.866	No
	x^6	0.3179	0.866	No
Pooled Background (bg) (n = 31, alpha =	0.05)		
	no	0.4933	0.929	No
	square root	0.6392	0.929	No
	square	0.3041	0.929	No
	cube root	0.6861	0.929	No
	cube	0.233	0.929	No
	natural log	0.7629	0.929	No
	x^4	0.2057	0.929	No
	x^5	0.1941	0.929	No
	x^6	0.1888	0.929	No

Sanitas[™] v.9.6.10 So

ed to KPRG and A

Constituent: Barium Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n =	18, alpha = 0.05)			
	no	0.8659	0.897	No
	square root	0.9058	0.897	Yes
	square	0.7676	0.897	No
	cube root	0.9173	0.897	Yes
	cube	0.6604	0.897	No
	natural log	0.9373	0.897	Yes
	x^4	0.5612	0.897	No
	x^5	0.4793	0.897	No
	x^6	0.4162	0.897	No
MW-10 (bg) (n =	13, alpha = 0.05)			
	no	0.6898	0.866	No
	square root	0.7487	0.866	No
	square	0.5807	0.866	No
	cube root	0.7682	0.866	No
	cube	0.495	0.866	No
	natural log	0.8059	0.866	No
	x^4	0.4342	0.866	No
	x^5	0.3932	0.866	No
	x^6	0.3661	0.866	No
Pooled Backgroun	d (bg) (n = 31, alpha =	0.05)		
	no	0.7694	0.929	No
	square root	0.8102	0.929	No
	square	0.5784	0.929	No
	cube root	0.816	0.929	No
	cube	0.3976	0.929	No
	natural log	0.8213	0.929	No
	x^4	0.2991	0.929	No
	x^5	0.2498	0.929	No
	x^6	0.2238	0.929	No

Sanitas™ v.9.6.10 S

to KPRG and

Constituent: Boron Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 1	8, alpha = 0.05)			
	no	0.8254	0.897	No
	square root	0.9095	0.897	Yes
	square	0.6332	0.897	No
	cube root	0.9306	0.897	Yes
	cube	0.4787	0.897	No
	natural log	0.9549	0.897	Yes
	x^4	0.381	0.897	No
	x^5	0.325	0.897	No
	x^6	0.2937	0.897	No
MW-10 (bg) (n = 1	3, alpha = 0.05)			
	no	0.6516	0.866	No
	square root	0.7274	0.866	No
	square	0.5131	0.866	No
	cube root	0.7514	0.866	No
	cube	0.4223	0.866	No
	natural log	0.7958	0.866	No
	x^4	0.3719	0.866	No
	x^5	0.3448	0.866	No
	x^6	0.3301	0.866	No
Pooled Background	(bg) (n = 31, alpha =	0.05)		
	no	0.6786	0.929	No
	square root	0.8599	0.929	No
	square	0.4011	0.929	No
	cube root	0.9106	0.929	No
	cube	0.2804	0.929	No
	natural log	0.9747	0.929	Yes
	x^4	0.2306	0.929	No
	x^5	0.208	0.929	No
	x^6	0.1969	0.929	No

Sanitas™ v.9.6.10 S

to KPRG and

Constituent: Cobalt Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n :	= 18, alpha = 0.05)			
	no	0.5809	0.897	No
	square root	0.5851	0.897	No
	square	0.5673	0.897	No
	cube root	0.5862	0.897	No
	cube	0.5461	0.897	No
	natural log	0.588	0.897	No
	x^4	0.5196	0.897	No
	x^5	0.4907	0.897	No
	x^6	0.4619	0.897	No
MW-10 (bg) (n :	= 13, alpha = 0.05)			
	no	0.6229	0.866	No
	square root	0.7486	0.866	No
	square	0.4693	0.866	No
	cube root	0.7951	0.866	No
	cube	0.3977	0.866	No
	natural log	0.8826	0.866	Yes
	x^4	0.3606	0.866	No
	x^5	0.3398	0.866	No
	x^6	0.3278	0.866	No
Pooled Backgro	und (bg) $(n = 31, alpha =$	0.05)		
	no	0.5027	0.929	No
	square root	0.7259	0.929	No
	square	0.2954	0.929	No
	cube root	0.7905	0.929	No
	cube	0.2385	0.929	No
	natural log	0.8473	0.929	No
	x^4	0.2144	0.929	No
	x^5	0.2015	0.929	No
	x^6	0.1942	0.929	No

Sanitas[™] v.9.6.10 Sc

insed to KPRG and A
Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n =	= 18, alpha = 0.05)			
	no	0.9828	0.897	Yes
	square root	0.9883	0.897	Yes
	square	0.947	0.897	Yes
	cube root	0.988	0.897	Yes
	cube	0.8882	0.897	No
	natural log	0.9842	0.897	Yes
	x^4	0.8182	0.897	No
	x^5	0.746	0.897	No
	x^6	0.6771	0.897	No
MW-10 (bg) (n =	= 13, alpha = 0.05)			
	no	0.8283	0.866	No
	square root	0.9187	0.866	Yes
	square	0.6332	0.866	No
	cube root	0.9396	0.866	Yes
	cube	0.5098	0.866	No
	natural log	0.9618	0.866	Yes
	x^4	0.4417	0.866	No
	x^5	0.4015	0.866	No
	x^6	0.3754	0.866	No
Pooled Backgrou	and (bg) $(n = 31, alpha =$	0.05)		
	no	0.6731	0.929	No
	square root	0.8077	0.929	No
	square	0.4452	0.929	No
	cube root	0.848	0.929	No
	cube	0.3262	0.929	No
	natural log	0.9147	0.929	No
	x^4	0.2704	0.929	No
	x^5	0.2413	0.929	No
	x^6	0.2239	0.929	No

v.9.6.10

UG

Constituent: Fluoride Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n =	= 18, alpha = 0.05)			
	no	0.9349	0.897	Yes
	square root	0.9408	0.897	Yes
	square	0.9032	0.897	Yes
	cube root	0.9412	0.897	Yes
	cube	0.8516	0.897	No
	natural log	0.9395	0.897	Yes
	x^4	0.7905	0.897	No
	x^5	0.7287	0.897	No
	x^6	0.6716	0.897	No
MW-10 (bg) (n =	= 13, alpha = 0.05)			
	no	0.9049	0.866	Yes
	square root	0.9067	0.866	Yes
	square	0.8988	0.866	Yes
	cube root	0.9071	0.866	Yes
	cube	0.889	0.866	Yes
	natural log	0.9077	0.866	Yes
	x^4	0.8756	0.866	Yes
	x^5	0.8586	0.866	No
	x^6	0.8382	0.866	No
Pooled Backgrou	and (bg) $(n = 31, alpha =$	0.05)		
	no	0.959	0.929	Yes
	square root	0.9517	0.929	Yes
	square	0.9539	0.929	Yes
	cube root	0.9477	0.929	Yes
	cube	0.9284	0.929	No
	natural log	0.9374	0.929	Yes
	x^4	0.8909	0.929	No
	x^5	0.8485	0.929	No
	x^6	0.8057	0.929	No

Sanitas[™] v.9.6.10 Sc

ed to KPRG and A

is, Inc. UG

Constituent: Lead Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n	= 18, alpha = 0.05)			
	no	0.6428	0.897	No
	square root	0.6889	0.897	No
	square	0.5722	0.897	No
	cube root	0.7041	0.897	No
	cube	0.5116	0.897	No
	natural log	0.7293	0.897	No
	x^4	0.4515	0.897	No
	x^5	0.3995	0.897	No
	x^6	0.359	0.897	No
MW-10 (bg) (n	= 13, alpha = 0.05)			
	no	0.5589	0.866	No
	square root	0.6956	0.866	No
	square	0.4557	0.866	No
	cube root	0.7595	0.866	No
	cube	0.411	0.866	No
	natural log	0.8897	0.866	Yes
	x^4	0.3789	0.866	No
	x^5	0.3559	0.866	No
	x^6	0.3402	0.866	No
Pooled Backgro	und (bg) (n = 31 , alpha =	0.05)		
	no	0.5255	0.929	No
	square root	0.7179	0.929	No
	square	0.3236	0.929	No
	cube root	0.7793	0.929	No
	cube	0.2579	0.929	No
	natural log	0.8608	0.929	No
	x^4	0.2286	0.929	No
	x^5	0.2122	0.929	No
	x^6	0.202	0.929	No

Sanitas[™] v.9.6.10 Sc

insed to KPRG and A

is, Inc. UG

Constituent: Selenium Analysis Run 8/12/2021 3:41 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n	= 18, alpha = 0.05)			
	no	0.2528	0.897	No
	square root	0.2528	0.897	No
	square	0.2528	0.897	No
	cube root	0.2528	0.897	No
	cube	0.2528	0.897	No
	natural log	0.2528	0.897	No
	x^4	0.2528	0.897	No
	x^5	0.2528	0.897	No
	x^6	0.2528	0.897	No
MW-10 (bg) (n	= 13, alpha $= 0.05$)			
	no	0.9846	0.866	Yes
	square root	0.9837	0.866	Yes
	square	0.9719	0.866	Yes
	cube root	0.9822	0.866	Yes
	cube	0.9426	0.866	Yes
	natural log	0.9777	0.866	Yes
	x^4	0.9018	0.866	Yes
	x^5	0.8551	0.866	No
	x^6	0.8068	0.866	No
Pooled Backgro	(bg) (n = 31, alpha =	0.05)		
	no	0.7556	0.929	No
	square root	0.7573	0.929	No
	square	0.7413	0.929	No
	cube root	0.7571	0.929	No
	cube	0.7118	0.929	No
	natural log	0.7559	0.929	No
	x^4	0.6704	0.929	No
	x^5	0.6226	0.929	No
	х^б	0.5739	0.929	No

4 v.9.6.10 S

Inc. UG

to KPRG and

ANOVA - Powerton ABB ASB UG Wells All Data

		Powerton Gene	erating Station	Client:	NRG Data	a: Powerton Printed	I 8/10/2021, 9:04 AM		
Constituent	Well	Calc.	Crit.	<u>Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (normality)
Barium (mg/L)	n/a	n/a	n/a	n/a	n/a	x^(1/3)	Yes	0.05	Param.
Boron (mg/L)	n/a	n/a	n/a	n/a	n/a	x^(1/3)	Yes	0.05	Param.
Cadmium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Calcium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Chloride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)
Chromium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Cobalt (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Lead (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Lithium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Mercury (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Molybdenum (mg/L)	n/a	n/a	n/a	n/a	n/a	ln(x)	Yes	0.05	Param.
pH (n/a)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Selenium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Sulfate (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	Yes	0.05	Param.
Total Dissolved Solids (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.

Constituent: Arsenic Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 5.642

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.069 Adjusted Kruskal-Wallis statistic (H') = 5.642

Constituent: Barium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after cube root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 53.55

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed after cube root transformation. Alpha = 0.01, calculated = 0.9325, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 0.5837, tabulated = 3.206.

Constituent: Boron Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after cube root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 179.4

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed after cube root transformation. Alpha = 0.01, calculated = 0.9492, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 1.023, tabulated = 3.206.

Constituent: Cadmium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.579

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.09474 Adjusted Kruskal-Wallis statistic (H') = 1.579

Constituent: Calcium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 8.733

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9529, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 1.684, tabulated = 3.206.

Constituent: Chloride Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 27.75

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 10 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 27.52

Adjusted Kruskal-Wallis statistic (H') = 27.75

Constituent: Chromium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 2.799

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.357 Adjusted Kruskal-Wallis statistic (H') = 2.799

Constituent: Cobalt Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 5.672

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 2.768 Adjusted Kruskal-Wallis statistic (H') = 5.672

Constituent: Combined Radium 226 + 228 Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 4.311

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9598, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 0.6873, tabulated = 3.206.

Constituent: Fluoride Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.808

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9717, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 1.034, tabulated = 3.206.

Constituent: Lead Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 11.82

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 8.101

Adjusted Kruskal-Wallis statistic (H') = 11.82

Constituent: Lithium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.579

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.09474 Adjusted Kruskal-Wallis statistic (H') = 1.579

Constituent: Mercury Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.882

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.1129 Adjusted Kruskal-Wallis statistic (H') = 1.882

Constituent: Molybdenum Analysis Run 8/10/2021 9:04 AM Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after natural log transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 493.3

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.01, calculated = 0.947, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 0.5329, tabulated = 3.206.

Constituent: pH Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 1.896

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9518, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 0.3074, tabulated = 3.206.

Constituent: Selenium Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 12.3

Tabulated Chi-Squared value = 5.991 with 2 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 8.873

Adjusted Kruskal-Wallis statistic (H') = 12.3

Constituent: Sulfate Analysis Run 8/10/2021 9:04 AM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 64.91

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9657, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 2.905, tabulated = 3.206.

Constituent: Total Dissolved Solids Analysis Run 8/10/2021 9:04 AM Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 8.632

Tabulated F statistic = 3.206 with 2 and 46 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	169251	2	84626	8.632
Error Within Groups	450969	46	9804	
Total	620220	48		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9653, critical = 0.929. Levene's Equality of Variance test passed. Calculated = 2.361, tabulated = 3.206.

ANOVA ABBASB MW-1 & 9 All data

		Powerton Gene	erating Station	Client:	NRG Data	a: Powerton Printed	8/12/2021, 12:56 PM		
Constituent	Well	<u>Calc.</u>	Crit.	<u>Sig.</u>	<u>Alpha</u>	<u>Transform</u>	ANOVA Sig.	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (normality)
Barium (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	Yes	0.05	Param.
Boron (mg/L)	n/a	n/a	n/a	n/a	n/a	x^(1/3)	Yes	0.05	Param.
Cadmium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Calcium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Chloride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)
Chromium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Cobalt (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)
Combined Radium 226 + 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Lead (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Lithium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Mercury (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Molybdenum (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
pH (n/a)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Selenium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Sulfate (mg/L)	n/a	n/a	n/a	n/a	n/a	x^(1/3)	Yes	0.05	Param.
Total Dissolved Solids (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)

Constituent: Arsenic Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.2355

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.2005 Adjusted Kruskal-Wallis statistic (H') = 0.2355

Constituent: Barium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 21.79

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9109, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 1.33, tabulated = 4.152.

Constituent: Boron Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after cube root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 231.2

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed after cube root transformation. Alpha = 0.01, calculated = 0.9417, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 0.3902, tabulated = 4.152.

Constituent: Cadmium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.08571

Adjusted Kruskal-Wallis statistic (H') = 1

Constituent: Calcium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 17.1

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9506, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 4.137, tabulated = 4.152.

Constituent: Chloride Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 22.8

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 7 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 22.59 Adjusted Kruskal-Wallis statistic (H') = 22.8

Constituent: Chromium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.822

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.3209

Adjusted Kruskal-Wallis statistic (H') = 1.822

Constituent: Cobalt Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 3.99

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 2.355 Adjusted Kruskal-Wallis statistic (H') = 3.99

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 8.547

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9704, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 1.213, tabulated = 4.152.

Constituent: Fluoride Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 1.187

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9658, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 0.07263, tabulated = 4.152.

Constituent: Lead Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 10.28

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 6.972

Adjusted Kruskal-Wallis statistic (H') = 10.28

Constituent: Lithium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.08571

Adjusted Kruskal-Wallis statistic (H') = 1
Constituent: Mercury Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.08571

Adjusted Kruskal-Wallis statistic (H') = 1

Constituent: Molybdenum Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 25.26

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 7 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 24.77 Adjusted Kruskal-Wallis statistic (H') = 25.26

Constituent: pH Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.138

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9606, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 0.9151, tabulated = 4.152.

Constituent: Selenium Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 7.936

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.784 Adjusted Kruskal-Wallis statistic (H') = 7.936

Constituent: Sulfate Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021 the parametric analysis of variance test (after cube root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 91.98

Tabulated F statistic = 4.152 with 1 and 32 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	1.8e22	1	1.8e22	10.41
Error Within Groups	5.5e22	32	1.7e21	
Total	7.3e22	33		

The Shapiro Wilk normality test on the residuals passed after cube root transformation. Alpha = 0.01, calculated = 0.9826, critical = 0.908. Levene's Equality of Variance test passed. Calculated = 3.474, tabulated = 4.152.

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 12:56 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.281

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.271

Adjusted Kruskal-Wallis statistic (H') = 4.281

ANOVA ABBASB MW-1 & 19 All data

Powerton Generating Station Client: NRG Data: Powerton Printed 8/12/2021, 12:59 PM **Constituent** Well Calc. Crit. Transform ANOVA Sig. Method <u>Sig.</u> <u>Alpha</u> <u>Alpha</u> Arsenic (mg/L) No 0.05 NP (eq. var.) n/a n/a n/a n/a n/a Yes Barium (mg/L) No Yes 0.05 Param. n/a n/a n/a n/a n/a Boron (mg/L) Yes 0.05 Param. n/a n/a n/a n/a n/a sqrt(x) Cadmium (mg/L) n/a No No 0.05 NP (NDs) n/a n/a n/a n/a Calcium (mg/L) No 0.05 Param. n/a n/a n/a No n/a n/a Chloride (mg/L) 0.05 n/a n/a n/a n/a n/a No Yes Param. Chromium (mg/L) n/a No No 0.05 NP (NDs) n/a n/a n/a n/a NP (normality) Cobalt (mg/L) n/a n/a n/a n/a n/a No Yes 0.05 Combined Radium 226 + 228 (pCi/L) n/a n/a n/a n/a n/a No No 0.05 Param. Fluoride (mg/L) n/a n/a n/a n/a n/a No Yes 0.05 Param. Lead (mg/L) n/a n/a n/a n/a n/a No Yes 0.05 NP (normality) 0.05 NP (NDs) Lithium (mg/L) n/a n/a n/a n/a n/a No No Molybdenum (mg/L) n/a n/a n/a n/a n/a ln(x) Yes 0.05 Param. pH (n/a) n/a n/a No No 0.05 Param. n/a n/a n/a Selenium (mg/L) Yes 0.05 NP (normality) No n/a n/a n/a n/a n/a Sulfate (mg/L) 0.05 Param. n/a n/a n/a n/a n/a sqrt(x) Yes Total Dissolved Solids (mg/L) n/a n/a n/a n/a n/a No Yes 0.05 Param.

Constituent: Arsenic Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 5.769

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 3.787 Adjusted Kruskal-Wallis statistic (H') = 5.769

Constituent: Barium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 25.13

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9046, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.3107, tabulated = 4.2.

Constituent: Boron Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 278.9

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9659, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.582, tabulated = 4.2.

Constituent: Cadmium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.7647

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.074 Adjusted Kruskal-Wallis statistic (H') = 0.7647

Constituent: Calcium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.0867

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9487, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.005625, tabulated = 4.2.

Constituent: Chloride Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 16.71

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9326, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 3.807, tabulated = 4.2.

Constituent: Chromium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.342

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.2677

Adjusted Kruskal-Wallis statistic (H') = 1.342

Constituent: Cobalt Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.332

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 2.564 Adjusted Kruskal-Wallis statistic (H') = 4.332

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.649

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9592, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.0186, tabulated = 4.2.

Constituent: Fluoride Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 5.481

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9509, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 1.114, tabulated = 4.2.

Constituent: Lead Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.329

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 3.616

Adjusted Kruskal-Wallis statistic (H') = 4.329

Constituent: Lithium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.7647

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.074 Adjusted Kruskal-Wallis statistic (H') = 0.7647

Constituent: Molybdenum Analysis Run 8/12/2021 12:59 PM Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test (after natural log transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 678.1

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.01, calculated = 0.9164, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.5944, tabulated = 4.2.

Constituent: pH Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.453

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9497, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.01538, tabulated = 4.2.

Constituent: Selenium Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 11.09

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 7.287

Adjusted Kruskal-Wallis statistic (H') = 11.09

Constituent: Sulfate Analysis Run 8/12/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 118.1

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.9771, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 2.828, tabulated = 4.2.

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 12:59 PM Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 17.68

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	150803	1	150803	17.68
Error Within Groups	238877	28	8531	
Total	389680	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9507, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 1.602, tabulated = 4.2.

ANOVA ABBASB MW-9 & 19 All data

		Powerton Gene	erating Station	Client:	NRG Data	a: Powerton Printed	8/12/2021, 1:00 PM		
Constituent	Well	<u>Calc.</u>	<u>Crit.</u>	<u>Sig.</u>	<u>Alpha</u>	<u>Transform</u>	ANOVA Sig.	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Barium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Boron (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Calcium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Chloride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (normality)
Cobalt (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Lead (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Mercury (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Molybdenum (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
pH (n/a)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Selenium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (normality)
Sulfate (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Total Dissolved Solids (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.

Constituent: Arsenic Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 5.049

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 3.314 Adjusted Kruskal-Wallis statistic (H') = 5.049

Constituent: Barium Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 144.5

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9639, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 1.239, tabulated = 4.2.

Constituent: Boron Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.3445

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.902, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 1.914, tabulated = 4.2.

Constituent: Calcium Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 11.98

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9372, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 2.668, tabulated = 4.2.

Constituent: Chloride Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.04478

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 7 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.04379 Adjusted Kruskal-Wallis statistic (H') = 0.04478

Constituent: Cobalt Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.1308

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.03547 Adjusted Kruskal-Wallis statistic (H') = 0.1308

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.6835

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9045, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.6608, tabulated = 4.2.

Constituent: Fluoride Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.395

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.938, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 1.815, tabulated = 4.2.

Constituent: Lead Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 2.918

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 1.23 Adjusted Kruskal-Wallis statistic (H') = 2.918

Constituent: Mercury Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.7647

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.074 Adjusted Kruskal-Wallis statistic (H') = 0.7647

Constituent: Molybdenum Analysis Run 8/12/2021 1:00 PM Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 4.333

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9685, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.23, tabulated = 4.2.
Constituent: pH Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.1385

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.951, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.5229, tabulated = 4.2.

Constituent: Selenium Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.03948

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.03547 Adjusted Kruskal-Wallis statistic (H') = 0.03948

Constituent: Sulfate Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.5729

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9309, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.4422, tabulated = 4.2.

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 1:00 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 11/18/2015 and 5/13/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.179

Tabulated F statistic = 4.2 with 1 and 28 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	28227	1	28227	2.179
Error Within Groups	362653	28	12952	
Total	390880	29		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9463, critical = 0.9. Levene's Equality of Variance test passed. Calculated = 0.3286, tabulated = 4.2.

Analysis of Variance FAB

		Powerton Generati	ng Station	Client: NRG	Data: Po	owerton FAB	Printed 8/13/2021, 12:34 PM		
Constituent	Well	<u>Calc.</u>	Crit.	<u>Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Barium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Beryllium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Boron (mg/L)	n/a	n/a	n/a	n/a	n/a	ln(x)	Yes	0.05	Param.
Cadmium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Calcium (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	No	0.05	Param.
Chloride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (eq. var.)
Chromium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Cobalt (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)
Combined Radium 226 + 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (eq. var.)
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Lead (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Lithium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Molybdenum (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (normality)
pH (n/a)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Selenium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Sulfate (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Total Dissolved Solids (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.

Constituent: Arsenic Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.414

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.087 Adjusted Kruskal-Wallis statistic (H') = 4.414

Constituent: Barium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 22.01

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 7 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 21.94 Adjusted Kruskal-Wallis statistic (H') = 22.01

Constituent: Beryllium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1.455

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.1558 Adjusted Kruskal-Wallis statistic (H') = 1.455

Constituent: Boron Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test (after natural log transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 7.898

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.01, calculated = 0.9207, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 0.02023, tabulated = 4.18.

Constituent: Cadmium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 3.39

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.6545 Adjusted Kruskal-Wallis statistic (H') = 3.39

Constituent: Calcium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test (after square root transformation) indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 2.585

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.01, calculated = 0.909, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 0.007497, tabulated = 4.18.

Constituent: Chloride Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.1034

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.1026 Adjusted Kruskal-Wallis statistic (H') = 0.1034

Constituent: Chromium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 2.285

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.7756 Adjusted Kruskal-Wallis statistic (H') = 2.285

Constituent: Cobalt Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 22.48

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 20.83 Adjusted Kruskal-Wallis statistic (H') = 22.48

Constituent: Combined Radium 226 + 228 Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 8.308

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 0 groups of ties in the data, so no adjustment to the Kruskal-Wallis statistic (H) was necessary.

Constituent: Fluoride Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 7.467

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9632, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 0.9797, tabulated = 4.18.

Constituent: Lead Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 4.314

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 4.168 Adjusted Kruskal-Wallis statistic (H') = 4.314

Constituent: Lithium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 6/28/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 3.103

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.5806 Adjusted Kruskal-Wallis statistic (H') = 3.103

Constituent: Molybdenum Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 3.131

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 1.853 Adjusted Kruskal-Wallis statistic (H') = 3.131

Constituent: pH Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 1.561

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9495, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 0.5011, tabulated = 4.18.

Constituent: Selenium Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 26.26

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 21.94 Adjusted Kruskal-Wallis statistic (H') = 26.26

Constituent: Sulfate Analysis Run 8/13/2021 12:34 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.3565

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9676, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 0.04014, tabulated = 4.18.

Constituent: Total Dissolved Solids Analysis Run 8/13/2021 12:34 PM Powerton Generating Station Client: NRG Data: Powerton FAB

For observations made between 11/16/2015 and 5/11/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.2234

Tabulated F statistic = 4.18 with 1 and 29 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	748.4	1	748.4	0.2234
Error Within Groups	97135	29	3349	
Total	97884	30		

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.01, calculated = 0.9373, critical = 0.902. Levene's Equality of Variance test passed. Calculated = 3.38, tabulated = 4.18.

Interwell Prediction Limit - ABBASB UG Wells

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 3:25 PM

<u>Constituent</u>	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	6 future	n/a	41	100	n/a	0.001061	NP (NDs) 1 of 2
Beryllium (mg/L)	n/a	0.001	n/a	n/a	6 future	n/a	41	100	n/a	0.001061	NP (NDs) 1 of 2
Cadmium (mg/L)	n/a	0.00085	n/a	n/a	6 future	n/a	47	97.87	n/a	0.000	NP (NDs) 1 of 2
Chromium (mg/L)	n/a	0.025	n/a	n/a	6 future	n/a	43	95.35	n/a	0.000986	NP (NDs) 1 of 2
Cobalt (mg/L)	n/a	0.016	n/a	n/a	6 future	n/a	48	77.08	n/a	0.000	NP (NDs) 1 of 2
Lithium (mg/L)	n/a	0.012	n/a	n/a	6 future	n/a	47	97.87	n/a	0.000	NP (NDs) 1 of 2
Mercury (mg/L)	n/a	0.00029	n/a	n/a	6 future	n/a	47	97.87	n/a	0.000	NP (NDs) 1 of 2
pH (n/a)	n/a	7.902	6.649	n/a	6 future	n/a	47	0	No	0.000	Param 1 of 2
Thallium (mg/L)	n/a	0.002	n/a	n/a	6 future	n/a	47	100	n/a	0.000	NP (NDs) 1 of 2

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 41) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.02515. Individual comparison alpha = 0.001061 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Prediction Limit

Limit = 0.00085

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 41) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.02515. Individual comparison alpha = 0.001061 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

> Constituent: Beryllium Analysis Run 8/10/2021 3:22 PM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 47 background values. 97.87% NDs. Annual per-constituent alpha = 0.0199. Individual comparison alpha = 0.0008372 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 43 background values. 95.35% NDs. Annual per-constituent alpha = 0.0234. Individual comparison alpha = 0.000986 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 48 background values. 77.08% NDs. Annual per-constituent alpha = 0.01903. Individual comparison alpha = 0.0008001 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 47 background values. 97.87% NDs. Annual per-constituent alpha = 0.0199. Individual comparison alpha = 0.0008372 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Constituent: Cobalt Analysis Run 8/10/2021 3:22 PM Powerton Generating Station Client: NRG Data: Powerton

Prediction Limit

Limit = 0.00029

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 47 background values. 97.87% NDs. Annual per-constituent alpha = 0.0199. Individual comparison alpha = 0.0008372 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

8

6.4

Prediction Limit

Limit = 7.902

4.8 3.2 1.6 0 5/12/21 5/13/21

Background Data Summary: Mean=7.276, Std. Dev.=0.2634, n=47. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9677, critical = 0.946. Kappa = 2.379 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0009976. Assumes 6 future values.

Constituent: Mercury Analysis Run 8/10/2021 3:22 PM Powerton Generating Station Client: NRG Data: Powerton

٦

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 47) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.0199. Individual comparison alpha = 0.0008372 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Constituent: Thallium Analysis Run 8/10/2021 3:22 PM Powerton Generating Station Client: NRG Data: Powerton

Interwell Prediction Limit - ABBASB MW-01 & 9

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 3:26 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	n/a	0.2526	n/a	n/a	6 future	n/a	34	0	No	0.000	Param 1 of 2

Sanitas[™] v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.1709, Std. Dev.=0.03315, n=34. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9449, critical = 0.933. Kappa = 2.463 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Constituent: Fluoride Analysis Run 8/10/2021 3:26 PM Powerton Generating Station Client: NRG Data: Powerton

Interwell Prediction Limit - ABBASB MW-01 & 19

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 3:28 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	n/a	132.3	n/a	n/a	6 future	n/a	30	0	No	0.000	Param 1 of 2
Combined Radium 226 + 228 (pCi/L)	n/a	0.953	n/a	n/a	6 future	n/a	30	53.33	n/a	0.001842	NP (NDs) 1 of 2

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=95.23, Std. Dev.=14.82, n=30. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9401, critical = 0.927. Kappa = 2.501 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Powerton Generating Station Client: NRG Data: Powerton

Constituent: Calcium Analysis Run 8/10/2021 3:27 PM

Constituent: Combined Radium 226 + 228 Analysis Run 8/10/2021 3:27 PM Powerton Generating Station Client: NRG Data: Powerton

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 53.33% NDs. Annual per-constituent alpha = 0.04327. Individual comparison alpha = 0.001842 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Interwell Prediction Limit - ABBASB MW-09 & 19

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 3:29 PM

Constituent	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	n/a	4.7	n/a	n/a	6 future	n/a	30	0	n/a	0.001842	NP (normality) 1 of 2
Chloride (mg/L)	n/a	53	n/a	n/a	6 future	n/a	30	0	n/a	0.001842	NP (normality) 1 of 2
Lead (mg/L)	n/a	0.0012	n/a	n/a	6 future	n/a	30	83.33	n/a	0.001842	NP (NDs) 1 of 2

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 30 background values. Annual per-constituent alpha = 0.04327. Individual comparison alpha = 0.001842 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

> Constituent: Boron Analysis Run 8/10/2021 3:29 PM Powerton Generating Station Client: NRG Data: Powerton

> > Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 30 background values. Annual per-constituent alpha = 0.04327. Individual comparison alpha = 0.001842 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

> Constituent: Chloride Analysis Run 8/10/2021 3:29 PM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 83.33% NDs. Annual per-constituent alpha = 0.04327. Individual comparison alpha = 0.001842 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Interwell Prediction Limit - ABBASB MW-01

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 3:35 PM

<u>Constituent</u>	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	0.029	n/a	n/a	6 future	n/a	17	52.94	n/a	0.004808	NP (NDs) 1 of 2
Barium (mg/L)	n/a	0.08244	n/a	n/a	6 future	n/a	17	0	No	0.000	Param 1 of 2 Deseas
Selenium (mg/L)	n/a	0.0029	n/a	n/a	6 future	n/a	17	94.12	n/a	0.004808	NP (NDs) 1 of 2
Sulfate (mg/L)	n/a	93.67	n/a	n/a	6 future	n/a	17	0	No	0.000	Param 1 of 2
Total Dissolved Solids (mg/L)	n/a	695.7	n/a	n/a	6 future	n/a	17	0	No	0.000	Param 1 of 2

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 52,94% NDs. Annual per-constituent alpha e 0.1092. Individual comparison alpha e 0.004808 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

mg/L

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=0.05453, Std. Dev.=0.009948, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9332, critical = 0.892. Kappa = 2.806 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Prediction Limit

Limit = 0.0029

Constituent: Barium Analysis Run 8/10/2021 3:33 PM Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 17 background values. 94.12% NDs. Annual per-constituent alpha = 0.1092. Individual comparison alpha = 0.004808 (1 of 2). Assumes 6 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=50.76, Std. Dev.=15.29, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9274, critical = 0.892. Kappa = 2.806 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Constituent: Selenium Analysis Run 8/10/2021 3:33 PM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Sulfate Analysis Run 8/10/2021 3:33 PM Powerton Generating Station Client: NRG Data: Powerton

ng/L

Background Data Summary: Mean=500, Std. Dev.=69.73, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9296, critical = 0.892. Kappa = 2.806 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Constituent: Total Dissolved Solids Analysis Run 8/10/2021 3:33 PM Powerton Generating Station Client: NRG Data: Powerton
Interwell Prediction Limit - ABBASB MW-19

Powerton Generating Station Client: NRG Data: Powerton Printed 8/10/2021, 4:58 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Barium (mg/L)	n/a	0.111	n/a	n/a	6 future	n/a	13	0	No	0.000	Param 1 of 2
Molybdenum (mg/L)	n/a	0.06276	n/a	n/a	6 future	n/a	13	0	No	0.000	Param 1 of 2

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.07792, Std. Dev.=0.01082, n=13. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9654, critical = 0.866. Kappa = 3.055 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Powerton Generating Station Client: NRG Data: Powerton

Constituent: Barium Analysis Run 8/10/2021 4:58 PM

Constituent: Molybdenum Analysis Run 8/10/2021 4:58 PM Powerton Generating Station Client: NRG Data: Powerton

Prediction Limit

Background Data Summary: Mean=0.039, Std. Dev.=0.007778, n=13. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9817, critical = 0.866. Kappa = 3.055 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit - UG Wells All Data

		Powerton	Generating Station	Client: NRG	Data: Powe	erton FAB	Print	ted 8/10/20	21, 12:58 PM		
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	4 future	n/a	27	100	n/a	0.00233	NP Inter (NDs) 1 of 2
Beryllium (mg/L)	n/a	0.001	n/a	n/a	4 future	n/a	27	100	n/a	0.00233	NP Inter (NDs) 1 of 2
Cadmium (mg/L)	n/a	0.0015	n/a	n/a	4 future	n/a	29	93.1	n/a	0.00204	NP Inter (NDs) 1 of 2
Calcium (mg/L)	n/a	139	n/a	n/a	4 future	n/a	31	0	x^(1/3)	0.000	Param Inter 1 of 2
Chloride (mg/L)	n/a	63.49	n/a	n/a	4 future	n/a	31	0	No	0.000	Param Inter 1 of 2
Chromium (mg/L)	n/a	0.063	n/a	n/a	4 future	n/a	31	87.1	n/a	0.001802	NP Inter (NDs) 1 of 2
Lithium (mg/L)	n/a	0.032	n/a	n/a	4 future	n/a	30	93.33	n/a	0.001895	NP Inter (NDs) 1 of 2
Mercury (mg/L)	n/a	0.0002	n/a	n/a	4 future	n/a	30	100	n/a	0.001895	NP Inter (NDs) 1 of 2
Molybdenum (mg/L)	n/a	0.01	n/a	n/a	4 future	n/a	31	74.19	n/a	0.001802	NP Inter (NDs) 1 of 2
pH (n/a)	n/a	7.778	6.449	n/a	4 future	n/a	31	0	No	0.000	Param Inter 1 of 2
Sulfate (mg/L)	n/a	89.86	n/a	n/a	4 future	n/a	31	0	No	0.000	Param Inter 1 of 2
Thallium (mg/L)	n/a	0.002	n/a	n/a	4 future	n/a	29	100	n/a	0.00204	NP Inter (NDs) 1 of 2
Total Dissolved Solids (mg/L)	n/a	644.5	n/a	n/a	4 future	n/a	31	0	No	0.000	Param Inter 1 of 2

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.03664. Individual comparison alpha = 0.00233 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 27) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.03664. Individual comparison alpha = 0.00233 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Constituent: Antimony Analysis Run 8/10/2021 12:57 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Prediction Limit

Limit = 0.0015

Constituent: Beryllium Analysis Run 8/10/2021 12:57 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Prediction Limit

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 29 background values. 93.1% NDs. Annual per-constituent alpha = 0.03214. Individual comparison alpha = 0.00204 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary (based on cube root transformation): Mean=4.621, Std. Dev.=0.234, n=31. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9321, critical = 0.929. Kappa = 2.389 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Background Data Summary: Mean=47.97, Std. Dev.=6.499, n=31. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9604, critical = 0.929. Kappa = 2.389 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Prediction Limit

Limit = 0.032

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 31 background values. 87.1% NDs. Annual per-constituent alpha = 0.02845. Individual comparison alpha = 0.001802 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence.

Constituent: Chromium Analysis Run 8/10/2021 12:57 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 30 background values. 93.33% NDs. Annual per-constituent alpha = 0.0299. Individual comparison alpha = 0.001895 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence. Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 30) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.0299. Individual comparison alpha = 0.001895 (1 of 2). Assumes 4 future values. Seasonality was not detected with 95% confidence. Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

0.01

0.006

0.004

0.002

0

mg/L

Prediction Limit Interwell Non-parametric 0.008 Limit = 0.01

Constituent: Molybdenum Analysis Run 8/10/2021 12:57 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

values (n = 29) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.03214. Individual

Constituent: Thallium Analysis Run 8/10/2021 12:57 PM

Constituent: Sulfate Analysis Run 8/10/2021 12:57 PM Powerton Generating Station Client: NRG Data: Powerton FAB

72

90

0 5/10/21 5/11/21 Background Data Summary: Mean=52.87, Std. Dev.=15.48, n=31. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9693, critical = 0.929. Kappa = 2.389 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993.

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

54

36 18

Assumes 4 future values.

ng/L

Interwell Parametric

Prediction Limit

Limit = 89.86

Background Data Summary: Mean=7.114, Std. Dev.=0.2782, n=31. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9366, critical = 0.929. Kappa = 2.389 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 4 future values.

Constituent: pH Analysis Run 8/10/2021 12:57 PM

Powerton Generating Station Client: NRG Data: Powerton FAB

Background Data Summary: Mean=508.1, Std. Dev.=57.12, n=31. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9357, critical = 0.929. Kappa = 2.389 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Constituent: Total Dissolved Solids Analysis Run 8/10/2021 12:57 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Interwell Prediction Limit - MW-01 All Data

Powerton Generating Station Client: NRG Data: Powerton FAB Printed 8/10/2021, 1:01 PM **Constituent** Well Upper Lim. Lower Lim. <u>Date</u> Observ. <u>Sig.</u> Bg N <u>%NDs</u> Transform Alpha Method 0.07976 sqrt(x) Param Inter 1 of 2 Barium (mg/L) n/a n/a 4 future 18 0 0.000... n/a n/a Boron (mg/L) n/a 1.086 n/a n/a 4 future 18 0 sqrt(x) 0.000... Param Inter 1 of 2 n/a Combined Radium 226 + 228 (pCi/L) 0.953 n/a n/a 4 future 18 0.004697 NP Inter (NDs) 1 of 2 n/a 55.56 n/a n/a Fluoride (mg/L) 0.2794 0.000... Param Inter 1 of 2 n/a n/a n/a 4 future n/a 18 0 No

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary (based on square root transformation): Mean=0.2267, Std. Dev.=0.02111, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9058, critical = 0.897. Kappa = 2.638 (c=22, w=4, 1 of 2, event alpha = 0.0026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Prediction Limit

Limit = 0.953

Prediction Limit

Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.5485, Std. Dev.=0.187, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9095, critical = 0.897. Kappa = 2.638 (c=22, w=4, 1 of 2, event alpha = 0.0026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

> Constituent: Boron Analysis Run 8/10/2021 1:00 PM Powerton Generating Station Client: NRG Data: Powerton FAB

> > Prediction Limit

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

oCi/L

Interwell Non-parametric

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.1767, Std. Dev.=0.03896, n=18. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9349, critical = 0.897. Kappa = 2.638 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.002993. Assumes 4 future values.

Constituent: Fluoride Analysis Run 8/10/2021 1:00 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Interwell Prediction Limit - MW-10 All Data

Powerton Generating Station Client: NRG Data: Powerton FAB Printed 8/10/2021, 1:00 PM **Constituent** Well Upper Lim. Lower Lim. <u>Date</u> Observ. Bg N <u>%NDs</u> Transform Alpha Method <u>Sig.</u> Arsenic (mg/L) n/a 0.04049 n/a n/a 4 future 13 7.692 ln(x) 0.000... Param Inter 1 of 2 n/a Cobalt (mg/L) n/a 0.1427 n/a n/a 4 future 13 0 ln(x) 0.000... Param Inter 1 of 2 n/a Lead (mg/L) 0.1164 n/a n/a 4 future 13 0.000... Param Inter 1 of 2 n/a 7.692 ln(x) n/a Selenium (mg/L) 0.007258 13 0.000... Param Inter 1 of 2 n/a n/a n/a 4 future n/a 0 No

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary (based on natural log transformation): Mean=-6.112, Std. Dev.=0.9978, n=13, 7.692% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8908, critical = 0.866. Kappa = 2.911 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.002993. Assumes 4 future values.

Prediction Limit

Prediction Limit

Interwell Parametric

Background Data Summary (based on natural log transformation): Mean=-4.448, Std. Dev.=0.859, n=13. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8826, critical = 0.866. Kappa = 2.911 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Constituent: Cobalt Analysis Run 8/10/2021 12:59 PM Powerton Generating Station Client: NRG Data: Powerton FAB

Prediction Limit

Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary (based on natural log transformation): Mean=-6.038, Std. Dev.=1.335, n=13, 7.692% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9262, critical = 0.866. Kappa = 2.911 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values. Sanitas™ v.9.6.10 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.0046, Std. Dev.=0.0009129, n=13. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9846, critical = 0.866. Kappa = 2.911 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Outlier Analysis - Powerton ABB/ASB - UG Wells - Turbidity

Powerton Generating Station Client: NRG Data: Powerton Printed 10/5/2021, 12:49 PM

Constituent	Well	Outlier	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Turbidity (NTU)	MW-01 (bg)	Yes	78.2	2/23/2021	Dixon's	0.05	8	13.47	26.19	normal	ShapiroWilk
Turbidity (NTU)	MW-09 (bg)	No	n/a	n/a	EPA 1989	0.05	8	6.999	6.301	in(x)	ShapiroWilk
Turbidity (NTU)	MW-19 (bg)	No	n/a	n/a	EPA 1989	0.05	8	7.788	9.741	ln(x)	ShapiroWilk

Sanifas^m v.9,6,09 Software (iconsed to KPRG and Associates, Inc. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Turbidity Analysis Run 10/5/2021 12:47 PM Powerton Generating Station Client: NRG Data: Powerton

Constituent: Turbidity Analysis Run 10/5/2021 12:47 PM Powerton Generating Station Client: NRG Data: Powerton

Sanitas" v.9,6,09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Turbidity Analysis Run 10/5/2021 12:47 PM Powerton Generating Station Client: NRG Data: Powerton

Trend Test Powerton ABB/ASB UG Wells Turbidity

......

٠.

	Powerto	n Generating S	tation Client	: NRG Data: F	owerton	Printed 1	0/5/2021, 1	2:55 PM			
Constituent	Well	<u>Slope</u>	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	<u>Method</u>
Turbidity (NTU)	MW-01 (bg)	-86.67	-2.089	2,612	No	8	0	Yes	nó	0.02	Param.
Turbidity (NTU)	MW-09 (bg)	-5.337	-0.4102	2.612	No	8	0	Yes	no	0.02	Param.
Turbidity (NTU)	MW-19 (bg)	24.25	1.381	2.612	No	8	0	Yes	ΠÔ	0.02	Param.

.

Sunitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Powerton Generating Station Client: NRG Data: Powerton

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Linear Regression and 95% Confidence Band MW-09 (bg) 30 n = 8 Slope = -5.337 units/year. alpha = 0.02 t = -0.4102 critical = 2.612 22.6 No significant trend. Normality test on residuals: 15.2 Shapiro Wilk @alpha = 0.05, calculated = 0.852, critical = 0.818. NTU 7.8 0.4 -7 10/2/21 2/24/21 4/9/21 5/23/21 7/6/21 8/19/21

Constituent: Turbidity Analysis Run 10/5/2021 12:54 PM Powerton Generating Station Client: NRG Data: Powerton

Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Turbidity Analysis Run 10/5/2021 12:54 PM Powerton Generating Station Client: NRG Data: Powerton

ANOVA Powerton ABB/ASB UG Wells

		Powerton Genera	ating Station	Client: N	IRG Data:	Powerton Printed	10/5/2021, 12:59 PM		
Constituent	Well	Calc.	<u>Crit.</u>	<u>Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	<u>Alpha</u>	<u>Method</u>
Turbidity (NTU)	n/a	n/a	n/a	n/a	n/a	ln(x)	No	0.05	Param.

Parametric ANOVA

Constituent: Turbidity Analysis Run 10/5/2021 12:59 PM

Powerton Generating Station Client: NRG Data: Powerton

For observations made between 2/22/2021 and 9/30/2021 the parametric analysis of variance test (after natural log transformation) indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 0.1608

Tabulated F statistic = 3.47 with 2 and 21 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	0.4141	2	0.2071	0.1608	
Error Within Groups	27.04	21	1.288		
Total	27.46	23			

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.01, calculated = 0.9488, critical = 0.884. Levene's Equality of Variance test passed. Calculated = 0.0943, tabulated = 3.47.

Shapiro-Wilk Normality Test

Constituent: Turbidity Analysis Run 10/5/2021 1:04 PM Powerton Generating Station Client: NRG Data: Powerton

Well	Transformation	Calculated	Critical	Normal
MW-01 (bg) (n = 8, alg	pha = 0.05)			
	no	0.4595	0.818	No
	square root	0.5222	0.818	No
	square	0.4233	0.818	No
	cube root	0.5547	0.818	NO
	cube	0.419	0.818	NO
	natural log	0.6374	0.818	No
	x^4	0.4186	0.818	No
	x^5	0.4186	0.818	NO
	x^6	0.4186	0.818	NO
MW-09 (bg) (n = 8, alp	pha = 0.05)			
	no	0.8125	0.818	NO
	square root	0.9167	0.818	Yes
	square	0.6617	0.818	No
	cube root	0.937	0.818	Yes
	cube	0.6058	0.818	No
	natural log	0.9192	0.818	Yes
	x^4	0.5875	0.818	No
	x^5	0.5825	0.818	No
	x^6	0.5821	0.818	No
MW-19 (bg) (n = 8, al)	pha = 0.05)			
	no	0.6912	0.818	No
	square root	0.8828	0.818	Yes
	square	0.4911	0.818	No
	cube root	0.9393	0.818	Yes
	cube	0.4375	0.818	No
	natural log	0.9817	0.818	Yes
	x^4	0.4236	0.818	No
	x^5	0.4199	0.818	No
	х^б	0.419	0.818	No
Pooled Background (bg) (n = 24, alpha =	0.05)		
	no	0.491	0.916	No
	square root	0.7357	0.916	No
	square	0.2868	0.916	NO
	cube root	0.8274	0.916	No
	cube	0.2349	0.916	No
	natural log	0.937	0.916	Yes
	x^4	0.2192	0.916	No
	x^5	0.2138	0.916	No
	206	0 2119	0 916	NO

Interwell Prediction Limit Powerton ABB/ASB Turbidity

		Powertor	Generating Static	on Client: NR	G Data: Pov	verton	Printe	d 10/5/2021,	, 1:06 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower_Lim.	<u>Date</u>	Observ.	<u>Siq.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	Alpha	Method
Turbidity (NTU)	n/a	83,3	n/a	n/a	6 future	n/a	24	0	ln(x)	0,000,,,	Param 1 of 2

Background Data Summary (based on natural log transformation): Mean=1.586, Std. Dev.=1.093, n=24. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.937, critical = 0.916. Kappa = 2.596 (c=22, w=6, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 6 future values.

Constituent: Turbidity Analysis Run 10/5/2021 1:05 PM Powerton Generating Station Client: NRG Data: Powerton

Interwell Prediction Limit Powerton FAB MW-10 UG Turbidity

		Powerton G	enerating Station	Client: NRG	Data: Power	ton FAE	B Prin	ted 10/5/20	21, 2:00 PM		
Constituent	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	Alpha	Method
Turbidity (NTU)	n/a	581.2	n/a	n/a	4 future	n/a	8	0	x^(1/3)	0.000	Param Inter 1 of 2

Background Data Summary (based on cube root transformation): Mean=3.244, Std. Dev.=1.403, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8198, critical = 0.818. Kappa = 3.636 (c=22, w=4, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0002993. Assumes 4 future values.

Constituent: Turbidity Analysis Run 10/5/2021 1:58 PM Powerton Generating Station Client: NRG Data: Powerton FAB

ATTACHMENT 10 PE CERTIFICATION

Attachment 10 - No Attachment

<u>ATTACHMENT 11</u> <u>OWNER CERTIFICATION</u>

Attachment 11 - Owner Certification

I, <u>TOPD</u> <u>MUNDORF</u>, as an authorized representative of Midwest Generation, certify that the public notification and public meeting requirements were completed in accordance with 35 Ill. Adm. Code 845.240.

Signature: <u>hackle Mung</u> Title: <u>PLANT MANAGER</u>

Midwest Generation, LLC Powerton Generating Station Bypass Basin Retrofit and Former Ash Basin Closure Public Meeting General Summary

INTRODUCTION

In accordance with Title 35 of the Illinois Administrative Code ("35 IAC") Section 845.240, Midwest Generation, LLC (MWG) posted the public meeting notice for closure of the Powerton Generating Station's Former Ash Basin and the Retrofit Plan for the Bypass Basin on its publicly available website and provided a copy of such notice to the Illinois Environmental Protection Agency (Illinois EPA or Agency) to email to its listserv for this facility. The public meeting notice was also mailed to all residents within at least 1 mile of the facility on April 14, 2022, which totaled 986 residential mailing addresses. The notice was also posted in 31 public locations within 10 miles of the facility boundary.

The public meetings for Powerton Generating Station's Bypass Basin and Former Ash Basin (FAB) were held on May 18, 2022 from 6:00 p.m. to 8:00 p.m. and on May 19, 2022 from 10:00 a.m. to 12:00 p.m. The meetings were held in a hybrid format – in person and via Zoom or telephone. Seven members of the public attended the May 18th meeting in person; four attended via Zoom. Seven members of the public attended the May 19th meeting in person; eleven attended via Zoom. The remaining attendees were MWG affiliate employees and consultants. Attendees who wished to sign up for a copy of the meeting summary and/or be added to Illinois EPA's listserv for the facility were asked to sign up via a form provided at the in-person location or a link to a Google form that was provided within the chat function of the Zoom meeting and posted on MWG's website, midwestgenerationllc.com. Seventeen attendees requested a copy of the meeting summary, eleven of whom requested transmittal of their email address to the Agency's listserv for the facility. It was also announced that the link would be available on MWG's public website for two weeks. After an introduction and approximate 50-minute presentation on the proposed retrofit and closure construction plans, the public was given approximately 1 hour during each meeting to ask questions and provide comments.

This document serves as a summary of the issues and questions raised during the meeting.

MWG proposes to retrofit the Bypass Basin by removing and disposing of the remaining material in the basin, decontaminating the existing geomembrane liner so that it will act as another protective layer in the composite liner system, and installing a composite liner system and leachate collection system. MWG proposes to close the Former Ash Basin in-place by installing an alternate final cover system (ClosureTurf®).

SUMMARY OF ISSUES AND QUESTIONS RAISED DURING THE MEETING

<u>General</u>

Powerton Lake

In response to a specific question, there is one fish advisory specific to Powerton Lake, for the channel catfish. The advisory is for polychlorinated biphenyls (PCBs) and the Illinois Department of Public Health recommends that people consume no more than 1 meal per week of channel catfish that are between 15 and 19 inches in size, and no more than 1 meal per month of channel catfish that are 19 inches or longer. Note that the Illinois Department of Natural Resources (IDNR) leases Powerton Lake for fishing, waterfowl hunting, and other recreation uses; IDNR has leased Powerton Lake since 1984. In 2021, IDNR stocked the Powerton Lake with over 230,000 fish across three species: blue catfish, smallmouth bass, and hybrid striped bass. Information on IDNR's management of the fishery at Powerton Lake can be found on IDNR's website (https://www.ifishillinois.org/profiles/waterbody.php?waternum=00039).

<u>Labor</u>

Midwest Generation, LLC operates under a Power House Labor Agreement (PHLA) that gives preference to Union labor for construction and maintenance activities at all plants that MWG owns and/or operates in Illinois. MWG will continue to abide by PHLA.

Availability of Information

Questions were raised about availability of information regarding MWG's plans for retrofitting the Bypass Basin and closing the FAB. Generally, MWG posts all required reports and assessments to its publicly available website within 14 days of completion. This information can be found at midwestgenerationllc.com.

Former Ash Basin

FAB History

Questions were asked about whether ash has washed out of the FAB into the Illinois River, if MWG has studied whether potential contaminants have leached over time into the Illinois River, and whether MWG has studied the Illinois River.

The ash that is currently in the FAB is stable and not moving. Powerton Station personnel inspect the FAB weekly and the FAB is inspected by a third-party Professional Engineer annually. The inspection reports are posted at midwestgenerationllc.com.

MWG has not studied whether potential contaminants have leached over time because MWG is unable to recreate the initial conditions that likely produced the ash that is in the FAB. Powerton Station began operation in the late 1920's with pulverized coal-fired (PC) boilers (Units 1 through 4) that burned Illinois coal. Units 1 through 4 were retired before MWG began operating Powerton Station, presumably in the 1970's, the same decade that placement of ash in the FAB ceased.

Ash from the FAB was sampled and analyzed as required by the IL CCR Rule. The results of that sampling can be found in the Initial Operating Permit application, available at midwestgenerationllc.com. MWG did not identify any constituent levels of concern in that sampling.

MWG does not study the Illinois River. Instead, we monitor our discharges to the Illinois River and report those to the Illinois EPA as required by the Station's NPDES permit.

Groundwater Monitoring

Groundwater monitoring at the FAB shows that groundwater from each of the four downgradient monitoring wells meet the Section 845.600(a) groundwater protection standards which are based on the Illinois Class I Potable Resource Groundwater standards.

Closure in Place Regulations and Financial Assurance

Several questions were asked about whether the regulations allow for closure in place of the FAB as it is unlined and not separated from the uppermost aquifer by at least five feet.

The regulations do not distinguish between closure methods for unlined or lined CCR surface impoundments, nor do the regulations distinguish between closure methods for CCR surface impoundments that fail any location restrictions. Instead, the regulations require impoundments that are unlined or fail one or more location restrictions to close. The closure alternatives analysis compared three methods of closure in place and one closure by removal. Various transportation methods were examined for closure by removal.

Under Illinois EPA oversight, MWG will be required to inspect and monitor any CCR surface impoundment that is closed in place for at least 30 years after the closure construction is complete. Post-closure care includes continued groundwater monitoring, impoundment inspections, as-needed repairs to the final cover system, and corrective actions as necessary. Once 30 years of monitoring have been completed, the owner or operator of a CCR surface impoundment must request Illinois EPA approval to terminate post-closure care. While MWG cannot predict future events, the Illinois EPA will continue to have oversight for CCR surface impoundments until the Agency agrees that its oversight is no longer necessary.

Owners and operators of CCR surface impoundments are required to financially assure the costs of closure and post-closure care through the end of the post-closure care period. Financial assurance would be used only in the case of owner insolvency; otherwise costs for closure, post-closure care, and any necessary remedial activities are paid by the surface impoundment owner and/or operator. The responsibility for a CCR surface impoundment would transfer to any future owner, similarly to how the FAB responsibility transferred to MWG when MWG became the operator of Powerton Station in 1999. Additionally, should any additional corrective actions be required in the future, 35 IAC Part 845 requires the owner to financially assure the costs of the additional corrective actions. In addition, the corrective action would be performed by the CCR surface impoundment owner to ensure that impacts to the environment, including groundwater, do not occur or are corrected under EPA oversight. Groundwater modeling may be used as part of evaluating the appropriate corrective action to demonstrate the selected corrective action's effectiveness in remedying the environmental impacts.

Closure in Place Design

Several questions were asked about the northern berm that is included in the closure in place design. The berm is designed to be three to four feet above grade to prevent flooding of the impoundment once the final cover system is placed. The berm will be constructed of fill material composed of natural soils, but the specific materials have not been chosen at this time. Material specifications will be included in construction bid requests. Construction bid requests will not occur until a final closure construction permit is issued by the Agency.

The FAB will be dewatered before placement of the final cover system. The final cover system will be the proprietary ClosureTurf cover system that consists of an impermeable geomembrane liner covered with synthetic turf and sand infill. The impermeable geomembrane liner is a specially designed plastic liner that minimizes precipitation from passing through it and moves precipitation off the liner, so it does not accumulate on top of the liner. The synthetic turf and sand infill protect the geomembrane liner from animal, weather, and UV damage. Third party testing has demonstrated the geomembrane liner has a permeability of 1×10^{-13} centimeters per second (cm/s) and a lifespan of at 100 years. Additional testing has demonstrated that the freeze-thaw cycle has no impact on the integrity and effectiveness of the geomembrane liner.

Questions were raised regarding potential future concerns, specifically seismic activity and rising water levels. On its website, the United States Geological Survey (USGS) lists earthquakes in Illinois since 1900. No earthquakes have been recorded in Tazewell County in the 122-year period recorded by the USGS. Closure in place requires continued monitoring of the surface impoundment and corrective action if necessary. As part of the Initial FAB Operating Permit application, the location of the FAB was determined to not be located in a seismic impact zone, not in a fault area, and not in an unstable area.

Onsite Landfill/Consolidate and Close

An onsite landfill was considered and ultimately ruled out because of the lengthy process of siting a new landfill and lack of available space vertically and horizontally. One commentor suggested MWG examine removing ash from the northern portion of the FAB, placing a liner in that area, and consolidating the ash in the northern portion. While MWG did not overtly examine this scenario in the closure alternatives analysis, it was considered and eliminated because installation of a liner and consolidating the ash in the northern portion could be considered construction of a CCR landfill, further delaying the closure of the FAB.

The rail line that separates the northern portion of the FAB from southern portion acts as a berm to prevent flooding of the southern portion from the Illinois River, so consolidation in the southern half could be the better option for protection of the environment. This alternative option is still being internally considered/evaluated, but consideration could not be finalized within the 14 days that this summary is required to be posted.

Closure Costs

The selected option for closure of the FAB is not the least expensive based on engineering analysis that is documented in the Closure Alternatives Analysis. Costs were not determinative in selecting closure in place.

Bypass Basin

Bypass Basin Underlying Surface

Questions were asked about whether the Bypass Basin currently has a Poz-o-Pac liner, had a Poz-o-Pac liner, and whether the Bypass Basin retrofit includes reusing the Poz-o-Pac liner if it exists.

During the May 18 meeting, MWG mistakenly stated that the Bypass Basin never had a Pozo-Pac liner and corrected that statement during the May 19 meeting when the question was asked again. The original construction documents show that a 12-inch-thick layer of Poz-o-Pac was installed over the Bypass Basin's original Hypalon® liner along the basin floor.

Both the Poz-o-Pac and Hypalon[®] liners were removed from the Bypass Basin when the basin was relined in 2010 with a 60-mil HDPE geomembrane liner. Currently, the Bypass Basin does <u>not</u> have either of its original Poz-o-Pac or Hypalon[®] liners; only the relatively new 60-mil HDPE geomembrane liner is present.

It should be noted that Poz-o-Pac is a cementitious material and has been used as a supporting surface for things like roads, highways, and parking lots (in addition to similar pozzolan-stabilized base materials). According to the Federal Highway Administration, Poz-o-Pac was used at over 100 sites throughout Illinois between 1955 and 1985.

Questions were asked about the material that underlies the Bypass Basin's current HDPE geomembrane liner and whether this material will be tested during the retrofit process. The plan for retrofitting the Bypass Basin does not include testing of soils beneath the HDPE geomembrane liner unless tears in the liner are discovered which may indicate the potential release of contaminants into the Bypass Basin's subgrade. The competency of the Bypass Basin's existing HDPE geomembrane liner will be verified by conducting an electrical leak location survey, which involves placing a voltage across the entire liner and using a detection probe to determine whether any tears are present in the liner. Where a tear is present, the probe will identify an electrical current flowing through the tear. If a tear is discovered, the soils under the tear will be inspected to determine whether any contaminants have been released into the basin subgrade. Contaminated soils identified during this inspection will be removed and replaced with structural fill.

Retrofit Design

Questions were asked about the structural fill material that will be used to establish the slopes for the retrofitted Bypass Basin's leachate collection system. This fill material will be comprised of natural soils, not CCR; however, the specific soil materials have not been chosen at this time. Material specifications will be included in construction bid requests. Construction bid requests will not occur until a final retrofit construction permit is issued by the Illinois EPA.

SUMMARY OF REVISIONS, CHANGES, AND CONSIDERATIONS

Public engagement is an important part of the permitting process. Midwest Generation, LLC valued the opportunity to hear and consider the comments of community members and others who participated in the public meetings. At this time, Midwest Generation is proceeding with the proposal for retrofitting the Bypass Basin and closing the Former Ash Basin in-place as presented at the public meetings. Taking public comments into consideration, the current analysis continues to indicate that the proposed plan – which remains subject to regulatory review and approval – prioritizes the environment and community well-being.

				The Illinois Environmental Protection Agency is creating a listserv for the
				facility. Would you like us to transmit
				your email address to the Agency to be
Timestamp	Email Address	Name	What is your home city?	added to the listserv?
		Virtua		
5/18/2022 16:37:26	kg@nijmanfranzetti.com	Kristen Gale	La Grange	Yes
5/18/2022 18:02:59	kcourtney@elpc.org	Kiana Courtney	Chicago	Yes
5/19/2022 10:04:22	fbugel@gmail.com	Faith E Bugel	Wilmette	Yes
5/19/2022 12:03:21	ryan.hidden+NRG@sierraclub.org	Ryan Hidden	Peoria	Yes
5/19/2022 12:18:59	ewatkins@forgen.com	Emily Watkins	Point Pleasant	Yes
5/19/2022 15:46:20	hannahlee.flath@sierraclub.org	Hannah Flath	Chicago	Yes
5/20/2022 9:22:13	logan@iuoe649.org	Luke Ogan	Bloomington	Yes
5/23/2022 12:52:40	tsshel1@ilstu.edu	Tim Shelley	Peoria	Yes
		In-Perse	on	
5/18/2022	rowe@bradley.edu	Robert Rowe	Peoria	No
5/18/2022	johnwosik@outlook.com	John Wosik	Dunlap	No
5/18/2022	jestpn@aol.com	Diane Jorgensen	East Peoria	No
5/18/2022	johchoices@hotmail.com	Joyce Harnett	Pekin	Yes
5/18/2022		Dave Grooms	Pleasant Baine?	No
5/18/2022	jobluem@yahoo.com	Joyce Bluemshine	Peoria	No
5/18/2022	jdickson@comcast.net	Jeff Dickson	Green Valley	No
5/19/2022		Lawrence Farlington	Pekin	No
5/19/2022		Joseph Kotas	Aurora	No
5/19/2022	petalnrose@gmail.com	Robin Nolting	Pekin	Yes
5/19/2022	jestpr@aol.com	Bob Jorgensen	East Peoria	Yes
5/19/2022	nclong405@yahoo.com	Nancy Long	Peoria	Yes
5/19/2022	moseynme@mtco.com	David Grebner	Peoria Heights	No