-	R 1	Illinois Environmental Protection Agency						
		CCR Residual Surface Impoundment Permit Application						
	CCR Form 1 – General Provisions							
Bu	reau of	Water ID Number:	For IE	PA Use Only				
а								
CC	R Perm	it Number:						
Fa	cility Na	ime'						
Facility Name:								
	SEC	TION 1: FACILITY, OPERATOR, A		INFORMATION (35 IA	AC 845.210(b))			
	1.1	Facility Name						
		Jolie	Joliet #9 Generating Station					
	1.2	Illinois EPA CCR Permit Number (if a	Illinois EPA CCR Permit Number (if applicable)					
		Initial Permit						
	1.3	Facility Contact Information						
n		Name (first and last)	Title		Phone Number			
natic		DeAndre Cooley	Environm	ental Specialist	779-279-2321			
and Owner Information		Email address DeAndre.Cooley@NRG.com						
vner	1.4	Facility Mailing Address						
лО р		Street or P.O. box						
		1800 Channahon Road	b					
Facility, Operator,		City or town	State		Zip Code			
Ope	4.5	Joliet	Illinois		60436			
ility,	1.5	Facility Location						
Fac		Street, route number, or other specific identifier 1601 Patterson Road						
		County name	County code	(if known)				
		Will						
		City or town	State		Zip Code			
		Joliet	Illinois		60436			
	1.6	Name of Owner/Operator						
		Midwest Generation, LLC						

lfo	1.7	Owner/Operator Contact Information					
Facility, Operator, and Owner Info		Name (first and last) William Naglosky	Title Plant Manag	jer	Phone Number 815-207-5412		
or, and (Email address william.naglosky@nrg.com					
erato	1.8	Owner/Operator Mailing Address					
llity, Op		Street or P.O. box 804 Carnegie Center					
Faci		City or town Princeton	State Ne	w Jersey	Zip Code 08540		
		SECTION 2: LEGAL D	ESCRIPTION (35 IA	C 845.210(c))			
tion	2.1	Legal Description of the facility bounda	ary				
Legal Description		on Road, and ly east quarter of	ist Quarter of Section ing north of the north Section 29, all in , in Will County, IL				
	SECT	ION 3: PUBLICLY ACCESSIBLE IN	NTERNET SITE RE	QUIREMENTS (35 IAC 845.810)		
	3.1	Web Address(es) to publicly accessible internet site(s) (CCR website)					
0		https://midwestgenerationllc.com/illinois-ccr-rule-compliance-data-and-information/					
nternet Site							
Internet Site	3.2	Is/are the website(s) titled "Illinois CCF	R Rule Compliance Da	ita and Information	1"		
Internet Site	3.2	Is/are the website(s) titled "Illinois CCF	R Rule Compliance Da	ata and Information)" 		
Internet Site	3.2	Is/are the website(s) titled "Illinois CCF	lo		1"		
	3.2	Is/are the website(s) titled "Illinois CCF	lo UNDMENT IDENTII numbers for your faci	FICATION			
		Is/are the website(s) titled "Illinois CCF Yes N SECTION 4: IMPO List all the Impoundment Identification	lo UNDMENT IDENTI numbers for your faci en description for eac	FICATION	corresponding box to		
		Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	lo UNDMENT IDENTII numbers for your faci en description for eac	FICATION lity and check the h impoundment.	corresponding box to description		
		Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	lo UNDMENT IDENTII numbers for your faci en description for eac	FICATION lity and check the h impoundment. Attached writter	corresponding box to description		
		Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	lo UNDMENT IDENTII numbers for your faci en description for eac	FICATION lity and check the h impoundment. Attached writter Attached writter	corresponding box to description description		
		Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	lo UNDMENT IDENTII numbers for your faci en description for eac	FICATION lity and check the h impoundment. Attached writter Attached writter Attached writter Attached writter Attached writter	corresponding box to description description description description description		
Impoundment Identification		Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	lo UNDMENT IDENTII numbers for your faci en description for eac	FICATION lity and check the h impoundment. Attached writter Attached writter Attached writter Attached writter	corresponding box to description description description description description description		

Form CCR 2E

Illinois Environmental Protection Agency

CCR Surface Impoundment Permit Application Form CCR 2E – Initial Operating Permit for Existing or Inactive CCR

Surface Impoundments That Have Not Completed an Agency-approved Closure Before July 30, 2021

Bureau of Water ID Number:

CCR Permit Number:

Facility Name:

For IEPA Use Only

SECTION 1: CONSTRUCTION HISTORY (35 III. Adm. Code 845.220 AND 35 III. Adm. Code 845.230)

	1.1	CCR surface impoundment name.		
		Lincoln Stone Quarry		
	1.2	Identification number of the CCR surface impoundment (if one has been assigned by the Agency).		
		W1970450046-01		
	1.3	Description of the boundaries of the CCR surface impoundment (35 III. Adm. Code 845.210(c)).		
Construction History		That part of the Southeast Quarter of Section 20, and the Northeast Quarter of Section 29, Lying south of Patterson Road, West of Brandon Road, and lying north of the north line of the South 233' of the North half of the Northeast quarter of Section 29, all in Township 35 North, Range 10 East of the third Principal meridian, in Will County, IL		
Ictio	1.4	State the purpose for which the CCR surface impoundment is being used.		
Constru		Used as a disposal facility for bottom ash/boiler slag from Joliet #9 and Joliet #29 generating stations.		
	1.5	How long has the CCR surface impoundment been in operation?		
		Exact construction date is unknown. The Lincoln Stone Quarry has been operating as a surface impoundment since 1962		
	1.6	List the types of CCR that have been placed in the CCR surface impoundment.		
		Bottom ash and boiler slag		

	1.7	List name of the watershed within which the CCR surface impoundment is located.			
Construction History (Continued)		Des Plaines watershed			
	1.8	Size in acres of the watershed within which the CCR surface impoundment is located.			
		28,808 acres			
	1.9	Check the corresponding box to indicate that you have attached the following:			
		Description of the physical and engineering properties of the foundation and abutment materials on which the CCR surface impoundment is constructed.			
		Description of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR surface impoundment.			
		Describe the method of site preparation and construction of each zone of the CCR surface impoundment.			
		A listing of the approximate dates of construction of each successive stage of construction of the CCR surface impoundment.			
		Drawing satisfying the requirements of 35 III. Adm. Code 845.220(a)(1)(F).			
		Description of the type, purpose, and location of existing instrumentation.			
tion		Area capacity curves for the CCR Impoundment.			
nstruc		Description of each spillway and diversion design features and capacities and provide the calculations used in their determination.			
ö		Construction specifications and provisions for surveillance, maintenance, and repair of the CCR surface impoundment.			
	1.10.1	Is there any record or knowledge of structural instability of the CCR surface impoundment?			
		Yes Ves No			
	1.10.2	If you answered yes to Item 1.10.1, provide detailed explanation of the structural instability.			
		N 2: ANALYSIS OF CHEMICAL CONSTITUENTS (35 III. Adm. Code 845.230(d)(2)(B))			
ents	2.1	Check the corresponding boxes to indicate you have attached the following:			
Constituents		An analysis of the chemical constituents found within the CCR to be placed in the CCR surface impoundment.			
Co		An analysis of the chemical constituents of all waste streams, chemical additives and sorbent materials entering or contained in the CCR surface impoundment.			

	SECTION 3: DEMONSTRATIONS AND CERTIFICATIONS (35 III. Adm. Code 845.230(d)(2)(D))							
	3.1	Indicate whether you have attached a demonstration that the CCR surface impoundment, as built, meets, or an explanation of how the CCR surface impoundments fails to meet, the location standards in the following sections:						
Demonstrations			Adm. Code 845.300 (Placement Above permost Aquifer)		Demonstration		Explanation	
stra		35 III. A	Adm. Code 845.310 (Wetlands)	\checkmark	Demonstration		Explanation	
nom		35 III. A	Adm. Code 845.320 (Fault Areas)	\checkmark	Demonstration		Explanation	
De		35 III. A Zones	Adm. Code 845.330 (Seismic Impact)	\checkmark	Demonstration		Explanation	
			Adm. Code 845.340 (Unstable Areas oodplains)	\checkmark	Demonstration		Explanation	
			SECTION 4: ATTA	СНМЕ	NTS			
	4.1	Check	the corresponding boxes to indicate that	you hav	ve attached the follow	ving:		
		\checkmark	Evidence that the permanent markers required by 35 III. Adm. Code 845.130 have been installed.					
		\checkmark			oundment, if not incised, will be operated and protection specified in 35 III. Adm. Code 845.430.			
	Initial Emergency Action Plan and accompanying certification required b 845.520(e).						5 III. Adm. Code	
ents		Adm. Code						
hme		Preliminary written closure plan as specified in 35 III. Adm. Code 845.720(a).						
Step Preliminary written closure plan as specified in 35 III. Adm Initial written post-closure care plan as specified in 35 III. Adm					d in 35 III. Adm. Code	e 845.78	30(d), if applicable.	
			hat the CCR surface dm. Code					
		\checkmark	History of known exceedances of the groundwater protection standards in 35 III. Adm. Code 845.600, and any corrective action taken to remediate the groundwater.					
		\checkmark	Safety and health plan, as required by 35 III. Adm. Code 845.530.					
		\checkmark	For CCR surface impoundments required to close under 35 III. Adm. Code 845.700, the proposed closure priority categorization required by 35 III. Adm. Code 845.700(g).					
			SECTION 5: GROUNDWA	TER M	ONITORING			
Groundwater	5.1	Check informa	the corresponding boxes to indicate you ation:	have at	tached the following	groundv	vater monitoring	
vpun		\checkmark	A hydrogeologic site characterization m	eeting t	he requirements of 3	5 III. Ad	m. Code 845.620.	
Gro	Design and construction plans of a groundwater monitoring system meeting the require of 35 III. Adm. Code 845.630.						the requirements	

			A groundwater sampling and analysis program that includes section of the statistical procedures to be used for evaluating groundwater monitoring data, required by 35 III. Adm. Code 845.640. Proposed groundwater monitoring program that includes a minimum of eight independent samples for each background and downgradient well, required by 35 III. Adm. Code
			845.650(b).
			SECTION 6: CERTIFICATIONS
	6.1	Check	the corresponding boxes to indicate you have attached the following certifications:
S		\checkmark	A certification that the owner or operator meets the financial assurance requirements of Subpart I, as required by 35 III. Adm. Code 845.230(d)(2)(N).
Certifications			Hazard potential classification assessment and accompanying certifications required by 35 III. Adm. Code 845.440(a)(2).
Certif		\checkmark	Structural stability assessment and accompanying certification, required by 35 III. Adm. Code 845.450(c).
		\checkmark	Safety factor assessment and accompanying certification, as required by 35 III. Adm. Code 845.460(b).
		\checkmark	Inflow design flood control system plan and accompanying certification, as required by 35 III. Adm. Code 845.510(c)(3).

KPRG and Associates, Inc.

APPLICATION FOR INITIAL OPERATING PERMIT

JOLIET #9 GENERATING STATION MIDWEST GENERATION, LLC JOLIET, ILLINOIS

Illinois EPA Site No. 1970450046

October 29, 2021

Submitted To:

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Prepared For:

Midwest Generation, LLC Patterson Rd. Joliet, IL 60436

Prepared By:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

Table of Contents

Introduction	1
1.0 History of Construction, 845.230(d)(2)(A)	
1.1 CCR Surface Impoundment Identifying Information	3
1.2 Purpose of CCR Surface Impoundment	3
1.3 CCR Surface Impoundment Length of Operation	3
1.4 Type of CCR in Surface Impoundment	
1.5 Name and Size of the Watershed	3
1.6 Description of CCR Surface Impoundment Foundation	4
1.6.1 Physical Properties of Foundation Materials	4
1.6.2 Engineering Properties of Foundation Materials	4
1.7 Description of the Construction Materials, Methods, and Dates	5
1.7.1 Physical and Engineering Properties of Construction Materials	5
1.7.2 Construction Methods	5
1.7.3 Construction Dates	6
1.8 Detailed Dimensional Drawings	6
1.9 Instrumentation	6
1.10 Area-Capacity Curve	6
1.11 Spillway and Diversion Capacities and Calculations	7
1.12 Surveillance, Maintenance, and Repair Construction Specifications	7
1.13 Record of Structural Instability	7
2.0 CCR Chemical Constituents Analysis, 845.230(d)(2)(B)	7
3.0 Chemical Constituents Analysis of Other Waste Streams, 845.230(d)(2)(C)	
4.0 Location Standards Demonstration, 845.230(d)(2)(D)	8
4.1 Placement Above the Uppermost Aquifer	8
4.2 Wetlands	8
4.3 Fault Areas	9
4.4 Seismic Impact Zones	9
4.5 Unstable Areas	9
4.6 Floodplains	9
5.0 Permanent Markers, 845.230(d)(2)(E)	9
6.0 Incised/Slope Protection Documentation, 845.230(d)(2)(E)	9
7.0 Emergency Action Plan, 845.230(d)(2)(G)	
8.0 Fugitive Dust Control Plan, 845.230(d)(2)(H)	.10
9.0 Groundwater Monitoring Information, 845.230(d)(2)(H)	
9.1 Hydrogeologic Site Characterization (845.230(d)(2)(I)(i)	.10
9.1.1 Geology	.10
9.1.2 Hydrogeology	.12
9.2 Groundwater Monitoring System Design and Construction Plan (845.230(d)(2)(H)(ii)	.17
9.3 Groundwater Sampling and Analysis Program (845.230)(d)(2)(I)(iii)	.17
9.3.1 Sample Frequency	.17
9.3.2 Sampling Preparation and Calibrations	
9.3.3 Groundwater Sample Collection	.19

9.3.4 Equipment Decontamination	20
9.3.5 Sample Preservation, Chain-of-Custody and Shipment	20
9.3.6 Analytical Methods	21
9.3.7 Quality Assurance and Quality Control	21
9.3.8 Statistical Methods	22
9.4 Groundwater Monitoring Program Section (845.230)(d)(2)(I)(iv)	22
10.0 Written Closure Plan, 845.230(d)(2)(J)	23
11.0 Post-Closure Care Plan, 845.230(d)(2)(K)	24
12.0 Liner Certification, 845.230(d)(2)(L)	24
13.0 History of Known Exceedances, 845.230(d)(2)(M)	24
14.0 Financial Assurance, 845.230(d)(2)(N)	25
15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440	25
16.0 Structural Stability Assessment, 845.230(d)(2)(P) & 845.450	25
17.0 Safety Factor Assessment, 845.230(d)(2)(Q) & 845.460(b)	26
18.0 Inflow Design Flood Control System Plan, 845.230(d)(2)(R) & 845.510(c)(3)	26
19.0 Safety and Health Plan, 845.230(d)(2)(S) & 845.530	26
20.0 Closure Priority Categorization, 845.230(d)(2)(T) & 845.700(g)	26

TABLES

Table 2 LSQ CCR Chemical Constituents Analytical Results

Table 9-1 Summary of Local Precipitation Data

Table 9-2 Groundwater Elevations

Table 9-3 Hydraulic Gradient, Direction and Seepage Velocity

 Table 9-4 CCR Groundwater Data

Table 9-5 Turbidity Measurements

Table 9-6 Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods

Table 9-7 Proposed Groundwater Protection Standards

FIGURES

Figure 1 Area-Capacity Curve Figure 9-1 Site Map Figure 9-2 Cross-Section A-A' Figure 9-3 Cross-Section B-B' Figure 9-4 Cross-Section C-C' Figure 9-5 Groundwater Flow Map 3Q2020 Figure 9-6 Groundwater Flow Map 4Q2020 Figure 9-7 Groundwater Flow Map 1Q2021 Figure 9-8 Groundwater Flow Map 2Q2021 Figure 9-9 Shallow Zone Map 3Q2020 Figure 9-10 Shallow Zone Map 4Q2020 Figure 9-11 Shallow Zone Map 1Q2021 Figure 9-12 Shallow Zone Map 2Q2021 Figure 9-13 Deep Zone Flow Map 3Q2020 Figure 9-14 Deep Zone Flow Map 4Q2020 Figure 9-15 Deep Zone Flow Map 1Q2021

Figure 9-16 Deep Zone Flow Map 2Q2021 Figure 9-17 Groundwater Management Zone Figure 9-18 Potable Well Map

ATTACHMENTS

- Attachment 1 History of Construction
- Attachment 2-1 CCR Laboratory Data Package
- Attachment 2-2 LSQ/WFA P105 Piezometer Leachate Chemistry Data
- Attachment 3-1 2015 Flow Diagram
- Attachment 3-2 Joliet #29 Flow Diagram
- Attachment 3-3 2019 Flow Diagram
- Attachment 4 Locations Determinations
- Attachment 5 Signage Documentation
- Attachment 6 No Attachment
- Attachment 7 Emergency Action Plan
- Attachment 8 Fugitive Dust Control Plan
- Attachment 9-1 Boring Logs
- Attachment 9-2 Time vs Concentration Curves
- Attachment 9-3 IL PE Stamp
- Attachment 9-4 CCR Compliance Statistical Approach
- Attachment 9-5 Statistical Evaluation Summary
- Attachment 10 Closure Plan
- Attachment 11 Post-Closure Plan
- Attachment 12 Liner Certification Calculations
- Attachment 13 No Attachment
- Attachment 14 Financial Assurance Certification
- Attachment 15 No Attachment
- Attachment 16 No Attachment
- Attachment 17 No Attachment
- Attachment 18 Inflow Design Report
- Attachment 19 Safety and Health Plan
- Attachment 20 No Attachment

Introduction

Midwest Generation, LLC (Midwest Generation) currently operates the natural gas-fired generating station, referred to as Joliet #9 Station, located in Joliet, Illinois ("Site" or "generating station"). Midwest Generation converted the generating station from coal to natural gas in 2016. As part of the previous coal-fired operations, the station operated Lincoln Stone Quarry (LSQ) to manage/store the coal combustion residuals (CCR) created at the generating station as part of the electricity generating process. LSQ consists of an inactive West Filled Area (WFA), the formerly active Main Quarry, and the North Quarry. Decant water from the Main Quarry is gravity drained to the North Quarry. The North Quarry is not used to manage/store CCR but rather as a settling pond that is used to treat the water discharged from the Main Quarry.

The CCR from the generating station was sluiced into LSQ, where it was temporarily contained, the CCR settled from the sluice water, and the sluice water was ultimately discharged via the North Quarry settling pond to the Des Plaines River through an existing NPDES permit. After the sluice water and wastewater was discharged, the CCR remained within LSQ. LSQ was also used to manage low volume wastewater from the generating station at the same time it was used to manage CCR. LSQ stopped receiving CCR and low volume wastewater in 2019 and neither CCR or low volume wastewater is currently being sent to LSQ.

The LSQ is operated and permitted as a landfill regulated by Illinois Environmental Protection Agency (EPA) Bureau of Land under 35 Ill. Adm. Code, Subtitle G, Part 811. It has been permitted as a landfill since approximately 1976. The operations are still subject to the conditions and requirements of its landfill Operating Permit No. 1994-241-LFM Modification No. 24. In 2015, the LSQ was also determined to be regulated under the newly passed Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94 and 257.95 Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule) and subsequent amendments. The LSQ operations also fall under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule).

The objective of this submittal is to apply for the initial operating permit for Lincoln Stone Quarry at the Joliet #9 Generating Station to continue operating LSQ in compliance with Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments. The information required for an initial operating permit application for existing surface impoundments as specified under 35 Ill. Adm. Code 845.230(d) of the State CCR Rule is provided in the following sections.

The Permit is organized with supporting Tables and Figures that are referenced in the discussions being provided at the end of the full Permit text with the table numbers and figures tied to the Section number within which they are referenced with sequential numbering (e.g., Tables referenced in Section 9 are numbered 9-1, 9-2, etc. Figures referenced in Section 9 are numbered Figure 9-1, 9-2, etc.). Specific Attachments referenced within each Section are provided in a similar fashion (e.g., Attachment 1 information is tied to Section 1 of the Permit text, Attachment 2 information is tied to Section 2 of the Permit text, etc.). It should be noted that if Section does not reference an Attachment then that Attachment number is not included as part of the permit

application. For example, Section 13 does not reference an Attachment; therefore, there is no Attachment 13 support documentation in this permit application.

1.0 History of Construction, 845.230(d)(2)(A)

The history of construction of the CCR surface impoundment as specified in Section 845.220(a)(1) is presented below.

1.1 CCR Surface Impoundment Identifying Information

The identifying information associated with the CCR surface impoundments at the generating station are listed in the table below.

Name	Owner/Operator	Impoundment ID Number
Lincoln Stone Quarry	Midwest Generation 804 Carnegie Center Princeton, NJ 08540	W1970450046-01

1.2 Purpose of CCR Surface Impoundment

The Lincoln Stone Quarry has been used as a disposal facility for bottom ash/boiler slag from Joliet #9 and Joliet #29 Generating Stations. The disposal facility consists of an inactive portion, the West Filled Area (WFA), and the active CCR disposal area referred to as the Main Quarry. The North Quarry contains a settling pond that is used to treat the water discharged from the Main Quarry. LSQ is no longer in service with the last ash being placed in 2019 and will not be used in the future for CCR disposal.

1.3 CCR Surface Impoundment Length of Operation

The exact date of construction for the LSQ in unknown. The LSQ has been operating as a surface impoundment since 1962 when the WFA was being used for ash placement. As of 1975, the WFA had been closed and the Main Quarry was used for the disposal of CCR until 2019. The CCR sluicing system was decommissioned in 2016. Based on an operations start date of 1962, the overall quarry operated for CCR disposal for approximately 57 years. The North Quarry was never used to manage or store CCR. A Notice of Intent to Initiate Closure of the LSQ was submitted on March 24, 2021 by Midwest Generation.

<u>1.4 Type of CCR in Surface Impoundment</u>

The types of CCR present in the LSQ are bottom ash and boiler slag. Some fly ash may also have been placed into the WFA during early operations. The chemical constituents that make up the CCR is explained in further detail in Section 2.0.

1.5 Name and Size of the Watershed

LSQ is present within the Des Plaines River watershed, which is approximately 28,808 acres in size.

1.6 Description of CCR Surface Impoundment Foundation

This section focuses on the WFA and the Main Quarry because they were used to manage and store CCR. LSQ is a former dolomite quarry and site observations and topographic documents show LSQ is incised on all sides. The surrounding ground elevation of the WFA and the Main Quarry is at approximately 590-600 ft above mean sea level (ft amsl) with the base of the Main Quarry ranging from 510 ft amsl to a low point of 477 ft amsl, and the base of the WFA at approximately 480 ft amsl. The surrounding walls of LSQ are Silurian Dolomite bedrock, which is topped with overburden soil. The overburden ranges from approximately 5 feet in thickness to 20 feet in thickness as the ground elevations increase to the south, west, and east. The overburden to the north, remains at a relatively constant elevation because Patterson Road is constructed adjacent to LSQ. The Silurian Dolomite extends from below the overburden soil to the base of the LSQ and at least 50 feet below the base of LSQ.

1.6.1 Physical Properties of Foundation Materials

The physical properties of the foundation materials in which LSQ exists is Silurian Dolomite, which is underlain by the Maquoketa group bedrock. The Silurian dolomite is divided into four units; a weathered bedrock rind, Joliet Formation dolomite, Kankakee Formation dolomite and the Elwood/Wilhelmi dolomite. Beneath the Silurian dolomite is the Ordovician age Maquoketa Group consisting of the Brainard Shale, Fort Atkinson dolomite and the Scales Shale. The Scales Shale is a well-documented regional aquitard, which separates shallow groundwater within the Silurian Dolomite from the deeper aquifers.

The dolomite beneath the facility is divided into a "shallow" Silurian zone and a "deep" Ordovician zone. A "lower permeability" zone identified, as the Brainard Shale (approximately 10-feet thick) separates these two more permeable zones. The lower permeability zone is mappable across the site and has been used by the Illinois State Geological Survey (ISGS) as a tracer bed.

The shallow zone dolomite is about 140 to 150 feet thick. This places the bottom of the shallow zone and top of the lower permeability zone (Brainard Shale) at an elevation of approximately 430 to 440 feet msl. The thickness between the top and the bottom of the Brainard Shale is approximately 10 feet, with its base at an elevation between about 420 to 430 feet msl. The deep zone is 30 to 40 feet thick, so the boundary between the deep zone and the underlying Scales Shale member of the Maquoketa group is at an elevation of approximately 380 to 400 feet msl. As previously noted, the deepest portions of the bottom of LSQ lie at an elevation of approximately 477 feet msl, which is within the shallow Silurian dolomite zone and above the Brainard Shale low permeability zone.

1.6.2 Engineering Properties of Foundation Materials

The engineering properties for the foundation materials were obtained from regional and sitespecific data (Harza Engineering (1976), MACTEC (2004)) that document fractures in the Silurian dolomite. Site-specific and regional data are consistent in describing a primary joint set that is vertical and oriented about N52°E and N40°W. The N40°W joints are described as "more distinct". Natural spacing between the joint sets ranges from 3 to more than 10 feet, and joint apertures are described as less than 1/16th-inch. Bedding plane fractures are also described. Descriptions from the quarry walls and from cores obtained during drilling show significant clay infilling of the vertical joints and bedding plane fractures. Borings completed in 2005/2006 by KPRG and Associates, Inc. (KPRG) for monitoring wells G46S/D, G47S/D and G48S/D were cored using HQ-series core barrels. Estimates of the Rock Quality Designation (RQD) were made for the dolomite based on visual inspection and measurements of the cores. The RQD is a measure that determines the quality of rock and is used as part of the early site evaluation process when determining locations for engineered structures such as power facilities, underground tunnels, and dams. During the early site evaluation process, the RQD is used to determine any potential problems of bearing capacity, settlement, or sliding. The higher the RQD percentage, the more competent the rock and its ability to support structures, resist settlement and prevent sliding. The upper approximate 10 to 15 feet of Silurian dolomite was weathered and highly fractured with RQDs ranging from 16.5% to 34%. Once competent bedrock was reached, the RQDs within the Silurian dolomite ranged from a low of 15.4 % in an isolated, highly fractured zone to 100% with an overall average of 76.6% and median of 84.8%. An RQD greater than 75% is considered good and an RQD greater than 90% is considered excellent.

1.7 Description of the Construction Materials, Methods, and Dates

The descriptions of the construction materials, methods, and dates are based on site investigations, available site drawings, and site observations.

1.7.1 Physical and Engineering Properties of Construction Materials

LSQ is an incised surface impoundment with Silurian dolomite bedrock walls, so the physical and engineering properties of the construction materials for this section are the same as the physical and engineering properties of the foundation materials. As described in Section 1.6.1, the physical properties for the foundation materials were described as Silurian dolomite underlain by the Maquoketa group formation. The engineering properties are the same as those listed in Section 1.6.2. As discussed in Section 1.6.2, the RQD for the Silurian dolomite is identified as good with an overall average of 76.6% and a median of 84.8%.

1.7.2 Construction Methods

LSQ was created by the quarrying and removal of the dolomite from the area used regionally for construction purposes, with the resulting void now filled with CCR. The disposal boundary of the CCR is created by the vertical dolomite walls and the quarry floor that remained after the quarrying operations were completed. A wall of bedrock exists between the North Quarry and the Main Quarry on which Patterson Road is built upon. Approximately 115 feet of the bedrock wall between the Main Quarry and the North Quarry contains a dike constructed of compacted soil. The overall length of the bedrock wall between the North Quarry and the Main Quarry is approximately 1,800 feet long. This dike contains the discharge pipes that allows water to gravity drain from the Main Quarry into the North Quarry settling pond. The Main Quarry discharge pipes are flow controlled using manually activated valves to either increase or decrease the water level in the Main Quarry as needed. The discharged water enters the North Quarry settling pond from where it is pumped to the Des Plaines River through a NPDES regulated discharge.

The CCR was sluiced into the WFA and the Main Quarry through steel pipes that run along the surface. The sluiced CCR was initially sent to the WFA and then into the Main Quarry once the WFA was filled and covered with a clayey soil layer. Three CCR sluice pipes entered the LSQ property at the northwest corner where they separated and the CCR sluice pipe from the Joliet #9

generating station ran east along the ground to the northwest corner of the Main Quarry. The remaining two pipes from the Joliet #29 generating station ran south through the WFA and then turned east towards the southwest corner of the Main Quarry where they most recently discharged.

1.7.3 Construction Dates

The actual dates of the quarrying operation are unknown, but LSQ has been used as a surface impoundment for ash from 1962 until 2019. Therefore, the creation of the LSQ surface impoundment through mining is some time prior to 1962.

1.8 Detailed Dimensional Drawings

Detailed dimensional drawings are not available for LSQ. The drawing in Attachment 1 is an aerial survey of LSQ in 1975 that shows the closed WFA, the active sluicing area of the Main Quarry (south portion of Main Quarry), an east-west trending clay berm separating the north and south halves of the Main Quarry to facilitate ongoing mining operations on the north side from the sluicing operations on the south side, and the access through to the North Quarry.

1.9 Instrumentation

Water level monitoring instrumentation was installed in the northeast corner of the Main Quarry to monitor the water level within the Main Quarry. Included in the instrumentation is a pressure transducer, data logger, and radio antenna to transmit data to a website accessible by MWG. This same style of water level monitoring instrumentation was installed in Boyd's Quarry to monitor the water level differential between the two quarries. Boyd's Quarry is located immediately east of LSQ.

A groundwater extraction system was installed beginning in 2010 with the construction of four (4) extraction wells and expanded in 2012 with the construction of eight (8) additional extraction wells. The system was constructed along the southern perimeter of LSQ to address an observed reversal in groundwater flow to the southeast instead of towards the north, which is its natural flow direction and that required to be maintained by the landfill operating permit (i.e., inward gradient). As discussed in Section 9 below, the noted change in groundwater flow direction within the dolomite is the result of ongoing, unrelated quarrying operations at the Vulcan Laraway Quarry located approximately 1,000 feet to the southeast of the LSQ. The system was constructed in accordance with IEPA approved Permit Modification No. 12 (dated December 1, 2009), No. 16 (dated August 8, 2011), and No. 17 (dated July 2, 2012).

The objective of the groundwater extraction system is to establish a hydraulic trough between the Main Quarry/WFA and the south property boundary to sufficiently capture water moving from the facility to the south and to re-establish an inward hydraulic gradient from the south property boundary to the north. The groundwater extraction system discharges the groundwater into the Main Quarry where it is discharged through the NPDES regulated outfall.

1.10 Area-Capacity Curve

An area-capacity curve for LSQ is included as Figure 1.

1.11 Spillway and Diversion Capacities and Calculations

CCR is no longer sluiced into the Main Quarry at LSQ. Therefore, the discharge pipes from the Main Quarry to the North Quarry settling pond only have to manage the discharge from stormwater runoff that enters the Main Quarry. Stormwater runoff from the Main Quarry discharges through two (2) 20-inch diameter steel pipes into the North Quarry settling pond. From the settling pond, the water is discharged to the Des Plaines River using up to three discharge pumps capable of pumping at about 4,200 gallons per minute (gpm) each for a total pump rate of 12,600 gpm. The stormwater runoff volume from the 1,000-year, 24-hour flood is approximately 69.1 acre-feet (3,009,800 cubic feet) and a flow rate of about 15,600 gpm over 24 hours. The Main Quarry has a capacity of up to 1,400 acre-feet, indicating the Main Quarry has the capacity to contain the 1,000-year, 24-hour flood without exceeding the capacity of the settling pond and the settling pond pumps.

1.12 Surveillance, Maintenance, and Repair Construction Specifications

Specifications for the surveillance, maintenance, and repair associated with LSQ were not available for this application. Repairs did occur as needed on the sluice pipes, but this consisted of removing the unsatisfactory section of pipe and replacing with the same size pipe. Specifications for this work were not available. The WFA soil cover is routinely inspected for any potential erosion and repairs are completed as necessary. The vegetation on the soil cover is also inspected to remove any deep-rooted growth and mowed as necessary.

1.13 Record of Structural Instability

There is no record or knowledge of structural instability associated with LSQ.

2.0 CCR Chemical Constituents Analysis, 845.230(d)(2)(B)

The bottom ash CCR that was sluiced to the Main Quarry was sampled and analyzed for the parameters listed in Section 845.600(a) except for total dissolved solids. One representative composite sample was collected from ash sluiced from the Joliet #9 generating station and one from the ash sluiced from the Joliet #29 generating station. The results of those analyses are presented in Table 2. The laboratory data package is included in Attachment 2-1.

A piezometer located within the WFA (P105) was sampled quarterly in 2012 for chemical analysis of landfill permit parameters. This data was used to provide leachate chemistry data for subsequent numerical groundwater modeling in support of the Groundwater Impact Assessment (GIA) and landfill operating permit renewal. The summary table of that quarterly sampling data is included in Attachment 2-2.

3.0 Chemical Constituents Analysis of Other Waste Streams, 845.230(d)(2)(C)

The other waste streams that entered LSQ when it was in service were discharges from the Joliet #29 sand filter backwash, the Joliet #29 west area basin, the Joliet #29 former coal pile runoff, Joliet #9 sand filter backwash, Joliet #9 coal pile and switch yard runoff, and the discharge from the LSQ groundwater extraction system (see Section 1.9). The Joliet #9 Flow Diagram from 2015 is included in Attachment 3-1 to show the discharges to LSQ prior to the Joliet #9 generating station's conversion to natural gas. The Joliet #29 Flow Diagram is included in Attachment 3-2. All of the water flow processes and stormwater flow contain total suspended solids (TSS) which can include sand sized and smaller sized particles. Once the Joliet #29 and Joliet #9 generating stations were converted to natural gas, the active placement of non-CCR waste streams into LSQ ceased, except for the discharge from the groundwater extraction system will continue to operate in accordance with an Interim Corrective Action approved as part of LSQ's landfill operating permit 1994-241-LFM. Attachment 3-3 contains the Joliet #9 Flow Diagram from 2019 when it was revised after the Joliet #9 generating station's conversion to natural gas.

4.0 Location Standards Demonstration, 845.230(d)(2)(D)

4.1 Placement Above the Uppermost Aquifer

According to the Location Restrictions Compliance Demonstration performed by KPRG and Associates, Inc (KPRG) in October of 2018, "the base of the Quarry is elevation 501 ft amsl and the upper limit groundwater elevation is 555.35 ft amsl. The Quarry is not separated from the upper limit of the uppermost aquifer by a minimum of five (5) feet". Therefore, the location of the Lincoln Stone Quarry does not comply with Section 845.300. This determination is still valid and is included in Attachment 4.

4.2 Wetlands

According to the Location Restrictions Compliance Demonstration performed by KPRG in October of 2018, site visits to the Quarry did not identify any wetlands around the perimeter of the Quarry that would indicate if wetlands were present prior to the mining of the Quarry. The national wetlands inventory (NWI) and the Will County Geographical Information System (GIS) Data Viewer were viewed to identify the presence of wetlands around the Quarry. Neither the NWI nor the Will County GIS Data Viewer identified wetlands around the Quarry, but the NWI did identify wetlands located inside the Quarry. The noted NWI observation of a wetland within the quarry was based on aerial photograph interpretations of standing, ponded water within the quarry. Since the presence of that water is an operational issue, the potential identification of a wetland within the quarry is not valid. Based on this evaluation, the Quarry is not located in a wetland and the demonstration included in Attachment 4 is valid.

4.3 Fault Areas

According to the Location Restrictions Compliance Demonstration performed by KPRG in October of 2018, "the Quarry is not located within 200 feet (60 meters) of a mapped Holoceneaged fault, as mapped by the United States Geological Survey (USGS) Quaternary Fault Database [USGS, 2018]". Therefore, the location of the Lincoln Stone Quarry complies with Section 845.320. This determination is still valid and is included in Attachment 4.

4.4 Seismic Impact Zones

According to the Location Restrictions Compliance Demonstration performed by KPRG in October of 2018, "the Quarry complies with the location requirement" of Section 845.330 "and is not located in a seismic impact zone". This determination is still valid and is included in Attachment 4.

4.5 Unstable Areas

According to the Location Restrictions Compliance Demonstration performed by KPRG in October of 2018, "the Quarry is not located in unstable areas". Therefore, the location of the Lincoln Stone Quarry complies with Section 845.340. This determination is still valid and is included in Attachment 4.

4.6 Floodplains

LSQ is not located in a floodplain according to the FIRM Flood Insurance Rate Map, Will County, Illinois and Incorporated Areas Panel 280 of 585, Map No. 1719C0280 E, effective date September 6, 1995 as mapped by the Federal Emergency Management Agency. Therefore, the location of LSQ complies with Section 845.340. The relevant FIRM is located in Attachment 4.

5.0 Permanent Markers, 845.230(d)(2)(E)

The permanent marker in accordance with 35 Ill. Adm Code 845.130 has been installed. Photographic documentation of this requirement is included in Attachment 5.

6.0 Incised/Slope Protection Documentation, 845.230(d)(2)(E)

LSQ is an incised surface impoundment, thus this requirement is not applicable. The surrounding elevation is at a greater elevation, approximately 600 ft above mean sea level (ft amsl), compared to the bottom of LSQ, elevation approximately 477-510 ft amsl.

7.0 Emergency Action Plan, 845.230(d)(2)(G)

The Emergency Action Plan is included in Attachment 7. The plan was developed in June 2015 by KPRG and was reviewed and updated for compliance with Section 845.520. In accordance with 845.520(e), a certification of compliance is included in Attachment 7.

8.0 Fugitive Dust Control Plan, 845.230(d)(2)(H)

The Fugitive Dust Plan is included in Attachment 8. This plan was updated in June 2016 to reflect the operational change to a natural gas fired electrical generating plant from coal-fired. This plan was reviewed and updated by KPRG for compliance with this section and is compliant.

9.0 Groundwater Monitoring Information, 845.230(d)(2)(H)

9.1 Hydrogeologic Site Characterization (845.230(d)(2)(I)(i)

The following subsections provide information on the geology and hydrogeology of the site as required under Section 845.620(b). Site geology and hydrogeology are discussed separately below. Referenced Tables and Figures are provided at the end of this report. Other supporting documentation is provided with the referenced Attachment.

9.1.1 Geology

The physiography of Will County is made up of ground moraines, end moraines, outwash plains, stream terraces, flood plains and bogs. It is in the Till Plaines and Great Lakes Sections of the Central Lowland Province. Near surface soils in the vicinity of the subject impoundment include a variety of silt and silty clay loams. These soils are well to poorly drained. Organic content ranges from 0.02 to 7 percent (generally decreasing with depth) and have a negligible to slight accelerated erosion rate, a generally moderate to high corrosivity rate and a pH range from slightly acidic to slightly basic (4.5 to 8.4). Surface runoff class is low to medium (Soil Survey of Will County Illinois). Based on the Surficial Geology Map of the Chicago Region (ISGS Circular No. 460, 1971) the surficial deposits in the vicinity of the subject surface impoundment are identified as part of the Henry Formation which is generally described as sand and gravel with local beds of silt and/or exposed Silurian dolomite bedrock.

The general stratigraphy in the area consists of unconsolidated glacial deposits, which overlay Silurian dolomite. The Silurian dolomite is underlain by the Maquoketa Group, which includes the Scales Shale, which is considered a regional aquitard separating the overlying Silurian dolomite from the deeper Cambro-Ordovician sandstone and limestone aquifers. Substantial hydrogeologic characterization was completed as part of groundwater quality assessment and landfill operating permit renewal submittals (the LSQ is currently operating as an Illinois EPA licensed landfill Permit No. 1994-241-LFM, Modification No. 24). Boring logs from monitoring wells around the Lincoln Stone Quarry are provided in Attachment 9-1 and a site map showing the locations is provided on Figure 9-1. Based on an evaluation of this data, the following general site specific stratigraphy is defined and geologic cross-sections are provided as Figures 9-2 through 9-4.

Surface sediments in the area around the LSQ facility are comprised of approximately 20 to 30 feet of unconsolidated glacial overburden (this thickness may vary substantially across the site) that is underlain by Silurian-aged dolomite. The Silurian dolomite is divided into four units; a weathered bedrock rind, Joliet Formation dolomite, Kankakee Formation dolomite and the Elwood/Wilhelmi dolomite. Beneath the Silurian dolomite is the Ordovician age Maquoketa Group consisting of the Brainard Shale, Fort Atkinson dolomite and the Scales Shale. The Scales Shale is a recognized regional aquitard that hydraulically isolates the deeper bedrock aquifers from the shallower units.

Regional and site-specific data (Harza Engineering (1976), MACTEC (2004)) document fractures in the Silurian dolomite. Site-specific and regional data are consistent in describing a primary joint set that is vertical and oriented about N52°E and N40°W. The N40°W joints are described as "more distinct". Natural spacing between the joint sets ranges from 3 to more than 10 feet, and joint apertures are described as less than 1/16th -inch. Bedding plane fractures are also described. Descriptions from the quarry walls and from cores obtained during drilling show significant clay infilling of the vertical joints and bedding plane fractures. Evidence of water movement through fractures is interpreted from iron staining and mineralization (primarily calcite, with some pyrite and marcasite).

There is additional fracturing at the quarry wall and the fractures/joints tend to be more open at the wall. This is interpreted to be a localized phenomenon that is the result of the blasting and unloading from quarry operations. This effect does not appear to extend greater than about 10 or 15 feet away from the quarry wall.

The dolomite beneath the facility is divided into a "shallow" Silurian dolomite zone and a "deep" Ordovician dolomite zone. A "lower permeability" zone identified, as the Brainard Shale (approximately 10-feet thick) separates these two more permeable zones. The lower permeability zone is mappable across the site and has been used by the Illinois State Geological Survey (ISGS) as a tracer bed.

The shallow zone dolomite is about 140 to 150 feet thick. This places the bottom of the shallow zone and top of the lower permeability zone (Brainard Shale) at an elevation of approximately 430 to 440 feet msl. The thickness between the top and the bottom of the Brainard Shale is approximately 10 feet, with its base at an elevation between about 420 to 430 feet msl. The deep zone is 30 to 40 feet thick, so the boundary between the deep zone and the underlying Scales Shale member of the Maquoketa group is at an elevation of approximately 380 to 400 feet msl. The deepest portions of bottom of the Main Quarry lie at an elevation of approximately 477 feet msl, which is within the shallow Silurian dolomite zone and above the Brainard Shale low permeability zone.

Hydrogeologic evaluations have interpreted a horizon of higher permeability within the shallow Silurian dolomite. The higher permeability zone extends from approximately 500 feet msl down to approximately 430 feet msl, and is partially penetrated by LSQ. This interpretation is based on evidence of increased vuggy horizons logged from core samples, down-hole geophysical data obtained from boreholes on both the north and south sides of LSQ and an integration of all aquifer testing data from various studies which include packer tests and single well slug tests. This

increased permeability feature assists in the understanding and interpretation of existing groundwater flow conditions beneath the site.

Silurian dolomite is a calcium-magnesium carbonate rock that includes horizons of cherty (silica) nodules and is documented both regionally and locally to include mineralization along fractures and within vugs. The mineralization includes, but is not limited to calcite (calcium carbonate) and various sulfide minerals such as pyrite, marcasite, etc. As such, the presence of these minerals and associated weathering products can also be expected within the overlying unconsolidated materials.

There are no underground mines beneath the subject CCR surface impoundment.

9.1.2 Hydrogeology

Based on information from the Soil Survey of Will County, the average annual regional precipitation is approximately 37 inches with about 63% of that total falling between April and October of any given year. The average seasonal snowfall is approximately just over 10 inches. More local precipitation data is provided in Table 9-1.

Outside of remnant quarry ponds in the vicinity (e.g., Boyd's Quarry), the nearest natural surface water body is the Des Plaines River located to the north of the subject CCR unit (see Figure 9-1). This reach of river is further identified as the Lower Des Plaines River which starts upstream of the site at the confluence of the river with the Chicago Ship and Sanitary Canal (CSSC) at the E.J. & E railroad bridge (river mile 290.1). The CSSC is the main tributary to this segment of river contributing approximately 80% of the flow to the river. The segment of river adjacent to the subject site is part of the Dresden Island Pool which starts at the Brandon Road Lock and Dam (river mile 286) which is immediately upstream of the subject CCR surface impoundment. The Dresden Island Pool is 14 miles in length, approximately 800 feet wide with depth varying between 2 to 15 feet (Lower Des Plaines River Use Attainability Analysis Final Report, IEPA, December 2003). There are no drinking water intakes within the Dresden Island Pool and for that matter on any portion of the Des Plaines River downstream of the site (Meet Your Water – An Introduction to Understanding Drinking Water in Northeastern Illinois, Metropolitan Planning Council, 2017).

The water table beneath the site is encountered within the unconsolidated overburden and/or the upper portion of the shallow dolomite. There is sufficient potentiometric and chemical data from clustered piezometers around LSQ to indicate that the "shallow" dolomite zone and "deep" dolomite zone can be viewed as separate water bearing units. The intervening Brainard Shale is of sufficiently lower permeability that it impedes downward migration and mixing of the groundwater. The different groundwater flow patterns within the shallow and deep zones are discussed further below. The Scales Shale member of the Maquoketa Group, which defines the base of the deep zone of Ordovician dolomite, is widely accepted as a regional aquitard that hydraulically separates the groundwater of the overlying dolomite from deeper groundwater in the older Cambro-Ordovician sandstone and carbonate units beneath it.

Monitoring wells surrounding the LSQ include "WT-series" wells (water table), "S-series" wells (shallow dolomite) and "D-series" wells (deep dolomite). Natural groundwater flow in the area is from the south and east to the north and west. This flow pattern largely parallels surface drainage

from topographically high areas to the Des Plaines River and likely represents a topographically driven groundwater flow system. However, ongoing dewatering activities at the Laraway Quarry located approximately 1,000 feet to the southeast of the LSQ have resulted in a component of groundwater flow to the southeast within the "shallow" dolomite. Groundwater flow within each zone is discussed below. Water level measurements from monitoring wells which the subsequent flow map discussions are based are provided in Table 9-2.

Water Table (WT-Series Wells)

Water table maps for the 3rd and 4th Quarters 2020 and the 1st and 2nd Quarters 2021 are provided on Figures 9-5 through 9-8. These are based on water levels obtained from groundwater assessment monitoring wells installed as part of landfill permit studies which include screens that straddle the phreatic surface. The maps indicate that groundwater flow within the upper portion of the saturated zone is generally in a northerly and westerly direction. The near surface groundwater from the south and east of the site flows through the Main Quarry and WFA. This is consistent with the natural groundwater flow patterns defined as part of the initial landfill permit application. All four quarters show consistent patterns, which are also consistent with historical water table data.

Shallow Zone (S-Series Wells)

The potentiometric surface maps of the shallow zone dolomite for the 3rd and 4th Quarters 2020 and the 1st and 2nd Quarters 2021 are provided on Figures 9-9 through 9-12. The maps show generally lower heads than were mapped in 1993 when elevation data were first collected in support of landfill permit development. This is in part the natural result of wet conditions that existed during 1993 baseline data collection and in part the result of dewatering associated with the operations of Laraway Quarry, beginning circa 1997. In spite of the general decline in heads, the groundwater flow patterns north and west of the facility remain consistent with the 1993 flow patterns.

The south-southeasterly component of groundwater flow was defined along the south perimeter of the Joliet/Lincoln Stone Quarry facility that was not evident in 1993 data. This component of flow has been determined to be the result of unrelated, off-site dewatering activities associated with surface mining operations at Laraway Quarry, approximately 1,000 feet to the southeast of the Joliet/Lincoln Stone Quarry facility that began circa 1997. This change of natural flow conditions along the south side of the Joliet/Lincoln Stone Quarry facility was not observed in the water table conditions which were described above (i.e., groundwater flow at the water table elevations continued to flow from south to north, into the quarry). The noted change of natural flow within the shallow dolomite unit has been determined by hydrogeologic investigation work to be the result of a higher permeability horizon that exists at, and just beneath, the base of Joliet/Lincoln Stone Quarry (approximate lowest quarry base elevation of 477 feet msl) within the shallow dolomite. This zone is undergoing additional depressurization as a result of dewatering operations at Laraway Quarry located approximately 1,000 feet southeast of the site. This depressurization is allowing for a component of groundwater flow to move from Joliet/Lincoln Stone Quarry to the south-ast.

To address the south-southeasterly groundwater flow component within the shallow zone, a total of twelve extraction wells (X101 through X112) were installed. The first four extraction wells (X101 through X104) were installed during the February to April 2010 timeframe and this portion of the system was put into full operation on April 30, 2010. The remaining eight extraction wells (X105 through X112) were installed during the October 2011 through January 2012 timeframe and this portion of the system was put into full operation on February 16, 2012.

The hydraulic effects of the pumping system are clearly seen on the shallow zone potentiometric surface maps. A cone of depression has been established between south perimeter wells G48S, G47S, G46S, G38S and G39S and the Main Quarry/WFA. Groundwater from the south perimeter of the site is generally being drawn back to the north to the extraction well system. Water from the Main Quarry/WFA is also being intercepted by the extraction system. The extracted water is being discharged back into the Main Quarry.

In addition, Midwest Generation voluntarily implemented a program to replace any potable water wells to the southeast between the LSQ and Laraway Quarry which were screened within the Silurian dolomite with deeper water wells screened within the Cambro-Ordovician aquifers beneath the Scales Shale. The shallow dolomite wells were subsequently abandoned. This effectively removed any potential groundwater use receptors to the southeast that may have been effected by this artificially modified flow pattern.

Deep Zone (D-Series Wells)

The potentiometric surface maps for the deep zone dolomite for the 3rd and 4th Quarters 2020 and the 1st and 2nd Quarters 2021 are provided on Figures 9-13 through 9-16.

Groundwater flow within this zone is in a westerly direction. The overall flow patterns are generally consistent with historic conditions within the deep zone. Variations from earlier annual submittals during initial landfill permit development appear to be interpretive artifacts that are the result of variations in the number and distribution of control points for the maps, rather than changes in flow direction in the deep zone. For example, in 1993, there were only four monitoring points controlling the interpretation of the deep zone. There are now 13 wells within this zone providing a more detailed assessment.

Based on the above discussed geology/hydrogeology and as discussed further below, the groundwater monitoring network for the purposes of CCR unit monitoring is necessarily focused on the shallow dolomite zone (S-series wells). Table 9-3 provides a summary of the flow direction, gradient and an estimated rate of groundwater flow for each quarterly sampling event from the 3rd quarter 2020 through the 2nd quarter 2021. The flow rate was calculated using the following equation:

 $V_{s} = \frac{Kdh}{n_{e}dl}, \text{ where}$ $V_{s} \text{ is seepage velocity (distance/time)}$ K is hydraulic conductivity (distance/time) dh/dl is hydraulic gradient (unitless)

ne is effective porosity (unitless)

The average hydraulic conductivity of 1.38×10^{-5} ft/sec used in Table 9-3 was obtained from the Revised Groundwater Impact Assessment Lincoln Stone Quarry Landfill – Addendum to IEPA Application Logs 2004-052 and 2009-213 dated March 13, 2013. The estimated effective porosity of the aquifer materials (0.05) was also obtained from the above noted document.

At this time, based on the geology discussion in Section 9.1.1 and the site specific hydrogeology discussions above, the groundwater beneath the CCR surface impoundment is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Zone of Attenuation (ZOA) was established to the north of the LSQ as part of the initial landfill operating permit and a Groundwater Management Zone (GMZ) has been established to the south-southeast of the LSQ as part of the landfill permit renewal process and associated with the corrective action implemented in response to the component of groundwater flow moving to the southeast due to Laraway Quarry dewatering activities. The extent of the established ZOA and approved GMZ is provided on Figure 9-17.

A survey of all potable water sources within a 2,500 feet radius of the LSQ was completed. The following databases and sources of information were utilized in order to determine community water source and water well locations and construction in the vicinity of the ash pond wastewater treatment systems:

- Illinois State Geological Survey (ISGS) -Water Well Database Query;
- Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and
- Illinois Division of Public Water Supply web-based Geographic System (GIS) files;
- ILWATER

The survey results are provided on Figure 9-18. There are no wells within the impacted aquifer downgradient of the LSQ. There are two water wells to the west of LSQ on Joliet #9 Generation Station property (owned by Midwest Generation) both of which are screened within the deeper aquifers beneath the Scales Shale and have had a successful compliance record during sampling in accordance with the drinking water regulations. There are 19 water wells located to the east of LSQ and/or Boyd's Quarry. All of these wells are sidegradient of the LSQ and are screened within the Silurian Dolomite. There are eight existing water wells to the south of LSQ and/or Boyd's Quarry. All of these wells were voluntarily replaced by Midwest Generation circa 2006 into the deeper Cambro-Ordovician aquifers beneath the Scales Shale due to the noted migration of groundwater to the southeast of LSQ associated with the dewatering activities at the Vulcan Quarry located to the expansion of Vulcan Quarry mining (circled in dashed red line). Also circled with a red dashed line and identified as well locations A through F on Figure 9-18 are six wells that are incorrectly located within the ILWATER database or no they longer exist. Field inspections of these locations indicate no water wells present in those areas. Review of available

well log information for wells A, B and C indicate actual well addresses outside of the noted search radius (i.e., well A is located at 513 Woodruf Rd. which is approximately 3,900 feet to the east of mapped location; well B is located at 2317 W. Jefferson Street in Joliet which is over 1 mile to the north-northwest; and well C which has an address of 100 Peru Street in Troy Grove, Illinois which is in the LaSalle-Ottawa, Illinois vicinity). Well D is a 1943 vintage well log with LSQ ownership but this well is no longer present. Wells E and F have an owner name but no address and there are no wells present in those areas.

A search of the Illinois Department of Natural Resources dedicated nature preserve database (<u>https://www2.illinois.gov/dnr/INPC/Pages/NaturePreserveDirectory.aspx</u>) was performed to determine whether there may be a nearby dedicated nature preserve. No dedicated nature preserves were identified in the vicinity of the subject CCR surface impoundment.

Based on the geology of the site presented in Section 9.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from the subject CCR surface impoundment would be through the lower portion of the Silurian dolomite (shallow zone) with movement towards the extraction well line along the southern periphery of the site and to the north towards the Des Plaines River. There are no potable water wells downgradient of the subject CCR surface impoundment screened within the aquifer of concern. There are two deep water wells as noted above associated with former operations at the Joliet #9 power plant. Also, as previously discussed, there are no potable surface water intakes on the Des Plaines River either along or downstream of the subject site.

There is extensive quarterly groundwater quality data dating back to 1993 associated with the ongoing groundwater monitoring performed under the existing landfill operating permit for the LSQ. This data through the 4th quarter 2020 is provided in Attachment 9-2 in the form of time versus concentration curves. The (LSQ), however, was also identified as being subject to the new federal requirements under Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule). To meet the Federal CCR Rule requirements, a detection monitoring network focused on the "shallow zone" dolomite was developed based on the hydrogeology discussion in Section 9.1.2, and consists of wells R08S, G20S, G30S, R32S, G44S, G45S, G46S, G47S, G48S and T03S). Wells T03S (side-gradient) and G45S are considered background monitoring wells are shown on Figure 9-1.

As required under the Federal CCR Rule, eight rounds of background sampling were completed for the monitoring wells within the monitoring network for the subject CCR surface impoundment. This included the full list of Appendix III (detection monitoring) and IV (assessment monitoring) parameters. All currently available CCR groundwater monitoring data available through 2nd quarter 2021 is provided in Table 9-4. In addition, it is noted that Illinois EPA added turbidity measurements to the list with a required eight rounds of background of that parameter for each well in the monitoring network for the subject CCR surface impoundment. This data is provided in Table 9-5.

9.2 Groundwater Monitoring System Design and Construction Plan (845.230(d)(2)(H)(ii)

A comprehensive monitoring well network has been established as part of ongoing landfill permit requirements and work completed in support of that landfill operating permit. The well depths were determined based on depth to groundwater and the base elevation of the LSQ being monitored. The well locations and depths were agreed upon by Illinois EPA Bureau of Land (BOL) as part of operating permit review/approval. Based on review of the Federal and State CCR Rule, LSQ is also being regulated as an existing, incised CCR surface impoundment. As discussed above, a separate CCR groundwater monitoring network has been established for this unit. The detection monitoring network focuses on the "shallow zone" dolomite based on the hydrogeology discussion in Section 9.1.2 and consists of wells R08S, G20S, G30S, R32S, G44S, G45S, G46S, G47S, G48S and T03S). Wells T03S (side-gradient) and G45S are considered for background monitoring purposes and the remaining wells are considered downgradient wells. The locations of these wells are shown on Figure 9-1. This proposed monitoring well network will be utilized for determining whether potential leakage from the regulated unit may be causing or contributing to groundwater impacts in the vicinity of the units.

The monitoring wells were installed by either Harza Engineering, Andrews Engineering or KPRG and Associates, Inc. (KPRG) at varying times. The wells were drilled using air drilling techniques (rotary or hammer). Some of the wells borings were cored using either "NX" or "HQ" series core barrels. The wells were completed with standard 2-inch inner-diameter, schedule 80 PVC casing with 10-feet of 0.010 slot PVC screen. Filter sand pack around each screen was extended to approximately 2-feet above the top of the well screen. The remainder of the annulus was backfilled with bentonite grout. Surface completions include stick-up (above grade two to three feet) locking protector casings set in concrete aprons. The wells may be further protected by traffic bollards, as necessary. Boring logs and/or well construction summaries for these wells are provided in Attachment 9-1. Top-of-casing elevations were surveyed by an Illinois licensed surveyor and are included in the previously referenced Table 9-2.

Each of the identified monitoring wells within the sampling network is outfitted with a dedicated sampling system. Specifically, each well has a QED Environmental Systems (QED) Well Wizard Model P1101M dedicated sampling pump with Model No. 37789 intake screens (0.010-inch slot). The screens are set within approximately one-foot of the base of the monitoring well.

In accordance with requirements under Section 845.630(g), Attachment 9-3 includes an Illinois licensed Professional Engineer certification of the above defined monitoring system.

9.3 Groundwater Sampling and Analysis Program (845.230)(d)(2)(I)(iii)

9.3.1 Sample Frequency

The LSQ is regulated under the Federal CCR Rule. As such, all of the above defined CCR monitoring wells (upgradient and downgradient) have been sampled on a quarterly basis starting the 4th quarter of 2015 for eight consecutive quarters for both Appendix III and Appendix IV parameters specified in the Federal CCR Rule which is the same parameter listing as provided under the State CCR Rule Section 845.600(a) plus calcium. Additional sampling has also been completed as part of assessment monitoring requirements. This dataset will facilitate the

development of proper statistical evaluation procedures for the site and use in development of applicable GWPSs for each constituent pursuant to Section 845.600(b). Illinois EPA added turbidity as an additional parameter that will require development of a statistical background. Since this parameter was not included within the Federal CCR Rule, eight rounds of turbidity measurements were obtained within the 180-day period since the effective date of the State Rule. However, this restricted period of background data collection does not facilitate evaluation of potential seasonal variations during the development of statistical background for this parameter.

Currently, all wells within this CCR monitoring network are being sampled on a quarterly basis for all parameters specified in Section 845.600(a) plus calcium and turbidity. Between quarterly monitoring events, groundwater level measurements from all designated CCR monitoring wells will be also obtained and recorded. Water levels are also obtained concurrently from the Main Quarry through an electronic pressure transducer used to monitor ongoing water levels within that unit.

Quarterly groundwater monitoring will continue during the active life of the impoundment and the post-closure care period or, if closure is by removal, then in accordance with monitoring frequency requirements under Section 845.740(b). It is noted that if after 5 years of quarterly monitoring it can be demonstrated that the facility meets the requirements specified in Section 845.650(b)(4), the owner can petition the Illinois EPA to shift the monitoring frequency to semi-annual.

9.3.2 Sampling Preparation and Calibrations

Prior to any sampling event, the Station's designated Environmental Specialist shall be notified in advance of sampling crew arrival so that any arrangements can be made, including security clearance and training.

Prior to sampling activities, and at intervals recommended by the manufacturer, all non-dedicated equipment shall be cleaned and calibrated. Specifically, the field parameter water quality meter to be used for pH, specific conductance, turbidity and temperature will be calibrated using standard reference solutions. In addition, an operational check of the electronic water level probe will also be performed by placing the probe into a bucket of water and ensuring that the audio signal is triggered when the sensor meets the water interface. The associated tape measure of the probe will also be checked for wear.

The monitoring network consists of all dedicated sampling equipment (QED Well Wizard P1101M). The controller used to operate individual bladder pumps will be checked and maintained prior to arrival at the site based on manufacturer specifications.

All lab ware shall be obtained directly from an Illinois certified laboratory. Upon arrival to the site, the monitoring wells will be assessed for structural integrity. Each well cover (either stick-up or flush mount) will be inspected for proper labels, locks, any damage and be cleared of any flora or fauna that may be on the well or in the vicinity that would affect the sample or the sampling operation. In addition to any other notable observations, all of the above shall be entered on the sampling sheets. Once the well is uncovered and unlocked, and the well casing inspected, the well head shall be inspected for damage and cleanliness. At that point, the well will be considered ready for sampling per procedures described below.

9.3.3 Groundwater Sample Collection

Prior to initiating sampling, a round of groundwater levels will be collected from each monitoring well using an electronic water level probe. The timeframe over which these water levels are collected should be minimized and should not exceed 8 hours. The depth to water will be measured to the nearest one-hundredth of a foot from the top of casing using an electronic water level meter. The water level probe should be properly decontaminated between each reading using procedures specified in Section 9.3.4.

All of the monitoring wells at this Station are equipped with dedicated, down-hole, bladder pumps. At the top of casing for each well is a manifold with air and water quick connects and a port for a water level meter probe to fit so that an undisturbed water level can be obtained. Immediately prior to sampling, the depth to water will be measured again to the nearest one-hundredth of a foot from the top of casing using an electronic water level indicator and recorded onto the sampling sheets. Once recorded, an air compressor and flow controller will be attached to the air side quick connect and disposable tubing attached to the discharge connection. The discharge tubing will be run to a flow-through cell of the water quality meter. A discharge line from the flow-through cell will be placed into a vessel to allow for the measurement of the volume of groundwater removed. The water quality meter will be attached within the flow-through cell that allows for real time readings of pH, specific conductivity and temperature. It is noted that a calibration check of the water quality meter should be performed at the start and end of each day of sampling and recorded in the field notes. If the meter calibration-check shows drift outside of manufacturer specifications, the meter should be recalibrated in the field using standard solutions per manufacturer requirements.

The air controller will be set to the necessary pressure and to the slowest pumping interval, approximately 50 second refill and 10 second pump (flow rates at this setting tend to be less than 100 milliliters/minute), and the compressor will be started. The intent of the low flow pumping will be to minimize drawdown in the well with an ideal goal of keeping the drawdown to 0.30 feet or less. Once the water has filled the flow-through cell, a reading of the parameters will be recorded. Readings will continue to be recorded until such time as all parameters are deemed stable for three consecutive measurements at which point a sample will be collected from the tubing prior to the flow-through cell. An unfiltered groundwater sample shall be collected directly from the water tubing after it is disconnected from the flow-through cell. The laboratory provided bottles shall be properly filled. Once the sample is collected, the bottles shall be properly labeled and placed on ice as necessary.

If the well would pump dry prior to stabilized field parameter readings, the well will be allowed to recover for up to 24-hours at which point water sample collection will be initiated.

In the event that a dedicated bladder pump fails to work, the following procedures should be implemented:

• Pull the dedicated tubing and pump from the well and ensure that the tubing does not come in contact with the ground.

- Visually inspect the intake of the pump for clogging from sedimentation. If clogging is noted, clean the intake with distilled water. If there is no clogging, dismantle the pump casing and inspect the bladder for any holes, cracks or tears.
- If the bladder is determined to be compromised (i.e., wear has resulted in cracking or tearing), remove the bladder and replace it with a new bladder. Properly clean all parts of the pump using procedures described in Section 9.3.4, reassemble the pump and slowly lower it back down hole. Continue sampling as described above.
- If the entire pump is determined to have failed, a new pump will need to be ordered for replacement and a modified sampling procedure will be implemented as described below.

In the case of bladder pump failure, at a specific well during a sampling event, the alternate sampling method will be the use of a portable peristaltic pump (the pump itself does not go downhole) assuming depth to water is less than 23 feet bgs. Clean disposable polyethylene tubing will be attached to the pump and the tubing will be slowly lowered down hole along with the water level probe. The pump will be operated at the lowest rate possible to achieve the same goals as for sampling described above (generally below 300 milliliters/minute, which is within the range of standard low flow protocols). Water will be collected in a clean glass jar for field parameter readings. Once stable field parameters are recorded, the sample will be collected directly onto laboratory prepared containers for analysis. Upon completion of sample collection, the water level meter and tubing should be removed from the well. The polyethylene tubing should be disconnected from the pump and discarded. The water level meter should be properly decontaminated as specified in Section 9.3.4. If depth to water is such that a peristaltic pump cannot be used, a submersible pump will need to be used. The submersible pump must be properly cleaned as specified in Section 9.3.4 prior to placement down the well. All subsequent procedures will be the same as above. The alternate sampling pump use will be recorded on the field data sheet for that well and noted in any subsequent reporting summary.

9.3.4 Equipment Decontamination

Any equipment that is used down-hole at more than one sampling location must be thoroughly decontaminated between uses. Based on procedures described above, only the water level meter is anticipated to be in this category, however, if a submersible pump needs to be used during a particular sampling event due to dedicated pump failure (see Section 9.3.3), these procedures will also apply. The water level meter probe and any measuring tape, or any other non-dedicated equipment that may need to be placed down the well that extended below the water surface, will need to be cleaned with an Alconox solution, or equivalent, wash followed by a double rinse with distilled water. Any pump tubing that is not dedicated should be discarded and only clean tubing should be used down-hole.

9.3.5 Sample Preservation, Chain-of-Custody and Shipment

Since measurement of total recoverable metals is required by the State CCR Rule, the samples will not be filtered prior to collection. This will facilitate the analysis to capture both the particulate fraction and dissolved fraction of metals in natural groundwater. Groundwater samples will be

collected directly into Illinois certified laboratory provided containers. Those containers will be prepared by the laboratory to contain any necessary chemical preservation. The samples shall be stored at temperatures required by the lab following sample collection. Table 9-6 includes a summary of sample bottle requirements, preservatives and holding times

All groundwater samples collected shall be transferred to the laboratory under proper COC procedures. The laboratory provided COC, completed with all pertinent information, shall be maintained from sample collection through receipt by the laboratory. The information shall include, but is not limited to, the following:

- project name and number, state samples collected in, sample name and type, time and date collected, analysis requested, and printed name and signatures of person(s) sampling.

The COC shall be completed and properly relinquished by the field sampler(s) with all samples clearly printed or typed.

All samples will be either delivered directly to the laboratory or be shipped using Federal Express or a similar overnight service. It should be noted that Total Dissolved Solids (TDS) analysis has a 7-day holding time. TDS samples should be shipped to the laboratory within 72 hours after collection. All other holding times for the specified parameters are long enough to facilitate one shipment after the full round of sampling is complete.

9.3.6 Analytical Methods

A list of the analytical methods to be used by the laboratory for each specified parameter is included in the above referenced Table 9-6. Individual detection limits for the parameters may change slightly from sample to sample depending on potential matrix interferences with a sample (e.g., amount of suspended solids/sediment) and/or the concentration of the constituent in the sample. However, the base detection limits will be set at or below the applicable Illinois Class I Drinking Water Standards as defined in Section 845.600(a)(1) for that compound which are also provided in Table 9-6.

9.3.7 Quality Assurance and Quality Control Laboratory

Only an Illinois certified analytical laboratory will be used for sample analysis. The laboratory will be conducting their work under their specific approved Quality Assurance and Quality Control (QA/QC) program. A copy of their program can be available upon request. A standard Level II data documentation package will be included in all subsequent reporting, however, the lab will be requested to also provide a Level IV data documentation package (i.e., U.S. EPA Contract Laboratory Protocol equivalent) in the event more detailed data validation/evaluation is deemed necessary.

<u>Field</u>

The QA/QC program for field work will include the collection of blind duplicates and the use of a laboratory supplied trip blank. The blind duplicate will be collected from a random well during

every sampling event in which more than three (3) samples are collected. The duplicate will be blind in the manner that there will be no way for the laboratory to determine from which well or point the sample was collected.

Upon receipt of the analytical data, a determination will be made if the duplicate is consistent with the sample collected from the well/point. A generally acceptable range for groundwater samples is +/- 30 percent. If outside the acceptable range, a resample may be determined to be necessary and reanalyzed. The trip blank analytical data will be reviewed for any values other than non-detect. If there are any questions regarding the duplicate, trip blank, or other reported analytical QA/QC runs, the laboratory will be contacted to determine the effect on data quality, if any, and usability. If necessary, a specific well may need to be re-sampled.

9.3.8 Statistical Methods

A proposed statistical evaluation plan meeting the requirements specified in Section 845.640(f) is provided in Attachment 9-4 along with a certification of the plan by an Illinois licensed Professional Engineer.

9.4 Groundwater Monitoring Program Section (845.230)(d)(2)(I)(iv)

The groundwater sample and water level collection frequency is discussed in Section 9.3.1 above.

As previously noted, the monitoring well system for the subject unit consists of wells R08S, G20S, G30S, R32S, G44S, G45S, G46S, G47S, G48S and T03S). Wells T03S (side-gradient) and G45S are considered background monitoring wells and the remaining wells are considered downgradient wells.

Eight rounds of background sampling for the purposes of statistical evaluation and background determination is available from the initial groundwater sampling which occurred starting in 2015 in compliance with the Federal CCR Rule requirements. Subsequent groundwater sampling has also occurred on a quarterly basis for the seven detection monitoring parameters listed under Appendix III of the Federal CCR Rule detection monitoring requirements and since this unit is currently within assessment monitoring under the Federal CCR Rule, additional Appendix IV sampling data is also available. All available CCR monitoring data through the end of the second quarter 2021 is summarized in Table 9-4 and the eight rounds of turbidity data collected since the enactment of the State CCR Rule in April 2021 in Table 9-5.

Using the currently available data for the subject CCR surface impoundment, site specific Groundwater Protection Standards (GWPSs) have been established in accordance with Section 845.600(b) and are summarized in Table 9-7. The background concentrations noted in Table 9-7 were calculated using the statistical evaluation approach noted in Section 9.3.8 and provided in Attachment 9-4. A presentation of the statistical evaluations which resulted in the background concentration calculations is provided in Attachment 9-5.

Once the proposed GWPSs presented in this permit application are approved by Illinois EPA, these values will be used for all subsequent groundwater monitoring data comparisons. Monitoring will continue on a quarterly basis for all constituents specified in Section 845.600(a)(1) plus calcium

and turbidity. In accordance with Section 845.610(b)(3)(D), a data summary report will be submitted to Illinois EPA within 60-days of receipt of all analytical data which will include a groundwater flow map for the quarterly sampling event, summary of water level elevations collected during the reporting period (monthly measurements), and a data summary including summary data tables with a comparison against the established/approved GWPSs. This report will be placed the facility's operating record.

If during a monitoring event, a constituent(s) is/are detected above an established/approved GWPS, that well will be resampled. If the resample data confirms that the constituent(s) concentration(s) is/are above the GWPS then the following will occur:

- Characterize the nature and extent of the potential release and any relevant site conditions that may affect the remedy evaluation/selection. This characterization must meet the requirements set forth under Section 845.650(d)(1).
- If groundwater impacts extend off-site, provide off-site landowner/resident notifications as specified under Section 845.650(d)(2) and place the notifications into the facility's operating record. This must occur within no more than 30-days of determination that a GWPS has been exceeded.
- An Alternate Source Demonstration (ASD) may be initiated and completed for submittal to Illinois EPA review/approval as allowed under Section 845.650(e). Place the ASD into the facility's operating record.
- Within 90-days of determining that a constituent(s) was detected above an established/approved GWPS at a downgradient waste boundary monitoring point, initiate an assessment of corrective measures meeting the requirements specified under Section 845.660 unless an ASD is submitted in accordance with Section 845.650(d)(2) and subsequently approved by the Illinois EPA.

By no later January 31st of each year, an Annual Groundwater Monitoring and Corrective Action Report will be prepared for inclusion as part of an Annual Consolidated Report for the facility. The Annual Groundwater Monitoring and Corrective Action Report will meet the requirements set forth under Section 845.610(e)(1 through 4). The Annual Consolidated Report will be placed into the facility's operating record.

10.0 Written Closure Plan, 845.230(d)(2)(J)

According to the Closure Plan prepared by KPRG in October 2016, the closure of the Quarry will be accomplished by leaving the CCR in place and covering with a final cover system as defined in Section 845.750. The Closure Plan is written in accordance with Section 845.720(a). The Plan is included as part of this application in Attachment 10.

11.0 Post-Closure Care Plan, 845.230(d)(2)(K)

The Post-Closure Plan was created by KPRG in October 2016. The Plan outlines the maintenance and inspection requirements for the final cover system. The Post-Closure Plan is written in accordance with Section 845.780. This Plan is included as part of this application in Attachment 11.

12.0 Liner Certification, 845.230(d)(2)(L)

LSQ does not comply with the liner requirements of Section 845.400. The base of LSQ consists of Silurian Dolomite and does not have a distinct upper liner component or lower liner component. The Silurian Dolomite present in the base of LSQ was evaluated against the liner design criteria using the process outlined in Section 845.400(c) to determine if LSQ is considered lined or unlined. The calculations showing the flow rate calculations and comparison are provided in Attachment 12. The calculations indicate that the base of LSQ does not comply with the requirements of Section 845.400 and the surface impoundment is considered unlined.

13.0 History of Known Exceedances, 845.230(d)(2)(M)

As previously noted in the introduction, there is no Attachment with supporting documentation for this Section since the referenced data is provided in Attachment 9 documentation. The Lincoln Stone Quarry has been, and still currently is operating as a landfill since 1993 under the oversight of the Illinois EPA Bureau of Land (Landfill Permit No. 1994-241-LFM). The facility is currently operating under Modification No. 24 of that permit. Under that permit, Applicable Groundwater Quality Standards (AGQSs) were developed based on statistical evaluations, performed as part of the permit application by the operator of the facility at that time, of existing groundwater quality at that time. The groundwater monitoring parameters specified in the landfill operating permit include primarily dissolved constituents as opposed to total analyses as required under the Federal and State CCR Rules, and that list of parameters is slightly different than the list required under the State CCR Rule. However, there are three parameters within the landfill permit, which are collected and analyzed as "total" constituents that also are part of the Section 845.600 list or constituents. These are barium, lead and mercury. A review of the landfill operating permit data for these three parameters indicates no confirmed detections above the Section 845.600 standards for barium or mercury and two confirmed detections of lead; one at well G31S in the second quarter of 2002 and one at well G39S in the second quarter 2018. It is noted that these were only one-time confirmed detections above the noted standards with all prior and subsequent sampling data being below the standards.

The existing CCR data for the LSQ groundwater monitoring network was also presented and discussed in Section 9 of this operating permit application (see Table 9-4). Relative to the most recent round of CCR groundwater monitoring data referenced in that Section, the following are noted above the standards provided in Section 845.600(a):

• R08S (downgradient): Boron and sulfate.

- G30S (downgradient): Boron and sulfate.
- R32S (downgradient): Boron, sulfate lithium and molybdenum.
- G44S (downgradient): Molybdenum.
- G46S (downgradient): Boron sulfate, arsenic, lithium and molybdenum.
- G47S (downgradient): Boron, sulfate, arsenic, lithium and molybdenum.
- G48S (downgradient): Boron, sulfate and molybdenum.
- G31S (downgradient assessment): Boron, lithium and molybdenum.
- G33S (downgradient assessment): Lithium.
- T01S (downgradient assessment): Boron, arsenic and molybdenum.
- T02S (downgradient assessment): Boron, molybdenum.
- T05S (downgradient assessment): Boron, pH, sulfate, TDS, arsenic and molybdenum.
- T08S (downgradient assessment): Boron, sulfate, arsenic and molybdenum.
- T09S (downgradient assessment): Boron, sulfate and lithium.

All of the above wells except G44S, G31S, G33S and T09S are within the existing GMZ or Zone of Attenuation established as part of the landfill operating permit. Proposed GWPSs which were developed in accordance with Section 845.600(b) are presented in Section 9.4 above. Once Illinois EPA reviews and approves those proposed GWPSs, those values will be used for subsequent groundwater monitoring data comparisons.

14.0 Financial Assurance, 845.230(d)(2)(N)

The financial assurance certification is included in Attachment 14.

15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440

LSQ is an incised surface impoundment; therefore, in accordance with Section 845.440(b), a hazard potential classification assessment is not required. This section does not have an attachment because a hazard potential classification assessment was not required and, therefore, not included with this operating permit application.

16.0 Structural Stability Assessment, 845.230(d)(2)(P) & 845.450

LSQ is an incised surface impoundment; therefore, in accordance with Section 845.450(e), a structural stability assessment is not required. This section does not have an attachment because a structural stability assessment was not required and, therefore, not included with this operating permit application.

17.0 Safety Factor Assessment, 845.230(d)(2)(Q) & 845.460(b)

LSQ is an incised surface impoundment; therefore, in accordance with Section 845.460(e), a safety factor assessment is not required. This section does not have an attachment because a safety factor assessment was not required and, therefore, not included with this operating permit application.

18.0 Inflow Design Flood Control System Plan, 845.230(d)(2)(R) & 845.510(c)(3)

An Inflow Design Flood Control System Plan was previously completed for LSQ in October of 2016 and has been reviewed and updated by Geosyntec in accordance with 845.510 and is included in Attachment 18.

19.0 Safety and Health Plan, 845.230(d)(2)(S) & 845.530

A Safety and Health Plan in accordance with Section 845.530 has been completed and included in Attachment 19.

20.0 Closure Priority Categorization, 845.230(d)(2)(T) & 845.700(g)

In accordance with the requirements of Section 845.700(c), the category designation for LSQ is Category 3. The Category 3 designation for LSQ is based on the following:

- LSQ is an inactive CCR surface impoundment.
- There are no potable water supply wells or setbacks of existing potable water supply wells downgradient of LSQ. As such, Midwest Generation is not aware of any imminent threat to human health or the environment.
- Midwest Generation used the Illinois EPA EJ Start tool found at https://illinois-epa.maps.arcgis.com/apps/webappviewer/index.html?id=f154845da68a4a3f837cd3b880b 0233c to determine that the Joliet #9 Generating Station (1601 S. Patterson Rd, Joliet 60436) LSQ is within one mile of an area of environmental justice concern.

OPERATING PERMIT TABLES

Table 2. Lincoln Stone Quarry/Joliet 9 Generating StationLincoln Stone Quarry CCR Chemical Constituents Analytical Results

Parameter Name	Slag Sample 8/31/2021	Bottom Ash Sample 8/31/2021
Antimony	<1.8	<1.8 F1
Arsenic	< 0.88	1.5 F1
Barium	4,400	3,000
Beryllium	3.3	1.5 F1
Boron	110	130 F1 V
Cadmium	< 0.18	< 0.18
Calcium	110,000	100,000
Chloride	<20	<20
Chromium	37	12 F1
Cobalt	20	15
Fluoride	<1.0	<1.0
Lead	0.67	5.6
Lithium	32	20 V
Mercury	< 0.015	< 0.016
Molybdenum	< 0.88	1.1 F1
Selenium	< 0.88	<0.89 F1
Sulfate	<2.0	560
Thallium	3.6	2.9
Radium 226	2.41	1.54
Radium 228	1.97	1.63
Radium 226 & 228	4.38	3.17

Notes:

All results are in milligrams per kilogram (mg/kg), except for radium, which is pCi/L

F1 - MS and/or MSD recovery exceeds control limits

V - Serial Dilution exceeds the control limits

Joliet #9 L	incoln Stone Quarry
Month	Average Monthly Precipitation* (inches)
January	1.09
February	1.27
March	2.01
April	3.66
May	3.9
June	4.65
July	4.41
August	4.08
September	3.02
October	3.09
November	2.4
December	1.81

Notes:

* - Historical precipitation data was obtained from the National Oceanic and Atmospheric Administration. Precipitation data was averaged from four stations located within Joliet and Elgin, Illinois. Dates of precipitation data range from 1894-2020.

Well ID	Date1	Top of Casing Elevation	Depth to Groundwater	Groundwater Elevation
		(ft above MSL)	(ft below TOC)	(ft above MSL)
	Nov-2015 May-2016	578.65 578.65	66.74 67.02	511.91 511.63
	Jun-2016	578.65	67.50	511.05
	Aug-2016	578.65	67.47	511.18
	Nov-2016	578.65	67.84	510.81
	Feb-2017	578.65	69.28	509.37
	May-2017	578.65	67.56	511.09
	Jul-2017	578.65	67.54	511.11
R08S	Sep-2017	578.65	65.72	512.93
1000	Nov-2017	578.65	64.83	513.82
	Mar-2018	578.65	65.12	513.53
	May-2018	578.65	65.31	513.34
	Oct-2018	578.62	65.48	513.14
	May-2019 Nov-2019	578.62	67.24	511.38
	Apr-2020	578.62 578.62	66.78 65.63	511.84 512.99
	Apr-2020 Oct-2020	578.62	68.14	512.99
	Apr-2021	578.62	69.20	509.42
	Nov-2015	580.33	55.33	525.00
	May-2016	580.33	51.32	529.01
	Jun-2016	580.33	53.14	527.19
	Aug-2016	580.33	61.32	519.01
	Nov-2016	580.33	54.69	525.64
	Feb-2017	580.33	52.41	527.92
	May-2017	580.33	46.06	534.27
	Jul-2017	580.33	47.85	532.48
G20S	Sep-2017	580.33	49.02	531.31
	Nov-2017	580.33	52.57	527.76
	Mar-2018	580.33	46.65	533.68
	May-2018	580.33	48.83	531.50 531.45
	Oct-2018	580.91		
	May-2019 Nov-2019	580.91 580.91	39.03 41.82	541.88 539.09
	Apr-2020	580.91	41.69	539.09
	Oct-2020	580.91	46.74	534.17
	Apr-2021	580.91	45.69	535.22
	Nov-2015	524.40	2.74	521.66
	May-2016	524.40	2.53	521.87
	Jun-2016	524.40	3.54	520.86
	Aug-2016	524.40	2.45	521.95
	Nov-2016	524.40	2.57	521.83
	Feb-2017	524.40	2.13	522.27
	May-2017	524.40	1.69	522.71
	Jul-2017	524.40	1.96	522.44
G30S	Sep-2017	524.40	1.84	522.56
	Nov-2017	524.40	1.48	522.92
	Mar-2018 May 2018	524.40	1.48	522.92 522.78
	May-2018 Oct-2018	524.40 524.70	2.51	522.78
	May-2019	524.70	1.57	523.13
	Nov-2019	524.70	1.53	523.17
	Apr-2020	524.70	1.03	523.67
	Oct-2020	524.70	2.19	522.51
	Apr-2021	524.70	2.55	522.15
	Nov-2015	536.81	19.99	516.82
	May-2016	536.81	19.72	517.09
	Jun-2016	536.81	20.51	516.30
	Aug-2016	536.81	20.51	516.30
	Nov-2016	536.81	20.24	516.57
	Feb-2017	536.81	21.12	515.69
	May-2017	536.81	19.33	517.48
	Jul-2017	536.81	19.38	517.43
R32S	Sep-2017	536.81	17.91	518.90
	Nov-2017	536.81	16.32	520.49
	Mar-2018 May-2018	536.81	16.98 20.26	519.83 516.55
	-	536.81	20.26	
	Oct-2018 May-2019	536.99 536.99	18.32	518.67
	Nov-2019	536.99	19.28	517.70
	Apr-2020	536.99	17.74	519.25
	Oct-2020	536.99	20.76	516.23

MSL - Mean Sea Level TOC - Top of Casing - Date of water levels collected at beginning of quarter, actual sample date may vary.

Well ID	Date ¹	Top of Casing Elevation (ft above MSL)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (ft above MSL)
	Nov-2015	(IT above MSL) 586.69	(it below IOC) 80.54	(it above MSL) 506.15
	May-2016	586.69	80.42	506.27
	Jun-2016	586.69	80.68	506.01
	Aug-2016	586.69	80.65	506.04
	Nov-2016	586.69	80.69	506.00
	Feb-2017	586.69	84.34	502.35
	May-2017	586.69	82.14	504.55
	Jul-2017	586.69	81.13	505.56
	Sep-2017	586.69	80.15	506.54
G44S	Nov-2017	586.69	77.10	509.59
	Mar-2018	586.69	78.74	507.95
	May-2018	586.69	80.17	506.52
	Oct-2018	586.53	78.21	508.32
	May-2019	586.53	80.05	506.48
	Nov-2019	586.53	79.96	506.57
	Apr-2020	586.53	79.25	507.28
	Oct-2020	586.53	81.51	505.02
	Apr-2021	586.53	82.51	504.02
	Nov-2015	603.31	68.90	534.41
	May-2016	603.31	67.28	536.03
	Jun-2016	603.31	68.88	534.43
	Aug-2016	603.31	68.39	534.92
	Nov-2016	603.31	66.69	536.62
	Feb-2017	603.31	65.34	537.97
	May-2017	603.31	63.07	540.24
	Jul-2017	603.31	63.44	539.87
0.00	Sep-2017	603.31	63.10	540.21
G45S	Nov-2017	603.31	62.28	541.03
	Mar-2018	603.31	61.82	541.49
	May-2018	603.31	68.50	534.81
	Oct-2018	603.90	66.74	537.16
	May-2019	603.90	62.72	541.18
	Nov-2019	603.90	62.38	541.52
	Apr-2020	603.90	60.10	543.80
	Oct-2020	603.90	65.51	538.39
	Apr-2021	603.90	67.71	536.19
	Nov-2015	601.32	95.78	505.54
	May-2016	601.32	96.74	504.58
	Jun-2016	601.32	97.31	504.01
	Aug-2016	601.32	97.32	504.00
	Nov-2016	601.32	97.50	503.82
	Feb-2017	601.32	98.14	503.18
	May-2017	601.32	98.43	502.89
	Jul-2017	601.32	98.96	502.36
G46S	Sep-2017	601.32	96.61	504.71
	Nov-2017	601.32	95.65	505.67
	Mar-2018	601.32	96.80	504.52
	May-2018	601.32	95.59	505.73
	Oct-2018	601.43	91.34	510.09
	May-2019	601.43	101.40	500.03
	Nov-2019	601.43	100.01	503.83
	Apr-2020	601.43	100.19	501.24
	Oct-2020	601.43	101.44	499.99
	Apr-2021	601.43	103.09	498.34
	Nov-2015	612.32	99.44	512.88
	May-2016	612.32	95.48	516.84
	Jun-2016	612.32	96.58	515.74
	Aug-2016	612.32	96.79	515.53
	Nov-2016	612.32	88.96	523.36
	Feb-2017	612.32	96.41	515.91
	May-2017	612.32	92.61	519.71
	Jul-2017	612.32	93.53	518.79
G47S	Sep-2017	612.32	93.50	518.82
	Nov-2017	612.32	92.57	519.75
	Mar-2018	612.32	93.63	518.69
	May-2018	612.32	93.51	518.81
	Oct-2018	612.10	96.29	515.81
	May-2019	612.10	91.78	520.32
	Nov-2019	612.10	91.98	520.12
	Apr-2020	612.10	89.34	522.76
	Oct-2020	612.10	86.78	525.32

MSL - Mean Sea Level TOC - Top of Casing '- Date of water levels collected at beginning of quarter, actual sample date may vary.

Well ID	Date ¹	Top of Casing Elevation (ft above MSL)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (ft above MSL)
	Nov-2015	(ft above MSL) 620.77	(ft below TOC) 106.83	(ft above MSL) 513.94
	May-2016	620.77	105.20	515.57
	Jun-2016	620.77	104.95	515.82
	Aug-2016	620.77	104.77	516.00
	Nov-2016	620.77	102.41	518.36
	Feb-2017	620.77	103.05	517.72
	May-2017	620.77	100.06	520.71
	Jul-2017	620.77	102.31	518.46
G48S	Sep-2017	620.77	102.88	517.89
	Nov-2017	620.77	100.83	519.94
	Mar-2018	620.77	99.77	521.00
	May-2018	620.77	100.74	520.03
	Oct-2018	620.78	105.79	514.99
	May-2019	620.78	98.18	522.60
	Nov-2019	620.78	98.30 95.54	522.48 525.24
	Apr-2020 Oct-2020	620.78 620.78	93.34	520.15
	Apr-2021	620.78	100.03	515.80
	Nov-2015	629.65	136.30	493.35
	May-2016	629.65	135.24	494.41
	Jun-2016	629.65	134.26	495.39
	Aug-2016	629.65	134.13	495.52
	Nov-2016	629.65	135.03	494.62
	Feb-2017	629.65	134.92	494.73
	May-2017	629.65	131.87	497.78
	Jul-2017	629.65	135.99	493.66
T03S	Sep-2017	629.65	136.40	493.25
	Nov-2017	629.65	133.61	496.04
	Mar-2018	629.65	131.05	498.60
	May-2018	629.65	134.42	495.23
	Oct-2018	629.89	140.03	489.86
	May-2019	629.89	125.79	504.10
	Oct-2019	629.89	132.92	496.97
	Apr-2020 Oct-2020	629.89	133.84	496.05 494.01
	Apr-2021	629.89 629.89	133.88	494.01
	Dec-2018	535.78	25.70	510.08
	Jun-2019	535.78	23.46	512.32
	Oct-2019	535.78	26.89	508.89
G31S	Apr-2020	535.78	25.75	510.03
	Oct-2020	535.78	28.09	507.69
	Apr-2021	535.78	28.65	507.13
	Dec-2018	535.66	27.06	508.60
	Jun-2019	535.66	23.41	512.25
G33S	Oct-2019	535.66	25.64	510.02
6555	Apr-2020	535.66	27.00	508.66
	Oct-2020	535.66	32.27	503.39
	Apr-2021	535.66	33.03	502.63
	Dec-2018	621.78	115.39	506.39
	Jun-2019	621.78	112.91	508.87
T01S	Oct-2019	621.78	113.37	508.41
	Apr-2020	621.78	111.50	510.28
	Oct-2020	621.78	118.64	503.14 499.42
	Apr-2021 Dec-2018	621.78	122.36	499.42 492.28
	Jun-2019	626.16 626.16	133.88	492.28
	Oct-2019	626.16	129.36	497.85
T02S	Apr-2020	626.16	129.50	490.30
	Oct-2020	626.16	131.54	494.62
	Apr-2021	626.16	131.50	494.66
	Dec-2018	631.35	158.00	473.35
	Jun-2019	631.35	152.54	478.81
T04S	Oct-2019	631.35	152.07	479.28
1045	Apr-2020	631.35	152.24	479.11
	Oct-2020	ABD	ABD	ABD
	Apr-2021	ABD	ABD	ABD
	Dec-2018	623.45	123.78	499.67
	Jun-2019	623.45	116.70	506.75
T05S	Oct-2019	623.45	117.14	506.31
	Apr-2020	623.45	115.73	507.72
	Oct-2020	623.45	120.68	502.77
	Apr-2021	623.45	123.71	499.74
	Dec-2018	621.02	112.72	508.30
	Jun-2019	621.02	111.86	509.16
T06S	Oct-2019	621.02	112.43	508.59
	Apr-2020	621.02	109.45	511.57 508.82
	Oct-2020	621.02		

MSL - Mean Sea Level TOC - Top of Casing 1 - Date of water levels collected at beginning of quarter, actual sample date may vary. ABD - Abandoned. Valcan property well removed by Valcan as part of mine expansion.

Table 9-2. Groundwater Elevations, Midwest Generation, LLC, Joliet Station #9.

Well ID	Date ¹	Top of Casing Elevation (ft above MSL)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (ft above MSL)
	Dec-2018	627.39	128.97	498.42
	Jun-2019	627.39	124.37	503.02
T085	Oct-2019	627.39	125.15	502.24
1085	Apr-2020	627.39	123.91	503.48
	Oct-2020	627.39	126.50	500.89
	Apr-2021	627.39	130.24	497.15
	Dec-2018	603.74	94.75	508.99
	Jun-2019	603.74	102.30	501.44
T095	Oct-2019	603.74	101.91	501.83
1098	Apr-2020	603.74	100.63	503.11
	Oct-2020	603.74	103.07	500.67
	Apr-2021	603.74	104.28	499.46

MSL- Mean Sea Level TOC - Top of Casing ¹- Date of water levels collected at beginning of quarter, actual sample date may vary.

DATE	Natural Groundwater Flow Direction	Kavg (ft/sec)*	Average Hydraulic Gradient (ft/ft)	Porosity (unitless)**	Estimated Seepage Velocity (ft/day)
11/2015	Northerly and Westerly	1.38E-05	0.0293	0.05	0.70
5/2016	Northerly and Westerly	1.38E-05	0.0289	0.05	0.69
6/2016	Northerly and Westerly	1.38E-05	0.0287	0.05	0.68
8/2016	Northerly and Westerly	1.38E-05	0.0293	0.05	0.70
11/2016	Northerly and Westerly	1.38E-05	0.0301	0.05	0.72
2/2017	Northerly and Westerly	1.38E-05	0.0431	0.05	1.03
5/2017	Northerly and Westerly	1.38E-05	0.0364	0.05	0.87
7/2017	Northerly and Westerly	1.38E-05	0.0378	0.05	0.90
8/2017	Northerly and Westerly	1.38E-05	0.0364	0.05	0.87
11/2017	Northerly and Westerly	1.38E-05	0.0319	0.05	0.76
3/2018	Northerly and Westerly	1.38E-05	0.0384	0.05	0.92
5/2018	Northerly and Westerly	1.38E-05	0.0222	0.05	0.53
12/2018	Northerly and Westerly	1.38E-05	0.0321	0.05	0.77
6/2019	Northerly and Westerly	1.38E-05	0.0282	0.05	0.67
11/2019	Northerly and Westerly	1.38E-05	0.0269	0.05	0.64
5/2020	Northerly and Westerly	1.38E-05	0.0376	0.05	0.90
10/2020	Northerly and Westerly	1.38E-05	0.0311	0.05	0.74
4/2021	Northerly and Westerly	1.38E-05	0.0221	0.05	0.53

Table 9-3. Hydraulic Gradient, Direction and Seepage Velocity. Midwest Generation, LLC, Joliet #9 Generation Station.

* Kavg - Average hydraulic conductivity (feet/second) from Revised Groundwater Impacts assessment Lincoln Stone Quarry, 3/13/2013.
 ** - Porosity estimate from Revised Groundwater Impacts assessment Lincoln Stone Quarry, 3/13/2013.

	Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved Solids	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
							-			,			-							-	-	Combined 1.76	< 0.0025	
					100	0.35	7.28			< 0.003	0.0076	0.036		< 0.0005	< 0.005	< 0.001		< 0.0005		< 0.0002		1.91	< 0.0025	< 0.002
No. No. <th></th> <td></td>																								
Image: state Image: state<																								
Image: section of the secti																				< 0.0002		8.45		< 0.002
No. A.2 A.3 A.3 <th></th> <td></td>																								
No. No. No. No. No. <th></th> <td></td>																								
No.1 Cond Cond Cond Cond Co																								
Norm 1/2 <th></th> <td></td>																								
					180	0.38	7.16		760			0.042				< 0.001	0.38	^+< 0.0005	0.038	NA	0.012	1.88	< 0.0025	NA
1 1																								
No. No. <th></th> <td></td>																								
No. 1.0 1.0 1.0 1.0 1.0 1.00<		11/17/2016	1.3		100	0.19	7.14	150		< 0.003	0.0012		< 0.001	< 0.0005	< 0.005	0.0012		< 0.0005	0.022	< 0.0002	0.14	1.61	< 0.0025	< 0.002
No. 1.1 0.00 0.1 0.00 0.									0.0			01000					0.117							
Preprint Diam Diam Diam Diam <	1	7/7/2017	1.1	100	Fl 71	< 0.1	7.32	180	710	< 0.003	< 0.001	0.078	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.1	< 0.0005	0.019	< 0.0002	0.099	1.11	< 0.0025	< 0.002
Image Image <th< td=""><th>up-gradient</th><td>3/7/2018</td><td>1.5</td><td>110</td><td>110</td><td>0.23</td><td>7.34</td><td>250</td><td>900</td><td>< 0.003</td><td>0.0023</td><td>0.093</td><td>< 0.001</td><td>< 0.0005</td><td>< 0.005</td><td>0.0013</td><td>0.23</td><td>< 0.0005</td><td>0.022</td><td>< 0.0002</td><td>0.26</td><td>1.30</td><td>< 0.0025</td><td>< 0.002</td></th<>	up-gradient	3/7/2018	1.5	110	110	0.23	7.34	250	900	< 0.003	0.0023	0.093	< 0.001	< 0.0005	< 0.005	0.0013	0.23	< 0.0005	0.022	< 0.0002	0.26	1.30	< 0.0025	< 0.002
No Second Second Second Second	1																							
h h	1	6/24/2019	2.7	100	89	0.27	7.17	260	830	NA	0.0020	0.090	NA	NA	NA	0.0010	0.270	< 0.0005	0.027	NA	0.370	1.33	< 0.0025	NA
	1																							
Image: Image: Image: </td <th></th> <td></td> <td></td> <td>140</td> <td></td> <td></td> <td></td> <td>280</td> <td></td> <td>NA</td> <td>0.0013</td> <td></td> <td></td> <td>NA</td> <td></td> <td>0.0015</td> <td></td> <td>< 0.0005</td> <td></td> <td>NA</td> <td>0.14</td> <td>1.74</td> <td>< 0.0025</td> <td>NA</td>				140				280		NA	0.0013			NA		0.0015		< 0.0005		NA	0.14	1.74	< 0.0025	NA
1 1																								
1 1							1		1															
Infinite Infinit Infinite Infinite		6/28/2016	6.8	130	89	0.18	7.49	320	960	< 0.003	0.0019	0.056	< 0.001	< 0.0005	< 0.005	< 0.001	0.18	< 0.0005	0.14	< 0.0002	0.37	1.87	F1 0.0074	< 0.002
No.11 S.12 S.9 S.90 S.90 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
New No. No. No. No. No.		2/14/2017	5.4	150	220	0.17	7.60	280	1,000	< 0.003	0.002	0.081	< 0.001	< 0.0005	< 0.005	< 0.001	0.17	< 0.0005	0.120	< 0.0002	0.3	2.71	0.0029	< 0.002
Physical Internation																								
No. No. <th></th> <td>9/25/2017</td> <td>7.3</td> <td>140</td> <td>81</td> <td>0.15</td> <td>7.57</td> <td>390</td> <td>840</td> <td>< 0.003</td> <td>0.002</td> <td>0.048</td> <td>< 0.001</td> <td>< 0.0005</td> <td>< 0.005</td> <td>< 0.001</td> <td>0.15</td> <td>0.00067</td> <td>0.130</td> <td>< 0.0002</td> <td>0.38</td> <td>1.27</td> <td>0.0079</td> <td>< 0.002</td>		9/25/2017	7.3	140	81	0.15	7.57	390	840	< 0.003	0.002	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.15	0.00067	0.130	< 0.0002	0.38	1.27	0.0079	< 0.002
Image: Second	down-gradient																							
1 1		5/18/2018	7.7	140	82	0.14	8.25	320	920	NA	0.0013	0.046	NA	NA	NA	< 0.001	0.14	< 0.0005	0.150	NA	0.35	1.22	0.017	NA
111/200 64 104 0.40 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
121 100 100 100 100 100 100 100 0.00 0.01 100 0.00 0.01 100 0.00 0.01 100 0.00 0.01 100 0.00 0.01 100 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00		11/11/2019	6.4	140		0.15	7.91	360	730	NA	< 0.010	0.044	NA	NA	NA	< 0.001	0.150		0.15	NA	0.340	1.31	0.0130	NA
92/90 150 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>							1																	
New field 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4																								
N 1																								
k k				53																				
N 1					13																			
52 52 53																								
9 9 1.3 9 1.3 9 1.3 9 1.3 9 1.3 9.0 1.3 9.0 1.3 9.0 1.3 9.0 0.0 0.000 0.0		5/24/2017	1.3	55	12	0.81	7.45	66	430	< 0.003	< 0.001	0.046	^ < 0.001	< 0.0005	< 0.005	< 0.0010	0.81	< 0.0005	0.038	< 0.0002	0.017	2.15	< 0.0025	< 0.002
Image III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	G208																							
bic 12 61 12 61 12 67 7.66 87 410 NA C<0.001 OAN NA NA NA 0.001 0.76 C<0.005 NA 0.010 0.76 0.048 0.01 NA 0.010 0.76 0.008 0.014 NA 0.010 0.76 0.008 0.014 NA 0.017 0.76 0.014 NA 0.017 0.76 0.014 NA 0.017 0.76 0.014 NA 0.017 0.76 0.014 NA NA NA NA NA NA 0.010 0.016 NA NA NA 0.010 0.016 0.01 0.016 0.01 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016	down-gradient	11/20/2017	1.3	59	13	0.78	7.06	85	390	< 0.003	< 0.001	0.051	< 0.001	< 0.0005	< 0.005	0.0022	0.78	< 0.0005	0.041	< 0.0002	0.021	2.50	< 0.0025	< 0.002
Image: Probability Image:	1																							
Inscale 112 18 113 0.74 7.88 7.1 4.00 NA NA NA NA 0.001 0.004 NA 0.001 1.74 < 0.000 NA 21/12/202 1.4 6.61 1.4 0.99 7.81 6.3 300 NA < 0.001 NA NA NA <		12/07/18	1.2	58	12	0.76	7.41	65	480	NA	< 0.001	0.048	NA	NA	NA	0.0010	0.760	0.0048	0.042	NA	0.0230	2.26	< 0.0025	NA
62/102 1.3 57.0 7.7.1 6.3 300 NA < < 0.01 NA NA <th></th> <td></td>																								
1211/200 1.4 6.61 1.4 0.89 7.41 6.90 3.00 N.4 N.4 N.4 C.001 0.98 N.4 0.002 N.4 0.002 2.160 <.0002 N.4 0.002 N.4 0.002 D.NX <.0002 0.002 N.4 0.002 D.NX <.0002 0.002 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
11/20215 5.80 6.63 1.90 1.30 < 0.003 0.011 0.001 < 0.0005 < 0.001 1.31 < 0.0005 0.022 < 0.002 0.33 1.484 < 0.0025 < 0.002 5/10/01 5.4 5.3 1.00 1.30 < 0.003 0.011 < 0.003 < 0.005 < 0.005 < 0.001 1.3 < 0.005 0.021 < 0.002 0.33 1.141 < 0.0025 < 0.002 6/30/016 5.2 60 Fl 180 1.30 7.73 410 990 < 0.003 0.013 < 0.005 < 0.005 < 0.001 1.3 < 0.0005 0.021 < 0.002 0.33 1.14 < 0.002 < 0.002 < 0.002 < 0.002 0.01 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0																								
510.016 5.4 5.3 1.9 1.3 7.6 3.9 1.00 < 0.03 0.01 < 0.005 < 0.001 1.3 < 0.005 0.011 < 0.002 0.001 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.001 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 0.011 < 0.002 < 0.001 < 0.002 0.011 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 < 0.001 < 0.002 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5/10/2016	5.4	53	190	1.30	7.68	390	1,100	< 0.003	0.017	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	1.3	< 0.0005	0.021	< 0.0002	0.3	1.41	< 0.0025	< 0.002
Integration	1																							
5/25/2017 11 110 180 1.4 7.67 4.30 1.00 < 0.005 < 0.001 < 0.002 1.4 < 0.0001 < 0.0002 0.45 1.76 < 0.005 < 0.004 7/7017 6.6 5.4 190 1.3 7.48 410 1.00 < 0.005 < 0.001 < 0.005 < 0.001 1.3 < 0.0005 < 0.001 1.3 < 0.0005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005		11/18/2016	6.4	57	170	1.2	8.04	320	1,100	< 0.003	0.016	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	1.2	< 0.0005	0.023	< 0.0002	0.33	2.36	< 0.0025	< 0.002
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1																							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7/7/2017	6.6	54	190	1.3	7.48	410	1,100	< 0.003	0.011	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	1.3	< 0.0005	0.021	< 0.0002	0.26	1.59	< 0.0025	< 0.002
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	3/7/2018	5.1	56	200	1.3	7.97	470	1,100	< 0.003	0.011	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	1.3	< 0.0005	0.019	< 0.0002	0.14	1.94	< 0.0025	< 0.002
626/2019 5.4 57 220 1.1 7.98 350 1.00 NA 0.074 $0.M$ NA NA < 0.001 1.1 < 0.005 0.18 NA 0.065 1.18 $FI < 0.0025$ NA $11/62019$ 4.5 58 210 1.1 7.99 350 1.10 NA 0.01 NA < 0.01 1.1 < 0.005 0.18 NA 0.065 1.18 $FI < 0.025$ NA $11/62019$ 4.5 58 210 1.1 7.99 350 1.100 NA 0.01 NA < 0.01 1.1 < 0.005 0.018 NA 0.065 1.18 $FI < 0.025$ NA $625/2020$ 4.9 57 220 1.10 7.99 350 1.00 NA 0.04 NA NA < 0.010 1.10 < 0.025 0.019 NA 0.02 1.620 0.01 NA $625/202$ 4.9 57 220 1.10																								
6/25/2020 4.9 57 220 1.1 8.33 410 1,100 NA 0.023 0.04 NA NA < 0.001 1.1 < 0.019 NA 0.02 2.19 < 0.0025 NA		6/26/2019	5.4	57	220	1.1	7.98	350	1,100	NA	0.0074	0.041	NA	NA	NA	< 0.001	1.1	< 0.0005	0.018	NA	0.065	1.18	F1 < 0.0025	NA
	1																							
		12/7/2020	5.3	57	220	1.2	7.83	450	1,100	NA	0.0044	0.043	NA	NA	NA	< 0.001	1.2	< 0.0005	0.024	NA	0.018	2.16	< 0.0025	NA
6/30/2021 5.9 B 61 200 1.1 7.88 470 1.10 3 < 0.017 0.048 U^1+1 < 0.5 < 5 < 0.001 1.1 < 0.005 0.024 < 0.0020 0.017 DNYA < 0.0025 < 2		6/30/2021	5.9 B	61	200	1.1	7.88	470	1,100	3	< 0.017	0.048	U ^1+ 1	< 0.5	< 5	< 0.001	1.1	< 0.0005	0.024	< 0.00020		DNYA	< 0.0025	< 2

Notes: All units are in mg/l except pH is in standard units and radium is in pCi/L. F1 - MS and/or MSD Recovery outside of limits.

B - Compound was found in the blank and sample.

Table 1. Groundwater Analytical Results - Midwest Generation, LLC, Joliet #9 Generating Station, Joliet, IL.

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved Solids	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228 Combined	Selenium	Thallium
	11/19/2015	1.3	99	88	0.28	7.32	210	640	< 0.003	0.0018	0.033	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.28	< 0.0005	0.04	< 0.0002	0.16	1.928	< 0.0025	< 0.002
	5/5/2016	1.9	100	140	0.32	7.38	210	810	< 0.003	0.0034	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	0.32	0.0005	0.069	< 0.0002	0.29	2.26	< 0.0025	< 0.002
	6/29/2016	2.5	110	110	0.35	7.53	280	860	< 0.003	0.0021	0.042	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	< 0.0005	0.065	< 0.0002	0.43	2.12	< 0.0025	< 0.002
	8/26/2016 11/18/2016	3.0 3.3	120	100	0.4 0.34	7.30 7.38	330 270	850 830	< 0.003 < 0.003	0.0014 0.0016	0.043 0.042	^ < 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.4 0.34	< 0.0005 < 0.0005	0.056 0.063	< 0.0002 < 0.0002	0.48	2.39 3.17	< 0.0025 < 0.0025	< 0.002
	2/16/2017	1 4.0	120	99	0.34	7.39	340	830	< 0.003	0.002	0.039	< 0.001	< 0.0005	< 0.005	< 0.001	0.34	< 0.0005	0.064	< 0.0002	0.57	1.76	F1 < 0.0025	< 0.002
	5/25/2017	8.3	240	88	0.42	7.54	320	850	< 0.006	0.0042	0.075	^ < 0.002	< 0.001	< 0.01	< 0.002	0.42	< 0.001	0.14	< 0.0002	1.4	1.82	< 0.005	< 0.004
R32S	7/7/2017 9/28/2017	6.2 4.8	120	96 78	0.42 0.36	7.61 7.29	360 290	830 870	< 0.003 < 0.003	0.0043 0.003	0.04 0.044	< 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.42 0.36	< 0.0005 < 0.0005	0.1 0.086	< 0.0002 < 0.0002	0.87 0.57	2.08	< 0.0025 < 0.0025	< 0.002 < 0.002
down-gradien	t 11/21/2017	5.7	120	97	0.38	7.50	390	900	< 0.003	0.003	0.044	< 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.11	< 0.0002	0.74	1.79	< 0.0025	< 0.002
	3/7/2018	5.8	130	86	0.32	7.57	350	880	< 0.003	0.0029	0.042	< 0.001	< 0.0005	< 0.005	< 0.001	0.32	< 0.0005	0.11	< 0.0002	0.67	2.56	< 0.0025	< 0.002
	5/21/2018	4.4	120	77	0.29	7.13	310	1,000	NA	0.0024	0.04	NA	NA	NA	< 0.001	0.29	< 0.0005	0.1	NA	0.64	2.22	< 0.0025	NA
	12/13/2018 6/27/2019	3.5 6.3	120	F1 72 74	0.26 0.27	7.43 7.33	280 380	880 880	NA NA	0.0019 0.0027	0.043 0.041	NA NA	NA NA	NA NA	< 0.001	0.260 0.270	0.0017 < 0.0005	0.080	NA NA	0.560 0.810	2.23 2.67	< 0.0025 < 0.0025	NA NA
	11/6/2019	4.8	150	69	0.27	7.45	360	820	NA	< 0.01	0.039	NA	NA	NA	< 0.001	0.270	< 0.0005	0.13	NA	0.580	2.370	< 0.0100	NA
	6/29/2020	6.0	130	71	0.28	7.47	400	790	NA	0.0021	0.038	NA	NA	NA	< 0.001	0.28	< 0.0005	0.11	NA	0.64	3.92	< 0.0025	NA
	12/16/2020 6/28/2021	6.1 4.0 B	150	F1 66 56	0.34	7.43 7.16	430 430	840 790	NA < 3	0.0025	0.038 0.036	NA < 1	NA < 0.5	NA < 5	< 0.001 < 0.001	0.34	^+< 0.0005 < 0.0005	0.11 0.071	NA < 0.00020	0.75 0.53	3.22 DNYA	F1 < 0.0025 < 0.0025	NA < 2
	11/20/2015	4.0 B	120	43	0.21	7.11	220	640	< 0.003	0.0012	0.053	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.21	< 0.0005	0.017	< 0.00020	0.1000	1.161	< 0.0025	< 0.002
	5/9/2016	0.91	110	37	0.18	7.39	120	690	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	0.18	< 0.0005	0.015	< 0.0002	0.046	< 0.415	< 0.0025	< 0.002
	6/30/2016	0.69	100	32	0.18	7.59	99	620	< 0.003	< 0.001	0.044	< 0.001	< 0.0005	< 0.005	< 0.001	0.18	< 0.0005	0.014	< 0.0002	0.025	0.879	< 0.0025	< 0.002
	8/26/2016 11/16/2016	0.9 0.82	120	36	0.19 0.17	7.12 7.15	110 88	710 530	< 0.003 < 0.003	< 0.001 < 0.001	0.053 0.048	^ < 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.19 0.17	< 0.0005 < 0.0005	0.014 0.011	< 0.0002 < 0.0002	0.047 0.041	0.816 0.475	< 0.0025 < 0.0025	< 0.002 < 0.002
1	2/16/2017	0.86	120	26 30	0.17	7.38	120	620	< 0.003	< 0.001	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.17	< 0.0005	0.011	< 0.0002	0.041	0.473	< 0.0025	< 0.002
	5/24/2017	0.83	120	31	0.19	7.08	95	600	< 0.003	< 0.001	0.048	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.19	< 0.0005	0.011	< 0.0002	0.031	1.02	< 0.0025	< 0.002
1	7/10/2017	0.83	110	30	< 0.1	7.00	110	700	< 0.003	< 0.001	0.049	< 0.001	< 0.0005	< 0.005	< 0.001	< 0.1	< 0.0005	0.012	< 0.0002	0.061	0.667	< 0.0025	< 0.002
G44S down-gradien	9/28/2017	0.99	130	30	0.19	7.13	100	730	< 0.003	< 0.001	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.19	< 0.0005	0.014	< 0.0002	0.081	0.614	< 0.0025	< 0.002
uowa-gradien	t 11/21/2017 3/7/2018	0.79 0.91	110	35 36	0.18 0.18	7.06 7.19	120	640 670	< 0.003	< 0.001 0.0014	0.051 0.053	< 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.18	< 0.0005 < 0.0005	0.016	< 0.0002 < 0.0002	0.055 0.049	0.913	< 0.0025 < 0.0025	< 0.002 < 0.002
1	5/17/2018	0.91	120	35	0.18	7.02	96	670 780	< 0.003 NA	< 0.0014	0.053	< 0.001 NA	< 0.0005 NA	< 0.005 NA	< 0.001	0.18	< 0.0005	0.017	< 0.0002 NA	0.049	0.714	< 0.0025	< 0.002 NA
1	12/10/2018	1.1	120	43	0.19	7.41	78	630	NA	< 0.001	0.057	NA	NA	NA	< 0.001	0.19	< 0.0005	0.019	NA	0.14	0.454	< 0.0025	NA
	6/19/2019	1.3	130	59	0.19	7.02	140	720	NA	< 0.001	0.062	NA	NA	NA	< 0.001	0.19	< 0.0005	0.023	NA	0.13	0.841	< 0.0025	NA
	11/12/2019 6/29/2020	1.3	140	53	0.21 0.21	7.22 7.30	160	670 670	NA	< 0.01	0.065	NA	NA	NA	< 0.001	0.21	< 0.0005	0.026	NA NA	0.20	1.01	< 0.01	NA
	12/15/2020	1.4	140	52	0.25	7.17	180	650	NA	< 0.001	0.062	NA	NA	NA	< 0.001	0.25	< 0.0005	0.024	NA	0.15	1.18	< 0.0025	NA
	6/302021	1.9 B	120	65	0.21	7	170	730	< 3	< 0.001	0.058	U ^1+ 1	< 0.5	< 5	< 0.001	0.21	< 0.0005	0.026	< 0.00020	0.22	DNYA	< 0.0025	< 2.0
	11/23/2015 5/9/2016	6.0	110	80	0.27 0.28	7.32	430 360	780 940	< 0.003 < 0.003	0.0033 0.0018	0.064 0.099	^ < 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.27 0.28	< 0.0005	0.073 0.11	< 0.0002 < 0.0002	0.5	1.468 1.85	< 0.0025 < 0.0025	< 0.002 < 0.002
	6/30/2016	7.9	100	99	0.28	8.26	290	880	< 0.003	0.0018	0.099	< 0.001	< 0.0005	< 0.005	< 0.001	0.28	< 0.0005	0.11	< 0.0002	0.71	1.85	< 0.0025	< 0.002
	8/26/2016	7.2	100	120	0.35	7.48	350	1,000	< 0.003	0.0027	0.054	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.35	< 0.0005	0.12	< 0.0002	1.2	1.17	< 0.0025	< 0.002
	11/18/2016	6.5	110	120	0.39	7.56	330	1,000	< 0.003	0.0025	0.051	< 0.001	< 0.0005	< 0.005	< 0.0010	0.39	< 0.0005	0.13	< 0.0002	1.8	< 0.601	< 0.0025	< 0.002
	2/16/2017 5/22/2017	6.1 6.8	100	150	0.41 0.44	7.94 7.37	410 350	1,000 970	< 0.003	0.0024 0.0033	0.053 B 0.046	< 0.001 ^ < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.0010 < 0.0010	0.41 0.44	< 0.0005 < 0.0005	0.091 0.11	< 0.0002 < 0.0002	1.4	1.07 0.683	< 0.0025 < 0.0025	< 0.002 < 0.002
	7/6/2017	4.9	100	150	0.44	7.33	290	880	< 0.003	0.0033	B 0.046 0.044	< 0.001	< 0.0005	< 0.005	< 0.0010	0.44	< 0.0005	0.076	< 0.0002	1.4 0.92	0.683	< 0.0025	< 0.002 ^ < 0.002
G46S	9/27/2017	4.9	88	160	0.4	7.28	270	890	< 0.003	0.0043	0.031	< 0.001	< 0.0005	< 0.005	< 0.0010	0.4	< 0.0005	0.091	< 0.0002	0.63	0.754	< 0.0025	< 0.002
down-gradien	t 11/21/2017	5.3	78	170	0.43	7.73	270	800	< 0.003	0.0055	0.032	< 0.001	< 0.0005	< 0.005	< 0.0010	0.43	< 0.0005	0.11	< 0.0002	0.68	0.776	< 0.0025	< 0.002
	3/8/2018	5.9	110	140	0.41	7.75	350	940	< 0.003	0.0039	0.049	< 0.001	< 0.0005	< 0.005	< 0.0010	0.41	0.00053	0.093	< 0.0002	0.82	1.29	< 0.0025	< 0.002
	5/18/2018	5.9	110	120	0.4	7.66	260	1,100	NA	0.0028	0.048	NA	NA	NA	< 0.0010	0.4	< 0.0005	0.073	NA	0.84	1.07	< 0.0025	NA
	12/11/2018 6/19/2019	7.60	120	110 69	0.38 0.33	7.66 7.64	270 440	1,100 1,000	NA NA	0.0023 0.014	0.055 0.040	NA NA	NA NA	NA NA	< 0.001 < 0.001	0.380 0.330	< 0.0005 < 0.0005	0.096	NA NA	1.20	1.22	< 0.0025 < 0.0025	NA NA
	11/13/2019	10	120	68	0.37	7.68	470	1,000	NA	< 0.050	0.041	NA	NA	NA	< 0.001	0.310	< 0.0050	0.11	NA	1.60	1.3	< 0.0100	NA
	6/29/2020	13	96	74	0.34	8.06	510	980	NA	0.075	0.05	NA	NA	NA	< 0.001	0.34	< 0.0050	0.23	NA	1.7	2.780	< 0.0025	NA
	12/15/2020 6/30/2021	10 15 B	120	73 67	0.35	7.74 7.4	540 590	1,000	NA < 3	0.27 0.044	0.075	NA U^1+ 1	NA < 0.5	NA < 5	< 0.001	0.35	< 0.00085 < 0.0005	0.21 0.21	NA < 0.00020	1.5	2.16 DNYA	< 0.0025 < 0.0025	NA < 2
	11/23/2015	4.6	11	160	0.45	9.22	480	700	< 0.003	0.014	0.018	^< 0.001	< 0.0005	< 0.005	< 0.001	0.45	< 0.0005	0.036	< 0.00020	0.32	0.898	0.003	< 0.002
1	5/6/2016	5.0	7.8	140	0.72	9.86	410	910	< 0.003	0.034	0.017	< 0.001	< 0.0005	< 0.005	< 0.001	0.72	< 0.0005	0.033	< 0.0002	0.41	0.736	0.0033	< 0.002
1	7/1/2016	6.4	8.4	150	0.68	9.32	340	860	< 0.003	0.022	0.019	< 0.001	^ < 0.0005	< 0.005	< 0.001	0.68	< 0.0005	0.038	< 0.0002	0.53	1.01	< 0.0025	< 0.002
1	8/24/2016 11/16/2016	9.3 15	9.2	140 F1 150	0.67	9.19 10.08	300 620	830 1,700	< 0.003 < 0.003	0.017 0.14	0.023 0.0091	< 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.67	< 0.0005 < 0.0005	0.028 0.015	< 0.0002 < 0.0002	0.41	1.06	< 0.0025 0.0038	< 0.002 < 0.002
1	2/15/2017	7.6	4.4	160	1.0	9.26	540	1,200	< 0.003	0.059	0.0051	< 0.001	< 0.0005	< 0.005	< 0.001	1.1	< 0.0005	< 0.015	< 0.0002	0.57	0.716	0.0035	< 0.002
1	5/23/2017	18	0.93	160	2.2	10.03	720	1,800	< 0.003	0.18	0.0081	^ < 0.001	< 0.0005	< 0.005	< 0.001	2.2	< 0.0005	0.013	< 0.0002	1.3	< 0.361	0.0025	< 0.002
	7/10/2017	18	1.2	150	2.1	10.06	780	1,800	< 0.003	0.17	0.0085	< 0.001	< 0.0005	< 0.005	< 0.001	2.1	< 0.0005	0.013	< 0.0002	1.2	0.733	< 0.0025	< 0.002
G47S down-gradien	9/27/2017 11/22/2017	18	1.1	150	2.0	10.15	750	1,900 1,800	< 0.003	0.21	0.0085	< 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	2	< 0.0005 < 0.0005	0.014 0.012	< 0.0002 < 0.0002	1.3	0.836 0.692	0.0027 0.0044	< 0.002 < 0.002
	3/8/2018	21 18	1.1	150	2.1 2.1	10.56	710 780	1,800	< 0.003	0.23 0.25	0.009	< 0.001	< 0.0005	< 0.005	< 0.001	2.1 2.1	< 0.0005	0.012	< 0.0002	1.5	0.692	0.0044	< 0.002
1	5/18/2018	3.7	1.1	160	1.7	7.79	570	1,800	NA	0.23	0.009	NA	NA	NA	< 0.001	1.7	< 0.0005	0.014	NA	1.4	1.01	0.0042	NA
1	12/11/2018	13	2.8	140	1.1	10.14	440	1,300	NA	0.140	0.0110	NA	NA	NA	< 0.001	1.10	< 0.0005	0.023	NA	1.10	0.597	0.0031	NA
	6/28/2019 11/7/2019	13 4.3	2.9	130	1.3 0.55	9.95	450 410	1,400 1,100	NA	0.13 0.029	0.0120 0.0170	NA	NA	NA	< 0.001 < 0.001	1.30 0.55	< 0.0005 < 0.0050	0.028 0.053	NA NA	1.00 0.38	0.566	< 0.0025 < 0.0100	NA
1	6/30/2020	4.3	15	140	0.55	9.04	410 F1 440	1,100	NA NA	0.029	0.0170	NA NA	NA NA	NA NA	< 0.001	0.55	< 0.0050	0.053	NA	0.38	1.02	< 0.0100 0.004	NA NA
1	12/7/2020	7.6	11	120	1.1	9.13	500	1,100	NA	0.066	0.012	NA	NA	NA	< 0.001	1.1	< 0.0005	0.047	NA	0.62	< 0.466	< 0.003	NA
	6/24/2021	6.1 B	12	110	0.66	8.68	470	1,000	< 0.003	0.04	0.013	< 0.001	< 0.0005	< 0.005	< 0.001	0.66	< 0.0005	0.05	UH 0.00020	0.48	DNYA	0.0027	< 0.002
1	11/20/2015 5/5/2016	9.30	6.9 5.9	120	1.5	9.08 9.53	760 560	1,100 1,200	< 0.003 < 0.003	0.03 0.046	0.015 0.014	^ < 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	1.5	< 0.0005 < 0.0005	0.015 0.016	< 0.0002 < 0.0002	1.4	0.8512 0.800	< 0.0025 < 0.0025	< 0.002 < 0.002
1	7/1/2016	9.50	4.2	120	1.5	9.55	480	1,200	< 0.003	0.048	0.014	< 0.001	^ < 0.0005	< 0.005	< 0.001	1.5	< 0.0005	0.013	< 0.0002	1.2	1.01	< 0.0025	< 0.002
1	8/24/2016	10.00	5.5	120	1.4	9.31	420	1,100	< 0.003	0.032	0.014	< 0.001	< 0.0005	< 0.005	< 0.001	1.4	< 0.0005	0.012	< 0.0002	1.1	1.16	< 0.0025	< 0.002
1	11/16/2016	9.80	10	110	1.4	9.61	340	1,100	< 0.003	0.03	0.018	< 0.001	< 0.0005	< 0.005	< 0.001	1.4	< 0.0005	0.016	< 0.0002	1.1	1.65	< 0.0025	< 0.002
1	9/27/2017 11/22/2017	7.60	18	100	1.1 1.2	8.94 9.42	480 450	1,100	< 0.003	0.024 0.027	0.019 0.015	< 0.001 < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	1.1 1.2	< 0.0005 < 0.0005	0.019 0.016	< 0.0002 < 0.0002	0.72	1.32	< 0.0025 < 0.0025	< 0.002
G48S	3/8/2018	5.30	62	120	0.85	9.42	450	1,000	< 0.003	0.027	0.015	< 0.001	< 0.0005	< 0.005	< 0.001	0.85	< 0.0005	0.016	< 0.0002	0.77	2.30	< 0.0025	< 0.002
down-gradien	5/18/2018	5.90	53	100	0.92	7.79	370	1,100	NA	0.022	0.023	NA	NA	NA	< 0.001	0.92	< 0.0005	0.023	NA	0.49	0.962	< 0.0025	NA
1	12/11/2018	7.30	23	110	1.1	8.42	310	1,000	NA	0.023	0.016	NA	NA	NA	< 0.001	1.1	0.0049	0.019	NA	0.79	0.921	< 0.0025	NA
1	6/25/2019 11/7/2019	7.10	28	110	1.0 0.89	8.07 7.83	390 380	1,000	NA	0.022 0.012	0.018 0.027	NA	NA	NA NA	< 0.001 < 0.001	0.95 0.89	< 0.0005	0.022 0.019	NA NA	0.73 0.59	1.33	< 0.0025 < 0.01	NA NA
1	6/26/2020	5.80	18	110	0.89	9.20	380 400	940	NA NA	0.012	0.027	NA NA	NA NA	NA	< 0.001	1.0	< 0.005	0.019	NA	0.59	0.971	< 0.01	NA
1	12/7/2020	6.00	29	110	1.1	8.4	410	890	NA	0.016	0.02	NA	NA	NA	< 0.001	1.1	< 0.0005	0.026	NA	0.41	2.00	< 0.0025	NA
	6/24/2021	4.3 B	96	96	0.71	7.27	480	1,100	< 0.003	0.0026	0.035	< 0.001	< 0.0005	< 0.005	< 0.001	0.71	< 0.0005	0.032	UH 0.00020	0.26	DNYA	< 0.0025	< 0.002

Notes: All units are in mg/l except pH is in standard units and radium is in pCi/L. F1 - MS and/or MSD Recovery outside of limits. B - Compound was found in the blank and sample.

Table 9-5. Groundwater Turbidity - Midwest Generation, LLC, Joliet #9 Generating Station

Well ID	Date	Turbidity (NTU)
	3/12/2021	0.87
	4/5/2021	0.33
	4/23/2021 5/18/2021	0.54
G45S	6/8/2021	0.64
	7/2/2021	1.4
	8/12/2021	0.36
	9/2/2021 3/15/2021	0.46
	4/1/2021	0.44
	4/22/2021	94
T03S	5/17/2021	0.47
	6/7/2021 7/1/2021	0.47
	8/12/2021	0.34
	9/1/2021	0.67
	3/12/2021	0.19
	4/1/2021	0.46
	4/23/2021 5/18/2021	0.34 0.24
R08S	6/8/2021	0.2
	7/1/2021	0.17
	8/12/2021	0.58
	9/2/2021 3/12/2021	0.42
	4/1/2021	0.32
	4/22/2021	0.14
G20S	5/18/2021	0.63
	6/8/2021	0.2
	7/1/2021 8/12/2021	0.29
	9/2/2021	0.48
	3/12/2021	0.05
	4/2/2021	0.14
	4/23/2021 5/18/2021	0.25 0.43
G30S	6/8/2021	0.61
	7/2/2021	0.48
	8/13/2021	0.31
	9/2/2021 3/12/2021	0.48
	4/5/2021	0.42
	4/23/2021	1.23
R32S	5/18/2021	1.78
	6/8/2021 7/2/2021	0.42
	8/13/2021	0.42
	9/30/2021	0.39
	3/15/2021	3.66
	4/5/2021 4/23/2021	3.89 3.31
	4/23/2021 5/18/2021	1.41
G44S	6/8/2021	1.42
	7/2/2021	1.37
	8/12/2021	1.56
	9/2/2021 3/15/2021	1.38
	4/5/2021	106.5
	4/23/2021	59.2
G46S	5/18/2021	181
	6/8/2021 7/1/2021	3140
	8/12/2021	112
	9/2/2021	43.3
	3/15/2021	0.12
	4/5/2021 4/22/2021	0.1 0.16
0.175	5/18/2021	0.10
G47S	6/8/2021	0.53
	0/12/2021	0.10
	8/13/2021 9/2/2021	0.18 0.68
	9/2/2021 3/15/2021	0.68
	4/5/2021	0.14
	4/22/2021	0.22
G 100	5/18/2021	0.44
G48S		0.24
G488	6/8/2021 7/1/2021	
G48S	6/8/2021 7/1/2021 8/13/2021	0.91 0.23

Table 9-6. Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods. Midwest Generation, LLC, Joliet #9 Generating Station, Joliet, IL.

PARAMETER	ANALYTICAL METHOD	CONTAINER	PRESERVATION	HOLD TIME	METHOD DETECTION LIMIT (MG/L)	Section 845.600(a) Standards
Boron	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.0245	2
Calcium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.106	NS
Chloride	SM4500 CI-E	1 L plastic	None, < 6 °C	28 days	1.22	200
Fluoride	SM4500 F-C	1 L plastic	None, < 6 °C	28 days	0.019	4
рН	SM4500 H ⁺ -B	1 L plastic	None, < 6 °C	immediate *	Field Parameter	6.5 - 9.0 (secondary standard)
Sulfate	SM4500 SO ₄ -E	1 L plastic	None, < 6 °C	28 days	2	400
Total Dissolved Solids	SM2400 C	1 L plastic	None, < 6 °C	7 days	6.1	1200
Antimony	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00101	0.006
Arsenic	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000439	0.01
Barium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000841	2
Beryllium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000237	0.004
Cadmium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00019	0.005
Chromium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000608	0.1
Cobalt	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000189	0.006
Lead	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000141	0.0075
Lithium	6010 C	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00215	0.04
Mercury	7470 A	250 mL plastic	HNO ₃ , < 6 °C	28 days	0.0000611	0.002
Molybdenum	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00162	0.1
Selenium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000834	0.05
Thallium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000591	0.002
Radium 226	903.0	1 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **
Radium 228	904.0	2 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **

Notes: It is noted that some parameters may be combined with others within the same container.

* - The result for pH is obtained in the field and is not submitted to the laboratory.

** - Combined Radium 226/228

mL - milliliters

L - liters

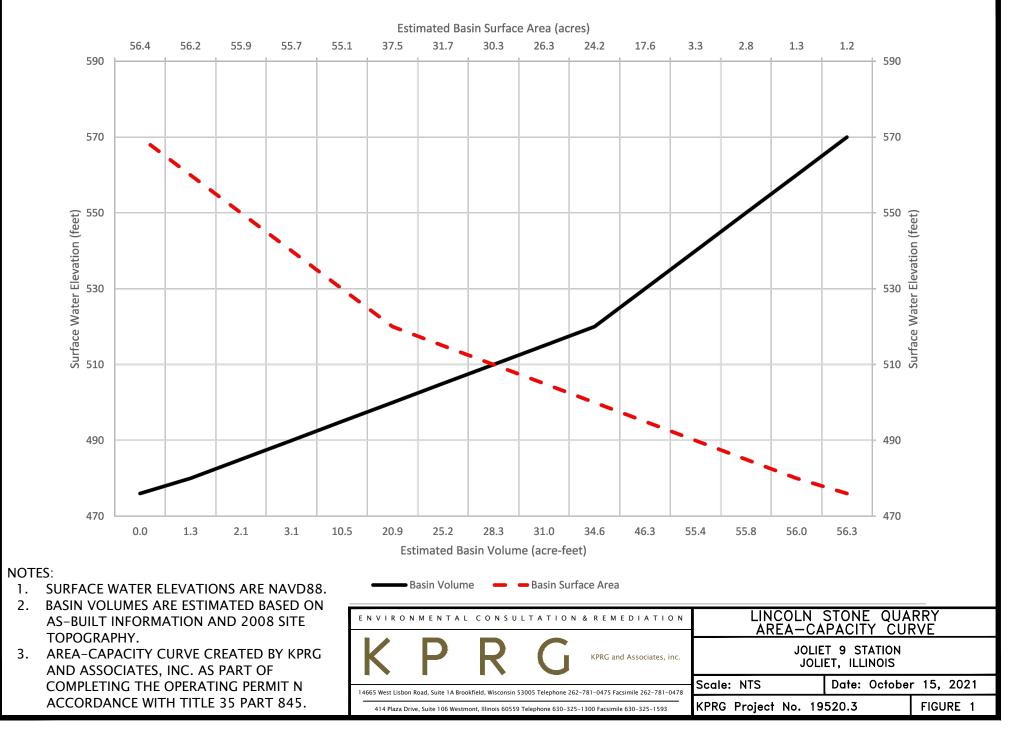
°C - degrees Celsius

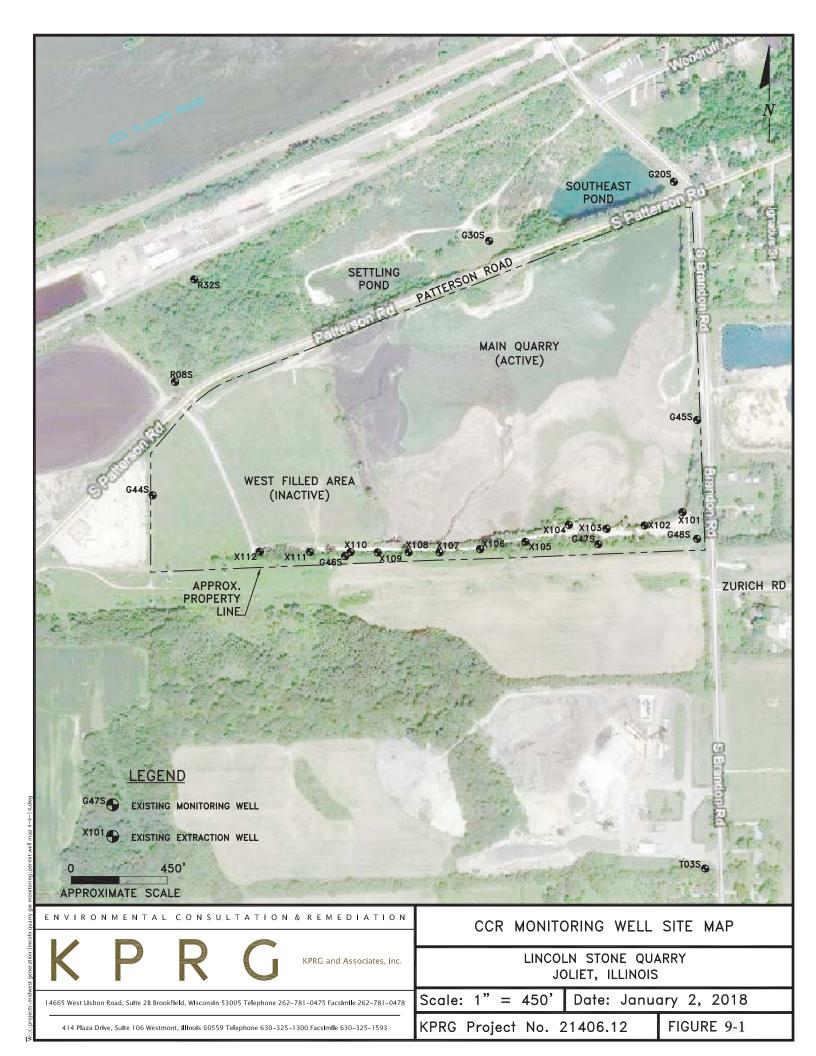
HNO₃ - Nitric Acid

NS- No Standard

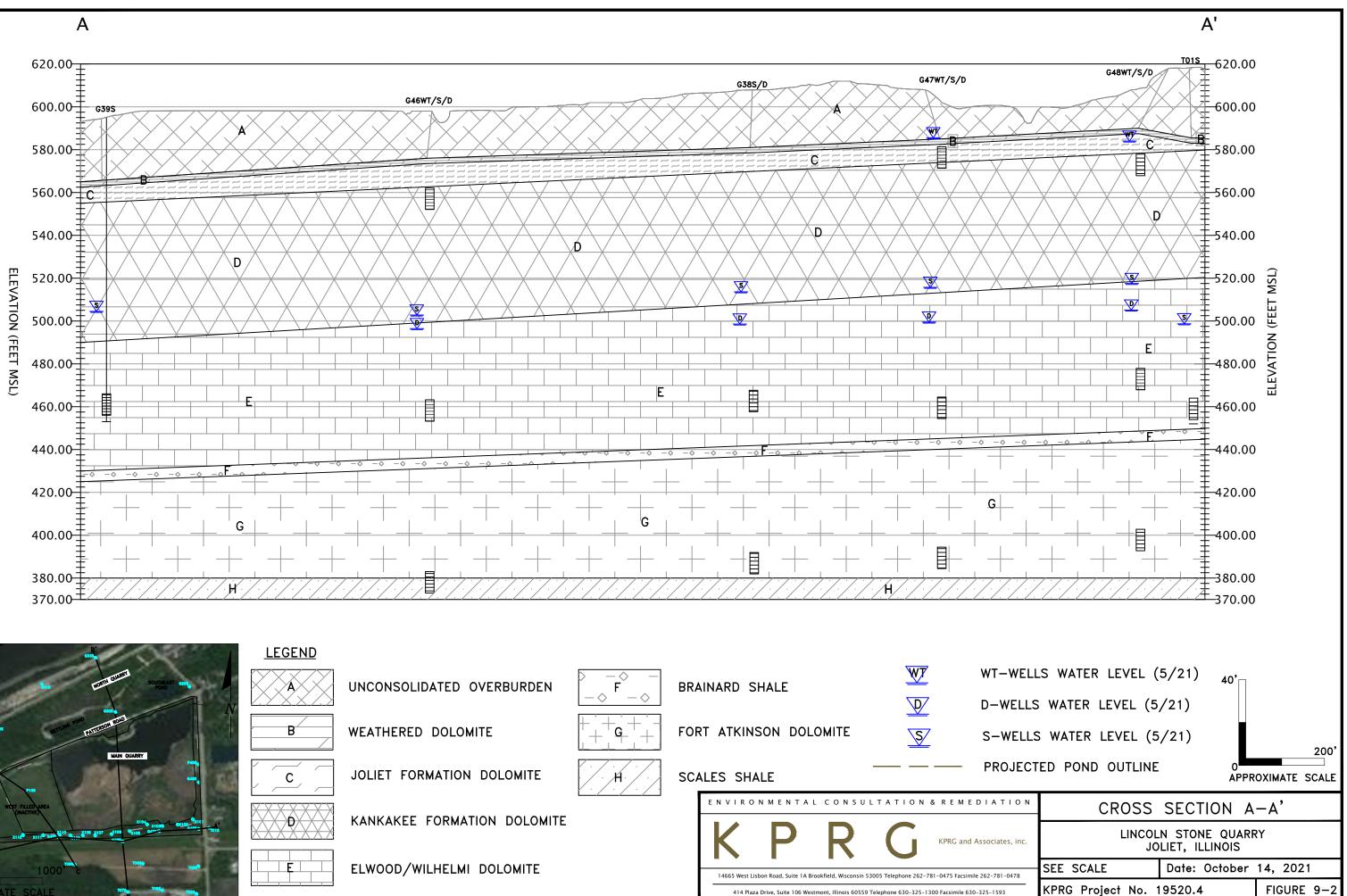
Table 9-7. Proposed Site-Specific Groundwater Protection Standards - Joliet #9 Lincoln Stone Quarry

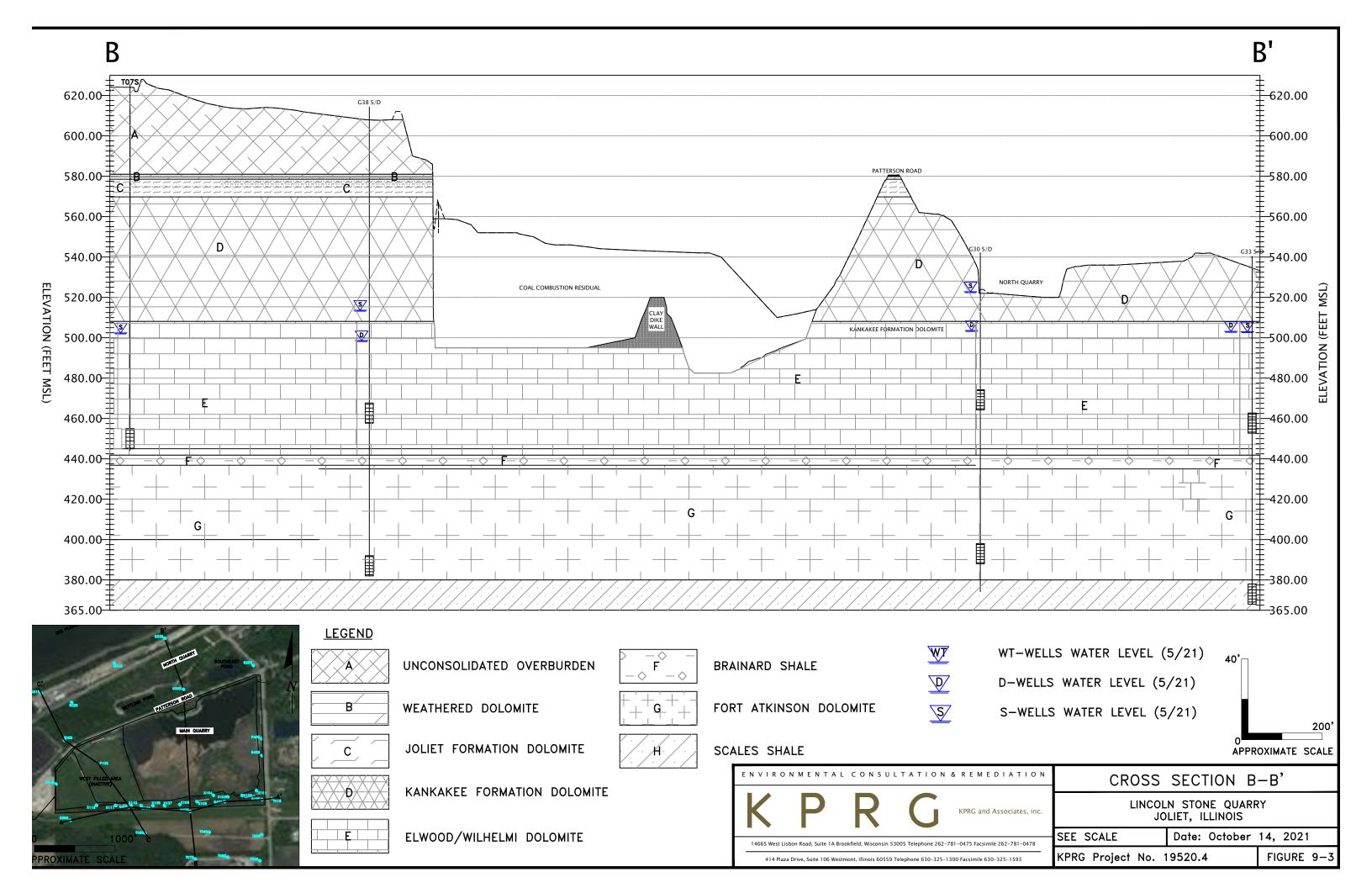
Upgradient Well(s)	Parameter	Section 845.600 Standards	Interwell Background Prediction Limit	Proposed GWPS
G45S and T03S Pooled	Antimony	0.006	0.003	0.006
T03S	Arsenic	0.01	0.003	0.01
G45S	Barium	2	0.05	2
G45S and T03S Pooled	Beryllium	0.004	0.001	0.004
G45S	Boron	2.0	1.039	2
G45S and T03S Pooled	Cadmium	0.005	0.001	0.005
G45S	Chloride	200	232.4	232.4
G45S and T03S Pooled	Chromium	0.1	0.005	0.1
G45S	Cobalt	0.006	0.001	0.006
T03S	Combined Radium 226 + 228 (pCi/L)	5.0	1.922	5.0
G45S	Fluoride	4.0	0.389	4.0
G45S and T03S Pooled	Lead	0.0075	0.0023	0.0075
G45S	Lithium	0.04	0.042	0.042
G45S and T03S Pooled	Mercury	0.002	0.0002	0.002
G45S	Molybdenum	0.10	0.014	0.10
G45S and T03S Pooled	pH (standard units)	6.5-9.0	6.85-7.62	6.5-9.0
G45S and T03S Pooled	Selenium	0.05	0.003	0.05
G45S	Sulfate	400	369.6	400
G45S and T03S Pooled	Thallium	0.002	0.002	0.002
G45S	Total Dissolved Solids	1200	1053	1200
G45S	Calcium	NE	138.4	138.4
G45S and T03S Pooled	Turbidity	NE	94	94

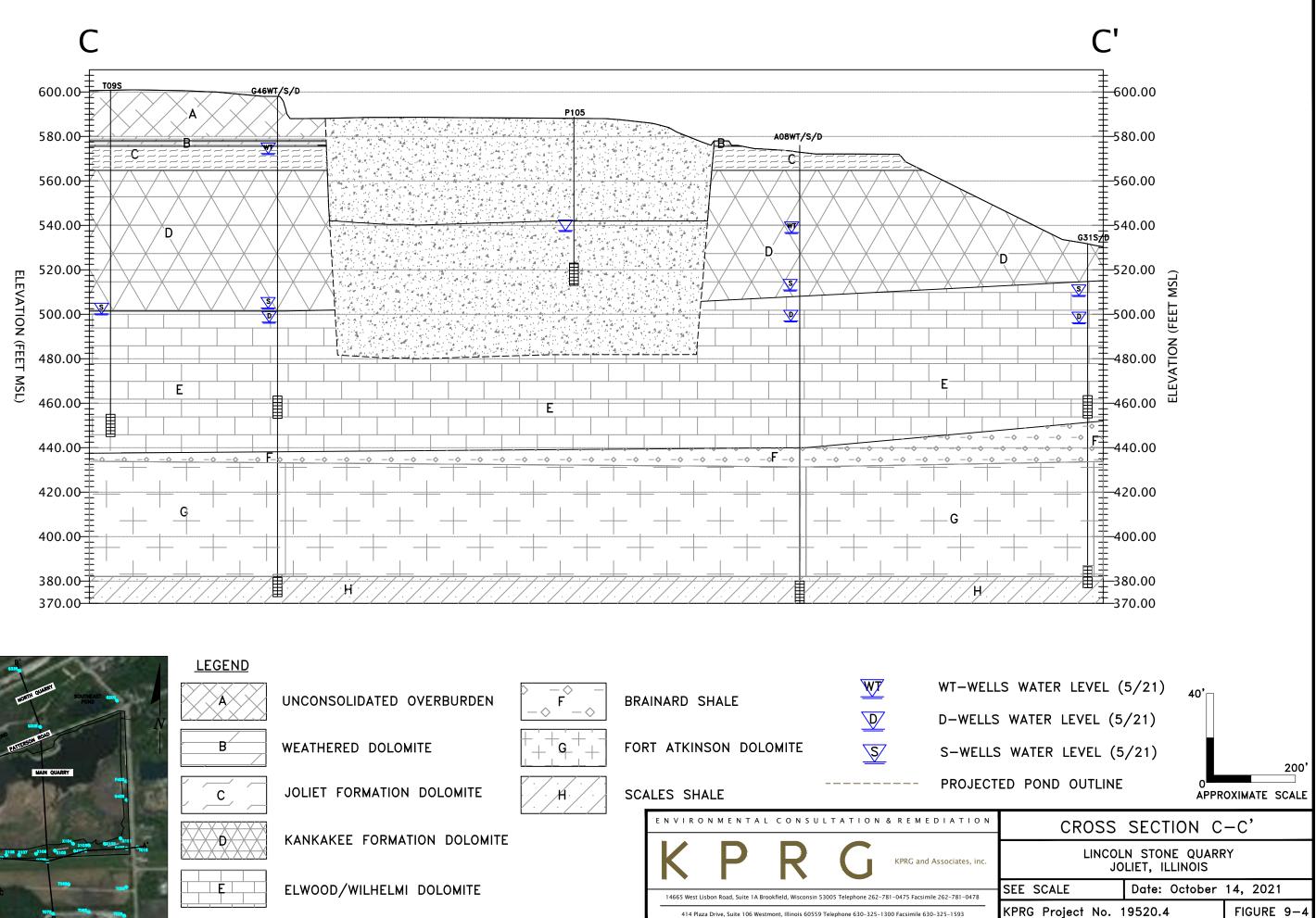

All values are in mg/L (ppm) unless otherwise noted.

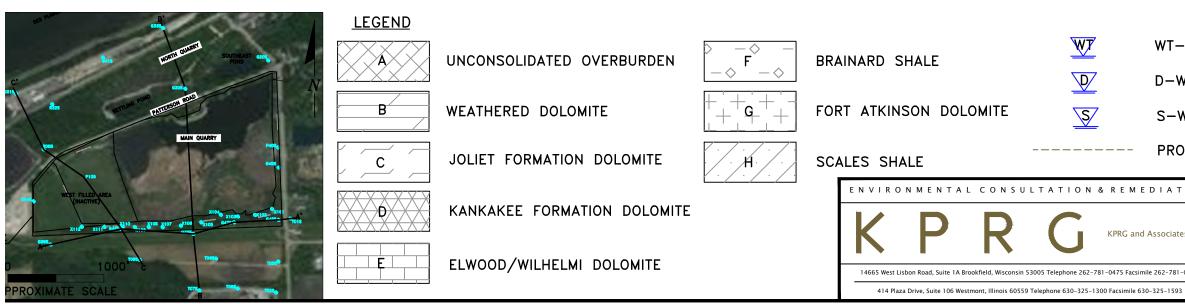

NE - Not Established

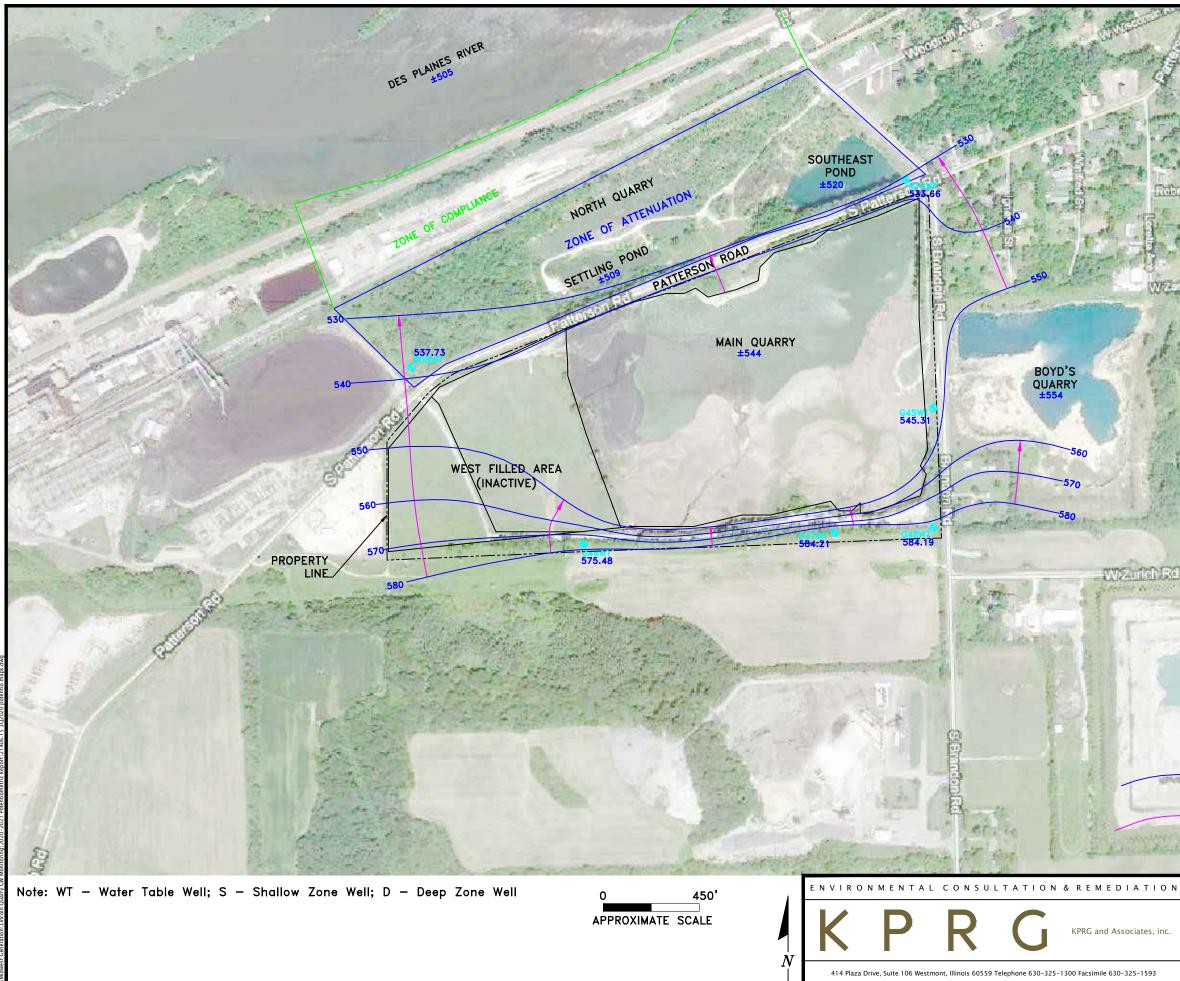
 \boldsymbol{Bold} - Site-specific Groundwater Protection Standard based on Section 845.600(a)(2)

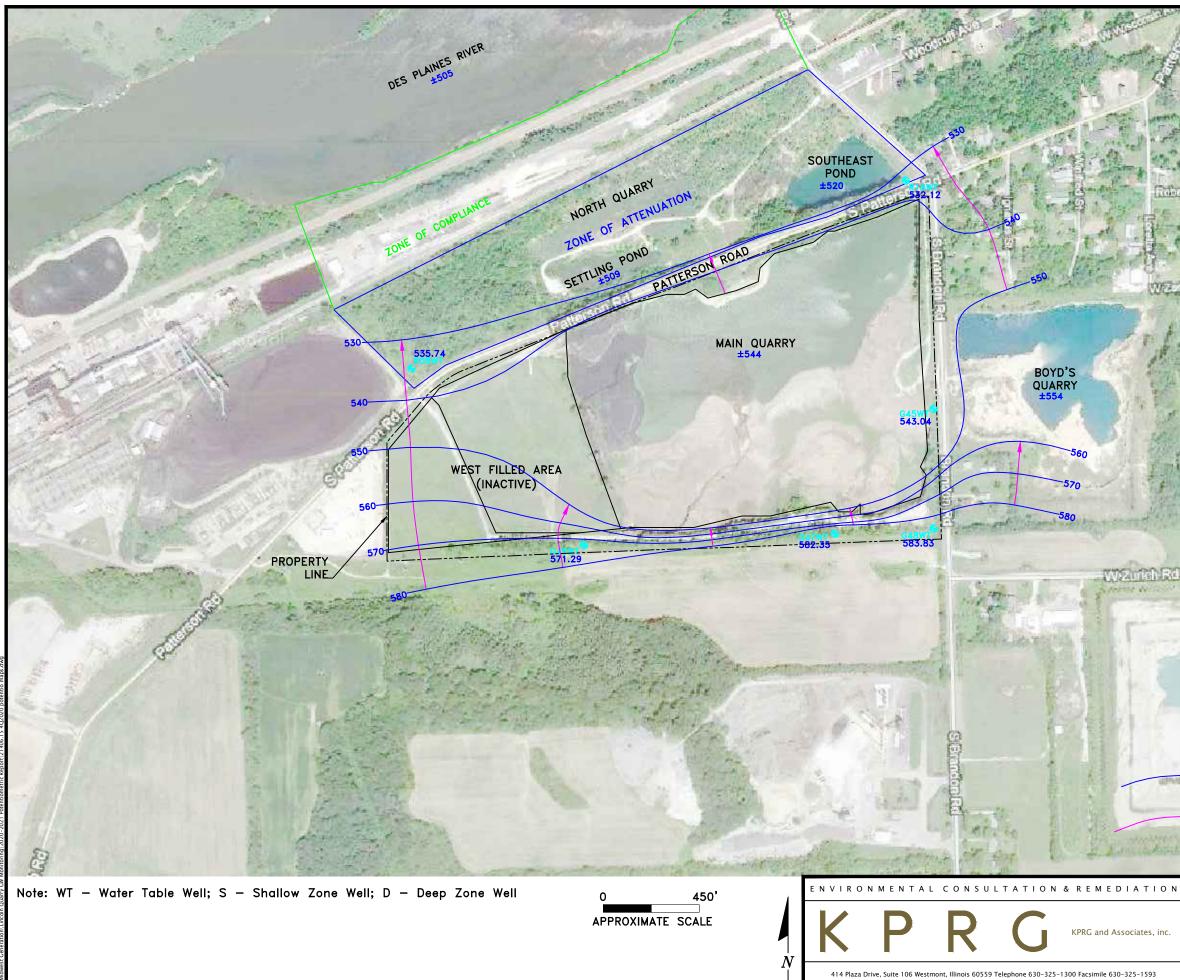

OPERATING PERMIT FIGURES


Lincoln Stone Quarry



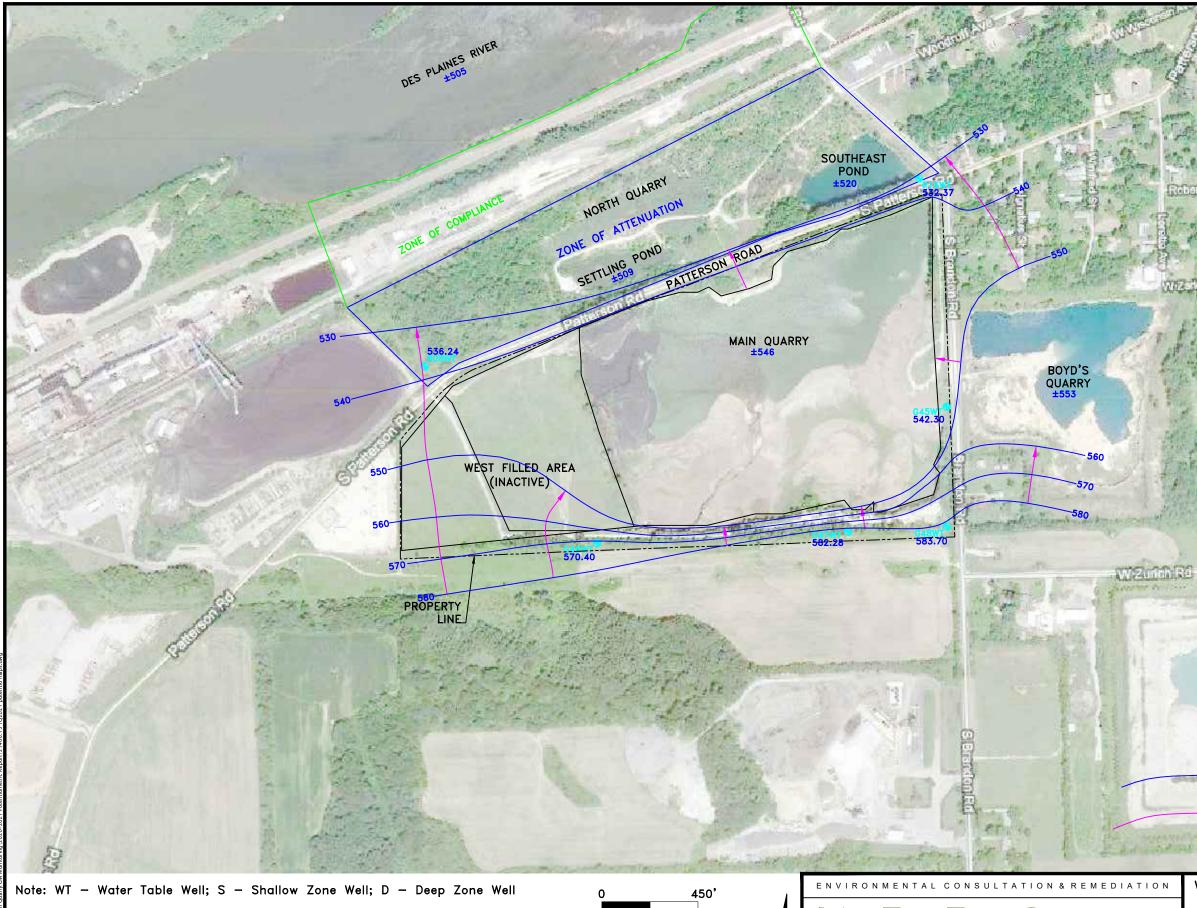



RO)



2midb Rd LEGEND POTENTIOMETRIC CONTOUR (10' INTERVAL)

WPEN


FLOW LINE

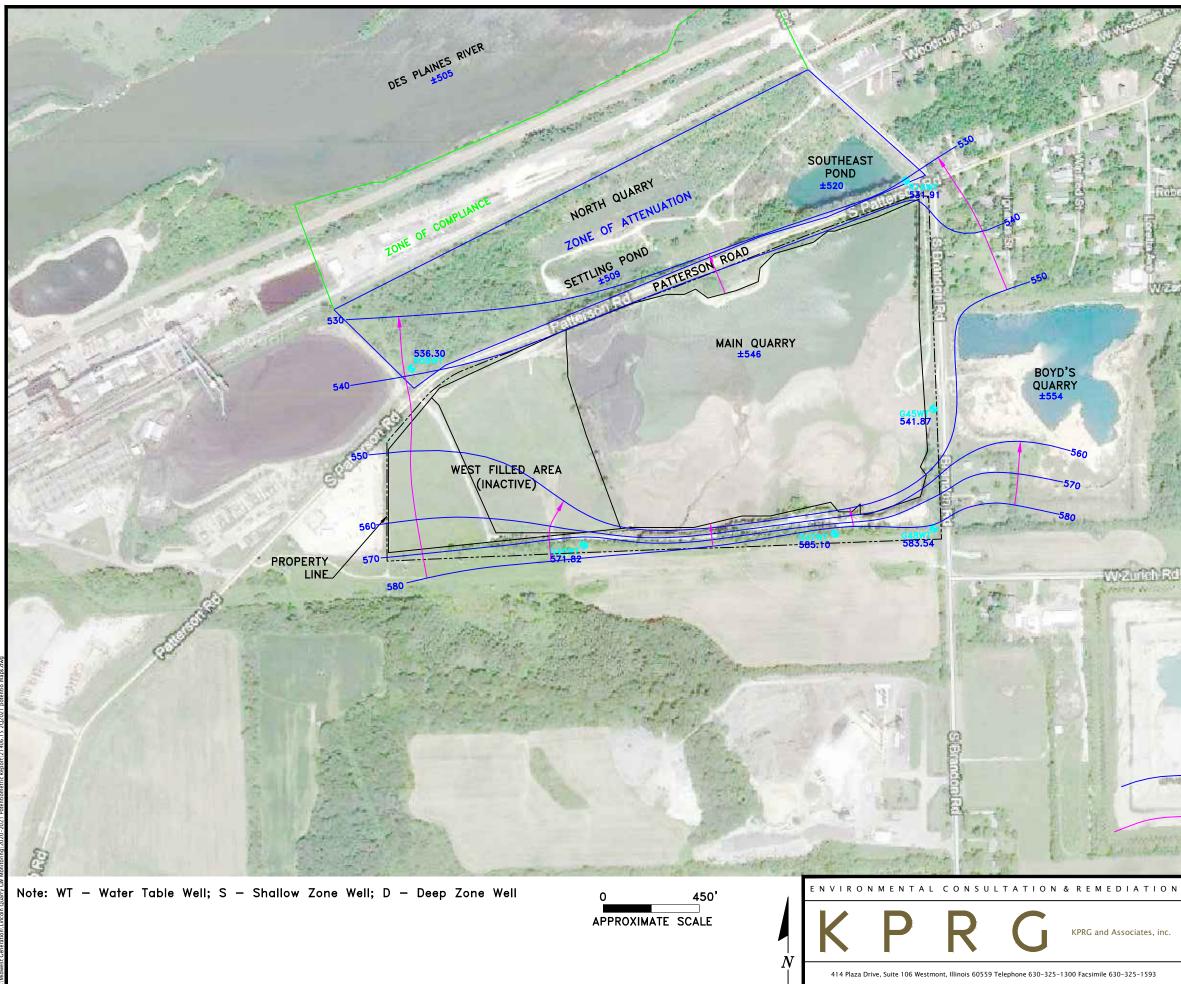
N	WATER TABLE POTENTIOMETRIC SURFACE MAP JULY/AUGUST 2020			
	JULY/AUGUST 2020			
	LINCOLN STONE QUARRY JOLIET, ILLINOIS			
	Scale: 1" = 450' Date: June 16, 2021			
- 78	KPRG Project No. 21406.15 FIGURE 9-5			

2midb Rd WPER LEGEND POTENTIOMETRIC CONTOUR (10' INTERVAL) FLOW LINE WATER TABLE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020

	UCTOBER/NOVEMBER 2020			
c.	LINCOLN STONE QUARRY JOLIET, ILLINOIS			
	Scale: 1" = 450' Date: June 17, 2021			
- 78	KPRG Project No. 21406.15 FIGURE 9-		FIGURE 9-6	

0		450
APPROXIN	ATE	SCALE

LEGEND


POTENTIOMETRIC CONTOUR (10' INTERVAL)

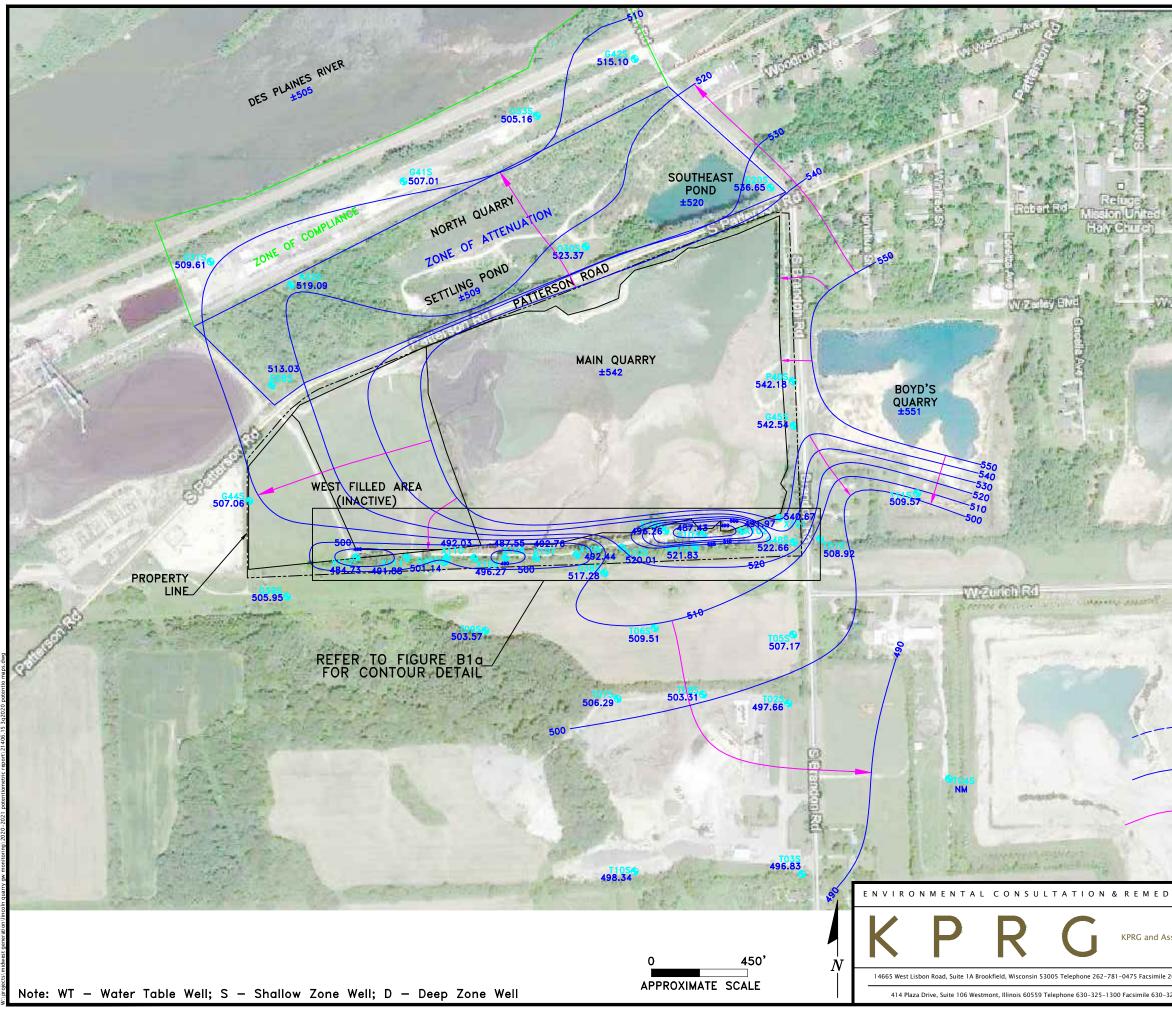
Zurich Rd

102

FLOW LINE

REMEDIATION	WATER TABLE POTENTIOMETRIC SURFACE MAP		
	JANUARY/FEBRUARY 2021		
KPRG and Associates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS		
300 Facsimile 630–325–1593	Scale: 1" = 450' Date: June 17, 2021		
81-0475 Facsimile 262-781-0478	KPRG Project No. 21406.15 FIGURE 9-7		

LEGEND

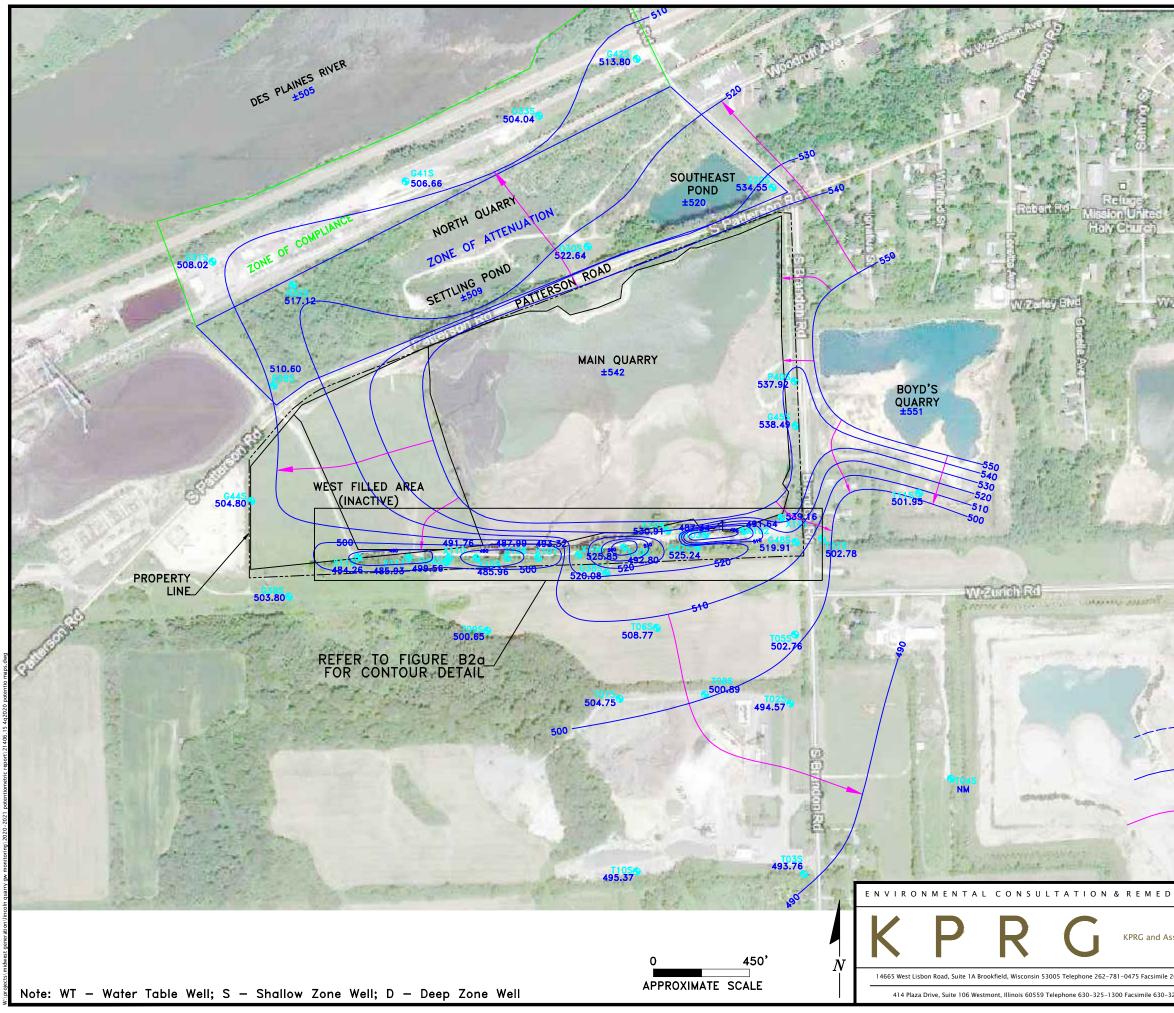

POTENTIOMETRIC CONTOUR (10' INTERVAL)

2midb Rd

WPER

FLOW LINE

N	WATER TABLE POTENTIOMETRIC SURFACE MAP APRIL/MAY 2021		
	APRIL/MAY 2021		
с.	LINCOLN STONE QUARRY JOLIET, ILLINOIS		
	Scale: 1" = 450' Date: June 17, 2021		
- 78	KPRG Project No. 21406.14 FIGURE 9-8		

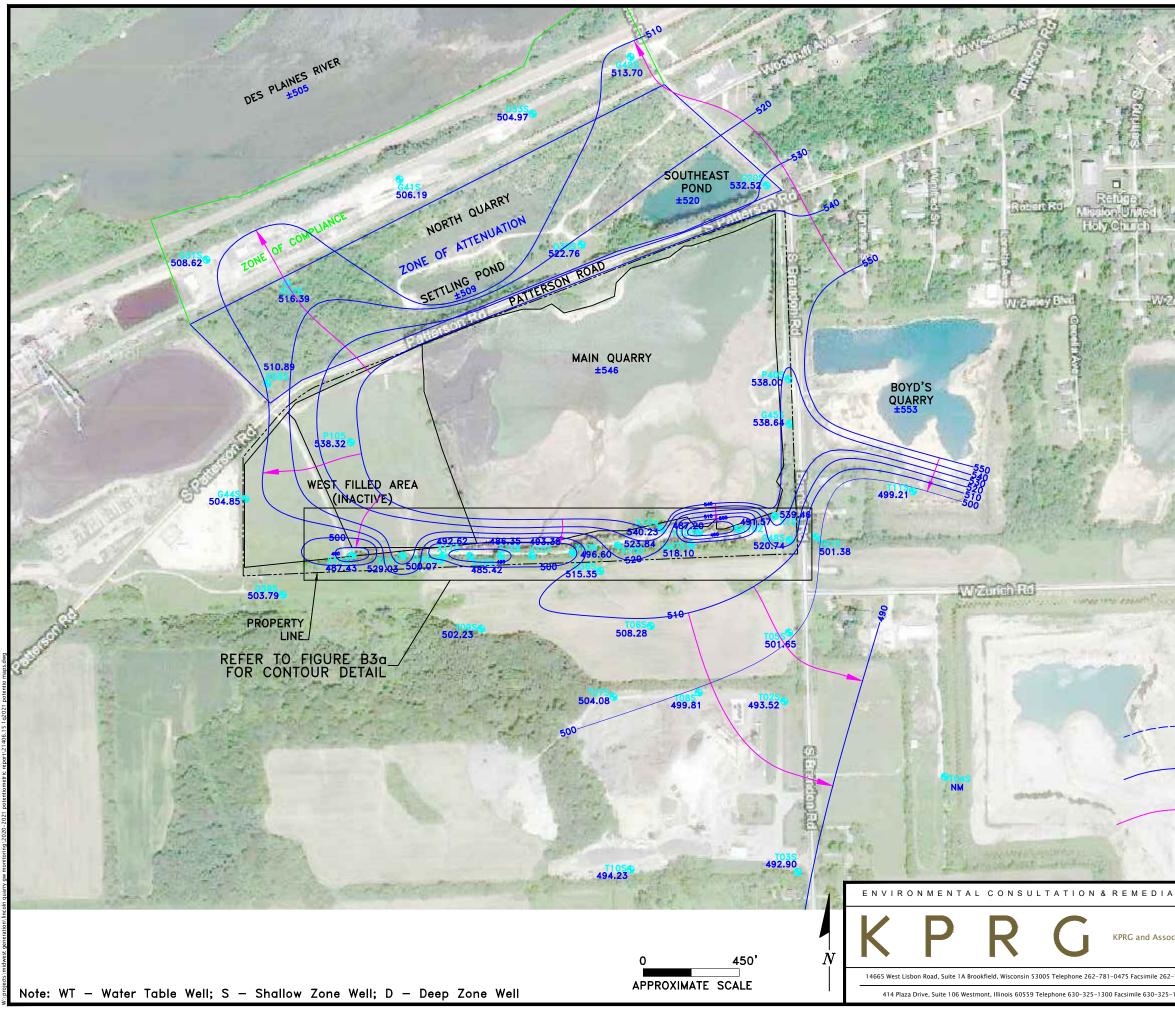

LEGEND DETAIL CONTOUR (5' INTERVAL)

POTENTIOMETRIC CONTOUR (10' INTERVAL)

FLOW LINE

ZrichRd

DIATION	SHALLOW ZONE POTENTIOMETRIC SURFACE MAI JULY/AUGUST 2020			
ssociates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS			
262-781-0478	Scale: 1" = 450'	Date: June 23,	2021	
325-1593	KPRG Project No. 21406.15 FIGURE 9-9			


<u>LEGEND</u> DETAIL CONTOUR (5' INTERVAL)

POTENTIOMETRIC CONTOUR (10' INTERVAL)

FLOW LINE

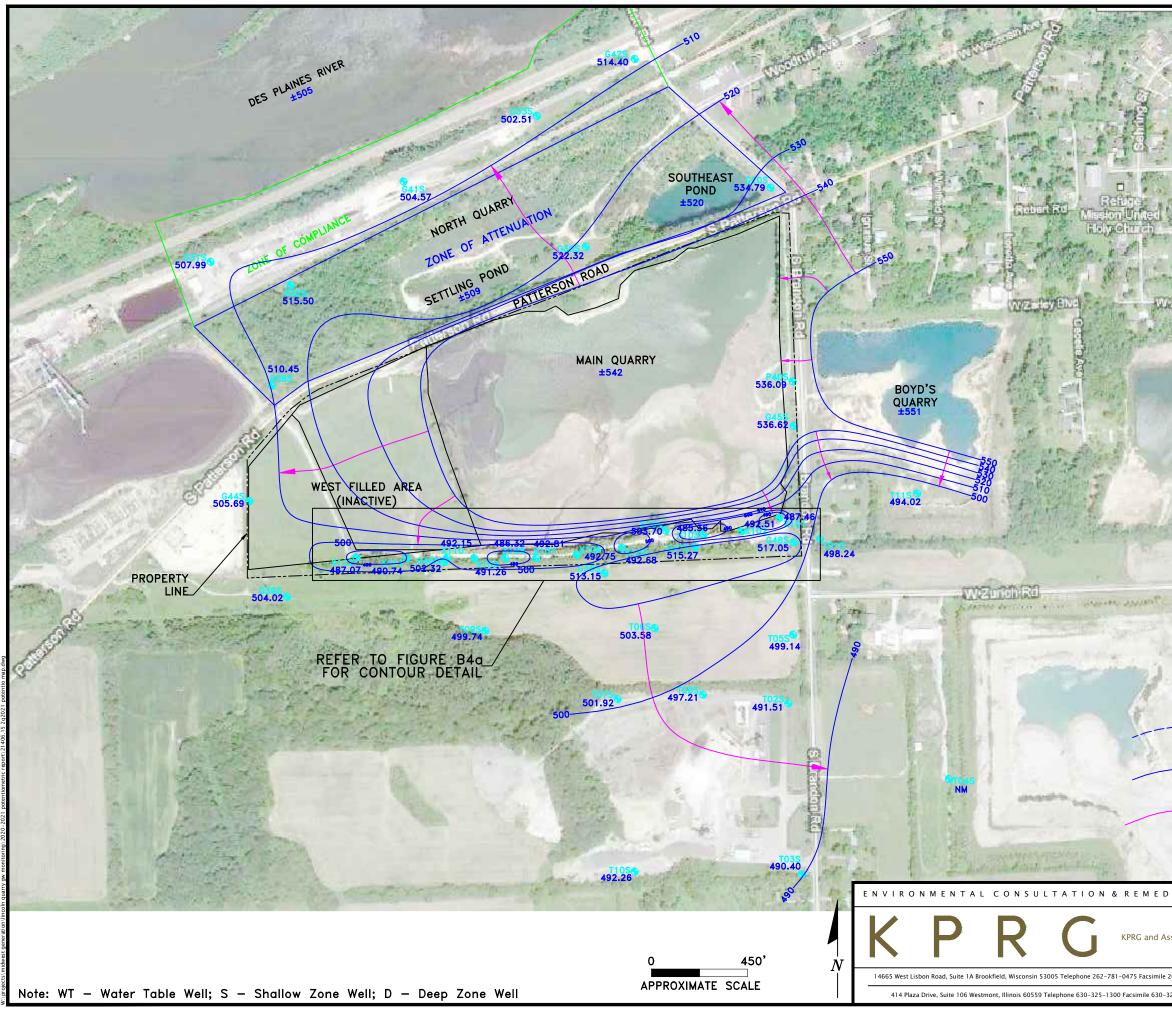
ZmichRit

DIATION	SHALLOW ZONE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020		
ssociates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS		
262-781-0478	Scale: 1" = 450'	Date: June 23,	2021
	KPRG Project No. 21406.15 FIGURE 9-10		

LEGEND

APARTA AND AN

ZalabRd

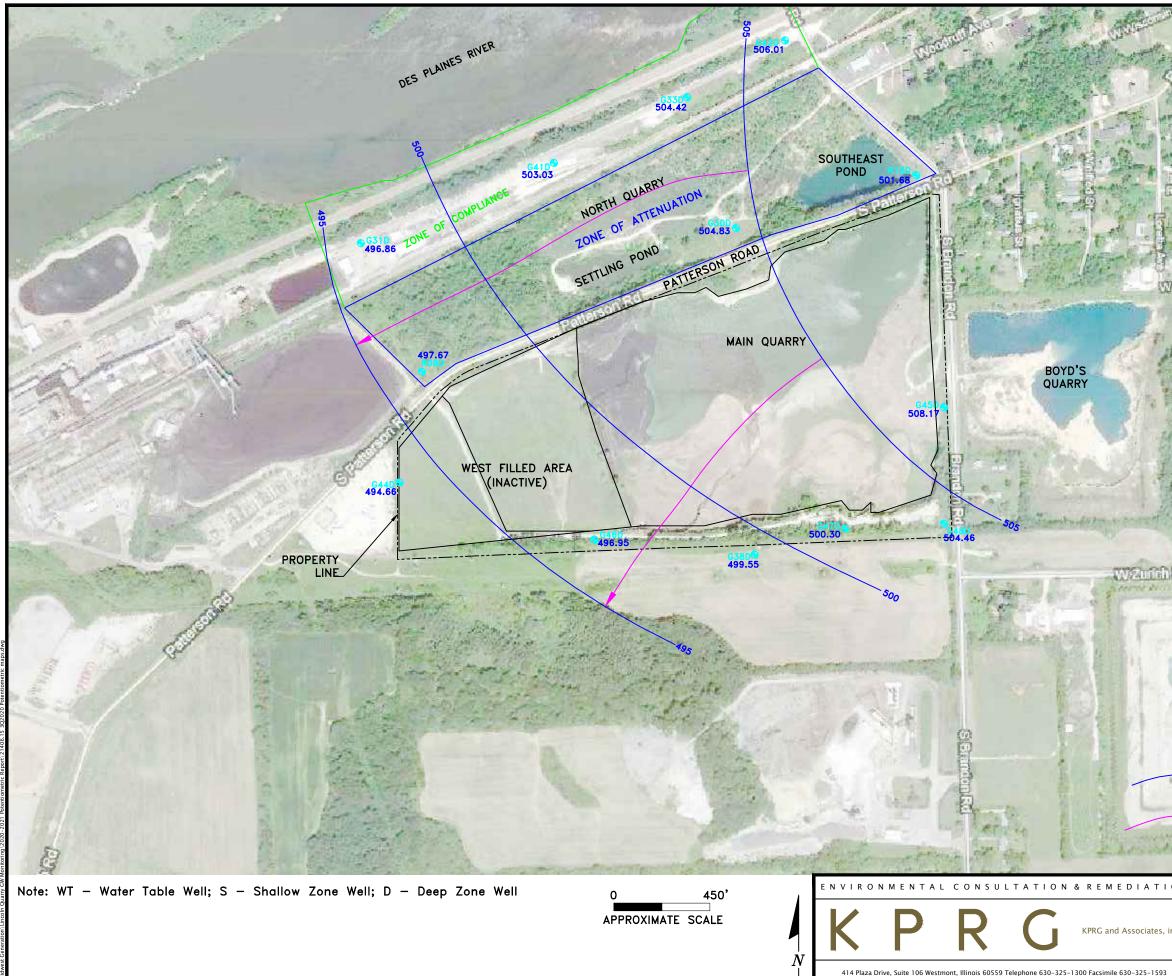

DETAIL CONTOUR (5' INTERVAL)

POTENTIOMETRIC CONTOUR (10' INTERVAL)

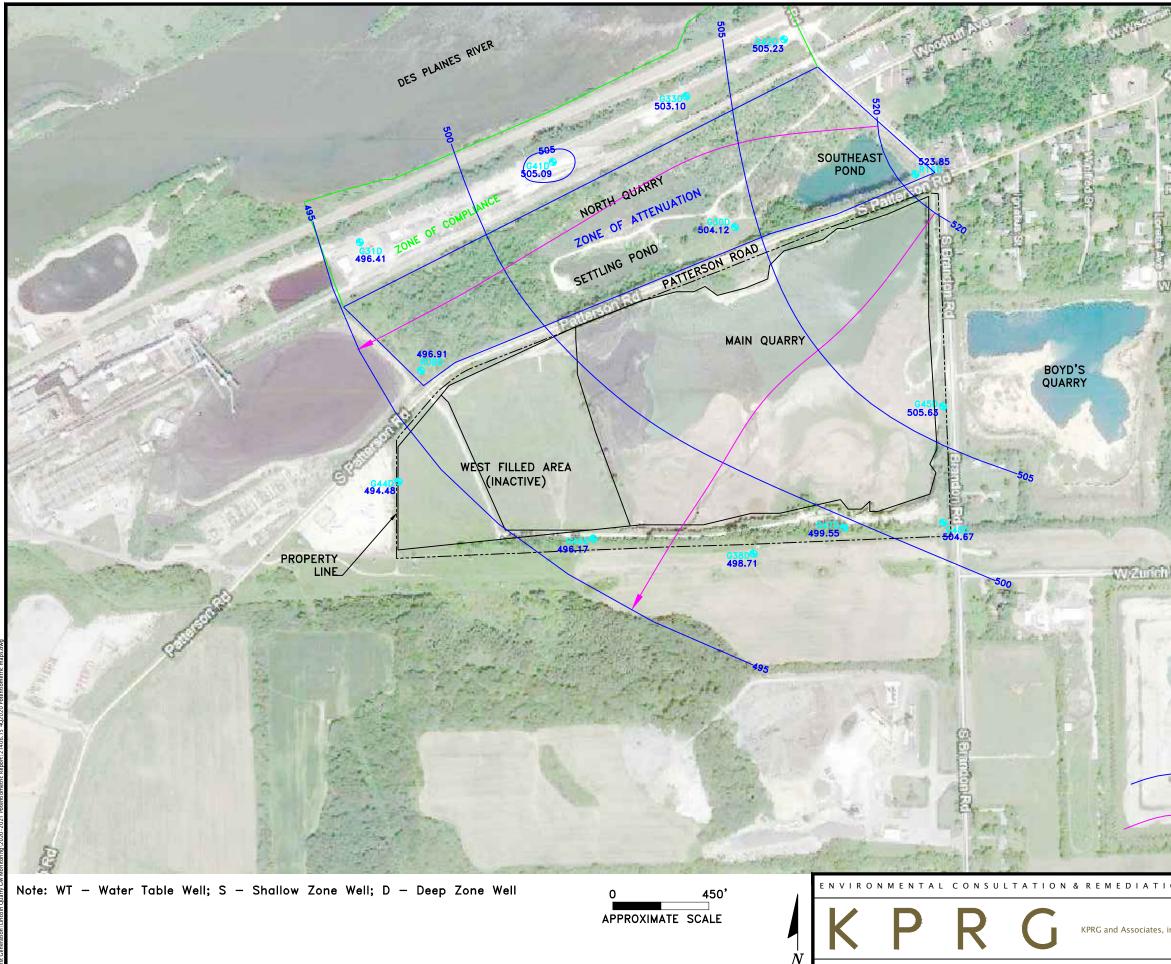
103

FLOW LINE

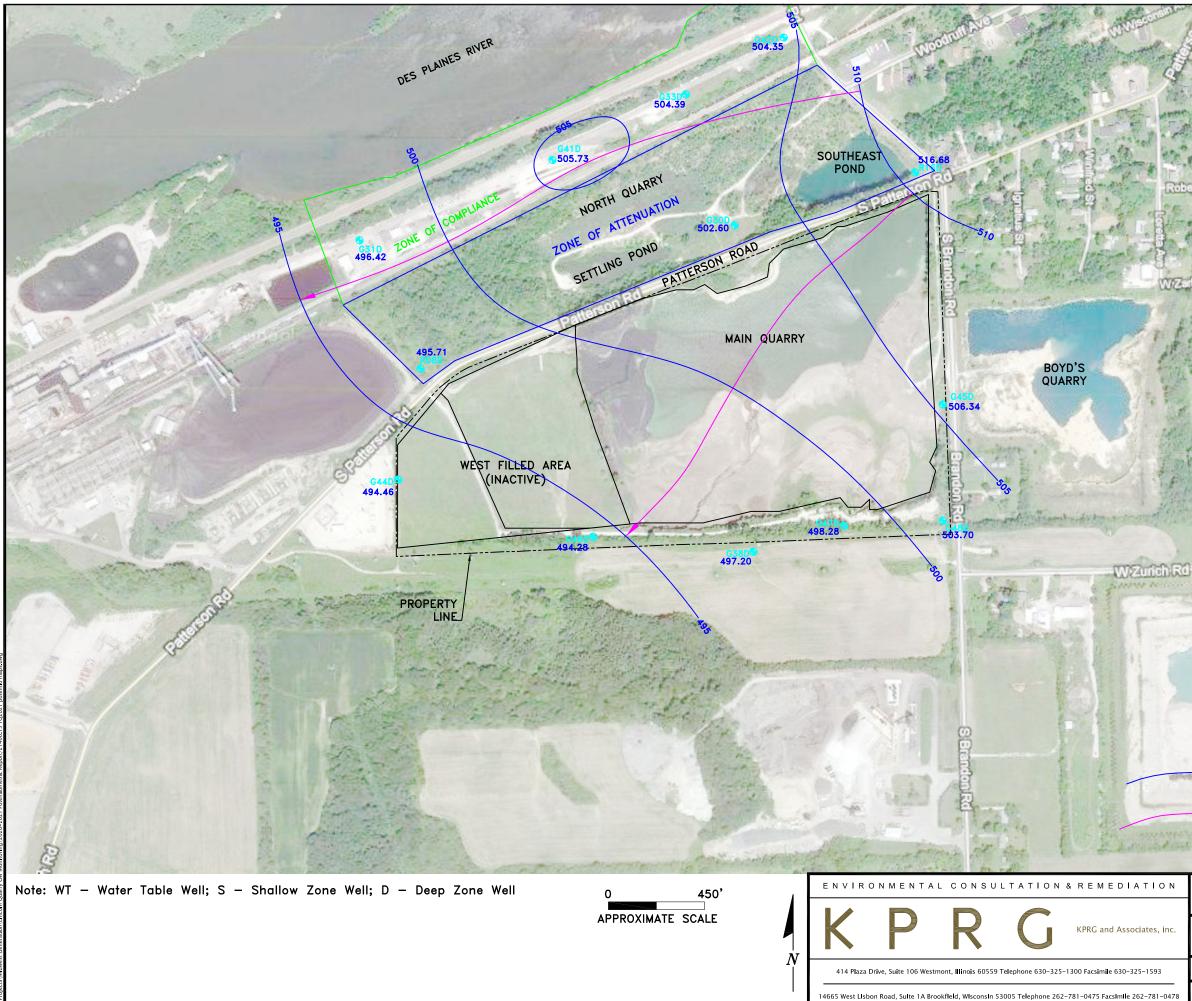
			and the second se	A
ΑΤΙΟΝ	SHALLOW		DNE POTENTIOMETRIC SURFACE MA ANUARY/FEBRUARY 2021	
		JANUAN	TTLDROART ZC)21
ociates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS			
2-781-0478	Scale: 1"	= 450'	Date: June 23,	, 2021
2-701-0470				
i-1593	KPRG Project No. 21406.15 FIGURE 9-11			


LEGEND DETAIL CONTOUR (5' INTERVAL) POTENTIOMETRIC CONTOUR (10' INTERVAL)

164


FLOW LINE

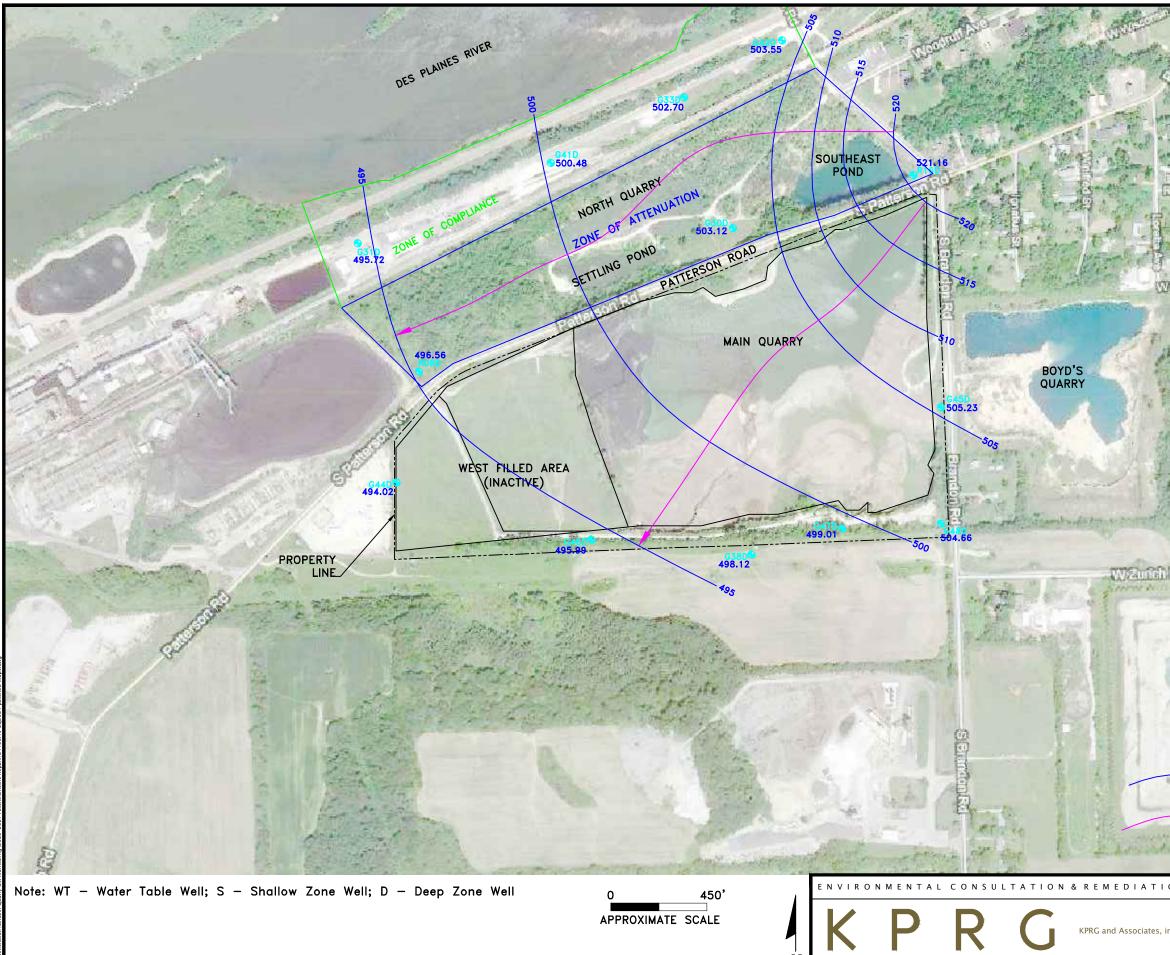
Zurich Rd


ΝΙΑΤΙΟΝ	SHALLOW ZONE POTENTIOMETRIC SURFACE MAP APRIL/MAY 2021			
	APF	RIL/MAT ZUZI		
ssociates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS			
262-781-0478	Scale: 1" = 450'	Date: June 22	, 2021	
325-1593	KPRG Project No. 21406.15 FIGURE 9-12			

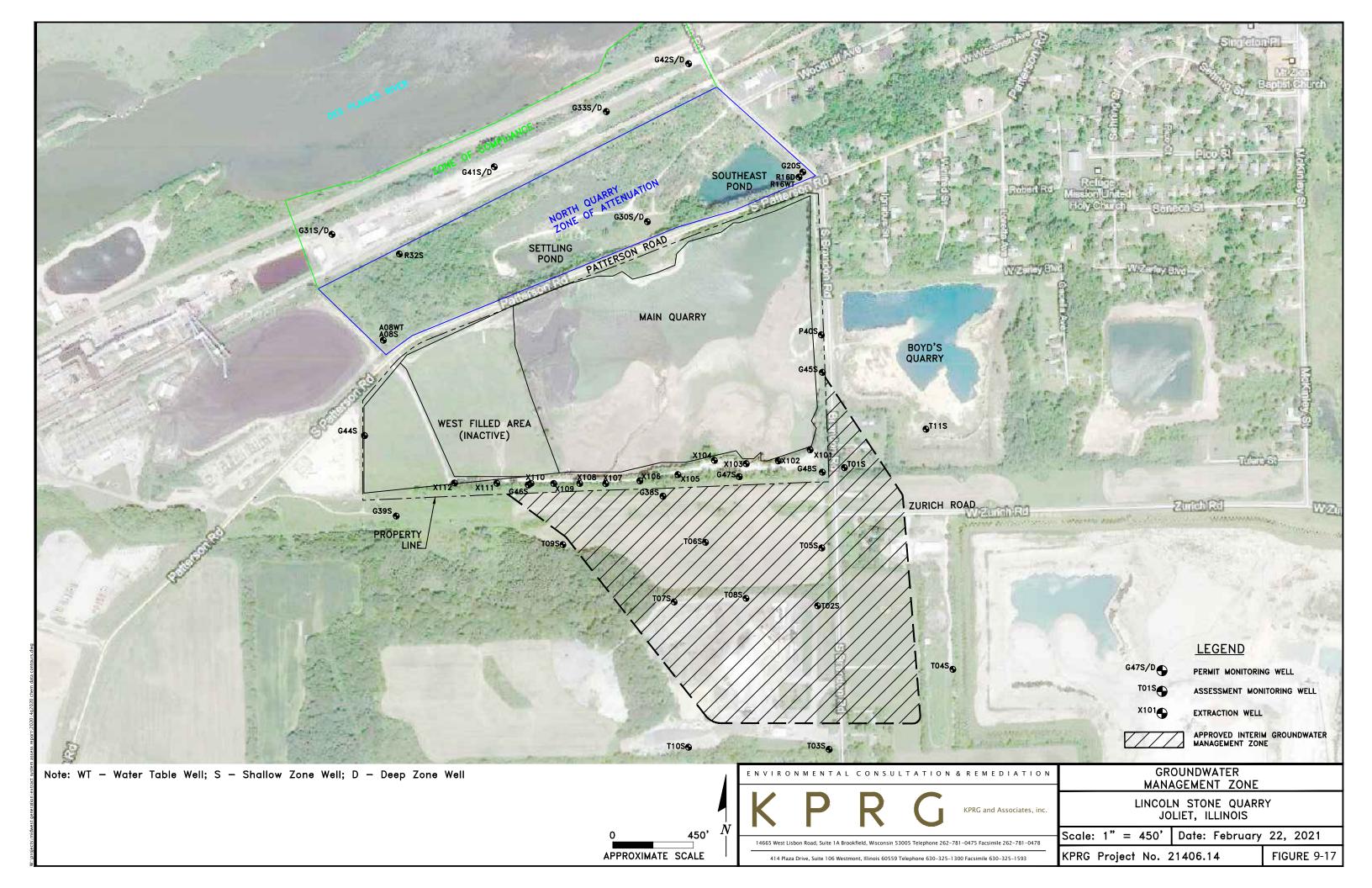
1			MR2000
	the goal of the		piere nev -
設設	"你们"	Red Barris	and an of
E.			F
100	110 T	REDEN	
E	Reutra	A RELEASE	
C.C.	Holy Church Same	CAN DEPARTURE	
Line a	adda a l		
		EN F	1
NEE	by Elect	be for	4
		a straters	Sec.
A			1212
in the		2.2.7	Ter 1
and a		- Carton	111
E.	a starte	A Same Part	++
unel.	and the second	and the second	2 A
	and a second	manual in the	
#	The The Part	1	
	and the product of the	TÓTO	a
			100
NER		Zunich Rd	WEAR
hrð	State on an and the state of	Zurich (Rd	WELL
hrø		zintah (Ri)	WZU
NRØ		zantah (Rd	ST PATONALA
neo		zantalo (Rd	ST PATONALA
hRØ		Zmfish (Ri)	ST PATONALA
NRO		Zunich (Rd	ST PATONALA
hrø		Zunich (Rij	ST PATONALA
hed	LEGEND		
hed			
	LEGEND		
had	LEGEND POTENTIOMETRIC		
	LEGEND POTENTIOMETRIC FLOW LINE	CONTOUR (5'	INTERVAL)
	LEGEND POTENTIOMETRIC FLOW LINE	CONTOUR (5'	INTERVAL)
	LEGEND POTENTIOMETRIC FLOW LINE DEEP ZONE POTENT JULY/A LINCOLN	CONTOUR (5' TIOMETRIC SUR UGUST 2020 STONE QUARRY	INTERVAL)
	LEGEND POTENTIOMETRIC FLOW LINE DEEP ZONE POTENT JULY/A LINCOLN JOLIE	CONTOUR (5' TIOMETRIC SUR UGUST 2020 STONE QUARRY	INTERVAL)
	LEGEND POTENTIOMETRIC FLOW LINE DEEP ZONE POTENT JULY/A LINCOLN JOLIE Scale: 1" = 450' D	CONTOUR (5' TIOMETRIC SUR UGUST 2020 STONE QUARRY IT, ILLINOIS ate: June 16,	INTERVAL) FACE MAP
1 O N , inc.	LEGEND POTENTIOMETRIC FLOW LINE DEEP ZONE POTENT JULY/A LINCOLN JOLIE	CONTOUR (5' TIOMETRIC SUR UGUST 2020 STONE QUARRY IT, ILLINOIS ate: June 16,	INTERVAL) FACE MAP

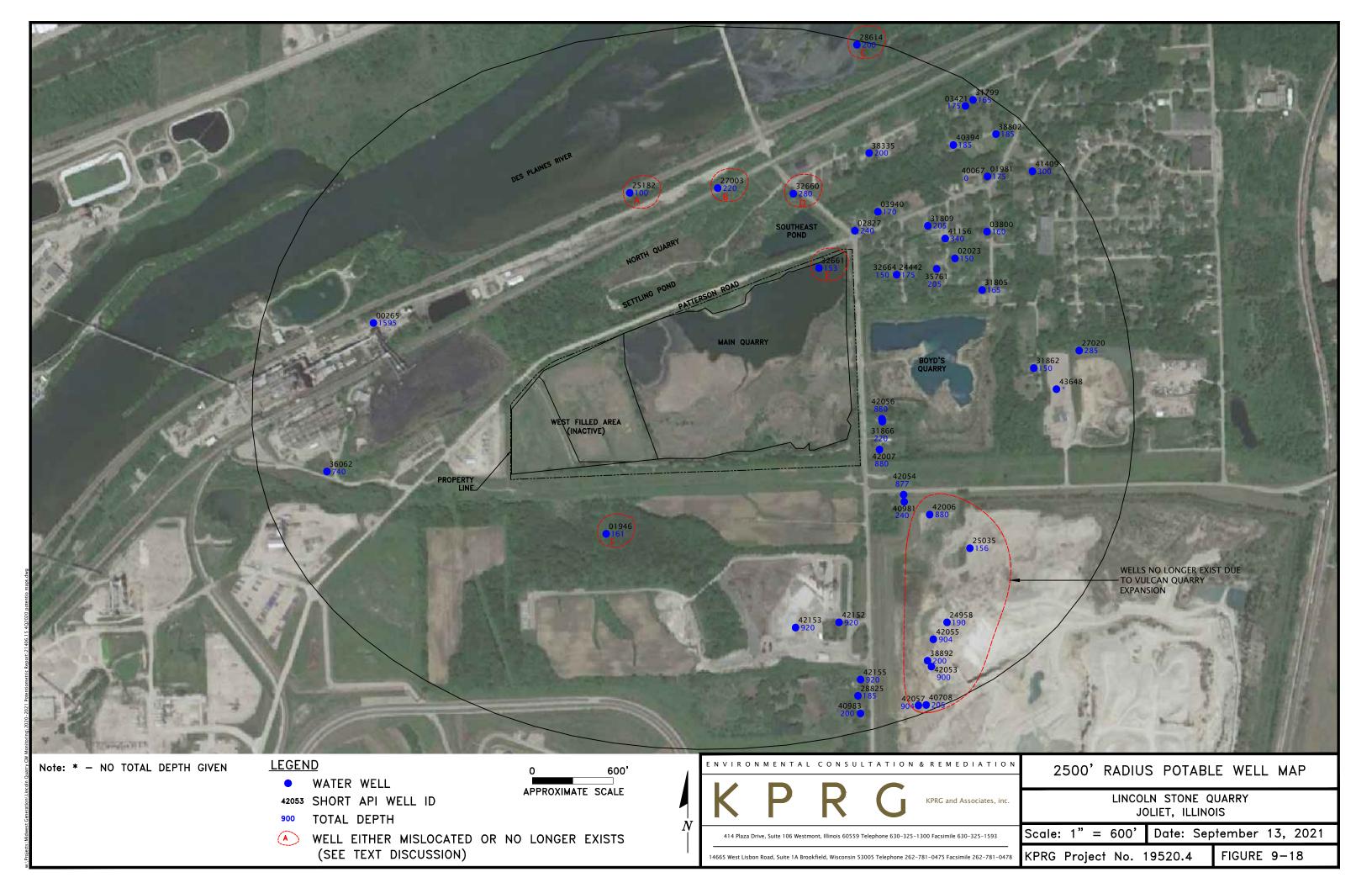
	the state of the second second second
520	the second s
SOUTHEAST 523.85	
POND Rules	AGG Realing
	Helychich Sanzcalsi
	and a more than 11 - 1
	i sind a second s
BOYD'S	1973
QUARRY	E Car Car Star
G45 505.63	
	Real Contraction of the second states of the second
505	in the second second and the second sec
	The second se
99.55	and the second second
	Zurich (Rd WZZurz
Soo Wanthird	the owners were and a second of the second second
WZurithRd	Zunich Rd Wizing
WZurithRd	ACCOUNTED AND A COUNT OF A COUNT
WZurithRd	ACCOUNTED AND A COUNT OF A COUNT
WZurithRd	ACCOUNTED AND A COUNT OF A COUNT
WZurithRd	ACCOUNTED AND A COUNT OF A COUNT
WZurithRd	LEGEND
WZurithRd	
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL)
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE DEEP ZONE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE DEEP ZONE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020 LINCOLN STONE QUARRY
environmental consultation & remediations KRRRG KCRRG KCRRG KCRRG KCRRG KCRASC	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE DEEP ZONE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020 LINCOLN STONE QUARRY JOLIET, ILLINOIS
	LEGEND POTENTIOMETRIC CONTOUR (5' INTERVAL) FLOW LINE DEEP ZONE POTENTIOMETRIC SURFACE MAP OCTOBER/NOVEMBER 2020 LINCOLN STONE QUARRY

LEGEND


POTENTIOMETRIC CONTOUR (5' INTERVAL)

Zurich Rd


WZI


FLOW LINE

D N	DEEP ZONE POTENTIOMETRIC SURFACE MAP		
	JANUARY/FEBRUARY 2021 LINCOLN STONE QUARRY JOLIET, ILLINOIS		
inc.			
	Scale: 1" = 450' Date: June 23, 2021		
0478	KPRG Project No. 21406.15	FIGURE 9-15	

-520		And a second
SOUTHEAST POND 521.16		Plap 31 Plap 31 Reliato Mission United
		Repetre) Surren St
	SIS WE	by Elicit
	BOYD'S QUARRY 505.23	
5	505	
99.01 500 5t	b4.66	ICDG ICTOR
	Wanthat	ZmithRd WZun
and the second s	A distant of the second s	and the second
9:20	@ • • • • • • •	LEGEND
	Biendo an	POTENTIOMETRIC CONTOUR (5' INTERVAL)
A Carton and		FLOW LINE
ENVIRONMENTAL	CONSULTATION & REMEDIATION	DEEP ZONE POTENTIOMETRIC SURFACE MAP APRIL/MAY 2021
KP	KPRG and Associates, inc.	LINCOLN STONE QUARRY JOLIET, ILLINOIS
414 Plaza Drive, Suite 106 Westmo	R G KPRG and Associates, inc. nt, Illinois 60559 Telephone 630-325-1300 Facsimile 630-325-1593	JOLIET, ILLINOIS Scale: 1" = 450' Date: June 17, 2021
		JOLIET, ILLINOIS

ATTACHMENT 1 HISTORY OF CONSTRUCTION

<u>ATTACHMENT 2</u> <u>CCR CHEMICAL CONSTITUENTS ANALYSIS</u>

Attachment 2-1 – Joliet #9 & Joliet #29 CCR Laboratory Data Package

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204544-1

Client Project/Site: Joliet #29 Ash

For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 9/15/2021 5:41:59 PM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	10
Chain of Custody	14
Receipt Checklists	15
Certification Summary	16

Job ID: 500-204544-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204544-1

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-1

lethod	Method Description	Protocol	Laboratory
010B	Metals (ICP)	SW846	TAL CHI
471A	Mercury (CVAA)	SW846	TAL CHI
056A	Anions, Ion Chromatography	SW846	TAL CHI
loisture	Percent Moisture	EPA	TAL CHI
M 4500 CI- E	Chloride, Total	SM	TAL CHI
M 4500 F C	Fluoride	SM	TAL CHI
00_Prep	Anions, Ion Chromatography, 10% Wt/Vol	MCAWW	TAL CHI
)50B	Preparation, Metals	SW846	TAL CHI
471A	Preparation, Mercury	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash Job ID: 500-204544-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

Job	ID:	500-204544-1
000		201011

Lab Sample ID: 500-204544-1 Matrix: Solid

Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.8	F1	1.8		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Arsenic	1.5	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Barium	3000		4.4		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Beryllium	1.5	F1	0.35		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Boron	130	F1 V	4.4		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cadmium	<0.18		0.18		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Calcium	100000		89		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Chromium	12	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cobalt	15		11		mg/Kg		09/10/21 08:41	09/14/21 10:57	25
Lead	5.6		0.44		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Lithium	20	V	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Molybdenum	1.1	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Selenium	<0.89	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Thallium	2.9		0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Method: 7471A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.016		0.016		mg/Kg		09/09/21 13:15	09/10/21 09:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	560		19		mg/Kg		09/14/21 11:45	09/14/21 17:58	10
Chloride	<20		20		mg/Kg		09/15/21 09:49	09/15/21 15:04	1
Fluoride	<1.0		1.0		mg/Kg		09/15/21 09:49	09/15/21 12:47	1

1 2 3 4 5 6 7 8 9 10 11 12

Qualifiers

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.
V	Serial Dilution exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 500-204544-1

Metals

Prep Batch: 617888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	
Prep Batch: 618052					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	3050B	
MB 500-618052/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	3050B	
Analysis Batch: 6180	070				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	617888
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	617888
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	617888
Analysis Batch: 6182	247				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
MB 500-618052/1-A	Method Blank	Total/NA	Solid	6010B	618052
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 6184	479				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 618	576				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
General Chemist	ry				
Analysis Batch: 6173	356				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	Moisture	
Prep Batch: 618524					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
		гіер іуре	Watin	Method	i iep Dateii

Eurofins TestAmerica, Chicago

General Chemistry (Continued)

Prep Batch: 618524 (Continued)

LCS 500-618692/2-A

Lab Control Sample

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 500-618524/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
Analysis Batch: 618	534				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	9056A	618524
MB 500-618524/1-A	Method Blank	Total/NA	Solid	9056A	618524
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	9056A	618524
Prep Batch: 618692					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	300_Prep	
MB 500-618692/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
Analysis Batch: 618	739				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 F C	618692
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 F C	618692
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 F C	618692
Analysis Batch: 618	775				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 CI- E	618692
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 CI- E	618692

Total/NA

Solid

SM 4500 CI- E

QC Association Summary

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-618052/1-A Matrix: Solid Analysis Batch: 618247

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	<2.0		2.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Arsenic	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Barium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Beryllium	<0.40		0.40		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Boron	<5.0		5.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Cadmium	<0.20		0.20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Calcium	<20		20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Chromium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Cobalt	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Lead	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Lithium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Molybdenum	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Selenium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Thallium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	

Lab Sample ID: LCS 500-618052/2-A Matrix: Solid Analysis Batch: 618247

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	49.5		mg/Kg		99	80 - 120
Arsenic	10.0	9.09		mg/Kg		91	80 - 120
Barium	200	196		mg/Kg		98	80 - 120
Beryllium	5.00	4.54		mg/Kg		91	80 - 120
Boron	100	83.6		mg/Kg		84	80 - 120
Cadmium	5.00	4.69		mg/Kg		94	80 - 120
Calcium	1000	912		mg/Kg		91	80 - 120
Chromium	20.0	18.3		mg/Kg		91	80 - 120
Cobalt	50.0	46.6		mg/Kg		93	80 - 120
Lead	10.0	9.03		mg/Kg		90	80 - 120
Lithium	50.0	53.2		mg/Kg		106	80 - 120
Molybdenum	100	99.6		mg/Kg		100	80 - 120
Selenium	10.0	8.61		mg/Kg		86	80 - 120
Thallium	10.0	8.77		mg/Kg		88	80 - 120

Lab Sample ID: 500-204544-1 MS Matrix: Solid Analysis Batch: 618247

Client Sample	ID: J	Jolet #	29 Ash
Pr	ep Ty	ype: T	otal/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 618052

Analysis Batch: 618247									Prep Batch: 618052
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<1.8	F1	49.6	6.04	F1	mg/Kg		12	75 - 125
Arsenic	1.5	F1	9.92	9.59		mg/Kg		81	75 - 125
Beryllium	1.5	F1	4.96	5.09	F1	mg/Kg		72	75 - 125
Boron	130	F1 V	99.2	178	F1	mg/Kg		50	75 - 125
Cadmium	<0.18		4.96	3.82		mg/Kg		75	75 - 125
Chromium	12	F1	19.8	24.8	F1	mg/Kg		67	75 - 125
Lead	5.6		9.92	16.2		mg/Kg		107	75 - 125
Lithium	20	V	49.6	62.1		mg/Kg		85	75 - 125
Molybdenum	1.1	F1	99.2	68.4	F1	mg/Kg		68	75 - 125

Eurofins TestAmerica, Chicago

Job ID: 500-204544-1

Prep Type: Total/NA

Prep Batch: 618052

Client Sample ID: Method Blank

Page 10 of 16

Lab Sample ID: 500-204544-1 MS

Analysis Batch: 618247

Matrix: Solid

Analyte

Cobalt

Boron

Lead

Selenium

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

<0.89 F1

Result Qualifier

Spike

Added

9.92

MS MS

6.39 F1

Result Qualifier

Unit

mg/Kg

D

%Rec

64

Prep Type: Total/NA

Prep Batch: 618052

Client Sample ID: Jolet #29 Ash

%Rec.

Limits

75 - 125

5

Thallium 2.9 9.92 10.9 mg/Kg 80 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Analysis Batch: 618479 Prep Batch: 618052 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added **Result Qualifier** Limits Analyte Unit D %Rec Barium 3000 198 2980 4 11 75 - 125 mg/Kg 100000 992 97600 4 Calcium mg/Kg -533 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618576 Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits 75 - 125 15 49.6 67.5 mg/Kg 105 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid **Prep Type: Total/NA** Prep Batch: 618052 Analysis Batch: 618247 MSD MSD Sample Sample Spike %Rec. RPD **Result Qualifier** Added **Result Qualifier** Unit %Rec Limits RPD Limit Analyte D Antimony <1.8 F1 45.0 4.97 F1 11 75 - 125 19 20 mg/Kg 9.01 74 75 - 125 20 Arsenic 1.5 F1 821 F1 mg/Kg 16 Beryllium 1.5 F1 4.50 4.74 F1 mg/Kg 72 75 - 125 7 20 130 F1 V 90.1 183 F1 mg/Kg 61 75 - 125 3 20 77 Cadmium <0.18 4.50 3.56 mg/Kg 75 - 125 7 20 Chromium 12 F1 18.0 23.7 F1 67 75 - 125 20 mg/Kg 4 5.6 9.01 14.4 mg/Kg 98 75 - 125 12 20 Lithium 20 V 45.0 57.0 mg/Kg 82 75 - 125 9 20 mg/Kg 65 1.1 F1 90.1 59.6 F1 75 - 125 14 20 Molybdenum 9.01 Selenium <0.89 F1 5.78 F1 mg/Kg 64 75 - 125 10 20 Thallium 9.01 10.6 85 75 - 125 20 2.9 mg/Kg 3 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618479 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added **Result Qualifier** %Rec Limits RPD Limit Analyte Unit D 3000 180 3090 4 Barium mg/Kg 74 75 - 125 4 20 Calcium 100000 901 104000 4 mg/Kg 99 75 - 125 6 20

ſ	Lab Sample ID: 500-204544	-1 MSD						Clie	ent San	n <mark>ple ID:</mark> Jo	olet #29) Ash
	Matrix: Solid									Prep Ty	pe: Tot	al/NA
	Analysis Batch: 618576									Prep Ba	atch: 61	8052
	-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Cobalt	15		45.0	58.0		mg/Kg		95	75 - 125	15	20

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	9 Asl
Matrix: Solid							Prep Type: Tot	tal/N/
Analysis Batch: 618247							Prep Batch: 6	
	Sample	Sample	DU	DU				RPI
Analyte	•	Qualifier	Result	Qualifier	Unit	D	RPD	Lim
Antimony	<1.8	F1	<1.8		mg/Kg		NC	2
Arsenic	1.5	F1	2.20	F5	mg/Kg		36	2
Beryllium	1.5	F1	1.48		mg/Kg		2	2
Boron	130	F1 V	118		mg/Kg		9	2
Cadmium	<0.18		0.195		mg/Kg		NC	2
Chromium	12	F1	11.3		mg/Kg		2	2
Lead	5.6		5.71		mg/Kg		2	2
Lithium	20	V	19.9		mg/Kg		0	2
Molybdenum	1.1		1.20		mg/Kg		8	2
Selenium	<0.89		<0.90		mg/Kg		NC	2
Thallium	2.9		1.94	F3	mg/Kg		41	2
Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	9 As
Matrix: Solid							Prep Type: Tot	
Analysis Batch: 618479							Prep Batch: 6	
Analysis Baten. 010470	Sample	Sample	ווס	DU			Thep Bateri. U	RP
Analyte	•	Qualifier		Qualifier	Unit	D	RPD	Lim
Barium	3000		2840	duamer	mg/Kg		<u> </u>	2
Calcium	100000		104000		mg/Kg		1	2
Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	۹ ۵۹
Matrix: Solid	-100					onent oann	Prep Type: Tot	
Analysis Batch: 618576							Prep Batch: 6	
Analysis Batch. 010570	Samplo	Sample	ווס	DU			Fiep Datch. 0	RP
Analyte	•	Qualifier		Qualifier	Unit	D	RPD	Lim
Cobalt	15		13.9	Quaimer	mg/Kg		10 KFD	2
lethod: 7471A - Mercur)						
		/				01111110		
Lab Sample ID: MB 500-617	888/12-A						ole ID: Method	
Matrix: Solid							Prep Type: Tot	
Analysis Batch: 618070							Prep Batch: 6	1788
		MB MB						
Analyte		sult Qualifier		MDL Unit				Dil Fa
Mercury	<0	.017	0.017	mg/K	g	09/09/21 13:15	09/10/21 08:27	
Lab Sample ID: LCS 500-61	7888/13-A				Clier	nt Sample ID:	Lab Control Sa	
Matrix: Solid							Prep Type: Tot	tal/N
Analysis Batch: 618070							Prep Batch: 6	

Analysis Batch: 618070								tch: 61788
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.167	0.179		mg/Kg		107	80 - 120	

_ ____

Eurofins TestAmerica, Chicago

Job ID: 500-204544-1

Method: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 500-618524/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618534 Prep Batch: 618524 MB MB **Result Qualifier** RL MDL Unit Analyzed Dil Fac Analyte D Prepared 2.0 09/14/21 11:45 09/14/21 12:53 Sulfate <2.0 mg/Kg Lab Sample ID: LCS 500-618524/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Prep Batch: 618524 Analysis Batch: 618534 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfate 50.0 53.9 80 - 120 mg/Kg 108 Method: SM 4500 CI- E - Chloride, Total Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618775 Prep Batch: 618692 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared 09/15/21 09:49 09/15/21 15:03 Chloride <20 20 mg/Kg 1 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618775 **Prep Batch: 618692** Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits Chloride 200 202 mg/Kg 101 85 - 115 Method: SM 4500 F C - Fluoride Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Fluoride <1.0 1.0 mg/Kg 09/15/21 09:49 09/15/21 12:27 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** Spike LCS LCS %Rec.

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

Client Information Clent Contact Richard Gnat

\mathbf{H}	N	\forall	1	Ą	-the surger
`J	$\ \mathbf{N}\ $	∇		 V	V V V

Carrier Track ng No(s)

State of Origin

COC № 500-94568-41920 1

Page

Page 1 of 1

10

Company		8.7 <u>7.594</u> 11111111111	PWSID	100 cmm, 100 cmm, 100 cmm, 110 cmm, 11	Т						-		- 4				الاليبية معتمد		Job # ton 1	04544
KPRG and Associates Inc			L							Anal	iysis	Req	uest	ed						
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ea				I I													Preservation Cod	
	TAT Requested (d	avs)			1														A HCL B NaOH	M Hexane N None
City Brookfield		• •				11								ь.		I			C Zn Acetate	O AsNaO2
State Zip	1								ш 		ĺ			B					D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3
WI 53005	Compliance Project	ct 🛆 Yes	∆ No	· · · · · · · · · · · · · · · · · · ·				5122	8					10					F MeOH	R Na2S2O3
Phone	PO# 4502042860				6		l	od 226	SM4500_CI				l						G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydrate
Email richardg@kprginc.com	WO #				or N	ş			9056A S			I	500	-2048	544 C	-		ø	I Ice J DI Water	U Acetone V MCAA
Project Name	Project #				(Yes	5	1	nbic				1						containers	K EDTA L EDA	W pH 4-5 Z other (specify)
Joliet #9 Ash	50011504					8		Š	41						ł	1		12		Z other (specify)
Site	SSOW#				Sampl			υ	6010B, 7471A										Other [.]	
Illinois					8	IS I		GFPC	B									ō		
			Sample	Matrix	Leo	WSN	0	ສ່	5									ĝ		
	ļ		Туре	(W=water	litte	Ξ	904.0	Ra226Ra228	0									Total Number		
		Sample	(C=Comp,	S=solid, O=waste/oil,	ЫF	ē.	0	26F	4500_F_C									a l		
Sample Identification	Sample Date	Time	G=grab)	BT-Tissue, A-Air	Field	Perform	903.0	Raž	450						1			ē	Special Ins	structions/Note
	\sim	\sim	Preserva	ation Code	X			NI	N									X		
EL LHGAL	mlac	0.0	$\overline{\mathbf{C}}$	Solid	P	۲Ť,		1	1		+					-		\sim		
Jolice HIAsh		9:30				\vdash	<u>X</u> Į,	X_{ℓ}	싞			-					+			
Joliet #9 Ash Joliek #29 Ash	8/31	(0',00	C	Solid			겍	X	8									ļ		
				Solid																
					\uparrow		1							1	+					
	· · · · · · · · · · · · · · · · · · ·		1		\uparrow		\uparrow	-							\top					
									-+					+	+	+			<u></u>	
					+	┨╌┼╴	-+		-+		+		-+-	-+-	-+-	+	┼╌┼			••••••••••••••••••••••••••••••••••••••
					+	┟┼	-+	-+		-+-	+						+			
			<u> </u>	<u> </u>	+	\vdash	-+	-+			+-			+	+	+	┥┥	1		
Possible Hazard Identification]		l			Sam	ole l	Disp	osal	(A fee	may	be as	sess	ed if	sami	oles a	re ret	aine	d longer than 1	month)
Non-Hazard Flammable Skin Irritant Pois	on B Unkno		Radiological	1				turn			[sposa		-				e For	Months
Deliverable Requested 1 II III IV Other (specify)						Spec	cial Ir	nstru	ction	s/QC R	Require	ement	s							
Empty Kit Relinquished by	1	Date	<u>,</u>		Tir	me							М	ethod		pment				
Relinquished by Michael Ress	Date/Time/31	13:	30	Company KPRC		R	Receiv	ved by	han	nel	tem	10m	d	M	Da	te/Time	813	112	1 1300	ETA-CH
Rel nquished by	Date/Time			Company		R	Receiv	ved by	/					Ũ	Da	te/Time			<u></u>	Company
Reinquished by	Date/Time			Company		R	Receiv	ved by	1	·					Da	te/Time				Company
Custody Seals Intact Custody Seal No				1		С	Cooler	r Temp	peratu	re(s) °C	and Oth	her Rer	narks							1
A Yes A No										• •				- 72	24	t				

Chain of Custody Record

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sample Michael Ress

Phone

630-203-7240

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204544-1

List Source: Eurofins TestAmerica, Chicago

5 6 7

12

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number** Expiration Date Illinois NELAP IL00035 04-29-22 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 7471A 7471A Solid Mercury Percent Moisture Moisture Solid Moisture Solid Percent Solids

Eurofins TestAmerica, Chicago

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204543-1

Client Project/Site: Joliet #9 Ash

For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 9/21/2021 10:47:01 AM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	10
Chain of Custody	13
Receipt Checklists	14
Chronicle	15

Job ID: 500-204543-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204543-1

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

Job ID: 500-204543-1

lethod	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CHI
'471A	Mercury (CVAA)	SW846	TAL CHI
056A	Anions, Ion Chromatography	SW846	TAL CHI
loisture	Percent Moisture	EPA	TAL CHI
M 4500 CI- E	Chloride, Total	SM	TAL CHI
M 4500 F C	Fluoride	SM	TAL CHI
00_Prep	Anions, Ion Chromatography, 10% Wt/Vol	MCAWW	TAL CHI
050B	Preparation, Metals	SW846	TAL CHI
'471A	Preparation, Mercury	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204543-1	Joliet #9 Ash	Solid	08/31/21 09:30	08/31/21 13:00

Client Sample ID: Joliet #9 Ash Date Collected: 08/31/21 09:30 Date Received: 08/31/21 13:00

Lab Sample ID: 500-204543-1 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.8		1.8		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Arsenic	<0.88		0.88		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Barium	4400		22		mg/Kg		09/15/21 15:57	09/20/21 14:39	25
Beryllium	3.3		0.35		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Boron	110		4.4		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Cadmium	<0.18		0.18		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Calcium	110000		88		mg/Kg		09/15/21 15:57	09/20/21 12:37	5
Chromium	37		0.88		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Cobalt	20		11		mg/Kg		09/15/21 15:57	09/20/21 14:39	25
Lead	0.67		0.44		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Lithium	32		0.88		mg/Kg		09/15/21 15:57	09/20/21 12:33	1
Molybdenum	<0.88		0.88		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Selenium	<0.88		0.88		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Thallium	3.6		0.88		mg/Kg		09/15/21 15:57	09/17/21 20:42	1
Method: 7471A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.015		0.015		mg/Kg		09/09/21 13:15	09/10/21 08:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	<2.0		2.0		mg/Kg		09/14/21 11:45	09/14/21 13:19	1
Chloride	<20		20		mg/Kg		09/15/21 09:49	09/15/21 15:04	1
Fluoride	<1.0		1.0		mg/Kg		09/15/21 09:49	09/15/21 12:35	1

Definitions/Glossary

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

RL

RPD

TEF

TEQ TNTC Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Relative Percent Difference, a measure of the relative difference between two points

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	-7
DL	Detection Limit (DoD/DOE)	7
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	

Job ID: 500-204543-1

Metals

Prep Batch: 617888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	7471A	
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	
Analysis Batch: 6180)70				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	7471A	617888
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	617888
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	617888
Prep Batch: 618772					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	3050B	
MB 500-618772/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-618772/2-A	Lab Control Sample	Total/NA	Solid	3050B	
Analysis Batch: 6192	274				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	6010B	618772
MB 500-618772/1-A	Method Blank	Total/NA	Solid	6010B	618772
LCS 500-618772/2-A	Lab Control Sample	Total/NA	Solid	6010B	618772
Analysis Batch: 6193	359				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	6010B	618772
500-204543-1	Joliet #9 Ash	Total/NA	Solid	6010B	618772
MB 500-618772/1-A	Method Blank	Total/NA	Solid	6010B	618772
LCS 500-618772/2-A	Lab Control Sample	Total/NA	Solid	6010B	618772
Analysis Batch: 6194	196				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	6010B	618772
General Chemist	ry				
Analysis Batch: 6173	356				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	Moisture	
Prep Batch: 618524					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	300_Prep	
MB 500-618524/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
Analysis Batch: 618	534				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	9056A	618524
MB 500-618524/1-A	Method Blank	Total/NA	Solid	9056A	618524
WD 300-010324/1-A		Iotal/INA	Solid	9030A	010524

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

General Chemistry

Prep Batch: 618692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	300_Prep	
MB 500-618692/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
500-204543-1 MS	Joliet #9 Ash	Total/NA	Solid	300_Prep	
500-204543-1 MSD	Joliet #9 Ash	Total/NA	Solid	300_Prep	
Analysis Batch: 618	739				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	SM 4500 F C	618692
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 F C	618692
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 F C	618692
500-204543-1 MS	Joliet #9 Ash	Total/NA	Solid	SM 4500 F C	618692
500-204543-1 MSD	Joliet #9 Ash	Total/NA	Solid	SM 4500 F C	618692
Analysis Batch: 618	775				
_					

QC Association Summary

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
500-204543-1	Joliet #9 Ash	Total/NA	Solid	SM 4500 CI- E	618692	
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 CI- E	618692	
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 CI- E	618692	
500-204543-1 MS	Joliet #9 Ash	Total/NA	Solid	SM 4500 CI- E	618692	
500-204543-1 MSD	Joliet #9 Ash	Total/NA	Solid	SM 4500 CI- E	618692	

Job ID: 500-204543-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-618772/1-A Matrix: Solid Analysis Batch: 619274

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Arsenic	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Barium	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Beryllium	<0.40		0.40		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Boron	<5.0		5.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Cadmium	<0.20		0.20		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Calcium	<20		20		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Chromium	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Cobalt	<0.50		0.50		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Lead	<0.50		0.50		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Molybdenum	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Selenium	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1
Thallium	<1.0		1.0		mg/Kg		09/15/21 15:57	09/17/21 19:34	1

Lab Sample ID: MB 500-618772/1-A Matrix: Solid Analysis Batch: 619359

	MB MB					
Analyte	Result Qualif	fier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Lithium	<1.0	1.0	ma/Ka	09/15/21 15:57	09/20/21 12:27	1

Lab Sample ID: LCS 500-618772/2-A Matrix: Solid Analysis Batch: 619274

	0	1.00	1.00				0/ D
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	46.8		mg/Kg		94	80 - 120
Arsenic	10.0	9.29		mg/Kg		93	80 - 120
Barium	200	197		mg/Kg		98	80 - 120
Beryllium	5.00	4.68		mg/Kg		94	80 - 120
Boron	100	83.5		mg/Kg		83	80 - 120
Cadmium	5.00	4.54		mg/Kg		91	80 - 120
Calcium	1000	936		mg/Kg		94	80 - 120
Chromium	20.0	18.4		mg/Kg		92	80 - 120
Cobalt	50.0	46.1		mg/Kg		92	80 - 120
Lead	10.0	8.86		mg/Kg		89	80 - 120
Molybdenum	100	98.7		mg/Kg		99	80 - 120
Selenium	10.0	8.49		mg/Kg		85	80 - 120
_Thallium	10.0	8.45		mg/Kg		85	80 - 120

Lab Sample ID: LCS 500-618772/2-A Matrix: Solid

Analysis Batch: 619359							Prep Bat	ch: 618772
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lithium	50.0	47.9		mg/Kg		96	80 - 120	

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 618772

5 9

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 618772

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 618772
	0/ D = =

Client Sample ID: Lab Control Sample

9/21/2021

Method: 7471A - Mercury (CVAA)

QC Sample Results

Job ID: 500-204543-1

Lab Sample ID: MB 500-617888/12-	A									Client Samp	ole ID: Metho	d Blanl
Matrix: Solid											Prep Type:	Total/N/
Analysis Batch: 618070											Prep Batch	: <mark>61788</mark> 8
	MB	MB										
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fa
Mercury	<0.017			0.017			mg/K	g	_	09/09/21 13:15	09/10/21 08:27	7
Lab Sample ID: LCS 500-617888/13	8-A							Cli	ent	Sample ID:	Lab Control	Sample
Matrix: Solid											Prep Type:	Total/N/
Analysis Batch: 618070											Prep Batch	61788
			Spike		LCS	LCS	5				%Rec.	
Analyte			Added		Result	Qua	alifier	Unit		D %Rec	Limits	
Mercury			0.167		0.179			mg/Kg		107	80 - 120	
/lethod: 9056A - Anions, Ion C	hron	natogra	phy									
Lab Sample ID: MB 500-618524/1-A										Client Sam	ole ID: Metho	d Blan
Matrix: Solid	-										Prep Type:	
Analysis Batch: 618534											Prep Batch	
	мв	МВ										
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fa
Sulfate	<2.0			2.0			mg/K	g	_	09/14/21 11:45		
Lab Sample ID: LCS 500-618524/2-	Δ							Cli	ent	Sample ID:	Lab Control	Sample
Matrix: Solid								•			Prep Type:	
Analysis Batch: 618534											Prep Batch	
			Spike		LCS	LCS	3				%Rec.	
Analyte			Added		Result	Qua	alifier	Unit		D %Rec	Limits	
Sulfate			50.0		53.9			mg/Kg		108	80 - 120	
/ /ethod: SM 4500 CI- E - Chlor	ide. 1	otal										
		••••										
Lab Sample ID: MB 500-618692/1-A										Client Samp	ole ID: Metho	
Matrix: Solid											Prep Type:	
Analysis Batch: 618775											Prep Batch	61869
		MB										
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fa

	<20		20		mg/K	g	09/1	5/21 09:49	09/15/21 15:03	1
18692/2-A						Clier	it Sa	mple ID:	Lab Control S	Sample
									Prep Batch:	618692
		Spike		LCS	LCS				%Rec.	
		Added		Result	Qualifier	Unit	D	%Rec	Limits	
		200		202		mg/Kg		101	85 - 115	
3-1 MS							CI	ient Sam	ple ID: Joliet	#9 Ash
									Prep Type: To	otal/NA
									Prep Batch:	618692
Sample	Sample	Spike		MS	MS				%Rec.	
Result	Qualifier	Added		Result	Qualifier	Unit	D	%Rec	Limits	
<20		197		189		mg/Kg		96	75 - 125	
	Sample Result	18692/2-A 3-1 MS Sample Sample Result Qualifier	18692/2-A Spike Added 200 3-1 MS Sample Sample Result Qualifier Added	18692/2-A Spike Added 200 3-1 MS Sample Sample Spike Result Qualifier Added	18692/2-A Spike LCS Added Result 200 202 3-1 MS Sample Sample Spike MS Result Qualifier Added Result	18692/2-A Spike LCS LCS Added Result Qualifier 200 202 Qualifier 3-1 MS Sample Sample Spike MS MS Result Qualifier Added Result Qualifier	Spike LCS LCS	Spike LCS LCS	Spike LCS LCS Added Result Qualifier Unit D %Rec 200 202 mg/Kg Client Sample Client Sample Sample Sample Spike Result Qualifier Unit D %Rec %Rec %Rec %Rec %Rec %Rec %Rec %Rec	18692/2-A Client Sample ID: Lab Control S Spike LCS LCS Added Result Qualifier 200 202 Mit MRec. MS Client Sample ID: Lab Control S Prep Type: To Spike LCS LCS %Rec. 200 202 Qualifier Unit MRec. 200 202 Client Sample ID: Joliet Prep Type: To Sample Spike MS MS Sample Spike MS %Rec. Result Qualifier Unit D %Rec.

QC Sample Results

Job ID: 500-204543-1

Method: SM 4500 CI- E - Chloride, Total (Continued)

Lab Sample ID: 500-204543	-1 MSD						CI	ient Sam	ple ID: Jo		
Matrix: Solid									Prep Type		
Analysis Batch: 618775									Prep Bat	ch: 6'	18 <mark>6</mark> 92
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride	<20		197	189		mg/Kg		96	75 - 125	0	2
Method: SM 4500 F C - F	luoride										
Lab Sample ID: MB 500-618	692/1-A						Clie	ent Sam	ole ID: Met	hod	Blan
Matrix: Solid									Prep Typ		
Analysis Batch: 618739									Prep Bat		
•		MB MB									
Analyte	Re	sult Qualifier		RL	MDL Unit	I	р р	repared	Analyze	d	Dil Fa
Fluoride		<1.0		1.0	mg/K	g		•	09/15/21 12		
-											
Lab Sample ID: LCS 500-61	8692/2-A					Clie	nt Sa	mple ID:	Lab Cont		
Matrix: Solid									Prep Type		
Analysis Batch: 618739									Prep Bat	ch: 6'	1869
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Fluoride			100	103		mg/Kg		103	80 - 120		
Lab Sample ID: 500-204543	-1 MS						CI	ient Sam	ple ID: Jo	liet #	9 Asl
Matrix: Solid									Prep Type	e: Tot	tal/N/
Analysis Batch: 618739									Prep Bat	ch: 6'	18692
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Fluoride	<1.0		49.2	50.1		mg/Kg		102	75 - 125		
Lab Sample ID: 500-204543	-1 MSD						СІ	ient Sam	ple ID: Jo	liet #	9 Asl
Matrix: Solid	_								Prep Typ		
Analysis Batch: 618739									Prep Bat		
	Sample	Sample	Spike	MSD	MSD				%Rec.	•	RP
	-	Qualifier	Added	Desult	O	11		0/	1	RPD	Lim
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708-534 5200 Fax 708 534-5211

Client Information Client Contact.

Chain of Custody Record

Sampler Michael Ress

Lab PM Mockler Diana J

H		N	A		Ŕ	euro t	Fins V	5
	Carrier	Trackir	ng No(s)		CC	DC No		

State of Origin

500-94568-41920 1

Page Page 1 of 1

1	ľ	î	ì
	l	-	

Client Contact. Richard Gnat	Phone 63	2-203	3-724		lail Ina Mo	ockler	@Eu	rofinse	et com		State	of Origin	1			Page Page 1 of 1	
Company KPRG and Associates Inc	<u> </u>		PWSID	<u> </u>	T		<u> </u>			ysis R	eaues	ted					204543
ddress 4665 West Lisbon Road Suite 1A ity rookfield	Due Date Reques											30	 2			Preservation Co A HCL B NaOH C Zn Acetate	
ate Zip / 53005	Compliance Proje	ect 🛆 Yes	Δ Νο				/228	σ'ci ε			H	26				D Nitric Acid E NaHSO4 F MeOH	P Na2O4S Q Na2SO3 R Na2S2O3
none	PO# 4502042860]ş		Combined Rad 226/228	SM450(500.2	04543				G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydrai
nail shardg@kprginc.com oject Name	WO # Project #				es or	r NO)	bined F	9056A,			1 1	1	1 I		ners	I Ice J DI Water K EDTA	U Acetone V MCAA W pH 4-5
bliet #9 Ashte	50011504 SSOW#				- du	selle		2								L EDA Other	Z other (specify)
ample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water S=solid, O=waste/oil, BT=Tissue, A=Air	Field Filtered Sa	903.0, 904.0		4500_F_C, 6010B,							Total Number of	Special In	structions/Note
EL HEAL	8/31	\geq	Preservat	ion Code: Solid	PΨ	K N	N	N		+ +	+		++		X		
Jolick #JAsh Jolick #29 Ash	8/31 8/31	9:30		Solid	╂╂	╞	אַ}. אַל			┼╌┼╴	┼╌┤		+				
	+			Solid	\square		1										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
								$\left[- \right]$		$\left\{ -\right\}$	+		$\left\{ -\right\}$				
								$\left\{ \begin{array}{c} \\ \end{array} \right\}$									
								$\left[- \right]$		$\left \right $			╀┼				
	+		+		╁╊		+	┼╌┼		╉╌╉╴	+		┼┼				<u></u>
Ssible Hazard Identification Non-Hazard	on B Unkno	own □ _F	Radiological			\Box_{μ}	Returr	n To C	Client	· · · · · · · · · · · · · · · · · · ·	Dispos			s are re	ataine Archiv	ed longer than 1 ve For	month) Months
npty Kit Relinquished by		Date			Time	9					ľ	Method o	f Shipme	ent:			
linguished by Charles Machael Ress			00	Company KPRC				bho	mie	Hem	noma	yer	Date/T Date/T	ime 3311	21	1300	Company ETA-CH Company
linquished by	Date/Time Date/Time			Company			ceived t						Date/T				Company
Custody Seals Intact. Custody Seal No	<u> </u>			<u></u>		Coo	oler Ter	mperatu	ure(s) °C i	and Other	Remarks	20	4				
Δ Yes Δ No				age 13	of 1	<u> </u>							- 7				Ver 06/08/2029/21

Client: KPRG and Associates, Inc.

Login Number: 204543 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Chicago

Client Sample ID: Joliet #9 Ash Date Collected: 08/31/21 09:30 Date Received: 08/31/21 13:00

Lab Sample ID: 500-204543-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			618772	09/15/21 15:57	LK	TAL CHI
Total/NA	Analysis	6010B		1	619274	09/17/21 20:42	JJB	TAL CHI
Total/NA	Prep	3050B			618772	09/15/21 15:57	LK	TAL CHI
Total/NA	Analysis	6010B		1	619359	09/20/21 12:33	JJB	TAL CHI
Total/NA	Prep	3050B			618772	09/15/21 15:57	LK	TAL CHI
Total/NA	Analysis	6010B		5	619359	09/20/21 12:37	JJB	TAL CHI
Total/NA	Prep	3050B			618772	09/15/21 15:57	LK	TAL CHI
Total/NA	Analysis	6010B		25	619496	09/20/21 14:39	JJB	TAL CHI
Total/NA	Prep	7471A			617888	09/09/21 13:15	MJG	TAL CHI
Total/NA	Analysis	7471A		1	618070	09/10/21 08:30	MJG	TAL CHI
Total/NA	Prep	300_Prep			618524	09/14/21 11:45	EAT	TAL CHI
Total/NA	Analysis	9056A		1	618534	09/14/21 13:19	PSP	TAL CHI
Total/NA	Analysis	Moisture		1	617356	09/04/21 11:46	PFK	TAL CHI
Total/NA	Prep	300_Prep			618692	09/15/21 09:49	MS	TAL CHI
Total/NA	Analysis	SM 4500 CI- E		1	618775	09/15/21 15:04	MS	TAL CHI
Total/NA	Prep	300_Prep			618692	09/15/21 09:49	MS	TAL CHI
Total/NA	Analysis	SM 4500 F C		1	618739	09/15/21 12:35	MS	TAL CHI

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204543-2

Client Project/Site: Joliet #9 Ash

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 10/26/2021 8:26:21 AM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	9
Chain of Custody	11
Receipt Checklists	13
Chronicle	15
Tracer Carrier Summary	16

Job ID: 500-204543-2

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204543-2

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

RAD

Methods 903.0, 9315: Radium 226 prep batch 160-527617

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Joliet #9 Ash (500-204543-1), (LCS 160-527617/2-A), (MB 160-527617/1-A), (500-204327-A-20-D) and (500-204327-A-20-E DU)

Method 904.0: Radium-228 prep batch 160-528400:

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. Joliet #9 Ash (500-204543-1), (LCS 160-528400/2-A), (MB 160-528400/1-A) and (500-204543-A-1-D DU)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Methods 6010B, NONE: The following sample was diluted to bring the concentration of target analytes within the calibration range: Joliet #9 Ash (500-204543-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

903.0			Laboratory
505.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
DPS-0	Preparation, Digestion/ Precipitate	None	TAL SL
DPS-21	Preparation, Digestion/Precipitate Separation (21-Day In-Growth)	None	TAL SL

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #9 Ash

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204543-1	Joliet #9 Ash	Solid	08/31/21 09:30	08/31/21 13:00

Job ID: 500-204543-2

Lab Sample ID: 500-204543-1 Matrix: Solid

Client Sample ID: Joliet #9 Ash Date Collected: 08/31/21 09:30 Date Received: 08/31/21 13:00

Method: 903.0 -	Radium-226	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	2.41		0.352	0.414	1.00	0.180	pCi/g	09/19/21 19:06	10/15/21 17:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					09/19/21 19:06	10/15/21 17:10	1
Method: 904.0 -	Radium-228	(GFPC)								
		. ,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.97		0.409	0.448	1.00	0.482	pCi/g	09/22/21 16:04	10/06/21 12:35	1

Carrier	%Yield Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Ba Carrier	95.3	40 - 110	09/22/21 16:04	10/06/21 12:35	1	
Y Carrier	78.9	40 - 110	09/22/21 16:04	10/06/21 12:35	1	

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC Un	nit	Prepared	Analyzed	Dil Fac
Combined Radium	4.38		0.540	0.610	5.00	0.482 pC	Ci/g		10/25/21 17:38	1
226 + 228										

Eurofins TestAmerica, Chicago

Qualifiers

_			
D	-	~	
	a	u	
	-	-	

(Qualifier
-	

Qualifiers		3
Rad		
Qualifier	Qualifier Description	4
U	Result is less than the sample detection limit.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	ç
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	C
Dil Fac	Dilution Factor	3
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Joliet #9 Ash

Job ID: 500-204543-2

Rad

Prep Batch: 527617

500-204543-1 DU

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204543-1	Joliet #9 Ash	Total/NA	Solid	DPS-21	
MB 160-527617/1-A	Method Blank	Total/NA	Solid	DPS-21	
LCS 160-527617/2-A	Lab Control Sample	Total/NA	Solid	DPS-21	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-204543-1	Joliet #9 Ash	Total/NA	Solid	DPS-0	
MB 160-528400/1-A	Method Blank	Total/NA	Solid	DPS-0	
LCS 160-528400/2-A	Lab Control Sample	Total/NA	Solid	DPS-0	

Total/NA

Solid

DPS-0

QC Association Summary

QC Sample Results

Job ID: 500-204543-2

Method: 903.0 - Radium-226 (GFPC)

Lab Sample		60-5276	17/ 1-A						Clie		ole ID: Method	
Matrix: Soli											Prep Type: To	
Analysis Ba	atch: 5319	66									Prep Batch:	527617
				Count	Total							
		MB		Uncert.	Uncert.							
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC			repared	Analyzed	Dil Fac
Radium-226		0.1252	U	0.144	0.144	1.00	0.234	pCi/g	09/19	9/21 19:06	10/15/21 17:14	
		MB	МВ									
Carrier			Qualifier	Limits						repared	Analyzed	Dil Fa
Ba Carrier		80.9		40 - 110					09/1	9/21 19:06	10/15/21 17:14	
Lab Sample	D: LCS	160-527	617/2-A					Clie	ent San	nple ID:	Lab Control	Sample
Matrix: Soli	d										Prep Type: To	otal/N/
Analysis Ba	atch: 5319	66									Prep Batch:	52761
						Total						
			Spike		LCS	Uncert.					%Rec.	
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC		%Rec	Limits	
Radium-226			11.3	12.04		1.37	1.00	0.272	pCi/g	106	75 - 125	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits									
	82.8		40 - 110	-								
lethod: 90 Lab Sample)4.0 - Ra e ID: MB 1			;)					Clie	ent Samp	ole ID: Methoo Prep Type: To	otal/N/
lethod: 90 Lab Sample Matrix: Soli	04.0 - Ra ∋ ID: MB 1 d	60-5284		;)					Clie	ent Samp		otal/N/
lethod: 90 Lab Sample Matrix: Soli	04.0 - Ra ∋ ID: MB 1 d	60-5284 53	00/1-A	Count	Total				Clie	ent Samp	Prep Type: To	otal/N/
lethod: 90 Lab Sample Matrix: Soli Analysis Ba	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 мв	00/1-A MB	Count Uncert.	Uncert.						Prep Type: To Prep Batch:	otal/N/ 528400
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 MB Result	00/1-A MB Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)		MDC		Pr	repared	Prep Type: To Prep Batch: Analyzed	otal/N/ 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 MB Result 0.1697	MB Qualifier U	Count Uncert.	Uncert.	RL 1.00		Unit pCi/g	Pr		Prep Type: To Prep Batch: 	otal/N/ 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 MB Result 0.1697 <i>MB</i>	MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277	Uncert. (2σ+/-)				Pr 09/22	repared 2/21 16:04	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35	otal/NA 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield	MB Qualifier U	Count Uncert. (2σ+/-) 0.277 <i>Limits</i>	Uncert. (2σ+/-)				Pr 09/22	repared 2/21 16:04	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35 Analyzed	otal/N/ 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier	04.0 - Ra ∋ ID: MB 1 d	60-5284 53 MB Result 0.1697 MB %Yield 87.5	MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)				Pr 09/22 09/22	repared 2/21 16:04 repared 2/21 16:04	Analyzed 10/06/21 12:35 Analyzed 10/06/21	Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0	00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 <i>Limits</i>	Uncert. (2σ+/-)			pCi/g	Pr 09/22 Pr 09/22 09/22	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Lab Control \$	otal/N/ 52840 Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/22 Pr 09/22 09/22	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 Lab Control S Prep Type: To	otal/N/ 528400 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/22 Pr 09/22 09/22	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Lab Control \$	otal/N/ 528400 Dil Fa Dil Fa Dil Fa
Iethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-)	1.00		pCi/g	Pr 09/22 Pr 09/22 09/22	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 Lab Control S Prep Type: To	otal/NA 528400 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Y Carrier Lab Sample Matrix: Soli Analysis Ba	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00		pCi/g		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch:	otal/N/ 528400 Dil Fa Dil Fa Sample otal/N/
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli Analysis Ba	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00 Total Uncert.	0.467	pCi/g Clie		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 nple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec.	otal/N/ 528400 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli Analysis Ba	94.0 - Ra 1D: MB 1 d atch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	otal/NA 528400 Dil Fa Dil Fa Dil Fa
Iethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli Analysis Ba Analysis Ba	24.0 - Ra id id atch: 5304 id id atch: 5304 id atch: 5304 id LCS	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	otal/NA 528400 Dil Fa Dil Fa Dil Fa
Ba Carrier Iethod: 90 Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Soli Analysis Ba Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier Ba Carrier	24.0 - Ra id id atch: 5304 id id atch: 5304 id atch: 5304 id LCS	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	otal/N/ 528400 Dil Fac Dil Fac Dil Fac

QC Sample Results

Job ID: 500-204543-2

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Soli										Prep Typ		
Analysis Ba	lich: 5304:	55				Total				Prep Bat	ICH: 54	20400
	Sample	Sample		DU	DU	Uncert.						RER
Analyte	Result	Qual		Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	1.97			2.501		0.485	1.00	0.427	pCi/g		0.57	1
	DU	DU										
Carrier	%Yield	Qualifier	Limits									
Ba Carrier	88.7		40 - 110									
Y Carrier	79.6		40 - 110									

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708-534 5200 Fax 708 534-5211

Chain of Custody Record

ATNAJT	A - A S	9 7
--------	---------	--------

3

	5	
	8	
	9	
1		

Client Information	Phone 630	nel Re	255	Lai Mo	b PM ockler	Diana	J				Carrier Ti	acking	No(s)			COC No 500-94568-41920	1	
Client Contact Richard Gnat	Phone (2)	-103	-724		Mail ana Mo	ckler	തEur	ofinset	~		State of (Drigin				Page Page 1 of 1		
Company	6 10		PWSID	<u> </u>		onici	a current								_	Jahr J	11-AO	
KPRG and Associates Inc	Due Date Request					- 1		· · · · · ·	Analysi	s Req	ueste	1		1 1		Preservation Codes		
14665 West Lisbon Road Suite 1A	Due Dale Reques	ieu													- 1		• M Hexane	
City Brookfield	TAT Requested (d	ays)									6 3		I			B NaOH M	None D AsNaO2	1
State Zip								ш, 		{	04	SC.			1	D Nitric Acid F	P Na2O4S	
WI 53005	Compliance Proje	ct 🛆 Yes	ΔΝο		-1 🗈		226/228	8			P2	RE.				F MeOH F	Na2SO3 Na2S2O3	
Phone	PO# 4502042860				8		d 22	M45(5 H2SO4 TSP Dodecahy	drate
Email	WO#	······································				, l	ed Rad	S, S		50	0-2045	543 CC	C				J Acetone / MCAA	
richardg@kprginc.com Project Name	Project #				Yes or		Combined	905(1	1 1	1		ž	K EDTA V	V pH 4-5	
Joliet #9 Ash	50011504				e	8	Con	71A,							Ē		other (specify)	
Site Illinois	SSOW#				Ē	5	GFPC	6010B, 7471A, 9056A, SM4500_CI_							5	Other [.]		
			A	Matrix				S010						1 F	- C - L			
			Sample Type	(W=water		903.0, 904.0	Ra226Ra228	ΰ							Total Number			
		Sample	(C=comp,	S≍solid, O≕waste/oil,	Field Filt	о́р	12261	4500_F_					1		ā.			
Sample Identification	Sample Date	Time	G=grab) e Preservati						++	+-+		++		<u>├</u>	5+	Special Inst	ructions/Note	
EL HEAL		$\widehat{\alpha}$	C III		f¥			N	╉╼╂╸	╉┯╉		╀─┦	-+	┝─┢	4			
Jolich HLASh	8/31	9:30	\subseteq	Solid		¥	X	\cap	+-+-	$ \rightarrow $		+ +		+ +	4			
Jolich #JAsh Jolick #29 Ash	8/31	(0,00	C	Solid		<u> </u>	{ X	×							1			
				Solid														
					11	+	+ +		+-+-	++					1			
				,	++		+		╉╌┼╴	++		+	-+	\vdash	+			
				<u></u>	++		+					_↓		$ \vdash $	-			
مرین میں ایک میں ایک میں ایک میں ایک ایک ایک ایک میں ایک میں میں ایک میں میں ایک میں ایک میں ایک ایک میں ایک می ایک میں ایک میں					11	+			++						1			
					++-		┼──┤		╉╌╉╼	╉╾╊		+		┝──┾╸	+		·····	
					++	+	┼─┤		+-+			\vdash			-			
																		{
Possible Hazard Identification									A fee ma	y be as	sesseo	if san	nples ar	e reta	ine	d longer than 1 m	onth)	
Non-Hazard Flammable Skin Irritant Poiso	n B Unkno	wn ^{L_J} Ri	adiological			The second s	and the second second	To Clie				ly Lab	L	Arc	chive	e For	Months	
Deliverable Requested 1 II III IV Other (specify)					S	oecia	Instru	ictions/	QC Requ	irement	s							
Empty Kit Relinquished by		Date			Time						Meth	od of SI	hipment:					
Relinquished by	Date/Time. / 2 /	/2:5		CPRC		Rec	eived b	ha-	ue H	0.100.0			ate/Time	2110	1	1300	ompany ETA-UH	
Relinquished by Mitchel Ness	8121 Date/Time:	17.0		CTXC ompany	•		eivedio	nom	UR H	err ic	NICK.	Ψł	ate/Time	116	-		CIH-UH	
			ľ					, 				Ч						
Relinguished by	Date/Time		C	ompany		Rec	eived b	y.				C	late/Time			C	ompany	
Custody Seals Intact. Custody Seal No			L			Coo	ler Tem	perature	(s) °C and (Other Rem	narks	~	1					\neg
Δ Yes Δ No												22	٦					

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211	0	Chain	of Cus	Chain of Custody Record	lecol	p							🔅 eurofins	Environment Testing America
Client Information (Sub Contract Lab)	Sampler:			Lab	Lab PM:				Ca	Carrier Tracking No(s):	g No(s):		COC No:	
	Phone:			E-Mail:					Sta	State of Origin:			500-152055.1 Page:	
Company: TestAmerica Laboratories. Inc.					Accreditations Required (See not	a. Mockler@Eurotinset.com Accreditations Required (See note):	finset.co	n lote):		lois			Page 1 of 1	
Address. 13715 Rider Trail North.	Due Date Requested: 10/3/20031	ed:			NELAP	- Illinois							500-204543-2 Preservation Codes	des:
City:	TAT Requested (days):	ays):				F	₹ -	Jalysi	Analysis Requested	sted	ł	ł	A - HCL	M - Hexane
Earth City State, Zp: MO, 63045							8			_			B - NaOH C - Zn Acetate D - Nitric Acid	N - None O - AsNaO2 P - Na2045
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	#O4				(526/22						F - MeOH G - Amchlor	
Email:	;# 0M				0) 0)		beA b						H - Ascorbic Acid I - Ice	
Project Name: Joliet #9 Ash	Project #: 50011504				N JO S		ənidmo					819nia	J - Di Water K - EDTA L - EDA	V - MCAA W - pH 4-5 Z - other (snecifv)
Site: NRG Midwest Generation LSQ Joliet #9 CCR	SSOW#:				er) as							t contr	Other:	
		Same Same	Sample Type	Matrix (www.ater. Sesolid,	2 Filtered 5	NDPS_21 Ra	6Ka228_GF					Number of		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	_	Orwasta/oll, BT=Tissue, AnAir)	Pert	-	8933					Total	Special In	Special Instructions/Note:
		\langle	Preserva	Preservation Code:	X							X		
Joliet #9 Ash (500-204543-1)	8/31/21	09:30 Central		Solid		×	×					2		
								\vdash						
								-						
							-	+-						
							-	+						
							-	-						
								-						
								-						
Nole: Since laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/sets/matrix being analyzed, the samples invest be shipped back to the Eurofins TestAmerica alboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	nerica places the ownersh atrix being analyzed, the s nt to date, return the signe	ip of method. amples must l d Chain of Cu	analyte & accri be shipped bac stody attesting	editation compl k to the Eurofir to said complic	ance upon Is TestAme ance to Eu	out subco rica labora rofins Test	ntract labo itory or oth America.	ratories er instruct	This sample ions will be	shipment is provided. A	forwarded	under chait s to accredit	n-of-custody. If the is tation status should t	aboratory does not currently be brought to Eurofins
Possible Hazard Identification					Samo	le Disno	I A I	vem ee	ha seco	cod if co	a a la la m		Sample Disnosal (4 fee may be accound if country	
Unconfirmed Deliverable Reministed: 1 11 111 N/ Other Jaconity	:					Return To Client	o Client			Disposal By Lab			ie For 'e For	month) Months
	Primary Deliverable Rank: 2	ole Rank: 2			Specia	Special Instructions/QC Requirements:	tions/QC	Requir	ements:					
Empty Kit Kelinquishad by: Relinitiehed hy	Π	Date:			Time:				Γ	Method of Shipment	shipment:			
Reinquished by	Date/Time:		445	D ILG		RACOLOGICA DA	Wer		Brin	- E	Date/Time:	1134	1 08:33	Company Sh
Relinquished by:	Date/Time:			Company		December by		.		J	ate/Time:	-		
Custody Seals Intact: Custody Seal No) 	funding		ceiveu py:					Date/Time:			Company
_					Š	oler Tempe	erature(s) °	C and Ot	Cooler Temperature(s) °C and Other Remarks:	10				

1

Ver: 06/08/2021

10

13

Client: KPRG and Associates, Inc.

Login Number: 204543 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204543-2

List Source: Eurofins TestAmerica, Chicago

Client: KPRG and Associates, Inc.

Login Number: 204543 List Number: 2 Creator: Korrinhizer, Micha L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204543-2

List Creation: 09/01/21 05:40 PM

List Source: Eurofins TestAmerica, St. Louis

Client Sample ID: Joliet #9 Ash Date Collected: 08/31/21 09:30 Date Received: 08/31/21 13:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	DPS-21			527617	09/19/21 19:06	HA	TAL SL
Total/NA	Analysis	903.0		1	531971	10/15/21 17:10	ANW	TAL SL
Total/NA	Prep	DPS-0			528400	09/22/21 16:04	ASG	TAL SL
Total/NA	Analysis	904.0		1	530453	10/06/21 12:35	EMH	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	533568	10/25/21 17:38	CAH	TAL SL

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 500-204543-2

Lab Sample ID: 500-204543-1 Matrix: Solid

Method: 903.0 - Radium-226 (GFPC)

Matrix: Solid

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(40-110)	
500-204543-1	Joliet #9 Ash	100	
LCS 160-527617/2-A	Lab Control Sample	82.8	
MB 160-527617/1-A	Method Blank	80.9	
Tracer/Carrier Legen	d		

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC)

Matrix: Solid

Percent Yield (Acceptance Limits) Υ Ва (40-110) (40-110) Lab Sample ID **Client Sample ID** Joliet #9 Ash 500-204543-1 95.3 78.9 500-204543-1 DU Joliet #9 Ash 88.7 79.6 LCS 160-528400/2-A 77.4 Lab Control Sample 78.9 MB 160-528400/1-A Method Blank 87.5 80.0 13

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

Job ID: 500-204543-2

Prep Type: Total/NA

Prep Type: Total/NA

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204544-2

Client Project/Site: Joliet #29 Ash

For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 10/26/2021 8:28:20 AM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

..... Links

Review your project results through

Total Access

Have a Question?

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	
Definitions	7
QC Association	8
QC Sample Results	9
Chain of Custody	10
Receipt Checklists	12
Certification Summary	14
Tracer Carrier Summary	15

Job ID: 500-204544-2

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204544-2

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

RAD

Methods 903.0, 9315: Radium 226 prep batch 160-527617

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Jolet #29 Ash (500-204544-1), (LCS 160-527617/2-A), (MB 160-527617/1-A), (500-204327-A-20-D) and (500-204327-A-20-E DU)

Method 904.0: Radium-228 prep batch 160-528400:

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. Jolet #29 Ash (500-204544-1), (LCS 160-528400/2-A), (MB 160-528400/1-A), (500-204543-A-1-C) and (500-204543-A-1-D DU)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Methods 6010B, NONE: The following sample was diluted to bring the concentration of target analytes within the calibration range: Jolet #29 Ash (500-204544-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
DPS-0	Preparation, Digestion/ Precipitate	None	TAL SL
DPS-21	Preparation, Digestion/Precipitate Separation (21-Day In-Growth)	None	TAL SL

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

_

Job ID: 500-204544-2

Lab Sample ID: 500-204544-1 Matrix: Solid

5

6

Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

Method: 903.0 -	Radium-226	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.54		0.311	0.341	1.00	0.252	pCi/g	09/19/21 19:06	10/15/21 17:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Bo Corrier			40 - 110					09/19/21 19:06	10/15/21 17:11	1
Ba Carrier Method: 904.0 -		(GFPC)	40 - 110					09/19/21 19:00	10/13/21 11.11	I
-		(GFPC)	Count	Total				09/19/21 19:00	10/10/21 11.11	1
		(GFPC)		Total Uncert.				09/19/21 19:00	10/10/21 11.11	1
Method: 904.0 -	Radium-228	(GFPC) Qualifier	Count		RL	MDC	Unit	Prepared	Analyzed	, Dil Fac
Method: 904.0 -	Radium-228		Count Uncert.	Uncert.	RL 1.00	MDC 0.443				Dil Fac
Method: 904.0 -	Radium-228	Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)				Prepared	Analyzed	Dil Fac 1 Dil Fac
Method: 904.0 - Analyte Radium-228	Radium-228	Qualifier	Count Uncert. (2σ+/-) 0.377	Uncert. (2σ+/-)				Prepared 09/22/21 16:04	Analyzed 10/06/21 12:36	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.17		0.489	0.530	5.00	0.443	pCi/g		10/25/21 17:38	1

Eurofins TestAmerica, Chicago

Qualifier Description

Qualifiers

Rad	

C	Qual	ifier

U	Result is less than the sample detection limit.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ο
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Method Blank

Lab Control Sample

QC Association Summary

Job ID: 500-204544-2

Rad

Prep Batch: 527617

MB 160-528400/1-A

LCS 160-528400/2-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	DPS-21	
MB 160-527617/1-A	Method Blank	Total/NA	Solid	DPS-21	
LCS 160-527617/2-A	Lab Control Sample	Total/NA	Solid	DPS-21	
Prep Batch: 528400					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	DPS-0	

Total/NA

Total/NA

Solid

Solid

DPS-0

DPS-0

QC Sample Results

Job ID: 500-204544-2

Method: 903.0 - Radium-226 (GFPC)

Lab Sample Matrix: Solid		00-52/6	1771 -A						CIIE		le ID: Methoo Prep Type: T	
Analysis Ba		22									Prep Batch:	
	ICH. 5513			Count	Total						Thep Daten.	52701
		МВ	MB	Uncert.	Uncert.							
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	р.	repared	Analyzed	Dil Fa
Radium-226		0.1252		0.144	0.144	1.00	0.234			9/21 19:06	10/15/21 17:14	
Raulum-220		0.1232	0	0.144	0.144	1.00	0.234	pci/g	09/1	9/21 19.00	10/15/21 17.14	
		MB	MB									
Carrier		%Yield	Qualifier	Limits					Pi	repared	Analyzed	Dil Fa
Ba Carrier		80.9		40 - 110					09/1	9/21 19:06	10/15/21 17:14	
Lab Sample Matrix: Solid		160-527	617/2-A					Clie	ent Sar		Lab Control S Prep Type: T	
Analysis Ba		22									Prep Batch:	
niaiysis Da						Total					i iep batell.	52101
			Spike	1.05	LCS	Uncert.					%Rec.	
Analyte			Added	Result		(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226			11.3	12.04		1.37	1.00	0.272		106	75 - 125	
			11.0	12.04		1.07	1.00	0.272	polig	100	10-120	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits	_								
			40 - 110									
lethod: 90 Lab Sample	ID: MB 1		228 (GFPC	;)					Clie		ole ID: Methoo Prep Type: T	
lethod: 90 Lab Sample Matrix: Solic	4.0 - Ra ID: MB 1	60-5284	228 (GFPC		T-44				Clie		ole ID: Method Prep Type: T Prep Batch:	otal/N/
lethod: 90 Lab Sample Matrix: Solic	4.0 - Ra ID: MB 1	60-5284 53	228 (GFPC 00/1-A	Count	Total				Clie		Prep Type: To	otal/N/
lethod: 90 Lab Sample Matrix: Solic Analysis Ba	4.0 - Ra ID: MB 1	60-5284 53 МВ	228 (GFPC 00/1-A MB	Count Uncert.	Uncert.		MDC	Unit			Prep Type: T Prep Batch:	otal/N/ 52840
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte	4.0 - Ra ID: MB 1	60-5284 53 MB Result	228 (GFPC 00/1-A MB Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)		MDC		Pi	repared	Prep Type: To Prep Batch: 	otal/N/ 52840 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697	228 (GFPC 00/1-A MB Qualifier U	Count Uncert.	Uncert.	RL 1.00		Unit pCi/g	Pi		Prep Type: To Prep Batch: 	otal/N/ 52840 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i>	228 (GFPC 00/1-A MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277	Uncert. (2σ+/-)				Pr 09/23	repared 2/21 16:04	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	otal/N/ 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield	228 (GFPC 00/1-A MB Qualifier U	Count Uncert. (2σ+/-) 0.277 Limits	Uncert. (2σ+/-)				Pr 09/23	repared 2/21 16:04 repared	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35 Analyzed	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5	228 (GFPC 00/1-A MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)					repared 2/21 16:04 repared 2/21 16:04	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield	228 (GFPC 00/1-A MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277 Limits	Uncert. (2σ+/-)					repared 2/21 16:04 repared 2/21 16:04	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35 Analyzed	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35	otal/N/ 52840 Dil Fa Dil Fa
Iethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control \$	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: T Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: T	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-)	1.00		pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: T Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: T	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00		pCi/g		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: Tr Prep Batch:	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00 Total Uncert.	0.467	pCi/g		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec.	otal/N. 52840 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304 	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228	4.0 - Ra ID: MB 1 d tch: 5304 ID: LCS d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa
Ba Carrier Iethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier Ba Carrier	4.0 - Ra ID: MB 1 d tch: 5304 ID: LCS d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

Client Information Clent Contact Richard Gnat

A	TNA	S44- 1
	Carrier Track ng No(s)	COC № 500-94568-41920 1

State of Origin

Page

Page 1 of 1

9	
J	

Company KPRG and Associates Inc		PWSID		Analysis Requested								JOD # 500-204544						
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ed	L		T	T				T	T			T	- 1	reservation Co		
City Brookfield	TAT Requested (d	ays)]							 *****			E C	NaOH Zn Acetate	N None O AsNaO2	
State Zip WI 53005	Compliance Project	ct 🛆 Yes	A No		┥╽		128	SM4500_CI_E			1 [Ε	Nitric Acid NaHSO4	P Na2O4S Q Na2SO3	
Phone	PO #				11		226/2	1500				K-	£			MeOH Amchlor	R Na2\$2O3 S H2SO4	
- Email	4502042860 WO#				le Se		Rad	SM					× ,		۲	Ascorbic Acid	T TSP Dode U Acetone	cahydrate
richardg@kprginc com					s or	2	ined	9056A			500-20)4544	coc		g J	DI Water EDTA	V MCAA W pH 4-5	
Project Name Joliet #9 Ash	Project # 50011504				ele (Ye	(es or	Combined Rad 226/228	7471A 90				1			L L	EDA	Z other (spec	cify)
Site Illinois	SSOW#				Samp	SDC	GFPC	B, 74							0 20	ther [.]		
Sample Identification	Sample Date	Sample Time		Matrix (W=water S=solid, O=waste/oil, BT~Tissue, A-Air)	Field Filtered S	Perform MS/M 903.0 904.0	Ra226Ra228								Total Number	Special I	nstructions/N	lote
- Litali	~/2C	\overline{a}	Preserva	tion Code Solid	f¥	XN	N	N		╇╋	╉╍╂╍┙	┝─┼			4-			
Jolick #9 Ash Jolick #29 Ash		9:30	$\frac{1}{2}$	Solid	$\left \cdot \right $	-K		1x										
Jolith #29 /85h	8/3((0',00		Solid	$\left \cdot \right $	+	× >			+	++-	┝─┼		-	-			
					$\left \right $			+				┼─┼		-+			<u></u>	
					$\left\{ + \right\}$		+	+		+-+-	++	$\left\{ -\right\}$		\neg				
					Ħ	1	-							t				
Possible Hazard Identification		$w_n \square_R$	adiological		5				I (A fe Client	e may be	assessed Disposal B	i f san ly Lab	nples are	e reta □_ _{Arc}	ained chive	longer than For	1 month) Months	
Deliverable Requested II III IV Other (specify)					S	Specia	al Inst	ructio	ns/QC I	Requirem								
Empty Kit Relinquished by	1	Date			Tim								npment					
Relinquished by Mitcheel Ress	Date/Time/3/	13:0	30	Company KPRC		Re	ceived	thor	ne	Hemor	mderx		ate/Time	8/31	121	1300	ETA-(H1
Rel nquished by	Date/Time			Company		Re	ceived	by				7 [ate/Time				Company	
Relinquished by	Date/Time			Company		Re	ceived	by				C	ate/Time				Company	
Custody Seals Intact Custody Seal No						Co	oler Te	mperal	ture(s) °C	and Other i	Remarks	22	4					
					- 1 4												Ver 06/08/2	021 100 101

Chain of Custody Record

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sampler Michael Ress

Phone

630-203-7240

Eurofins TestAmerica, Chicago 2417 Bond Street University Park. JL 60484 Phone: 708-534-5200 Fax: 708-534-5211		Chain of Custody Record	Record			🔅 eurofins	ins Environment Testing America
Client Information (Sub Contract Lab)	Sampler:	Lab PM Mockle	Lab PM: Mockler, Diana J		Carrier Tracking No(s):	COC No: FOD_1F20F6-1	ŭ
cuent contact. Shipping/Receiving	Phone:	E-Mail: Diana	E-Mail: Diana Mockler@Furofinset.com	et com	State of Origin:	Page:	0.1
company: TestAmerica Laboratories, Inc.			Accreditations Required (See note) NFI AD - Illinois	(See note):	C) IIII	Job #:	
Address: 13715 Rider Trail North,	Due Date Requested: 10/3/2021					500-204544-2 Preservation Codes:	4-2 n Codes:
City: Farth City	TAT Requested (days):				requested	A - HCL	
State. Zp: MO, 63045	T		8			B - NaOH C - Zn Acetate D - Nitric Acid	N - None C - AsNaO2 P - Na2O4S
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	HO#:					E - NaHSO4 F - MeOH G - Amchlor	
Email:	# OM		(0)			H - Ascorbic Acid I - ke	σ
Project Name: Joliet #29 Ash	Project #: 50005078		58 556 18 OL N			J - DI Water K - EDTA L - EDA	V - MCAA W - pH 4-5 Z - other (snerify)
Sile	SSOW#:		Mulbe Mulbe				
Sample Identification - Client ID (Lab ID)			ield Filtered S erform MS/MS 13.0/DPS_0 Rad 14.0/DPS_0 Rad 14.0/DP			to redmuk ist	
		Preservation Code	ж об с				Special Instructions/Note:
Jolet #29 Ash (500-204544-1)	1	Solid				X	
	Central		<			2	
Note: Since laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/isets/matrix being analyzed, the samples shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	stAmerica places the ownership of method, and s/matrix being analyzed, the samples must be irrent to date, return the signed Chain of Custo	alyte & accreditation compl shipped back to the Eurofir dy attesting to said complic	iance upon out subcontra 1s TestAmerica laboratory cance to Eurofins TestAme	ct laboratories. This or other instructions srica.	sample shipment is forwarded ur will be provided. Any changes t	nder chain-of-custody. I o accreditation status sh	the laboratory does not currently ould be brought to Eurofins
Possible Hazard Identification			Sample Disposal	(A fee may be	Sample Disposal (A fee may be assessed if samples are retained lonner than 1 month	retained lonner th	an 1 month)
Uncontirmed Deliverable Requested: 1 II III N. Other (snarify)			Return To Client	lient	Disposal By Lab	Archive For	Months
Emoty Ma Daliania	Frimary Deliverable Kank: 2		Special Instructions/QC Requirements	is/QC Requirem	ents:		
Emply for relinquished by:	Date:		Time:		Wethod of Shipment:		
Reinquished by AMM ARADO	Date/Time/AI 1/4	15 610	the man	en Bur	hin	:30 Le	:37 College &
Relinquished by:	Date/Time:	Company	Received by:		0		Company
Gustody Seals Intact: Custody Seal No.			Keceived by:		Date/Time:		Company
			Cooler Temperatu	Cooler Temperature(s) [°] C and Other Remarks:	Remarks:		

Ver: 06/08/2021

10

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Chicago

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 2 Creator: Korrinhizer, Micha L

Question Answer Comme
Radioactivity wasn't checked or is = background as measured by a survey True meter.</td
The cooler's custody seal, if present, is intact. True
Sample custody seals, if present, are intact. True
The cooler or samples do not appear to have been compromised or True tampered with.
Samples were received on ice. N/A
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible. True
COC is filled out with all pertinent information. True
Is the Field Sampler's name present on COC? True
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking. True
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
Containers requiring zero headspace have no headspace or bubble is True <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing. True
Residual Chlorine Checked. N/A

Job Number: 500-204544-2

List Creation: 09/01/21 05:40 PM

List Source: Eurofins TestAmerica, St. Louis

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-2

12

ry: Eurofins TestAmerica, St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-22
ANAB	Dept. of Defense ELAP	L2305	04-06-22
ANAB	Dept. of Energy	L2305.01	04-06-22
ANAB	ISO/IEC 17025	L2305	04-06-22
Arizona	State	AZ0813	12-08-21
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	06-30-21 *
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	004553	11-30-21
Iowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-21
Kentucky (DW)	State	KY90125	01-01-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-21
Louisiana	NELAP	04080	06-30-22
Louisiana (DW)	State	LA011	12-31-21
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-22
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	State	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	03-01-22
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method: 903.0 - Radium-226 (GFPC)

Matrix: Solid

_		Percent Yield (Acceptance Limits)		
		Ва		
Lab Sample ID	Client Sample ID	(40-110)		
500-204544-1	Jolet #29 Ash	104		
LCS 160-527617/2-A	Lab Control Sample	82.8		
MB 160-527617/1-A	Method Blank	80.9		
Tracer/Carrier Legen	d			

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC)

Matrix: Solid

Percent Yield (Acceptance Limits) Ва Υ (40-110) (40-110) Lab Sample ID **Client Sample ID** 500-204544-1 Jolet #29 Ash 78.1 91.3 LCS 160-528400/2-A Lab Control Sample 78.9 77.4 MB 160-528400/1-A Method Blank 87.5 80.0 Tracer/Carrier Legend

Ba = Ba Carrier Y = Y Carrier

Job ID: 500-204544-2

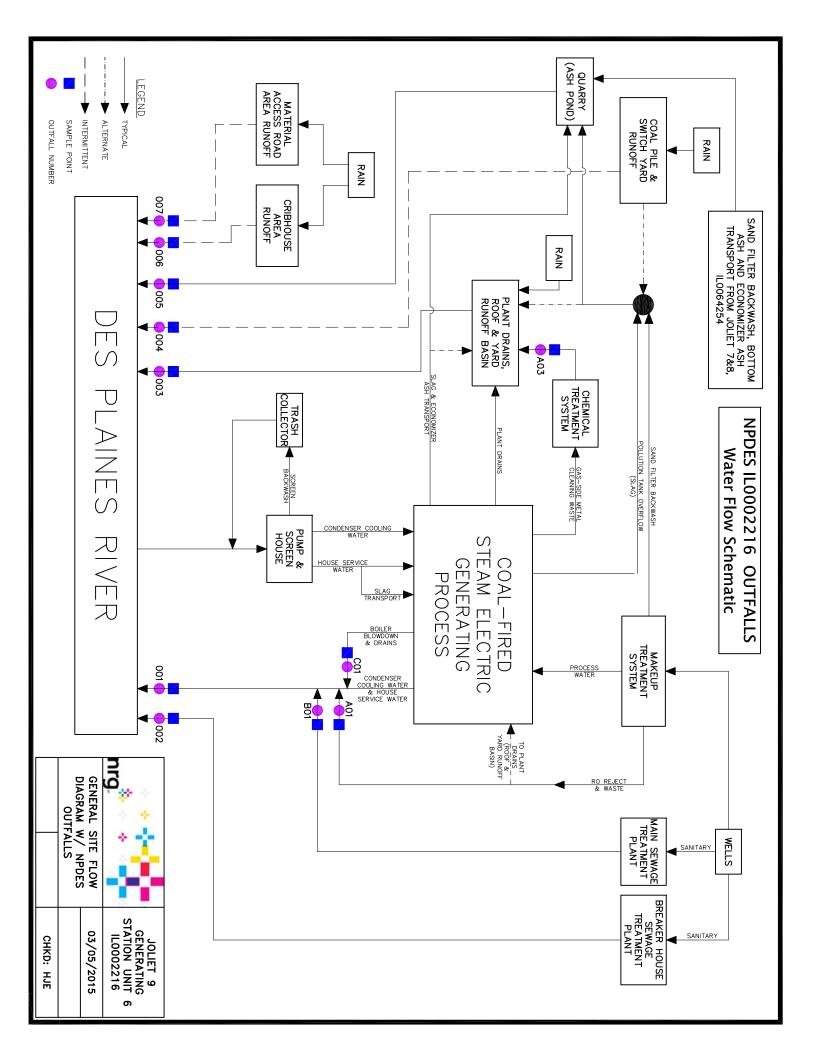
Prep Type: Total/NA

Prep Type: Total/NA

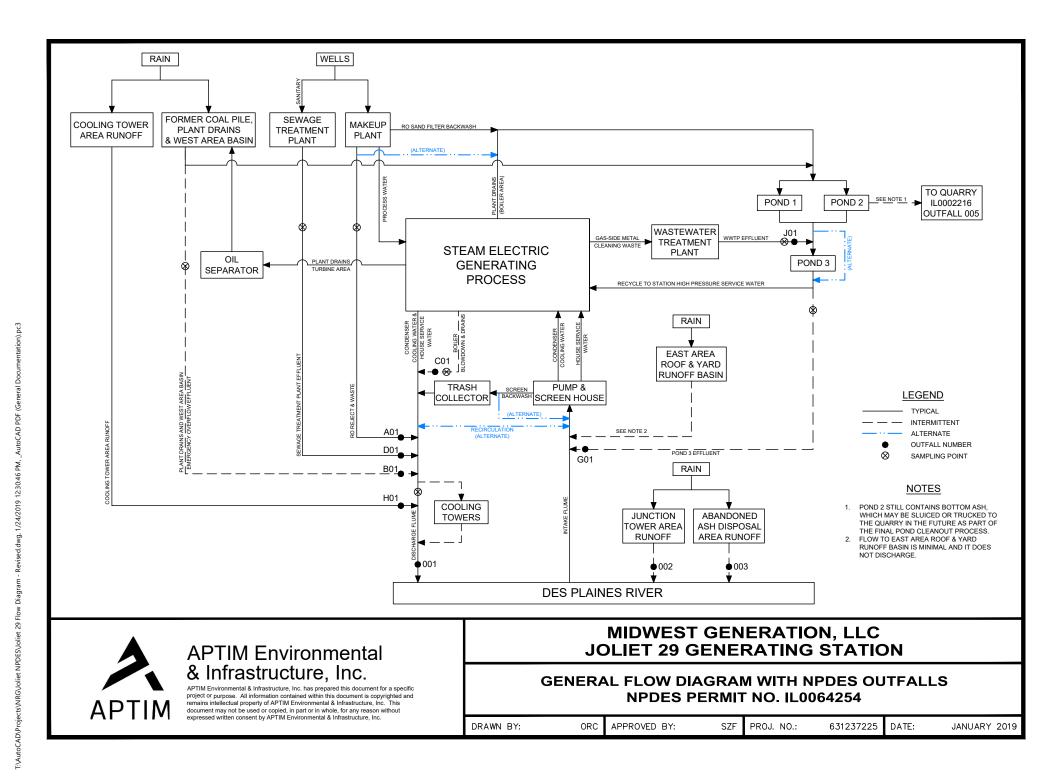
5 13 Attachment 2-2 – P105 Leachate Assessment Data

	Well	P105			
Parameter	Units	1stQtr12	2ndQtr12	3rdQtr12	4thQtr12
Ammonia, Dissolved	mg/L	8.3	8.7	8.8	8.3
Arsenic, Dissolved	ug/L	20	11	13	<10
Barium	ug/L	240	70	53	29
Barium, Dissolved	ug/L	31	27	30	26
Boron, Dissolved	ug/L	10000	11000	12000	10000
Cadmium, Dissolved	ug/L	<2.0	<2.0	<2.0	<2.0
Chloride, Dissolved	mg/L	170	200	190	190
Copper	ug/L	26	<10	11	<10
Depth to Water (ft from MP)	ft	49.75	50.49	50.50	53.35
Depth to Water (ft bls)	ft	47.00	47.74	47.75	50.60
Elevation of GW Surface	ft	541.72	540.98	540.97	538.12
Elevation of Well (MP)	ft	591.47	591.47	591.47	591.47
Elevation Well Bottom	ft	513.71	513.71	513.71	513.71
Field pH	SU	7.38	11.56	7.85	10.55
Field Temperature	Degrees F	35.8	46.0	67.5	60.8
Fluoride, Dissolved	mg/L	0.15	0.15	<0.10	0.16
Iron	ug/L	NA	2000	NA	NA
Lead	ug/L	NA	<5.0	NA	NA
Manganese, Dissolved	ug/L	<10	<10	<10	<10
Mercury	ug/L	NA	<0.20	NA	NA
Molybdenum, Dissolved	ug/L	13000	12000	14000	12000^
Nitrogen, Nitrate	mg/L	<0.10	<0.10	<0.10	<0.10
Nitrogen, Nitrate, Dissolved	mg/L	<0.10	<0.10	<0.10	<0.10
Potassium, Dissolved	mg/L	83	79	81	77
Selenium, Dissolved	ug/L	13	<10	<10	<10
Sodium, Dissolved	mg/L	220	220	220	210
Specific Conductance	umhos/cm	1153	1530	1396	1403
Sulfate, Dissolved	mg/L	410	360	460	460
Total Dissolved Solids	mg/L	1100	1100	1100	1000
Total Organic Carbon	mg/L	5.2	4.7	6.7	7.0
Zinc, Dissolved	ug/L	<20	<20	<20	<20

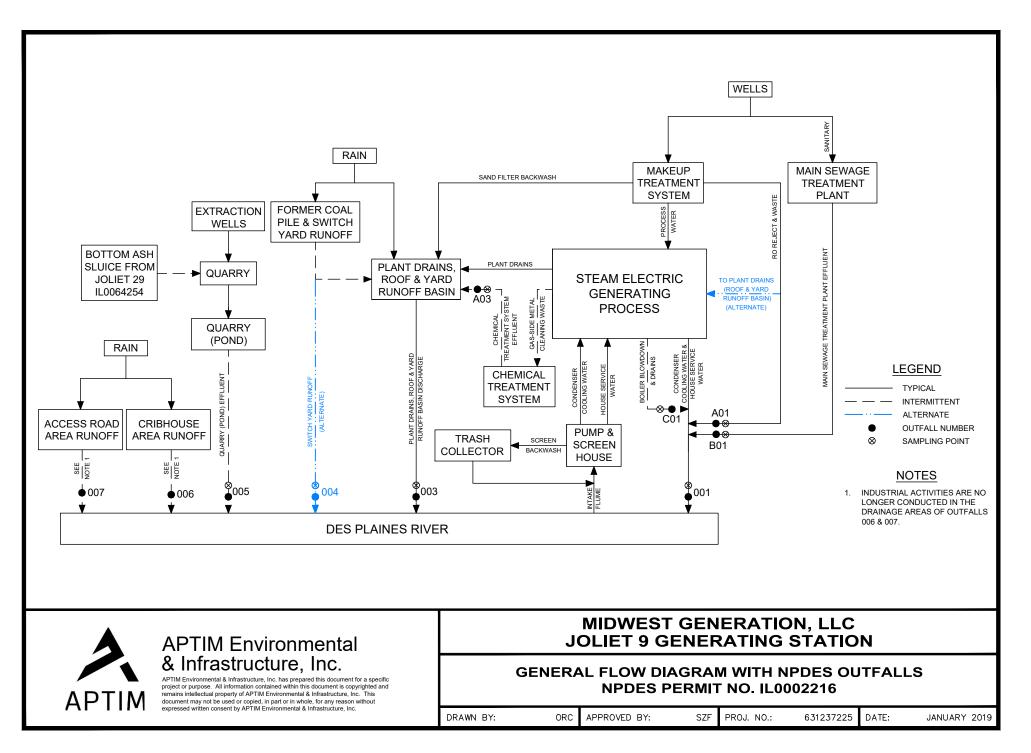
Notes: 1. A '<' sign means that the analyte was not detected at or above the reporting limit


2. A 'B' sign indicates that the result is less than the reporting limit, but greater than or equal to the method detection limit

3. A '^' sign indicates that an instrument related QC exceeds the control limits


4. NA = Not Analyzed

<u>ATTACHMENT 3</u> <u>CHEMICAL CONSTITUENTS ANALYSIS OF OTHER WASTE</u> <u>STREAMS</u>


Attachment 3-1 – 2015 Flow Diagram

Attachment 3-2 – Joliet #29 Flow Diagram

Attachment 3-3 – 2019 Flow Diagram

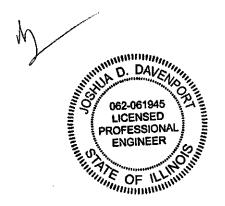
ATTACHMENT 4 LOCATION STANDARDS DEMONSTRATION

PLACEMENT ABOVE THE UPPERMOST AQUIFER LOCATION RESTRICTIONS LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.60, KPRG and Associates, Inc (KPRG) prepared this report to document compliance with location restrictions related to placement above the uppermost aquifer for the existing Lincoln Stone Quarry (the Quarry) at the Joliet #9 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Joshua Davenport in accordance with §257.60. Richard Gnat reviewed this report in accordance with KPRG's quality assurance/quality control procedures.

1. Placement Location Restriction Determination


The base of the Quarry is elevation 501 ft amsl and the upper limit groundwater elevation is 555.35 ft amsl. The Quarry is not separated from the upper limit of the uppermost aquifer by a minimum of five (5) feet.

2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by KPRG personnel and information provided to KPRG by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

Joshua D. Davenport, P.E.

Illinois Professional Engineer No. 062.061945 License Expires: 11/30/2019

WETLANDS LOCATION RESTRICTIONS LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.61, KPRG and Associates, Inc (KPRG) prepared this report to document compliance with location restrictions related to wetlands for the existing Lincoln Stone Quarry (the Quarry) at the Joliet #9 Station (Site) in Joliet, Illinois.

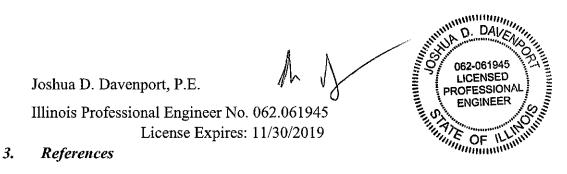
The work presented in this report was performed under the direction of Joshua Davenport in accordance with §257.61. Richard Gnat reviewed this report in accordance with KPRG's quality assurance/quality control procedures.

1. Wetlands Location Restriction Determination

In order to determine if the Quarry was located in wetlands, it was necessary to determine if wetlands are present in the area of the Quarry. Site visits to the Quarry did not identify any wetlands around the perimeter of the Quarry that would indicate if wetlands were present prior to the mining of the Quarry. The national wetlands inventory (NWI) and the Will County Geographical Information System (GIS) Data Viewer were viewed to identify the presence of wetlands around the Quarry. Neither the NWI nor the Will County GIS Data Viewer identified wetlands around the Quarry, but the NWI did identify wetlands located inside the Quarry. The wetlands identified inside the Quarry were classified as a lake habitat with a classification code of L1UBHx. The definition of each component of this classification code is as follows:

- L = System: Lacustrine. The Lacustrine System includes wetlands and deepwater habitats with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel; (2) lacking trees, shrubs, persistent emergents, and emergent mosses or lichens with 30 percent or greater areal coverage; and (3) total area of at least 20 acres. Similar wetlands and deepwater habitats totaling less than 8 ha are also included in the Lacustrine System if an active wave-formed or bedrock shoreline feature makes up all or part of the boundary, or if the water depth in the deepest part of the basin equals or exceeds 8.2 ft at low water.
- 1 = Subsystem: Limnetic. This Subsystem includes all deepwater habitats (i.e., areas > 8.2 ft deep below low water) in the Lacustrine System. Many small Lacustrine Systems have no Limnetic Subsystem.
- UB = Class: Unconsolidated Bottom. Includes all wetlands and deepwater habitats with at least 25% cover of particles smaller than stones (less than 6-7 cm), and a vegetative cover less than 30%.
- H = Water Regime: Permanently Flooded. Water covers the substrate throughout the year

in all years.


• x = Water Chemistry: Excavated. This Modifier is used to identify wetland basins or channels that were excavated by humans.

The active mining of the limestone and the use of this open Quarry to store CCR from the burning of coal at Joliet generating stations 9 and 29 created the necessary conditions for the wetland that has been classified inside the Quarry. The removal of the limestone created the manmade topographical depression that fulfills the first requirement for a Lacustrine System and the excavated water chemistry (x) designation as noted above. The exposure of the limestone during the mining activities removed vegetation within the area, which fulfills the second requirement for a Lacustrine System. The sluicing of CCR from the generating stations into the Quarry for storage created the standing water and the manmade depression was large enough to allow the surface of the water to be at least 20 acres in size, which meets the third requirement for a Lacustrine System. In addition, the standing water will minimize the potential for vegetation to establish itself on the CCR. The limestone was removed to a depth that allowed the stored water to achieve a depth greater than 8.2 feet deep, which is why the Limnetic Subsystem (1) designation is applicable. The manmade depression is permanently flooded because it was created in a way that does not allow for the natural drainage of the water, which is why the water regime permanently flooded (H) designation is applicable.

The wetland classification given to the standing water and the area within the Quarry is a result of the mining operation and the CCR material storage activities that took place in this area. Therefore, based on this evaluation, the Quarry is not located in a wetland, but an area classified as a wetland that was artificially created within the Quarry.

2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of engineering. The contents of this report are based solely on the observations of the conditions observed by KPRG personnel and information provided to KPRG by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

- U.S. Fish and Wildlife Service, 2018. "National Wetlands Inventory," <u>https://www.fws.gov/wetlands/</u>, accessed 7 September 2018.
- WillCounty,2018."GISDataViewer,"http://www.willcogis.org/website2014/gis/applications.html, accessed 7 September 2018.

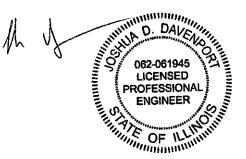
ι

FAULT AREAS LOCATION RESTRICTIONS LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.62, KPRG and Associates, Inc (KPRG) prepared this report to document compliance with location restrictions related to fault areas for the existing Lincoln Stone Quarry (the Quarry) at the Joliet #9 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Joshua Davenport in accordance with §257.62. Richard Gnat reviewed this report in accordance with KPRG's quality assurance/quality control procedures.

1. Fault Areas Location Restriction Determination


The Quarry is not located within 200 feet (60 meters) of a mapped Holocene-aged fault, as mapped by the United States Geological Survey (USGS) Quaternary Fault Database [USGS, 2018]. Therefore, the location of the Quarry complies with the requirements outlined in §257.62(a).

2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by KPRG personnel and information provided to KPRG by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

Joshua D. Davenport, P.E.

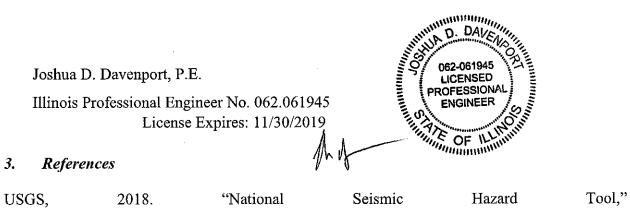
Illinois Professional Engineer No. 062.061945 License Expires: 11/30/2019

3. References

USGS, 2018. "Quaternary Fault and Fold Database," <u>https://earthquake.usgs.gov/hazards/qfaults/</u>, accessed 17 September 2018.

SEISMIC IMPACT ZONES LOCATION RESTRICTIONS LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.63, KPRG and Associates, Inc (KPRG) prepared this report to document compliance with location restrictions related to seismic impact zones for the existing Lincoln Stone Quarry (the Quarry) at the Joliet #9 Station (Site) in Joliet, Illinois.


The work presented in this report was performed under the direction of Joshua Davenport in accordance with §257.63. Richard Gnat reviewed this report in accordance with KPRG's quality assurance/quality control procedures.

1. Seismic Impact Zones Location Restriction Determination

The U.S. Geological Survey (USGS) National Seismic Hazard Tool website was used to provide the peak ground acceleration based on a 2% probability in 50 years, with a land designation of 'a site on rock' with a ground acceleration of 760 m/s in the upper 30 meters. The peak ground acceleration was determined to be 0.070 g in 50 years, which is less than 0.10 g in 50 years. The Quarry complies with the location requirement in 257.63(a) and is not located in a seismic impact zone. The peak ground acceleration where the Quarry is located is 0.070 g in 50 years, which is less than 0.10 g in 50 years, which is the minimum threshold specified in the regulations.

2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of engineering. The contents of this report are based solely on the observations of the conditions observed by KPRG personnel and information provided to KPRG by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

https://www.earthquake.usgs.gov/hazards/interactive/, accessed 17 September 2018.

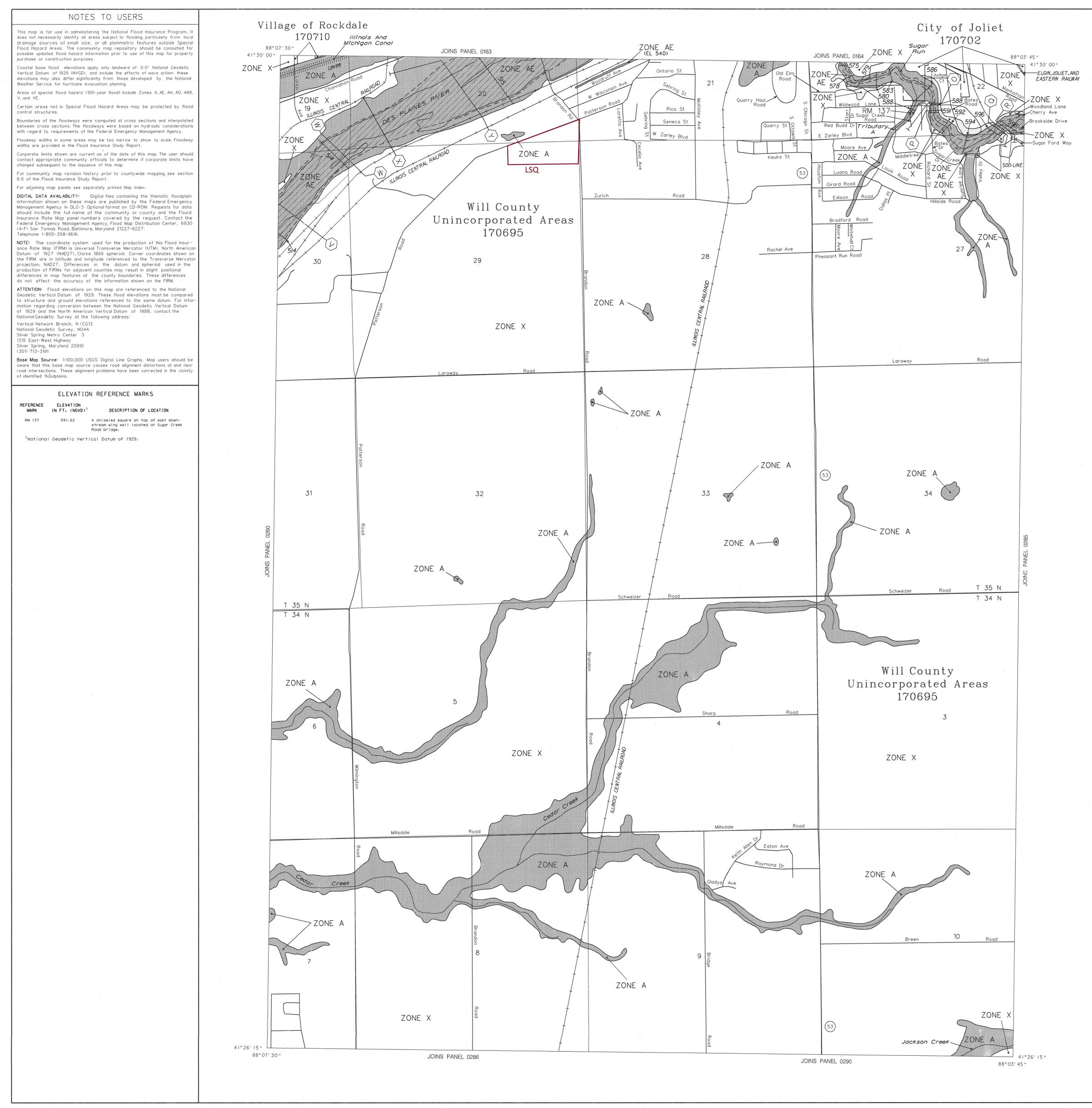
UNSTABLE AREAS LOCATION RESTRICTIONS LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.64, KPRG and Associates, Inc (KPRG) prepared this report to document compliance with location restrictions related to unstable areas for the existing Lincoln Stone Quarry (the Quarry) at the Joliet #9 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Joshua Davenport in accordance with §257.64. Richard Gnat reviewed this report in accordance with KPRG's quality assurance/quality control procedures.

1. Unstable Areas Location Restriction Determination


The Quarry is not located in unstable areas. Therefore, the location of the Quarry complies with the requirements outlined in 257.64(a).


2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of engineering. The contents of this report are based solely on the observations of the conditions observed by KPRG personnel and information provided to KPRG by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

Joshua D. Davenport, P.E.

Illinois Professional Engineer No. 062.061945 License Expires: 11/30/2019

		LEGEND
		LOOD HAZARD AREAS INUNDATED
	ZONE A	No base flood elevations determined.
	ZONE AE ZONE AH	Base flood elevations determined. Flood depths of 1 to 3 feet (usually areas of
	ZONE AO	Flood depths of 1 to 3 feet (usually sheet
		flow on sloping terrain); average depths de- termined. For areas of alluvial fan flooding, velocities also determined.
	ZONE A99	To be protected from 100-year flood by Federal flood protection system under con- struction; no base flood elevations deter- mined.
	ZONE V	Coastal flood with velocity hazard (wave ac- tion); no base flood elevations determined.
	ZONE VE	Coastal flood with velocity hazard (wave ac- tion); base flood elevations determined.
	FLOODWAY	AREAS IN ZONE AE
		ER FLOOD AREAS
	ZONE X	Areas of 500-year flood; areas of 100-year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile, and areas protected by levees from 100-year flood.
	C ZONE X	THER AREAS Areas determined to be outside 500-year
	ZONE D	Areas actermined to be outside 500-year floodplain. Areas in which flood hazards are undeter- mined.
	UNDEVELOPI	ED COASTAL BARRIERS*
	\square	
Identi 198		Identified Otherwise 1990 Protected Areas
×Coastal barr Hazard Area		mally located within or adjacent to Special Flood
		Floodplain Boundary Floodway Boundary
		Zone D Boundary
		Boundary Dividing Special Flood Hazard Zones, and Boundary Dividing Areas of Different Coastal Base Flood Elevations Within SpecialFlood Hazard Zones.
5/3	~~~~	Base Flood Elevation Line; Elevation in Feet**
(EL 9	(A) 87)	Cross Section Line Base Flood Elevotion in Feet Where Uniform Within Zone**
RM7 ●M1.		Elevation Reference Mark River Mile
		Geodetic Vertical Datum of 1929
		·
		IAP REPOSITORY
		pository Listing on Map Index 12 DATE OF COUNTYWIDE
	FLOOD	INSURANCE RATE MAP SEPTEMBER 6, 1995
EF	FECTIVE DATE(S	S) OF REVISION(S) TO THIS PANEL
determine wh	en actuarial rates	RATE MAP effective date shown on this map to s apply to structures in the zones where eleva-
tions or depth To determine	ns have been esta e if flood insurand	
	A 1000	PPROXIMATE SCALE
		NATIONAL FLOOD INSURANCE PROGRAM
		FLOOD INSURANCE RATE MAP
		WILL COUNTY,
		ILLINOIS
		AND INCORPORATED AREAS
		PANEL 280 OF 585
		(SEE MAP INDEX FOR PANELS NOT PRINTED)
		COMMUNITY NUMBER PANEL SUFFIX JOLIET, CITY OF 170702 0280 E
		ROCKDALE, VILLAGE OF 170710 0280 E UNINCORPORATED AREAS 170695 0280 E
2 		
		Notice to User: The MAP NUMBER shown below should be used when placing map orders; the COMMUNITY NUMBER shown above should be used on insurance applications for the subject community.
		MAP NUMBER
	OFACT A	17197C0280 E
		EFFECTIVE DATE : SEPTEMBER 6, 1995
44000 Statement		
		Federal Emergency Management Agency
-		

<u>ATTACHMENT 5</u> <u>PERMANENT MARKERS</u>

1. Lincoln Stone Quarry Posted IEPA ID Sign

<u>ATTACHMENT 6</u> INCISED/SLOPE PROTECTION DOCUMENTATION

Attachment 6 – No Attachment

ATTACHMENT 7 EMERGENCY ACTION PLAN

EMERGENCY ACTION PLAN

JOLIET/LINCOLN STONE QUARRY MIDWEST GENERATION, LLC JOLIET, ILLINOIS Permit No. 1994-241-LFM

IEPA Site No. 1978090001

Prepared for:

Midwest Generation, LLC 1800 Channahon Road Joliet, IL 60436

Prepared by:

KPRG and Associates, Inc. 14665 W. Lisbon Road, Suite 1A Brookfield, WI 53005

Project No: 19520.4

October 2021

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	FACILITY INFORMATION	3
3.	EVENTS THAT REPRESENT A SAFETY EMERGENCY	5
	3.1 Main Quarry Discharge Pipes	5
	3.1.1 Destruction of the Pipes by a Tornado	5
	3.1.2 Vehicle Traffic Damages the Pipes	
	3.2 Groundwater Extraction System	5
	3.2.1 Natural Disaster	
	3.2.2 Transformer Malfunction	6
	3.3 Other Scenarios of Concern	6
	3.3.1 Natural Disaster affecting the West Filled Area Cap	6
	3.3.2 Severe Weather Occurs at LSQ	7
	3.3.3 Releases other than CCR or CCB	7
	3.3.4 Beneficial Reuse of Bottom Ash/Boiler Slag	8
4.	INCIDENT RESPONSE ACTIONS	
	4.1 General Response Procedures for Release and/or Spill	8
	4.2 Fire Response	9
5.	INFORMATION FOR INCIDENT NOTIFICATION 1	0
	5.1 Facility Address and Location	0
	5.2 Notification Chain within Midwest Generation, LLC1	0
	5.3 Other Contact Information1	. 1

FIGURES

Figure 1 – Site Map Including Generating Stations Figure 2 – Lincoln Stone Quarry Site Map

1. INTRODUCTION

This Emergency Action Plan (EAP) has been prepared in accordance with 35 Ill. Adm. Code Part 845.520 for Lincoln Stone Quarry (LSQ) associated with Joliet 9 Generating Station in Joliet, Illinois. This EAP describes the measures that will be implemented by Midwest Generation, LLC and any contractors and/or subcontractors working on behalf of Midwest Generation, LLC at Lincoln Stone Quarry (LSQ) to prevent a safety emergency or in the event of a safety emergency, to respond in a safe, effective and timely manner to mitigate the situation.

Safety emergencies can result from natural disasters or malfunctioning equipment while work is being performed. A risk assessment was performed to identify the most likely safety emergencies to occur and opportunities to mitigate or minimize the impacts and occurrence of those emergencies. As always, Midwest Generation, LLC strives for a safety emergency/injury free work experience, but in the event of a safety emergency this EAP will act as a reference.

This EAP is to be used as a reference describing the operation of LSQ, to communicate practices for preventing and responding to safety emergency response situations, and the notification procedures during emergency response situations.

2. FACILITY INFORMATION

Facility Name:	Lincoln Stone Quarry
Mailing Address:	1800 Channahon Road Joliet, Illinois 60436
Site Address:	Southeast Corner of Patterson & Brandon Road Joliet, Illinois 60436
Operator:	Midwest Generation, LLC
Contact Name:	DeAndre Cooley 1800 Channahon Road Joliet, Illinois 60436 Telephone: 779-279-2321
Owner:	Lincoln Stone Quarry, Inc. Attn: Mr. Fred Kaplan 500 North Dearborn Street, Second Floor Chicago, Illinois 60654-3372

The final disposal of the bottom ash/boiler slag is in the Main Quarry. In the Main Quarry, the bottom ash/boiler slag settles out of the water and is contained in the Main Quarry. The water gravity drains from the Main Quarry to the Lower Quarry through two underground discharge pipes that are located under Patterson Road. The flow rate from the Main Quarry to the Lower Quarry can be controlled. The water enters the Lower Quarry into the pond where it is aerated before it is pumped to the Des Plaines River under NPDES discharge permit no. IL0002216, Outfall 005.

As warranted by market demand, some of the CCB material is removed from the Main Quarry and reused. As allowed by the permit, up to 40,000 tons of CCB material can be removed from the Main Quarry and hauled offsite for beneficial reuse. The removal is performed by LaFarge, which will excavate the bottom ash/boiler slag from the disposal area using a mechanical excavator, load the ash/slag material into dump trucks and haul offsite.

A groundwater extraction system was installed along the south edge of LSQ to address the component of groundwater flow away from the Main Quarry to the southeast. The extraction system consists of twelve extraction wells, X101 through X112, that are approximately 145 feet deep and each well contains one pump. The pumps are set 100 feet deep inside each extraction well and their pump rates generally range from 3 to 12 gallons per minute (gpm). The pumps discharge through a series of pipes and valves and exit into the Main Quarry. The flow rate for each pump is manually controlled using ball valves and globe valves. As needed, the valves are manually opened and closed to adjust the flow rate of the pump. The valves for extraction wells X101 through X104 are located in an underground vault that is near extraction well X104. The valves for extraction wells X105 through X107 are located in individual ground level vaults for

each extraction well. The valves for extraction wells X108 through X112 are located in an underground vault that is near the sluice pipes discharge, between extraction wells X108 and X109. The set of twelve pumps are controlled by three panels, which turn the pumps on and off, record the water level in each extraction well, and record the flow rates of each pump. The components of the extraction system are identified on Figure 2.

The pumps and controls are supplied by electrical power that comes from Patterson Road and Brandon Road. The pumps and control panel for extraction wells X101 through X104 are supplied power by overhead power lines that come from Brandon Road. The overhead power lines connect to a transformer on the east side of Brandon Road, cross Brandon Road, connect to an electrical meter on the west side of Brandon Road, and then run overhead to the control panel. The pumps and controls for extraction wells X105 through X112 are powered by overhead power lines that first come from Patterson Road and run south adjacent to the access road and then turn east when the access road turns east, from this point the power lines run underground and connect to a transformer. This transformer then drops the power from three-phase, high-voltage power down to single-phase 200-240 volts, which is then connected to the control panel for extraction wells X108 through X112 and the control panel for extraction wells X105 through X105 through X107.

The above described groundwater extraction system was necessary due to the influence on the groundwater flow caused by Laraway Quarry. Boyd's Quarry, which is an inactive quarry owned by Midwest Generation, LLC, is used by the owner as a hydraulic control to maintain natural groundwater flow on the east side of LSQ to counteract the unnatural groundwater flow caused by the influence of the Laraway Quarry dewatering. Boyd's Quarry has established a static water level since being inactive and it has an influence on groundwater flow in the area. Field observations identified that Boyd's Quarry is connected to the Main Quarry by the same permeable portion of the Silurian dolomite described above. If the water level in Boyd's Quarry were to drop below the water level in the Main Quarry, the natural groundwater flow would be affected. This would result in groundwater flow going to the east/northeast, which would be opposite of the natural groundwater flow direction. The natural groundwater flow direction is from Boyd's Quarry going west and northwest towards the Main Quarry and the Des Plaines River. In order to maintain compliance with the operations permit for LSO and to avoid the need for an additional groundwater extraction system, the natural groundwater flow must be maintained and this is accomplished by ensuring the water level in the Main Quarry is lower than the static water level in Boyd's Quarry.

The water levels in Boyd's Quarry and the Main Quarry are monitored continuously using pressure transducers. The water levels are recorded and uploaded to a website so the LSQ operator can monitor the difference in water levels between Boyd's Quarry and the Main Quarry. It is important that the water level in the Main Quarry remain below the water level in Boyd's Quarry and this is accomplished by keeping the Main Quarry water level at least three (3) feet lower than the water level in Boyd's Quarry. If the water level in the Main Quarry is less than three feet lower than the water level in Boyd's Quarry, then the discharge from the Main Quarry into the Lower Quarry must be increased in order to lower the water level in the Main Quarry. The Lower Quarry pond is able to accommodate any additional water from the Main Quarry by increasing the pumping rate from the pond to the Des Plaines River.

3. EVENTS THAT REPRESENT A SAFETY EMERGENCY

In accordance with 35 Ill. Adm. Code 845.520, this section identifies the events or circumstances that represent a safety emergency, along with a description of the procedures that will be followed to detect a safety emergency in a timely manner. The safety emergencies discussed below are based on LSQ not accepting CCR or any other waste streams and its existence as an incised surface impoundment.

3.1 Main Quarry Discharge Pipes

The scenarios that would affect the Main Quarry discharge pipes are as follows:

3.1.1 Destruction of the Pipes by a Tornado

If a tornado were to touch down at LSQ, damage to the discharge pipes may be possible because they are exposed. Any type of damage from a tornado or other natural disaster is unavoidable. The probably of a tornado touching down at LSQ is low, so the overall hazard rating for this scenario is low probability/low impact because the sluice pipes are no longer in use.

3.1.2 Vehicle Traffic Damages the Pipes

Making contractors aware of the pipes and having spotters when large vehicles are maneuvering near the pipes will prevent any damage and/or collisions to the pipes. Also ensuring proper maintenance of the pipes will maintain the structural integrity of the pipes, which will help to minimize or eliminate any damage to the pipes in the event a collision occurs. The overall hazard rating for this event is low probability/low impact because the vehicle traffic around the pipes is minimal, but if a pipe is damaged that will cause an inconvenience requiring repair.

3.2 Groundwater Extraction System

The groundwater extraction system in general consists of twelve (12) extraction wells, twelve (12) pumps, three control panels, and two underground vaults. Further detail was provided previously in Section 2.2. The scenarios that would affect the groundwater extraction system are as follows:

3.2.1 Natural Disaster

In the event that a natural disaster knocks down the power lines at LSQ, the groundwater extraction system will be without power. The groundwater extraction system going offline is not considered a release; however the operation of the system is important to the operation of LSQ and is required to be in compliance with LSQ's permit. Power should be restored to the system as soon as possible, but this plan recognizes that the power distribution through the power lines is out of the control of Midwest Generation, LLC. If a prolonged power outage is to occur, other precautions should be made, such as powering the system with a temporary generator.

In addition, a tornado or severe storm could destroy or cause the control panels to malfunction. Destruction or malfunctioning of the control panels causing the pumps to go offline is not considered a release, for the same reasons the power going out is not a release, which is noted above. As noted above it is important to return the pumps to full operation as quickly as possible to ensure compliance with LSQ's landfill permit. This event has occurred in the past as a result of a lightning strike near the control panel for X101 through X104, which caused the pumps to stop operating. The non-operational pumps were discovered as part of the regular maintenance of the system and were returned to operational as quickly as possible.

The overall hazard ratings for these scenarios are medium probability/high impact. This is a result of the fact that lightning has struck nearby one of the cabinets before and caused the system to stop operating and also thunderstorms occur on a regular basis throughout the spring and summer months.

3.2.2 Transformer Malfunction

The power for extraction wells X105-X112 is relayed to the system using a transformer that is adjacent to the sluice pipe discharge into the Main Quarry. In the event this transformer malfunctions, those pumps would be non-operational. Malfunctioning could include a simple failure or an explosion of the transformer as a worst case situation. In the event the transformer fails, notify the appropriate personnel, as outlined in this Plan. If the transformer explodes, notify the appropriate personnel and the electric utility, whose contact information is included in this Plan, see section 6. The overall hazard rating for this scenario is low probability/high impact because the chance it would happen is very unlikely but the impact to the groundwater extraction system is high because this would cause the system to lose power, potentially for a long time.

3.3 Other Scenarios of Concern

Some scenarios for other areas of the site are presented below.

3.3.1 Natural Disaster affecting the West Filled Area Cap

A fire on the cap of the WFA would damage the grass and loosen the soil allowing for the potential for erosion to occur. Erosion of the cap would expose CCR and allow for a potential release to occur. If CCR is released from the WFA, extent of the CCR release could extend north on to Patterson Road, west on to the Commonwealth Edison substation, south on to agricultural land, and east into the Main Quarry. This release would not extend into a waterway even if it enters the Main Quarry. If a CCR release were to enter the Main Quarry, it would be handled as part of the normal disposal process of the other CCR that enters the Main Quarry. The overall hazard rating for this scenario is low probability/medium impact because the chance for a fire is low and the effect to the cap would be detrimental. The CCR release would create a nuisance for the land that is spread to, but the nuisance could be cleaned up and taken care of relatively quickly and easily.

A tornado would cause more damage to the WFA cap than a fire and has the potential to create a greater extent of a release. Any type of damage from a tornado is unavoidable. The tornado

would certainly expose the CCR material and potentially transport it to an offsite location. The probably of a tornado touching down at LSQ is low but the potential for damage to the cap and a CCR release is high, so the overall hazard rating for this scenario is low probability/high impact.

3.3.2 Severe Weather Occurs at LSQ

There is the possibility for severe weather to occur at LSQ when workers are present. The presence of workers at LSQ takes place at least twice a month when the groundwater extraction system is serviced. The workers present consist of two people using typical passenger vehicles and tools to change pumps in the extraction wells. On rare occasions, additional personnel and equipment are used to service the groundwater extraction system. The weather is monitored prior to personnel being at LSQ, and if the potential for severe weather does exist, the weather is monitored while personnel are at LSQ.

If severe weather occurs while workers are present and evacuation of the site is required, the workers should notify the guard shack located off of Brandon Road and proceed to that guard shack. The guards will provide the workers with further instructions if additional shelter is needed, say in the event of a tornado or nearby chemical spill.

If severe weather causes a fire while workers are present, they should follow the notification procedures outlined in this Plan and also call the fire department using 911. Workers should not attempt to extinguish a large fire, but they can attempt to extinguish a small fire by smothering or with a fire extinguisher.

The overall hazard rating for severe weather occurring at LSQ is medium probability/high impact. Thunderstorms and large precipitation events occur every year without damaging LSQ, but it is the presence of these events and their ability to turn into something more severe that warrants the medium probability rating. A typical thunderstorm and/or large precipitation event would not cause damage to LSQ, but if the weather turns severe, damage will occur and it will affect some operation and/or portion of the LSQ property.

3.3.3 <u>Releases other than CCR or CCB</u>

Releases that involve material other than CCR and/or CCB have the potential to occur. The releases would mainly consist of oil and or fuel from vehicles that are used by personnel at LSQ during typical maintenance operations. The potential quantity of material released is small, typically less than 20 gallons and the release would have the potential to enter the Main Quarry. If the release enters the Main Quarry notify the appropriate personnel as outlined in this Plan. Another potential for a release would be during the acid treatment of the groundwater extraction system. This treatment consists of mixing an acidic solution which is then pumped through the underground discharge piping associated with the extraction systems to remove build-up of precipitated scale. The release would be from the storage tank used to contain the acid mixture as it is being pumped. This quantity is typically between 200 to 400 gallons. A release of this material does have a chance of entering the Main Quarry, but the small quantity does not pose a risk to the Main Quarry, Des Plaines River or other waterway. If a release occurs notify the appropriate personnel as outlined in this Plan

3.3.4 Beneficial Reuse of Bottom Ash/Boiler Slag

As noted above in Section 2.2, some of the bottom ash/boiler slag from Joliet #9 Generating Station is beneficially reused. Lafarge removes the material as it is needed based upon market demand for their products in which the bottom ash/boiler slag is reused. Lafarge personnel are in charge of removing the material form the Main Quarry and they use their own mechanical excavator at LSQ when needed. Lafarge personnel should be aware of the notification procedures outlined is this Plan and they should have enough personnel onsite to safely perform the material removal. At times, Lafarge equipment and personnel are setup on the bottom ash/boiler slag that is in the Main Quarry to move the material to a point where it can be removed and loaded into dump trucks. At these times, Lafarge should have equipment/tools to be able to safely make their way back to the solid ground of LSQ if the bottom ash/boiler slag where their machine was located began to slough or collapse. It is Lafarge's responsibility to have an appropriate health and safety plan to conduct this work.

4. INCIDENT RESPONSE ACTIONS

4.1 General Response Procedures for Release and/or Spill

This section describes the general response procedures once an incident occurs and/or is discovered at LSQ. The following actions should be taken:

- Stabilize the Incident:
 - Evacuate the area if necessary;
 - If material has been released but is no longer flowing, contain the material to prevent further migration of the material, place a stop-gap measure at the point of release to prevent immediate reoccurrence;
 - If a material has been released that presents an immediate danger to people or the environment, initiate recovery operations of the material. Recovery operations should be completed only by qualified and trained personnel;
 - Initiate cleanup of the spilled product if a threat to human health is not present;
 - Remove equipment from the spill area, if possible;
 - If a structure or site infrastructure is damaged, assess the situation to evaluate if containment or shoring measures need to be put in place to prevent further damage;
 - o Establish a security perimeter if needed, and limit personnel from the area.
- Notify appropriate personnel
 - Notify the supervising personnel at LSQ;
 - Notify Operations/shift supervisor;
 - Notify emergency personnel (Fire Dept/EMS/Police), if necessary;
 - Notify the landfill operator, operations manager, the Regional Environmental Manager;
 - Notify cleanup contractors and consultants, who can begin planning the recovery/repair options;

- Notify Will County Emergency Management Agency, IEPA, and Illinois Emergency Management Agency as necessary.
- Document the discovery, nature, and extent of the incident
 - o Date/time and who discovered the incident;
 - Date/time of discovery;
 - Name of responsible party of the incident;
 - Describe the incident, including location and whether a danger or threat exists;
 - Source and cause of the incident;
 - Estimate of the quantity of material if the incident is a release;
 - Number and types of injuries (if any);
 - Media affected or threatened by the incident (i.e., water, land, or air);
 - If material entered any surface water, name the surface water and identify where the material entered the surface water;
 - Describe the weather at time of incident;
 - Describe stabilization actions;
 - Take photographs of the incident including the point of release, extent of release, and stabilization methods.
- Initiate Privileged and Confidential Protocols for CCB and CCR Material
 - Initiate privileged and confidential protocols if CCB and/or CCR material was released, any material left Midwest Generation, LLC owned/operated property, or any material entered surface water;
 - Notify corporate counsel for further instructions, use "Privileged and Confidential" on all communications.

4.2 Fire Response

If a small fire breaks out, attempt to extinguish it using a fire extinguisher or other appropriate measures. If the fire can't be contained using a fire extinguisher or other appropriate measures, call the fire department. The Site location information is as follows:

- Address: 1601 S. Patterson Road, Joliet, IL 60436;
- Location: Southwest corner of Brandon Road and Patterson Road, gate entrance on Patterson Road, after the bend. The gate is approximately 0.5 miles west of the intersection.

If possible, attempts should be made to control the fire with either fire breaks or by wetting the perimeter area around the fire or in its path.

4.3 Emergency Responders Contact Information

Section 5.34 below provides the contact information for the emergency responders. The appropriate Midwest Generation personnel will determine who to notify, including any affected residents, in the case of an imminent or actual site failure. Appropriate contractors will be utilized to assist Midwest Generation personnel with mitigated actions being undertaken in order

to minimize the impact of an event that has occurred. Contact information for contractors and consultants are provided below.

5. INFORMATION FOR INCIDENT NOTIFICATION

5.1 Facility Address and Location

- Address: Lincoln Stone Quarry, 1601 Patterson Road, Joliet, IL 60436
- Location: Southwest corner of Brandon Road and Patterson Road, gate entrance on Patterson Road, approximately 0.5 miles west of the corner of Patterson Road and Brandon Road.
- Entrances and Exits (see Figure 2) There are three gates that provide access to LSQ:
 - Gate 1 Northeast corner of LSQ, at the intersection of Brandon and Patterson Road;
 - Gate 2 Approximately 0.5 miles west along Patterson Road from Brandon Road, this gate provides access to the Joliet Generating Station 9 bottom ash/boiler slag disposal area;
 - Gate 3 Approximately 0.5 miles west along Patterson Road from Brandon Road, this gate provides access to the WFA and the groundwater extraction system.

Priority	Midwest Generation, LLC Contacts
1a	Joliet 9 Station Operations/Shift Supervisor
	815-207-4911
	815-207-4902
1b	Joliet 29 Station Operations/Shift Supervisor
	815-207-5410
	815-207-5409
	815-207-5402
1c	Joliet 9 Guard Shack
	815-207-4918 or 815-207-4919
2	Landfill Operator
2	DeAndre Cooley – 779-279-2321
3	Joliet 9 and 29 Stations' Operations Manager
	815-207-5415
4	Regional Environmental Manager
	Sharene Shealey – 724-255-3220
5	LSQ Consultant – KPRG and Associates, Inc., 262-781-0475
	Richard Gnat – 262-227-7755
6	Site Cleanup Contractor
6	SET Environmental – 877-437-7455

5.2 Notification Chain within Midwest Generation, LLC

Agency	Contact
Joliet Fire Department	911 or 815-724-3500
Joliet Police Department	911 or 815-724-3100
	Non-emergency 815-726-2491
Will County Emergency	EMERGENCY - 815-740-0911
Management Agency	Non-Emergency/Office – 815-740-8351
National Response Center	800-424-8802
Illinois Emergency	Office – 217-782-2700
Management Agency	24-hour Response – 800-782-7860
Illinois Environmental	Imran Syed
Protection Agency	217-782-7813

5.3 Other Contact Information

6.0 SITE MAP AND A SITE MAP DELINEATING DOWNSTREAM AREA

In accordance with 845.520(b)(), a site map is provided as Figure 1 and a site map close-up is provided as Figure 2. Figure 2 shows the extent of LSQ and the areas downstream of LSQ.

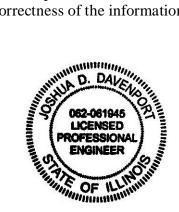
7.0 ANNUAL FACE-TO-FACE MEETING

In accordance with 845.520(b)(5), a face-to-face meeting or an exercise between representatives of Will County Station and the local emergency responders shall be offered and, if accepted, held on an annual basis. The purpose of the annual meeting is to review the EAP to assure that contacts, addresses, telephone numbers, etc. are current. The annual meeting will be held whether or not an incident occurred in the previous year. In the event an incident occurs, the annual meeting date may be moved up in order to discuss the incident closer to the date of occurrence. If no incidents have occurred, the annual meeting will be held to inform local emergency responders on the contents of the EAP and changes from the previous year. Documentation of the annual face to face meeting will be recorded and placed in the operating record for the Station.

Pursuant to §845.520(d), the EAP requires modification whenever there is a change in conditions that would substantially affect the EAP in effect. Changes to the plan shall be made as appropriate, and a copy of the changes will be kept at the station, with the revised EAP placed in the facility's operating record. The written EAP must be evaluated, at a minimum, every five years to ensure the EAP is accurate with §845.520.

8.0 LIMITATIONS AND CERTIFICATION

This Emergency Action Plan was prepared to meet the requirements of 845.520(b). I do hereby certify to the best of my knowledge, information, and belief that the information contained in this report is true and correct. I further certify I am licensed to practice in the State of Illinois and that it is within my professional expertise to verify the correctness of the information.


Signature:

Name: Joshua D. Davenport, P.E.

Date of Certification: 10/29/21

Illinois Professional Engineer No.: 062.061945

License Expires: 11/30/2021

FIGURES

<u>ATTACHMENT 8</u> FUGITIVE DUST CONTROL PLAN

CCR COMPLIANCE CCR FUGITIVE DUST CONTROL PLAN

Midwest Generation, LLC Joliet #9 Generating Station and Lincoln Stone Quarry 1601 South Patterson Road Joliet, Illinois

PREPARED BY:

KPRG and Associates, Inc. 14665 W. Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

October 13, 2021

TABLE OF CONTENTS

SECTION/DESCRIPTION

PAGE

1.0	INTRODUCTION	. 1
2.0	SITE INFORMATION	
2.1	Owner/Operator and Address:	. 2
2.2	Owner Representative/Responsible Person Contact Information:	. 2
2.3	Location and Description of Facility Operations	
3.0	POTENTIAL CCR FUGITIVE DUST SOURCES	. 3
4.0	DESCRIPTION OF CONTROL MEASURES	
4.1	Purpose	. 4
4.2		
5.0	PLAN ASSESSMENTS/AMENDMENTS	. 5
5.1	CCR Fugitive Dust Assessments	. 5
5.2		
5.3	Citizen Complaints	. 5
6.0	CCR FUGITIVE DUST PLAN REPORTING/RECORDKEEPING	
	REQUIREMENTS	. 7
7.0	PROFESSIONAL ENGINEER CERTIFICATION	. 8

APPENDICES

- Appendix A Site Diagram/Potential CCR Fugitive Dust Sources
- Appendix B Assessment Record
- Appendix C Plan Review and Amendment Record
- Appendix D Citizen Complaint Log

1.0 INTRODUCTION

On April 15, 2021, the Illinois Environmental Protection Agency adopted a new Part 845 of its waste disposal regulations creating statewide standards for the disposal of coal combustion residuals (CCR) in surface impoundments. Part 845 specifically requires that "the owner or operator of a CCR surface impoundment, or any lateral expansion of a CCR surface impoundment, must adopt measures that will effectively minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR surface impoundments, roads, and other CCR management and material handling activities". As a result, each regulated facility must develop a CCR fugitive dust control plan that complies with 35 Ill. Adm. Code 845.500(b).

This site specific CCR Fugitive Dust Control Plan (Plan) has been developed to comply with the requirements specified in Section 845.500. In general, the Plan identifies the potential CCR fugitive dust sources and describes the control measures that will be implemented to minimize CCR fugitive dust emissions. The Plan also includes a procedure for the periodic assessment of the Plan's effectiveness, documentation of any Plan amendments deemed necessary to assure continued compliance, a record of any citizen complaints received pertaining to CCR fugitive dust emissions, and an outline of the required reporting and recordkeeping requirements in 35 Ill. Adm. Code 845.500.

2.0 SITE INFORMATION

2.1 Owner/Operator and Address:

Midwest Generation, LLC Joliet #9 Generating Station 1601 South Patterson Road Joliet, Illinois

2.2 Owner Representative/Responsible Person Contact Information:

Mr. William Naglosky Station Manager 815-207-5412

2.3 Location and Description of Facility Operations

The Midwest Generation Joliet #9 Generating Station is located at 1601 South Patterson Road, Joliet, Will County, Illinois. The facility consists of a natural gasfired electric power generating station (formerly coal-fired) situated on approximately 170 acres and the associated Lincoln Stone Quarry occupying approximately 120 acres, each are located on the south side of the Des Plaines River. The Station has one generating unit, identified as Unit 6. Electrical power is transmitted from the site to the area grid through overhead transmission power lines. Lincoln Stone Quarry includes a former ash placement site referred to as the West Filled Area that ceased receiving CCR prior to 1994 and the Main Quarry which was used as a landfill for bottom ash and slag and is anticipated to cease receiving CCR when Ash Pond 2 at Joliet #29 is cleaned or closed. Lincoln Stone Quarry may remain open to allow for the beneficial reuse of slag.

The general vicinity includes other commercial and industrial facilities, residential development and agricultural areas.

3.0 POTENTIAL CCR FUGITIVE DUST SOURCES

As a result of the recent fuel conversion, and the correlated fact that all coal combustion ceased at the facility as of March 20, 2016, the remaining potential CCR fugitive dust sources are now limited to only Ash Pond 2, Ash Pond 2 truck transportation routes (related to cleaning of Ash Pond 2), and the disposal landfill. CCR Fugitive dust could potentially be generated from these sources as a result of equipment malfunctions, wind erosion, housekeeping issues and/or the nature of the operation. Specifically, these identified sources were further evaluated to determine the probability of CCR fugitive dust being generated and to determine the level of emission controls that are warranted to mitigate CCR fugitive dust emissions. The findings of the evaluation are individually discussed in the following paragraphs.

Lincoln Stone Quarry was used for routine disposal of bottom ash and slag from the Joliet #9 and Joliet #29 generating stations. Occasionally Joliet #29 Ash Pond 2 was used for Joliet #29 bottom ash; Joliet #29 Ash Pond 2 is covered by a separate CCR Fugitive Dust Plan. Both Joliet #9 and Joliet #29 facilities no longer generate ash thus eliminating ash disposal in Lincoln Stone Quarry (and disposal to Joliet #29 Ash Pond 2). Ash from the Joliet #29 Ash Pond 2 has been disposed of in Lincoln Stone Quarry from cleaning activities associated with Ash Pond 2. Therefore, Ash Pond 2 is no longer a potential CCR fugitive dust source.

Lincoln Stone Quarry currently consists of a closed portion referred to as the West Filled Area, which has a vegetated soil cover over the historically disposed ash and is not subject to the CCR Rule, and the recently inactive bottom ash and slag disposal area referred to as the Main Quarry. Existing ash in the Main Quarry is predominantly submerged; however, a portion is exposed to allow removal and reuse of the slag as a beneficial fill material. After settling occurs, water from the Main Quarry is discharged through a final settling basin and then ultimately discharged through a regulated NPDES outfall.

This potential CCR fugitive dust source is identified on the Site Diagram included in Appendix A.

4.0 DESCRIPTION OF CONTROL MEASURES

4.1 Purpose

The purpose of developing appropriate control measures is to minimize and reduce the emissions of CCR fugitive dust from the identified potential emission sources. The control measures and work practices implemented at the facility are described in the following sections.

4.2 Lincoln Stone Quarry

Lincoln Stone Quarry used to receive bottom ash and slag from the Joliet #9 and Joliet #29 generating stations. Ash in the Main Quarry is approximately 40 feet below grade and is confined by the quarry walls and, therefore, not readily susceptible to wind erosion and generation of potential CCR fugitive dust emissions. Loading of the moisture-laden slag to be used as a beneficial material is also performed within the Main Quarry at a level well below grade. Therefore, the loading operation is also not susceptible to wind erosion. The ash in the West Filled Area lies beneath a vegetated soil cover, which mitigates any wind erosion impacts and the potential for CCR fugitive dust emissions.

Operation of the Main Quarry and West Filled Area is performed in accordance with the conditions of the issued permit, No. 1994-241-LFM, dated August 14, 2015, Modification No. 21. The issued permit includes the requirement to control dust to prevent wind dispersal of particulate matter off site. Additionally, the permit requires quarterly inspections of the West Filled Area and requires repair of erosion and scoured channels observed during the inspection.

5.0 PLAN ASSESSMENTS/AMENDMENTS

To assure that the work practices being implemented adequately control the dust from the identified potential CCR fugitive dust emission source at the facility, routine assessments and record keeping are performed. These procedures include the following:

5.1 CCR Fugitive Dust Assessments

Pursuant to 485.500(b)(3), assessments of the potential CCR fugitive dust emission source identified within this Plan will be conducted to assess the effectiveness of this Plan. The assessment will include observation of Lincoln Stone Quarry to confirm the adequacy of the control measures. The assessments will be conducted as needed to comply with the issued permit by an individual designated by the contact identified in Section 2.2 of this Plan. Observations made during each assessment will be recorded on a form similar to the one included in Appendix B, however, the station may create their own form.

If the results of the assessment determine that the control measures are not adequate, the necessary response measures will be implemented. If the assessment finds that this Plan does not effectively minimize the CCR from becoming airborne, this Plan will be amended to include additional control measures.

5.2 Plan Amendments

This CCR Fugitive Dust Plan will be reviewed whenever there is a change in conditions that would substantially affect the written Plan currently in place. A record of the reviews and any modifications or amendments made to the Plan currently in place will be kept on a form similar to the one included in Appendix C, however, the station may create their own form. The amended Plan will be reviewed by a Registered Professional Engineer and, if deemed acceptable, will be recertified.

5.3 Citizen Complaints

Any written or verbal complaints received from a citizen involving alleged CCR fugitive dust emission events at the facility will be recorded by an individual designated by the contact identified in Section 2.2 of this Plan. The complaints will be recorded on a form similar to the one included in Appendix D, however, the station may create their own form. Upon receipt of the complaint, an investigation of the alleged source of the CCR fugitive dust emissions will be performed and the results of that investigation recorded on the form. If the CCR fugitive dust emission event is confirmed, any necessary response measures or

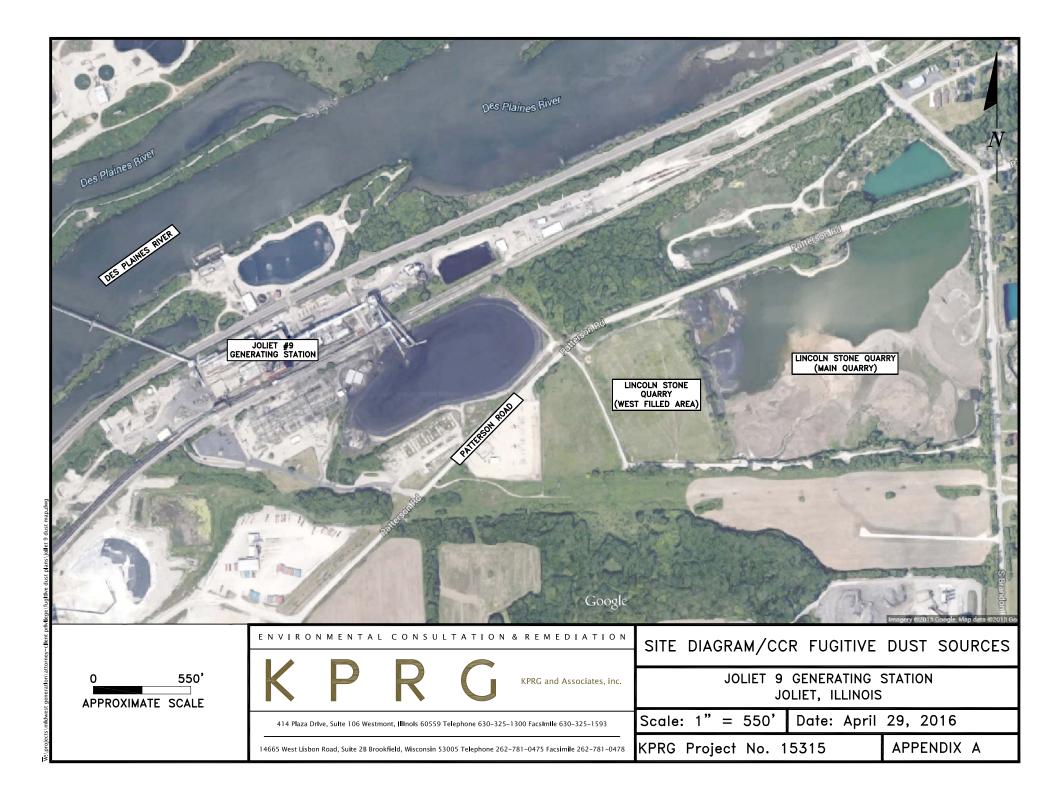
changes in operation required to mitigate the CCR fugitive dust emissions will be implemented as soon as practicable.

6.0 CCR FUGITIVE DUST PLAN REPORTING/RECORDKEEPING REQUIREMENTS

This section outlines the Plan reports that must be prepared and records that must be maintained to meet the requirements specified in 35 Ill. Adm. Code Section 845.500. These requirements include the following:

- Place the Plan in the facility's operating record and publicly accessible internet site. If the Plan is amended, replace the initial Plan with the amended Plan. Only the most recent amended Plan will be maintained in the facility's operating record and internet site.
- Prepare an annual CCR Fugitive Dust Control Report and submit to the IEPA as part of the annual consolidated report required by 845.550. The annual report will include:
 - o A description of the actions taken to control CCR fugitive dust,
 - o A record of all citizen complaints, and
 - A summary of any corrective measures taken.
 - Placement of this report in the operating record and publicly accessible internet site.
- Provide notification to the IEPA and, if applicable, the Tribal authority when the Plan and reports are placed in the facility's operating record and publicly accessible internet site.
- Submit quarterly reports to IEPA within 14 days from the end of the quarter of all complaints received in that quarter. The quarterly reports will include:
 - The date of the complaint,
 - The date of the incident,
 - The name and contact information of the complainant, and
 - All actions taken to assess and resolve the complaint.

7.0 PROFESSIONAL ENGINEER CERTIFICATION


The undersigned Registered Professional Engineer is familiar with the requirements of 35 Ill. Adm. Code 845.500 and has visited and examined the facility or has supervised examination of the facility by appropriately qualified personnel. The undersigned Registered Professional Engineer attests that this CCR Fugitive Dust Control Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and meets the requirements of 845.500, and that this Plan is adequate for the facility. This certification was prepared as required by 845.500(b)(7).

Engineer:	Joshua D. Da	venport	
Signature:	- for		
Date:	10/13/21		WILL D. DALA
Company:	KPRG and As	ssociates, Inc.	D. DAVEN
Registration S	State:	Illinois	OF ILLING
Registration N	Number:	062.061945	
License Expir	ration Date:	November 30, 2021	

Professional Engineer Stamp:

APPENDIX A

SITE DIAGRAM POTENTIAL CCR FUGITIVE DUST SOURCES

APPENDIX B

EXAMPLE ASSESSMENT RECORD

APPENDIX B

JOLIET #9 STATION

EXAMPLE ASSESSMENT RECORD

Date	Inspector	Unit Inspected (See Key Below)	Maintenance/Cleanup Required (yes/no)	Response Action Performed (completion date)	Inspector Signature

APPENDIX C

EXAMPLE PLAN REVIEW AND AMENDMENT RECORD

APPENDIX C

JOLIET #9 STATION

EXAMPLE CCR PLAN REVIEW/AMENDMENT RECORD

Date of Review	Reason for Review	Section Amended	P.E. Certification (Name/Date)
June 3, 2016	Station fuel change from coal to natural gas.	Sections 1.0 through 5.0 and Section 7.0	Thomas J. Rysiewicz

APPENDIX D

EXAMPLE CITIZEN COMPLAINT LOG

APPENDIX D

JOLIET #9 STATION

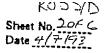
EXAMPLE CITIZEN COMPLAINT LOG

	l l	Citizen Information			
Date	Time	(Name, Address, Phone No., Email)	Summary of Complaint	Action Taken	Recorded By
	ļ	1			
	ļ				
	ļ				
	ļ	1			
	ļ	1			
	ļ	1			
	†i	·			
	ļ	1			
	ļ	1			
					Į
		·	<u> </u>		<u> </u>
	ļ	1			
					ļ
	ļ				
	ļ	1			
	ļ	1			
	ļ	1			
	l l	'			
		1			
	1				
	ļ	1			
	ļ	1			
	ļ	1			
	<u> </u>	·	<u> </u>		
	ļ	1			
	ļ	1			
		1			
		·			<u> </u>
	ļ	1			
	l l	'			
					ļ
	l l	'			
		·			
	ļ	1			
	ļ	1			
	ļ	1			
	L i	۱i		L	

ATTACHMENT 9 GROUNDWATER MONITORING INFORMATION

Attachment 9-1 – Boring Logs

ENVIRONMENTAL SERVICES, INC. RUBENS GEOLOGICLOG Replacement FOSS INE (ROBS) Sheet No. (ROBS) Date 4/6 RUSD PROJECT JOLIET/LINCOLN QUITINRY SUGAR Installed Adjacent to two hole Hole No. RIDY Angle (from Horizontal) UFLICAL Ground Elevation 57 Bearing Rock Elevation 0verburden Thickness 23' Date Completed 4/2/53 Ground-Water Elevation Total Depth 208' Logged by JEGR1665 Feature Fad & Ocur P to Not w 1 fr Coordinates: N ------Core Sizes Graphic Depth (Elevation) Log C.R.- Graphic Core Rec. % ROD % Lithology Structure Attitude **Classification and Physical Condition** Remarks (Sample Data, Water Levels, Drilling Characteristics etc.) 0 Logged from cuttings DRILLING SITE 8.5' SW OF G108 0-23': FILL 0-208': 6" Aci Mammu Gardon Desver Liz. 10 Cempieted as a minted well prin PVC weile installes at 120'and 204 SAMPL, SANPL 510000 SAMPL MPL 20 S A <u>5</u>0 રી 23'- 43': DOLOMITE; pentich grang; fresh angulan dryps; green Sticky shale 20 50 30


HES	Ю	A	R	Z	A
	XYIR	ÓRMEN	TAL SEA	EVICES	. INC.

٠

ſ

í

GEOLOGIC LOG

PROJECT JOLIET/LINCAN ONTHE SUYYE

Hole No. Feature <u>Eo</u> Coordinate	R((utable :: N_ E	28 zúli	6 <u>N</u>	Angle (from Horizontal) VERTICAL Gywrdffll Bearing Date Started 4/6/93 Date Completed 4/7/7/73 Total Depth 208				
Core Sizes				Total Depth 208	C	юлб 	und—j ped by	Water Elevation
Depth (Elevation)		Structure 5 and 8		Classification and Physical Condition	C.R Graphic	1	80	Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
	Į,	NO SAME		43'-87': OOLDMITTE; light grav; fæstrangelar chipe; green sticky shalo	NO SAMPLE	NO JANIPLE	NO SAMPLE	

ĺ

l

GEOLOGIC LOG

Koð	S/D
Sheet No.	35-6
Sheet No.그 Date <u>새</u> 곳)	19-

PROJECT JOLIET/KINSCOLN BUNKKY E4446

0.00		
Hole No. R108 Festure East of Coalfuls 11 of NortFill Coordinates: N E Core Sizes	Date Started <u>4/6(93</u> Date Completed <u>4/7-193</u>	Ground Elevation Rock Elevation Overburden Thickness 23 Ground-Water Elevation Logged by JE 6R/1665
Graphic		

$\begin{array}{c c} \hline c \\ c$	2	Gr	aph Log	ic	:	<u>.</u>	×		
$\frac{80}{7} - \frac{125'!}{200000000} = 1000000000000000000000000000000000000$		Lithology	Structure	Attitude	Classification and Physical Condition	C.R Graph	Core Rec. 7	ROD %	(Sample Data, Water Levels,
			SAMPLE	SAMPLE		SATMPLE	SAMPLE	& SAMPLE	

	HESH	A R	3 Z (Services, IN		10 IF 07	GEOLOGIC LOG	 ,			Shoet No. 40 Date 4/7/53
-, ,	Hole No Feature Coordinates Core Sizes	R1 (f(ml :: N E	08 11.6_N	lofuket Fill	Angle (from I Bearing	1 <u>ET (LINCOLN OU</u> Horizontai) <u>VERTICAL</u> 4/6/93 ad 4/7193 2081	 Grou Rock	nd Ele Eleva	evation	
	Depth (Elevation)	Lithology	Structure 5 oide 5	с	lassification an	d Physical Condition	C.RGraphic Cora Rec. %	ROD %	(Sample Data	narks , Water Levels, icteristics etc.)
			NO SAMPLE NO SAMPLE		- 160': Da - 9102; xei oficile	DLOM ITZ; mosté filisionquila cl	NO SAMPLE NO SAMPLE	NO SAMPLE		

ESHARZA ENVIRONMENTAL SERVICES, INC.	GEOLOGIC LOG			Sheet No,
_	PROJECT JOLIET/LINCOLN QUARRY	54	44G	Date 4/7/
ole No. <u>RIO 8</u> enture <i>Lait offact file N.J.</i> pordinates: N		. Roci	: Eleva	ition
re Sizes	Date Started 4/2/93 Date Completed 4/7/93 Total Depth 208'	Grou Logg	ind-W ed by	ater Elevation
Depth (Elevation) Lithology contracture Structure Attitude	Classification and Physical Condition	ů ž	80%	Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
160	160'-168; SHALE; black; fresh angular chips			
	118' - 202': DOLOMITE: light grow; fresh angula. chip; green sticky shale			-
	· · · · ·			
1111-11-08 NO SANA		NO SAMPLE	NO SAMPLE	

(.

HESH	A R Z		GEOLOGIC LOG				Sheet No. (98 Date 4/7/9
			PROJECT JULET /LINLOIN QUARRY	59	744	16-	- 1 -
Hole No Feature Egg Coordinates	£108 :: N E	<i>p.</i>	Angle (from Horizontal) <u>VERTICAL</u> Date Started <u>4/6/93</u> Date Completed <u>4/7/63</u> Total Depth <u>205</u> '	C F	Grou Rock	ind E Eler	en Thickness <u>13'</u> Water Elevation Vater Elevation
Depth (Elevation)	Lithology Structure	ic	Classification and Physical Condition	C.R Graphic	T		Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
- 200	117		202' - 208' SHALE; green and black; green stroky				
- 210 - 210 -			END OF BARING 2081				
						و میں اور	

Illinois Environmental Protecti	on Agency			v	Vell Comp	oletion Report
Site Number: <u>1978090001</u>	Coi	inty: _W	Vill	<u> </u>	_	(R035)
Site Name: Midwest Generation - Lincoln Quarr	y, Joliet, IL	<u> </u>				Well #: <u>A08S</u>
State Plane Coordinate: X 1758220 Y 1045679 (or) Latitude:	o '	" Long	o itude:	·		Borehole #: A08S
Surveyed by: Jacob & Hefner Associates			IL Registr	ation	¥: <u>35-0032</u> 4	47
Drilling Contractor: Layne Northwest			Driller: R	L. Trej	ptow	
Consulting Firm: KPRG and Associates, Inc.			Geologist:	P . <i>A</i>	Allensteir	n
Drilling Method: Core / Air Rotary			Drilling Fl	luid (T	ype): none	
Logged By: P. Allenstein			Date Start	ed: 02	/02/06	Date Finished: 02/06/06
Report Form Completed By: P. Allenstein			Date: 03/0	01/06		
ANNULAR SPACE DETAILS	<u>_;;_;,</u>		Elevation (MSL)*	ns	Depths (BGS)	(.01ft.)
		1			-3.2	Top of Protective Casing
			578.1	09	-3.0	Top of Riser Pipe
Type of Surface Seal: Concrete			- 575.6	06	0.0	Ground Surface
Type of Annular Sealant:Bentonite Grout					2.0	Top of Annular Sealant
Installation Method: tremie pump		<u> </u>				Static Water Level (After Completion)
Setting Time:						
Type of Bentonite Seal Granular, Pellet, Slu¥ry (Choose One)		8	·	_		Top of Seal
Installation Method:		Ž	469.6	06	106	Top of Sand Pack
Setting Time:			465.6	06	110	Top of Screen

Type of Sand Pack: Filter Sand

Grain Size: <u>5</u> (Sieve Size)

Installation Method: gravity

Type of Backfill Material: none (if applicable)

Installation Method: _

WELL CONSTRUCTION MATERIAL (Choose one type of material for each area)

Protective Casing	SE204 SE216 DTEE DUG - OF
	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Above W.T.	SS304, SS316, PTFE, PVC, or Other
Riser Pipe Below W.T.	SS304, SS316, PTFE, PVC, or Other
Screen	SS304, SS316, PTFE, PVC, or Other

Well Completion Form (revised 02/06/02)

CASING MEASURMENTS

455.606

455.606

455.606

Diameter of Borehole (inches)	7
ID of Riser Pipe (inches)	2
Protective Casing Length (feet)	5
Riser Pipe Length (feet)	113
Bottom of Screen to End Cap (feet)	0.5
Screen Length (1st slot to last slot) (feet)	10
Total Length of Casing (feet)	123
Screen Slot Size **	0.010

120

120

120

* Referenced to a National Geodetic Datum

Bottom of Screen

Bottom of Well

Bottom of Borehole

**Hand-Slotted Well Screens are Unacceptable

Hole No sature <u>Se</u> pordinates	: N E	. G	GEOLOGIC LOG 20 Grow PROJECT JOIFT /LINCOLD QUIRRY CIV ¹² Angle (from Horizontal) VERTICAL Learna Date Started 415173 Date Completed 416/93 Total Depth 190.5	···· (Grou Rock Over Grou	- Ind E Ele burd Ind-	Elevation evation evation -Water Elevation by TEGR1605
Dapth (Elevation)	Lithology Structure 607	Attitude °	Classification and Physical Condition	C R _ Granhie	1 0	2	Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
	-EI-CILENTI-EN-EN-EN-EN-EN-EN-EN-EN-EN-EN-EN-EN-EN-	NO SANPLE	Logged firm cutterige 0-20': DOLOMITE: light gray; fish angular chips; some white blet 20'-39': DOLOMITE; pintach gray; fresh angular dips; green sticky ishal.	<u> </u>	Aln Campi A		¥

į

ł

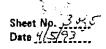
-

i

GEOLOGIC LOG

i

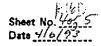
PROJECT JOLIET/LINCOLN QUARRY 5444G


$\sim u$		
Hole No. KIG	Angle (from Horizontal) VERTICAL Bearing Date Started4/5/03 Date Completed4/6/03	Ground Elevation
vardingtars BI	Bearing	Rock Elevation
Diuriates. N	Date Started 4/5/93	Overburden Thickness NONF
	Date Completed 4(6/13	Ground-Water Elevation
CONE BIZES	Total Depth190.5'	Logged by JEGRIGES

Ê		iph .og	ic		Ŀ,	8	1		
Depth (Elevation)			Attitude	Classification and Physical Condition	C.R Graphic	Core Rec. 9	2		Remarks (Sample Data, Water Levels Drilling Characteristics etc.
50				39'- 78': DOLOMITE; light energ; fresh anguiar chips; green sticky Slale					
60	FILL	SAMPLE	WO JAMPIE		No SAMPLE	NO SAMPLE	NO SAMPLE		·····
70									
30				78-114': DOLOMITE; light gray; fish angular chips, green sticky chate; white chert				-	

1

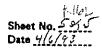
GEOLOGIC LOG


PROJECT JULIET /LINCON QUARRY 54446

Hole No. RIG	Angle (from Horizontal) VERTICAL Bearing Date Started	Ground Elevation
seture SE anni of N. allann	Bearing	Rock Elevation
oordinates: N	Date Started 4/5/93	Overburden Thickness NONE
۵	Date Completed 4/6/73	Ground-Water Elevation
Core Sizes	Total Depth 190.5	Logged by JEGR1665

ſ		Gra L	aphi .og	ic	······································	hic	8		
	Depth {Elevetion]	Lithology	Structure	Attitude	Classification and Physical Condition	C.R Granhic	Core Rec.	ROD %	Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
	80			¢1	· · · · · · · · · · · · · · · · · · ·				
	-100		NO SANPLE	PL ON		AD SAMOR			
					- 146 DOLOMITE; mustly doub open; fesh angelen chipo; black shale	· · · · · · · · · · · · · · · · · · ·			

GEOLOGIC LOG


PROJECT JOLIET /LINCOLN QUARRY STAYE

		*****	Angle (from Horizontal) <u>VERTICAL</u> <u>N. Quanty</u> Bearing Date Started <u>4/5/73</u> Date Completed <u>4/5/73</u> Total Depth	G	ock vert rou	Eleva Surder ndW	ation
Depth (Elevation)	Lithology 51	ohic vg	Classification and Physical Condition	C.RGraphic	<u></u>	% O	Remarks (Sample Data, Water Levels, Drilling Characteristics etc.)
	~/~ /	NO SAMPLE NO SAMPLE	146'-154': SHALE; blass; fush angilar inips 154'- 187': Daromite: light gray: fish angilar chips; giller sticky shale	NO SAMPLE	1	A SAMPLE	

ź

GEOLOGIC LOG

PROJECT JIXIFT/LINCOLN QUARRY

•		<u>Са</u> : N Е	¥4.	 Angle (from Horizontal) <u>VELTICAL</u> N. Quanty Bearing Date Started <u>4/5</u> (93 Date Completed <u>7/6</u> (93 Total Depth <u>160.5</u>	G	ock iveri irou	Ele burc nd-	wati ien -Wa	Thickness NONE ter Elevation
	 Depth (Elevation)		Structure 8 4	 Classification and Physical Condition	C.RGraphic	Core Rec. %	ROD %		Remarks (Sample Data, Water Lavels, Drilling Characteristics etc.)
	- 160 			F					

		775
LEITHLE	· · · · · ·	ND 5AMPLE
- 170	187-1905 SHAVE, give blach; quein stirks	n ernel
	END OF BORING 190.5	
20.2		

Sile 4: 197	iroamental Pr 8990001				We	il Comp	etion Report
Joliet/	Lincoln Oua		County	WIII		Well #	<u>G205</u>
Site Name: Joliet/			Gnd C	oordinate: Nor	hing 1,75	<u>9,155.3</u>	1,048,014.
							9/8/93
Driffer: Greg Don	ovan	Geologia	u: John	Pyrich			0/10/02
Drilling Method:	Mud Rota	ry		D-DI		Data Com R	$\frac{9710793}{9710793}$
Annular Space Deta					Fluids (type	ند 	
Type of Surface Seal:					Elev	ations -	
Type of Annular Sesingt:					I =	5 <u>80.2</u> 2.73	MSL Top of Protective Ca MSL Top of Riser Pipe fL Casing Stickup
				TÝI	T		
Amount of cement: # c			•		<u> </u>	5 <u>77.5</u>	MSL Ground Surface
Amount of benionits:	s of bags	Ibs. per bag .	·······		1		ft. Top of annular mainer
ype of Bentonite Seel IGra	anular, Pellet):	Pellet	<u> </u>		L al		
nount of bentonite: # of B	۱۹+	Ibs. per i					
pe of Sand Pack:							
arce of Sand:	Colorado						
Amount of Sand: # of he							
		ibs_perb	×L8				
ell Construction Ma	terials						
					1		
					1		
	•						
	1		ŗ				
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14				
	e intre etily Type Men	c C C C C C C C C C C C C C C C C C C C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
· · · · · · · · · · · · · · · · · · ·	Blaindean Blaai Blowilly Type Forthean	opecity Type PVC Bpecify Type	Other Brecity Type				
iser coupling joint	Blackdown Black Black Black Tarlhan Tarlhan	off Type Preily Type 40	Other Brecity Type				
	Blue Induce Blue I Bover Ify Type Tenhan	40	Other Breelly Type				
iser coupling joint iser pipe above w L iser pipe below w.L	Beerly Type Toften		Other Brecity Type				
iser pipe above w L	Blueinduese Blueinduese Blueilly Type Tentese	40 40 40	Other Breelify Type				
iser pipe above w t. iser pipe below w.t. Twe	His Induce Benefity Type Terthers	40 40 40 40	Other Brecify Type				
iser pipe above w t. iser pipe below w.t.	Bueldee Buell Breelfy Type Tedles	40 40 40					
user pipe above w t. iser pipe below w.t. reen upling joint screen to riser otective casing	His Information	40 40 40 40	Guber Breel Steel				
iser pipe above w t. iser pipe below w.t. rees upling joint screen to rise		40 40 40 40 40 40	Steel				Top of Sec.
user pipe above w t. iser pipe below w.t. rees upling joint screen to riser otactive casing casturements		40 40 40 40	Steel				. Top of Seal
ter pipe above w t. ter pipe below w.t. Term upling joint screen to riser otective casing asurements er pipe length	Lo .01 ft.	40 40 40 40 40 40 	Steel			<u>3</u> ft	. Top of Seal Total Seal Internal
ser pipe above w t. ser pipe below w.t. frem upling joint screen to riser otective casing asturements asturements ar pipe length	Lo .01 ft.	40 40 40 40 40 40	Steel			<u>3</u> ft	. Total Seal Internal
ser pipe above w L ser pipe below w.L reen upling joint screen to rise otective casing asurements er pipe length tective casing length tective casing length	12	40 40 40 40 40 5.73 5	Steel			<u>3</u> ft	
ser pipe above w t. ser pipe below w.t. reen upling joint screen to rise otective casing asurements er pipe length tective casing length tective casing length	to .01 ft. 12	40 40 40 40 40 5.73 5 0	Steel			$\frac{3}{120}$ fr	. Total Seal Interval . Top of Sand
ser pipe above w L ser pipe below w.L rees upling joint screen to rise otective casing asurements er pipe length tective casing length tective casing length ten length tom of screen to end cap	12	40 40 40 40 40 5.73 5	Steel			$\frac{3}{120}$ fr	. Total Seal Internal
ser pipe above w L ser pipe below w.L treen upling joint screen to riser otective casing asturements er pipe length tective casing length tective casing length ten length tom of screen to end cap of screen to first joint	1 1	40 40 40 40 40 5.73 5 0 0.5	Steel			$\frac{3}{120}$ m	. Total Seal Interval . Top of Sand
ser pipe above w L ser pipe below w.L reen upling joint screen to rise otective casing asurements er pipe length tective casing length ten length tom of screen to end cap of screen to first joint al length of casing	10.01 n	40 40 40 40 20 5.73 5 0 0.5 0 -	Steel			$\frac{3}{120}$ fr $\frac{123}{10}$ fr	. Total Seal Interval . Top of Sand
ther pipe above w t. ther pipe below w.t. Them upling joint screen to riser otactive casing asurements ar pipe length tective casing length ten length tom of screen to end cap of screen to first joint al length of casing won slot size	to .01 ft. 12 1 1	40 40 40 40 40 5.73 5 0 0.5 0 0 0.5 0	Steel			$\frac{3}{120}$ fr $\frac{123}{10}$ fr	Total Seal Interval - Top of Sand - Top of Screen
user pipe above w L iser pipe below w.L iven upling joint screen to rise otective casing ar pipe length stective casing length stective casing length tective casing length tective casing length tom of screen to end cap p of screen to furst joint tal length of casing won slot size of openings in screen	to .01 ft. 12 1 1	40 40 40 40 40 5.73 5 0 0.5 0 0 1.6	Steel			$\frac{3}{120}$ fr $\frac{123}{10}$ fr	Total Seal Interval - Top of Sand - Top of Screen
iser pipe above w L iser pipe below w.L. iner pipe below w.L. iner upling joint screen to riser otective casing ar pipe length stective casing length test length toom of screen to end cap p of screen to first joint tal length of casing won slot size of openings in screen imeter of borehole (jai)	Lo .01 ft. 12 1 1 1 1	40 40 40 40 40 40 5 5 0 0.5 0 1.6 6-3/4	Steel			$\frac{3}{120}$ m $\frac{123}{10}$ m	Total Seal Internal Top of Sand Top of Screen Total Screen Internal
user pipe above w L iser pipe below w.L iven upling joint screen to rise otective casing ar pipe length stective casing length stective casing length tective casing length tective casing length tective casing length tom of screen to end cap p of screen to furst joint tal length of casing won slot size of openings in screen	Lo .01 ft. 12 1 1 1 1	40 40 40 40 40 5.73 5 0 0.5 0 0 1.6	Steel			$\frac{3}{120}$ m $\frac{123}{10}$ m $\frac{10}{133}$ m	Total Seal Interval Top of Sand Top of Screen Total Screen Interval Bottom of Screen
user pipe above w L iser pipe below w.L Then upling joint screen to riser otactive casing assurements ar pipe length tective casing length tective casing length test length tom of screen to first joint tal length of casing ron slot size i openings in screen imeter of borehole (jn)	Lo .01 ft. 12 1 1 1 1	40 40 40 40 40 40 5 5 0 0.5 0 1.6 6-3/4	Steel			$\frac{3}{120}$ m $\frac{123}{10}$ m $\frac{10}{133}$ m	Total Seal Internal Top of Sand Top of Screen Total Screen Internal

-1	10		2 2	ZA	GEOLOGIC LOG		BOR	CHOLE NUMBER				
CLI PRO DRI COF	LENT	Commi NAME COMF E I	Joi Joi PANY NX BE	5111 6 Iolth Edia Iet/Linco Tetting ARING 1758877	oon Din Duorny Ash Londřill Servica Corporation	HEATHER TOTAL DEPT GROUND SUR SHEET	TOTAL DEPTH 144.0 SOIL THICKNESS 5.0 GROUND SURFACE ELEVATION 322.1 MBL					
	GED BI	r Joh	IE) m E	1047147. . Srigge	728	Depth (Ft) Time Dote						
61)	13	MUNBER		23/92	DATE COMPLETED 9/24/92 DESCRIPTION							
ELEV	DEPTH	SAMPLE	RECOVERY	ROD X			LI INDLOGI	CONTENTS				
520.0	80			20 10 60 80	FILL D - 5 D' NOT SAMPLED grav from quarry operations	el fiith, debrii	 5	Drilling site 50° north of guarry Holl of edst shd of bridge in North Quarry				
510 D	-10 0		100		DOLDHITE SHALEY 8 8 - 25 4 ligh portings green, thin bedded (portings very thin (1/4" thic spoced, shale is sticky, rock	k, irregularly		D-5: 4.25" DD SSA 6-8 B- 140 NX Mobile 851 rig modified with new				
530 0	-zo o		97		<pre>spoced; shale is sticky, rock portings with light hommer bil 10 0'-22 3' broken along shale pi during drilling, mox 0 6', mil thin vuggy zones lined with ei crystals, most shale portings segments have ground against i during coring lends show roto during coring lends show roto 22 3'-26 4' broken across shale j zones, max 1 0', min 0 1', moi thon obove, vugs lined with ci green speckles in jock, accoss</pre>	on, international and		Griver head equivalent to B80 Coring rate ranged between 20' and 30' per, hour Return fluid initially eilky				
490 D	-30 0		100		DDLOMITE CHERTY 25 4' - 79 5' and chert white, shale green, cher 2 5' to 60', most 30 7', arc fossiliferous, chalky locatly spaced 30 1' to 0 3', <1/4' th spaced 31 icky, chert scratch	noley. Light gr t nodules spot	999y	Completed on p meated poin of PVC weils instolled of 60' and 132'				
160 D	-400	5	99		locally 26 4' - 41 5' mostly broken along chert nodules, max 0 7', min ' <0 1' to 0'3' in diameter, do openings up to 0 5", most <1/- colorte and pyrite crystals, (41 5' - 79 5 broken along shale por nodules, max 1 3', min <0 1', to 0 2' in diameter, shale por thomer odd wove, whose leng	shale parting: CD 1: chert no lom te vuggy.	sond states					
470 D	-50 0	6	100		Thinner and Hovey, vugs less lined with coldite and pyrite							
€0 D	-60 0 -		100									
50 0	-70 0		100									
+18 0	-800 -				DOLDMITE SHALEY 79 5' - 93 2' 1 shale block, shale portings if to D 15', very thin, wavey, de lined with calcite and pyrite along shale portings max 2 5'.	ense, occosiono	al vuos					
130 B	-900		100		SHALE 93 2' - 100 2' dolomitic. block toward battom. dolomite thin bedded, <0 1' to 0 2' th D 4' to 0 9', dense. Fridble	tings predomina block to greet light groy, v ick, spoced con break eos						
	-100 0 -		100		ыith hands, broken olong shih min <0 l', occosional Fossils 98 O' color chonge from block to bedding plones	e portings, max	(1 2'.					

		\frown	R	Z	\frown	GEOLOGIC LOG		BOREHOLE NUMBER					
			_]			92-5				
ł	CLIE	ECT NU NT C	JMBER Ommor	5444 Healti	:6 h Ediec	<u>^</u>	HEATHER G305						
1	, PROJE	ECT NA	NHE J	bliet.	Lincol	n Dugerry Ash Londfill	TOTAL DEPTH 144.0 SOLL THICKNESS 6.0 Ground Surface Elevation 322.1' Hol						
	LOKE	SIZE	N)	сел а лан С	2 בתודם	ervice Corporation	SHEET 2	SHEET 2 OF 2					
		E 90 JINATE	s (BEARIN NJ 17:	16 58877 . 9	89		Le Druiling	AD-ACTER Drilling				
				E) 10- E. Gr	17147.7	28	Depth (Ft) Time	Uepth (Ft)					
	DATE	START	ED	9/23/5	2	DATE COMPLETED 9/24/92	Dote						
· ·	.		ස [DESCRIPTION			T				
	£	E	NUHBER			DESCHIFTION	•	_					
1	נונא	OCPTH (FT)	SAMPLE N					THOLOGY					
ŀ	<u></u>	≝	5 6		<u>₹</u>			<u>5</u>	CONHENTS				
ł	-	100.0 -		20 4) 60 80								
	1200	Ę				DOLOMITE SHALEY 100 2' - 132 8'	Light gray, at	iole					
	. .		11 10	00		vuggy horizone D US' to D 3' t	hick: shale po 5', up to 03	itals, itings					
Ē		10 0 1				DOLUMITE SHALEY 100 2' - 132'B' green and black, vuggy with ac horizons, lined with calcite vuggy horizons 0 05' to 0 3' t irregularly spaced, <1/4' to 0 thick, broken along shale part horizons, mox 1 2', min <0 1', 0 1', green speckles on rock,	vug openings fossile	up to					
E	110 0	Ē				_ ,							
·E		=	12 10	π									
E		20.0											
Ē	000		1				·						
Ē	100 0	Ę	13 10	o									
Ċ.													
Ē	390 0	30 0 1											
		·	14 73			HALE 132 8' - 141 3' top 4' gre. Thin bedded, lominated with co	en, remainder i Icite Idolamit	lock .					
E						layers, broken along bedding p with hands, scrotches easily w	iones, breaks th knife, den	coarly coard					
Ē	360.0	*****							· ·				
E					3 [⁸ ε	OTTOM OF CORING AT 144 D FT	· · · · · · · · · · · · ·						
		Ĩ											
E	-1 370 0	50 0											
								Í					
E													
E	-1	60 8 -											
		Ē											
E		Ę											
E	-1	700											
E	350.0	-1											
E		=											
Ę	-1	80 0 -											
Ē	340.0	Ĩ											
Ē		Ŧ					,						
-	-1	500											
F	330 D		ł										
	360 0 -1 350 0 -1 350 0 -1 330 0 -1	Ē											
E	-2	00 0				· · · · · · · · · · · · · · · · · · ·	·						

. .

.

Weil Completion Report Weil Completion Report Sie Name Jollet/Lincoln Querry Will 922-55 (-3) Sie Name Jollet/Lincoln Querry Grd Coerdiaate. Nankie 1.758.876.0 gaang 1.007.14 Drilling Concerser: TSC Due Drilled State: 9/23/92 Drilling Concerser: TSC Due Drilled State: 9/23/92 Drilling Concerser: NX Core/Rotary Drilling Fluids type: Wall Completion 10/8/92 Drilling Fluids State: NX Core/Rotary Drilling Fluids type: Wall Concersion: Drilling Fluids State: Concerset: State: State: Annuals Space Details Elevations: State: State: Type of Annuals State: Concerset: Pointer State: State: Type of State: of kap: Bk per kag State: State: Type of State: State: Colorado Annuals State: State: State: Note: 92-5D installed i same boring State: State: State: State: Nore: State: Colorado Annual: State: State: State: <t< th=""><th></th><th>ronmanuel Beoteorie</th><th>ATTACHHE</th><th>HIB</th><th></th></t<>		ronmanuel Beoteorie	ATTACHHE	HIB	
Site Near Joliet/Lincoln Querry Ord Corritate: Norhing 1.758, 876.0 Examp 1.007.158 Diffing Coursetor: TSC Dea Drilled Start: 9/23/92 Drifting Coursetor: TSC Dea Drilled Start: 9/23/92 Drifting Coursetor: TSC Dea Drilled Start: 9/23/92 Drifting Method: NX. Core/Rotary Drilling Field Start: 9/23/92 Drifting Field Start: Concrete Start Field Start: Nater Type of Starter Seal: Concrete Start Field Start Field Start: Start Field Start Field Start: Type of Starter Seal: Concrete Start Field Start Start Start Field Starter Start Field Starter Type of Starter Seal: Concrete Starter Starter Starter Starter Type of Starter Seal: Concrete Starter Starter Starter Type of Starter Seal: Starter Starter Starter Starter Type of Starter Seal: Colorado Starter Starter Amount of Start: Starter Starter Starter Starter Type of Starter Starter Starter Starter Stare Starter Starter Starte					Well Completion Report
Site Meas.		and the second data was a second data w	County	W111	92-58 (-30
Drilling Generators: 15C Drive Drilled Start: 9/23/92 Driller: Greg Donovan Geologist: John E. Criggs Data Complexe: 10/8/92 Drilling Mathed: NX Core/Rotary Drilling Fluids type: Water Annular Space Details Type of Surface Seat: Concrete Stipp of Num Fluids Type of Surface Seat: Concrete Stipp of Num Fluids Stipp of Num Fluids Amount of cancent: # of bags Ibs. per bag Still fam of Num Fluids Still fam of Surface Seat: Type of Seated Seate: Colorado Still fam of Seate Seate Still fam of Seate Seate Type of Seated Seate: Still fam Seate Still fam Seate Type of Seate of Seate: Still fam Seate Still fam Seate Type of Seate Still fam Seate Still fam Seate Type of Seate Still fam Seate Stall fam fam Seate Type of Seate Stall fam Seate Stall fam fam Seate Mare pup tabers at. 400 Stall Mare pup tabers at. 400 Mare pup tabers at. <t< td=""><td>Site Name. JOITE</td><td>c/Lincoln Quarry</td><td>Grad Co</td><td>pordiaate: Northing</td><td>1,758,876.0 Easting 1,047,147</td></t<>	Site Name. JOITE	c/Lincoln Quarry	Grad Co	pordiaate: Northing	1,758,876.0 Easting 1,047,147
Drifter Greg Donovan Greigetti John E. Griggs Data Complete: 10/8/92 Drifting Method: NX. Core/Rotary Drifting Fluids typet: Vater Annular Space Details Concrete Sit for of Pretting Type of Annular Sealast: Elevations01 ft. Sit for of Pretting Annular Sealast: High Solids Bentonite Grout Sit for of Rue High Amount of Sealast: High Solids Bentonite Grout Sit for of Rue High Amount of Sealast: Its per bag 3 ft. Tep of Sealast: Type of Seal Pack: Silica Sand Note: 92-5D installed i Same boring Silica Sand Same boring Well Construction Materials 400 Mare pop balow vit. 52.16 Construction Materials 50 Mare pop long balow vit. 100 Generation of Same 10 Mare pop long vit. 10 Generation of Same 10 Mare pop long 10 Genemage in grows 1.6	Drilling Constructor:	TSC		Deta J	Drilled Start: 9/23/92
Drilling Method: NX_Core/Rotary Drilling Fluide (type): Vale: Azznular Space Details Concrete State of bags State of bags State of bags Type of Surface Seat: Concrete State of bags State of bags State of bags Amount of cenest: # of bags Ibs. per bag State of bags State of bags State of bags Type of Seatonits Seal (Gracular, Pellet): Pallet State of bags State of bags Type of Seatonits Seal (Gracular, Pellet): Pallet Note: 92-5D installed i same boring Well Construction Materials Colorado Ado Amount of Sand: * of bags Ibs. per bag Note: 92-5D installed i same boring Well Construction Materials Colorado Steell Ado Riser coupling yeat 40 Steell Steell Amount of Sand: * of bags Ibs. per bag Steell Well Construction Materials Colorado Steell Construction Materials Good Steell Marr ppe bays 40 Steell Construction Materials 50 Steell Creating tageth 5 Steell Construction Materials 50 Steell Creating tageth 5 Steell	Onfler: Greg Dor	iovan Gra	logist: John E	. Griggs	Data Completed: 10/8/92
Annular Space Details Elevations - 01 ft. Type of Surface Seals: Concrete Type of Annular Scalass: High Solids Bentonite Grout Amount of censent: # of bags Iba per bag Amount of censent: # of bags Iba per bag Type of Sentenites Seal (Groutlar, Pelleut: Silica Sand Type of Sentenite Seal (Groutlar, Pelleut: Silica Sand Note: 92-5D installed i Same coupling joat Colorado Amount of Sand: Colorado Amount of Sand: Golarado Amount of Sand: Colorado Amount of Sand: Colorado Amount of Sand: Golarado Construction Materials Golarado Construction Materials Golarado Construction Materials Golarado Construction Materials Golarado Constructine stan and Golarado	Drilling Method:	NX Core/Rotary		Drilling Fiui	ids (type): Vater
Type of Surface Seal: Concrete MSL Top of Posetive Type of Annular Scalast: High Solids Bentonite Grout Site of Seal Amount of cenents # of bars Ibe per bag Site of Seal Amount of balacits: # of bars Ibe per bag Site of Seal Type of Sead Pack: Silica Sand Type of Sead Pack: Silica Sand Type of Sead Pack: Silica Sand Well Construction Materials Colorado Mare pup above et. 400 Rare pup above et. 400 Stream 40 Stream Steel Construction Materials to of R for seal Construction for seal 52.16 Construction for seal 52.16 Construction for seal 52.16 Construction for seal 52.16 Construction for seal 10 Construction for seal			· · · · · · · · · · · · · · · · · · ·		
Type of Annular Sealagt: High Solids Bentonite Grout Amount of cement: # of bags Ibs. per bag 522.1 MSL Ground Surface Amount of basicolie: # of bags Ibs. per bag 3 ft. Tap of annular seal Amount of bontoolis: # of bags Ibs. per bag 3 ft. Tap of annular seal Amount of bontoolis: # of bags Ibs. per bag Note: 92-5D installed i same boring Ype of Send Pack: Silica Sand Sime boring Note: 92-5D installed i same boring Amount of Send: Colorado Colorado Note: 92-5D installed i same boring Amount of Send: Colorado Same boring Same boring Same boring Well Construction Materials 40 Steel 40 Steel 3 ft. Top of Seal Iter pipe length 52.16 Steel 44 Steel 44 1 50 At top of Sad Protective cause 60 52.16 50 ft. Top of Seal 44 ft. Top of Sad Steere length 10 52 50 ft. Top of Sad 50 ft. Top of Sad Steere length 10	Type of Surface Seal:	Concrete	·····		
Amount of cement: # of bags	Type of Annular Sealant:	High Solids Be	ntonite Grout		2.16 ft Casing Stickup
Amount of beatonits: * of bars ibs per bars Type of Bentonits: * of Bars ibs per bars mount of bentonits: * of Bars ibs per bars Type of Sand Pack: Silica Sand ource of Sand: * of bars ibs per bars Amount of Sand: * of bars ibs per bars Amount of Sand: * of bars ibs per bars Well Construction Materials Riser pops above w.t 400 Riser pips bais w.t 400 Riser pips length 52_16 moscurve casing length 55 po d screen to and casp 0.5 po d screen to first pest 100 of screen to and casp for total Sand 100 edial length of casing 1.6 is mester of borehole (ising 2.0) of riser pips time 2.0 of riser pips time					522.1 MSL Ground Surface
Type of Bentanite Seal (Granular, Pellet:			-	4	A
Type of Sand Pack: Silica Sand ourve of Sand: Colorado Amount of Sand: * of bags Ibs per bag Vell Construction Materials Vell Construction Materials Riser coupling joint Riser coupling joint Riser pape blow wit. 40 Riser pape blow wit. 410 Riser pape blow wit. 420 Riser pape		_			
Type of Sand Pact: Silica Sand ourve of Sand: Colorado Amount of Sand: * of bags Ibs par bag Vell Construction Materials Vell Construction Construction Materials Vell Construction Construction Materials Vell Construction Construction Materials Vell Construction	Type of Bentonite Seal (Gra	iaular. Pelleu: <u>Pelle</u>	<u>et</u>		
Colorado Amount of Sand: * of bag: like per bag Vell Construction Materials Riser coupling jonat 40 Riser coupling jonat 40 Riser pup briow w.t. 40 Riser pup briow d.t. 52.16 Poilective casing length 52 Dod Scresen to first posati 10	mount of bentonits: # of B	•£1 1be	per bag		· · · · · · · · · · · · · · · · · · ·
Amount of Sand: * of bags lbs. per bag Vell Construction Materials Image: state in the per bag Image: state in the per bag <td>ype of Sand Pack:</td> <td>Silica Sand</td> <td></td> <td>ī ¶</td> <td></td>	ype of Sand Pack:	Silica Sand		ī ¶	
Amount of Sand: * of bags ibs per bag Vell Construction Materials Image: state is a stat	ource of Send:	Colorado			
Well Construction Materials Image provides and the second secon					
Image: Second			per beg		
Riser coupling joint 40 Riser pipe above w.t. 40 Riser pipe above w.t. 40 Riser pipe below w.t. 40 Coupling joint screen to mose 40 Coupling joint screen to mose 40 Protective casing 5teel Riser pipe length 52.16 Protective casing length 5 Total Screen to first joint 10 Outlength of casing - 10 ft. Total Screen latered 10 ft. Total Screen latered 10 10 Outlength of casing - 10 1.6 Hismour of borehole limit 6 D of riser pipe limit 2	Well Construction Ma	teriale			
Riser coupling joint 40 Riser pipe above w.t. 40 Riser pipe above w.t. 40 Riser pipe below w.t. 40 Coupling joint screen to mose 40 Coupling joint screen to mose 40 Protective casing 5teel Riser pipe length 52.16 Protective casing length 5 Total Screen to first joint 10 Outlength of casing - 10 ft. Total Screen latered 10 ft. Total Screen latered 10 10 Outlength of casing - 10 1.6 Hismour of borehole limit 6 D of riser pipe limit 2					
Riser coupling joint 40 Riser pipe above w.t. 40 Riser pipe above w.t. 40 Riser pipe below w.t. 40 Coupling joint screen to mase 40 Protective casing 40 Riser pipe length 52.16 Total Screen to first joint 10 Screen is first joint 6 Screen is first joint 6 <th></th> <th></th> <th>2 2</th> <th></th> <th></th>			2 2		
Riser coupling joint 40 Riser pipe above w.t. 40 Riser pipe above w.t. 40 Riser pipe below w.t. 40 Coupling joint screen to mose 40 Coupling joint screen to mose 40 Protective casing 5teel Riser pipe length 52.16 Protective casing length 5 Total Screen to first joint 10 Outlength of casing - 10 ft. Total Screen latered 10 ft. Total Screen latered 10 10 Outlength of casing - 10 1.6 Hismour of borehole limit 6 D of riser pipe limit 2		F F	E E		
Riser coupling jouat 40 Riser pipe above w.t. 40 Riser pipe above w.t. 40 Riser pipe below w.t. 40 Screen 40 Protective casing 40 Protective casing 5teel Riser pipe length 52.16 Protective casing length 5 rotective casing length 5 Streen to first joint 10 outom of screen to and cap 0.5 op of acreen to first joint 10 odal length of casing - 10 1.6 isameter of borehole time 6 Of riser pipe time 2			9월 3월		
Asser pipe above w.t. 40 Riser pipe below w.t. 40 Riser pipe below w.t. 40 Coupling point screen to riser 40 Protective casing 40 Protective casing 51 ft (where applicable). Casurements to .01 ft (where applicable). Iter pipe length 52.16 Protective casing length 52.16 Protective casing length 52.16 Protective casing length 50 Contexture casing length 50 Dottom of screen to first post 10 outlength of casing		รีวีซี หลื	4 34		
Riser pipe below w.t. 40 Acreem 40 coupling joint screen to riser 40 rotective casing 52.16 rotective casing length 52.16 rotective casing length 55 creen length 10 outcom of screen to and cap 0.5 po of screen to funct joint 10 outcom of screen 1.6 ismeeter of borshole (in) 6 O of riser pipe (in) 2	Riser coupling joint	Į			
crees 40 oupling joint screen to ruse 40 retective casing 40 casurements to .01 ft (where applicable). casurements to .01 ft (where applicable). casurements 52.16 cuscure casing length 52.16 cuscure casing length 5 cuscure casing length 5 cuscure casing length 10 cuscure casing	Liser pipe above w.L.				
oupling joint screen to riser 40 retective casing 40 Ensurements to .01 ft (where applicable). ter pipe length 52.16 Discuive casing length 5 reven length 5 pot screen to end cap 0.5 pot screen to first point 10 pot screen 1.6 amouter of borshole (int) 6 pot friser pipe (int) 2 pot friser pipe (int) 2	liser pips below w.t.		40		
Protective casing Steel Casurements to .01 ft (where applicable). user pape length 52.16 Observe casing length 52.16 Observe casing length 50 Discusse casing length 50 Discusse casing length 50 Discusse casing length 50 Discusse casing length 10 Discusse casing	KTERS.		40		
casurements to .01 ft (where applicable). user pipe length 52.16 reen length 5 reen length 10 ottom of screen to end cap 0.5 op of screen to first joint 10 otal length of casing - ismeter of borehole (im) 6 0 of riser pipe (im) 2	oupling joint screen to rise	•	40		
user pipe length 52.16 otective casing length 5 irreen length 10 ottom of screen to end cap 0.5 op of screen to first joint 10 octal length of casing - irreen slot size 10 of openings in screen 1.6 is motion of borehole (im) 6 O of riser pipe (im) 2	Totective CASINE		Steel		
Liser pipe length 52.16 rotactive casing length 5 rotactive casing length 6 0.5 0.5 0 of riser pipe (in) 10 0 of riser pipe (in) 6					
Liser pipe length 52.16 rotactive casing length 5 rotactive casing length 6 0.5 0.5 0 of riser pipe (in) 10 0 of riser pipe (in) 6	casurements	to .01 ft. (where	applicable).		45 ft Top of Seal
Start pipe tength 52.16 retextive casing length 5 reten length 10 octom of screen to and cap 0.5 op of acreen to first joint 10 octal length of casing - reten slot size 10 of openings in screen 1.6 ismeter of borshole (in) 6 O of riser pipe (in) 2					3
Statute casing length 5 irren length 10 ottom of screen to first joint 10 ocal length of casing - irren slot size 10 of openings in screen 1.6 is meter of borshole timl 6 O of riser pipe timl 2		52.16			The rout beat sectors
Detions of screen to end cap 0.5 op of screen to first joint 10 ocal length of casing - reen slot size 10 of openings in screen 1.6 smeeter of borshole (im) 6 of riser pipe (im) 2	otective casing length	5			ft Top of Sand
Solution of screen to end cap 0.5 ap of accreen to furst joint 10 octal length of casing - interest slot size 10 of openings in screen 1.6 is moter of borehole (im) 6 O of riser pipe (im) 2	reen length	10			50
Deal length of casing - resen slot size 10 ef openings in screen 1.6 ameter of borshole (in) 6 of riser pipe (in) 2	strom of screen to and cap	0.5			fL Top of Screen
reen slot size 10 1.6 ameter of borehole (in) 6 0 of riser pipe (in) 2	of screen to first joint	10			
reen slot size 10 ef openings in screen 1.6 amoter of borshole (in) 6 of riser pipe (in) 2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	stal length of casing				10
ef openings in screen 1.6 ameter of borehole (im) 6 of riser pipe (im) 2 144 (L Bottom of Borehole	reen slot size	10			IL Total Screen laterral
ameter of borshole (in) 6 of riser pipe (in) 2 144 (1) Bottom of Screene 144 (1) Bottom of Borshole	of openings in screen	1.6			
2 CO (L. Bottom of Server 144 (L. Bottom of Borehok					60
144 (2 Bottom of Borebole				<u>ि</u> ⊒3.	fL Bottom of Screen
apleted by	a an result fuller rep.	44			
apleted by					
	apleud by		Surveyed by		
					······

G215/0

			·						231	Sand and a second second			
	╞╌┥╻	\sim	۱F	₹.	ZA	GEOLOGIC LOG	<u> </u>		SORE	HOLE NUMBER			
	CLIEN7 PROJEC	r Dt P Eng Size	Come NAME COM	Ed Upani IPani NX	Testing	coln Quarry Ash Landfill Service Corporation	TOTAL C	G310 WEATHER TOTAL DEPTH 155 0' SOIL THICKNESS 5 5' GROUND SURFACE ELEVATION pending (MSL) SHEET 1 OF 2					
				{N]	EARÍNG 1758907		STATIC MATER LEVEL (SLS)						
	LOGGEO	87	Je		1045388)ickson	.601	Depth Time	<u>(Ft)</u>					
	DATE S	The	TED	07	1/30/99	DATE COMPLETED 08/03/99	Date						
			SAMPLE NUMBER	RECOVERT 1	800 %	DESCRIPTION			111/01/017				
	<u> </u>			<u> </u>	1					COMMENTS			
	n ()		12	86		GLACIAL DRIFT 0 - 6 5' NOT SAMPL gravel with derk yellow-brewn	≢ilty ⊂loy	• ••		0' - 6 5' 3 1/4" 10 Auger 55 0 10 drill 10 Auger 55 0 cre 10 Foils Gus Pech 750 01 Fotaly Figurith 10 Fotals Hater Fluid Coring Fote Fotogod 50 June 10 con 20			
	-10	0	_			broken at top dus to the waath wavy lominations with shale po fossiliferous, vugy where fass 11 5, 6" fracture with axidized s	DOLOMITE 6 5' - 48' delemitized bioclastic calcorenite, oxidized yallow-erange, broken at top due to the weathering, thin wavy laminations with shale portings, fossiliferous, vugy where fossiliferous 11 5' 6" fracture with axidized sides and some						
200	-20	0 11111111	3	100		13 0' many fossils showing modic 20 0' white gray dolomite, thin 1 grean shale partings, fossi 38 0'~48 0' white gray dolomite w partings, rock easily break	aninations diferous itf green : along pa	with shole rtinga		Recimed with 5 7/8" Recomed with 5 7/8" IStory bit to IStory bit to Isto			
	-30 -		4	100		· .							
	ંન્ય) (111111	5 E	100 85 8									
	-50 (111111111111	7	100		chart nodules spaced (0 1' to) irregularly spaced. Fossilifer spaced (0 1' to 0.3', (1/4" th	white to sie green. 1, most <0 bus, shale ck. users	light 5. Partings					
	-សំព ព័	-	8	100		spaced							
	-70 0	╶┚╾┛╶┨╶┨╴┛╶┨	ā	100									
	-ல் ப		10	700									
•	-30 0	╶┰┰┲╌┟╌╌┲╌┎	11	700		DOLOMITE SHALEY 85' - 98 5' che discontinue, rock becomes more color change from light gray to content increases with depth	t nodules sholey, grey at d	-ley					
<u>9</u> 0 n	-100		TS	100		SHALE 58 5 - 122 8' dolomitic.		and chang					

í

;; ; ;

ĺ

i

631 5/0

•			 	⇒ -	ZA								·	<u> </u>					
		· · ·	· ·					l 			C L0	G				HOLE N		<u>_</u>	
(PROJECT NUMBER 15448 G CLIENT ComEd FROJECT NAME Jolist/Linco ORILLING COMPANY Testing S CORE SIZE NX ANGLE 90 BEARING COORDINATES (N) 1758807.3 (E) 1045388.6 LOGGED BY Jeff Dickson DATE STARTED 07/30/39						Service Corporation SHEET 2						URFACE E	· · · · · · · · · · · · · · · · · · ·				
	[1]	Ē	SAMPLE NUMBER	111 X				PTION					<u></u>		- <u>1</u>				
	ELEV	OEPTH	SAMPLE	RECOVERY	r B			•							LT CHALAGE		COMMENTE		
	100 0	-100 i)		100	218 B		το 2 4	dark g O 2' T næs. ř color	hick. a s sil chan	ith de rock Jferou ge froi	pth, ve broken s m dork	פרפץ ז פרפץ ז וואן פרפן	nly budd shale ba o green	ading ading	1		COMMENTS		
•	110 0	-120 0	12	700															
		-120 0		700 700		00 12 12	LOMITE 4 5' 5 0' som sha sha sha ceme	I22 4" th -155.0 cocco sity, le par inted	9 - Ick so Fos Sional Vuggy tings tings	155 0 Ft gra still very ve	gray ern mud ernus d vuggy d ilarly iggy hoi	dolom stona clamit horizon cpoced cpoced rizons	a, vuggy a, madia D 2' thi broken fractur	With ck. clong es are					
• • •		-140 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100															
• •	150 0	-150 n		100		801	rtom o	F CORI	NG AT	155 o	FI		•						
• •	150 O	-160 n -	•																
	- 170 0 - 170 0	-170 B -		,															
_	- 190 J	- -1的 n - - - - - - - - - - - - - - - - - - -																	
(_150 G	-130 0											. 1						
		E , 200 - 1																	

ŕ

PROJ CLIEI PROJ DRILI CORE ANGLI COOR	ECT NU NT Co ECT NA LING C SIZE E 30	INE DAMO INE INE N S John	R 5 DHEC JOII NY IX BEA (N) (E) D Py	sith Edison ist/Lincoln Testing S NRING 1759706.8 1045763.4 mich	n Duarry Ash Landfill ervice Corporation 12	SHEET -	STA	D' ELEVATION OF	ADLE NUMBER 93-12 R 325 SOLE THICKNESS 3.0" 534.41' MEL LEVEL (BLS) AD-Arter Drilling
ELEV (F1)	DEPTH (FT)	Sample Number	RECOVERY I	ROD X	DESCRIPTION			L 1 1402 067	CONHENTS
520 0	-10 0 -10 0 -20.0 -30 0 -50 0 -50 0 -50 0 -50 0		100 100 100 100 100		DOLOMITE CHERTY 19 5' - 83 0' sho cloy DOLOMITE SHALEY 3 0' - 49 5' light green, thin bedded (0 1' to 0 4' thin (1/4" thick, irregularly sp sticky, rock breaks along portin hommer blow, accasional fossils. harizans, openings up to 0.05', add pyrite crystols 5 9' calor change from light gray 5 9' calor change from light gray 10 to 10', most (0 8', irregularly) spaced of 1' to 0', most (0 8', irregularly) 19 5'- 62 0' broken along shole por radules, mox 0 7', min (0 1', c to 1', most (1/4", lined with crystols, accasional fossils 52 0'-83' dolomite dorker and denser 1 BOTTOM OF CORING AT 63 0 FT 1	gray, shal gray, shale par aced, shale gs with fig accasional lined with to pinkish to pinkish to pinkish chale partii ck. irreguli rtings and i hert nadule uggy, openii calcite an	s ga		Drilling site 57' Hest of Sth Hooden Of Brandon, 15 Inside fence 0-3: 5 7/8° DD SSA 3'-83' NX core Mith clear Hater GUS PECH GP 1100 AIV rig Doring role ronged 30' per hour Return fluid Initially silky Recomed with 6 3/4° roting Super Gel X BF 1100 AIV rig Inatolic PVC Hell at 77'

Illinois Environmental Protection Agency	Well Completion Report
	LI WELL # R32S
SITE # 1978090001 COUNTY #11	
SITE NAME: Joliet/Lincoln Quarty Ash Landfill	BOREHCLES. R32S
STATE PLANE COORDINATE: N 1758697.521 E 1045764.711(57) LATITUDE	
SURVEYED SY: Mark Wood	AL REGISTRATION # 0352958
DRALING CONTRACTOR: Testing Service Corporation	CRULER Brine Alexander
CONSULTING FRA: Harza Engineering Company	
CRILING METHOD: Air Botary	DRILLING FLUICS (TIPE): Potable Vater
LOGGED 57: Hoss Najjar-Pour	DATE STARTED: 8/10/99 CATE FINISHED 8/11/99
	DATE: 9/3/99
ANNULAR SPACE DETAILS	ELEVATIONS DEPTHS (.01 ft) (MSL)* (BGS)
	TOP OF PROTECTIVE CASING
TYPE OF SURFACE SEAL COCCRETE	0.00 GROUND SURFACE
TYPE OF UPPER SEALANT: Bentonite Pellet	0.5 TOP OF UPPER SELLANT
INSTALLATION METHOD. Surface Pour	3.0 TOP OF ANNULAR SEALANT
TYPE OF ANNULAR SEALANT: High Solids Bentonite Grant	
INSTALLATION METHOD: Treale Pipe	Z.05 WATER LEVE (TDC) WATER CONTINUE WATER CONTINUE
SETTING TIME _ 30 min.	A 4/20/99
TYPE CF BENTONITE SEAL GRANULAR FELET CHIPS	60.5 TOP OF SEAL
SETTING TIME 30 min.	63.0 TOP OF FINE SANOPACK
TYPE OF FINE SAMO PACK Washed Silica Sand	65.0 TOP OF SANDPACK
GRAIN SIZE: 20-40 (FIR-FEER) INSTALLATION METHOD: Surface Pour	67.0 TOP OF SCREEN
TYPE OF SAND PACK: Washed Silica Sand	
GRAN SIZE: 10-20 ISINE STE	
INSTALLATION METHOD: Surface Pour	77.0 SOTTOM OF SCREEN
TYPE OF BACKFILL MATERIAL Mashed SILHCA Sand	
INSTALLATION METHOD: Surface Pour	78.0 BOTTOM OF SOREHOLE
WELL CONSTRUCTION MATERIALS	CASING MEASUREMENTS
	DIAMETER OF BOREHOLE 6 6
RISER PIPE ABOVE W.T. COM THIS FOR STA	ID OF RISER PIPE
RISER PIPE BELOW W.T. SSUI SSUI PTE PIC CT	PROTECTIVE CASING LENGTH
SCREEN SEC SETUS FITE (TC.) CT	
REMARKRefer to boring log for well 93-	12 SCREEN LENGTHME ROT TO LIST SIGN MY 10
for description of geologic mat	ETTALLENGTH OF CASING ET 5
encountered	SCREEN SLOT SIZE - M 0.01
	THRUSEDITES WELL SURCEASING GROUP INTER

•	r							•		•									•.		\mathcal{O}	ي حو	: / نیسه (<u>ل</u> ر ا	5 / D		•	•
	⊢		$\widehat{}$	F	23	Zr	ĥ				(GEI	OL	OG	IC) L	DG			<u>-</u> -			EO	REHOL				-	
;				(0417)		· · · · · · ·				.															G 3 3				
(,:: : -	CL PR OR CQ	IENT ROJEC RILLI RE S	C T NA NG C CZE	omE NME COMP	d Joi Pany NX	154486 iet/Li Testi	Inco	sin (Serri	Juar vict	rry . e Co	Ash rpor	Lan Tati	df i on	11				T(Gi	OTAL	ND SL		E EL	EVATI	CON F OF 2	end		(MSL)	4.0'	
		IGLE IORDIN		5	(N)	ARING 17594	185.	478							·			-		40=H	<u>S</u> bile	TATI Deut	<u>C WAT</u>	ER LE	VEL	(BLS)		긔
	La	GGED	θY	· .	{ € }	10469	925.	246											ept)	h tr	-1	1			nr ti	r ur		9	
	DA	TE ST	'AR T	ED	7/	19/99		0	ATE	00	1PLE	тер	7/	22/	99				ote					<u> . </u>				·	
				œ,																· · ·	<u>·</u>		í	1					긕
	il II	Ē		Sample Munber	*			. 06	:SCR	IPT	CON													-					
					RECOVERY	ж			•														(10)						
	ELEV	OEPTH		e vs	ECC ECC	ROD					•												(THE LOUP					•	•
		1	Ī			20 10 60	20						<u>-</u>						<u> </u>			 }		- <u> </u>		COMM	ENTS		:
	-00	00	1		ł	TIT		GLA	CIA	LTOR	IFT	·· -ô	<u>-</u> 4	Ğ,	้งก่	TÄ	iPLED			·		.							
E			-	ı þ	94			- 2 - 7 - 7	5 . .													т¥.	• • •		fary	3 7 608 207 207 207 207 207 207 207 207 207 207	78" a NX	1Ļ	·
E			Ē	, ,	a7			DOLI		re Icar	4 0' eni1	te.	80 Ver	o y_h	do igh	loni. Iv w	tized tother to Sm parti to ad to se to se tiy be		alaa	stic brok	(en	ļ			e rie	ദ്വദി	Pech		
E	100	-10 0	1.	•						top d vu v н	, oc 9s r ovv	-009 2003	ing	Fri	3000	ະຕີອຳ ໄທກ	ro Sm	ສວກ(ທາງ ໄ	e fr beda	TOCTI 1 Ing	15			i ist	ung and	LSQ.	rang per	ed hour	
·E			7						ີ ໂດ່ສ ເກີດ	iá i ľ egy	ifer	y s	l o hap	cali ed d	y. Ind	cher	10051	ាត់នុះ បែរិត៖ មា៖	, a gr						iweq 11 다	1100 H	5 7/1		
F			1					60 L	bre	-,80	0. 010	ng Sh	oly bed		гу р I		ly be	dded	j. r	bek				i Los	1 al	155	/c ^{or}	130.	
. E	1		1 3	g	6														•									,	
E	200	-20° Ņ	3	·†		- I			-												,	E CENTRE E							
E		•	4																										
Ę		•			00																							•	
(10	-30 0	1					-											-										1
ㅋ			1									-												•					
Ē																									•				
			<u> </u> 5	10	10 📓																	IIII							·
	00	-40.0		ĺ							•																		
E			-							•									•										
E			Ē	10	. N																								
- Luna Martina	. 0	-50 0					ł	•																					
Ē		-	ł	1												•						٠Ē							
L-	1	-	Γ ε	58 10										-								IIII							
		-	3	93																									
E"								•												•.									ŀ
E																				•									ŀ
E		TT	10	10	, 🕼				-																				ŀ
En	n -;	ר ריייי	•••	[-																				
Ē				1																									
E		E		ł																									ĺ
E	Ì	F	11	roc)															. ,									
E	0	₩ » - 		.			ÖC	LOM	ITE	SHA	LEY.	. 8	10 q	-	- 9	a o,			÷										1
		Ę						F C	ossı edə	111F 1417	ero. h or	JS.	roc				Very 1 olor 15, Fe	י⊈.			alonn						• ,		Ĺ
E		1	12	100				1.		5		22 ~		_ 1 13	- <u>- 1</u>	nam	ner ol	QNS	- ct	TCBC	-						•		•
ľ.	-1	ν. 1. μ.	i				87	707		8 0		sher Sher	=, 't a t≠	ាត់ ខេត្ត ក្រុម	τρ) sτ	2bsei	T, SO	COI: Inc (C: 1: 90-0	= fi al∉,	lling							·	
£	· ´	Ŀ						ь	'eak	9 Q	long	p po	rtı.	nga	w11	th I	ght t	ap	of ł	10000	3 <i>1</i> -		-						
111		Ţ.	13	70																									
		Ę		100			-							_				•									,		
-	I -E	ao o I					SH			8 0	· • ·	113	5'	đ		ודומ	shal	e. (gray	7. Ve	гу							•	

61335/0 HARZA GEOLOGIC LOG BOREHOLE NUMBER G33D PROJECT NUMBER 154486 REATHER CLIENT ComEd TOTAL DEPTH 155.0" SOIL THICKNESS 4.0' PROJECT NAME Jolist/Lincoln Quarry Ash Landfill GROUND SURFACE ELEVATION pending (MSL) ORILLING COMPANY Testing Service Corporation SHEET 2 OF 2 14 CORE SITE NX ANGLE 90 STATIC WATER LEVEL (SLS) BEARING WD-While Drilling COORDINATES (N) 1759485.478 AD-After Drilling Depth (Ft) (E) 1046925.245 Time LOGGED BY J. Dickson Date DATE STARTED 7/19/99 DATE COMPLETED 7/22/99 HUTHGCR DESCRIPTION 6130 ** Ē RECOVERY LITHOLOGY SHIPLC OCPIII 24 昆 COMMENTS 201010 - 100-0 competant, thin partings, groy, shale becomes bacomes black with increase in depth 118 0° - 113 5° shale, greenish -100 0 12 100 -LEO Q. _ 16 100 COLONTIE 119 5: -150 0' biaclastic calcorenite, very vuggy locally with modic parasity. fossiliferous, shale partings with irregular bedding. Fractured locally and mostly comented 127 0' -127 25'. very thin laminoted shale highly fractured ond comented
140 0' - 148 0' dolomite is alternating between biaclastic calcorenite and thin bedded siltstone with great shale lenses, occosional fractures and mastly are comented
148 0' - 150 0' 2' vertical fracture and partially recomented -120 0 100 17 <u>. 130 D</u> -130 0 -recemented 18 100 🕅 -149-0 • 73 100 -157 0 -20 66 SHALE 150 0'- 155 0' green at top 1' and becoming black to very dark brown, thinly bedded and easily breaks along bedding planes. Fossiliferous BOTTOM OF CORING AT 155.0 FT נותוונו -10° v Ŧ -170 -0 j Ï 4 -180 v וודדו 20 -190-0 -200 0

	· ·			•				· ·	
		-1.	F	2 2	ZΑ	GEOLOGIC LOG	_ ; · ·	BORE	HOLE NUMBER
	CL PR DR CO - AN CO	ILLING C RE SIZE GLE 90	onEc ME COHP S S Jefi	1 Joi Any IX BE (N) (E) F D	ict/Linco Testing ARING 1759103.1 1046293.1	576 ,		ACE ELEVATIO	SOIL THICKNESS 9.0
			Ī			DATE COMPLETED 07/27/99			
	נובא ונוו	DEPTH IFTI	SAMPLE MUMBER	RECOVERY 1	KOD X	· · · · · · · · · · · · · · · · · · ·		TIFIL DISY	
:	-00	0a -			20 40 50 80		·		COMMENTS
	-					GLACIAL ORIFT 0 - 9 0' NOT SAMPLEO With dork-yellow brown silty elg	grevel Y		9 9. 3 1/4" TD Auger blind drill 9 155 0 NX sore Tobile Gus Pech 750 air rater, ro, with potable water Fluid Loring rate ranged batween 15, and 20, per hour
	-10 Q	-10 0	1			BOLOMITE 9' ~ 45' dolomitized biac calcarenite, very highly weather surface, reddish-yellow iron cal highly broken, dolamite is white some vertical stress fractures-of the remaining portion of surface	ed at upper or, vuggy ond rgray in colo		Lofing rate ranged between 15 onder per hour Reamed with 5 7/8" rojery bit to 156' using potoble water fluid Installed PVC well or 155'
	20 0	-20 9-1-1 -	2 9	e j		 Some vertical stress (ractures-a, the remaining portion of run is (showing thin laminations, shale) green, 1-2 mm thick; rock easily shale partings, Fossiliferaus O' some grayish-white with laminations, few vugs, rock separ bedding planes filled with green thick 	nore compatan Sort(nos.	*	Hellot ISS'
	.30 0	-300	9 T	00 ///////////////////////////////////		 Thick "S Plues () the with green 29 0' = 39.0' with wavy shaley part; 20 nes with foasils. 0 1'-0 3' thi modic perosity. rack breaks along fractures, filled with green shal 39 0' = 45.0' white gray dolamite. t larger coral zones, vugs associat 20 nes, 4-5 mm in diameter 	shale, 1-2 m ings. occasio ick showing bedding/ ie thinly laming:		
		· · · · · ·				tones, 4−5 mm in diameter	ed with cord		
	40 Q	-10 /r -10 /r -1	1(
	50.0	-500	τ¢			DELOMITE CHERTY 45' - 80' shaley, c nadules up to 2" thick, gray-whit and laminated, thin shale parting fossiliferous, many coral zones w paresity, rock easily breaks alon 37' - 74'' shale lense	e, dolomitë ; , green, Ith modic g partinga		
		11717 u	10			7 ά· ήθ ά· vertical Fracture, fil shale	led with gree		
มันน	a) u	*					,		
	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10						
) u [10	in All					
THTT		רוד ודירו זיו מי	10	0		OLOMITE SHALEY 80' - 113' dark gri ahaley dolomite. Fassijferous. I Vuggy where coral exist, 1-3mm in wavy laminations, more ahaley, chi S 0' - 100 0' shaley dolomite with chert nodules discontinue, rock b rock very competent, core breaks i beddings formulations	ncrease in co diameter, ve ert nadules f lenses of fas ecomes more s		
(ñ	\$ *			Ţ	bedding, fossiliferous, fossila e parosity 00 D' - 113 D' shaley dolomite with zones, lenses 1/2" thick separate laminations of dork gray shale an dolomite, occosional irregular fri	fossiliferou		
		-100 0	0 10	o 💹			•		

		۲ F	₹.		GEOLOGIC LOG	····		E NUMBER
C P D C	ORE SIZE	ComE IAME COM	d Jo		HEATH TOTAL Service Corporation SHEET	DEPTH 155.		- THICKNESS 9.0
	GGED Br	ES Jel	(N) (E) 77 D	ARING 1759103 1045293 ickson	. 576 Deoti	HO+Hhile Or+ h (ft)	IC WATER LE	VEL (BLS) Afrec Ocitiens
	ATE STAF	SAMPLE NUMBER	RECOVERY 1 5	24	DATE COMPLETED 07/27/99	<u> </u>	TDIOLOGY	
- 100 0	-101 11	-SS	<u></u>	2010.00		<u> </u>		COMMENTS
	-110 0		100					
	11111111111111111111111111111111111111	12	100		SHALE 113 0' - 121 2' dark gray thinly ic mudstone and shale, occasionally mattle Fossil zone discontinued, 120 7'-121 2 abrust change fram very dark to green softer shale	gray shale		
E 130 0	-130 0	13	100		DOLOMITE 122 5' - 154 5' bidelastic caled dalamite, fossiliferous, very vuggy wit parosity, kavy thin laminations, shale gartings, green, accasional stress frac camented 136 5' - 138 5' rock highly broken 145 5' - 138 5' rock highly broken 145 5' - 146 5' clay filled, green, vertic 150.5' - 151 6' very fassiliferous, vuggy 153 5' - 154 0' fassiliferous, vuggy	arenite In modia Itures, I Fracture		
- - - - - - - - - - - - - - - - - - -	-140 0 -1-1	14	.00.		152 0 153 0. very fossiliferous, vuggy 153 5 154 0. fossiliferous, vuggy			
_150 D	-150 0 -	15 1	ασ					
- - - - - - - - - - - - - - - - 	ידיריין דיין וידידיריין נייי אאן-	L	00		SHALE block BOTTOM OF CORING AT 155 0 FT			
150 13 [76 1]							-	
1 <u>3</u> 0 ŋ	רויזיני							
190 0	-190 0 -							•
	רידי							

r		~ ;	ZA	GEOLOGIC LOG			BOREH	OLE NUMBER / G-120 /G-125
CLIENT PROJEC DRILLI CORE & ANGLE COORDI	Co NAI 45 CI 122 190 NATE:	med Te Jol DMPANT NX EE CN (C) for N	15448 6 ict/Linco Testing ARING 1759757 1047377 ajjar-Pou 203/59	300	SHEET .1	STATIC	ATION OF	SOIL THICKNESS, 2.0* panding (NGL) 2 LEVEL (BLS) AQ#Arter Driling
ELEY ICI)		SATRFLE MIRINER REDUCERY X	ROD X	description			LITIRCC057	COMMENTS
0 0 0 0 10 0 -10 20 0 -20 20 0 -20 407 0 -30 407 0 -30 407 0 -30 50 0 -30 50 0 -30 50 0 -30 50 0 -30 50 0 -30 50 0 -30 50 0 -30 50 -30 -30 50 -30 -30 50 -30 -30 50 -30 -30		1 2 5 3 4 102 4 105 7 97 97 5 98 5 98 5 98 5 100 20 59 11 100 12 100 11 100 100 100 100 100 10		<pre>GLACIAL DRIFT 0 - 2.0' NOT SAMPL UP TO 2' of diseaser with braw DBLONITE 2 0' - 33.0' delemitize Calcaronite, light group pinkie Thin laminated budging, shale Face.liferous.vugs diama parti 17.0' - 39.0' delemite, group for in executated with foes: I horizon breaks slong partings</pre>	d bigelaetie h: accesionatie partings, grei iamater; ngs egular iamina fercua, vuga e; rack gas; be; rack gas; for dules m 0° iA diamate hert nodules m o scholey. ional vuga af			A A A A A A A A A A A A A A A A A A A

•

.

:

			2 2	ΖĄ	GEOLOGIC LO	3	E0F	GAZO/GU7
CLI PRO DRI	LENT (JJECT N	ComE IAME COMI	d Jai	L5448 G iet/Lina Testing	coln Quarry Ach Landfili 3 Service Corporation	HEATHER TOTAL DEPT GROUND SUR Sheet 2	FACE ELEVATI	SOIL THICKNESS 2. SON pending (MSL) OF 2
ANG COC	GLE 90 DROINAI	ES	BE: (N) (E)	ARING . 175975 104737	7.300	Depth (ft)	de Dritting	ER LEVEL (215)
LOG DAT	GED BY E STAR	Ηο: 1 1	- No 08.	zjjar-Po /03/99 1	DATE COMPLETED 08/09/99	Date		
ELEV IFT)	. (1.1) HLU30	SAMPLE NUMBER	RECOVERY X	rod x	GESCRIPTION		111402.001	COMMENTS
_ 100 D	-100 Q -			20 40 50 80 Stational Station				
		15	700 36 700		SHALE 103 7 ~ 111 9 dolomiti In clay content with depth	c, dark gray, H		
- 110 0 	-110 0 -		94		DOLOMITE III 9 ~ 141 6' white fossiliferous, vugay, some o harizona: modic parbaity	gray dolomite. ccosional very	×vggy	
- 120 O	~120 0_5		54		-			
-130 0	-130 0	е'L	95 .					
			9T -		-		·	
- 150 0	-140 0 111	51 50			SHALE 141 6' 7 155 0' dark gra rock is competent, occasiona colcite filling	y dolomitic sha: I vugs with	ιε. Ιε.	1816444444
150 D	~150 0 1 1 1 1 7150 0 1 1 1 1 1		101					
- 150 D	-140 C T				BOTTOM OF CORING AT 155 0 FT			
- - - - 170 3								
	-(ħ) = + + + + + + + + + + + + + +							
130 0								
,30.0	-130 v 1							
	111							

Andrews Environmental Engin 3535 Mayflower Boulevard, Springfield, IL		g
Site Information: Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will	Location:Boring InformationCoord. System: Site GridBoring No.: G44DNorthing:57679.8Easting:45567.6Surf. Elev.: 585.4	
Site Nc.: 1978090001 AEEI No.: 2002-124/2003-125	Weather: Depth Information Sunny, hot Total: 209. Auger:	
Drilling Contractor: Name: Raimonde Drilling Corp. City: Elmwood Park, Illinois Equipment: CME 55 - 8 ¼" HSA	Personnel:Adger.Geologist: L. JanczakCore:Driller:D. StefensonHelper (s):Start: 7/19/2Finish: 7/21/2	
Sample Type: 🚺 – Continuous Barrel 🔀	- Split Spoon 🛛 - Shelby Tube 🚺 - Core 🗌 - Blind	I Drill
Depth (ft.) Depth (ft.) Type Racov. Recov. Racov. Racov. Bouldures Con. All No. All No	etail Lithology Description/ <i>Comments</i> USC	C) (MSL)
	Mottled brown, clayey SILT, some gravel, moist Grey, clayey SILT, moist, very dense	
	Intervals of silty CLAY, moist Mottled grey and brown, sandy CLAY with dolomite gravel	-580
B B B B B B B C D D C D C D D C D D C D C		- 575
3.4	Brown, gravelly SAND, moist Brown, gravelly, slity SAND Brown, gravelly, slity SAND	- 570
4.0 4.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Brown, sandy GRAVEL, iron-stained	
	Pag	ne f of

í

ĺ

	An 353(dre 5 Ma	WS yflov	En ver E	vir (Boule	onm vard,	enta Spring	I E	ngine 1, IL 62	270	r ing, Inc 7 (217) 78). 37-2	2334	=ie	eld Borin	g Log	
Site Ir Name Locat Count	: tion: ty:	Joli∈ Joli∈ Will	et∕Lin et, I‼	inois	Ston	e Quai	ry				Location: Coord. Sys Northing: Easting:		: Site Grid 57679.8 45567.6		Boring Info Boring No. Well No.: Surf, Elev.	: G44D G44S	
Site N AEEI					03-1	25					Weather: Sunny, hot	t			Depth Info Total: Auger:	ormation: 209.	
Drilling Name City: Equip	: Ra El	ai៣០០ ៣៷០០	de Di od Pa	ʻilling rk, Il	linois						Personnel: Geologist: Driller: Helper (s):	D. 9	Janczak Stefenson		Core: Dates:	7/19/2	
San	nple	Туре	9:	ľ	1 -	Contin	uous Bai	rel		- Sp	lit Spoon	<u>.</u>	- Shelby Tube		- Core	– Blind	Drill
-		Samp	le		es		Ε	loreh	ole Deta	ail	Lithology		Description	/ Co.	mments	USC	VISL)
25- 30- 8un No.		Zo.	Recov.	RGD (%)	Fractures (no./it.)	Unit		Bentonite Chips				iron Lig We	htinued- Brown, sand S-stained ht blue-grey, DOLO eathered, iron-staine ght blue-grey, DOLO	MITE			- 565 - 555
35- 40-	7 fES:		9,3									BI Or	emented joints lue~green DOLOMITE ccassional vugs fille eathered calcite, les iameter				550 550

Andrews Environmental Engineering, Inc. Field 3535 Mayflower Boulevard, Springfield, IL 62707 (217) 787-2334	eld Boring Log
Site Information:Location:Name:Joliet/Lincoln Stone QuarryCoord. System: Site GridLocation:Joliet, IllinoisNorthing: 57679.8County:WillEasting: 45567.6	Boring Information: Boring No.: G44D Well No.: G44S Surf. Elev.: 585.14
Site No.: 1978090001 AEEI No.: 2002-124/2003-125 Sunny, hot	Depth Information: Total: 209.3 Auger:
Drilling Contractor:Personnel:Name: Raimonde Drilling Corp.Geologist: L. JanczakCity: Elmwood Park, IllinoisDriller: D. StefensonEquipment: CME 55 - 8 ¼" HSAHelper (s):	Core: Dates: Start: 7/19/2004 Finish: 7/21/2004
Sample Type: 🚺 - Continuous Barrel 🔀 - Split Spoon 📿 - Shelby Tube 🚺	– Core 🔄 – Blind Drill
Description/Co Sample Run No. Later 1 (11) Sample Recov. Sample Run No. Later 1 (12) Sample Recov. Sample Recov. Sample Run No. Sample Run No. Sampl	mments USC ລີ ຮູ້ ພ
B b c b c	nts, less than ce pyrite -540 -535 -535
	Page 3 of 1

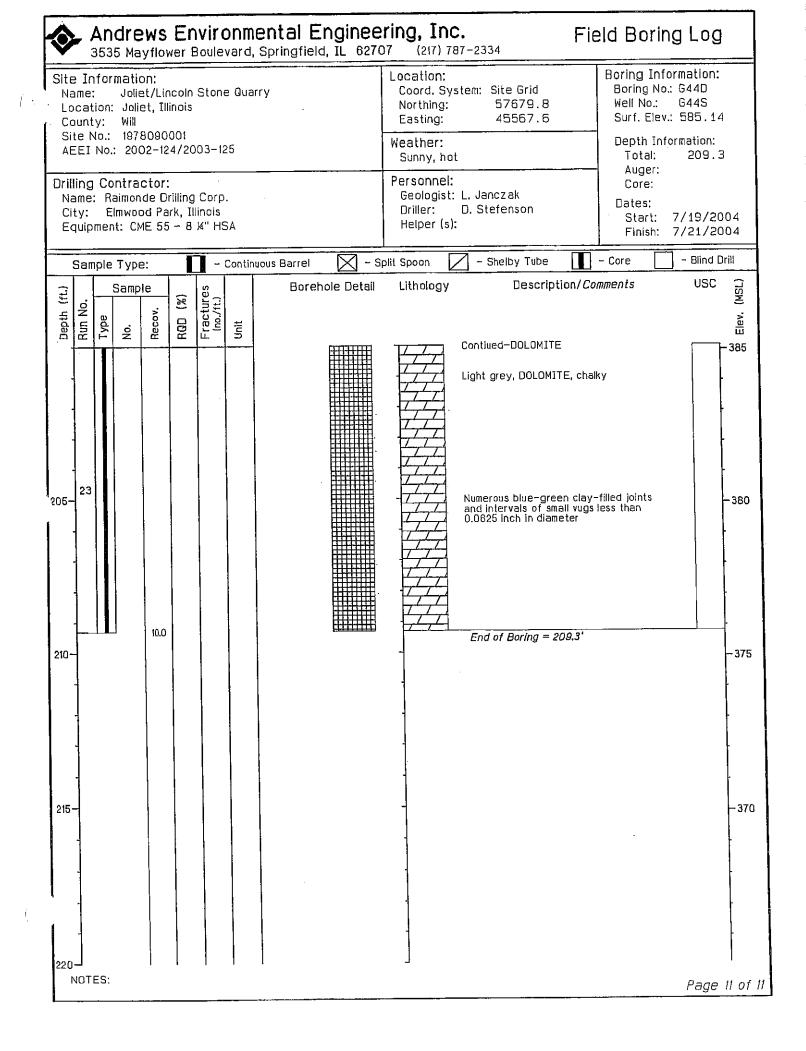
Site 1/10 bit 100 bit 1	3535 Mayflower Boulevard, Springfield, IL 62		
AEEI No.: 2002-124/2003-125 <i>Presting</i> , int <i>Treating</i> , int Jilling Contractor: Name: Raimonde Drilling Corp. <i>Continued Drilling Corp.</i> City: Elword Park, Itlinols <i>Desting</i> , int <i>Desting</i> , int Sample Type: – continuous Barrel <i>Desting</i> , int <i>Desting</i> , int Sample Type: – continuous Barrel <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int Sample Type: – continuous Barrel <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int Sample Type: – continuous Barrel <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int <i>Bind</i> , and <i>Bind</i> , and <i>Bind</i> , and <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int <i>Desting</i> , int <i>Bind</i> , and <i>Bind</i> , and <i>Bind</i> , and <i>Desting</i> , int <i>Dest</i>	me: Joliet/Lincoln Stone Quarry cation: Joliet, Illinois unty: Will	Northing: 57679.8	Well No.: G44S Surf. Elev.: 585.14
Diritions Contractor: Personnel: Core: Base: Reimonde Drilling Corp. Edelogisti L. Janczak Driller: D. Stefenson Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core: Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core: Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core: Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core: - Bind Orr Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core: - Bind Orr Sample Type: - continuous Barrel - split Spoon - Shelby Tube - Core - Bind Orr Sample Type: - split Spoon - core - Bind Orr Sample Type: - split Spoon - split Spoon - split Spoon - split Spl			Total: 209.3
Sample ype: Sample ype: Sampl	me: Raimonde Drilling Corp. y: Elmwood Park, Illinois	Geologist: L. Janczak Driller: D. Stefenson	Core: Dates: Start: 7/19/2004
Image: Stample Image	Sample Type: Continuous Barrel 🔀	- Split Spoon 🛛 – Shelby Tube 🚺	- Core 📄 - Blind Drill
g g	Sample 8 Borehole Deta	ail Lithology Description/Co	mments USC آي
es- 10 76- 10 76- 10 76- 10 76- 10 76- 10 76- 10 76- 10 76- 10 76- 10 77- 77- 10 77- 10 77- 77- 10 77- 77- 77- 77- 77- 77- 77- 77	vype vype lo no/11. Init		Elev.
es- 10.0 50 50 50 50 50 50 50 50 50 50 50 50 50		Continued- Blue-green, D0 pinkish hue	LOMITE,
75- 10 76- 76-	9	Blue-green, dolomitic SHA wavy, pinkish hue	LE partings,
75-	Bartonite Bartonite	Shale partings up to 1 inc	h thick
		Pink banding	-5

Drilling Contractor: Auger: Name: Raimonde Drilling Corp. Core: City: Elmwood Park, Illinois Geologist: L. Janczak Equipment: CME 55 - 8 W" HSA Driller: D. Stefenson Helper (s): - Core Sample Type: - Continuous Barrel Sample Type: - Continuous Barel Sample Type:	bg	eld Boring L	-2334 Fie	ring, Inc. 7 (217) 787	nginee d, IL 6270	ental E Springfiel	onm evard,	vir Boule	En ver E	WS yflow	dre 5 May	\n 1531	,	
AEEI No.: 2002-124/2003-125 Weather. Sunny, hot Total: 2009 Drilling Contractor: Name: Raimonde Drilling Corp. Personnel: Geologist: L. Janczak Diller: D. Stefenson Equipment: CME 55 - 8 M" HSA Personnel: Geologist: L. Janczak Diller: D. Stefenson Sample Type: - Continuous Barrei - Split Spoon - Shelby Tube - Core - Blin 3 ample Type: - Continuous Barrei - Split Spoon - Shelby Tube - Core - Blin 3 ample Type: - Continuous Barrei - Split Spoon - Shelby Tube - Core - Blin 3 ample Type: - Continuous Barrei Somple - Split Spoon - Shelby Tube - Core - Blin 3 ample Type: - Continuous Barrei Borehole Detail Lithology Description/Comments US 4 and State - Split Spoon - Shelby Tube - Core - Blin 4 and State - Split Spoon - Shelby Tube - Core - Blin 6 and State - Split Spoon - Shelby Tube - Core - Blin 6 and State - Split Spoon - Shelby Tube - Core - Blin	C S	Boring No.: G44 Well No.: G44	em: Site Grid 57679.8	Coord. Syst Northing:		rry	ie Qua		inois	et/Lin et, Illi	Jolie Jolie Will	ion: y:	me: cati unt	Na Lo Co
Drilling Contractor: Name: Raimonde Drilling Corp. Core: Dates: City: Elmwood Park, Illinois Geologist: L. Janczak Dates: Equipment: CME 55 - 8 k" HSA - Continuous Barrel - Split Spoon - Shelby Tube - Core - Blin Sample Sample <td>on: 9.3</td> <td>Totai: 20</td> <td></td> <td></td> <td></td> <td></td> <td>25</td> <td>003-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	on: 9.3	Totai: 20					25	003-1						
Sample		Core: Dates: Start: 7/19		Geologist: L Driller: [llinois	rilling rk, Il	ide Dr od Pai	nomie Imwoo	Ra El	ime: ty:	Nạ Cit
11 <	nd Drill	- Core 🗌 - Bl] - Shelby Tube	olit Spoon	🔀 - st	uous Barrei	Contin			9:	Туре	ple	Sam	
85- 11 85- 11 Continued-Blue-green, dolomitic SHALE partings, pink banding Pink banding Pink banding ends, increase in vugs, less than 0.0625 inch in diameter	SC (ISM)	<i>mments</i> L	Description/ <i>Con</i>	Lithology	hole Detail	Bore		res	(%	le	Sampl	{		(H)
85- 11 85- 11 Continued-Blue-green, dolomitic SHALE partings, pink banding Pink banding ends, increase in vugs, less than 0.0625 inch in diameter	Elev						hit	ractu Ino./ft		SCOV.	d	,pe	о И И	
85- 11 85- 11 85- 11 85- 11 85- 11 85- 11 85- 11 85- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-508	omitic SHALE	Continued- Blue-green, dolo partings, pink banding			T	5		Ē	ä.	ž	⊢́ T	ŭ	ă
	- 50		Pink banding ends, increase than 0.0625 inch in diameter			ntonite Chips				10.0				-
95- 12 95- 13 100 NOTES:	-4					Ben			0	10.0		3		100

Site Information: Logation: Burging Information: None: Jord V. Jone Guarry Logation: Boring No: E440 Northing: 57679.8 Baring Jone Guarry Boring No: E440 Same Kall Marce: 45567.6 Baring Jone Guarry Boring No: E440 Same Kall Marce: Marce: Marce: Baring Jone Guarry Baring Jone Guarry Jacation: Jacation: Jacation: Marce: Marce: Baring Jone Guarry Jacation: Jacation: Jacation: Jacation: Jacation: Baring Jone Guarry Jacation: Jacatio	Andrews Environmental Engine 3535 Mayflower Boulevard, Springfield, IL 62	ering, Inc. Fie	eld Boring Log
AEEI No: 2002-124/2003-125 Total: 209.3 Drilling Contractor: None: Core: Datage: None: Total: 209.3 Sample Type: Image: Personnel: Core: Dates: Sample Type: Image: Image: Image: Dates: Sample Type: Image: Image: Image: Image: Image: Sample Type: Image: Image: Image: Image: Image: Image: Sample Type: Image: Image: <td< td=""><td>Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will</td><td>Coord.System: Site Grid Northing: 57679.8</td><td>Boring No.: G44D Well No.: G44S</td></td<>	Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will	Coord.System: Site Grid Northing: 57679.8	Boring No.: G44D Well No.: G44S
Dirling Contractor: Core: Driver, Einwood Park, Tilinois Eeologist: L. Janczak Core: Equipment: CME 55 - 8 x ^r HSA - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel Semple Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel Semple Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: - Continuous Barrel Semple Type: - Continuous Barrel - Splt Spoon - Shelby Tube - Core - Eand Driver Sample Type: Statistic - Splt Spoon - Shelby Tube - Core - Eand Driver - Core - Eand Driver Nos Sample Type: Sa		1	Total: 209.3
Sample Type: Sample type: <td< td=""><td>Name: Raimonde Drilling Corp. City: Elmwood Park, Illinois</td><td>Geologist: L. Janczak Driller: D. Stefenson</td><td>Core: Dates: Start: 7/19/2004</td></td<>	Name: Raimonde Drilling Corp. City: Elmwood Park, Illinois	Geologist: L. Janczak Driller: D. Stefenson	Core: Dates: Start: 7/19/2004
12 13 100	Sample Type: 🚺 - Continuous Barrei 🔀 -	Split Spoon 🗌 – Shelby Tube 📗	– Core 🔄 – Blind Drill
105-13 10.0	Depth (ft.) Cepth (ft.) Run No. No. Recov. Unit Unit Unit Unit Unit	Continued-Light blue-grey, Coccassional vugs, 0.25 to 0 diameter, increase in joints	DOLOMITE -485
	105- 100 10- 100 100 100 100 100 10	Image: system of the system	reen CLAY k -480 -475

Andrews Environmental Engines 3535 Mayflower Boulevard, Springfield, IL 627	ering, Inc. Fie	eld Boring	j Log
Site Information: Name: Joliet/Lincoln Stone Guarry Location: Joliet, Illinois County: Will	Location: Coord.System: Site Grid Northing: 57679.8 Easting: 45567.6	Boring Infor Boring No.: Well No.: Surf. Elev.:	G44D G44S
Site No.: 1978090001 AEEI No.: 2002-124/2003-125	Weather: Sunny, hot	Depth Infor Total: Auger:	209.3
Drilling Contractor: Name: Raimonde Drilling Corp. City: Elmwood Park, Illinois Equipment: CME 55 - 8 ¼" HSA	Personnel: Geologist: L. Janczak Driller: D. Stefenson Helper (s):	Core: Dates: Start: 7	7/19/2004 7/21/2004
Sample Type: 🔲 - Continuous Barrel 🔀 -	Split Spoon 🛛 - Shelby Tube 🔲	- Core	- Blind Drill
Depth (ft.) Depth (ft.) Run No. No. No. No. No. No. No. No. No. No.	Lithology Description/ <i>Co</i>	mments	Elev. (MSL)
	DOLOMITE, increased weat blue-grey banding, increas	nering, dərk ed vugs	465
15 125-	Image: Constraint of the second se	on-stained	- 460
			- 455
		•	- 450
NOTES:			Page 7 of 11

Į.


Equipment: CME Sample Type:	tor: e Drilling (d Park, Illin 555 - 8 k	Corp. nois (" HSA - Contir	vuous Barrel 🔀 – S	Weather: Sunny, hot Personnel: Geologist: L. Janczak Driller: D. Stefenson Helper (s):		209.3
Name: Raimond City: Elmwood Equipment: CME Sample Type: 3 Sample	e Drilling (d Park, Illin 55 – 8 ¥	nois {'' HSA - Contir	vuous Barrel 🔀 – S	Geologist: L. Janczak Driller: D. Stefenson Helper (s):	Core: Dates: Start:	
Sample		-	nuous Barrel 🛛 🗌 - S			7/21/2004
	ov. (%)	ន		plit Spoon 🛛 - Shelby Tub		- 9lind Drill
		¥⊐	Borehole Detail	Lithology Descr	iption/ <i>Comments</i>	USC (7 SW)
	Recov.	Fractures (no./ft.) Unit		Continued- Blue-	grey, DOLOMITE	20 10 10 10 10 10 10 10 10 10 10 10 10 10
	10.0			Iron-stained Fracture filled w Blue-grey, DOLO Fracture fille Iron-stained Fracture fille Fracture fille Fracture fille Fracture fille Fracture fille	MITE Ind with CLAY	

ĺ

Andrews Environmental Engine 3535 Mayflower Boulevard, Springfield, IL 62	ering, Inc. Field Borin	g Log
Site Information: Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will	Location:Boring InfoCoord. System: Site GridBoring No.Northing:57679.8Easting:45567.6Surf. Elev.	: G44D G44S
Site No.: 1978090001 AEEI No.: 2002-124/2003-125	Weather: Depth Info Sunny, hot Total: Auger:	ormation: 209.3
Drilling Contractor: Name: Raimonde Drilling Corp. City: Elmwood Park, Illinois Equipment: CME 55 - 8 ¼" HSA	Personnel: Core: Geologist: L. Janczak Dates: Driller: D. Stefenson Start:	7/19/2004 7/21/2004
Sample Type: 🔲 - Continuous Barrel 🔀 -	Split Spoon 🗌 - Shelby Tube 📘 - Core	- Blind Drill
Depth (ft.) Bun No. Run No. Type No. Radio (%) Radio (%) Init (no./tt.) Unit (10./tt.)	il Lithology Description/ <i>Comments</i>	Elev. (MSL)
Depth Run NG Ron Vo. Recov.	Dark blue, shale partings, wavy	- 425
	Dark blue-grey shale partings, trace pyrite, less than 0.5 inch thick	
	Blue-grey, DOLOMITE	-420
	Dark blue-grey shale partings, decrease in vugs, 0.3 to 0.4 foot thick	415
175-	Z Blue-grey, DOLOMITE Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
NOTES:		Page 9 of

Vame Loca Cour	e: ation: nty:	ation: Joliet/L Joliet, 1 Will	llinois		ne Qua	rry		Location: Coord. Sys Northing: Easting:	stem: Site Grid 57679.8 45567.6	Boring Info Boring No. Well No.: Surf. Elev.	: G44D G44S : 585.14	
		197809 2002-1		-600	125			Weather: Sunny, ho	······································	Depth Info Total: Auger:	ormation: 209.:	3
Nam City:	e: Rai : Elm	tracto monde l wood P : CME 5	Drilling ark, 1	llinois	;			Personnel: Geologist: Driller: Helper (s):	L. Jandzak D. Stefenson	Core: Dates: Start: Finish:	7/19/20	
Sa	ample 7	Гуре:		- 1	Contir	uous Barrel 🛛 🔀] - Sp	lit Spoon	- Shelby Tube	– Core	– Blind [Orill
0		ample	(%)	res		Borehole D	etail	Lithology	Description/C	omments	USC	(WSL)
Run No.	Type	No. Recov.	RQD ()	Fractures	Unit							Elev.
2		10.	0						Continued-Dark blue-grey Dark grey, dolomitic SHAL tight, hardness increases Thinly laminated, lighter c	E, black streaks with depth		- 405
	22	1	0.0						DOLOMITE, with blue-gre pinkish hue Vugs, less than 0.125 inc Larger vugs, up to 1.5 in some calcite crystals 0.	h in diameter		- 36

į.

Illinois Environmental Protection Agency	Well Completion Report
Site #: 1978090001 County: Will	Well #: 6445
Site Name: Joliet/Lincoln Stone Quarry	Borehole #: 6445
Coordinates: X_45568.1 Y_57679.8 {or} La	atitude:°' Longitude:°'"
Surveyed by: Peter Campbell, Andrews Environmental Engineering.	Inc IL Registration #:
Drilling Contractor: Raimonde Drilling Corp. Consu	Iting Firm: AEEI
Driller: D. Stefenson Geolog	gist: <u>S. Radulovic</u>
Drilling Method: <u>Hollow stem auger/rotary</u> Logge	d by: S. Radulovic
Drilling Fluids (type):_water for reaming Report	t Form Completed by: <u>S. Radulovic</u>
Date Well Started: 07/19/2004 Date Well Finished: 07/23/2	1 004 Date Form Completed: 07/30/2004
	ELEVATION DEPTH (0.01 ft) (MSL) ⁹ (BGS) [*] 587.03 <u>-1.89</u> Top of Protective Casin
ANNULAR SPACE DETAILS	586,52 -1.38 Top of Riser Pipe
Type of surface seal: Concrete	585.14 .00 Ground Surface
Type of annular sealant: Bentonite chips	583.14 2.00 Top of Annular Sealant
Installation method: Free drop	<u>n/a</u> <u>n/a</u> Static Water Level
Setting time: <u>24+ hours</u>	Measured on (after completion)
Type of bentonite seal - Granular, <u>Chips</u>	
Installation method: Free drop	583.14 2.00 Top of Seal
Setting time: 24+ hours	466.64 <u>118.50</u> Top of Sandpack
Type of sand pack: Quartz Sand	
Grain size: 10/30 (sieve size)	463.46 121.68 Top of Screen
Installation method: Free drop	<u>453.97 131.17</u> Bottom of Screen <u>453.26 131.88</u> Bottom of Well
(if applicable)	
Installation method: Free drop	376.11 209.03 Bottom of Borehole * Referenced Io a National Geodetic Vertical Datum * positive (+) values below 6S, negitive (-) values above 6S
Notes: Nested well pair G440/G44S are installed in the same borehole.	CASING MEASUREMENTS
	Diameter of Borehole (in) 8.0
	ID of Riser Pipe (in) 2.0
WELL CONSTRUCTION MATERIALS	Protective Casing Length (ft) 5.0
(circle one)	Riser Pipe Length (ft) 123.06
Protective Casing SS304, SS316, PTFE, PVC or <u>Other:</u>	Bottom of Screen to End Cap (ft) .71
Riser Pipe Above W.T. SS304. SS316, PTFE. <u>EVC</u> or Other:	Screen Length (Ist slot to last slot) (ft) 9.49
Riser Pipe Below W.T. SS304, SS316, PTFE, PVC, or Other:	Total Length of Casing (ft) 133.26
AE9503(5) SS304, SS316, PTFE, <u>PVC</u> , or Other:	Screen Slot Size* #10 (0.0 *Hand-slotted well screens are unacceptable.

Í

Site Information: Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will Site No.: 1978090001	Location: Coord. System: Site Grid Northing: 58057.56 Easting: 48125.64	Boring Information: Boring No.: 6455 Well No.: 6455 Surf. Elev.: 600.30
AEEI No.: 2002-124	Weather: Sunny/60 deg F	Depth Information: Total: 132,48
Drilling Contractor: Name: RD-n-P Drilling, Inc. City: Crown Point, Indiana Equipment: HQ Core	Personnel: Geologist: S. Radulovic Driller: D. Eger Helper (s):	Auger: 4.0 Core: 132.48 Dates: Start: 11/2/2004 Finish: 11/4/2004
Sample Type: Continuous Barrel	🔀 - Split Spoon 🛛 - Shelby Tube 🚺	- Core - Blind Drill
	le Detail Lithology Description/C	omments USC (ISK) WSC (ISK) Mag
1 1 1 0 0 1 1 1 1 1 1 1 1 1 </td <td>Topsoil Dark grey, Clayey SAND, v intervals of grey clayey s Light grey with a beige hu with small vugs (1/16–1/2") Weathered from 4–10'.</td> <td>ith trace</td>	Topsoil Dark grey, Clayey SAND, v intervals of grey clayey s Light grey with a beige hu with small vugs (1/16–1/2") Weathered from 4–10'.	ith trace
4 5 10- 6 6		- 59(
	6" vertical joint with trac exposed faces.	e iron staining on
NOTES: Geological descriptions obtained from the log for G45D.	poring	Page 1 of

N Li Ç	ame ocal ount	: :ion: :y:	Joli Will	et/Li	llinois	Stor	ne Qua	arry				Location: Coord, Sy Northing: Easting:	ystem: Site Grid 58057.56 48125.64	Boring Inf Boring No Well No.: Surf. Elev	
A	EEI	No.:	20	02-1	24							Weather: Sunny/60) deg F	Depth Inf Total:	132.48
N Ci	əme ty:	: RE Cr)—n— own		lling, t, Ind							Personnel Geologist Driller: Helper (s	: S. Radulovic D. Eger	Auger: Core: Dates: Start: Finish:	4.0 132.48 11/2/20 11/4/20
	Sam		Тур			1 -	Contir	uous B	arrel	\square	🔇 – sr	olit Spoon	Z - Shelby Tube	Core	- Blind Di
Depth (ft.)	Run No.	Type	Samp Vo	Recov.	Blow Count	qp [qs] (in tsf)	% Moisture		Bore	ehole (Jetail	Lithology	Descriptio	on/Comments	USC
25-	8												(continued) Light grey with a beig with small vugs (1/16– 1" thick chert layer.	e hue, LIMESTONE, 1/2").	
30-	9								Bentonite				Vertical joint from 28 Pinkish banding comm		
35-	- 10												Increased amount or partings, some fract partings. 1–2" thick vuggy into <1/16".	ures along shale	

• ?

	?		353	35 Ma	ayflo	wer	NVII Boule	oni evaro	mental Enginee d, Springfield, IL 627	ring, Inc. 07 (217) 787-2334	Fie	eld Bori	ng Log
(· •	N L C	lame òca oun	e: tion ty:	: Joli Will	et/Li	linois	Stor	e Qu	аггу	Location: Coord.System: Site Grid Northing: 58057.56 Easting: 48125.64		Boring Inf Boring No Well No.: Surf. Elev	
	Α	EEI	No.	: 20	02-12	24				Weather: Sunny/60 deg F			132.48
	N C	ame ity:	R: R	D−n− rown	ctor P Dri Poini G Cor	lling, t, Ind	Inc. iana			Personnel: Geologist: S. Radulovic Driller: D. Eger Helper (s):	-	Auger: Core: Dates: Start: Finish:	4.0 132.48 11/2/2004 11/4/2004
		San	nple	Туре	2:	ſ	-	Conti	nuous Barrei 🛛 🗌 – Si	lit Spoon 🗌 – Shelby Tube		- Core] - Blind Drill
	Depth (ft.)	Run No.	Type	Samp v	Recov.	Blow Count	q _p [q _s] (in tsf)	% Moisture	Borehole Detail	Lithology Description	on/ <i>Cor</i>	nments	Elev. (MSL)
	45-	11							Bentonite Bentonite Bentonite Bentonite Bentonite	Cotor grading to a pine 4" vertical fracture from with blueish grey cla	nkish re	:d.	-550
	N	ΟΤΕ			gical ir 645		ption	s obta	ained from the boring				Page 3 of .

------•

-

÷

I

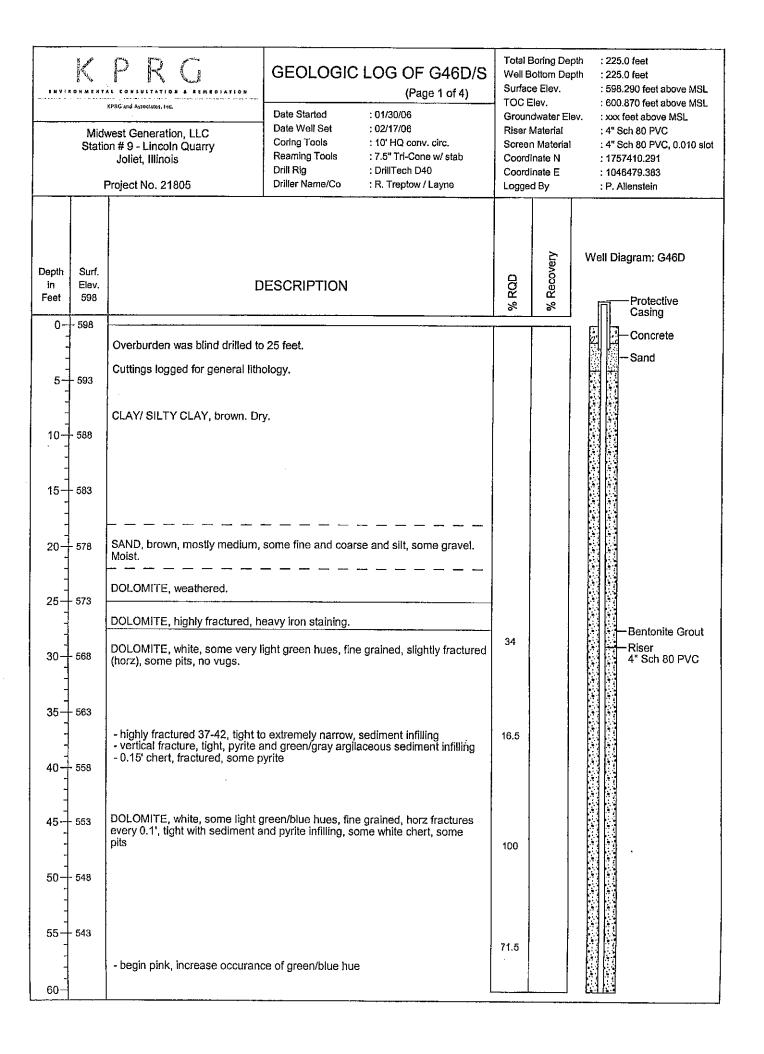
Drilling Name City: Equip	I No.: 20 g Contra e: RD-n- : Crown pment: H mple Typ Samp Samp	ector: P Drillin Point, I Q Core e:	ndiana	stur	– Si Phole Detail	Weather: Sunny/60 Personnel: Geologist Driller: Helper (s) plit Spoon	: S. Radulovic D. Eger):	Auger: Core: Dates: Start: 11 Finish: 11 - Core -	132, 48 4, 0 132, 48 1/2/2004 1/4/2004 - Blind Drill
Name City: Equip San	e: RD-n- : Crown pment: H mple Typ Samp	P Drillin Point, I Q Core e:	ndiana	sture Bore		Geologist Driller: Helper (s) plit Spoon	: S. Radulovic D. Eger): Shelby Tube	Core: Dates: Start: 11 Finish: 11 - Core -	132.48 1/2/2004 1/4/2004 - Blind Drill
	Samp	le t	a sf)	sture Bore		2			· · · · · · · · · · · · · · · · · · ·
Depth (ft.) Run No.		Recov. al		stur	ehole Detail	Lithology	Description/Con	merits	
-						:			USC
							(continued) Pinkish, LIMESTONE, some sn Vertical fractures from 60,6 With blueish grey clayey sha	-62.3' filled	-54
65-13							Vertical fractures from 65.0- with blueish grey clayey sha Vertical fractures from 67.2- with blueish grey clayey sha	-68.2' filled	
70				Bentonite			Vuggy intervals up to 1" thic	k.	-5
75-14							Closed vertical joint.		

•

Andrews Environmental Engine 3535 Mayflower Boulevard, Springfield, IL 6	eering, Inc. Field Boring Log
Site Information: Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will Site No.: 1978090001	Location:Boring Information:Coord. System: Site GridBoring No.: 645SNorthing:58057.56Well No.: 645SEasting:48125.64Surf. Elev.: 600.30
AEEI No.: 2002-124	Weather: Depth Information: Sunny/60 deg F Total: 132.48
Drilling Contractor: Name: RD-n~P Drilling, Inc. City: Crown Point, Indiana Equipment: HQ Core	Personnel:Auger:4.0Geologist:S. RadulovicCore:132.48Driller:D. EgerDates:Helper (s):Start:11/2/2004Finish:11/4/2004
	- Split Spoon 🛛 - Shelby Tube 🚺 - Core 🔲 - Blind Drill
Bound Ballow Count Run No. Recov. Blow Recov. Blow Count Recov. Recov. Blow	ail Lithology Description/ <i>Comments</i> USC ແ ແລະ ພິພິ
	(continued) Grey with pink banding, LIMESTONE, some 2" diameter vug. 2" diameter vug.
NOTES: Geological descriptions obtained from the boring log for G45D.	Page 5 of 7

ĺ

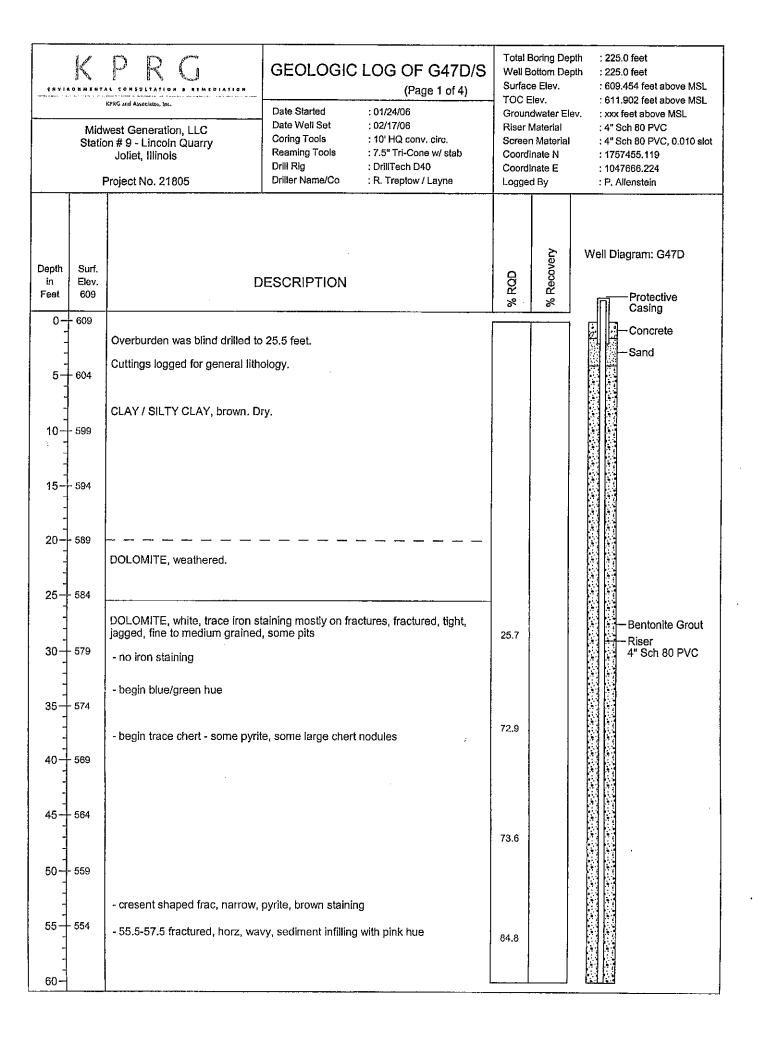
N Lu Ci Si	ame oca oun te l	tion ty: ty:	: Joli Will 197	et/Li iet, II 8090	llinois	n Stor	ne Qu	arry				Northing: Easting:	ystem: Si 58	te Grid 3057.56 3125.64	-	Boring Ir Boring N Well No.: Surf. Ele	o.: G45 G45	S S
A	EEI	No.	: 20	02-12	24							Weather:) deg F			Depth Ir Total:		on: . 48
Na Ci	ame ty:	:R C	ontra D-n- rown it: H(P Dril Point	lling, t, Inc							Personnel Geologist Driller: Helper (s	: S. Radu D. Eger			Auger: Core: Dates: Start: Finish:	132 11/2	4.0 .48 /2004 /2004
	San		Туре				Contin	nuous Bar	rrei	$\mathbf{\Sigma}$] - s	plit Spoon	🗌 – She	by Tube		– Core	_ – Blir	nd Drill
Depth (ft.)	Run No.	Type	Samp 2	Recov.	Blow Count	qp [q s] (in tsf)	% Moisture	E	loreh	ole Di	etail	Lithology		Descript	ion/ <i>Cor</i>	nments	US	52 Elev. (MSL)
15	17								Bentonite Bentonite				Cherty la fossils ar Piñk band	ding ceases	ing thic, rystals.	ker in color		- 495
	TE	 s:	Geolo	gical (descr	 iption	s obta	ined from	 n the	boring								 e 6 of 7


l.

130 476 136 476 136 476 136 48	Name: John Store Querry Doord: System: Site Poil: Boilty No: C435 Ste No: 1976/06/0001 Heating: 48125.64 Surv/So deg F Depth Information: Drilling Contractor: Name: RO-P Drilling. Information: Depth Information: Regionant: Heating: 48125.64 Surv/So deg F Depth Information: Drilling Contractor: Personnel: Surv/So deg F Depth Information: Regionant: HQ core Definition Degr Age:: Sample Type: Contruous Barrel: Set So degr Set So degr<!--</th--><th>②</th><th></th><th>353</th><th>5 M</th><th>aytic</th><th>S EI</th><th>nvir Boule</th><th>onr</th><th>nental Eng d, Springfield, I</th><th></th><th>ering, Ir 07 (217)</th><th>)C. 787-</th><th>-2334</th><th>Fi</th><th>eld Bori</th><th>ng Lo</th><th>g</th>	②		353	5 M	aytic	S EI	nvir Boule	onr	n ental Eng d, Springfield, I		ering, Ir 07 (217))C. 787-	-2334	Fi	eld Bori	ng Lo	g
AFEE No:: 2002-124 Weather: Sumy/Edu deg F Depti Intornation: Tota: 32:48 Drilling Contractor:: Name:: ED-n-P Drilling, Inc. City: Crow Point, Indiana Equipment: HQ Core Personne:: Berleifer: D. Eger Helper (s): Depti Intornation: Tota: 32:48 Semple Type: Continuous Barrel: Semple Type: Continuous Barrel: Continuous Barrel:<!--</td--><td>AFEI No: 2002-124 Berth Information: Summy/Sol deg F Derhi Information: Tata: 132.48 Drilling Contractor: Name: RD-rr-P Drilling, Inc. Differ: D. Eger Helper (s): Derkinger Start: 11/2/2004 Sample Type: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image</td><td colspan="6">Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will Site No.: 1978090001</td><td>Coord, S Northing</td><td>iystei :</td><td>58057.56</td><td></td><td colspan="4">Boring No.: G45S Well No.: G45S</td>	AFEI No: 2002-124 Berth Information: Summy/Sol deg F Derhi Information: Tata: 132.48 Drilling Contractor: Name: RD-rr-P Drilling, Inc. Differ: D. Eger Helper (s): Derkinger Start: 11/2/2004 Sample Type: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image	Name: Joliet/Lincoln Stone Quarry Location: Joliet, Illinois County: Will Site No.: 1978090001						Coord, S Northing	iystei :	58057.56		Boring No.: G45S Well No.: G45S						
Drilling Contractor: Nome: CO-P-Drilling, Inc. City: Crown Point, Indiana Equipment: HQ Core Sample Type: Sample Type: Sam	Drilling Contractor: Name: RO-re-Porling, Inc. City: Crown Point, Indiana Equipment: HQ Core Personnel: Geologist: S. Recutovic Driller: D. Eger Helper (s): Auger: 4 - 0. Core: 132 - 48 Dates: Start: 11/2/2004 Prissi: 11/2/2004 Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Prission Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Prission Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Continuous Barrel: - Spit Spoon - Sneby Tube - Core - Bind Origing Sample Type: - Sond Spit Spit Spit Spit Spit Spit Spit Spit										g F							
Semple Semple<	Semple Semple Semple Semple Borehole Detail Lithology Description/Comments USC Semple Secret and	Name: RD-n-P Drilling, Inc. City: Crown Point, Indiana						Geologis Driller:	t: S. D.		Auger: Core: Dates: Start:	4. 132.4 11/2/2	0 18 1004					
130 135 135 End of Boring = 132.48' 480	136- 136-		Sam I T] -	Contir	nuous Barrel	🔾 - sp	olit Spoon		- Shelby Tube		- Core] - Blind	Orill
130 135 End of Boring = 132.48' -480'	25-19 130-20 135- 135	Depth (ft.)	Run No.			[Blow Coun	4 _p [q _s] (in tsf)	% Moisture	Borehole	Detail	Lithology		Descrip	tion/ <i>Col</i>	mments	USC	Elev. (MSL)
NOTES: Geological descriptions obtained from the boring log for G45D.	NOTES: Geological descriptions obtained from the boring	- - - - - - - - - - - - - - - - - - -	20	S:	Geolo	gical	descr	iption	s obta	Sand Sand						Έ.		-475

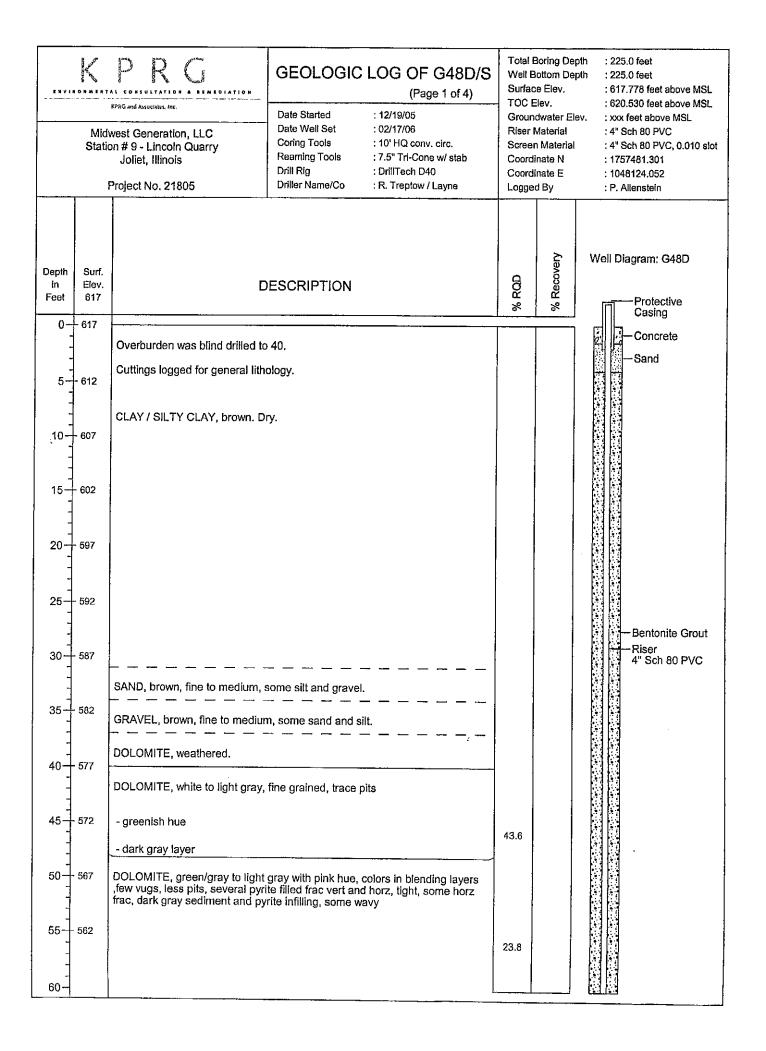
.....

ĺ


Site Name: Joliet/Lincoln Sto	ne Quarry	· · ·	· · · · · · · · · · · · · · · · · · ·	Borehole #:645	s
Coordinates: <u>x 48125.64</u>	Y_58057.56	(or) Lat	tude:°	<u>'</u> " Longitude:º	т. Т. П.
Surveyed by: Andrews Enviro					
Drilling Contractor: <u>RD-n-P C</u>			•		
_	·		-		
Driller: U. Eger		Geologi	st: 5. Radulovid	<u> </u>	
Drilling Method: HQ core		Logged	by: <u>S. Radulov</u>	vic	
Drilling Fluids (type): <u>water fo</u>	or reaming	Report i	form Completed	i by: S. Holland	2004 200 200
ate Well Started: 11/02/200	4 Date Well Finished:_	11/04/200	<u>4</u> Date F	Form Completed: 12/30/2	2004
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ELEVATION (MSL)®	DEPTH (0.01 ft) (8GS)*	
	F	······································		<u> </u>	ective Casing
ANNULAR SPACE	DETAILS		603.18	<u>-2.88</u> Top of Riser	Pipe
Type of surface seal: Conce	ete		600.30	.00 Ground Surf	асе
Type of annular sealant: Be	ntonite		600,30		lar Sealant
Installation method: Tre			<u>n/a</u>	<u>n/a</u> Static Water Measured	Level
Setting time: 24+ hours				(after comple	lian)
Type of bentonite seal - Gri	anular, <u>Chips</u> (circie one)				
Installation method: Fre	e drop X		597.30	<u>3.00</u> Top of Seal	
Setting time: 24+ hours	×		478.70	121.60 Top of Sand	<pre> al al andpack creen Screen Well Borehole Bove 6S ITS 3.7 2.0 5.0 125.28) .36) 9.72 </pre>
Type of sand pack: Quartz	Sand		·		
			477 00	100 10	
Grain siże: 10/30 (477,90	<u>122.40</u> Top of Scre	7 7 7
Installation method: Fre	e drop		Υ.		
			<u>468.18</u> 467.82	<u>132.12</u> Bottom of S <u>132.48</u> Bottom of W	
Type of backfill material: na	i (if applicable)		<u>-107.02</u>	<u></u> Bottom of W	en
Installation method; <u>na</u>	<u>k</u>		467.82	132.48 Bottom of B	lorehoie
Notes:	·		* positive (+) v	to a Nalional Geodetic Vertical Datum alues below GS, negitive (-) values abor	ve GS
		· –	CAS	ING MEASUREMENT	S
•		i	Diameter of B		
			ID of Riser Pig		
	CTION MATERIALS	-	Riser Pipe Ler	nsing Length (ft) Noth (ft)	
	304, SS316, PTFE, PVC or <u>Other:</u>			reen to End Cap (ft)	
Riser Pipe Above W.T. SS	304, SS316, PTFE, <u>PVC</u> or Other:		Screen Lengt	h [ist slot to last slot] (ft)	9.72
·	304, SS316, PTFE, <u>PVC</u> , or Other:			of Casing (ft)	<u></u>
Screen (55 (E9503)5)	304, SS316, PTFE, PVC, or Other:		Screen Slot S *Hand-slotted well scre		#10 (0.01")
		·			99999999999999999999999999999999999999

MPRC and Associates, Inc. Midwest Generation, LLC Station # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805			GEOLOGIC LOG OF G46D/S (Page 2 of 4) Date Started : 01/30/06 Date Well Set : 02/17/06 Coring Tools : 10' HQ conv. circ. Reaming Tools : 7.5" Tri-Cone w/ stab Drill Rig : DrillTech D40 Driller Name/Co : R. Treptow / Layne		ottom Depth e Elev. Glev. dwater Elev. Material n Material nate N nate E d By	: 598.290 feet above MSL : 600.870 feet above MSL
Depth in Feet	Surf. Elev. 598	E	ESCRIPTION	% RQD	% Recovery	Well Diagram: G46D
60-	- 538			71.5		
65 - - - 70	- 533 - 528	- 0.3' fracture zone, horz, sedi DOLOMITE, pink, fine grained horz, wavy, very narrow, occ b - 0.2' darker layer, fractured, v	some pits, no yugs, sediment filled fractures	89		
75-	- 523	- 0.2' darker layer, fractured, v	ery narrow	100		
80	- 518	- highly fractured zone 80-83,	ight, sediment infilling			
85-	- 513	DOLOMITE, white with light pir fractures, wavy tight to very na - vert frac, very narrow	k hue, trace to little pits, layers with many row, sediment infilling, trace fossils	84.5		-Bentonite Grout
90-	- 508	 large vug, with pyrite on botto fractures with trace pyrite, se large cross fracture, sediment 	diment infilling			: 598.290 feet above MSL : 600.870 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 slot : 1767410.291 : 1046479.383 : P. Allenstein Well Diagram: G46D
95	- 5 03	- trace pyrite near vert fracture - chert, fossil vug mod soft	2	75.1		
100 - - -	- 498	 pitted, vuggy fossiliferous lay highly fract, horz and vert, the infilling 	er (0.1') ght to very narrow, trace pyrite, little sediment			: 225.0 feet : 598.290 feet above MSL : 600.870 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 slot : 1757410.291 : 1046479.383 : P. Allenstein Well Diagram: G46D
105	- 493	-begin layers of darker and ligh - vug, trace pyrite	ter pink	92.4		
110- 	- 488					
- - 115 - -	· 483			98		
		 fractured, horz and vert, tight fractured, narrow 				

	Mid Static	P R G KPRG and Association, Inc. West Generation, LLC on # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805	GEOLOGIC Date Started Date Well Set Coring Tools Reaming Tools Drill Rig Driller Name/Co	CLOG OF G46D/S (Page 3 of 4) : 01/30/06 : 02/17/06 : 10' HQ conv. circ. : 7.5" Tri-Cone w/ stab : DrillTech D40 : R. Treptow / Layne	Well B Surfac TOC E Ground Riser N Screer Coordi	dwater Elev. Material n Material inate N inate E	n : 225.0 feet : 598.290 feet above MSL : 600.870 feet above MSL
Depth in Feet	Surf. Elev. 598	Γ	DESCRIPTION		% RQD	% Recovery	Well Diagram: G46D
120 - - - 125 -	- 478 - 473	DOLOMITE, white to light gray sediment filled, tight to very na some laminations, little to trace	arrow, some chert - v	l, some fossils, horz fracs white with darker centers,	98		
130	- 468	DOLOMITE, light gray with ligh wavy, sediment, tight to very n little pyrite	nt green, fine graine arrow, fossils, chert	d, trace to no pits, horz frac - white to light gray with	74.3		
135- - - - 140-		DOLOMITE, gray to dark gray and vugs, chert - light gray with	n some thin bedding	wavy bedding, trace pits	100		
- - 145	- 453	very narrow, sediment infilling - pitted layer - cross fracture	with little pyrite		98.2		Bentonite Grout
150 - 155 -					95.3		Riser 4" Sch 80 PVC
- 160- -	- 438	- 0.1' fossiliferous zones, light	gray (occ every 2 fe	eet)	55.0		
- - 165 - - -	- 433	- 0.12' thin bedding lamination			94.3		
- 170- -	- 428	- fractured, horz and cross, tig	ht, some sediment i	nfilling			
- 175	- 423	- cross frac, 174-175.8, very n - fractures continue to 185, so - also becomming mostly dark	me displacement (<	0.02'), tight	100		
180-							


C N V I J	Midv Statio	KPIIG and Associates, Inc. West Generation, LLC on # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805	GEOLOGIC Date Started Date Well Set Coring Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF G46D/S (Page 4 of 4) : 01/30/06 : 02/17/06 : 10' HQ conv. circ. : 7.5" Tri-Cone w/ stab : DrillTech D40 : R. Treptow / Layne	Well B Surfac TOC E Ground Riser N Screer Coordi	dwater Ele Material n Material nate N nate E	th : 225.0 feet : 598.290 feet above MSL : 600.870 feet above MSL
Depth in Feet	Surf. Elev. 598		DESCRIPTION		% RQD	% Recovery	Well Diagram: G46D
180-	- 418				100		
- 185-	- 413	- transistion zone, DOLOMITI	E / MUDDY DOLOMI	TE			
- - 190-	- 408	MUDDY DOLOMITE, dark gra uniform, no visible grains - becoming near black	iy, platey becomming	massive, black platlets,	100		
- - 195	- 403	192.15-192.7 - SHALE, green, 192.7-193.21 - DOLOMITIC S 193.21-193.81 - transistion int 193.81-194.05 - DOLOMITIC	HALE, light gray, lam o FOSSILIFEROUS I SHALE, gray, laminat	inated gray, frac with pyrite DOLOMITE ted dark, frac with pyrite	100		
200	- 398	FOSSILIFEROUS DOLOMITE some pyrite and quartz in vug - at 196.05, void with quartz a	s and pyrite crystals		64.3		Riser 4" Sch 80 PVC
205	- 393	- begin horz frac, narrow, sed - large vuggy layer, some pyri	· ·	atelets	35.7		
210	- 388	- begin darker to light gray - void large pyrite, some calci	te				Fine Sand
- 215- - -	- 383	- begin white					
220-	- 378						Filter Sand Screen, 0.010 slot 4" Sch 80 PVC
225	- 373	End of Boring at 225 feet.	<u> </u>				
230-	- 368	Boring cored to 225, reamed to	o 225, well set at 225				
235	- 363						
240-							

	Mid Statio	P R G KFRG and Associator, lac. West Generation, LLC on # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805	GEOLOGIC Date Started Date Well Set Coring Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF G47D/S (Page 2 of 4) : 01/24/06 : 02/17/06 : 10' HQ conv. circ. : 7.5" Tri-Cone w/ stab : DriliTech D40 : R. Treptow / Layne	Well B Surfac TOC E Ground Riser M	dwater Elev. Material Material nate N nate E	: 225.0 feet : 225.0 feet : 609.454 feet above MSL : 611.902 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 slot : 1757455.119 : 1047666.224 : P. Allenstein
Depth in Feet 60	Surf. Elev. 609 - 549	[DESCRIPTION		% RQD	% Recovery	Vell Diagram: G47D
-					84.8		
65 - - 70 -	- 544 - 539	DOLOMITE, light pink, some li wavy, some vert, with sedimer vugs - begin dark pink	ghter pink, fine grain t and some pyrite in	ed, fractures, tight, horz filling, trace to no pits or	58.6		
75-	- 534	- some iron staining in bands			67.1		
- 80- - - -	- 529	- fractured zone, horz, sedime	nt infilling				
85 - - - 90		DOLOMITE, white, fine grained horz, tight, some sediment infil - fractured zone - begin trace to no frac or pits	d, little pits, trace to r ling	no vugs or pyrite, little frac	70.3		Bentonite Grout Riser 4" Sch 80 PVC
95 	- 514	- some pyrite - fractured zone		÷	24.2		
100	- 509						
105	- 504				49.4		
- - 110	- 499	- some horz frac, sediment inf	Illing				
115	- 494	begin - vugs and fossils, calcite and small vugs	e, no pyrite, some lay	vers with increase pits	75.1		

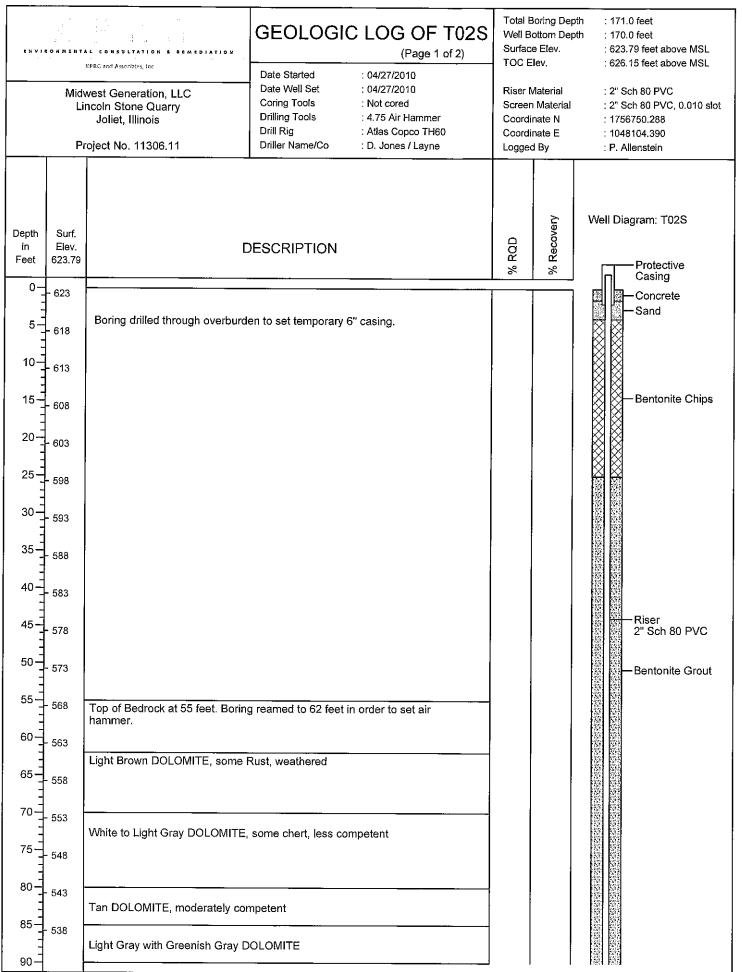
RPRG and Associates, Inc. Midwest Generation, LLC Station # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805			KPRC and Associates, inc. Date Started : 01/24/06 Midwest Generation, LLC Date Well Set : 02/17/06 Station # 9 - Lincoln Quarry Joliet, Illinois : 10' HQ conv. circ. Beaming Tools : 7.5" Tri-Cone w/ stab Drill Rig : DrillTech D40			: 225.0 feet : 225.0 feet : 609.454 feet above MSL : 611.902 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 slot : 1757455,119 : 1047666.224 : P. Allenstein
Depth in Feet	Surf, Elev. 609		DESCRIPTION	% RQD	% Recovery	Well Diagram: G47D
120-	- 489		- white with dark gray and little to trace pyrite,	75.1		
-		some vugs with pyrite on both	- while with dark gray and hille to trace pyrite, om			
125	- 484 - 479	- several layers highly broker DOLOMITE, white to light gra horz wavy frac, sediment infill	y, some light green/blue, few layers with pits, ng, little chert, some pyrite in chert	88.8		
- - 135 - - - -	- 474			. 100		
140	- 469 - 464	DOLOMITE, gray, fine graine sediment infilling, occ cherty li trace to no pits or vugs	d, some chert, occ bedding, horz frac with black ayers, trace pyrite usually in chert, little fossils,	96.5		Bentonite Grout
	- 459	begin - little to no chert				Riser 4" Sch 80 PVC
	- 454 - 449	- some bedding gray to light g	gray, dark gray sediment in horz frac	100		
165	- 444	-		85.8		
170- - - - - 175-	- 439 - 434					
				100		
180-						

E N V I A	Midv Static	REAL CONSULTATION A REALESTATION KEPEG and Associates, Inc. west Generation, LLC on # 9 - Lincoln Quarry Jollet, Illinois Project No. 21805	GEOLOGIC Date Started Date Well Set Coring Tools Reaming Tools Drill Rig Driller Name/Co	LOG OF G47D/S (Page 4 of 4) : 01/24/06 : 02/17/06 : 10' HQ conv. circ. : 7.5" Tri-Cone w/ stab : DrillTech D40 : R. Treptow / Layne	Well B Surfac TOC E Groun Riser I Screer Coord	dwater El Material Material nate N nate E	epth : 225.0 feet : 609.454 feet above M : 611.902 feet above M Elev. : xxx feet above MSL : 4" Sch 80 PVC	ISL
Depth in Feet	Surf. Elev. 609	C	ESCRIPTION		% RQD	% Recovery	Well Diagram: G47D	
180-	- 429				100			
- - 185 - - -	- 424	- becoming darker - 0.3' transitional layer MUDDY DOLOMITE, dark gray	y, thin black platlets,	no frac, no chert	100	· · · · ·		
190-	- 419						Bentonite Gro	out
- - 195	- 414	193.9-194.15 - SHALE, light gr 194.15-195.3 - DOLOMITIC SH 195.3-195.5 - DOLOMITIC SH	HALE, lighter, some	pits with pyrite			Riser	
200- 	- 409	FOSSILIFEROUS DOLOMITE, vuggy, pyrite, calcite and quart - large crystal layer at 197, qua - horz frac, sediment at 200'	z in vugs and voids	iht green hues, pitted,			4" Sch 80 PV0	0
205-	- 404	begin - little vugs and pits						
210	- 399	- 0.7' horz frac, mostly pyrite	appared) this black	platelate and hade warms	43.9		Fine Sand	
-		DOLOMITE, gray and black (pe pitted, calcite quartz and pyrite	throughout	platelets and beds, vuggy,				
215 - - -	- 394	DOLOMITE, light gray, some p frac with green soft argillaceou	its and vugs, calcite s sediment infilling	quartz and pyrite, horz	54.2		Filter Sand	
220	- 389	- some black platelets			94.0		4" Sch 80 PV0	slot C
225-	- 384	End of Boring at 225 feet.	<u> </u>	<u></u>	L			
230-	- 379							
235	- 374							
240-								

KPRG and Associates, Inc. Midwest Generation, LLC Station # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805			GEOLOGIC LOG OF G48D/S (Page 2 of 4) Date Started : 12/19/05 Date Well Set : 02/17/06 Coring Tools : 10' HQ conv. circ. Rearning Tools : 7.5" Tri-Cone w/ stab Drill Rig : DrillTech D40 Driller Name/Co : R. Treptow / Layne	Well B Surfac TOC E Groun Riser I Screer Coordi	dwater Elev. Material n Material inate N inate E	: 225.0 feet : 225.0 feet : 617.778 feet above MSL : 620.530 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 slot : 1757481.301 : 1048124.052 : P. Allenstein	
Depth in Feet	Surf. Elev, 617	Γ	DESCRIPTION	% ROD	% Recovery	Well Diagram: G48D	
60- 	- 557 - 552 - 547	 coloring becoming more dist pink hue is darker 62-64, ver light and dark gray, trace to pink resumes, some chert, ti 	rt frac, pyrite, vugs have calcite and pyrite no pink, pitted 67-70	15.3			
- 75- 80-	- 542 - 537		en/gray, vuggy, cherty, trace pyrite vugs with pyrite, trace to no green hue	- 84.9			
- 85- - - - 90-	- 532	 some wavy frac 0.35' vert frac, tight, no pyrite 1.0' vert frac, tight, some pyr 88-90 - wavy horz frac zone, 89-92 - no pyrite 	e de la constante de	67.5		Bentonite Grout	
95	- 522	begin gray, increase wavy ho	rz frac, some vugs with calcite, little vert frac	13.4			
100- - - - 105-		- 0.05 layer pitted, vuggy, foss - becoming lighter	iliferous, white				
	- 507	DOLOMITE, gray with pink hue pits and vugs, some with pyrite	e, fine grained, layers with darker shade, little	22.7			
- 115- - -	- 502			69.7			

Depth in Feet		n # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805	Date Well Set : 02/17/06 F Coring Tools : 10' HQ conv. circ. S Reaming Tools : 7.5" Tri-Cone w/ stab C Drill Rig : DrillTech D40 C			water Elev. Iaterial Material nate N nate E I By	: 225.0 feet : 225.0 feet : 617.778 feet above MSL : 620.530 feet above MSL : xxx feet above MSL : 4" Sch 80 PVC : 4" Sch 80 PVC, 0.010 stot : 1757481.301 : 1048124.052 : P. Allenstein	
in Feet				,				
120-	Surf. Elev. 617		DESCRIPTION		% RQD	% Recovery	Well Diagram: G48D	
	497			· · · · · · · · · · · · · · · · · · ·			स्वारच	
	492	DOLOMITE, white to light gra pyrite, less chert, some oval s	y with light green, tra shaped, trace fossils	ce to no vugs or pits or	69.7			
					41.3		en al les les restaurs de la companya de la company restaurs de la companya de la company restaurs de la companya de la company restaurs de la companya	
130-	487							
, ,	-101							
- 135	482	DOLOMITE, gray, layers of fi chert, little to no fossils	ne bedding, fine grair	ied, trace pyrite, some	61,0			
140-	477							
	,	- 141.7 to 142.2 - light brown	1					
- 145	472	- 0.3' dark gray cherty layer			100		Bentonite Grout	
150-	467	DOLOMITE, gray, fine graine pyrite in horz frac	d, some bedding, no	vugs, little to no pits, trace			A" Riser 4" Sch 80 PVC	
155	- 462				55.1			
-							12년 12년 12년 12년 12년 12년 12년 12년 12년 12년 12년	
160	- 457							
- 165	- 452	- 0.02' vug, pyrite			71.1			
170-	- 117							
-	-7777	- becoming muddy and plate	ev. uniform, no vuas c	or pits				
- - 175- -	- 442		,, ameni, no tago (100			
-			·				4.4 45.22 (24.4 동네) (24.4 동네) (25.4 동네) (25.4 (25.4) (25.4)	

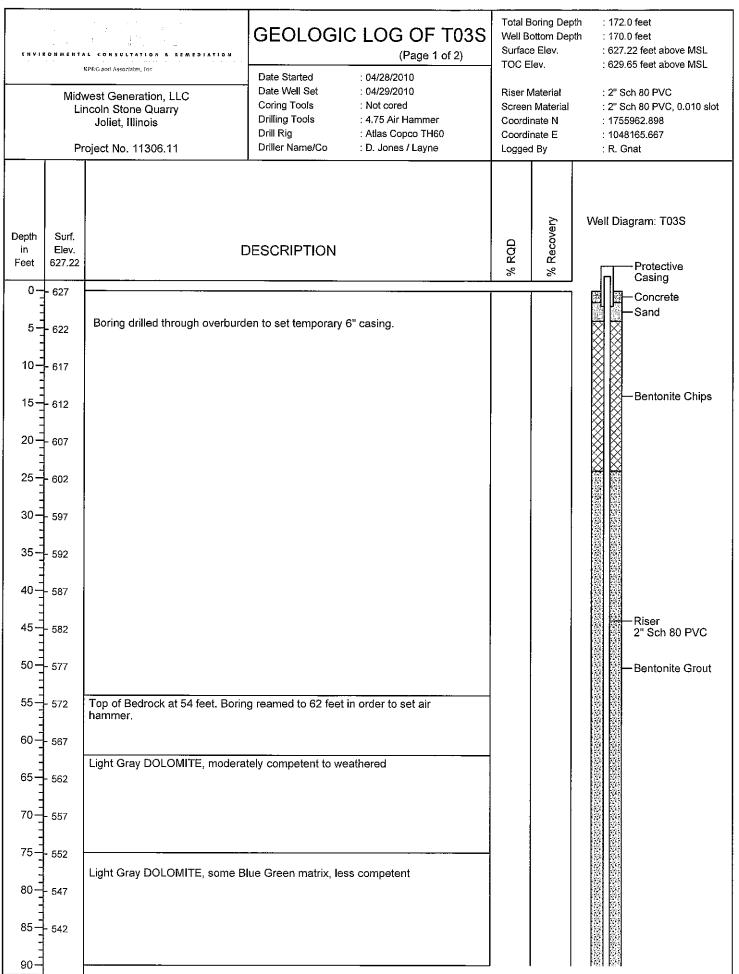
KFAG and Associates. Inc. Midwest Generation, LLC Station # 9 - Lincoln Quarry Joliet, Illinois Project No. 21805			GEOLOGIC LOG OF G48D/S (Page 4 of 4) Date Started : 12/19/05 Date Well Set : 02/17/06 Coring Tools : 10' HQ conv. circ. Reaming Tools : 7.5" Tri-Cone w/ stab Drill Rig : DrillTech D40 Driller Name/Co : R. Treptow / Layne	Well Bo Surface TOC E Ground Riser M	lev. dwater Elev Aaterial Material nate N nate E	: 225.0 feet : 617.778 feet above MSL : 620.530 feet above MSL	
Depth in Feet	Surf. Elev. 617		DESCRIPTION	% RQD	% Recovery	Well Diagram: G48D	
180	- 437	MUDDY DOLOMITE, dark g	ray, platey	100			
- - 185 - -	- 432	186.05-187.2 - DOLOMITIC 187.2-189.0 - transistion lay	SHALE, light green/gray er, alt upper and lower	- 100			
190	- 427		FE, white, vuggy, pitted, highly fractured, some	-		Bentonite Grout	
195	- 422			31.2		Riser	
200-	- 417	- horz and vert frac, very na	rrow, some sediment and pyrite infilling			4" Sch 80 PVC	
205	- 412	- 205 to 211 - little to trace	vugs	31.7			
210-	- 407			48.9		Fine Sand	
215-	- 402		÷				
220-	- 397	SHALE, light green/gray, pla		-		Filter Sand Screen, 0.010 sk 4" Sch 80 PVC	
225-	- 392	MUDDY DOLOMITE, dark g wavy lamination End of Boring at 225 feet.	gray, white sediment/crystal filled frac, tight, some				
230-	- 387						
235-	- 382						
- - - 240-							


•

	KPRG and Associates, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois		GEOLOGIC LOG OF TO1S (Page 1 of 2)		Total Boring Depth Well Bottom Depth Surface Elev. TOC Elev. Riser Material Screen Material Coordinate N Coordinate E		th : 165.0 feet : 619.00 feet above MSL : 621.46 feet above MSL : 2" Sch 80 PVC : 2" Sch 80 PVC, 0.010 slot : 1757503.340 : 1048268.702
	P:	roject No. 11306.11	Driller Name/Co	: D. Jones / Layne	Logged	±By ΓΓΓΓ	: C. Higgins
Depth in Feet	Surf. Elev. 619.00	C	DESCRIPTION		% RQD	% Recovery	Well Diagram: T01S Protective Casing
	+ 619	· · · · · ·					Concrete
5-	614	Boring drilled through overburd	en to set temporary 6	5" casing.			
10-	609						
15-	604						Bentonite Chips
20	599						
	- 555						
25-	594						
30-	- 589						
35-	- 584						
40-	- - 579						
-		Top of Bedrock at 45 feet.					Riser
45-	- 574	Gray DOLOMITE, weathered					2" Sch 80 PVC
50	569	Gray to White DOLOMITE					Bentonite Grout
	- 564	Gray DOLOMITE, little, green					
13101 60-	559						
Series		Gray DOLOMITE, some Tan, tra	ace Green				
off-Site	554 549	Gray and Pink DOLOMITE, som	e Green				
Desktor		Pink and Green DOLOMITE,little	e chert				
Juero 75-	- 544	Light Brown DOLOMITE, some	Pink and Green, trac	e chert			
- 08 Ist	- 539	- trace Black SAND					
C:\Us							
85-	- 534	Dark Gray DOLOMITE, trace Pir	nk				
² 90−		- trace Green		[

ENVIRONMENTAL CONSULTATION & REMEDIATION KPRG and Assoriates, Inc Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.11			GEOLOGIC LOG OF T01S (Page 2 of 2) Date Started : 06/14/2010 Date Well Set : 06/16/2010 Coring Tools : Not cored Drilling Tools : 4.75 Air Hammer Drill Rig : Atlas Copco TH60 Driller Name/Co : D. Jones / Layne	Well B Surfac TOC E Riser M	lev. Material Material nate N nate E	
Depth in Feet	Surf. Elev. 619,00	E	ESCRIPTION	% RQD	% Recovery	Well Diagram: T01S
90-	- 529					
95 100	- 524 - 519	Brown and Gray DOLOMITE, tra	ace Green			
- - - 105-	- 514	Brown and Gray DOLOMITE, so - increase chert	me Pink and Green, trace chert			
110	- 509					-Bentonite Grout
115	- 504					
120 - -	- 499					
125	- 494	Light Brown to Tan DOLOMITE, - increase chert	trace chert			Riser 2" Sch 80 PVC
130	- 489					
135	- 484	Light Brown and Gray DOLOMI	E, cherty			
140	- 479					
145	- 474					Bentonite Chips
150	- 469					Fine Sand
155	- 464					
160	- 459		·······			Filter Sand Screen, 0.10 slot 2" Sch 80 PVC
165 165	- 454	Dark Gray DOLOMITE				Screen, 0.10 slot 2" Sch 80 PVC
170 - 	- 449	End of Boring at 167 feet.				
175	- 444					
180-		·				

10-29-2021 C:\Users\MPDolan\Desktop\Off-Sile T-Series\T01S.bor


.

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T02S.bor

Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.11			GEOLOGIC LOG OF T (Page 2 of 2 Date Started : 04/27/2010 Date Well Set : 04/27/2010 Coring Tools : Not cored Drilling Tools : 4.75 Air Hammer Drill Rig : Atlas Copco TH60 Driller Name/Co : D. Jones / Layne		Well Bo Surface TOC El Riser M	lev. Iaterial Material nate N nate E	
Depth in Feet	Surf. Elev. 623.79	E	DESCRIPTION	% RQD	% Recovery	Well Diagram: T02S	
90	- 533	Darker Greenish Gray DOLOMI	TE, trace Light Pink, competent				
95 100	- 528 - 523	Greenish Gray and Pink DOLO	AITE				
105							
110-	- 518	White DOLOMITE, some Pink,	cherty, moderately competent				
115	- 513	Pink DOLOMITE, trace White, r	noderately to less competent				Bentonite Grout
110	- 508 - 503	Light Brown DOLOMITE, trace competent	Greenish Gray, moderately to less				
125 - 125 -	- 498	- loss circulation, no recovery					Riser 2" Sch 80 PVC
130-	- 493	- some cohesive clay infilling		1			
135-	- 488						
140	- 483						
145	- 478	Light Brown DOLOMITE, trace t competent - little recovery	o no Greenish Gray, moderately				
150		Inthe Lecovery					Bentonite Chips
155	- 468						
160-		Light Brown DOLOMITE, with C - less Chert	hert, less competent				- Fine Sand
165	- 463						Filter Sand
100		Fracture at 166 feet - 6" to 10" No recovery					Screen, 0.10 slot 2" Sch 80 PVC
	- 453	End of Boring at 171 feet.					
175	- 448						
180-							

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T02S.bor

10-29-2021 C:/Users/MPDolan/Desktop/Off-Site T-Series/T03S.bor

Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306,11			GEOLOGIC Date Started Date Well Set Coring Tools Drilling Tools Drill Rig Driller Name/Co	C LOG OF T03S (Page 2 of 2) : 04/28/2010 : 04/29/2010 : Not cored : 4.75 Air Hammer : Atlas Copco TH60 : D. Jones / Layne	Well B Surfac TOC E Riser M	Material Material nate N nate E	
Depth in Feet	Surf, Elev. 627.22	Γ	DESCRIPTION		% RQD	% Recovery	Well Diagram: T03S
90-	- 537	Tan, Dark Gray and Light Gray	DOLOMITE, moderat	ely competent			
	- 532	Dark Gray to Gray DOLOMITE,	no Tan, some shaley	/ chips			
100-		Dark Gray and Tan DOLOMITE	, some shaley chips				
105-		Brown and some Gray DOLOM	ITE				
110- 115-		Brown and Dark Greenish Gray moderately competent	DOLOMITE, some g	ray, competent to			-Bentonite Grout
120 120		Light Gray DOLOMITE, compet	ent				
130-		Gray, tan and Dark Greenish G	ray DOLOMITE, mode	erately competent			2" Sch 80 PVC
135-							
140	- 487	Light Gray to Tan DOLOMITE,	competent				
145-	- 482	- no Tan, Cherty					
150-	- 477	Tan DOLOMITE, some Chert, n	noderately competent				Bentonite Chips
155	- 472						Fine Sand
160	467	White to Light Gray DOLOMITE	, Cherty, moderately	competent			- Filter Sand
165	462						Screen, 0.10 slot 2" Sch 80 PVC
170	- 457	- fractured, Gray					2" Sch 80 PVC
175 - -	- 452	End of Boring at 172 feet.					
180-							

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T03S.bor

8 N V J F	10 N M E N T J	LL CONSULTATION & REMEDIATION	GEOLOGIO	C LOG OF T04S (Page 1 of 2)			th : 17 : 62	71.5 feet 70.0 feet 28.63 feet above MSL 31.07 feet above MSL
	Midv Lit	KRFG and Associates, Inc. west Generation, LLC ncoln Stone Quarry Joliet, Illinois roject No. 11306.11	Date Started Date Well Set Coring Tools Drilling Tools Drill Rig Driller Name/Co	: 04/20/2010 : 04/21/2010 : Not cored : 4.75 Air Hammer : Atlas Copco TH60 : D. Jones / Layne	Riser N	Naterial Material nate N nate E	: 2" : 2" : 17 : 10	Sch 80 PVC Sch 80 PVC, 0.010 slot 256411.076 148857.472 Higgins
Depth in Feet	Surf. Elev. 628.63	Γ	DESCRIPTION		% RQD	% Recovery	Well C	Diagram: T04S ——Protective Casing
0	- 628							Concrete Sand
5	- 623	Boring drilled through overburd	en to set temporary 6	" casing.				
10	- 618							
15	- 613							Bentonite Chips
20	- 608							
25	- 603							
30-	- 598				Ì			
35-	- 593							
40-	- 588							
45 –	- 583							Riser 2" Sch 80 PVC
50	- 578	Top of Bedrock at 52 feet.						-Bentonite Grout
55-	- 573	Gray to Tan DOLOMITE, weath clay infilling	ered to moderately co	ompetent, some gray				
60 - 	- 568							
65	- 563	Tan to Light Gray DOLOMITE, r - some orange/rust	noderately competen	t				
70								
75 -	- 553	- trace to some chert						
- - 	- 548	Greenish Gray DOLOMITE	· · · ·					
85-	- 543	- no Green						
- - 90-								

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T04S.bor

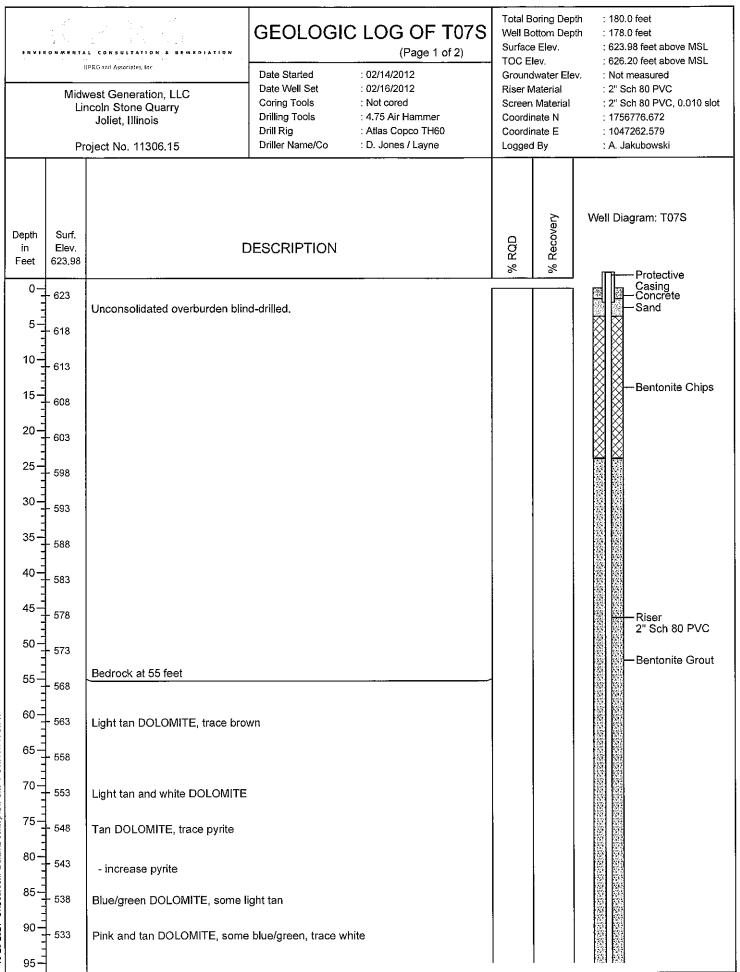
ENVIRONMENTAL CONSULTATION & REMEDIATION KFRG and Associates, Inc.			GEOLOGIC	LOG OF T04S (Page 2 of 2) : 04/20/2010			
Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.11			Date Well Set Coring Tools Drilling Tools Drill Rig Driller Name/Co	: 04/21/2010 : Not cored : 4.75 Air Hammer : Atlas Copco TH60 : D. Jones / Layne		nate E	: 2" Sch 80 PVC : 2" Sch 80 PVC, 0.010 slot : 1756411.076 : 1048857.472 : C. Higgins
Depth in Feet	Surf. Elev. 628.63	Ľ	DESCRIPTION		% RQD	% Recovery	Well Diagram: T04S
90 1	- 538						
95	- 533						
100-	- 528	Green and Brown DOLOMITE					
105	- 523						
110-	- 518	Brown, Dark Brown and Greenis	sh Gray DOLOMITE, t	race Chert			
115 1	- 513						-Bentonite Grout
120	- 508						
125-	- 503	Greenish Gray DOLOMITE, son	ne Light Brown				Riser 2" Sch 80 PVC
130-	- 498						
135-	- 493	Brown DOLOMITE, trace Chert					
140	- 488						
145 - 	- 483	Brown with trace Greenish Gray	DOLOMITE, trace Cl	nert			
150	- 478						
155	- 473						Bentonite Chips
160 -	- 468	Brown DOLOMITE, trace Chert					Fine Sand
165 –		Brown DOLOMITE, Cherty					Filter Sand Screen, 0.10 slot 2" Sch 80 PVC
170 -							2" Sch 80 PVC
175 -		End of Boring at 171.5 feet.				J	
180-				<u> </u>			

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T04S.bor

Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.15			GEOLOGIC Date Started Date Well Set Coring Tools Drilling Tools Drill Rig Driller Name/Co	C LOG OF T05S (Page 1 of 2) : 02/08/2012 : 02/09/2012 : Not cored : 4.75 Air Hammer : Atlas Copco TH60 : D. Jones / Layne	Well Bo Surface TOC E Ground Riser N	lev. Iwater Eler Iaterial Material nate N nate E	th : 175.0 feet : 620.97 feet above MSL : 623.35 feet above MSL
Depth in Feet	Surf. Elev. 620.97	Γ	DESCRIPTION		% RQD	% Recovery	Well Diagram: T05S
0 5 10	- 620 - 615 - 610	Unconsolidated overburden bli	nd-drilled.				Casing Concrete Sand
15	- 605 - 600						-Bentonite Chips
25 30	- 595 - 590						
35	- 585 - 580						Riser
45 - 50 - 55 -	- 575 - 570	Bedrock at 52 feet. Tan DOLOMITE, tace light pink	blue/green argillaceo	us			S → Riser 2'' Sch 80 PVC → Bentonite Grout
60 -	- 565 - 560 - 555	Tan DOLOMITE, trace pyrite				2	
70 - 70 - 75 -	- 550	Tan DOLOMITE, some pink, tra					
80	- 545 - 540	Brown DOLOMITE, some tan w White DOLOMITE, trace gray	ith green argillaceous				
85 	- 535	Pink DOLOMITE, trace chert					

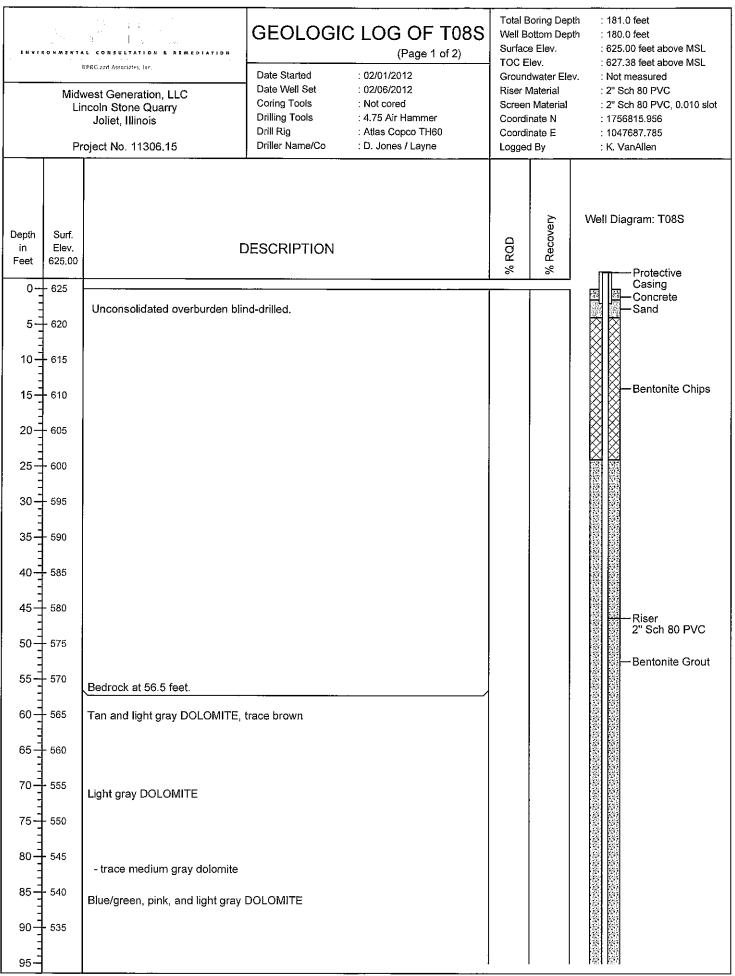
-

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T05S.bor


	Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.15		GEOLOGIC LOG OF T05S V (Page 2 of 2) T Date Started : 02/08/2012 Date Well Set : 02/09/2012 Coring Tools : Not cored Drilling Tools : 4.75 Air Hammer Drill Rig : Atlas Copco TH60			oring Dep ottom Dep e Elev. lev. dwater Ele Aaterial h Material nate N nate E d By	th : 175.0 feet : 620.97 feet above MSL : 623.35 feet above MSL	
	Depth in Feet	Surf. Elev. 620.97	C	ESCRIPTION		% RQD	% Recovery	Well Diagram: T05S
	90-	- 530	White DOLOMITE, light yellow h	nue				
	95	- 525	White DOLOMITE, light green h	ue				
	100	- 520						
	105-	- 515	Tan DOLOMITE, trace blue/gray	1				
	110-	- 510	Blue/gray DOLOMITE					-Bentonite Grout
	115	- 505	Tan DOLOMITE, trace blue/gray	,				
	120	- 500						
	125	- 495						Riser
	130 -	- 490	Tan DOLOMITE, cherty					2" Sch 80 PVC
	135 -	- 485						
	140	- 480	Gray DOLOMITE, trace chert ar	nd quartz				
bor	145	- 475						
ries\T05S.	150 -	- 470						
-Site T-Se	155	- 465						Bentonite Chips
10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T05S.bor	160-	- 460						Fine Sand
PDolan/De	165	- 455						Filter Sand
:\Users\MI	170-	- 450						Filter Sand Screen, 0.010 slot 2" Sch 80 PVC
021 C	175	- 445						
10-29-2	180-		End of boring at 177 feet.			·	·	

ENVIE	а. С N M E N T A	L CONSULTATION & REMEDIATION KPRC and According, Inc.	GEOLOGIC LOG OF T06S (Page 1 of 2)			oring Dept ottom Dept e Elev. lev.			
	Midv Lir	vest Generation, LLC ncoln Stone Quarry Joliet, Illinois oject No. 11306.15	Date Started Date Well Set Coring Tools Drilling Tools Drill Rig Driller Name/Co	: 02/10/2012 : 02/13/2012 : Not cored : 4.75 Air Hammer : Atlas Copco TH60 : D. Jones / Layne	Riser N	Material nate N nate E	v. : Not measured : 2" Sch 80 PVC : 2" Sch 80 PVC, 0.010 slot : 1757090.355 : 1047415.925 : A. Jakubowski		
		-	I						
Depth in Feet	Surf. Elev. 618.58	C	DESCRIPTION		% RQD	% Recovery	Well Diagram: T06S		
0-	- 618						Casing Concrete		
5-	640						∬		
10-	- 613 - 608 - 603	Unconsolidated overburden blir	nd-drilled.				Bentonite Chips		
	- 603								
20-	- 598								
25	- 593								
30-	- 588								
35-	- 583								
40-	- 578								
45 -	- 573	Bedrock at 47 feet					Riser 2'' Sch 80 PVC		
50-	- 568	Light brown DOLOMITE					-Bentonite Grout		
55-	- 563	Light gray/white DOLOMITE, tra	ace light brown						
60	- 558	Tan DOLOMITE, trace light brow	wn						
65-	- 553	Light gray DOLOMITE, trace tar	n						
	540	Light blue/green DOLOMITE							
	- 543	Dark blue/green DOLOMITE, tra	ace tan, quartz and py	rrite					
80	- 538	Pink and blue/green DOLOMITE	Ξ						
85 - 90 -	- 533	Brown with blue/green DOLOM	ITE, trace pink						

Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.15			GEOLOGIC LOG OF T06S (Page 2 of 2) Date Started : 02/10/2012 Date Well Set : 02/13/2012 Coring Tools : Not cored Drilling Tools : 4.75 Air Hammer Drill Rig : Atlas Copco TH60 Driller Name/Co : D. Jones / Layne			oring Dep ottom Dep e Elev. lev. dwater Ele Material Material mate N mate E d By	th : 173.0 feet : 618.58 feet above MSL : 620.94 feet above MSL
Depth in Feet	Surf. Elev. 618.58		DESCRIPTION	% RQD	% Recovery	Well Diagram: T06S	
90-	- 528	Pink with white/light gray DOLO	MITE				
95	- 523	Blue/green DOLOMITE, some p	ink, trace tan/brown				
100-	- 518	Blue/green DOLOMITE, trace ta	n				
105-	- 513	Blue/green DOLOMITE, some p					
110	- 508	Light pink DOLOMITE, some ta	n, trace chert and blue/green			-Bentonite Grout	
115-	- 503	Light tan DOLOMITE, trace blue	/green				
120-	- 498	Tan DOLOMITE, some blue/gre	en		-		
125 130 130	- 488	- less blue/green					Riser 2" Sch 80 PVC
140	- 478	Light tan DOLOMITE, cherty, tra	ace pyrite				
145	- 473						
150	- 468	Green/blue DOLOMITE, some t	an				Bentonite Chips
155	- 463	Green/blue DOLOMITE, trace ta	an and chert				Fine Sand
160	- 458	- no chert					
165	- 453	Dark gray DOLOMITE					Filter Sand
170-	- 448	Dark gray DOLOMITE, trace py	ite				Screen, 0.010 slot 2" Sch 80 PVC
175 -	- 443						
- 180-		End of boring at 175 feet.					


the second se

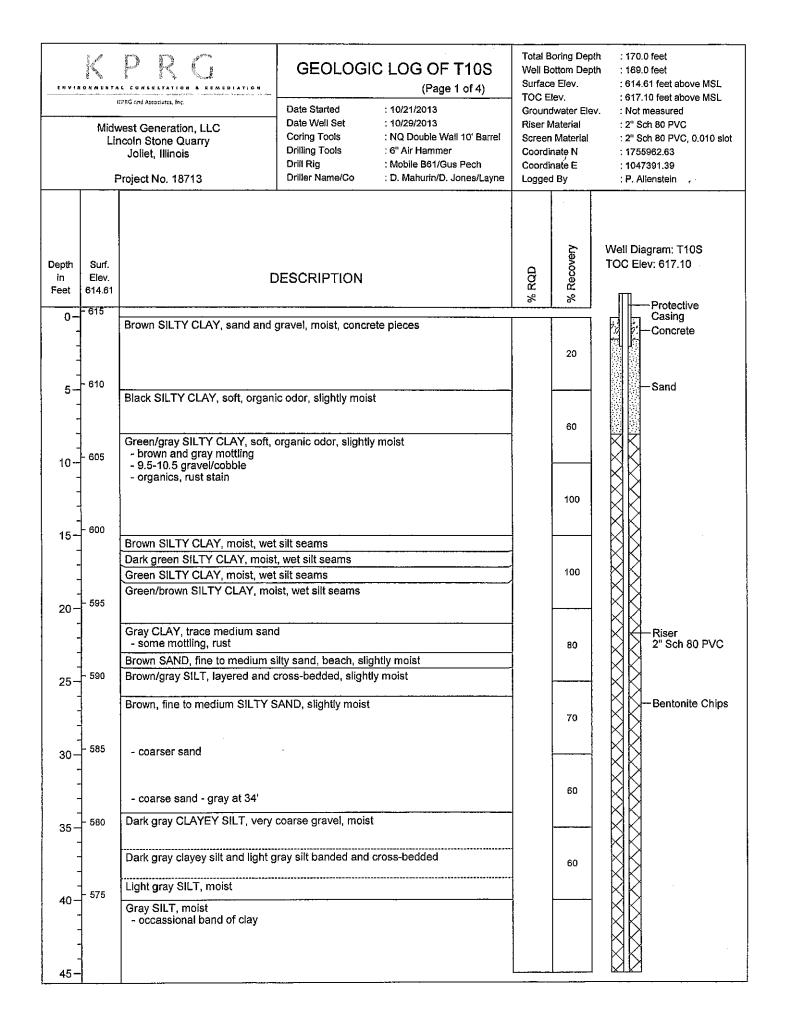
10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T06S.bor

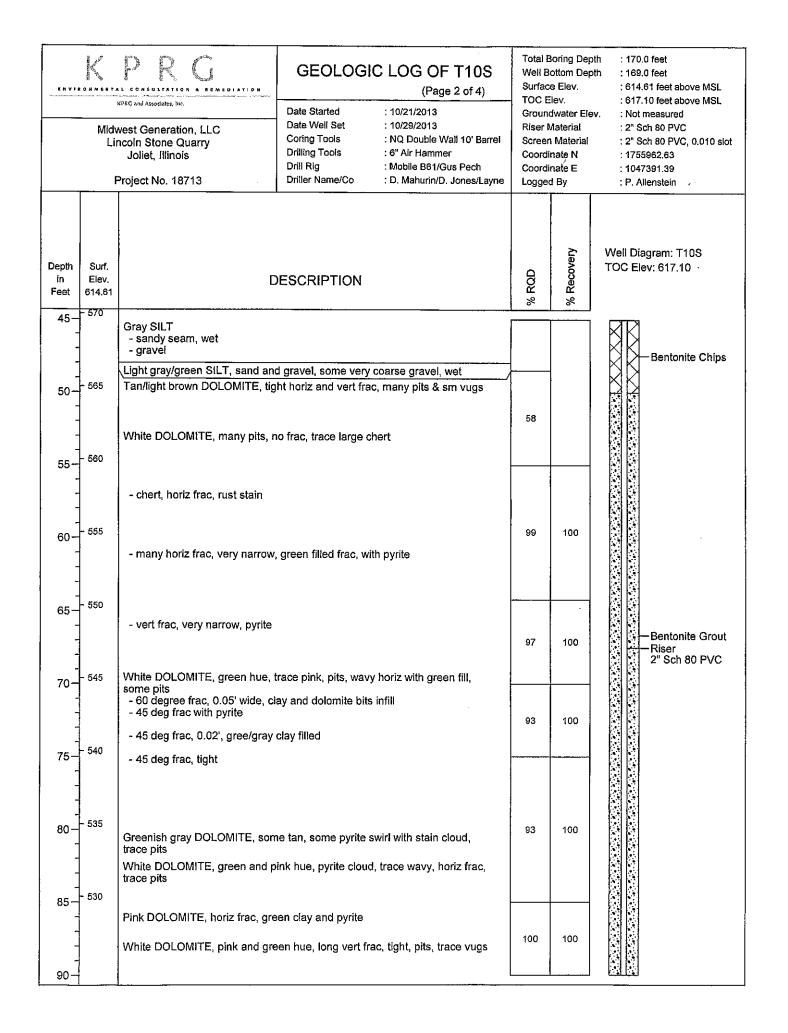
ENVIRONMENTAL CONSULTATION & REMEDIATION KPRG and Assoriates, inc Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.15		GEOLOGIC LOG OF T07S (Page 2 of 2) Date Started : 02/14/2012 Date Well Set : 02/16/2012 Coring Tools : Not cored Drilling Tools : 4.75 Air Hammer Drill Rig : Atlas Copco TH60 Driller Name/Co : D. Jones / Layne		Total Boring Depth Well Bottom Depth Surface Elev. TOC Elev. Groundwater Elev. Riser Material Screen Material Coordinate N Coordinate E Logged By		h : 178.0 feet : 623.98 feet above MSL : 626.20 feet above MSL	
Depth in Feet	Surf. Elev. 623.98	C	DESCRIPTION		% RQD	% Recovery	Well Diagram: T07S
95-	- 528	Light tan and blue/green DOLO	MITE, trace pink and	white			
100	- 523	Pink DOLOMITE, trace tan and	blue/green				
105-	- 518	Light tan DOLOMITE, some bro	wn, trace blue/green				
110	- 513	Tan DOLOMITE, trace blue/gree	en				
115	- 508						Bentonite Grout
120	- 503	Gray DOLOMITE, some blue/gr	een				
125-	- 498	Tan DOLOMITE, trace blue/gree	en				
130	- 493						Riser
135	- 488	- trace chert				-	2" Sch 80 PVC
140	- 483	- no chert					
145	- 478	Tan DOLOMITE, cherty					
150	- 473	Brown and tan DOLOMITE, son	ne chert, trace pyrite				
155	- 468	- no pyrite					Bentonite Chips
160	- 463	Dark and medium gray DOLOM	ITE				Fine Sand
165	- 458	- some chert, trace pyrite					
170-	- 453	Dark gray DOLOMITE					Filter Sand
175	- 448	- trace pyrite					Screen, 0.010 slot 2" Sch 80 PVC
180-	- 443	End of boring at 180 feet					
185-	- 438						
190-							

and the second second

10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T08S.bor

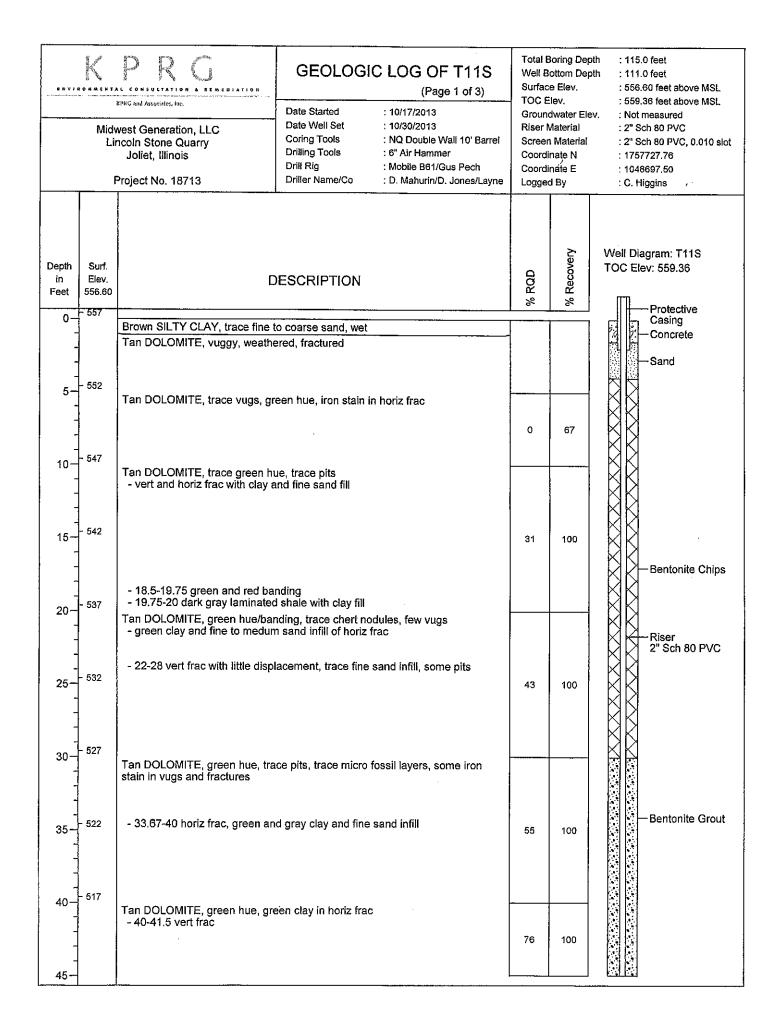
	Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 11306.15		GEOLOGIC LOG OF T08S (Page 2 of 2)		Total Boring Depth Well Bottom Depth Surface Elev. TOC Elev. Groundwater Elev. Riser Material Screen Material Coordinate N Coordinate E Logged By		th : 180.0 feet : 625.00 feet above MSL : 627.38 feet above MSL	
	Depth in Feet	Surf. Elev. 625.00	C	DESCRIPTION		% RQD	% Recovery	Well Diagram: T08S
	95 1 100	- 530 - 525	Reddish brown DOLOMITE, trac Dark pink/gray DOLOMITE, trac					
	105	- 520						
	110-	- 515	Blue/green DOLOMITE, trace da	ark pink/gray				
	115 - - - 120 -		Light gray/pink DOLOMITE					Bentonite Grout
	125 -		Light pink/gray-tan DOLOMITE,	trace green/grav				
	130-1 130-1	- 495	Blue/green DOLOMITE, trace lig					Riser
	135	- 490	Light pink/gray-tan DOLOMITE					2" Sch 80 PVC
	140		- occasional white chert					
	145 - - 150-		Tan DOLOMITE, some chert					
	155		Tan and gray/green DOLOMITE	. some chert				-Bentonite Chips
10-29-2021 C:\Users\MPDolan\Desktop\Off-Site T-Series\T08S.bor	160	- 465	- no chert	, , , , , , , , , , , , , , , , , 				
Off-Site T-S	165 - -	- 460	Light gray DOLOMITE					Fine Sand
n\Desktop\	170-		Medium gray and white DOLOM	ITE				Filter Sand
ers/MPDola	175 - - 180 -		Light blue/green and white DOL	OMITE				2" Screen, 0.010 slot 2" Sch 80 PVC
21 C:\Use	185		End of boring at 181 feet		I			
10-29-20	190-							


KPRG and Associates, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713			GEOLOGIC LOG OF T09S (Page 1 of 4) Date Started : 10/18/2013 Date Well Set : 10/24/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/ Layne		Well B Surfac TOC E Ground Riser M	lev. dwater Ele Material Material nate N nate E	th : 15 : 60 : 60 : 80 : 2" : 2" : 17 : 10	: 155.7 feet : 600.70 feet above MSL : 603.39 feet above MSL	
Depth in Feet	Surf. Elev. 600.7	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION	% RQD	% Recovery		Diagram: T09S Elev: 603.39 — Protective		
0 - -	- 601	Brown SILTY SAND, fine grain	ed, dense, dry, few r	ootlets, trace clay	NA	47		Casing Concrete	
- 5 -	- 596		Brown and gray, fine GRAVEL with trace silt and clay, loose, dry, Dark brown SANDY SILT, light brown mottling, fine grained, trace clay, dry - 6-8 mottling, iron stain						
- 	- 591	- 9.5 brown silt seam, dry Brown SILTY CLAY, some fine	to coarse sand, slig	NA	100		Bentonite Chips		
- - 15 	- 586	Gray SILTY CLAY, trace fine s Gray CLAY, trace silt and fine				XX			
- - 20-	- 581	Brown SILTY CLAY, trace fine Brown CLAYEY SAND, fine ground the second strain of the second s	ained, dense, moist moist, dense	ense, slightly moist	NA	70			
- - - 25-	- 576	Brown fine SAND, well sorted, Brown SANDY SILT, fine to co	arse, dolomite grave		NA	100		Riser 2" Sch 80 PVC	
		Brown CLAY with fine to coars White DOLOMITE, tan hue, pit - 27-28 vert frac		vet, very soft/	NA	42		Bentonite Grout	
30 - -	- 571	White DOLOMITE, tan hue, pir	s (decrease downwa	urds)	NA	86			
35— - -	- 566	White DOLOMITE, tan hue, fe	w pits						
-40 	- 561	- 40-45 blue/gray hue, few wh - 41-45 iron stain - gray/blue clay infill in horiz fi			97	100			


KPRG and Associates, Inc Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713			GEOLOGIC LOG OF T09S (Page 2 of 4) Date Started : 10/18/2013 Date Well Set : 10/22/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/ Layne			toring Dept ottom Dept e Elev. Ilev. dwater Elev Material n Material nate N nate E d By	: 158.0 feet : 155.7 feet : 600.70 feet above MSL : 603.39 feet above MSL : Not measured : 2" Sch 80 PVC : 2" Sch 80 PVC, 0.010 slot : 1757070.03 : 1046676.53 : C. Higgins	
Depth in Feet	Surf. Elev. 600.7		DESCRIPTION	ESCRIPTION			Well Diagram: T09S TOC Elev: 603.39	
45 - - 50 - -	- 551	White DOLOMITE, light blue - 45-47 iron stain, vert frac, - 47-50 cherty - trace clay infill in frac	hue pits		95	99		
	- 546	Tan DOLOMITE, faint pink a chert Tan DOLOMITE, pink/green - 61-65 gray clay in frac		trace pits, trace black	92	100	-Bentonite Grout	
- - - 70 – - - - - - - - -	- 531	Tan DOLOMITE, green hue, - 74-75 pyrite in vert frac	trace pits, gray clay in h	noriz frac	81	100	Riser 2" Sch 80 PVC	
75- - - - 80- - -	- 521	White DOLOMITE, tan/greer	i hue, clay and fine san	d in horiz frac, few pits	93	100		
- 85 - - - - 90 -	516	Tan DOLOMITE, vuggy, ligh			93	100		

E N V 17	KPRC and Associates, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713		GEOLOGIC LOG OF T09S (Page 3 of 4) Date Started : 10/18/2013 Date Well Set : 10/22/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/ Layne			Boring Dep ottom Dep e Elev. lev. dwater Ele Material n Material nate N nate E d By	oth : 155.7 feet : 600.70 feet above MSL : 603.39 feet above MSL
Depth in Feet	Surf. Elev. 600.7	E	DESCRIPTION		% RQD	% Recovery	Well Diagram: T09S TOC Elev: 603.39
90-	- 511	Tan DOLOMITE, trace purple v - vert frac infill with clay and si	_		93	100	
95	- 501	Tan/green DOLOMITE, vuggy - 95-97 bands of vugs/solutior - green clay infill of horiz frac	e Cavity		94	97	
- 105 — - -	- 496	Tan DOLOMITE, green hue, νι - 105-106 gray/white clay and	ıggy silt infill in horiz frac		ANU - 0 ⁻ 11 - 00 - 11		
110-	- 491	- 110-112 1" vuggy bands			97	99	Riser 2" Sch 80 PVC
115	- 486	Tan DOLOMITE, green hue - 117 vugs with remineralizatio	on				Riser 2" Sch 80 PVC
- 120 - -	- 481	- 120-122 few chert nodules th	iroughout wavy, horiz	frac	96	100	
125-	- 476	Tan/gray DOLOMITE, with blue	/green, vuggy, chert n	odules, pyrite in vugs			
130	- 471				98	98	A A A A A A A A A A A A A A A A A A A
135~-		- 133.5 iron stain in frac					Bentonite Chips

-

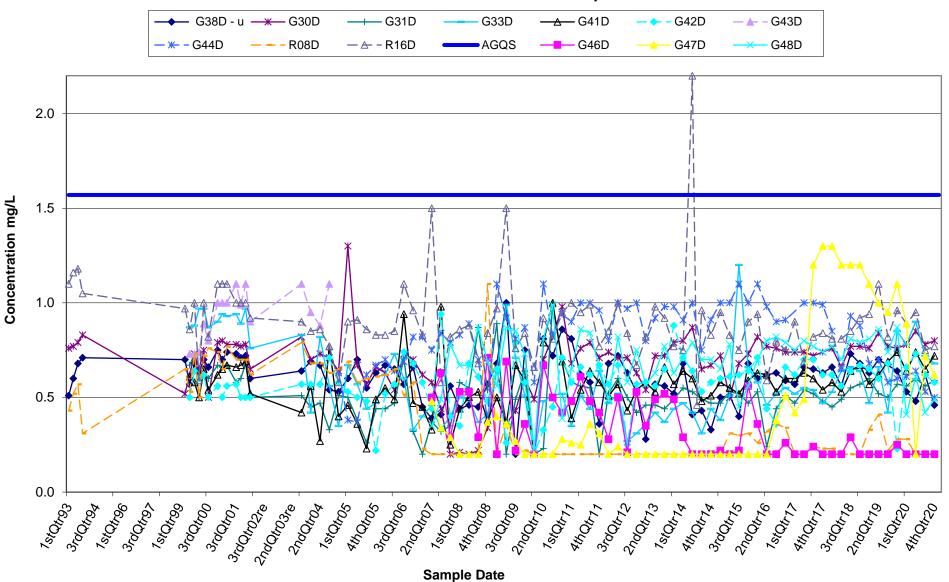

RURC and Associates, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713		GEOLOGIC LOG OF T09S (Page 4 of 4) Date Started : 10/18/2013 Date Well Set : 10/22/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech		Total Boring Depth Well Bottom Depth Surface Elev. TOC Elev. Groundwater Elev. Riser Material Screen Material Coordinate N Coordinate E Logged By		n : 155.7 feet : 600.70 feet above MSL : 603.39 feet above MSL	
Depth in Feet	Surf. Elev. 600.7	[DESCRIPTION		% RQD	% Recovery	Well Diagram: T09S TOC Elev: 603.39
135 — - - 140 — - -	- 461	Tan DOLOMITE, green mottlin - clay and silt infill in horiz frac - 138.5-141 vert frac, tight, fill - 141-145 few fossils (endocri	ed with green clay an		97	100	-Bentonite Chips -Fine Sand Riser 2" Sch 80 PVC
- 145 - -	- 456	Tan/green DOLOMITE, few pu	rple vugs, some foss	il layers			
- 150 - - -	- 451	Gray DOLOMITE, some dark g -150 dark gray clay and fine w nodules			95	97	Filter Sand
155— - -	- 446	Tan DOLOMITE, gray hue and vugs, trace fossils	dark gray banding, c	chert nodules, few purple	100	100	
- 160 - -	- 441	End of boring at 158 feet					
- 165 - -	- 436						
- 170 - -	- 431						
- 175 - -	- 426						
180-			•••••••				

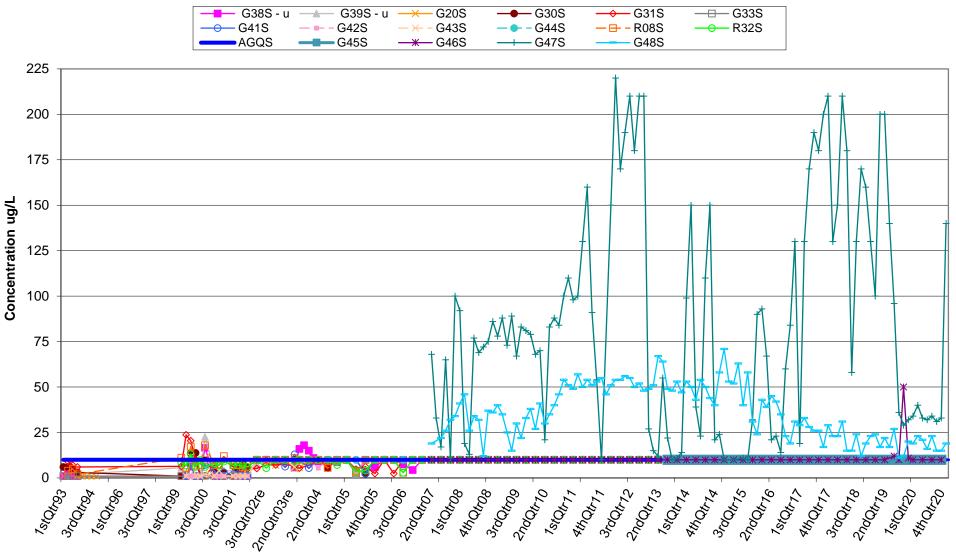
KPRC and Assoriates, Jac. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713		GEOLOGIC LOG OF T10S (Page 3 of 4) Date Started : 10/21/2013 Date Well Set : 10/29/2013 Coring Tools : NQ Double Wat! 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech		Total Boring Depth Well Bottom Depth Surface Elev. TOC Elev. Groundwater Elev. Riser Material Screen Material Coordinate N Coordinate E Logged By		h : 169.0 feet : 614.61 feet above MSL : 617.10 feet above MSL			
Depth in Feet	Surf. Elev. 614.61		DESCRIPTION		% RQD	% Recovery	Well Diagram: T10S TOC Elev: 617.10		
90	- 520	Pink DOLOMITE, green hue, v White DOLOMITE, light pink h green clay fill, 1.5' long vert fra	ue, pitted, some vug		100	100			
- 100- - - - 105- - -	- 515	White DOLOMITE, very light c layers with trace pyrite, wavy h	occassional pink hue, oriz frac, tight to nar	, pits with small vugs in row with green clay fill	93	100			
- - - - - - - 115- - - -	- 505	Gray DOLOMITE, light pink hu clay fill, pitted layers, trace occ - gray fill in fractures - 3" horiz frac, gray clay filled	cassional vugs, pyrite	ght to narrow with green	94	100	Bentonite Grout		
	495	- large vug, 2", little pyrite - 2" horiz frac, gray clay filled - 126-128 no pits			99	100			
- 130- - - - - 135-	- 486				99	100			

KPRG and Associates, hp. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713			GEOLOGIC LOG OF T10S (Page 4 of 4) Date Started : 10/21/2013 Date Well Set : 10/29/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/Layne			Boring Dep ottom Dep e Elev. Ilev. dwater Ele Material n Material nate N nate E d By	oth : 169.0 feet : 614.61 feet above MSL : 617.10 feet above MSL ev. : Not measured : 2" Sch 80 PVC
Depth in Feet	Surf. Elev. 614.61		DESCRIPTION		% RQD	% Recovery	Well Diagram: T10S TOC Elev: 617.10
135- - - -	- 475	Gray DOLOMITE, cherty, fossil horiz frac, tight to narrow with g - 0.1 vug whole core width	s, trace green hue, p reen clay fill, layers (99	100	-Bentonite Grout	
140	- 470	- horiz frac with calcite and py	rite crystals		95	98	Bentonite Chips Riser 2" Sch 80 PVC
	- 460	Gray DOLOMITE, some horiz f - vert frac, narrow, pyrite White DOLOMITE, trace green Dark gray DOLOMITE, dark gra	hue, pitted layers, s	mall vugs	95	100	Fine Sand
165-	- 450	large chert - pitted and vuggy layer with fo - trace pits, trace vugs	ossils		99	99	Filter Sand Screen, 0.010 slot 2" Sch 80 PVC
170-	- 440	End of boring at 170 feet					

KPR G KPTICE UNIT A CONSULTATION & REMEDIATION KPTICE UNIT A SOORWISES, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713			GEOLOGIC LOG OF T11S (Page 2 of 3) Date Started : 10/17/2013 Date Well Set : 10/24/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/Layne			foring Dep ottom Dep e Elev. lev. Jwater Ele Material Material Material nate N nate E d By	n : 111.0 feet : 556.60 feet above MSL : 559.36 feet above MSL	
Depth in Feet	Surf. Elev. 556.60 - 512	[DESCRIPTION	·	% RQD	% Recovery	Well Diagram: T11S TOC Elev: 559.36	
45	- 507	Tan DOLOMITE, green hue, gr - 48-50 few calcite nodules, cl	-		76	100		
55-	- 502 - 497	Gray DOLOMITE, green hues, infill in layers - 57-60 green clay and fine sa	and infill in layers, vugs	ЭУ	66	100	-Bentonite Grout	
65-	- 492	Tan DOLOMITE, green hue, tr	ace to few pits, gray cl	lay in horiz frac	82	100	Riser 2" Sch 80 PVC	
70	- 482	Gray DOLOMITE, trace green sand in horiz frac and vert frac - 75-77 iron stain, fossils		rs, gray clay and fine	50	100		
80	- 472	Tan DOLOMITE, green hue, in vert frac, filled with green clay :	on stain, pits, chert no and fine sand	dules, wavy horiz frac,	88	100	Bentonite Chips	

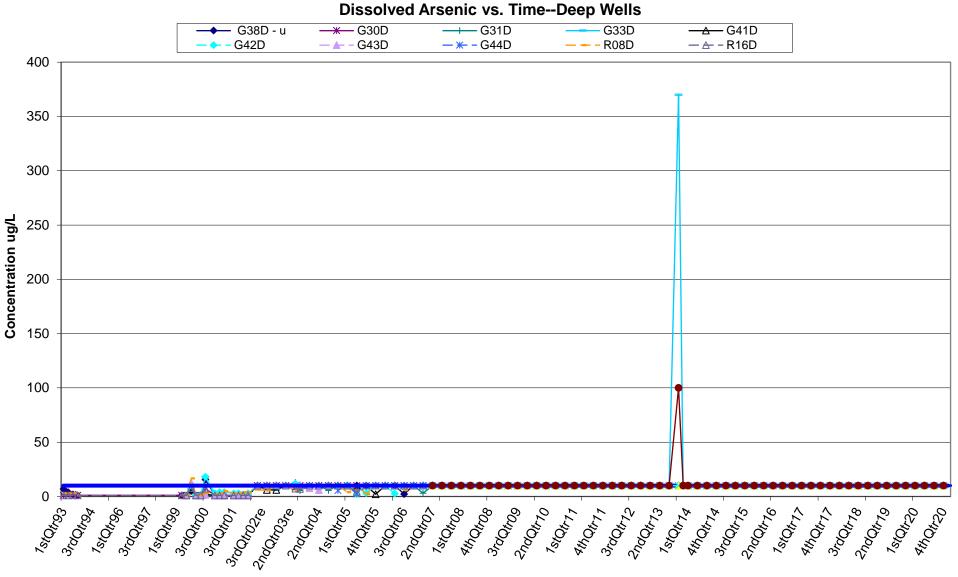
KPR G ENVIRONMENTAL CONSULTATION A REMEDIATION KPRG and Associates, Inc. Midwest Generation, LLC Lincoln Stone Quarry Joliet, Illinois Project No. 18713		GEOLOGIC LOG OF T11S (Page 3 of 3) Date Started : 10/17/2013 Date Well Set : 10/24/2013 Coring Tools : NQ Double Wall 10' Barrel Drilling Tools : 6" Air Hammer Drill Rig : Mobile B61/Gus Pech Driller Name/Co : D. Mahurin/D. Jones/Layne		Total Boring Depti Well Bottom Depti Surface Elev. TOC Elev. Groundwater Elev Riser Material Screen Material Coordinate N Coordinate E Logged By		oth : 111.0 feet : 556.60 feet above MSL : 559.36 feet above MSL	
Depth in Feet 90-	Surf. Elev. 556.60	E	DESCRIPTION		% RQD	% Recovery	Well Diagram: T11S TOC Elev: 559.36
95-	- 462	Gray DOLOMITE, green hue, ta - 92-93 iron stain layers	an/white chert nodule	es, few vugs	95	100	Bentonite Chips Fine Sand Riser 2" Sch 80 PVC
100-	- 457	Gray DOLOMITE, tan and gree green clay and fine sand in hor	en hue, white chert, n iz frac	narbling, few small vugs,	97	100	Filter Sand
110-	- - - - - - - - - - - - - - - - - - -	Gray DOLOMITE, tan and gree trace calcite and pyrite crystals	en hue, chert, marblir	ng, few small vugs with	88	100	2" Sch 80 PVC
115-	- 437	End of boring at 115 feet				<u> </u>	
125-	- - 432 -						
130-	- - 427 - -						

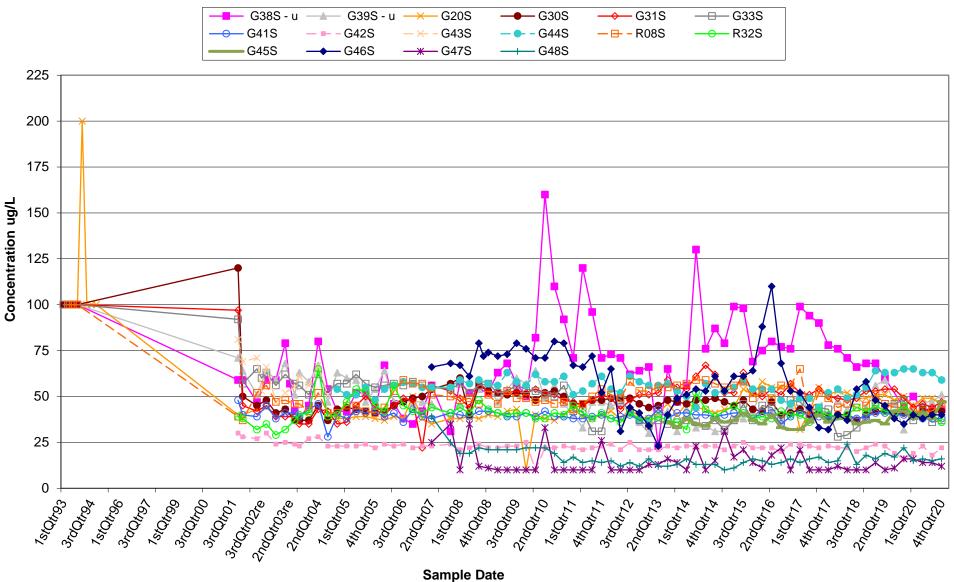

Attachment 9-2 – Time vs Concentration Curves


- G31S G38S - u 🛁 -– G41S G42S — <u>→</u> – G43S — — – G44S - - R08S - -AGQS — G46S – G48S G45S —**ж**— G47S 10 9 8 7 Concentration mg/L 6 5 4 3 2 1 0 3rdanoo 1 3rdQtro1 ³⁷⁰QhO2 2noth036 shaper -¹stotr₇₄ 4thQtr14 ⁷stQt93 300,04 96404s1 ³⁷00,192 1⁵¹0199 <hr/>
shophod</hr> 4th Qtros 3rdQhD6 < node 1⁵¹0108 4thQtrO8 3rdonog 2hoQir10 4th Qtr17 3rdQr12 3rdQir15 2ndQhT6 15th 1stohos ⁷stQtr17 024041A ⁷*st*0*tr*7 *4th*0*tr*7 ³⁷00*tr*7 ²⁷00*tr*78

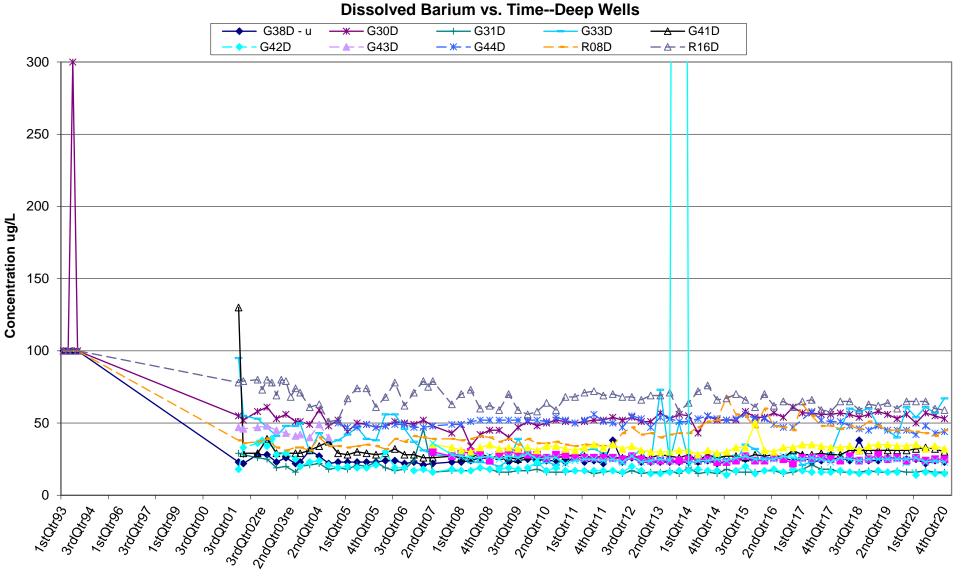
Dissolved Ammonia vs. Time--Shallow Wells

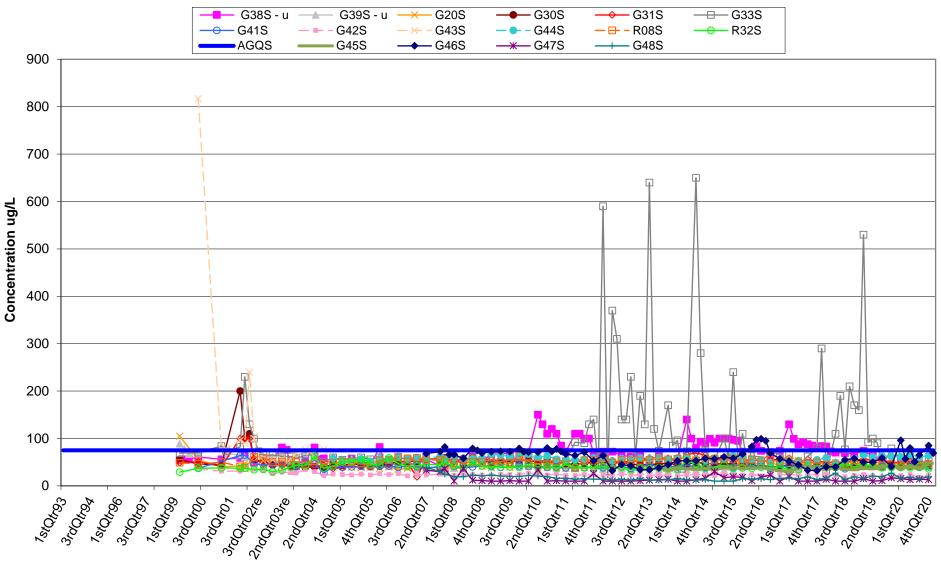
Sample Date

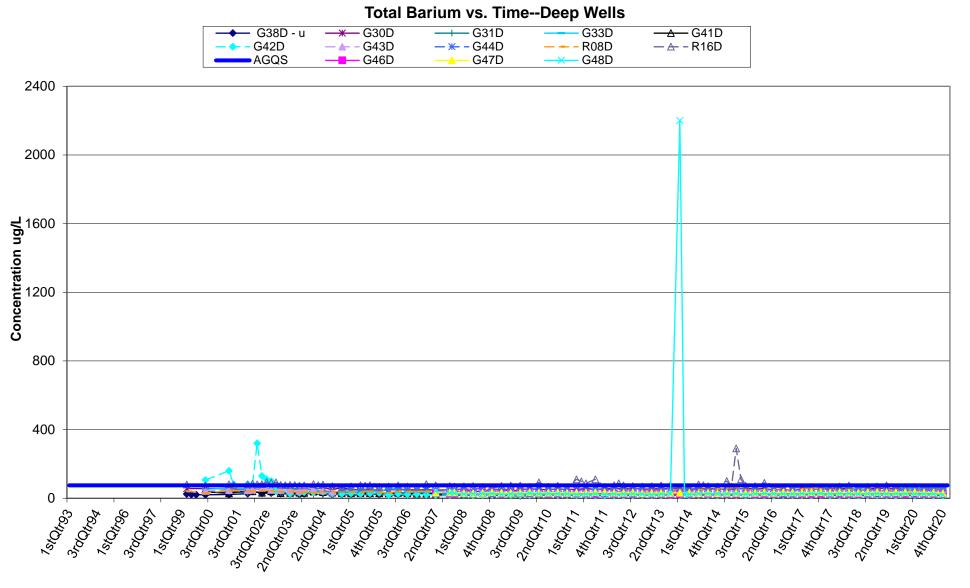




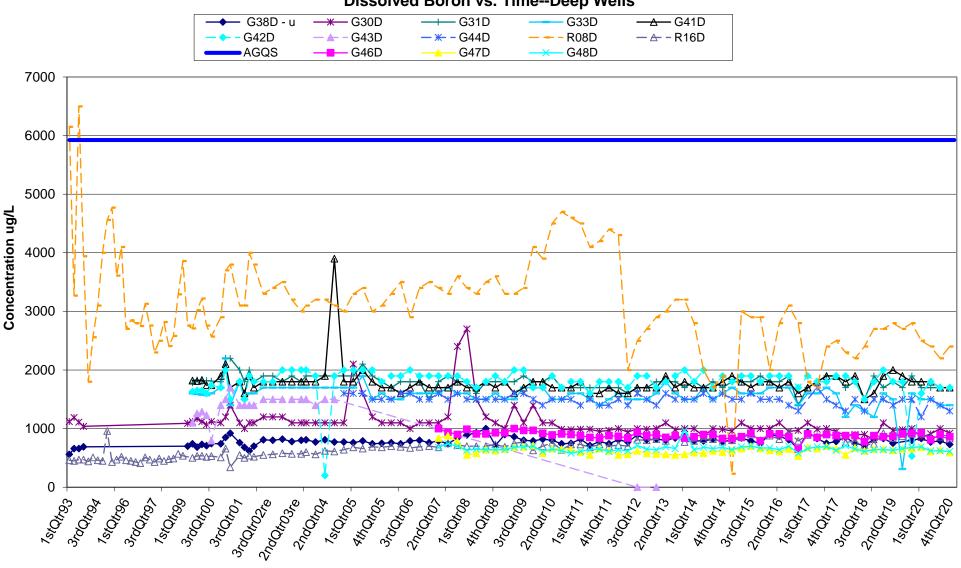
Dissolved Arsenic vs. Time--Shallow Wells


Sample Date


Sample Date

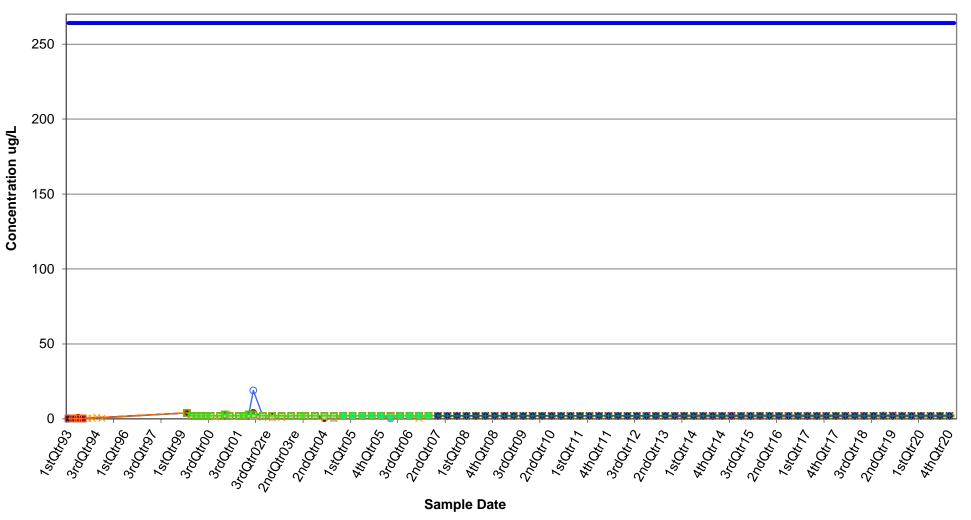

Dissolved Barium vs. Time--Shallow Wells

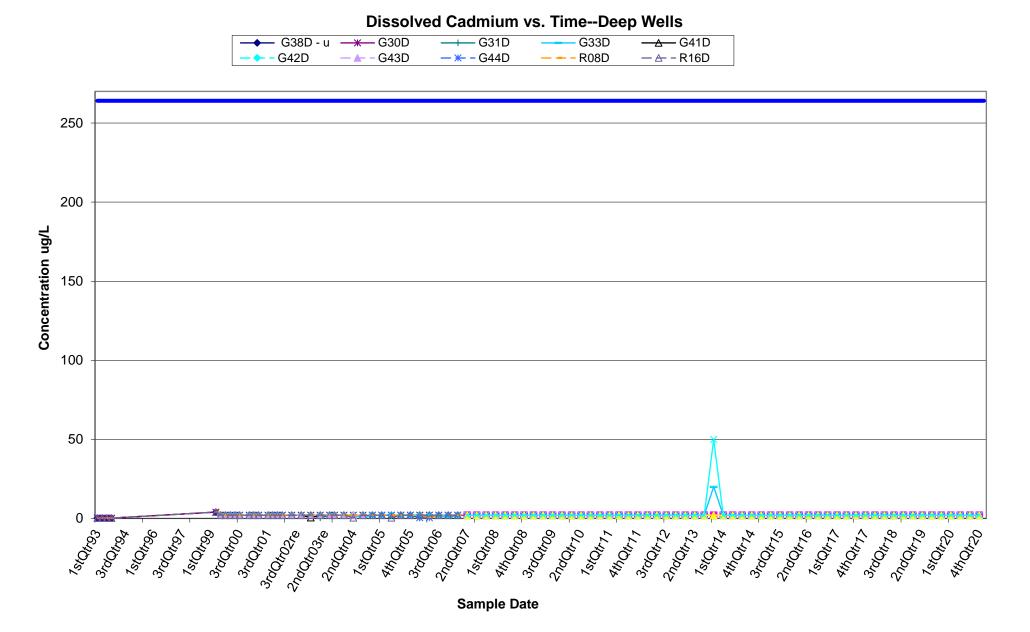
Total Barium vs. Time--Shallow Wells



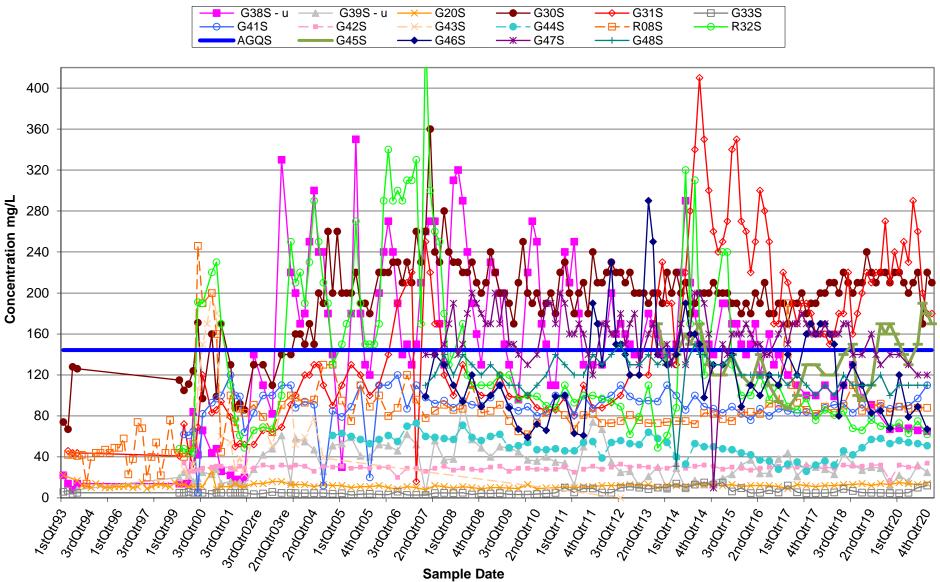
Joliet/Lincoln Stone Quarry

G31S G38S - u G39S - u G20S G30S ——— G33S \rightarrow G42S G43S — 🗗 – R08S ——— R32S • - - G44S G41S - × -G45S AGQS - G46S — G47S G48S 16000 14000 12000 Concentration ug/L 0008 0008 6000 4000 2000 0 3r00,000 | 3rd Otron 1 4th QtrO5 | 3rdQfr94 1 66.401s1 3rochoo ^{3ro}Qho ²hodho3e ³⁰00,000 3rdone 1.840h93 1⁵¹0196 2nopho4 1stotros < not offer SoliDes I start 4thQtrO8 2hoQhr10 ¹stotr₁ 4thQtr17 3rdQir12 ^{2hoQk73} 2hoQhr76 3rdQr18 Shoph 19 1stot20 4th Qt 20 1stotr14 4th Qtr14 ^{3rd}Qhr75 1stotr1> 44)O(4,1)> -Sample Date

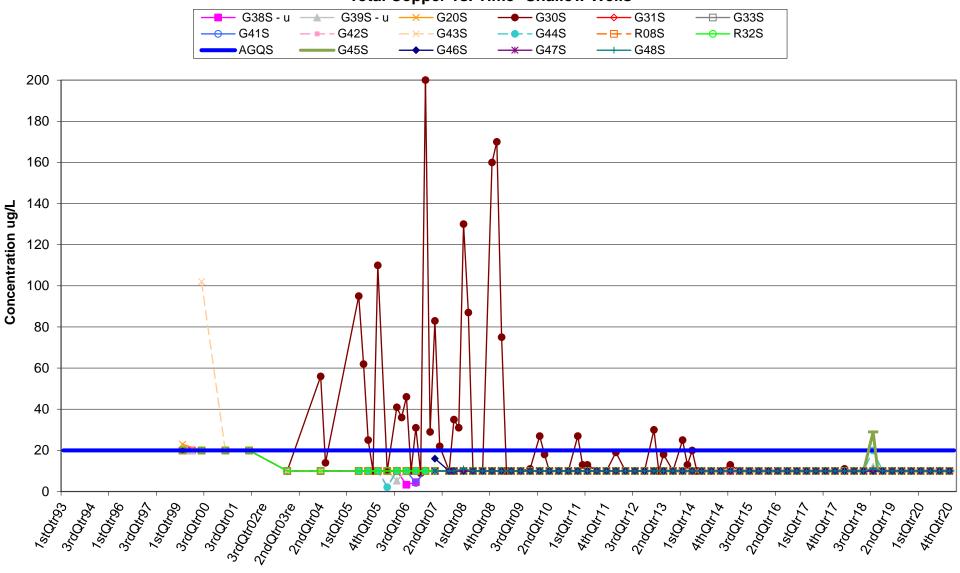

Dissolved Boron vs. Time--Shallow Wells



Dissolved Boron vs. Time--Deep Wells

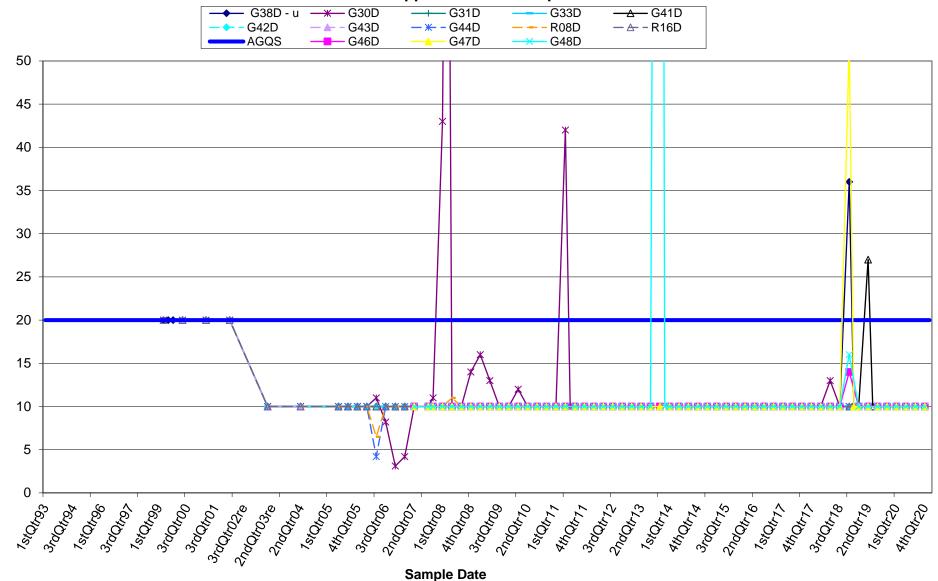

Dissolved Cadmium vs. Time--Shallow Wells

Dissolved Chloride vs. Time--Shallow Wells

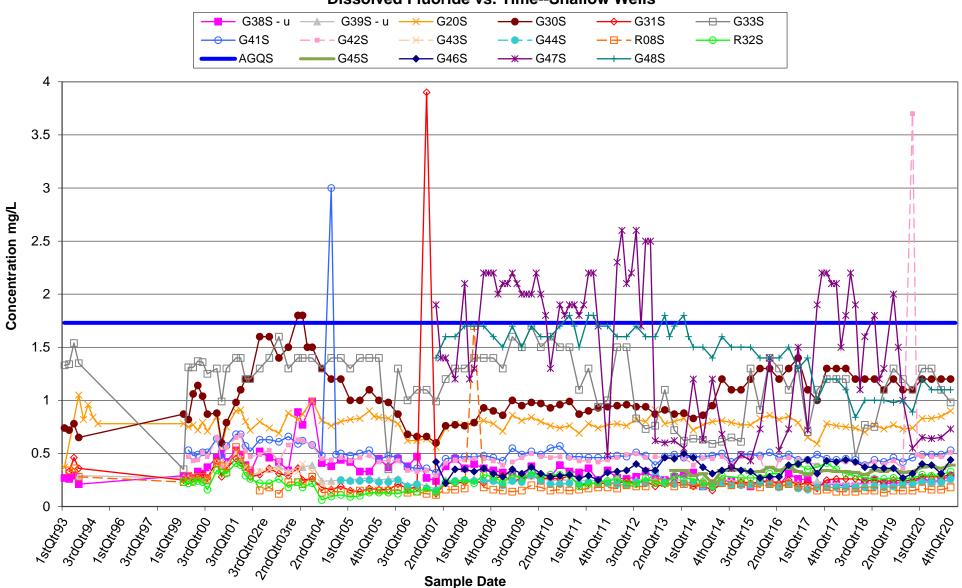

Joliet/Lincoln Stone Quarry

Dissolved Chloride vs. Time--Deep Wells G38D - u G31D G33D – G41D ~ G43D G44D R08D G42D - 📥 -— 🛆 – R16D AGQS G47D G48D 250 Λ 200 150 Ж X $\Delta - \Delta$ $\Delta + A$ 100 50 0 ¹stQt=20 4th Otios | ³¹00fr94 1⁵¹0159 3rdQfr9> | 1 66.40451 3rdqtoo 3rdQh01 ^{3ro}Qh_{O2te} ²haqha₃re 2naqua 1 Istohos J 3rdQh06 1 <non 1 stotos 4hQhOg 3rdQh09 | Zhaqhto 1⁵¹0193 7

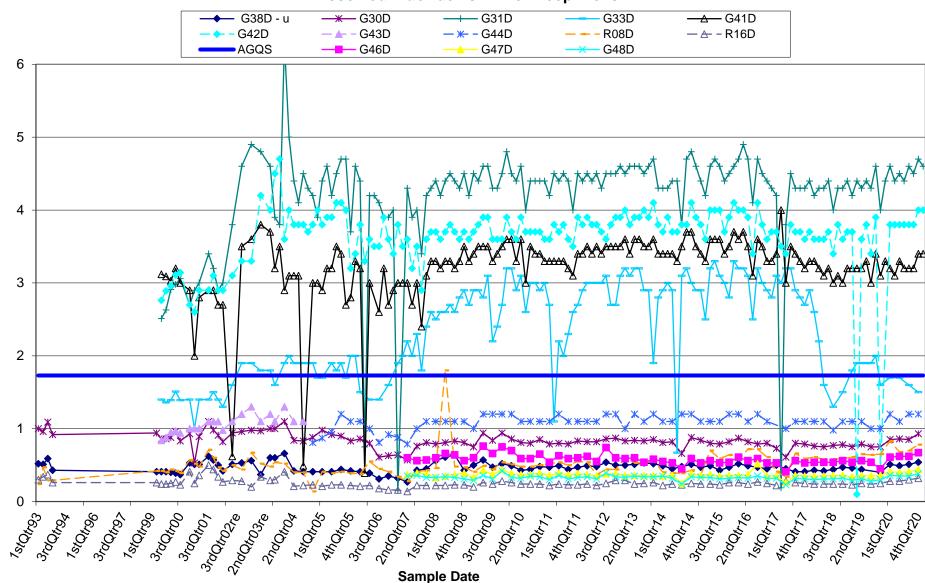
Sample Date


Concentration mg/L

Joliet/Lincoln Stone Quarry

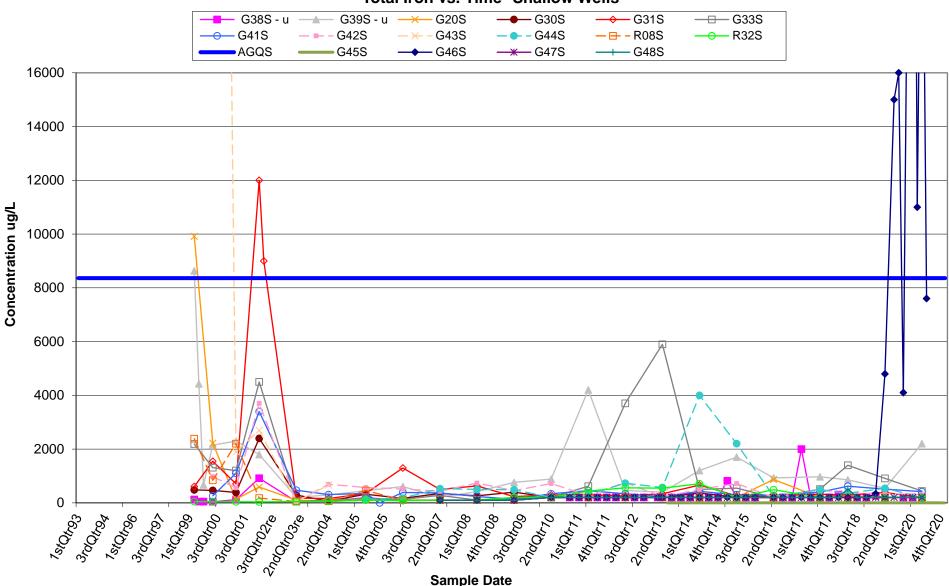

Total Copper vs. Time--Shallow Wells

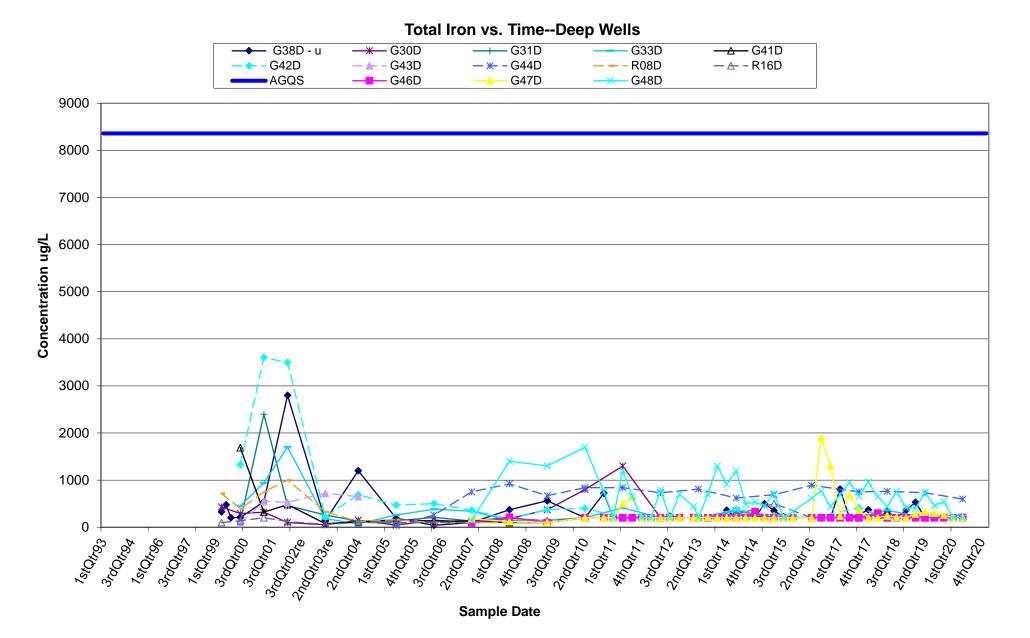
Joliet/Lincoln Stone Quarry



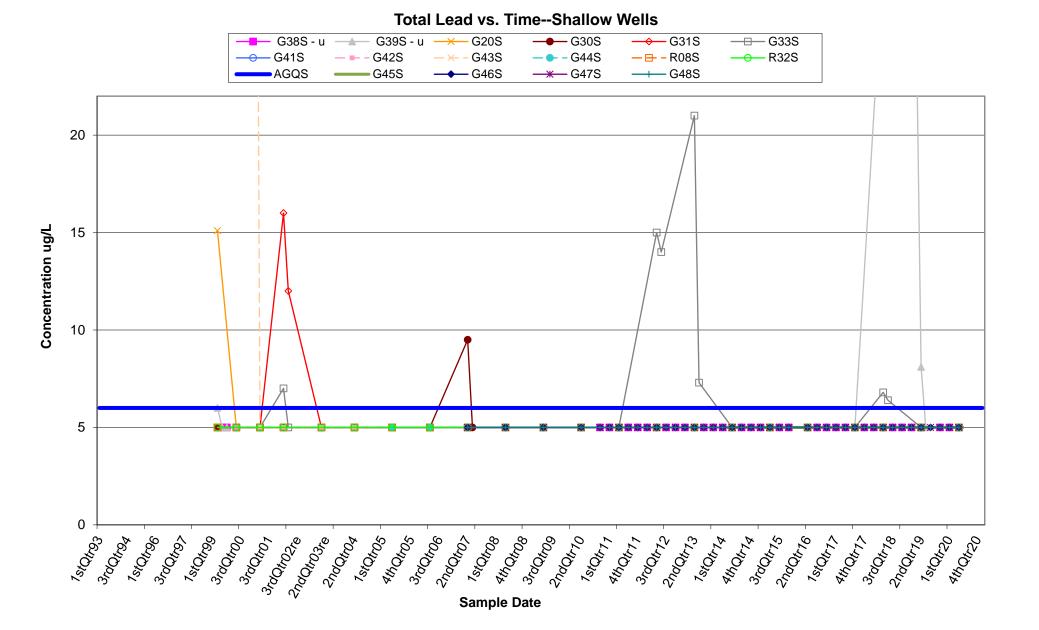
Total Copper vs. Time--Deep Wells

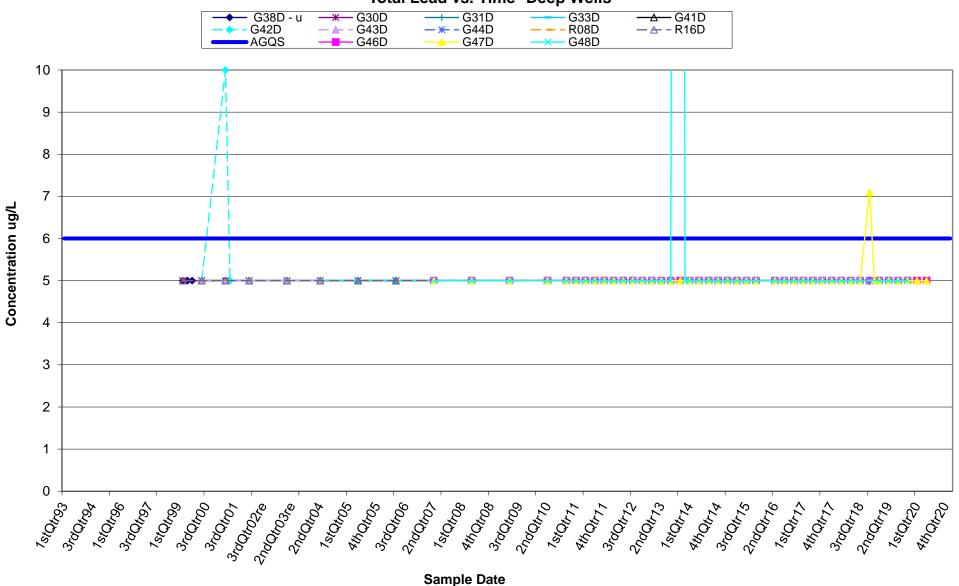
Concentration ug/L

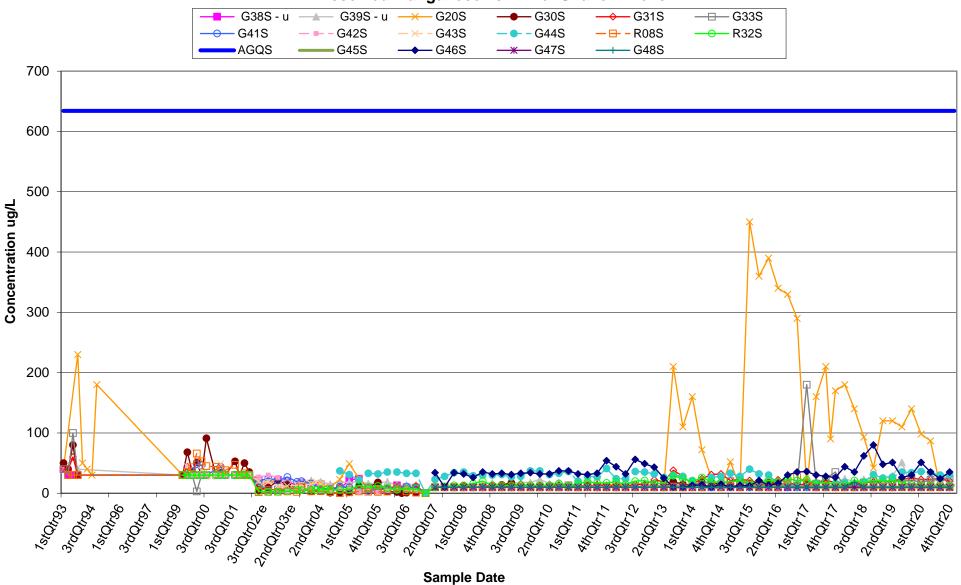

Dissolved Fluoride vs. Time--Shallow Wells

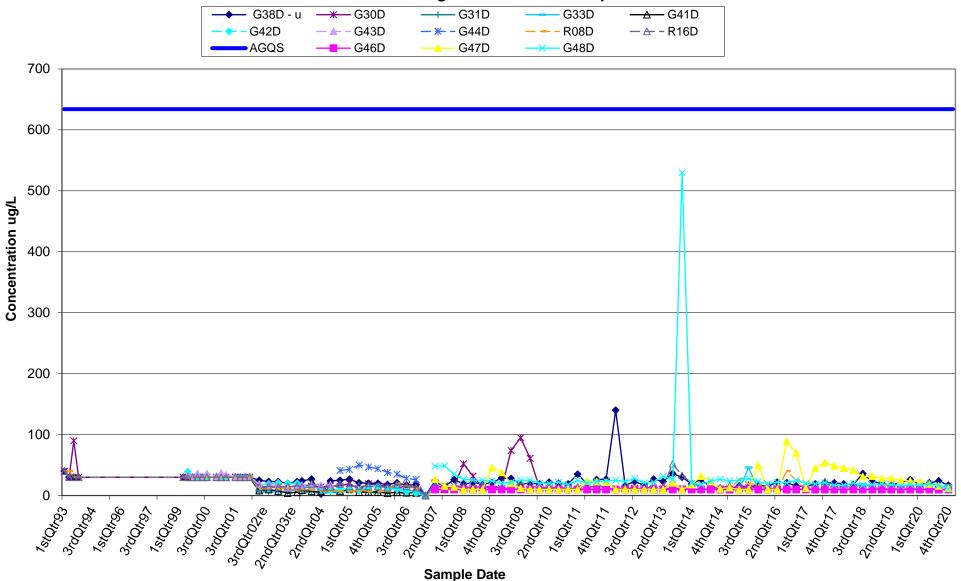

Dissolved Fluoride vs. Time--Deep Wells

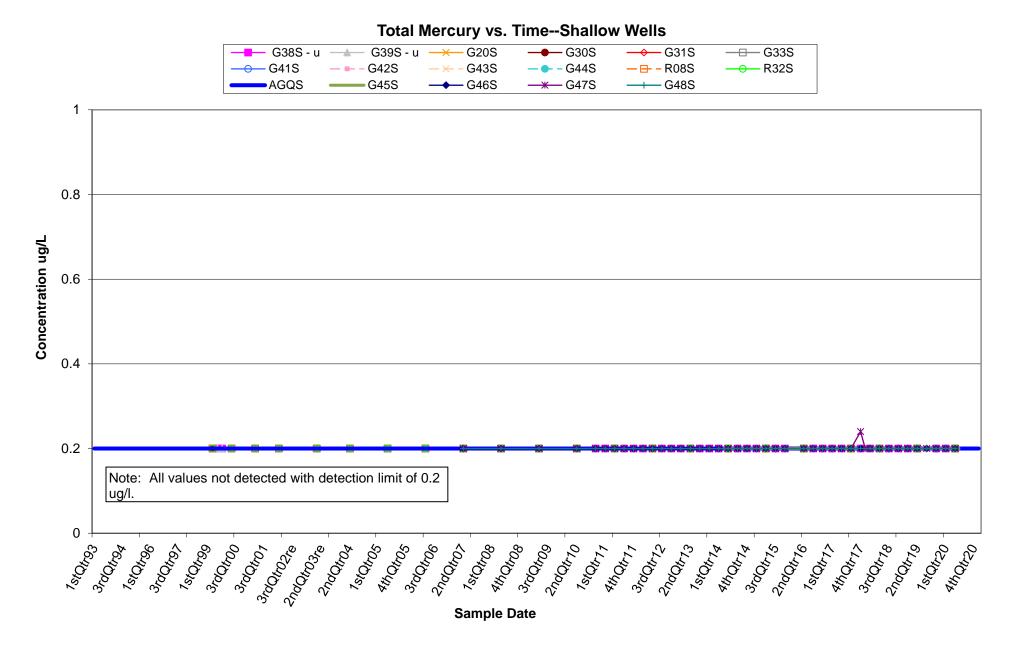
Concentration mg/L

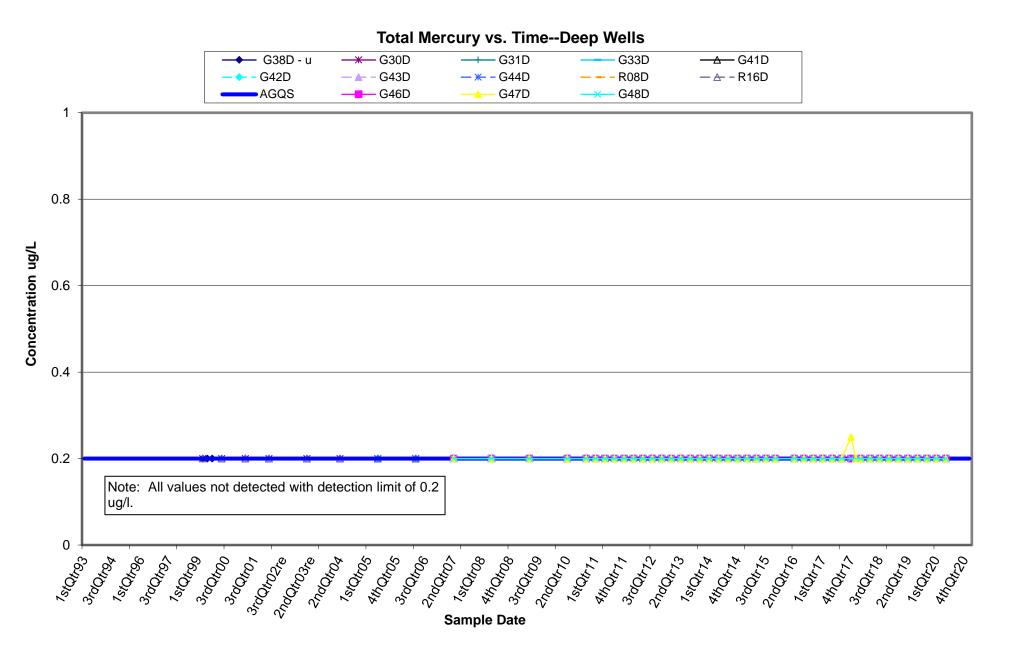

Joliet/Lincoln Stone Quarry



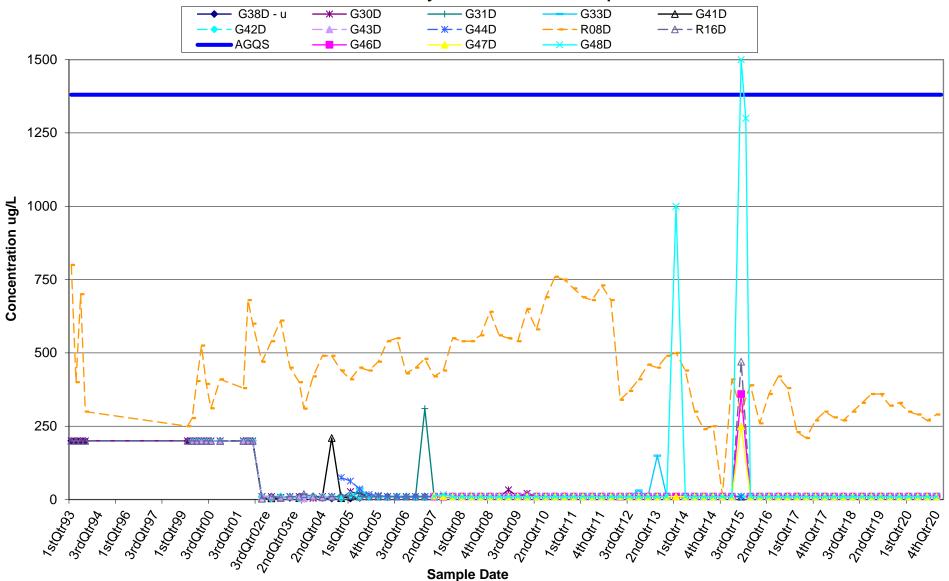

Total Iron vs. Time--Shallow Wells

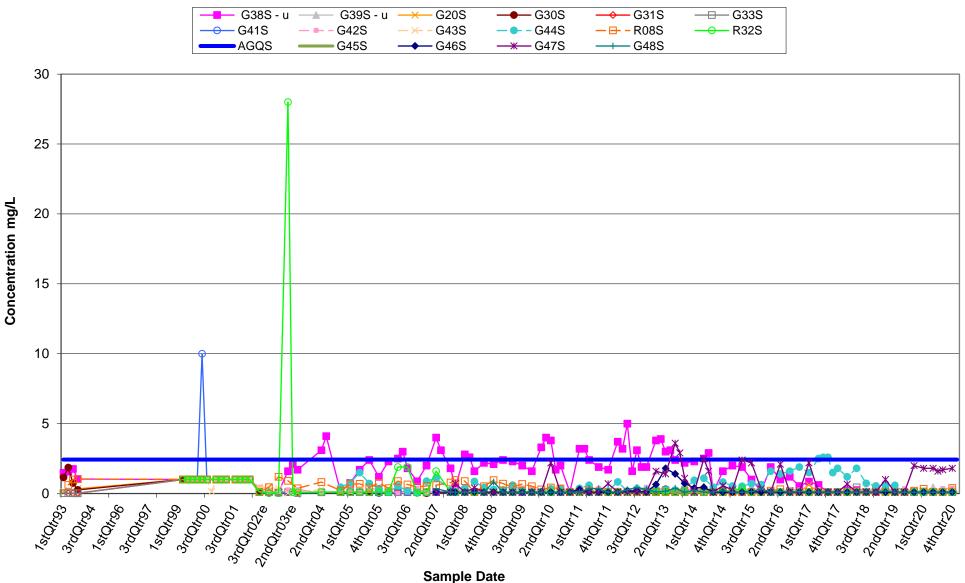

Joliet/Lincoln Stone Quarry



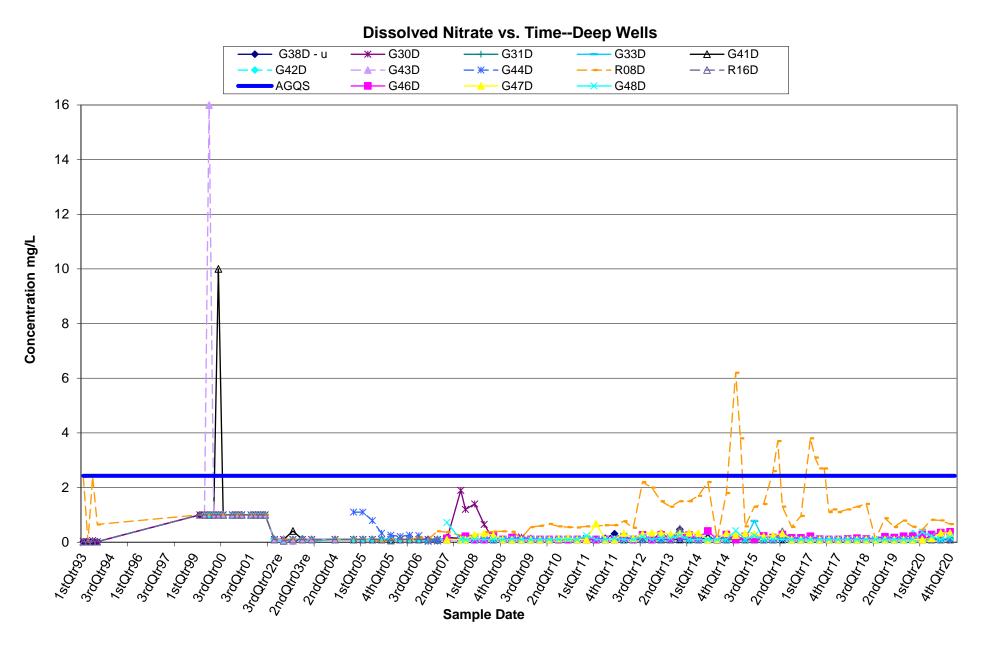


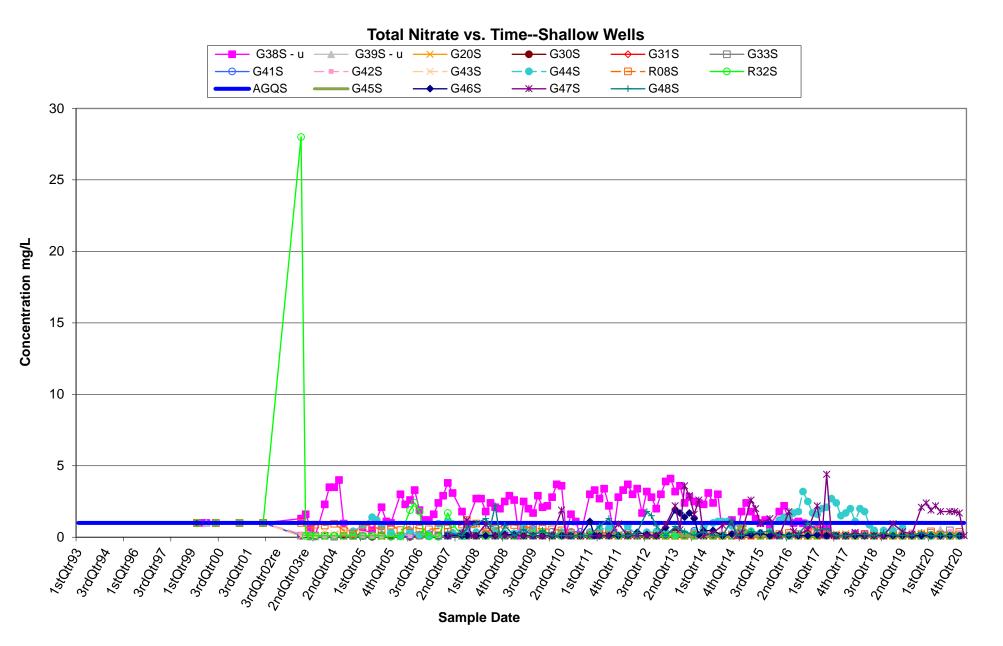
Dissolved Manganese vs. Time--Shallow Wells

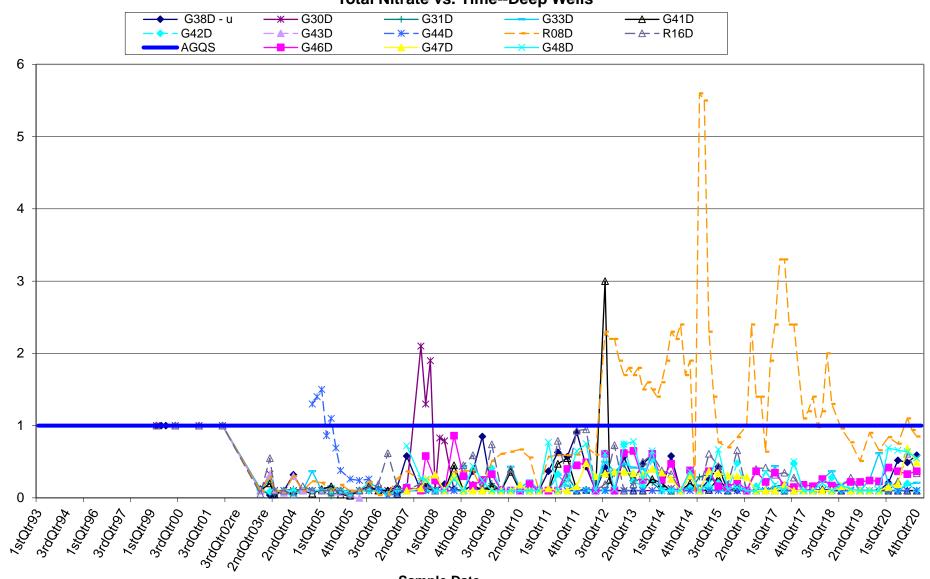

Dissolved Manganese vs. Time--Deep Wells



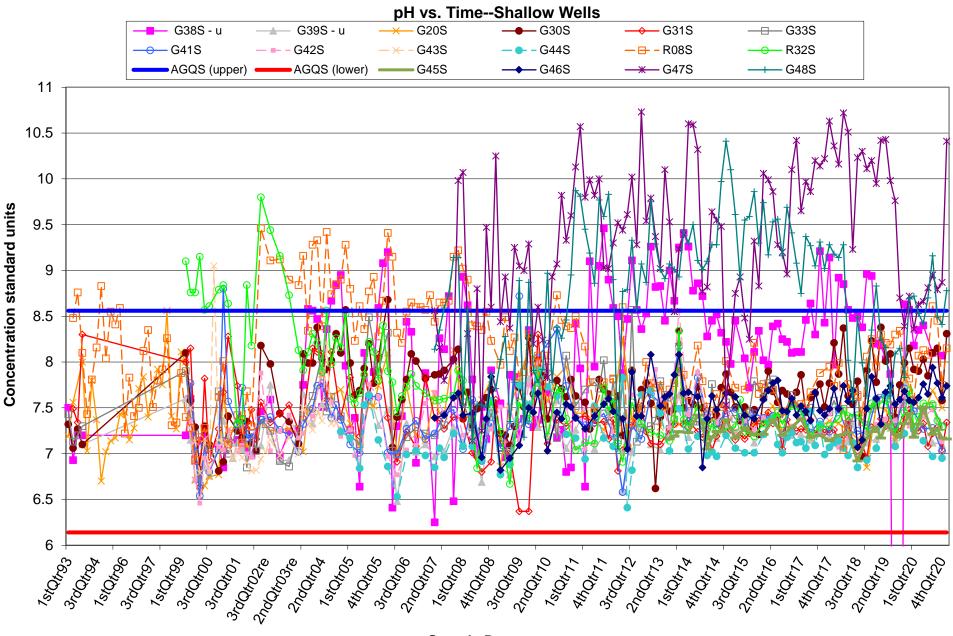
G38S - u G39S - u G20S G30S G31S ——— G33S G41S - G42S — ≻ – G43S — 🗕 – G44S — 🗗 – R08S - - -AGQS G45S — G46S —**ж**— G47S - G48S 3500 3000 2500 Concentration ug/L 2000 1500 1000 ⊠ 500 0 ¹*st*Q*t*=20 3rdqhoo 3rdqtro1 ^{3ro}Qho2re ^{2ho}dho3e³ 1.840405 V 4th Qtros ! 3rdohoe 1 2hodir76 <holdsymbols <nach 4⁴¹⁰⁰⁹ 3rdohog shoph 10 t ⁴thQtr17 ^{3rd}Qhr₁₂ ^{2hoQk73} shooking " ⁷*s*¹0¹0³ 3rdQh94 96404s1 ^{3rd}Qiso> 6640481 1 stotros 1stQtr11 ⁷StQtr₁₄ ⁴thOtr14 3rdOtr14 2h ¹stQtr7> ⁴thQtr7> ³cQtr7> ³cQtr78 Sample Date

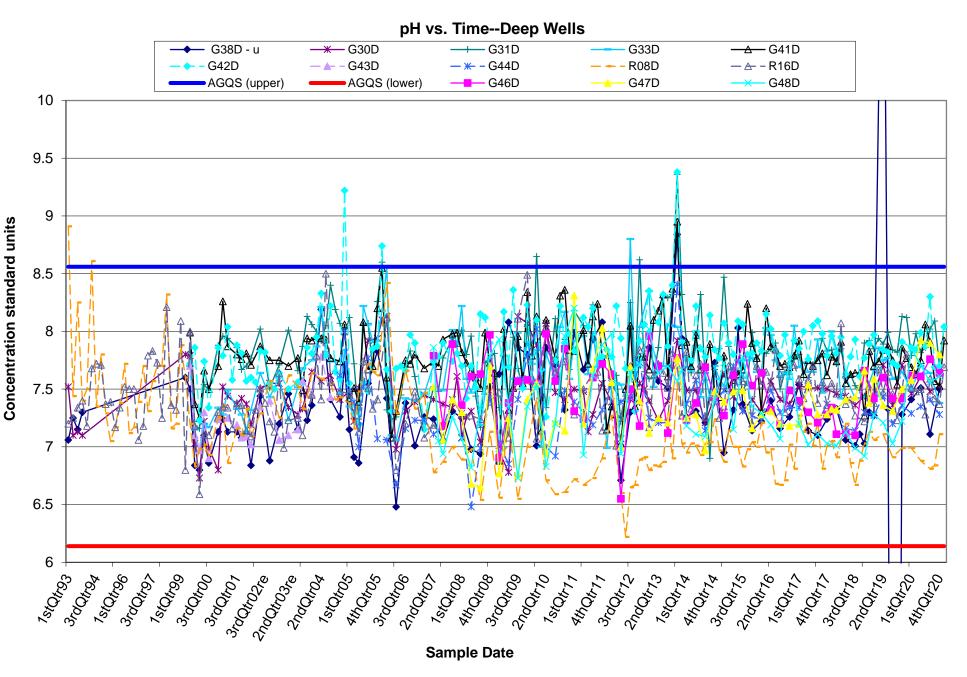

Dissolved Molybdenum vs. Time--Shallow Wells

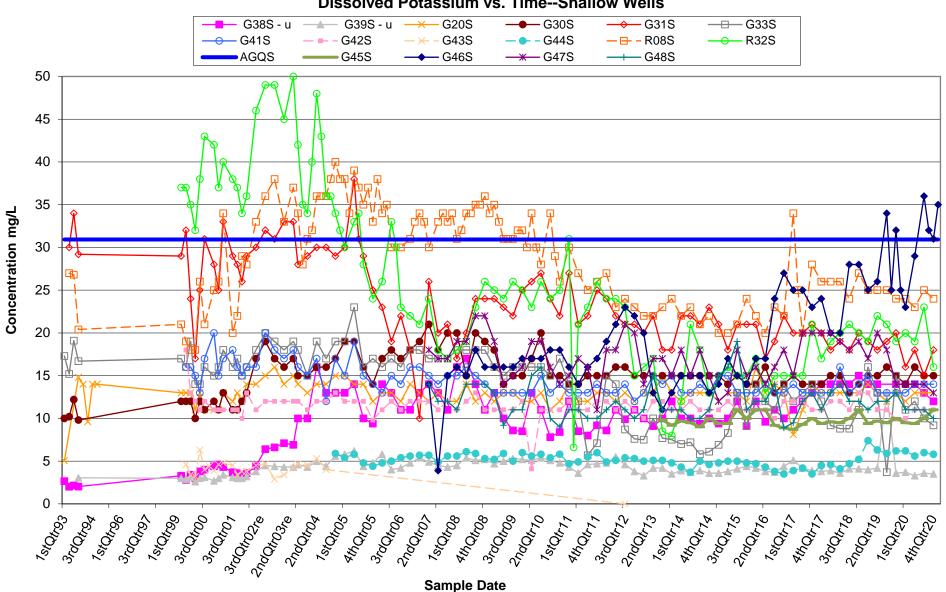

Dissolved Molybdenum vs. Time--Deep Wells


Dissolved Nitrate vs. Time--Shallow Wells

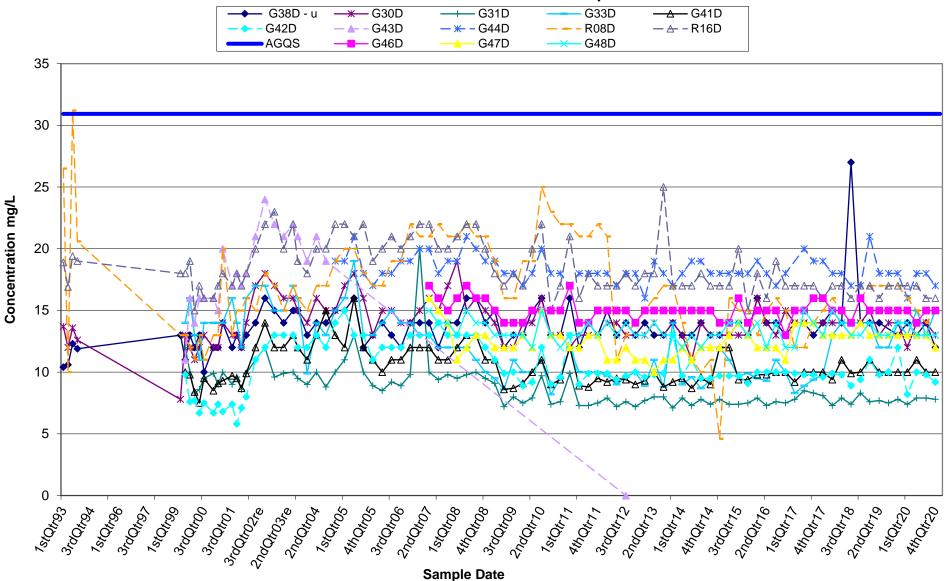
Joliet/Lincoln Stone Quarry

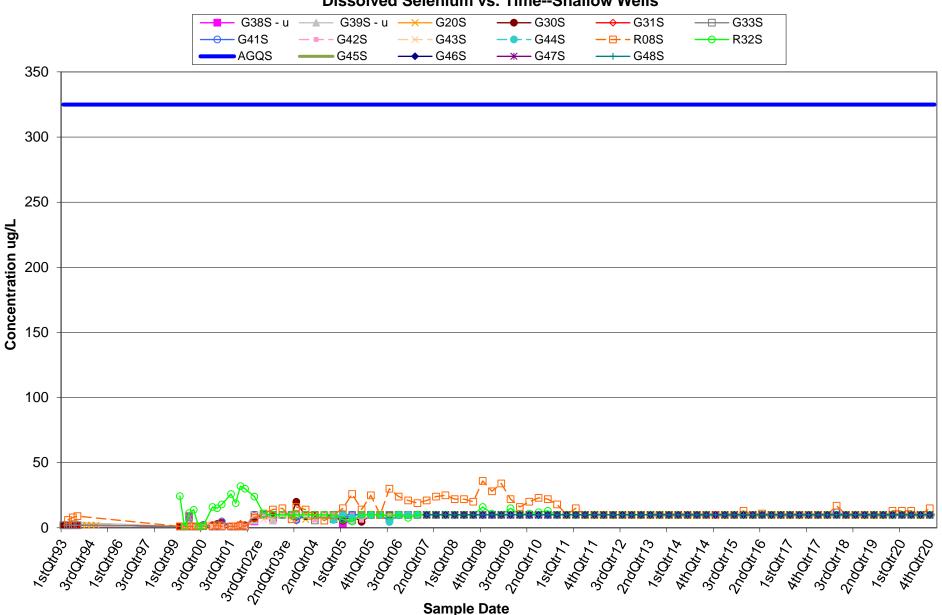

Joliet/Lincoln Stone Quarry

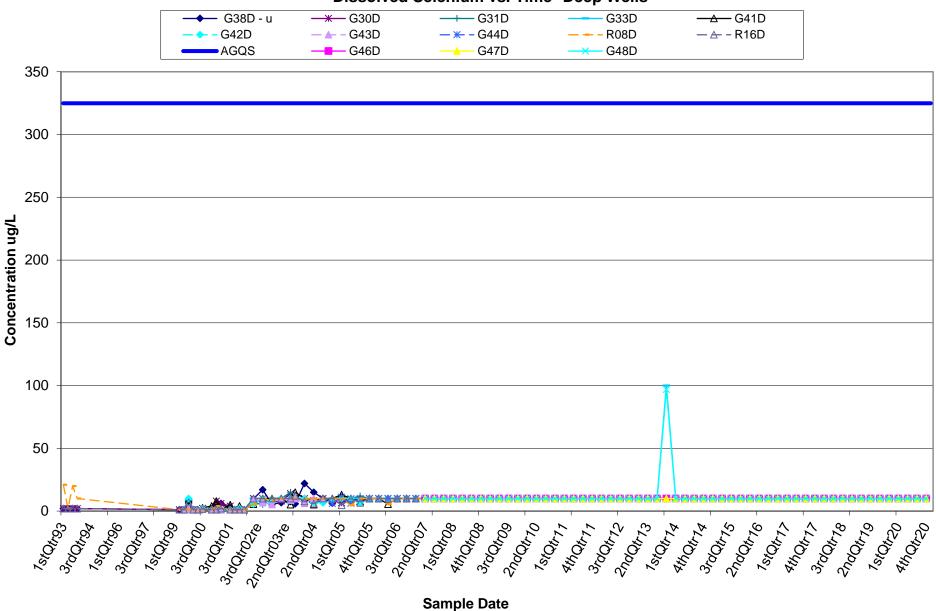


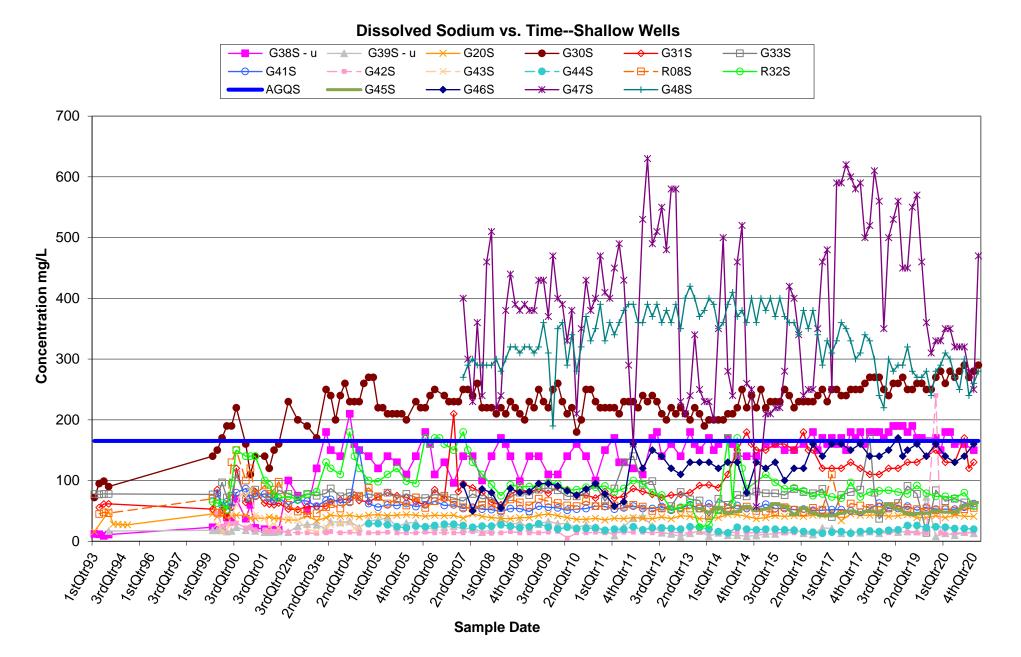

Total Nitrate vs. Time--Deep Wells

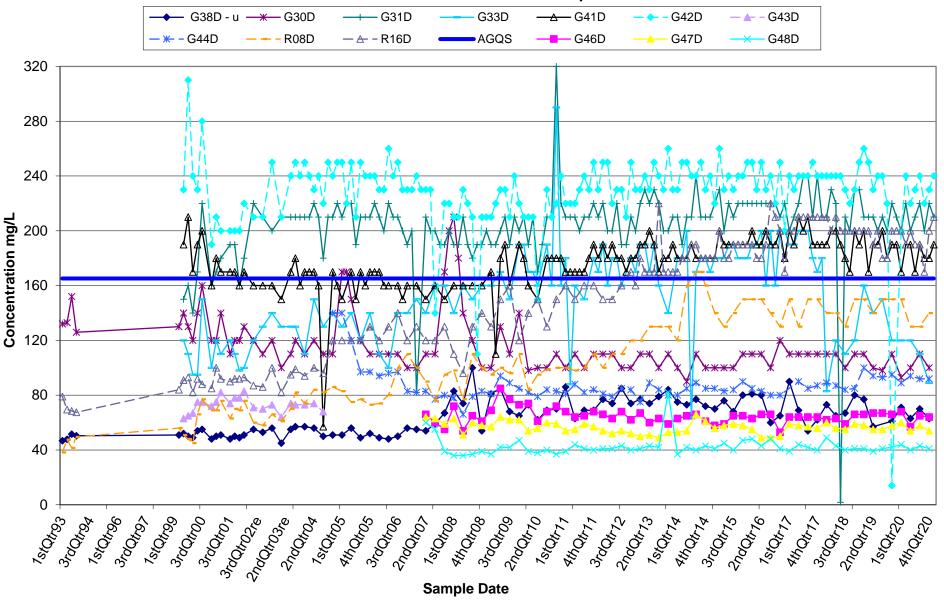
Sample Date


Concentration mg/L

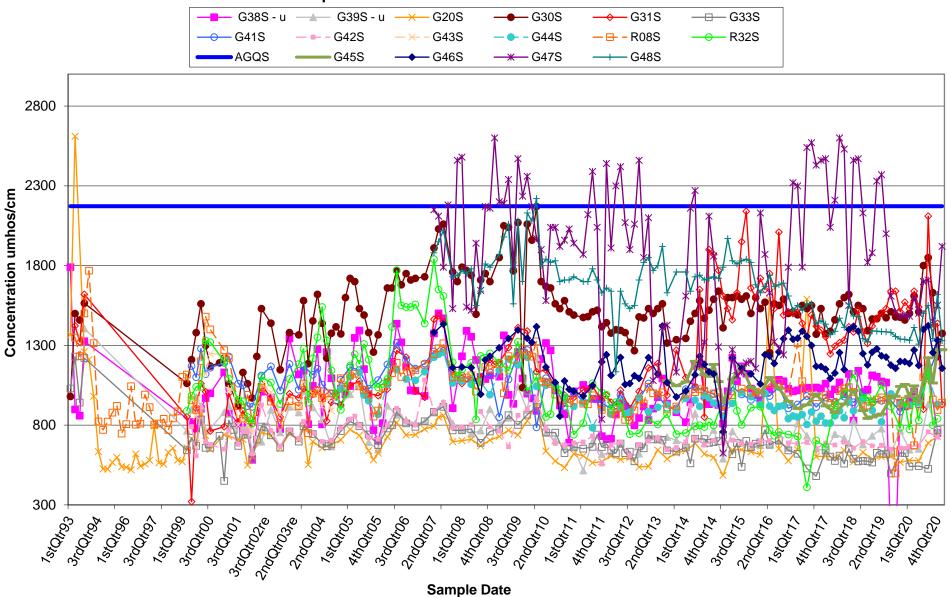


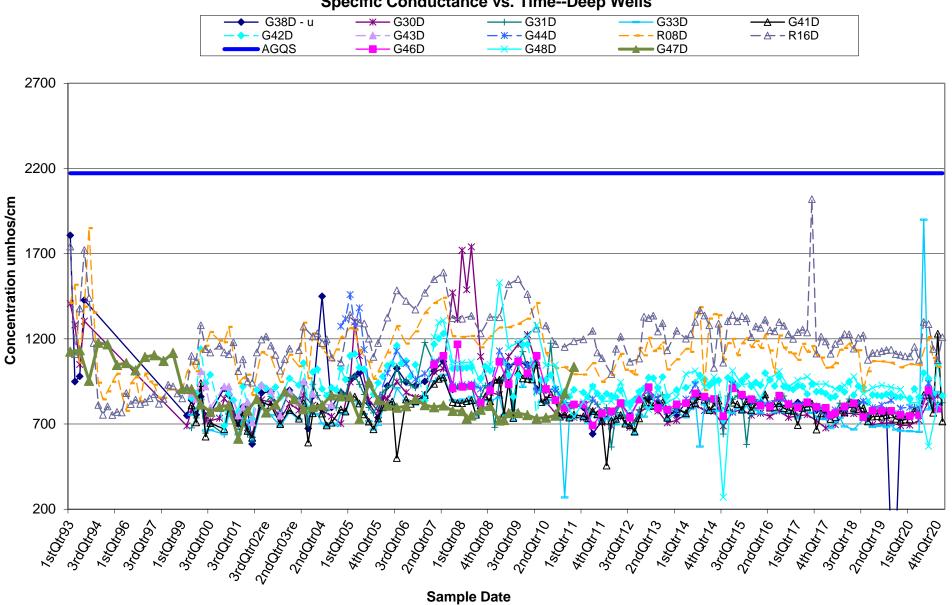


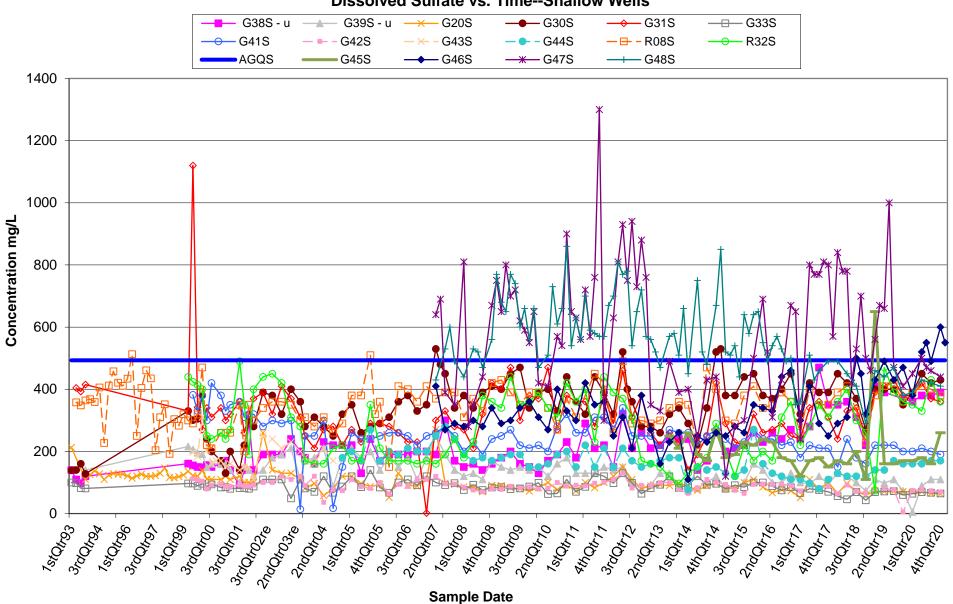

Dissolved Potassium vs. Time--Shallow Wells

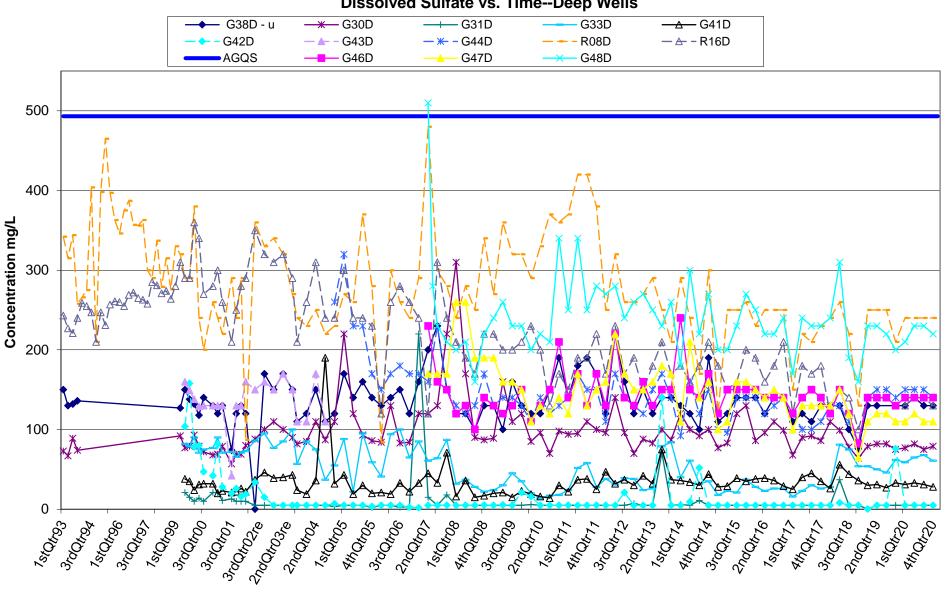


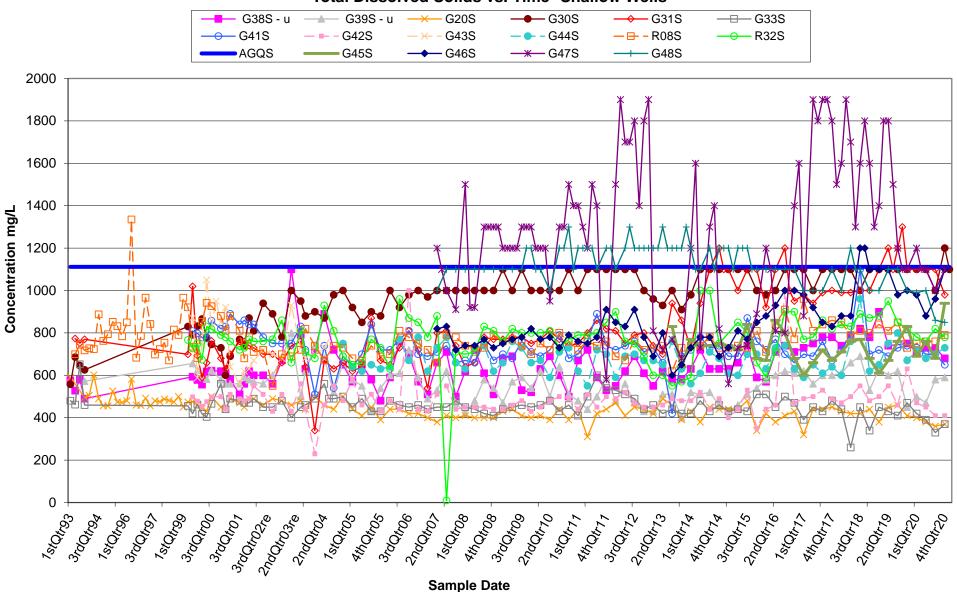
Dissolved Selenium vs. Time--Shallow Wells



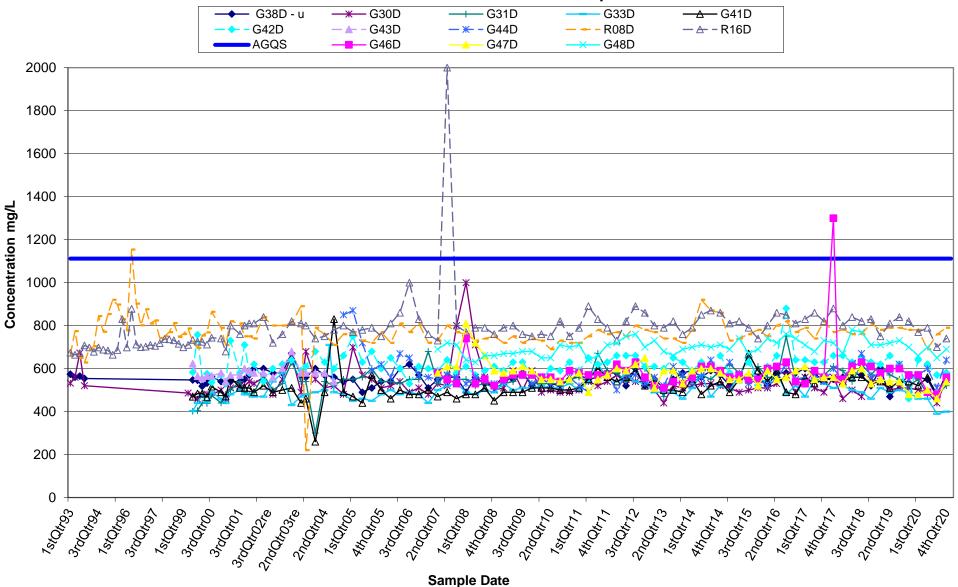



Dissolved Sodium vs. Time--Deep Wells


Specific Conductance vs. Time--Shallow Wells

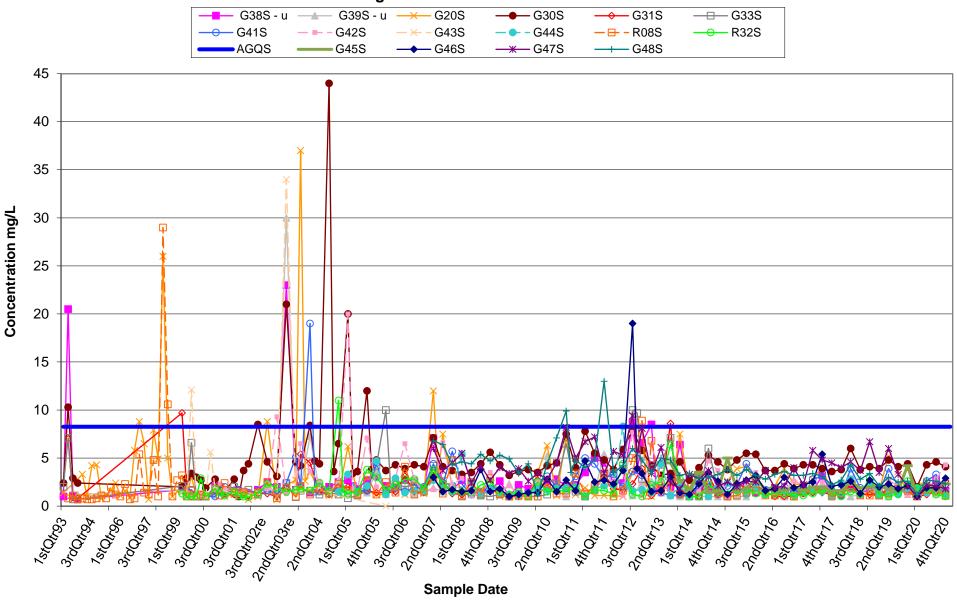


Dissolved Sulfate vs. Time--Shallow Wells

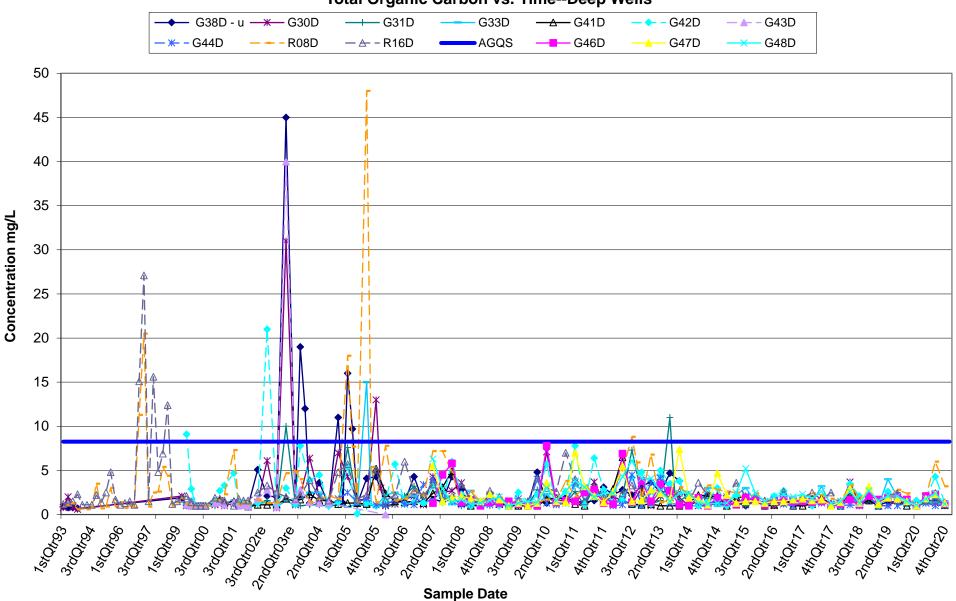


Dissolved Sulfate vs. Time--Deep Wells

Sample Date

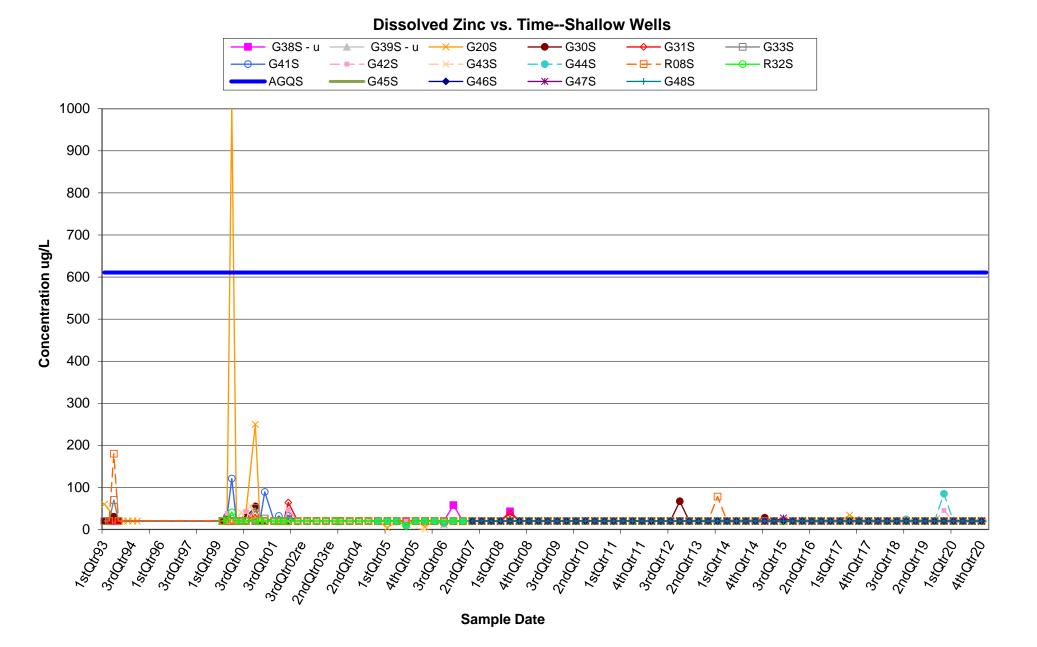


Total Dissolved Solids vs. Time--Shallow Wells



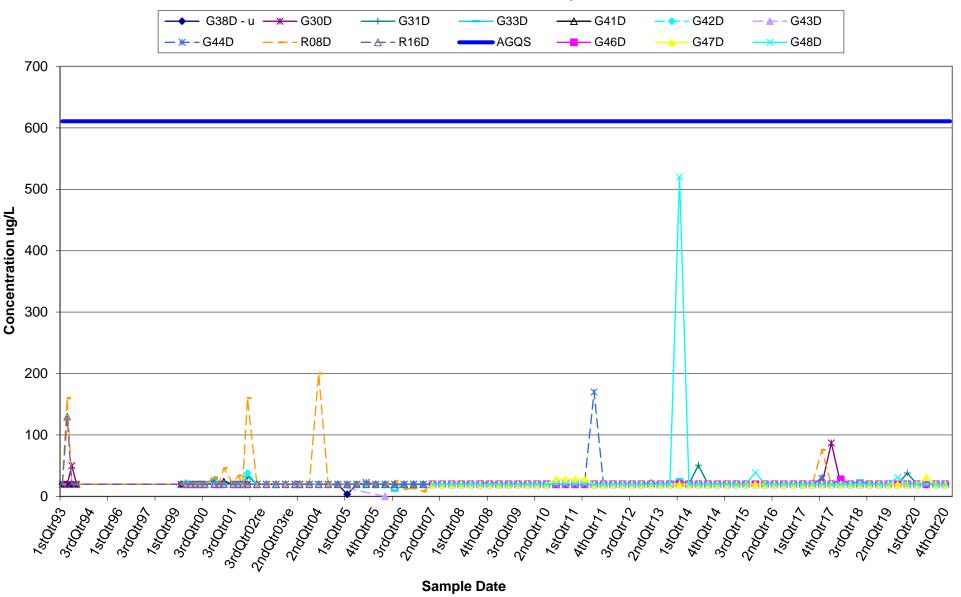
Total Dissolved Solids vs. Time--Deep Wells

Joliet/Lincoln Stone Quarry



Total Organic Carbon vs. Time--Shallow Wells

Total Organic Carbon vs. Time--Deep Wells

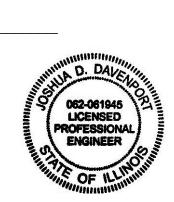

Joliet/Lincoln Stone Quarry

KPRG and Associates, Inc.

Joliet/Lincoln Stone Quarry

Dissolved Zinc vs. Time--Deep Wells

Attachment 9-3 – IL PE Stamp


CERTIFICATION 35 Ill. Adm. Code 845.630

In accordance with Section 35 Ill. Adm. Code 845.630(g), I hereby certify based on review of the information contained within the Initial Operating Permit Application for Joliet #9 Station dated October 29, 2021, the groundwater monitoring system has been designed and constructed to satisfy the requirements of 35 Ill. Adm. Code 845.630. For this site the minimum number of wells required is deemed sufficient based on the following: 1) The number of wells, placement and screened intervals are based on a hydrogeologic assessment performed for the site; 2) hydrogeologic considerations included aquifer characteristics affecting flow velocity and physical transport processes; 3) available historical groundwater flow data indicate consistent flow conditions over time; 4) Illinois Environmental Protection Agency (IEPA) approved the overall hydrogeologic assessment as part of a larger study.

Certified by:	for for
2	
Date:	10/29/21

Date:

Joshua Davenport, P.E. Professional Engineer Registration No.: 062-061945 KPRG and Associates, Inc.

Attachment 9-4 – CCR Compliance Statistical Approach

KPRG and Associates, Inc.

ILLINOIS STATE CCR RULE COMPLIANCE STATISTICAL APPROACH FOR GROUNDWATER DATA EVALUATION

Midwest Generation, LLC Joliet #9 Generating Station Lincoln Stone Quarry Patterson Rd. Joliet, Illinois 60436

PREPARED BY:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

August 2, 2021

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

SECTION/DESCRIPTION

PAGE

1.0	INTRODUCTION	1
2.0	STATISTICAL METHOD SELECTION and BACKGROUND DATA	
EVAI	LUATION	
2.1	Outlier Testing	2
2.2	Spatial Variability	
2.3	Temporal Variability	
2.4	Trend Testing	
2.5	Test of Normality	
2.6	Non-Detects	
2.7	Prediction Limit Calculation for Normally Distributed Data	4
2.8	Prediction Limit Calculation for Non-Normally Distributed Data	
3.0	GROUNDWATER MONITORING	6
4.0	CERTIFICATION	

FIGURE

Figure 1 – Monitoring Well Location Map

TABLE

Table 1 - Section 845.600 Parameters

1.0 INTRODUCTION

On April 21, 2021, the Illinois Pollution Control Board (IPCB) and Illinois Environmental Protection Agency (Illinois EPA) enacted a final rule regulating coal combustion residuals (CCR) as part of Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). The State CCR Rule specifically requires that the owner or operator of a CCR unit must develop an Operating Permit that will specify a sampling and analysis program that includes procedures and techniques for sample collection, sample preservation and shipment, analytical procedures, chain of custody (COC) control, and quality assurance and quality control. As a result, each regulated facility must develop a program that meets the State CCR Rule. At the Joliet #9 generating station, the Lincoln Stone Quarry (LSQ) requires monitoring under the State CCR Rule. The monitoring well network around the LSQ consists of ten monitoring wells. These wells are R08S, G20S, G30S, R32S, G44S, G45S, G46S, G47S, G48S and T03S). Wells T03S (side-gradient) and G45S are considered background monitoring wells are shown on Figure 1.

Section 845.640(f) of the State CCR Rule requires the development of the statistical approach that will be used for assessing the data and determining whether a statistically significant increase over background concentrations in groundwater has occurred at identified downgradient monitoring points. Potential statistical methods that can be applied to the data are listed in Section 845.640(f) and performance standards are provided in 845.640(g).

This narrative of the statistical approach that will be used for the LSQ groundwater monitoring data is intended to fulfill certification requirements under Section 845.640(f)(2). The professional engineer's certification of this statistical approach is provided in Section 4.0 of this document.

2.0 STATISTICAL METHOD SELECTION and BACKGROUND DATA EVALUATION

Section 845.640(f)(1) identifies five statistical data evaluation methods that can be used for assessing site groundwater data. Relative to the subject site, the prediction interval procedure identified in 845.640(f)(1)(C) will be used. This approach is robust and conforms to varying data distributions and facilitates various non-detect frequencies. U.S. EPA identifies this method as preferred over establishment of tolerance intervals (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, March 2009 [Unified Guidance]).

Total recoverable metals groundwater data has been collected for this site since 2015 as part of Federal CCR Rule requirements. Under the Federal CCR Rule, the initial eight rounds of quarterly data generated were used to develop a representative background concentration with which to develop applicable prediction limits for subsequent statistical downgradient monitoring well data comparisons. Since additional data has been generated since the initial eight rounds of groundwater monitoring under the Federal CCR Rule, the full, currently available data set through the second quarter 2021 will be evaluated for potential use in developing a representative background dataset. If appending this additional data to the original eight rounds of background sampling is determined to be not statistically appropriate, then the background calculations will be reverted to using the initial eight rounds of background data for subsequent calculations. The established, representative background concentration for the upgradient well locations will be used to develop prediction limits for the regulated unit for each constituent listed in Section 845.600(a) and (b) as provided in Table 1.

Statistical evaluations will be performed with the assistance of the SanitasTM software package.

2.1 Outlier Testing

The background dataset will be first checked for potential outliers for each constituent. Potential causes of outliers can be, but are not limited to:

- Changes in sampling technique;
- Changes in analytical methods;
- Data transcription errors;
- Unnatural localized event such as a spill; or
- Natural but extreme variations in constituent concentration.

The Unified Guidance does not recommend removing an outlier from the data set unless it can be shown that the outlier is not caused by extreme natural variation. If the outlier can be traced to other than natural causes, the data set will be adjusted appropriately.

2.2 Spatial Variability

If more than one background well is being used for the monitored unit, an evaluation of spatial variability will be performed to determine whether the mean concentration of a constituent varies statistically between the background points. This is generally accomplished by performing an Analysis of Variance (ANOVA). If statistically significant spatial variation is determined to be

present, the background points will not be combined between the wells. If the spatial variability is determined to be natural, an intrawell data evaluation approach may be considered for both upgradient and downgradient wells.

2.3 Temporal Variability

Temporal variability in groundwater data from a specific monitoring point occurs when a consistent fluctuation of constituent concentrations occurs over time. The most common example is seasonal variation. If such a variation is noted in the data, the dataset should be corrected to account for the trend; however, any such corrections must be applied judiciously and would be completed in accordance with the Unified Guidance recommended procedures.

2.4 Trend Testing

As discussed above, it is intended to expand the initial background dataset collected under the Federal CCR Rule which consisted of eight rounds of quarterly sampling, with any additional data collected for a specific well since that time to facilitate a larger background data set upon which to develop subsequent interwell, and if necessary intrawell, prediction limits. The expanded background dataset for each upgradient well, for each constituent listed in Table 1, will undergo trend analysis to determine if there may be a potential statistically significant trend in the data. Linear regression will be the primary trend analysis tool, however, other methods such Sen's Slope Estimator may also be used. If a statistically significant trend is identified in the larger combined background dataset, the new data cannot be added to the initial background dataset, and only the original eight rounds of data can be used for that well in background development and associated subsequent calculations.

2.5 Test of Normality

The main underlying assumption in parametric data evaluations, such as establishing prediction limits, is that the underlying data distribution is normal. A quick approximation can be made by calculating the Coefficient of Variance (CV) which is the quotient of the standard deviation divided by the sample mean. In general, if this quotient is greater than 1, the underlying data distribution is probably not normal. The new Unified Guidance is more conservative and suggests that if this quotient is greater than 0.5, the dataset may not be normal and a more robust distribution evaluation should be performed. Therefore, for any CV value greater than 0.5 for a specific dataset, normality will be evaluated using the Shapiro-Wilk Test with an alpha (α) value of 0.05 (or 95%).

If the dataset does not pass this initial test, the data will undergo a log transformation and the test will be repeated for the natural log values of the dataset. If it is determined that this dataset is log-normal, statistical evaluations will be completed on those values and the result converted back to the standard value. If the underlying distribution is also determined not to be log-normal, the Unified Guidance provides for a number of other data transformations that can be performed to evaluate whether those underlying distributions may be normal at which point the entire dataset would be transformed for subsequent calculations.

If a normal underlying distribution can not be determined, non-parametric statistical evaluations will need to be considered which do not rely on a specific underlying distribution.

2.6 Non-Detects

It is not uncommon in environmental datasets to have parameters being detected at low concentrations during one sampling event and being not detected in other sampling events. Having a consistent approach to the handling of non-detect values is an important part of the statistical evaluation process. The handling of non-detect values will be accomplished as follows:

- 100 Percent Non-Detects Assumed that the constituent is not present and no statistical evaluations will be performed. The upper prediction limit will be set at the Reporting Limit (RL) established by the analytical laboratory.
- 50 Percent or Greater Non-Detects A non-parametric evaluation will be performed where the confidence interval will be constructed using the highest detected concentration as the upper prediction limit.
- 15 to 50 Percent Non-Detects Aitchison's Adjustment will be used with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 0 to 15 Percent Non-Detects The non-detect values will be replaced with RL/2 and the dataset will be evaluated for distribution normality with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 2.7 Prediction Limit Calculation for Normally Distributed Data

For datasets where the distribution or underlying transformed distribution is normal, a parametric statistical approach will be used for establishing the prediction limit at the required 95% statistical confidence. In accordance with Unified Guidance, the following equation will be used:

95% Prediction Limit =
$$\bar{x} + t_{1-0.05/m,n-1}s \sqrt{1 + \frac{1}{n}}$$

Where:

\$\vec{x}\$ = the sample mean of the detected or adjusted results
 \$\vec{s}\$ = sample standard deviation of the detected or adjusted results
 \$t_{1-0.05/m,n-1}\$ = the students t-coefficient for degrees of freedom (n-1) and confidence level (1-0.05/m)
 \$n\$ = the number of samples
 \$m\$ = the number of future samples

The number of future sampling events (m) will be set at 2 which will account for one sampling event and a confirmation resampling. This will assist in limiting the potential number of false

positives. An acceptable site-wide false positive (SWFP) rate of 10% or less is acceptable under the Unified Guidance.

2.8 Prediction Limit Calculation for Non-Normally Distributed Data

If the dataset distribution or underlying distribution is determined not to be normal, a nonparametric approach will need to be used for the establishment of the prediction limit. The nonparametric evaluation will use the highest detected concentration as the upper prediction limit for the specific constituent.

3.0 GROUNDWATER MONITORING

The State CCR Rule does not distinguish between detection monitoring or assessment monitoring as was defined under the Federal CCR Rule. To meet the requirements set forth in Section 845.650(b), a minimum of eight rounds of groundwater data need to be collected for establishing background. As noted above, if more than eight rounds of data are available, then the larger dataset will be evaluated to determine whether the background dataset can be expanded to provide a more robust statistical assessment. At that point, statistical evaluation of the background dataset will be performed to establish the upper prediction limits for each Section 845.600(a) and (b) constituent. It is noted that in the case of pH, a lower prediction limit will also be established since this parameter has an established upper and lower value range for compliance.

Site specific Groundwater Protection Standards (GWPSs) will be developed in accordance with Section 845.600(a)(2) as follows:

- If the constituent has an established State standard listed in Section 845.600(a)(1) and the standard is greater than the calculated background upper prediction limit, then the standard will serve as the GWPS. If the background upper prediction limit is greater than the standard, the upper prediction limit will serve as the GWPS.
- If the constituent does not have an established standard (i.e., calcium and turbidity) then the calculated upper prediction limit will serve as the GWPS.

Once the proposed GWPSs are determined and approved by Illinois EPA, subsequent downgradient well concentrations will be compared against the upper prediction limit (and lower prediction limit in the case of pH), and the GWPSs. If an exceedance of the GWPS is identified during a quarterly sampling event, an immediate resampling of the specific well(s) will be completed for those specific parameters. If the exceedance is confirmed by the resampling, the Illinois EPA will be notified of the exceedance(s) and the notification will be placed in the facilities operating record in accordance with 845.800(d)(16). It is noted that there are some constituents that historically may have had no detections (i.e., 100% non-detects). In this case, in accordance with the Unified Guidance, if there is a detection of such a constituent, then the Double Quantification Rule will be applied. Under this rule, a confirmed exceedance is registered if any well-constituent pair in the 100% non-detect group exhibits quantified measurements (i.e., at or above the Reporting Limit in two consecutive sample and resample events.

If an exceedance of the GWPS is recorded and reported to Illinois EPA, an Alternate Source Demonstration (ASD) may be completed within 60-days of the confirmed exceedance in accordance with Section 845.650(e) and submitted to the Illinois EPA as well as placing the ASD on the facility's publically accessible CCR website. Illinois EPA will review and approve or disapprove the ASD.

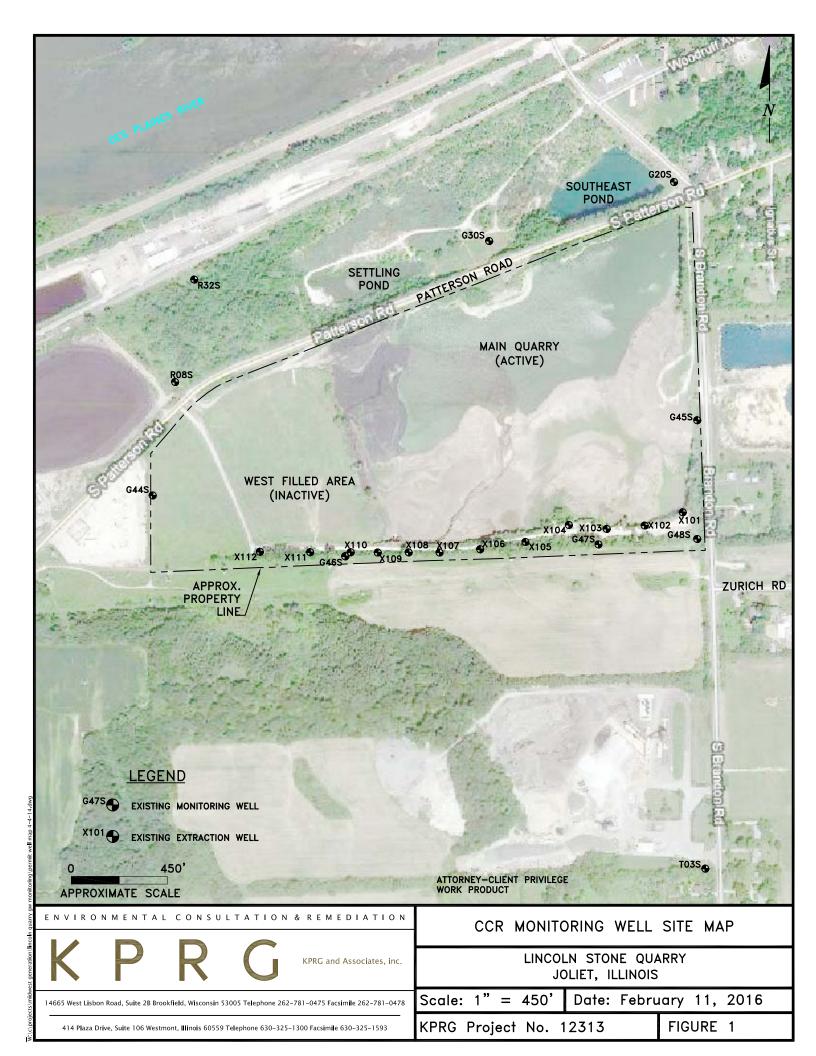
If it is decided not to complete an ASD or if Illinois EPA does not concur with and approve the ASD, a characterization of the nature and extent of the potential release must be completed in

accordance with Section 845.650(d)(1) as well as meeting the requirements of Sections 845.660, 845.670 and 845.680.

4.0 CERTIFICATION

In accordance with Section 845.640(f)(2) of the State CCR Rule, I hereby certify based on a review of the information contained within this Illinois State CCR Rule Compliance Statistical Approach for Groundwater Data Evaluation dated August 2, 2021, the statistical procedures developed and selected for evaluation of groundwater data associated with the Midwest Generation Waukegan Station CCR Units are adequate and appropriate for evaluating the groundwater data.

0	
Certified by:	
Date:	8/2/21


Joshua Davenport, P.E.

Professional Engineer Registration No. 062-061945

KPRG and Associates, Inc.

FIGURE

TABLE

Parameter	Section 845.600 Standards			
Antimony	0.006			
Arsenic	0.01			
Barium	2			
Beryllium	0.004			
Boron	2.0			
Cadmium	0.005			
Chloride	200			
Chromium	0.1			
Cobalt	0.006			
Combined Radium 226 + 228 (pCi/L)	5.0			
Fluoride	4.0			
Lead	0.0075			
Lithium	0.04			
Mercury	0.002			
Molybdenum	0.10			
pH (standard units)	6.5-9.0			
Selenium	0.05			
Sulfate	400			
Thallium	0.002			
Total Dissolved Solids	1200			
Calcium	NE			
Turbidity	NE			

Table 1. Section 845.600 Groundwater Monitoring Parameter Lis	List
---	------

All vaues in mg/l unless otherwise specified. NE- Not Established <u>Attachment 9-5 – Statistical Evaluation Summary</u>

ATTACHMENT 9-5

BACKGROUND STATISTICAL EVALUATION SUMMARY STATE RULE CCR GROUNDWATER MONITORING JOLIET #9 GENERATING STATION

The newly enacted Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule) requires development of proposed Groundwater Protection Standards (GWPSs) for inclusion within the Operating Permit for the regulated surface impoundments at the facility. Upon Illinois Environmental Protection Agency (EPA) review, concurrence and approval of these site-specific proposed GWPSs, subsequent quarterly downgradient groundwater monitoring data will be compared against these standards to determine whether standard quarterly monitoring is to continue or whether additional evaluations need to occur to in accordance with Section 845.650(d), 845.650(e), 845.660 and 845.670. The overall statistical approach to be used for the development of the proposed GWPSs is provided in Attachment 9-4 of this Operating Permit.

The proposed site-specific GWPSs for the Joliet #9 Generating Station are summarized in Table 9-7 in Section 9 of this Operating Permit. The background Prediction Limit values presented in that table were developed, where possible, by combining or "pooling" as many background data points as possible from the two background monitoring wells. This includes evaluating whether the initial eight rounds of data generated as part of Federal CCR Rule compliance that was completed between 2015 and 2017 can be combined with subsequent available data from ongoing groundwater monitoring since that time at a specific upgradient monitoring well location, and whether datasets from individual upgradient monitoring points can also be combined or "pooled". The turbidity data was collected this calendar year (2021) since this was a new state requirement that was not part of the Federal CCR Rule. The following general decision process was followed to determine whether background data from within a well and/or between upgradient wells can be pooled for background calculations:

- If the combined dataset (original eight rounds of data plus any subsequent data generated since the initial background sampling) at a specific well location (intrawell evaluation) for a specific parameter does not show a statistically significant trend, the data for that specific parameter at that well location can be pooled. If a statistically significant trend in the data is noted to exist, only the original eight rounds of background sampling can be used for subsequent calculations. If there is more than one background monitoring well, and one of the combined datasets for a specific parameter shows a statistically significant trend but the other does not, then the specific parameter data for the well that did not indicate a trend can potentially be used for subsequent evaluations.
- If there is more than one background monitoring well, then datasets for individual parameters between the wells (interwell evaluation) must pass an analysis of variance to determine whether there may be a statistically significant variation between the two datasets. If no statistically significant variance is noted between the two background

monitoring points, and the individual parameter data passes the intrawell trend evaluation noted above, then the datasets for that parameter can be pooled between the wells to establish a larger background dataset. If there is a statistically significant variation noted between the two background monitoring points, then the specific parameter datasets from those wells cannot be combined.

• If it is determined that datasets from background monitoring points cannot be combined, then a decision needs to be made as to which monitoring point will be used for a specific parameter for background calculations. At this point some professional judgement needs to be used by considering the number of data points within each dataset, any potential statistical outliers, any statistical seasonality/temporal variance, the distribution and/or underlying distribution of that data, number of detects versus non-detects, etc.

With the above decision process in mind, the various statistical evaluations performed are summarized below. The evaluations were performed with the assistance of the Sanitas[®] statistical software package.

Outlier Testing

Outlier tests were performed for all monitoring wells in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. Wells G45S and T03S are the designated background wells. The following statistically significant outliers (dates in parentheses) were noted in these background wells:

- Barium T03S (11/19/15 and 7/7/17)
- Combined Radium G45S (11/21/17)
- Fluoride G45S (7/7/17)
- Turbidity T03S (3/15/21 and 4/22/21)

Since the outliers cannot be attributed to either lab error, transcription error or field sampling error, the outlier values were not removed from the datasets at this time but may be considered during subsequent data evaluations. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Seasonality/Temporal Variability Testing

Seasonality/temporal variability tests were performed for all monitoring wells in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. Wells T03S and G45S are the designated background monitoring wells. No statistically significant seasonal/temporal variations were noted in these wells for any of the parameters. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion. The turbidity database to date is insufficient to evaluate potential seasonal/temporal variability at this time.

Trend Analysis

To determine whether data generated since the initial eight rounds of background groundwater sampling since the enactment of the Federal Rule can potentially be pooled at a specific background monitoring well location (T03S and G45S), trend analysis for each constituent at each upgradient well location was performed. The results are summarized as flows:

- T03S Statistically significant trends were noted for barium, boron, fluoride, lithium and molybdenum.
- G45S Statistically significant trends was noted for arsenic.

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Spatial Variability Testing

To determine whether the background data sets from background wells can be pooled to establish a representative statistical background, spatial variability testing was performed on the datasets using a parametric analysis of variance (ANOVA). This analysis was done for each of the monitoring parameters. The following observations are made:

• Upgradient wells T03S and G45S all parameter values pooled – No statistically significant variance between the full datasets for pH, lead and turbidity.

It is noted that antimony, beryllium, cadmium, chromium, mercury, selenium and thallium had no detections at any of the two background well locations during any sampling event, therefore, although an analysis of variance cannot be formally completed, these data sets can be pooled since there is no variation in the reporting limits.

Statistical run summaries which include the specific statistical method used for each parameter for each of the dataset comparisons are provided at the end of this discussion.

Test of Normality

The Shapiro-Wilk Normality Test with an alpha (α) value of 0.05 (or 95%) was used to evaluate the distribution of the background datasets for each constituent at each background well location and the distribution of pooled datasets. A Test of Ladders was also run to evaluate other potential underlying transformational distributions in the case that the non-transformed dataset was found not to be normally distributed. The statistical runs are provided for the various combinations of upgradient wells by parameter at the end of this discussion.

Prediction Limits

Based on the various statistical evaluations discussed above, the following background data sets were used for background prediction limit calculations:

- Background wells G45S and T03S all parameter values pooled for antimony, beryllium, cadmium, chromium, pH, lead, mercury, selenium, thallium and turbidity. Relative to lead pH and turbidity, there were no statistically significant trends within the wells for the combined data observations and there was no statistically significant variance noted between the datasets. Relative to the other parameters, all values at both background well locations were non-detects with no differences in detection limits.
- Background well G45S all parameter values were pooled for barium, boron, calcium, chloride, cobalt, fluoride, lithium, molybdenum, sulfate and total dissolved solids (TDS). For each of these combine parameter datasets, there were no individual statistically significant trends within the well. Fluoride was noted to have an outlier value at well G45S (0.05 mg/l), however there was a statistically significant data trend noted in the other background well (T03S) for fluoride precluding that expanded fluoride dataset to be pooled. Since the noted fluoride outlier concentration was still substantially below the Section 845.600 standard of 4.0 mg/l, and as stated above there is no known laboratory or field sampling error basis on which to remove this data point, it was decided to include the full available fluoride dataset for G45S in the statistical background calculation.
- Background well T03S all parameter values were used for arsenic and combined radium. None of these parameters indicated statistically significant trends within this well and none of these parameters were noted as statistical outliers at this well location. Combined radium was noted as having an outlier concentration within the G45S background dataset.

The calculated prediction limits under the various background dataset selection scenarios are summarized in Table 9-7 in Section 9 of this permit application. A prediction limit statistical run summary which includes the specific statistical method used for each parameter for each well scenario noted above are provided at the end of this discussion.

Outlier Analysis - Joliet #9 - UG Wells G45S and T03S

Outlier Analysis - Jonet #9 - OG Wens 6435 and 1035											
		Jol	iet 9,29 Generat	ing Station Clier	nt: NRG Data: Joliet 9 - Joliet 29	Printed 8	8/12/2021	l, 2:29 PM			
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	<u>Std. Dev.</u>	Distribution	Normality Test
Antimony (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	T03S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.003	0	unknown	ShapiroWilk
Arsenic (mg/L)	G45S (bg)	Na	n/a	n/a	EPA 1989	0.05	18	0.008961	0.001186	normal	ShapiroWilk
Arsenic (mg/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.00145	0.0005649	normal	ShapiroWilk
Barium (mg/L)	G45S (bg)	No	п/а	n/a	EPA 1989	0.05	18	0.0385	0.005136	normal	ShapiroWilk
Barium (mg/L)	T03S (bg)	Yes	0.11,0.063	12/15/202	Dixon's	0.05	18	0.0875	0.009256	normal	ShapiroWilk
Beryllium (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	T03S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.001	0	unknown	ShapiroWilk
Boron (mg/L)	G45S (bg)	No	n/a	n/a	NP (nm)	NaN	18	0.5044	0.144	unknown	ShapiroWilk
Boron (mg/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	18	1.464	0.6131	normal	ShapiroWilk
Cadmium (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	T03S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Catcium (mg/L)	G45S (bg)	No	n/a	n/a	EPA 1989	0.05	18	101.6	12.86	ln(x)	ShapiroWilk
Calcium (mg/L)	T03S (bg)	No	n/a	n/a	NP (nrm)	NaN	18	106.8	11.05	unknown	ShapiroWilk
Chloride (mg/L)	G45S (bg)	No	n/a	n/a	EPA 1989	0.05	18	133.2	34.65	ln(x)	ShapiroWilk
Chloride (mg/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	18	98.61	25,97	ln(x)	ShapiroWilk
Chromium (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.005	0	unknown	ShapiroWilk
Chromium (mg/L)	T035 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.005	0	unknown	ShapiroWilk
Cobalt (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nm)	NaN	18	0.001	0	unknown	ShapiroWilk
Cobalt (mg/L)	T03S (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.001156	0.0001756	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	G45S (bg)	Yes	8,45	11/21/2017	NP (nrm)	NaN	16	2,526	1.648	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	16	1.334	0.1996	normal	ShapiroWilk
Fluoride (mg/L)	G45S (bg)	Yes	0.05	7/7/2017	Dixon`s	0.05	18	0.3217	0.07006	normal	ShapiroWilk
Fluoride (mg/L)	T03S (bg)	No	n/a	n/a	NP (nrm)	NaN	18	0.225	0.05943	unknown	ShapiroWilk
Lead (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.0005	0	unknown	ShapiroWilk
Lead (mg/L)	T03S (bg)	n/a	n/a	n/a	NP (nm)	NaN	18	0.0006	0.0004243	unknown	ShapiroWilk
Lithium (mg/L)	G45S (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.03189	0.003628	normal	ShapiroWilk
Lithium (mg/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.02194	0.004304	normal	ShapiroWilk
Mercury (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nm)	NaN	11	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	T03S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	11	0.0002	0	unknown	ShapiroWilk
Molybdenum (mg/L)	G45S (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.009194	0.001668	ln(x)	ShapiroWilk
Molybdenum (mg/L)	T03S (bg)	No	n/a	n/a	EPA 1989	0.05	18	0.157	0.1007	normal	ShapiroWilk
Selenium (mg/L)	G45S (bg)	n/a	n/a	n/a	NP (nrm)	NaN	18	0.0025	0	unknown	ShapiroWilk
			-1-	-	ND (orm)	MaN	18	0.0025	0	unknown	ShapiroWilk

NP (nrm)

EPA 1989

EPA 1989

NP (nrm)

NP (nrm)

EPA 1989

EPA 1989

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

No

No

n/a

n/a

No

No

T03S (bg)

G45S (bg)

T03S (bg)

G45S (bg)

T03S (bg)

G45S (bg)

T03S (bg)

Selenium (mg/L)

Sulfate (mg/L)

Sulfate (mg/L)

Thallium (mg/L)

Thatlium (mg/L)

Total Dissolved Solids (mg/L)

Total Dissolved Solids (mg/L)

n/a

n/a

⊓/a

n/a

n/a

n/a

n/a

NaN

0.05

0.05

NaN

NaN

0.05

0.05

18

18

18

12

12

18

18

0.0025

181.1

212.8

0.002

0.002

745

834.4

0

0

0

59.4

38.32

107.4

79.72

unknown

ln(x)

normal

unknown

unknown

normal

normal

ShapiroWilk

ShapiroWilk

ShapiroWilk

ShapiroWilk

ShapiroWilk

ShapiroWilk

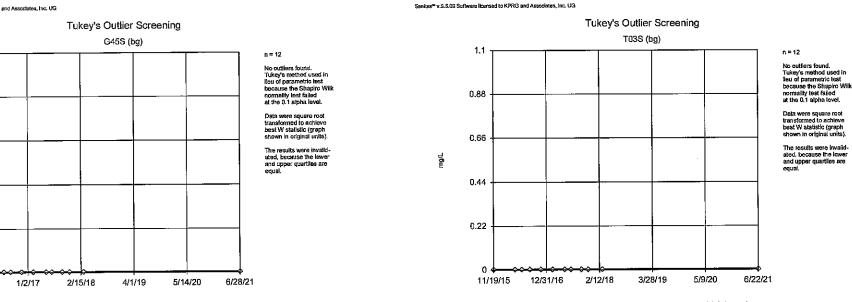
ShapiroWilk

Sanilas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

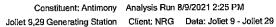
1.1

0.88

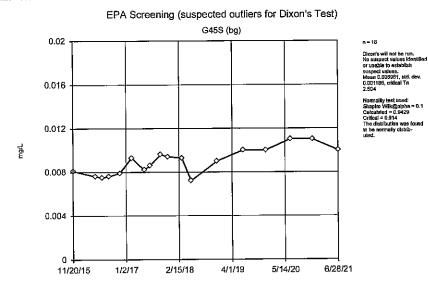
0.66

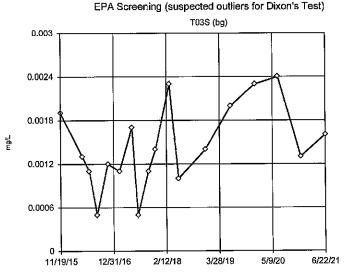

0.44

0.22


Ω

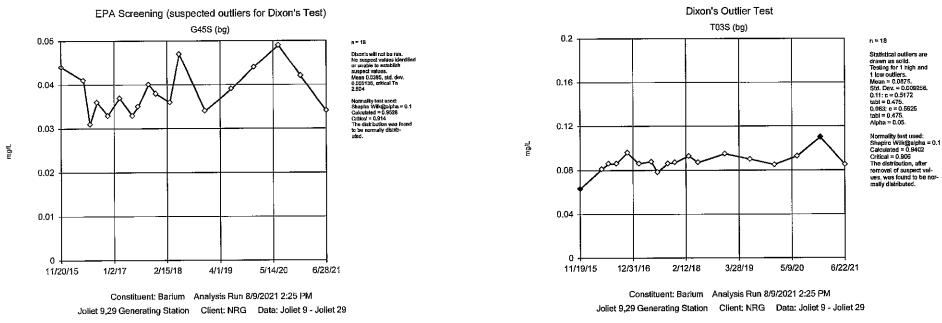
11/20/15


7/B₩

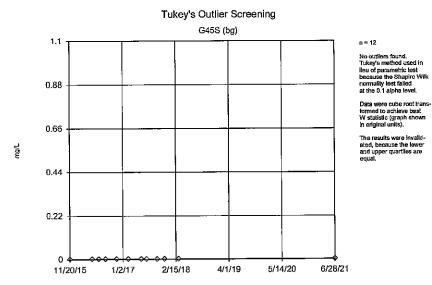

Constituent: Antimony Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.8.6.09 Software licensed to KPRG and Associates, Inc. UG

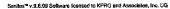
Constituent: Arsenic Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas* v.8.6.09 Software licensed to KPRG and Associates, Inc. UG

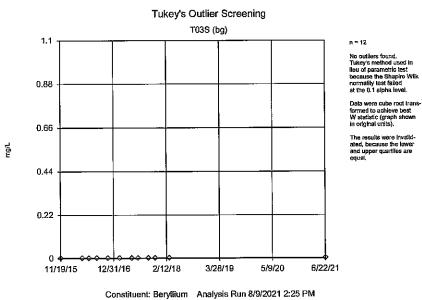

 $n \approx 18$ Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.00145, std. dev. 0.0005649, critical Tn 2 FILA

Nonmality test used: Shapiro Wik@aipha = 0.1 Calculated = 0.9474 Critical = 0.914 The distribution was found to be normally distribulad.


Constituent: Arsenic Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

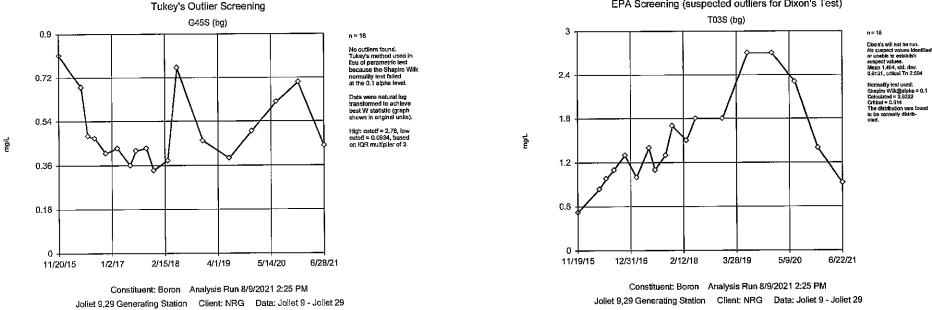
Senites^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas^a v.9.8.09 Software licensed to KPRG and Associates, Inc. UG

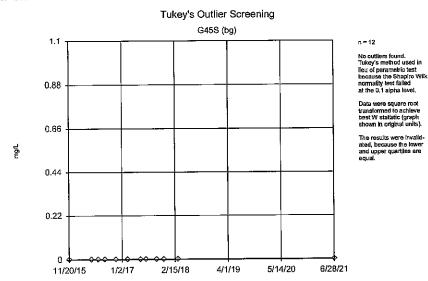


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Beryllium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

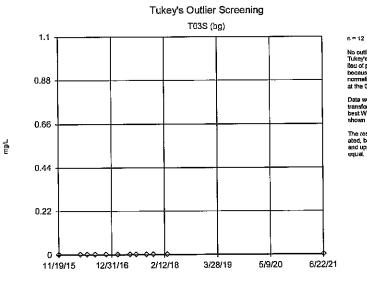


Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Senitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

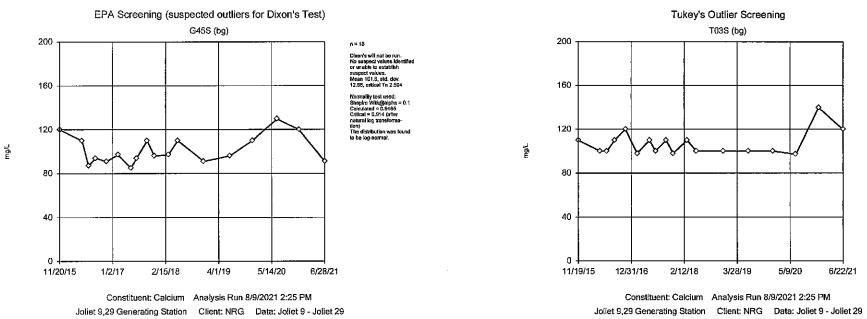
Sanitas^{ra} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

EPA Screening (suspected outliers for Dixon's Test)


Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Cadmium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

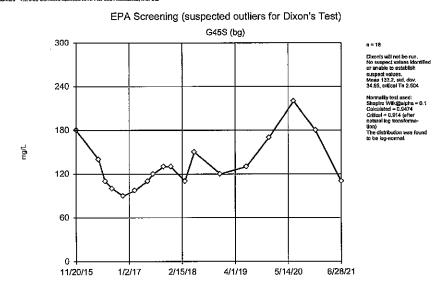
the second se


No outliers found. Tukey's method used in Ilou of parametric test because the Shapiro Wilk normality test falled at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph shown in original units).

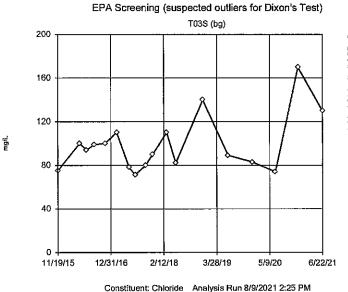
The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Cadmium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


n = 18

No outliers found, Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

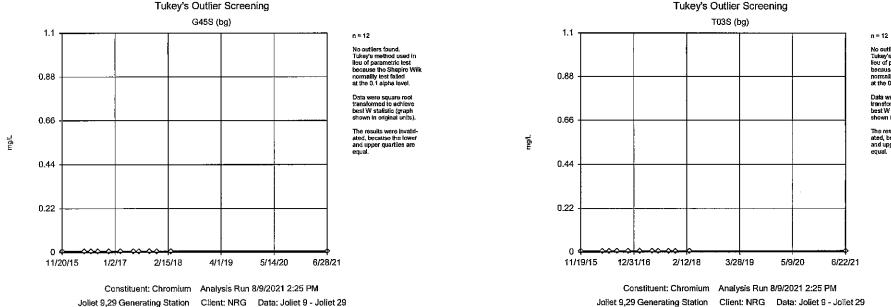
Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 146.4, low cutoff = 75.13, based on IQR multiplier of 3.

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

.

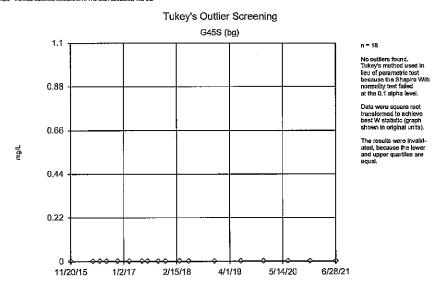
Constituent: Chloride Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^m v.5.6.09 Software licensed to KPRG and Associates, Inc. UG



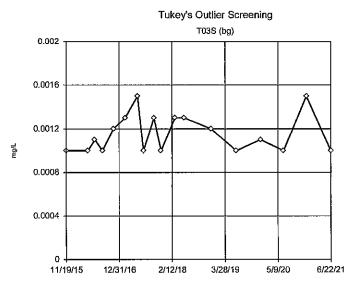
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n ≈ 18 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 98.61, std. dev. 25.97, critical Tn 2.504

Namality tost used; Shapiro Wik@alpha = 0.1 Calcubiled = 0.9257 Critica I = 0.914 (after natural log transforma-tion) The distribution was found to be log-normal.



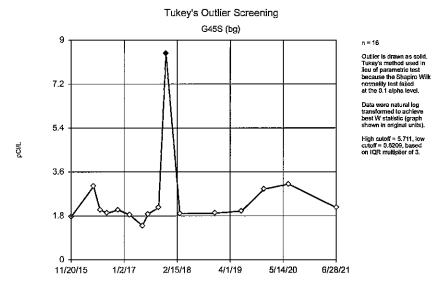
No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.


Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, inc. UG

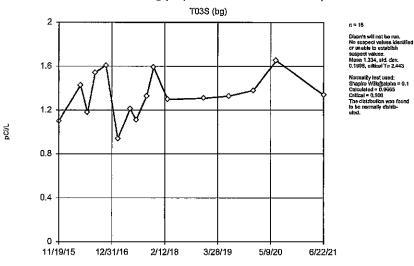
Constituent: Cobalt Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas[™] v.9.8.09 Software licensed to KPRG and Associates, Inc. UG


n = 18

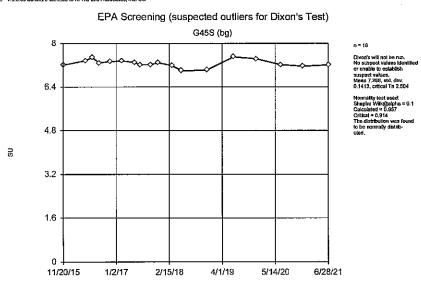
No outliers found. Tukey's method used in Ileu of parametric test because the Shapiro Wilk normality test falled at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

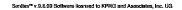
High cutoff = 0.002856, low cutoff = 0.0004552, based on IQR multiplier of 3.

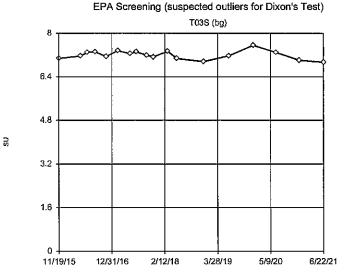

Constituent: Cobalt Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

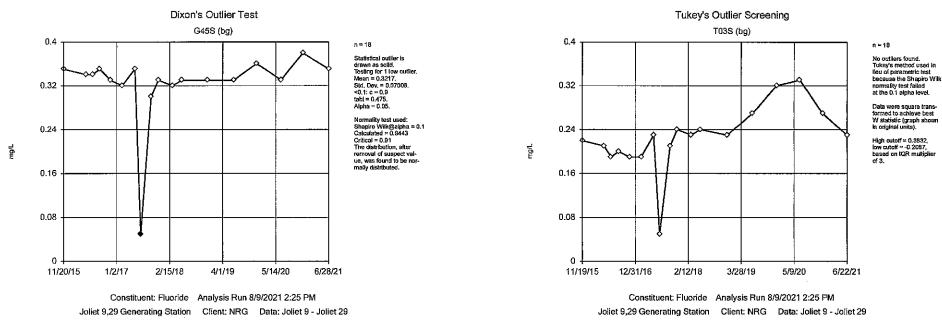
EPA Screening (suspected outliers for Dixon's Test)



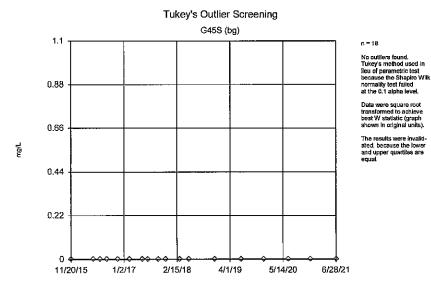

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

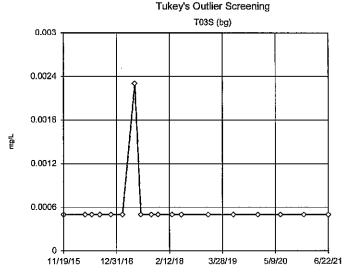
Constituent: Field pH Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


n = 18 Ohon's will not be run. No suspect values identified or unable to establish suspect values. Mean 7.189, std. dev. 0.1605, ortical To 2.504

Normality test used: Shapiro Witk@alpha = 0.1 Colculated = 0.9868 Critical = 0.914 The distribution was found to be normally distrib-uted

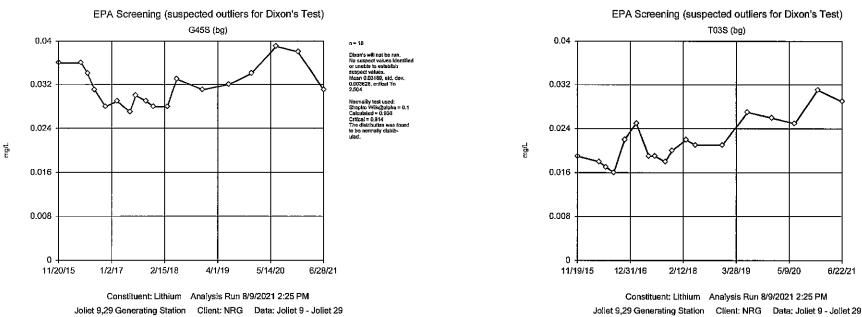

uted.

Constituent: Field pH Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates. Inc. UG

Sanilas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Lead Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

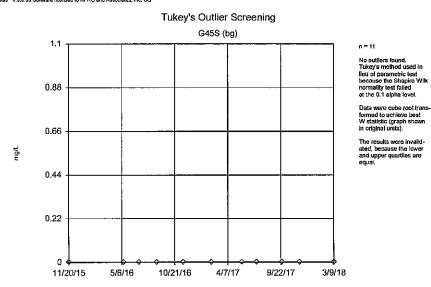


n = 18 No outliers found. Tukey's method used in lieu of parametric test because the Shapho Wilk normality test failed at the 0.1 alpha level.

Data were x*5 transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

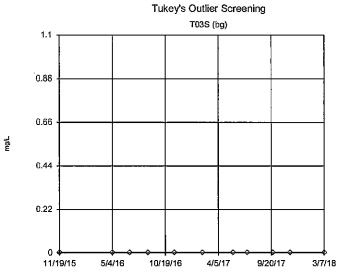
Constituent: Lead Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Dixon's will not be run. No suspect values kientified or unable to establish suspect values. Mean 0.02194, std. dev, 0.004304, critical Tn 2.504

n = 18

6/22/21

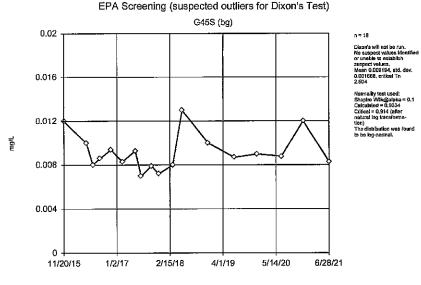
Normality test used; Shapiro Wilk@aipha = 0.1 Calculated = 0.9363 Critical = 0.914 The distribution was found to be normally distrib-uted.


Sanitas¹ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Mercury Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.0.6.09 Software licensed to KPRG and Associates, Inc. UG

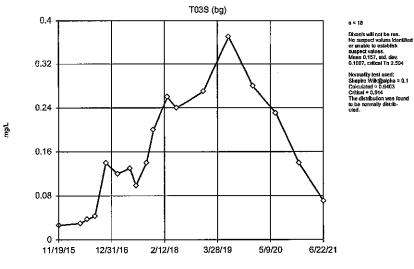
Sanitastr v.9.8.09 Software licensed to KPRG and Associates, Inc. UG


Constituent: Mercury Analysis Run 8/9/2021 2:25 PM

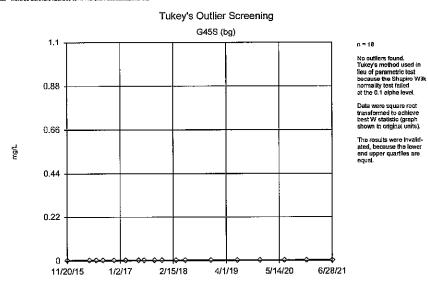
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


n = 11 No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

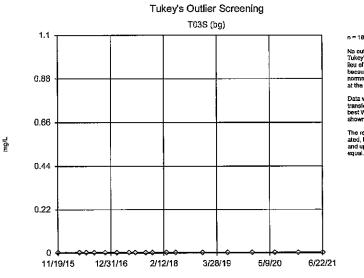
Data were cube root trans-formed to achieve best W statistic (graph shown In original units),


The results were invalidated, because the lower and upper quartiles are equal,

Constituent: Molybdenum Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



EPA Screening (suspected outliers for Dixon's Test)

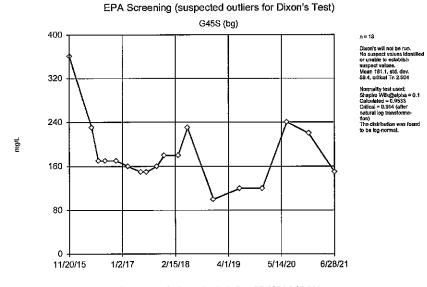

Constituent: Molybdenum Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Ctient: NRG Data: Joliet 9 - Joliet 29

Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

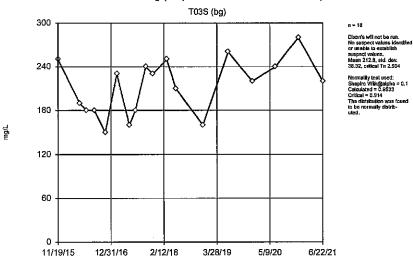
Constituent: Selenium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

No cutllers found. Tukey's method used in lieu of parametric lest because the Shapiro Wilk normality test failed at the 0.1 alpha level.

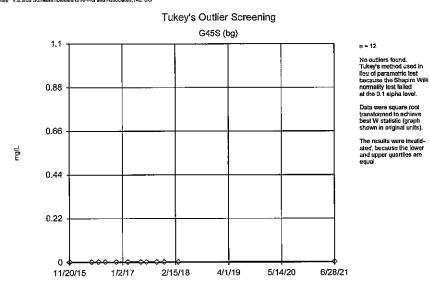
Data were square root transformed to achieve best W statistic (graph shown in original units).


The results were invalidated, because the lower and upper quartiles are equal.

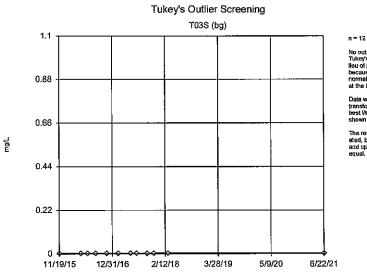
.....


Constituent: Selenium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

EPA Screening (suspected outliers for Dixon's Test)



Constituent: Sulfate Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Constituent: Sulfate Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Thallium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

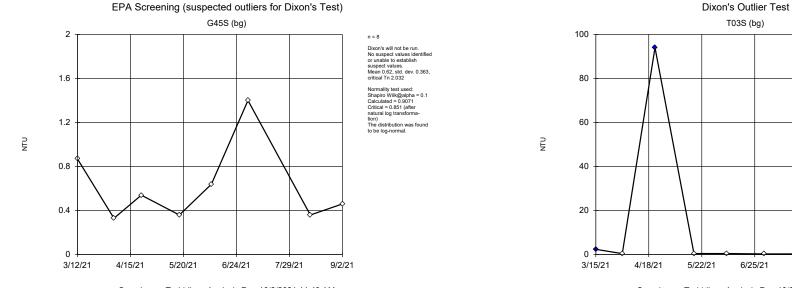
Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Thallium Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

mg/L

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


EPA Screening (suspected outliers for Dixon's Test) EPA Screening (suspected outliers for Dixon's Test) G45S (bg) T03S (bg) 1000 1000 n = 18 n = 18 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 745, std. dev, 107.4, critical To 2.504 Dixon's will not be run. Na suspect values identified or unable to establish suspect values. Mean 834.4, std. dev, 79.72, ortical To 2.504 800 800 Normality test used: Shapiro Wikegelpho = 0.1 Calculated = 0.9219 Critical = 0.934 The distribution was found to be normally distrib-uted. Normality test used: Shaptro Wik(galpha = 0.1 Calculated = 0.9677 Critical = 0.914 The distribution was found to be normally distrib-uted. × 600 600 Чбш 400 400 200 200 0 0 11/20/15 1/2/17 2/15/18 4/1/19 5/14/20 6/28/21 11/19/15 12/31/16 2/12/18 3/28/19 5/9/20 6/22/21

Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:25 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Outlier Analysis - Joliet 9 - UG Wells Turbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/8/2021, 11:50 AM

<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Turbidity (NTU)	G45S (bg)	No	n/a	n/a	EPA 1989	0.05	8	0.62	0.363	ln(x)	ShapiroWilk
Turbidity (NTU)	T03S (bg)	Yes	2.42,94	3/15/2021	Dixon`s	0.05	8	12.39	32.98	normal	ShapiroWilk

 Statistical outliers are drawn as solid.

 Testing for 2 high outliers.

 Mean = 12.39.

 Std. Dev. = 322.98.

 2.42: c = 0.8413

 tabl = 0.554.

 Alpha = 0.05.

 Normality test used:

 Shapida

 Shapida

 Calculated = 0.915

 Critical = 0.826

n = 8

Critical = 0.826 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Turbidity Analysis Run 10/8/2021 11:49 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Constituent: Turbidity Analysis Run 10/8/2021 11:49 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

7/29/21

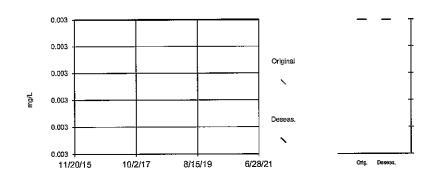
9/1/21

Seasonality - Joliet #9 - UG CCR Wells

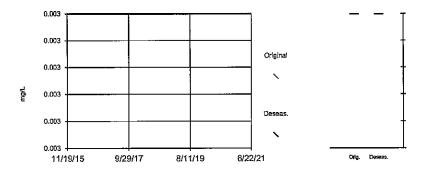
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 8/9/2021, 2:40 PM

	Joher 5,25 Generating Station Chent. MrG	Data. Join	619-0016120 111	11160 0/0/2021, 2.40 T W			
Constituent	Well	<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	<u>df</u>	<u>N</u>	<u>Alpha</u>
Antimony (mg/L)	G45S (bg)	No	0	0	0	12	0.05
Antimony (mg/L)	T03S (bg)	No	0	0	0	12	0.05
Arsenic (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Arsenic (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Barium (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Barium (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Beryllium (mg/L)	G45S (bg)	No	0	0	٥	12	0.05
Beryllium (mg/L)	T03S (bg)	No	0	0	0	12	0.05
Boron (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Baron (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Cadmium (mg/L)	G45S (bg)	No	0	0	0	12	0.05
Cadmium (mg/L)	T03S (bg)	No	0	0	٥	12	0.05
Calcium (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Catcium (mg/L)	T03S (bg)	No	0	0	D	18	0.05
Chloride (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Chloride (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Chromium (mg/L)	G45S (bg)	No	0	0	0	12	0.05
Chromium (mg/L)	T03S (bg)	No	0	0	0	12	0.05
Cobalt (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Cobalt (mg/L)	T03S (bg)	No	0	0	D	18	0.05
Combined Radium 226 + 228 (pCi/L)	G45S (bg)	No	0	0	D	16	0.05
Combined Radium 226 + 228 (pCi/L)	T03S (bg)	No	0	0	0	16	0.05
Field pH (SU)	G45S (bg)	No	0	0	0	18	0.05
Field pH (SU)	T03S (bg)	No	0	0	0	18	0.05
Fluoride (mg/L)	G45S (bg)	No	0	0	D	18	0.05
Fluoride (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Lead (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Lead (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Lithium (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Lithium (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Mercury (mg/L)	G45S (bg)	No	0	0	Ð	11	0.05
Mercury (mg/L)	T03S (bg)	No	0	0	0	11	0.05
Molybdenum (mg/L)	G45S (bg)	No	0	0	Û	18	0.05
Molybdenum (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Selenium (mg/L.)	G45S (bg)	No	0	0	0	18	0.05
Selenium (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Sulfate (mg/L)	G45S (bg)	No	0	0	0	18	0.05
Sulfate (mg/L)	T03S (bg)	No	0	0	0	18	0.05
Thallium (mg/L)	G45S (bg)	No	0	0	0	12	0.05
Thallium (mg/L)	T03S (bg)	No	0	0	0	12	0.05
Total Dissolved Solids (mg/L)	G45S (bg)	No	0	0	Û	18	0.05
Total Dissolved Solids (mg/L)	T03S (bg)	No	0	0	0	18	0.05
· · · · ·							

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanites^{ra} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

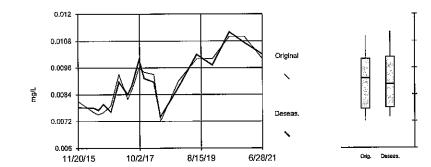
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

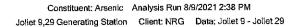
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

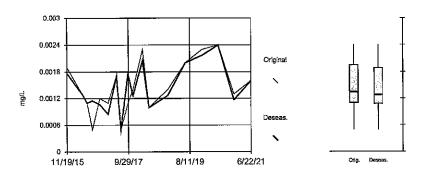
Constituent: Antimony Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Antimony Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Seniles** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

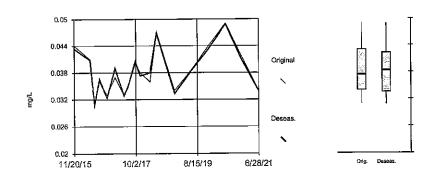

Sanitas™ v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

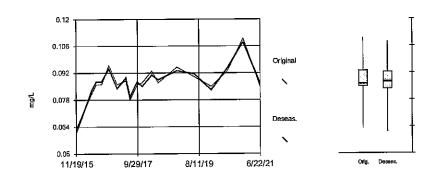
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Arsenic Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{re} v.9.5.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

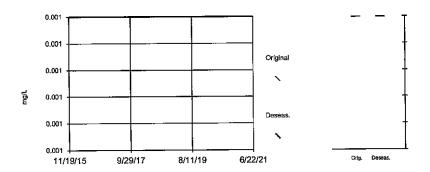

Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

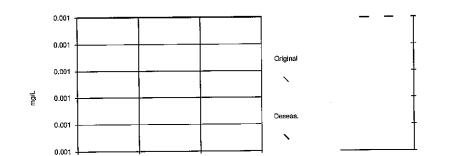
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Barium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Barium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas^{re} v.S.5.03 Software licensed to KPRG and Associates, Inc. UG

Seasonality: G45S (bg)


Senitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Beryllium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

8/15/19

Constituent: Beryllium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

6/28/21

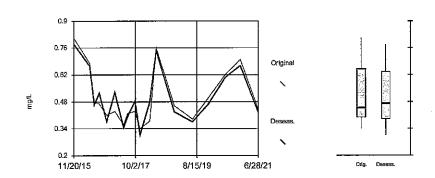
Orig. Desets.

10/2/17

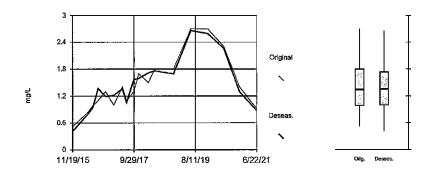
11/20/15

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Senilus" v.9.6.00 Software licensed to KPRG and Associates, Inc. UG


Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

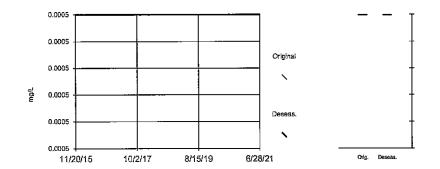
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

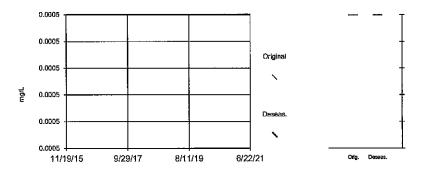
Constituent: Boron Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Boron Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

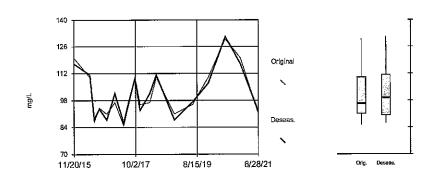
Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

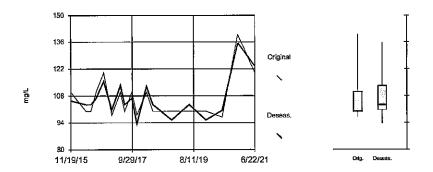
Constituent: Cadmium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Cadmium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanilas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas^{ra} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

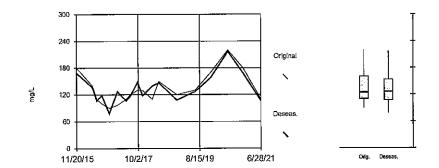
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

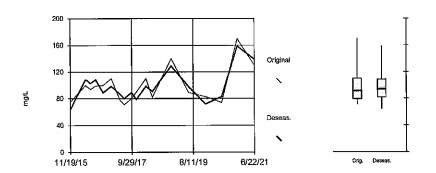
Constituent: Calcium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Calcium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanilas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

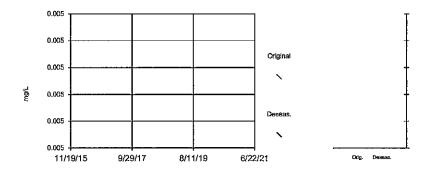
Constituent: Chloride Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Chloride Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software ilcensed to KPRG and Associates, inc. UG

Sanitas^{re} v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

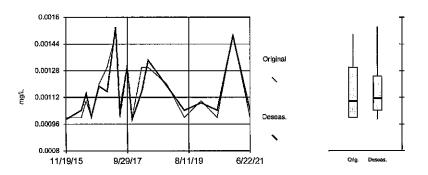
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

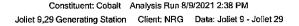
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

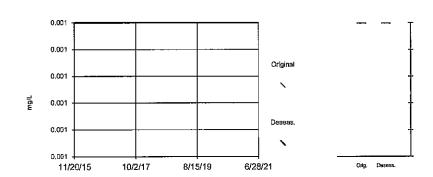
Constituent: Chromium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Jollet 9 - Jollet 29

Constituent: Chromium Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{te} v.9.6.08 Software licensed to KPRG and Associates, Inc. UG

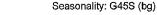

Seasonality: G45S (bg)


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



Constituent: Cobalt Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

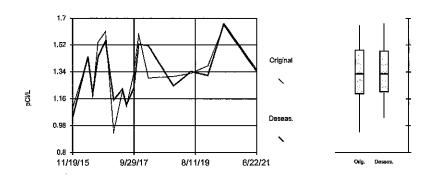
Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Original

1


Deseas.

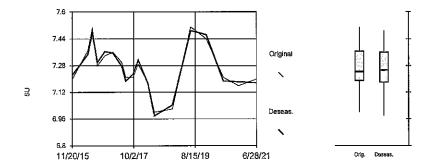
1

6/28/21

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Orig. Deseas

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

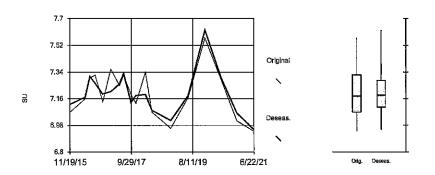

Sanitas^{on} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

10/2/17

Seasonality: G45S (bg)

Data set is of insufficient size to test for sensonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

8/15/19



Constituent: Field pH Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Field pH Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

7,2

5,4

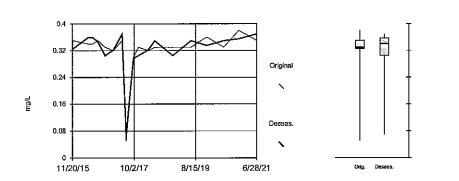
3.6

18

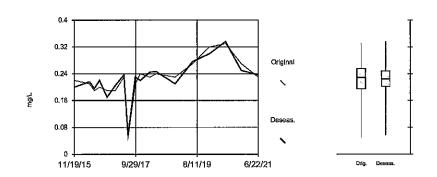
0 + 11/20/15

pCI/L

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

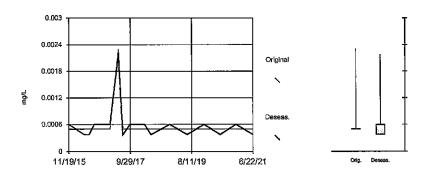
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

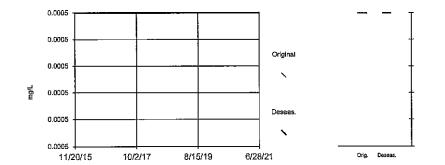
Constituent: Fluoride Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Fluoride Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

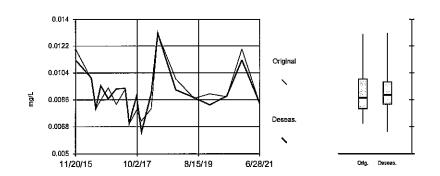

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

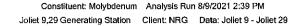
Seasonality: T03S (bg)

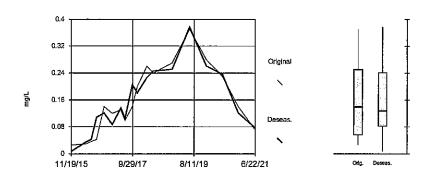
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Lead Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Lead Analysis Run 8/9/2021 2:38 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas^m v.S.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: T03S (bg)

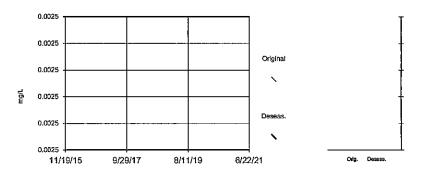

Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

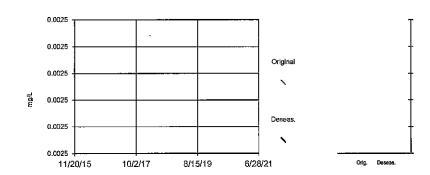
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Molybdenum Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas1 v.0.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

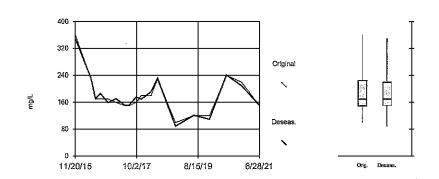

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

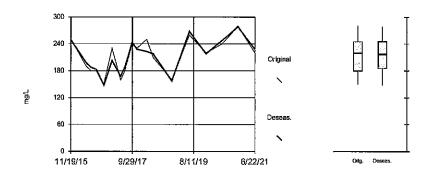
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Selenium Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Selenium Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. US


Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)


Seasonality: G45S (bg)

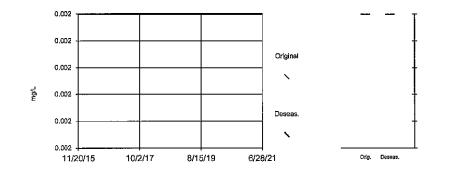
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

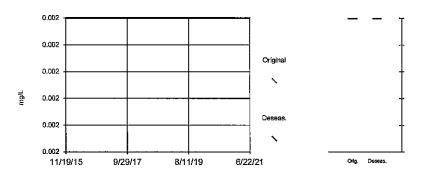
Constituent: Sulfate Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Sulfate Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: T03S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Thallium Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Thallium Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas¹⁰ v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

1000

920

840

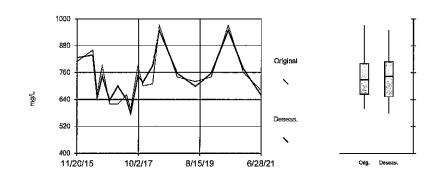
760

680

T/Bw

Seasonality: T03S (bg)

Original


1

Deseas.

Seasonality: G45S (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

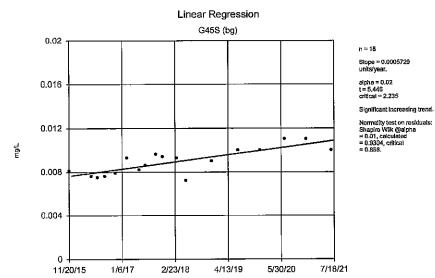
Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 600 11/19/15 9/29/17 8/11/19 6/22/21 Orig. Deseas. Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:39 PM

Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:39 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

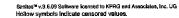
Trend Test Joliet #9 UG Wells

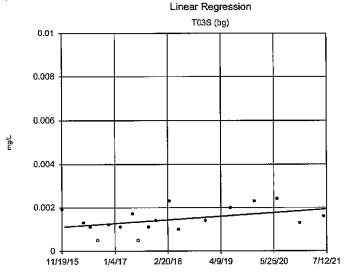
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 8/9/2021, 2:47 PM

Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	G45S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Antimony (mg/L)	T03S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Arsenic (mg/L)	G45S (bg)	0.000	5.446	2.235	Yes	18	0	Yes	no	0.02	Param.
Arsenic (mg/L)	T03S (bg)	0.000	1.929	2.235	No	18	11.11	Yes	nó	0.02	Param.
Barium (mg/L)	G45S (bg)	0.000	1.203	2.235	No	18	0	Yes	no	0.02	Param.
Barium (mg/L)	T03S (bg)	0.002987	2.556	2.235	Yes	18	0	Yes	no	0.02	Param.
Beryllium (mg/L)	G45S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Beryllium (mg/L)	T03S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Boron (mg/L)	G45S (bg)	0.003884	0.098	2.235	No	18	5.556	Yes	natura	0.02	Param.
Boron (mg/L)	T03S (bg)	0.2068	2.723	2.235	Yes	18	0	Yes	no	0.02	Param.
Cadmium (mg/L)	G45S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Cadmium (mg/L)	T03S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Calcium (mg/L)	G45S (bg)	2.031	1.091	2.235	No	18	0	Yes	no	0.02	Param.
Calcium (mg/L)	T03S (bg)	1.952	1.233	2.235	No	18	0	Yes	no	0.02	Param.
Chloride (mg/L)	G45S (bg)	8.491	1.791	2.235	No	18	0	Yes	no	0.02	Param.
Chloride (mg/L)	T03S (bg)	6.822	1.951	2.235	No	18	0	Yes	no	0.02	Param.
Chromium (mg/L)	G45S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Chromium (mg/L)	T03S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	G45S (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	T03S (bg)	0.000	0.341	2.235	No	18	44.44	Yes	по	0.02	Param.
Combined Radium 226 + 228 (pCi/L)	G45S (bg)	0.06457	32	53	No	16	0	n/a	n/a	0.02	NP (Nor
Combined Radium 226 + 228 (pCi/L)	T03S (bg)	0.03416	1.078	2.264	No	16	0	Yes	no	0.02	Param.
Field pH (SU)	G45S (bg)	-0.01842	-0.8901	2,235	No	18	0	Yes	no	0.02	Param.
Field pH (SU)	T03S (bg)	-0.01944	-0.8257	2.235	No	18	0	Yes	no	0.02	Param.
Fluoride (mg/L)	G45S (bg)	0	10	63	No	18	5.556	п/а	n/a	0.02	NP (Nor
Fluoride (mg/L)	T03S (bg)	0.01913	79	63	Yes	18	5,556	n/a	n/a	0.02	NP (Nor
Lead (mg/L)	G45S (bg)	D	0	63	No	18	100	n/a	п/а	0.02	NP (NDs)
Lead (mg/L)	T03S (bg)	0	-5	-63	No	18	94.44	n/a	n/a	0.02	NP (NDs)
Lithium (mg/L)	G45S (bg)	0.000	1,233	2.235	No	18	0	Yes	по	0.02	Param.
Lithium (mg/L)	T03S (bg)	0.002177	6.3	2.235	Yes	18	5.556	Yes	no	0.02	Param.
Mercury (mg/L)	G45S (bg)	0	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Mercury (mg/L)	T03S (bg)	O	0	31	No	11	100	n/a	n/a	0.02	NP (NDs)
Molybdenum (mg/L)	G45S (bg)	0.000	0.2117	2.235	No	18	0	Yes	по	0.02	Param.
Molybdenum (mg/L)	T03S (bg)	0.03093	2.388	2.235	Yes	18	0	Yes	no	0.02	Param.
Selenium (mg/L)	G45S (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Selenium (mg/L)	T03S (bg)	0	0	63	No	18	100	n/a	n/a	0.02	NP (NDs)
Sulfate (mg/L)	G45S (bg)	-9,969	-1.166	2.235	No	18	0	Yes	no	0.02	Param.
Sulfate (mg/L)	T03S (bg)	10.09	1.957	2.235	No	18	0	Yes	no	0.02	Param.
Thattium (mg/L)	G45S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Thailium (mg/L)	T03S (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Total Dissolved Solids (mg/L)	G45S (bg)	- 10.49	0.66	2,235	No	18	0	Yes	no	0.02	Param.
Total Dissolved Solids (mg/L)	T03S (bg)	20.44	1.894	2.235	No	18	ō	Yes	no	0.02	Param.
	(-3)						-				


1

Sanitas^{ee} v.9.6.08 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.


mg/L


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

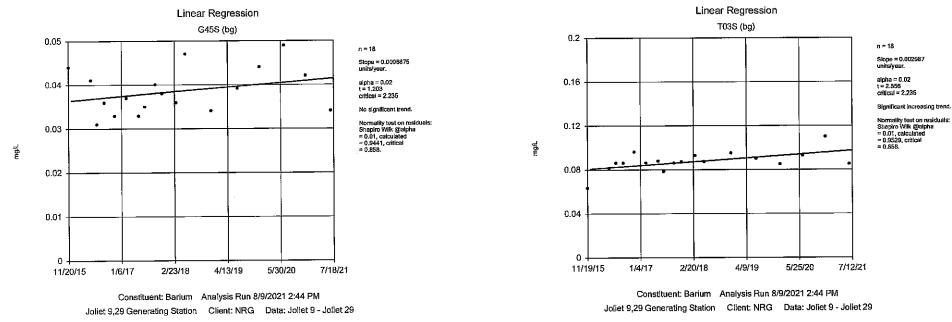
Constituent: Arsenic Analysis Run 8/9/2021 2:44 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sendlas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

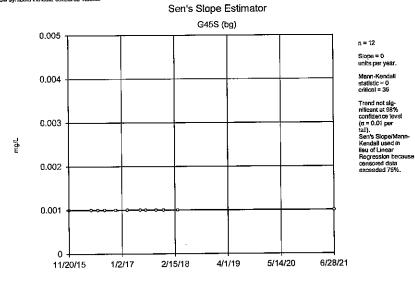
Constituent: Arsenic Analysis Run 8/9/2021 2:44 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

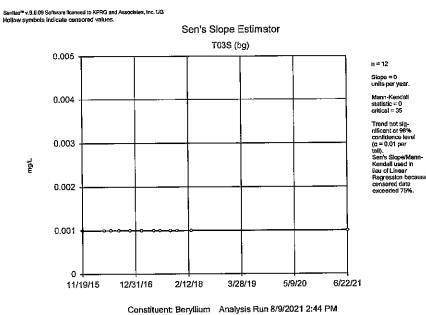
n = 18 11.11% NDs Slope = 0.0001471 units/year.


aipha = 0.02 t = 1.929 critical = 2.235

No significant trend.

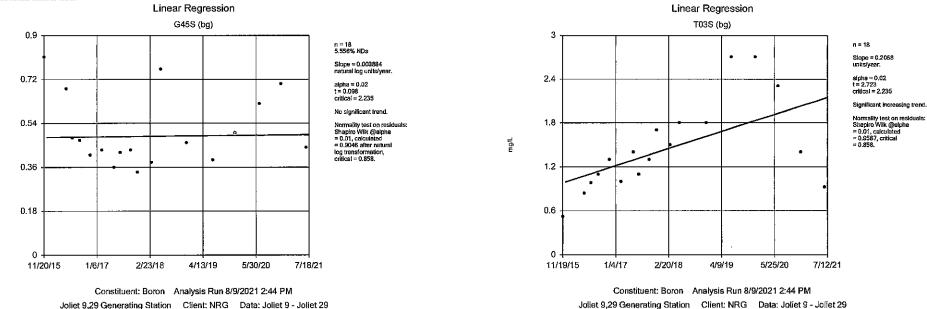

Normality test on residuals: Shapiro Wilk @aipha = 0.01, calculated = 0.9555, critical = 0.858.

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Senites¹¹ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Senitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate consored values.

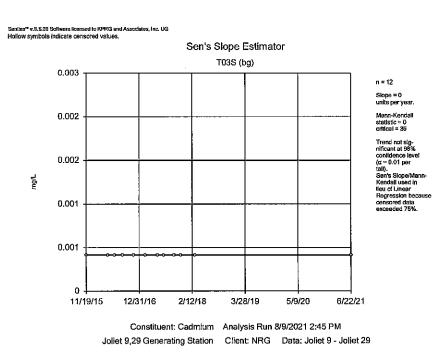
Constituent: Beryllium Analysis Run 8/9/2021 2:44 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



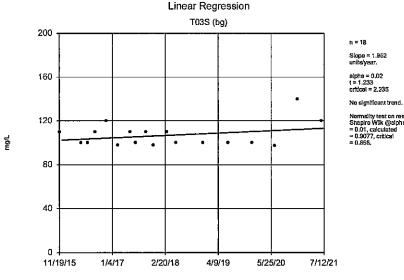
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Software Reensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

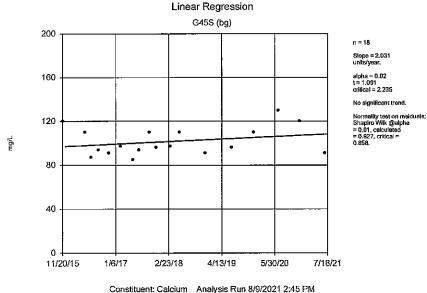
ng/L


Sanitas** v.S.6.05 Software licensed to KPRG and Associates, Inc. UG

Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

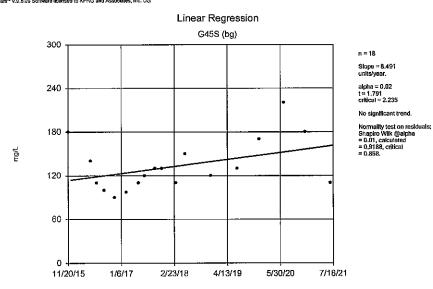

Sen's Slope Estimator G45S (bg) 0.003 n ≈ 12 Slope = 0 units per year. Mann-Kendali statistic = 0 critical = 35 0.002 Trend not sig-nificant at 98% confidence level (a = 0.01 per 0.002 tall). Sen's Slope/Mann-J/₿ш Kendali used in Ileu of Linear Regression because consored data exceeded 75%. 0.001 0.001 a 11/20/15 1/2/17 2/15/18 4/1/19 5/14/20 6/28/21

Constituent: Cadmium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

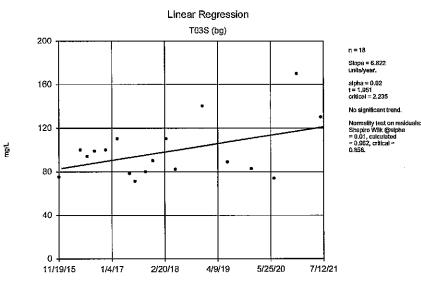


Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Senites^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

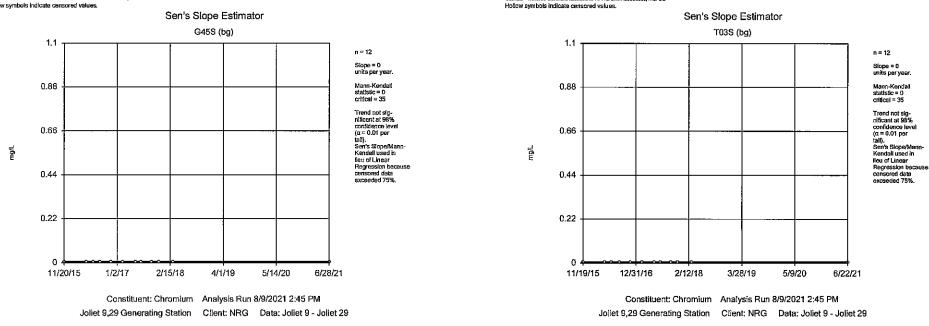


Constituent: Calcium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

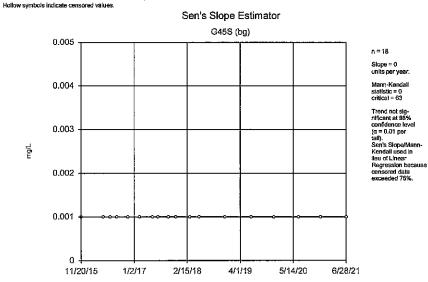

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

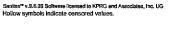
Constituent: Chloride Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

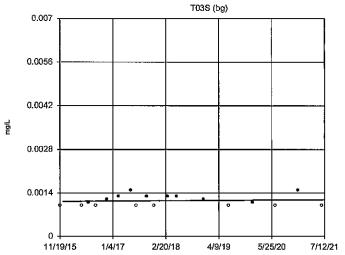

Constituent: Chloride Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Slope = 1.952 units/year.


critical = 2.235

Normality test on residuals: Shapiro Wilk @alpha = 0.01, calculated = 0.9077, critica1 = 0.858,


Sanllas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Cobalt Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

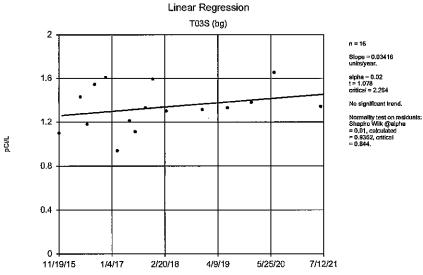
Sanitas^m v.9.8.09 Software licensed to KPRG and Associates, Inc. UG

Linear Regression

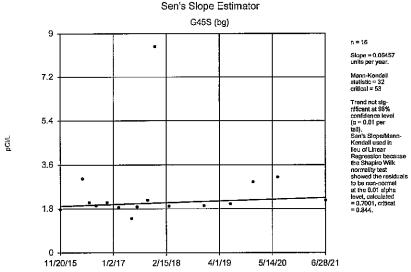
Constituent: Cobalt Analysis Run 8/9/2021 2:45 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 18 44.44% NDs Slope = 0.000008942 unks/year.

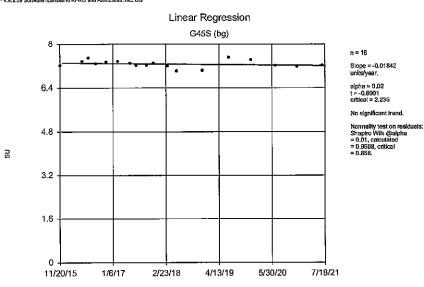

alpha = 0.02 t = 0.341 critical = 2.235

No significant trend.

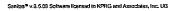

Normality test on reskduals; Shapiro Wilk @alpha = 0.01, calculated = 0.8689, critical = 0.858.

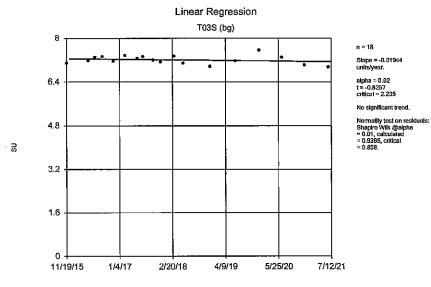
Sanitas™ v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

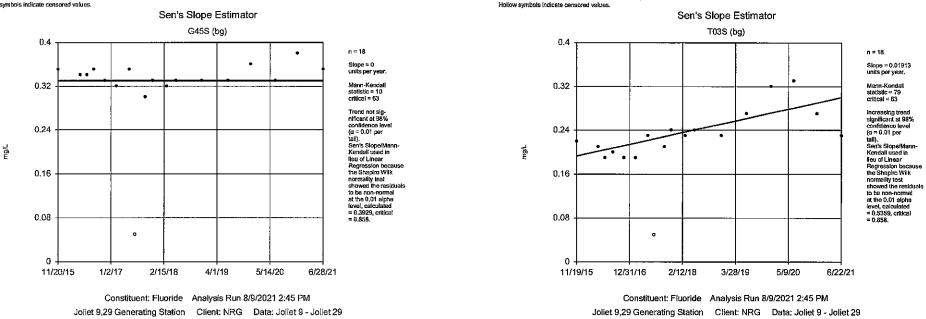


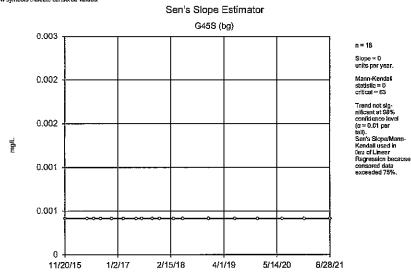
Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29




Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

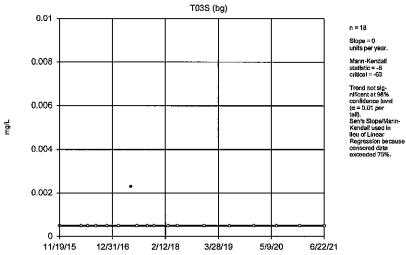
Sanitas^m v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

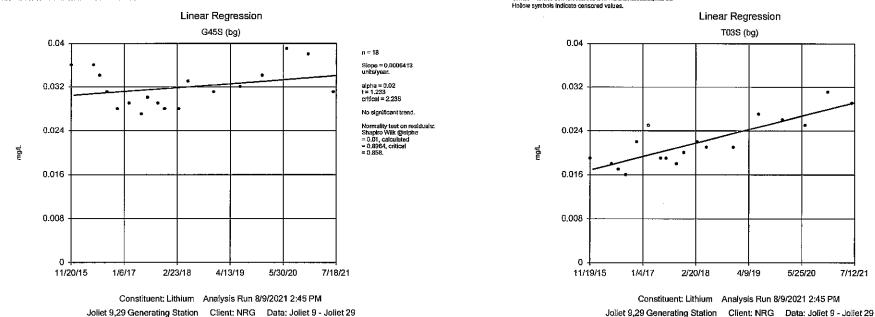

Constituent: Field pH Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



Constituent: Field pH Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

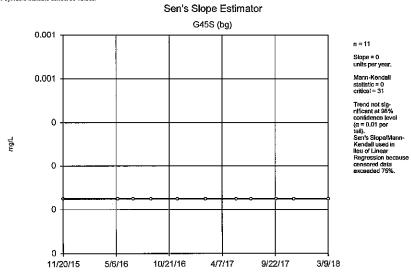

Sanitas^a v.5.6.05 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.


Constituent: Lead Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{ter} v.9.8.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Lead Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 18 5.556% NDs Slope = 0.002177 units/year. alpha = 0.02

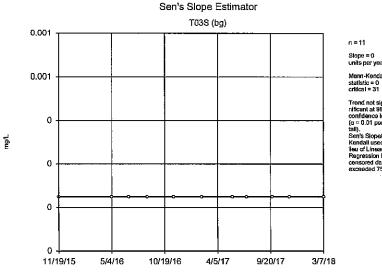

t = 6.3 critical = 2.235

Significant increasing trend,

Normality test on residuals: shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.858.

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

......



Constituent: Mercury Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

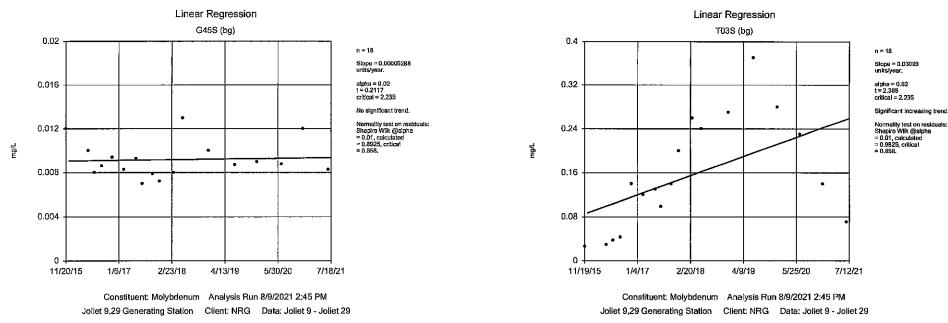
Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Hollow symbols indicate consored values.

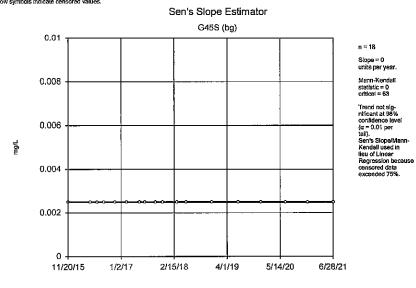
Sanitashi v.9.8.09 Software licensed to KPRG and Associates, Inc. UG

Slope = 0 units per year.

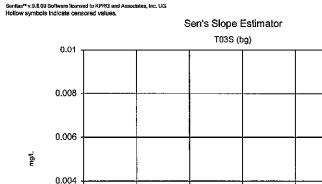
7/12/21


Mann-Kendali

Trend not sig-nificant at 98% confidence level (a = 0.01 per tall). Sen's Slope/Mann-Kendall used in ileu of Linear Regression because censored data exceeded 75%.


Constituent: Mercury Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^m v.9.5.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas^{ee} v.9.6.08 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Selenium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

0.002

0

11/19/15

12/31/16

n = 18 Slope = 0 units per year, Mann-Kendall

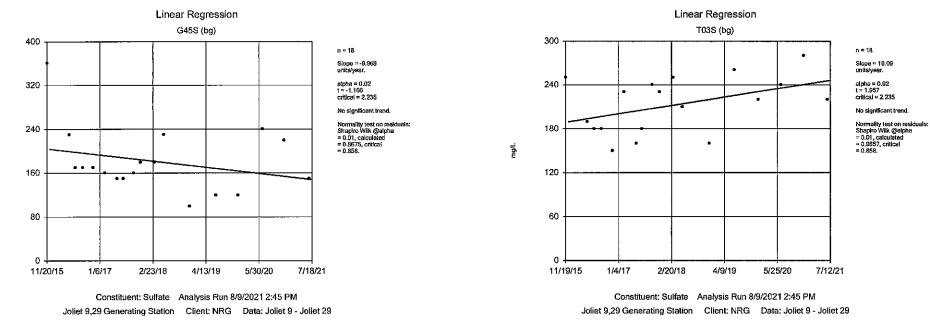
statistic = 0 critical = 63

Trend not significant at 95% confidence level (a = 0.01 per tail). Sen's Slope/Mann-Kendell used in Neu of Linear Regression because consored data exceeded 75%.

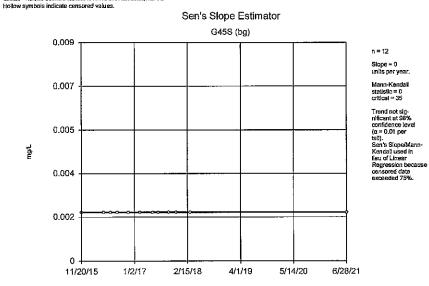
Constituent: Selenium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

3/28/19

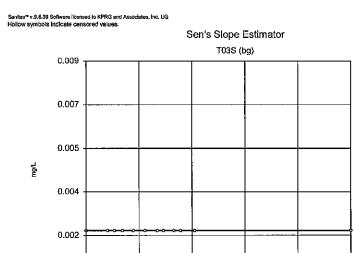
5/9/20


6/22/21

2/12/18


Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

ng/L


Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Thallium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

2/12/18

۵

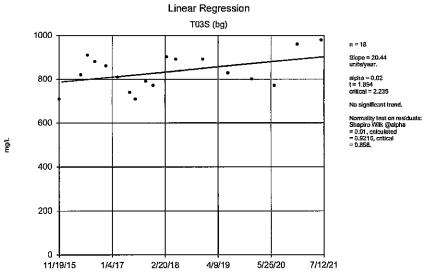
11/19/15

12/31/16

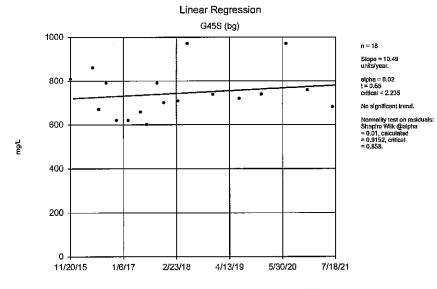
n = 12 Slope = 0 units per year. Menn-Kendeli statistic = 0 critical = 35

Trend not significant at 98% confidence lavel (a = 0.01 per tali). Sen's Slope/Mann-Kendall used in Ileu of Linear Regression because censored data exceeded 75%.

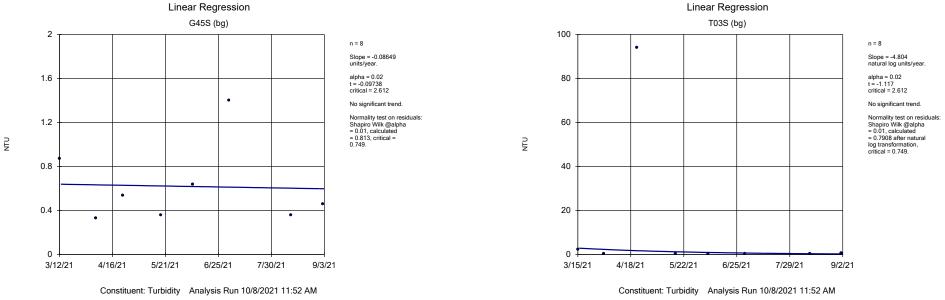
Constituent: Thallium Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


3/28/19

5/9/20


6/22/21

Sanitas** v.S.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Total Dissolved Solids Analysis Run 8/9/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Trend Test Joliet #9 UG WellsTurbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/8/2021, 11:53 AM

Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Turbidity (NTU)	G45S (bg)	-0.08649	-0.09738	2.612	No	8	0	Yes	no	0.02	Param.
Turbidity (NTU)	T03S (bg)	-4.804	-1.117	2.612	No	8	0	Yes	natura	0.02	Param.

Joliet #9 ANOVA UG Wells All Values

		Joliet 9,29 Generating Station		Client: NRG	Client: NRG Data: Joliet 9 - Joliet 29		Printed 8/9/2021, 2:49 PM		
Constituent	Well	<u>Calc.</u>	<u>Crit.</u>	<u>Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	<u>Alpha</u>	Method
Arsenic (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	Yes	0.05	Param.
Barium (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	Yes	0.05	Param.
Boron (mg/L)	n/a	n/a	n/a	n/a	n/a	ln(x)	Yes	0.05	Param.
Calcium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Chloride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Cobalt (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Combined Radium 226 + 228 (pCi/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Field pH (SU)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	Param.
Fluoride (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Lead (mg/L)	n/a	n/a	n/a	n/a	n/a	No	No	0.05	NP (NDs)
Lithium (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.
Molybdenum (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	NP (normality)
Sulfate (mg/L)	n/a	n/a	n/a	n/a	n/a	sqrt(x)	Yes	0.05	Param.
Total Dissolved Solids (mg/L)	n/a	n/a	n/a	n/a	n/a	No	Yes	0.05	Param.

Constituent: Arsenic Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 592.4

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Between Groups	72003	1	72003	8.045
Error Within Groups	304294	34	8950	
Total	376297	35		

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.05, calculated = 0.9646, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 0.2153, tabulated = 4.134.

Constituent: Barium Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 425.4

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.05, calculated = 0.9657, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 0.06556, tabulated = 4.134.

For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test (after natural log transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 75.07

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	Ţ	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed after natural log transformation. Alpha = 0.05, calculated = 0.9672, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 2.445, tabulated = 4.134.

Constituent: Calcium Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 3.948

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 3.848

Adjusted Kruskal-Wallis statistic (H') = 3.948

Constituent: Chloride Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 11.33

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 11.25

Adjusted Kruskal-Wallis statistic (H') = 11.33

Constituent: Cobalt Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 13.04

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 8.108

Adjusted Kruskal-Wallis statistic (H') = 13.04

Non-Parametric ANOVA

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 21.5

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 21.49 Adjusted Kruskal-Wallis statistic (H') = 21.5 For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test indicates NO VARIATION at the 5% significance level. Because the calculated F statistic is less than or equal to the tabulated F statistic, the hypothesis of a single homogeneous population is accepted.

Calculated F statistic = 1.721

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.05, calculated = 0.9749, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 0.348, tabulated = 4.134.

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 18.87

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 10 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 18.65

Adjusted Kruskal-Wallis statistic (H') = 18.87

Constituent: Lead Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 1

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.08108

Adjusted Kruskal-Wallis statistic (H') = 1

For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 56.17

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.05, calculated = 0.9351, critical = 0.9351. Levene's Equality of Variance test passed. Calculated = 0.4952, tabulated = 4.134.

Constituent: Molybdenum Analysis Run 8/9/2021 2:49 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 11/19/2015 and 6/28/2021, the non-parametric analysis of variance test indicates a DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 26.3

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 26.27 Adjusted Kruskal-Wallis statistic (H') = 26.3 For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test (after square root transformation) indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 4.453

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed after square root transformation. Alpha = 0.05, calculated = 0.956, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 0.9277, tabulated = 4.134.

Parametric ANOVA

For observations made between 11/19/2015 and 6/28/2021 the parametric analysis of variance test indicates VARIATION at the 5% significance level. Because the calculated F statistic is greater than the tabulated F statistic, the hypothesis of a single homogeneous population is rejected.

Calculated F statistic = 8.045

Tabulated F statistic = 4.134 with 1 and 34 degrees of freedom at the 5% significance level.

ONE-WAY PARAMETRIC ANOVA TABLE

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F	
Between Groups	72003	1	72003	8.045	
Error Within Groups	304294	34	8950		
Total	376297	35			

The Shapiro Wilk normality test on the residuals passed on the raw data. Alpha = 0.05, calculated = 0.9494, critical = 0.935. Levene's Equality of Variance test passed. Calculated = 0.706, tabulated = 4.134.

Non-Parametric ANOVA

Constituent: Turbidity Analysis Run 10/8/2021 11:54 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

For observations made between 3/12/2021 and 9/2/2021, the non-parametric analysis of variance test indicates NO DIFFERENCE between the medians of the groups tested at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no group has a significantly different median concentration of this constituent when compared to another group.

Calculated Kruskal-Wallis statistic = 0.04425

Tabulated Chi-Squared value = 3.841 with 1 degree of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 0.04412 Adjusted Kruskal-Wallis statistic (H') = 0.04425

ANOVA Joliet #9 UG Wells - Turbidity

		Joliet 9,29 Generating Stat	on Client: NRG	Data: Joli	et 9 - Joliet 29	Printed 10/8/2021, 11:54	AM	
Constituent	<u>Well</u>	<u>Calc.</u> <u>Cri</u>	<u>. Sig.</u>	<u>Alpha</u>	Transform	ANOVA Sig.	<u>Alpha</u>	Method
Turbidity (NTU)	n/a	n/a n/a	n/a	n/a	No	No	0.05	NP (normality)

Constituent: Antimony Analysis Run 8/9/2021 3:02 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
G45S (bg) (n = 12)	alpha = 0.05)			
	по	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No
(03S (bg) (n = 12))	alpha = 0.05)			NO
	no	-1	0.859	No
	square root	0	0.859	NO
	square	-1	0.859	No
	cube root	0	0.859	NO
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	NO
	х^б	-1	0.859	No
ooled Background	(bg) (n = 24, alpha =	0.05)	01005	140
	no	-1	0.916	No
	square root	0	0.916	No
	square	-1	0.916	NO
	cube root	0	0.916	NO
	cube	-1	0.916	No
	natural log	0	0.916	NO
	x^4	-1	0.916	NO
	x^5	-1	0.916	NO
	x^6	-1	0.916	NO

Constituent: Arsenic Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Trans	formation	Calculated	Critical	Norma
G45S (bg) (n = 18, alpha =	0.05)			
no		0.9429	0.897	Yes
squar	e root	0.9448	0.897	Yes
squar	e	0.9348	0.897	Yes
cube	root	0.9451	0.897	Yes
cube		0.921	0.897	Yes
natur	al log	0.9453	0.897	Yes
x^4		0.9019	0.897	Yes
x^5		0.878	0.897	No
x^6		0.8503	0.897	No
103S (bg) (n = 18, alpha =	0.05)			
по		0.9474	0.897	Yes
squar	e root	0.9415	0.897	Yes
squar	e	0.8931	0.897	No
cube	root	0.9319	0.897	Yes
cube		0.8166	0.897	No
natura	al log	0.9006	0.897	Yes
x^4		0.7505	0.897	No
x^5		0.6986	0.897	No
x^6		0.6582	0.897	No
Pooled Background (bg) (n =	36, $alpha = 0.0$)5)		no
по		0.8046	0.935	No
square	e root	0.8183	0.935	No
square	3	0.8048	0.935	No
cube .	oot	0.825	0.935	No
cube		0.8059	0.935	No
natura	l log	0.8373	0.935	No
x^4		0.7893	0.935	No
x^5		0.7579	0.935	No
x^6		0.7189	0.935	No

Constituent: Barium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

ł

- - ------

v

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 18, a	lpha = 0.05)			
	no	0.9528	0.897	Yes
	square root	0.9604	0.897	Yes
	square	0.9333	0.897	Yes
	cube root	0.9626	0.897	Yes
	cube	0.9088	0.897	Yes
	natural log	0.9665	0.897	Yes
	x^4	0.8801	0.897	No
	x^5	0.8485	0.897	No
	x^6	0,815	0.897	No
103S (bg) (n = 18, a	lpha = 0.05)			110
	no	0.8897	0.897	No
	square root	0.8798	0.897	No
	square	0.8899	0.897	NO
	cube root	0.875	0.897	NO
	cube	0.8667	0.897	No
	natural log	0.8635	0.897	No
	x ^4	0.8258	0.897	No
	x^5	0.7745	0.897	NO
	x^6	0.719	0.897	NO
Pooled Background (be	g) (n = 36, alpha =	0.05)		NO
	по	0.8261	0.935	No
	square root	0.8267	0.935	No
	square	0.8256	0.935	NO
	cube root	0.8271	0.935	No
	cube	0.8211	0.935	No
	natural log	0.828	0.935	NO
	x^4	0.8051	0.935	NO
	x^5	0.7726	0.935	NO
	x^6	0.7239	0.935	NO

Constituent: Beryllium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 12, alp)	na = 0.05)			
r	no	-1	0.859	No
2	square root	-1	0.859	No
\$	Square	-1	0.859	No
C	cube root	0	0.859	No
C C C C C C C C C C C C C C C C C C C	cube	-1	0.859	No
r	natural log	0	0.859	No
2	<^4	-1	0.859	No
2	<^5	-1	0.859	No
2	<^6	-1	0.859	No
(bg) (n = 12, alph)	na = 0.05)			
I	10	-1	0.859	No
5	square root	-1	0.859	No
5	square	-1	0.859	No
c	cube root	0	0.859	No
c	ube	-1	0.859	No
г	atural log	0	0.859	No
ž	x^ 4	-1	0.859	No
2	r^5	-1	0.859	No
X	<u>к^б</u>	-1	0.859	No
Pooled Background (bg)	(n = 24, alpha =	0.05)		
г	10	-1	0.916	No
5	quare root	0	0.916	No
5	quare	-1	0.916	No
c	ube root	0	0.916	No
c	ube	-1	0.916	No
г	atural log	0	0.916	No
х	<u>~</u> 4	-1	0.916	No
х	r^5	-1	0.916	No
x	r^6	-1	0.916	No

Constituent: Boron Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well <u>Transforma</u>	tion Calculated	Critical	Norma
G45S (bg) (n = 18, alpha = 0.05)			
no	0.8567	0.897	No
square root	t 0.8817	0.897	No
square	0.8047	0.897	No
cube root	0.8897	0.897	No
cube	0.7543	0.897	No
natural loc	0.9048	0.897	Yes
x^4	0.7083	0.897	No
x^5	0.6671	0.897	No
x ^6	0.6303	0.897	No
T035 (bg) $(n = 18, \text{ alpha} = 0.05)$			
no	0.9222	0.897	Yes
square root	0.9612	0.897	Yes
square	0.8093	0.897	No
cube root	0.9684	0.697	Yes
cube	0.7014	0.897	No
natural log	0.9713	0.897	Yes
x^4	0.6182	0.897	No
x^5	0.5584	0.897	No
x^6	0.5159	0.897	No
Pooled Background (bg) (n = 36, a	alpha = 0.05)		
no	0.8415	0.935	No
square root	0.8968	0.935	No
square	0.6881	0.935	No
cube root	0.9093	0.935	No
cube	0.5503	0.935	NO
natural log	0.9249	0.935	No
x^4	0.4566	0.935	No
x^5	0.3971	0.935	No
x^6	0.3588	0.935	No

Constituent: Cadmium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Transformati	on Calculated	Critical	Norma
G45S (bg) $(n = 12, alpha = 0.05)$			
no	-1	0.859	No
square root	0	0.859	No
square	-1	0.859	No
cube root	0	0.859	No
cube	-1	0.859	No
natural log	-1	0.859	No
x^4	-1	0.859	No
x^5	-1	0.859	No
х^б	-1	0.859	No
T03S (bg) $(n = 12, alpha = 0.05)$			
no	-1	0.859	No
square root	0	0.859	No
square	-1	0.859	No
cube root	0	0.859	No
cube	-1	0.859	No
natural log	-1	0.859	No
x^4	-1	0.859	No
x^5	-1	0.859	No
х^б	-1	0.859	No
Pooled Background (bg) $(n = 24, al)$	pha = 0.05)		
no	-1	0.916	No
square root	0	0.916	No
square	-1	0.916	No
cube root	0	0.916	No
cube	-1	0.916	No
natural log	-1	0.916	No
x^4	-1	0.916	No
x^5	-1	0.916	No
x^6	-1	0.916	No

Constituent: Calcium Analysis Run 8/9/2021 3:03 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Vell Transformation	Calculated	Critical	Normal
G45S (bg) (n = 18, alpha = 0.05)			
no	0.9001	0.897	Yes
square root	0,9088	0.897	Yes
square	0.88	0.897	No
cube root	0.9115	0.897	Yes
cube	0.8565	0.897	No
natural log	0.9165	0.897	Yes
x^4	0.8299	0.897	No
x^5	0.8009	0.897	No
x^6	0.7699	0.897	No
03S (bg) (n = 18, alpha = 0.05)			
no	0.7677	0.897	No
square root	0.7823	0.897	No
square	0.735	0.897	No
cube root	0.7868	0.897	No
cube	0.6983	0.897	No
natural log	0.7955	0.897	No
x^4	0.6588	0.897	No
x^5	0.6179	0.897	No
x^6	0.5771	0.897	No
ooled Background (bg) (n = 36, alpha	= 0.05)		
no	0.9187	0,935	No
square root	0.9317	0.935	No
square	0.8865	0.935	No
cube root	0.9355	0,935	Yes
cube	0.8467	0.935	No
natural log	0.9425	0.935	Yes
x^4	0.8008	0.935	No
x^ 5	0.7504	0.935	No
x^6	0.6978	0.935	No

Constituent: Chloride Analysis Run 8/9/2021 3:03 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Transform	mation Calculated	Critical	Norma
G45S (bg) (n = 18, alpha = 0.09	5)		
no	0.898	0.897	Yes
square re	oot 0.9255	0.897	Yes
square	0.8298	0.897	No
cube root	0.9335	0.897	Yes
cube	0.7517	0.897	No
natural 1	log 0.9474	0.897	Yes
x^4	0.6724	0.897	No
x^5	0.5985	0.897	No
х^б	0.5335	0.897	No
103S (bg) (n = 18, alpha = 0.05	5)		110
по	0.8597	0.897	No
square ro	ot 0.8958	0.897	No
square	0.7744	0.897	No
cube root	0,9065	0.897	Yes
cube	0.6829	0.897	No
natural 1	og 0.9257	0.897	Yes
x^4	0.5969	0.897	No
x^5	0.5233	0.897	No
x^6	0.4638	0.897	No
Pooled Background (bg) (n = 36,	alpha = 0.05)		110
no	0.9079	0.935	No
square ro	ot 0.9401	0.935	Yes
square	0.819	0.935	No
cube root	0.9485	0.935	Yes
cube	0.7133	0.935	No
natural 1	og 0.9618	0.935	Yes
x ^4	0.6088	0.935	No
x^5	0.5167	0.935	NO
x^6	0.4408	0.935	No

Constituent: Chromium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	<u>Calculated</u>	Critical	Norma
G45S (bg) (n = 12, al)	pha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No
T03S (bg) (n = 12, al _l	oha = 0.05)			
	по	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No
Pooled Background (bg)	(n = 24, alpha =	0.05)		
	no	-1	0.916	No
	square root	0	0.916	No
	square	-1	0.916	No
	cube root	0	0.916	No
	cube	-1	0.916	No
	natural log	0	0.916	No
	x^4	-1	0.916	No
	x^5	-1	0.916	No
	x^6	-1	0.916	No

Constituent: Cobalt Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 18, al	pha = 0.05)			
	no	-1	0.897	No
	square root	0	0.897	No
	square	-1	0.897	No
	cube root	0	0.897	No
	cube	-1	0.897	No
	natural log	0	0.897	No
	x^4	-1	0.897	No
	x^5	-1	0.897	No
	x^6	-1	0.897	No
T03S (bg) (n = 18, al	pha = 0.05)			
	no	0.8169	0.897	No
	square root	0.8202	0.897	No
	square	0.8059	0.897	No
	cube root	0.821	0.897	No
	cube	0.789	0.897	No
	natural log	0.8222	0.897	No
	x^4	0.7668	0.897	No
	x^5	0.7402	0.897	No
	x^6	0.7105	0.897	No
Pooled Background (bg) (n = 36, alpha =	0.05)		
	no	0.597	0.935	No
	square root	0.601	0.935	No
	square	0.5864	0.935	No
	cube root	0.6021	0.935	No
	cube	0.5724	0.935	No
	natural log	0.6041	0.935	No
	x^4	0.5549	0.935	No
	x^5	0.5345	0.935	No
	х^б	0.512	0.935	No

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 16,	alpha = 0.05)			
	no	0.511	0.887	No
	square root	0.6109	0.887	No
	square	0.3754	0.887	No
	cube root	0.6471	0.887	No
	cube	0.3128	0.887	No
	natural log	0.7197	0.887	No
	x^4	0.2877	0.887	No
	x^ 5	0.2782	0.887	No
	x^6	0.2747	0.887	No
103S (bg) (n = 16,	alpha = 0.05)			
	no	0.9665	0.887	Yes
	square root	0.9641	0.887	Yes
	square	0.9607	0.887	Yes
	cube root	0.9625	0.887	Yes
	cube	0.9439	0.887	Yes
	natural log	0.9579	0.887	Yes
	x^4	0.9198	0.887	Yes
	x^5	0.8917	0.887	Yes
	x^6	0.8621	0.887	No
Pooled Background	(bg) (n = 32, alpha =	0.05)		
	no	0.5338	0.93	No
	square root	0.7014	0.93	No
	square	0.3089	0.93	No
	cube root	0.7569	0.93	No
	cube	0.2233	0.93	No
	natural log	0.855	0.93	No
	x^4	0.1951	0.93	No
	x^5	0.1858	0.93	No
	х^б	0.1827	0.93	No

Constituent: Field pH Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G455 (bg) (n = 18, a)	lpha = 0.05)			
	no	0.957	0.897	Yes
	square root	0.9568	0.897	Yes
	square	0.9571	0.897	Yes
	cube root	0.9567	0.897	Yes
	cube	0.957	0.897	Yes
	natural log	0.9566	0.897	Yes
	x^4	0,9566	0.897	Yes
	x^5	0.9559	0.897	Yes
	x^6	0.9549	0.897	Yes
1035 (bg) (n = 18, al	lpha = 0.05)			
	no	0.966	0.897	Yes
	square root	0.9669	0.897	Yes
	square	0.9637	0.897	Yes
	cube root	0.9672	0.897	Yes
	cube	0.9611	0.897	Yes
	natural log	0.9678	0.897	Yes
	x^4	0.958	0.897	Yes
	x^5	0.9545	0.897	Yes
	х^б	0.9506	0.897	Yes
Pooled Background (bg	y) (n = 36, alpha =	0.05)		
	no	0.9765	0.935	Yes
	square root	0.9766	0.935	Yes
	square	0.976	0.935	Yes
	cube root	0.9766	0.935	Yes
	cube	0.9752	0.935	Yes
	natural log	0.9766	0.935	Yes
	x^4	0.9741	0.935	Yes
	x^5	0.9726	0.935	Yes
	x^6	0.9708	0.935	Yes

Constituent: Fluoride Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma.
G45S (bg) (n = 18, a.	lpha = 0.05)	_		
	по	0.486	0.897	No
	square root	0.4131	0.897	No
	square	0.6472	0.897	No
	cube root	0.3917	0.897	No
	cube	0.782	0.897	No
	natural log	0.3544	0.897	No
	x^4	0.8681	0.897	No
	х^5	0.9115	0.897	Yes
	х^б	0.9249	0.897	Yes
T03S (bg) (n = 18, al	lpha = 0.05)			105
	no	0.8645	0.897	No
	square root	0.7698	0.897	No
	square	0.9048	0.897	Yes
	cube root	0.7289	0,897	No
	cube	0.8395	0.897	No
	natural log	0.6408	0.897	No
	x^4	0.7587	0.897	No
	x^5	0.6875	0.897	No
	х^б	0.6288	0.897	No
Pooled Background (bg) (n = 36, alpha =	0.05)		
	no	0.8634	0.935	No
	square root	0.7876	0.935	No
	square	0.9107	0.935	No
	cube root	0.7525	0,935	No
	cube	0.9059	0.935	No
	natural log	0.6711	0.935	No
	x^4	0.8941	0.935	No
	x^5	0.8823	0.935	No
	x^6	0.8697	0.935	No

Constituent: Lead Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Transformation	Calculated	Critical	Normal
G45S (bg) (n = 18, alpha = 0.05)			
no	-1	0.897	No
square root	0	0.897	No
square	-1	0.897	No
cube root	0	0.897	No
cube	-1	0.897	No
natural log	0	0.897	No
x^4	-1	0.897	No
x^5	-1	0.897	No
х^б	-1	0.897	No
203S (bg) (n = 18, alpha = 0.05)			
по	0.2528	0.897	No
square root	0.2528	0.897	No
square	0.2528	0.897	No
cube root	0.2528	0.897	No
cube	0.2528	0.897	No
natural log	0.2528	0.897	No
x^4	0.2528	0.897	No
x^5	0.2528	0.897	No
x^6	0.2528	0.897	No
ooled Background (bg) (n = 36, alpha	a = 0.05)		
по	0.1702	0.935	No
square root	0.1702	0.935	No
square	0.1702	0.935	No
cube root	0.1702	0.935	No
cube	0.1702	0.935	No
natural log	0.1702	0.935	No
x^4	0.1702	0.935	No
x^ 5	0.1702	0.935	NO
x^6	0.1702	0.935	NO

Constituent: Lithium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Transformation	n <u>Calculated</u>	<u> </u>	Norma
G45S (bg) (n = 18, alpha = 0.05)			
no	0.936	0.897	Yes
square root	0.9417	0.897	Yes
square	0.9221	0.897	Yes
cube root	0.9433	0.897	Yes
cube	0.9047	0.897	Yes
natural log	0.9463	0.897	Yes
x^4	0.8845	0.897	No
x^5	0.8619	0.897	No
x^6	0.8376	0.897	No
T03S (bg) (n = 18, alpha = 0.05)			
no	0.9363	0.897	Yes
square root	0.9491	0.897	Yes
square	0.9037	0.897	Yes
cube root	0.9527	0.897	Yes
cube	0.8637	0.897	No
natural log	0.959	0.897	Yes
x^4	0.819	0.897	No
x^5	0.7723	0.897	No
ж^б	0.7259	0.897	No
Pooled Background (bg) (n = 36, alph	a = 0.05)		
no	0.9534	0.935	Yes
square root	0.9488	0.935	Yes
square	0.9476	0.935	Yes
cube root	0.9462	0.935	Yes
cube	0.9227	0.935	No
natural log	0.9396	0.935	Yes
x^4	0.8827	0.935	No
x^5	0.8333	0.935	No
x^6	0.7805	0.935	No

Constituent: Mercury Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 11, al	pha = 0.05)			
	no	-1	0.85	No
	square root	-1	0.85	No
	square	-1	0.85	No
	cube root	0	0.85	No
	cube	-1	0.85	No
	natural log	-1	0.85	No
	x^4	-1	0.85	No
	x^5	-1	0.85	No
	x^6	-1	0.85	No
T03S (bg) (n = 11, al	pha = 0.05)			
	по	-1	0.85	No
	square root	-1	0.85	No
	square	-1	0.85	No
	cube root	0	0.85	No
	cube	-1	0.85	No
	natural log	-1	0.65	No
	x^4	-1	0.85	No
	x^5	-1	0.85	No
	x^6	-1	0.85	No
Pooled Background (bg)	(n = 22, alpha =	0.05)		
	пo	-1	0.911	No
	square root	-1	0.911	No
	square	-1	0.911	No
	cube root	0	0.911	No
	cube	-1	0.911	No
	natural log	0	0.911	No
	x^4	-1	0.911	No
	x^5	-1	0,911	No
	x^6	-1	0.911	No

Constituent: Molybdenum Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
G45S (bg) (n = 18,	, alpha = 0.05)			
	no	0.8933	0.897	No
	square root	0.9147	0.897	Yes
	square	0.8446	0.897	No
	cube root	0.9213	0.897	Yes
	cube	0.7927	0.897	No
	natural log	0.9334	0.897	Yes
	x^4	0.7415	0.897	No
	x^5	0.6939	0.897	No
	x^6	0.6511	0.897	No
T03S (bg) $(n = 18,$	alpha = 0.05)			
	no	0.9403	0.897	Yes
	square root	0.9496	0.897	Yes
	square	0.8352	0.897	No
	cube root	0.9422	0.897	Yes
	cube	0.7059	0.897	No
	natural log	0.9115	0.897	Yes
	x^4	0.5907	0.897	NO
	x^5	0.4984	0.897	No
	x^6	0.4292	0.897	No
Pooled Background	(bg) (n = 36, alpha =	0.05)		
	no	0.7558	0.935	No
	square root	0.8011	0.935	No
	square	0.6318	0.935	No
	cube root	0.8102	0.935	No
	cube	0.5175	0.935	No
	natural log	0.8187	0.935	No
	x^4	0.4246	0.935	No
	x^5	0.3531	0.935	No
	х ^б	0.3004	0.935	No

Constituent: Selenium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
G45S (bg) (n = 18,	alpha = 0.05			
	no	-1	0.897	No
	square root	0	0.697	No
	square	-1	0.897	No
	cube root	-1	0.897	No
	cube	-1	0.897	No
	natural log	0	0.897	No
	x^4	-1	0.897	No
	x^5	-1	0.897	No
	x^6	-1	0.897	No
103S (bg) (n = 18, a)	alpha = 0.05)			
	по	-1	0.897	No
	square root	0	0.897	No
	square	-1	0.897	No
	cube root	-1	0.897	No
	cube	-1	0.897	No
	natural log	0	0.897	No
	x^4	-1	0.897	No
	x^5	- 1.	0.897	No
	х ^б	-1	0.897	No
Pooled Background (H	og) (n = 36, alpha =	0.05)		
	no	-1	0.935	No
	square root	0	0.935	No
	square	-1	0.935	No
	cube root	-1	0.935	No
	cube	-1	0.935	No
	natural log	0	0,935	No
	x^4	-1	0.935	No
	x^5	-1	0.935	No
	x^6	-1	0.935	No

Constituent: Sulfate Analysis Run 8/9/2021 3:03 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

:

Well Trar	nsformation	Calculated	Critical	Norma
G45S (bg) (n = 18, alpha =	= 0.05)			
no		0.861	0.897	No
squa	are root	0.9174	0.897	Yes
squa	ire	0.7145	0.897	No
cube	e root	0.9318	0.897	Yes
cube	<u>;</u>	0.5709	0.897	No
natu	iral log	0.9533	0.897	Yes
x^4		0.4606	0.897	No
x^5		0.3857	0.897	No
х^б		0.3373	0.897	No
03S (bg) (n = 18, alpha =	0.05)			
no		0.9533	0.897	Yes
squa	re root	0.9485	0.897	Yes
squa	re	0.9556	0.897	Yes
cube	root	0.9464	0.897	Yes
cube		0.9477	0.897	Yes
natu	ral log	0.9415	0.897	Yes
x^4		0.9299	0.897	Yes
x^ 5		0.9033	0.897	Yes
ж ^б		0.8695	0.897	No
ooled Background (bg) (n	= 36, alpha = 1	0.05)		
no		0.9499	0.935	Yes
squa	re root	0.9696	0.935	Yes
squa	re	0.8639	0.935	No
cube	root	0.9724	0.935	Yes
cube		0.7354	0.935	No
natu	ral log	0.9723	0.935	Yes
x^4		0.5974	0.935	No
x^5		0.4771	0.935	No
х^б		0.3852	0.935	No

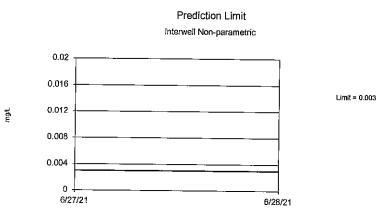
Constituent: Thallium Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n = 12, a	alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	-1	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No
CO35 (bg) (n = 12, a	alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	-1	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No
Pooled Background (b	og) (n = 24, $alpha$ =	0.05)		
	no	-1	0.916	No
	square root	0	0.916	No
	square	-1	0.916	No
	cube root	0	0.916	No
	cube	-1	0.916	No
	natural log	0	0.916	No
	x^4	-1	0.916	No
	x^5	-1	0.916	No
	x^6	-1	0.916	No

Shapiro-Wilk Normality Test

Constituent: Total Dissolved Solids Analysis Run 8/9/2021 3:03 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

WellTransforma	ation Calculated	Critical	Norma
G45S (bg) (n = 18, alpha = 0.05)			
no	0.9219	0.897	Yes
square roo	ot 0.9374	0.897	Yes
square	0.8843	0.897	No
cube root	0.942	0.897	Yes
cube	0.8402	0.897	No
natural lo	og 0.9502	0.897	Yes
x^4	0.7925	0.897	No
x^5	0.7443	0.897	No
x^6	0.6979	0.897	No
T03S (bg) (n = 18, alpha = 0.05)			
no	0.9677	0.897	Yes
square roc	t 0.9681	0.897	Yes
square	0.9639	0.897	Yes
cube root	0.968	0.897	Yes
cube	0.9562	0.897	Yes
natural lo	og 0.9674	0.897	Yes
x^4	0,9447	0.897	Yes
x^5	0.9299	0.897	Yes
x ^6	0.9122	0.897	Yes
Pooled Background (bg) $(n = 36,$	alpha = 0.05)		
no	0.9658	0,935	Yes
square roo	t 0.9684	0.935	Yes
square	0.9542	0.935	Yes
cube root	0.9688	0.935	Yes
cube	0.9354	0.935	Yes
natural lo	g 0.9687	0.935	Yes
x^4	0.911	0.935	No
x^5	0.8826	0.935	No
х^б	0.852	0.935	No

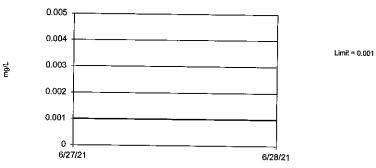

Shapiro-Wilk Normality Test

Constituent: Turbidity Analysis Run 10/8/2021 11:51 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
G45S (bg) (n =	= 8, alpha = 0.05)			
	no	0.8058	0.818	No
	square root	0.8631	0.818	Yes
	square	0.6821	0.818	No
	cube root	0.8795	0.818	Yes
	cube	0.5827	0.818	No
	natural log	0.9071	0.818	Yes
	x^4	0.5174	0.818	No
	x^5	0.4778	0.818	No
	x^6	0.4542	0.818	No
[03S (bg) (n =	= 8, alpha = 0.05)			
	no	0.4327	0.818	No
	square root	0.4917	0.818	No
	square	0.419	0.818	No
	cube root	0.5363	0.818	No
	cube	0.4186	0.818	No
	natural log	0.6699	0.818	No
	x^4	0.4186	0.818	No
	x^5	0.4186	0.818	No
	x^6	0.4186	0.818	No
Pooled Backgro	ound (bg) (n = 16, alpha =	0.05)		
	no	0.2879	0.887	No
	square root	0.3593	0.887	No
	square	0.273	0.887	No
	cube root	0.4178	0.887	No
	cube	0.2727	0.887	No
	natural log	0.6067	0.887	No
	x^4	0.2727	0.887	No
	x^5	0.2727	0.887	No
	x^6	0.2727	0.887	No

Interwell Joliet #9 Interwell PL UG G45S and T03S All Values

		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet	9 - Jolie	t 29 🛛 🖡	Printed 8/9/	2021, 3:56 PM		
<u>Constituent</u>	Well	Upper_Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	%NDs	Transform	Alpha	Method
Antimony (mg/L)	n/a	0.003	n/a	n/a	8 future	n/a	24	100	n/a	0.002646	NP (NDs) 1 of 2
Beryllium (mg/L)	n/a	0.001	n/a	n/a	8 future	n/a	24	100	n/a	0.002646	NP (NDs) 1 of 2
Cadmium (mg/L)	n/a	0.0005	n/a	n/a	8 future	n/a	24	100	n/a	0.002646	NP (NDs) 1 of 2
Chromium (mg/L)	n/a	0.005	n/a	n/a	8 future	n/a	24	100	n/a	0.002646	NP (NDs) 1 of 2
Field pH (SU)	n/a	7.618	6.847	n/a	8 future	n/a	36	0	No	0.000	Param 1 of 2
Lead (mg/L)	n/a	0.0023	n/a	n/a	8 future	n/a	36	97.22	n/a	0.001311	NP (NDs) 1 of 2
Mercury (mg/L)	n/a	0.0002	n/a	n/a	8 future	n/a	22	100	n/a	0.003067	NP (NDs) 1 of 2
Selenium (mg/L)	n/a	0.0025	n/a	n/a	8 future	n/a	36	100	n/a	0.001311	NP (NDs) 1 of 2
Thallium (mg/L)	n/a	0.002	n/a	n/a	8 future	n/a	24	100	n/a	0.002646	NP (NDs) 1 of 2

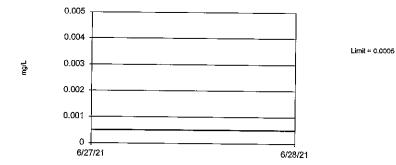


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 24) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.08129. Individual comparison alpha = 0.002646 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

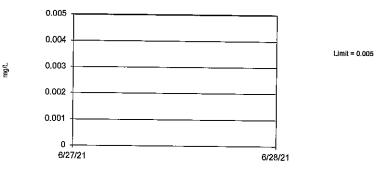
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 24) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.08129. Individual comparison alpha = 0.002646 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Constituent: Antimony Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

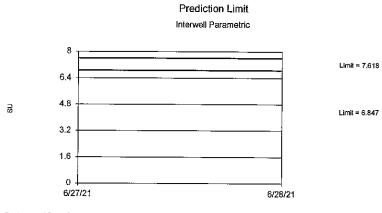
Constituent: Beryllium Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

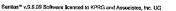
Sanitas" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG


Prediction Limit

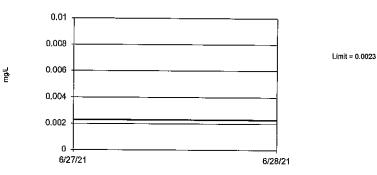
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 24) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.08129. Individual comparison alpha = 0.002646 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Senites^{re} v.9.6,09 Software licensed to KPRG and Associatos, Inc. UG

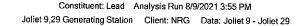

Prediction Limit Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 24) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.08129. Individual comparison alpha = 0.002646 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

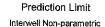
Constituent: Cadmium Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

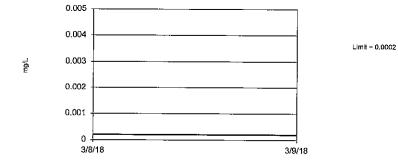

Constituent: Chromium Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Background Data Summary: Mean=7.233, Std. Dev.=0.1528, n=36. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9765, critical = 0.935. Kappa = 2.522 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.00007482. Assumes 8 future values.

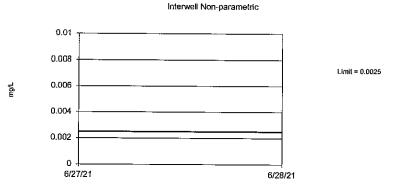


Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 36 background values. 97.22% NDs. Annual per-constituent alpha = 0.04111. Individual comparison alpha = 0.001311 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

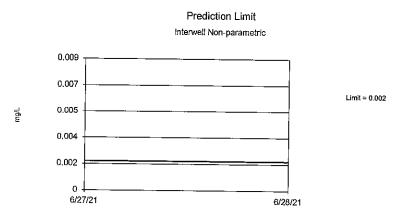

Constituent: Field pH Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit


Sanitas** v.9,6,09 Software licensed to KPRG and Associates, Inc. UG

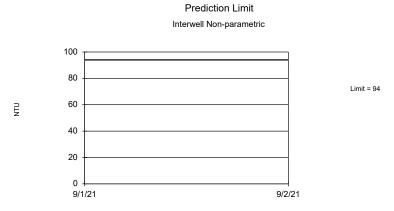
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 22) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.09361, Individual comparison alpha = 0.003067 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 36) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.04111. Individual comparison alpha = 0.001311 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Constituent: Mercury Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Selenium Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanites" v.9.6.09 Software liconsod to KPRG and Associates, Inc. UG

0.

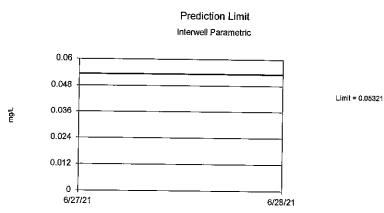
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 24) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.08129. Individual comparison alpha = 0.002646 (1 of 2). Assumes 8 future values. Seasonality was not detected with 95% confidence.

Constituent: Thallium Analysis Run 8/9/2021 3:55 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 16 background values. Annual per-constituent alpha = 0.1454. Individual comparison alpha = 0.004899 (1 of 2). Assumes 8 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Turbidity Analysis Run 10/8/2021 11:54 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

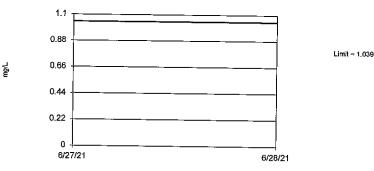
Interwell Prediction Limit Joliet #9 Comb G45S-T03S Turbidity


Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/8/2021, 11:56 AM

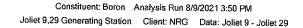
<u>Constituent</u>	Well	<u>Upper Lim.</u>	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Turbidity (NTU)	n/a	94	n/a	n/a	8 future	n/a	16	0	n/a	0.004899	NP (normality) 1 of 2

Interwell Joliet #9 Interwell PL UG G45S All Values

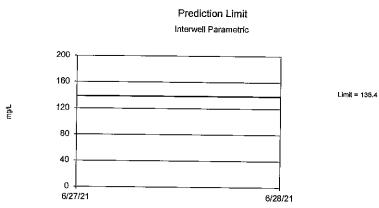
		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet	9 - Jolie	t 29	Printed 8/9/	2021, 3:50 PM		
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	<u>Observ.</u>	<u>Sig.</u>	<u>Bạ N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Barium (mg/L)	n/a	0.05321	n/a	n/a	8 future	n/a	18	0	No	0.000	Param 1 of 2
Boron (mg/L)	n/a	1.039	n/a	n/a	8 future	n/a	18	5.556	ln(x)	0.000,.,	Param 1 of 2
Calcium (mg/L)	n/a	138,4	n/a	n/a	8 future	n/a	18	0	No	0.000	Param 1 of 2
Chloride (mg/L)	n/a	232.4	n/a	n/a	8 future	n/a	18	0	No	0.000	Param 1 of 2
Cobalt (mg/L)	n/a	0.001	n/a	n/a	8 future	n/a	18	100	n/a	0.004188	NP (NDs) 1 of 2
Fluoride (mg/L)	n/a	0.3889	n/a	n/a	8 future	n/a	18	5.556	x^5	0.000	Param 1 of 2
Lithium (mg/L)	n/a	0.04228	n/a	n/a	8 future	n/a	18	0	No	0.000	Param 1 of 2
Molybdenum (mg/L)	n/a	0.01432	n/a	n/a	8 future	n/a	18	0	sqrt(x)	0.000	Param 1 of 2
Sulfate (mg/L)	n/a	369.6	n/a	n/a	8 future	n/a	18	0	sqrt(x)	0.000	Param 1 of 2
Total Dissolved Solids (mg/L)	n/a	1053	n/a	n/a	8 future	n/a	18	0	No	0.000	Param 1 of 2



Background Data Summary: Mean=0.0385, Std. Dev.=0.005136, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9528, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.


Prediction Limit

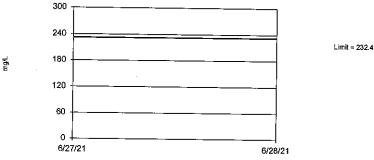
Interweil Parametric



Background Data Summary (based on natural log transformation): Mean=-0.719, Std. Dev.=0.2643, n=18, 5.556% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, NOS. insumcent data to test to seasonairy, no deseasonairez, no initiary est, origino vaix graphi – 0.00, calculated e 0.9048, critical = 0.897. Kappa = 2.864 (e=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.001496. Assumes 8 future values.

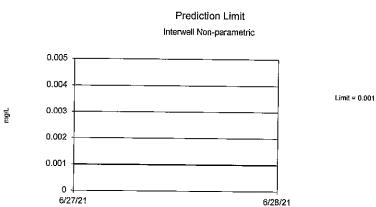
Constituent: Barium Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^a v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



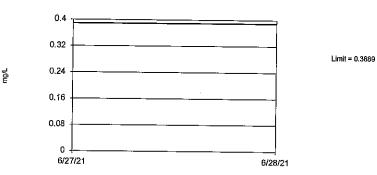
Background Data Summary: Mean=101.6, Std. Dev.=12.86, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9001, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

> Constituent: Calcium Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

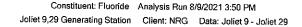

Sanites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit Interwell Parametric

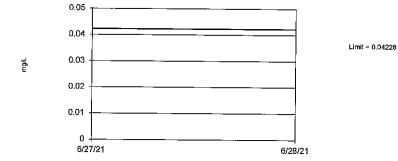
Background Data Summary: Mean=133.2, Std. Dev.=34.65, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.898, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values,


> Constituent: Chloride Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 18) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1257. Individual comparison alpha = 0.04188 (1 of 2). Assumes 8 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

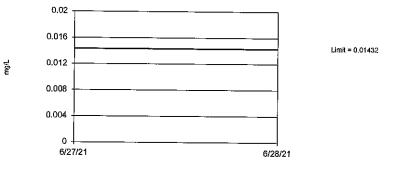


Prediction Limit


Background Data Summary (based on x*5 transformation): Mean=0.00426, Std. Dev.=0.001619, n=18, 5.556% NDs, Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9115, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

Constituent: Cobalt Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

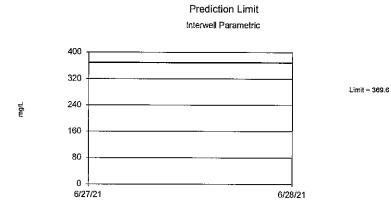
Senites^m v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG


Prediction Limit

Background Data Summary: Mean=0.03189, Std. Dev.=0.003628, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.936, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit


Background Data Summary (based on square root transformation): Mean=0.09554, Std. Dev.=0.008422, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9147, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

Constituent: Lithium Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Molybdenum Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

0

Background Data Summary (based on square root transformation): Mean=13.31, Std. Dev.=2.067, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9174, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

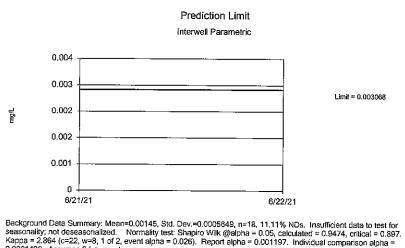

Constituent: Sulfate Analysis Run 8/9/2021 3:50 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

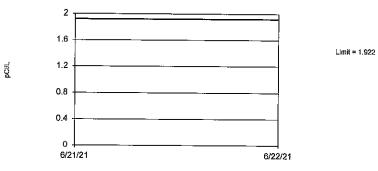
Limit = 1053


Background Data Summary: Mean=745, Std. Dev.=107.4, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9219, critical = 0.897. Kappa = 2.864 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496, Assumes 8 future values.

Constituent: Total Dissolved Solids Analysis Run 8/9/2021 3:50 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Interwell Joliet #9 Interwell PL UG T03S All Values

		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet	9 - Jolie	t 29	Printed 8/9/	2021, 3:49 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Ba N</u>	%NDs	Transform	Alpha	Method
Arsenic (mg/L)	n/a	0.003068	n/a	n/a	8 future	n/a	18	11.11	No	0.000	Param 1 of 2
Combined Radium 226 + 228 (pCi/L)	n/a	1.922	n/a	n/a	8 future	n/a	16	0	No	0.000	Param 1 of 2


0.0001496. Assumes 8 future values.

Sanitas[™] v.9.6.09 Softwara licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=1.334, Std. Dev.=0.1996, n=16. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9665, critical = 0.887. Kappa = 2.946 (c=22, w=8, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001496. Assumes 8 future values.

Constituent: Arsenic Analysis Run 8/9/2021 3:48 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Combined Radium 226 + 228 Analysis Run 8/9/2021 3:48 PM Joliet 9,29 Generating Station Ctient: NRG Data: Joliet 9 - Joliet 29

<u>ATTACHMENT 10</u> WRITTEN CLOSURE PLAN

CLOSURE AND POST-CLOSURE PLAN LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2016

This closure and post-closure plan has been prepared in accordance with 40 CFR Part 257.102(b) and 40 CFR Part 257.104(d) for Lincoln Stone Quarry (Quarry) at the Joliet #9 Station, operated by Midwest Generation, LLC (Midwest Generation), in Joliet, IL. Currently, the Quarry is a landfill being operated under Illinois Environmental Protection Agency Permit No. 1994-241-LFM, Modification No. 22, dated June 9, 2016. This closure and post-closure plan describes the schedule and steps necessary for closure and post closure and methods for compliance with closure and post-closure requirements for the Quarry.

1.0 Closure Narrative [257.102(b)(1)(i)]

The closure of the Quarry will be accomplished by leaving the coal combustion residual (CCR) in place and covering with a final cover system in accordance with 40 CFR Part 257.102(d). The closure will achieve the closure performance standards in accordance with 257.102(d)(1)(i) through (v).

2.0 CCR Removal and Decontamination [257.102(b)(1)(ii)]

The closure of the Quarry will occur by leaving the CCR in place in accordance with 257.102(d).

3.0 Closure with CCR Left in Place [257.102(b)(1)(iii)]

The Quarry will be closed by leaving the CCR in place in accordance with 257.102(d). As required, a final cover system (FCS) will be installed over the CCR in accordance with 257.102(d)(3)(ii).

The closure will be implemented using the following methods and procedures:

- 1. Unneeded portions of the pipelines in the Main Quarry will be demolished as necessary and hauled from the site to a disposal facility or a salvage yard;
- 2. The Main Quarry will be dewatered to an extent to allow the CCR to be regraded and compacted;
- 3. The CCR in the Quarry will be regraded to a more uniform elevation to allow for the placement of the FCS. The CCR will be compacted to stabilize it prior to placement of

the FCS and to reduce the potential for future settling;

- 4. The FCS will be installed over the regraded and compacted CCR. The FCS will consist of the following components (from the bottom layer to the top layer):
 - One (1) foot of imported clean material;
 - An infiltration layer consisting of a clay layer or an equivalent with a permeable no greater than 1×10^{-5} cm/sec;
 - Another layer of one (1) foot of imported clean material;
 - An erosion control layer consisting of six (6") inches of topsoil; and
 - Vegetation (mulch, fertilizer, and seed).

4.0 Maximum Inventory of CCR [257.102(b)(1)(iv)]

The maximum inventory of CCR ever on-site is based upon the current quantity of CCR in the Quarry. The estimated maximum inventory of CCR that will be covered by the FCS is approximately 2,572,178 cubic yards (CY).

5.0 Largest Area of CCR Requiring a Final Cover [257.102(b)(1)(v)]

The FCS will cover a maximum area of approximately 46 acres.

6.0 Closure Schedule [257.102(b)(1)(vi)]

Implementation of closure, as described, is estimated to require 12 months. Closure is estimated to be completed by the end of 2018. Closure design documents will be prepared to support applications for required local, state, and federal permits, construction bidding specifications will be prepared, and contracting of the work for closure will also be performed. Closure construction design documents may include construction drawings for closure, technical specifications, and adequate CCR removal confirmation procedures. All necessary Federal, State, and Local permits required for closure construction will be evaluated and obtained, as necessary, at the time of closure, but are anticipated to include permits from the Illinois Environmental Protection Agency (IEPA), Illinois Department of Natural Resources (IDNR), and Will County. A preliminary schedule of anticipated closure activities and associated dates is included below.

Activity No.	Closure Activity	Schedule
1	Demolition of Sluice Pipelines	2 Months
2	Dewatering	3 Months
3	Regrade and Compact CCR	3 Months
4	Installation of the Final Cover System	3 Months
5	Closure Certification	1 Month

Closure Schedule

It is not feasible to complete the closure activities within six months due to the significant amount of water to be dewatered from the Quarry and the surface area that will be covered by the regrade CCR. In addition, if it is not feasible to complete the closure activities within six months due to other factors such as those stemming from permitting and/or the climate and weather, MWG will place in the operating record a narrative demonstrating why it is not feasible to complete the closure in the time allowed pursuant to 40 CFR Part 257.102(f)(2)(i).

7.0 Closure Activities Initiation [257.102(e)]

Closure activities will commence when one or more of the following conditions have occurred:

- No later than 30 days after the date on which the CCR unit received the known final receipt of CCR or non-CCR waste;
- No later than 30 days after the removal of the known final volume of CCR for the purpose of beneficial use;
- Within two years of the last receipt of waste for a unit that has not received CCR or non-CCR waste; or
- Within two years of the last removal of CCR material for the purposes of beneficial use.

In accordance with \$257.102(h), notification of closure of a CCR unit will be made within 30 days of the completion of closure of the CCR unit. The notification will include certification from a qualified professional engineer, as required by \$257.102(f)(3).

8.0 Closure Plan Amendments [257.102(b)(3)]

This Closure Plan will be amended in accordance with \$257.102(b)(3) if a change in the operation of the Quarry would substantially affect the content of this Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Closure Plan, the plan will be amended no later than 60 days prior to the

change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after closure activities have commenced. Amendments to this Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with §257.102(b)(4).

9.0 Post-Closure Plan

This post-closure plan has been prepared in accordance with 40 CFR Part 257.104(d) for the Quarry at the Joliet #9 Generating Station, operated by Midwest Generation, in Joliet, IL. This plan describes the schedule and steps necessary for post-closure and methods for compliance with post-closure requirements for the Quarry. The post-closure care period will begin once Midwest Generation has placed the certified notification of closure as required by 257.102(f)(3) in Joliet #9's operating record. This post-closure care plan is based upon the regulatory requirement to maintain and monitor the site for 30 years after closure.

10.0 Post-Closure Monitoring and Maintenance Description [257.104(d)(1)(i)]

The post-closure monitoring and maintenance activities will be performed in compliance with 257.10(4)(b). The post-closure care will consist of the following:

- Maintaining the integrity and effectiveness of the final cover system (FCS), including making repairs as necessary;
- Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with 257.90 through 257.98; and
- Maintenance of access controls to the Quarry (fencing and gates).

In accordance with 257.104(b)(1), the FCS will be inspected annually for settlement, subsidence, erosion, stressed vegetation, and stormwater damage to the final cover. The FCS will be repaired if any of the above conditions are observed.

Groundwater monitoring will be performed in accordance with 257.90 through 257.98 for the duration of the post-closure period. Groundwater sampling will be conducted at a minimum of semi-annually during the post-closure care period. The groundwater sampling and analysis methods will be appropriate for environmental groundwater monitoring (257.93(b)).

The access controls for the Quarry will be inspected annually for any damage that may allow for trespassing. The inspection will occur at the same time the FCS is inspected. Any damage noted during the inspections will be repaired.

11.0 Post-Closure Care Contact Information [257.104(d)(1)(ii)]

Environmental Specialist Joliet #9 Generating Station 1601 S. Patterson Road Joliet, IL 815-207-4918

12.0 Planned Uses of the Property [257.104(d)(1)(iii)]

The Quarry will be not developed during the post-closure care period. The Quarry will be inactive during the post-closure care period, and it will only be accessed to perform groundwater monitoring or inspections, as noted above. The groundwater monitoring will not involve access to the FCS. Access to the FCS for inspections will be kept to a minimum.

13.0 Post-Closure Plan Amendments [257.102(b)(3)]

This Post-Closure Plan will be amended in accordance with §257.104(d)(3) if a change in the operation of the Quarry would substantially affect the content of this Post-Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Post-Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after post-closure activities have commenced. Amendments to this Post-Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with §257.102(b)(4).

14.0 Professional Engineer's Certification [257.102(b)(4) & 257.104(d)(4)]

This Closure and Post-Closure Plan has been prepared to meet the requirements of 40 CFR 257.102(b)(1) and 257.104(d)(1).

10/14/16

Joshua D. Davenport, P.E. Illinois Professional Engineer

SEAL

ATTACHMENT 11 POST-CLOSURE PLAN

CLOSURE AND POST-CLOSURE PLAN LINCOLN STONE QUARRY JOLIET #9 STATION OCTOBER 2016

This closure and post-closure plan has been prepared in accordance with 40 CFR Part 257.102(b) and 40 CFR Part 257.104(d) for Lincoln Stone Quarry (Quarry) at the Joliet #9 Station, operated by Midwest Generation, LLC (Midwest Generation), in Joliet, IL. Currently, the Quarry is a landfill being operated under Illinois Environmental Protection Agency Permit No. 1994-241-LFM, Modification No. 22, dated June 9, 2016. This closure and post-closure plan describes the schedule and steps necessary for closure and post closure and methods for compliance with closure and post-closure requirements for the Quarry.

1.0 Closure Narrative [257.102(b)(1)(i)]

The closure of the Quarry will be accomplished by leaving the coal combustion residual (CCR) in place and covering with a final cover system in accordance with 40 CFR Part 257.102(d). The closure will achieve the closure performance standards in accordance with 257.102(d)(1)(i) through (v).

2.0 CCR Removal and Decontamination [257.102(b)(1)(ii)]

The closure of the Quarry will occur by leaving the CCR in place in accordance with 257.102(d).

3.0 Closure with CCR Left in Place [257.102(b)(1)(iii)]

The Quarry will be closed by leaving the CCR in place in accordance with 257.102(d). As required, a final cover system (FCS) will be installed over the CCR in accordance with 257.102(d)(3)(ii).

The closure will be implemented using the following methods and procedures:

- 1. Unneeded portions of the pipelines in the Main Quarry will be demolished as necessary and hauled from the site to a disposal facility or a salvage yard;
- 2. The Main Quarry will be dewatered to an extent to allow the CCR to be regraded and compacted;
- 3. The CCR in the Quarry will be regraded to a more uniform elevation to allow for the placement of the FCS. The CCR will be compacted to stabilize it prior to placement of

the FCS and to reduce the potential for future settling;

- 4. The FCS will be installed over the regraded and compacted CCR. The FCS will consist of the following components (from the bottom layer to the top layer):
 - One (1) foot of imported clean material;
 - An infiltration layer consisting of a clay layer or an equivalent with a permeable no greater than 1×10^{-5} cm/sec;
 - Another layer of one (1) foot of imported clean material;
 - An erosion control layer consisting of six (6") inches of topsoil; and
 - Vegetation (mulch, fertilizer, and seed).

4.0 Maximum Inventory of CCR [257.102(b)(1)(iv)]

The maximum inventory of CCR ever on-site is based upon the current quantity of CCR in the Quarry. The estimated maximum inventory of CCR that will be covered by the FCS is approximately 2,572,178 cubic yards (CY).

5.0 Largest Area of CCR Requiring a Final Cover [257.102(b)(1)(v)]

The FCS will cover a maximum area of approximately 46 acres.

6.0 Closure Schedule [257.102(b)(1)(vi)]

Implementation of closure, as described, is estimated to require 12 months. Closure is estimated to be completed by the end of 2018. Closure design documents will be prepared to support applications for required local, state, and federal permits, construction bidding specifications will be prepared, and contracting of the work for closure will also be performed. Closure construction design documents may include construction drawings for closure, technical specifications, and adequate CCR removal confirmation procedures. All necessary Federal, State, and Local permits required for closure construction will be evaluated and obtained, as necessary, at the time of closure, but are anticipated to include permits from the Illinois Environmental Protection Agency (IEPA), Illinois Department of Natural Resources (IDNR), and Will County. A preliminary schedule of anticipated closure activities and associated dates is included below.

Activity No.	Closure Activity	Schedule
1	Demolition of Sluice Pipelines	2 Months
2	Dewatering	3 Months
3	Regrade and Compact CCR	3 Months
4	Installation of the Final Cover System	3 Months
5	Closure Certification	1 Month

Closure Schedule

It is not feasible to complete the closure activities within six months due to the significant amount of water to be dewatered from the Quarry and the surface area that will be covered by the regrade CCR. In addition, if it is not feasible to complete the closure activities within six months due to other factors such as those stemming from permitting and/or the climate and weather, MWG will place in the operating record a narrative demonstrating why it is not feasible to complete the closure in the time allowed pursuant to 40 CFR Part 257.102(f)(2)(i).

7.0 Closure Activities Initiation [257.102(e)]

Closure activities will commence when one or more of the following conditions have occurred:

- No later than 30 days after the date on which the CCR unit received the known final receipt of CCR or non-CCR waste;
- No later than 30 days after the removal of the known final volume of CCR for the purpose of beneficial use;
- Within two years of the last receipt of waste for a unit that has not received CCR or non-CCR waste; or
- Within two years of the last removal of CCR material for the purposes of beneficial use.

In accordance with \$257.102(h), notification of closure of a CCR unit will be made within 30 days of the completion of closure of the CCR unit. The notification will include certification from a qualified professional engineer, as required by \$257.102(f)(3).

8.0 Closure Plan Amendments [257.102(b)(3)]

This Closure Plan will be amended in accordance with \$257.102(b)(3) if a change in the operation of the Quarry would substantially affect the content of this Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Closure Plan, the plan will be amended no later than 60 days prior to the

change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after closure activities have commenced. Amendments to this Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with §257.102(b)(4).

9.0 Post-Closure Plan

This post-closure plan has been prepared in accordance with 40 CFR Part 257.104(d) for the Quarry at the Joliet #9 Generating Station, operated by Midwest Generation, in Joliet, IL. This plan describes the schedule and steps necessary for post-closure and methods for compliance with post-closure requirements for the Quarry. The post-closure care period will begin once Midwest Generation has placed the certified notification of closure as required by 257.102(f)(3) in Joliet #9's operating record. This post-closure care plan is based upon the regulatory requirement to maintain and monitor the site for 30 years after closure.

10.0 Post-Closure Monitoring and Maintenance Description [257.104(d)(1)(i)]

The post-closure monitoring and maintenance activities will be performed in compliance with 257.10(4)(b). The post-closure care will consist of the following:

- Maintaining the integrity and effectiveness of the final cover system (FCS), including making repairs as necessary;
- Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with 257.90 through 257.98; and
- Maintenance of access controls to the Quarry (fencing and gates).

In accordance with 257.104(b)(1), the FCS will be inspected annually for settlement, subsidence, erosion, stressed vegetation, and stormwater damage to the final cover. The FCS will be repaired if any of the above conditions are observed.

Groundwater monitoring will be performed in accordance with 257.90 through 257.98 for the duration of the post-closure period. Groundwater sampling will be conducted at a minimum of semi-annually during the post-closure care period. The groundwater sampling and analysis methods will be appropriate for environmental groundwater monitoring (257.93(b)).

The access controls for the Quarry will be inspected annually for any damage that may allow for trespassing. The inspection will occur at the same time the FCS is inspected. Any damage noted during the inspections will be repaired.

11.0 Post-Closure Care Contact Information [257.104(d)(1)(ii)]

Environmental Specialist Joliet #9 Generating Station 1601 S. Patterson Road Joliet, IL 815-207-4918

12.0 Planned Uses of the Property [257.104(d)(1)(iii)]

The Quarry will be not developed during the post-closure care period. The Quarry will be inactive during the post-closure care period, and it will only be accessed to perform groundwater monitoring or inspections, as noted above. The groundwater monitoring will not involve access to the FCS. Access to the FCS for inspections will be kept to a minimum.

13.0 Post-Closure Plan Amendments [257.102(b)(3)]

This Post-Closure Plan will be amended in accordance with §257.104(d)(3) if a change in the operation of the Quarry would substantially affect the content of this Post-Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Post-Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after post-closure activities have commenced. Amendments to this Post-Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with §257.102(b)(4).

14.0 Professional Engineer's Certification [257.102(b)(4) & 257.104(d)(4)]

This Closure and Post-Closure Plan has been prepared to meet the requirements of 40 CFR 257.102(b)(1) and 257.104(d)(1).

10/14/16

Joshua D. Davenport, P.E. Illinois Professional Engineer

SEAL

ATTACHMENT 12 LINER CERTIFICATION

Attachment 12: Liquid Flow Rate through Alternative Composite Liner Joliet 9 Lincoln Stone Quarry

Darcy's Law for Gravity Flow through Porous Media

Q/A = q = k((h/t)+1)

- Q= flow rate (cubic centimeters/second)
- A = Surface area of the liner (squared centimeters)
- q = flow rate per unit area (cubic centimeters/second/squared centimeter)
- k = hydraulic conductivity of the liner (centimeters/second)
- h = hydraulic head above the liner (centimeters)
- t = thickness of the liner (centimeters)

Section 845.400(c) Comparison Flow Rate

Q/A = q = k((h/t)+1)

Q= ca	lculated				
A =	2,257,198 ft ²	=	2,097,005,560.8	cm ²	Based on surface area at toe of embankment
q = ca	lculated				
k =	1.00E-07 cm/	s			
h =	45 ft	=	1371.6 cm		
t =	2 ft	=	60.96 cm		
Q =	1.00E-07	<u>1371.6</u> +1	* 2,097,005,56	50.82	
		60.96			

Q = 4927.96 cm³/s Compare to Surface Impoundment Flow Rate

Pond Profile

		Flouratio	n (Fifth and all)		Dormoohilitu	Layer Thickness	Layer	Product of
	E (1) (0)		on@ft msl)		Permeability		Thickness	Permeability &
Layers	Depth (ft)	From	То	Layer Description	(cm/s)	(inch)	(cm)	Layer Thickness
Pond	0	580	500	Pond embankment crest				
Fond	80	500	500	Pond bottom				
Upper Liner								
Component	5	500	495	Silurian dolomite	2.00E-04	60	152.4	0.03048
Lower Liner								
Component								

Totals 152.4 3.05E-02 Permeability (weighted) = 0.0002 LSQ Flow Rate Calculation Q/A = q = k((h/t)+1)Q= calculated A = 2,257,198 ft² = 2,097,005,560.82 cm² Based on surface area at toe of embankment q = calculated2.00E-04 cm/s k = 1371.6 cm h = 45 ft = 5 ft 152.4 cm t = = Q = 2.00E-04 <u>1371.6</u> +1 * 2,097,005,560.82 152.4 Q = 4,194,011.12 cm³/s Compare to Section 845.400(c) Comparison Flow Rate Comparison of Surface Impoundment Flow Rate vs Section 845.400(c) Flow Rate

NO

Is the Surface Impoundment Flow Rate of 4,194,011.12 less than the Section 845.400(c) Comparison Flow Rate of 4,928.0

ATTACHMENT 13 HISTORY OF KNOWN EXCEEDANCES

Attachment 13 - No Attachment

ATTACHMENT 14 FINANCIAL ASSURANCE

<u>CERTIFICATION</u> 35 Ill. Adm. Code 845 Subpart I

In accordance with Section 35 Ill. Adm. Code 845.230(a)(17), Midwest Generation, LLC meets the financial assurance requirements of 35 Ill. Adm. Code 845 Subpart I: Financial Assurance for the Joliet 9 Generating Station. The performance bond is attached, note the bond covers both the Joliet 9 and Joliet 29 Generating Stations.

PERFORMANCE BOND

Date bond execute	ed:	06/21/2021	North Street Str
Effective date:	5	21/2021	

Principal:	NRG Energy, Inc. on behalf of Midwest Generation, LLC
2011010-0010000000000000000000000000000	

Type of organization:	Corporation	

State of incorporation:	Delaware

Surety:	Arch Insurance Company
Site Jolie	t
Name	Joliet Generating Station

Address	1800 Channahon Road	

City	Joliet, IL 6043	6				
	1					
Amoun	t guaranteed by thi	s bond:	\$26,417,78	81.96		
Name						
Address						
Address						
City						
Amoun	t guaranteed by thi	s bond:	\$			
Please a	attach a separate pa	ge if more	space is need	led for all	sites.	
Total pe	enal sum of bond:		\$ 26,417,78	31.96		
Surety's	bond number:	SU1174	4125			

The Principal and the Surety promise to pay the Illinois Environmental Protection Agency ("IEPA") the above penal sum unless the Principal or Surety provides closure and post-closure care for each site in accordance with the closure and post-closure care plans for that site. To the payment of this obligation the Principal and Surety jointly and severally bind themselves, their heirs, executors, administrators, successors and assigns.

Whereas the Principal is required, under Section 21(d) of the Environmental Protection Act [415 ILCS 5/21(d)], to have a permit to conduct a waste disposal operation;

Whereas the Principal is required, under Section 21.1 of the Environmental Protection Act [415 ILCS 5/21.1], to provide financial assurance for closure and post-closure care;

Whereas the Surety is licensed by the Illinois Department of Insurance or is licensed to transact the business of insurance, or approved to provide insurance as an excess or surplus lines insurer, by the insurance department in one or more states; and

Whereas the Principal and Surety agree that this bond shall be governed by the laws of the State of Illinois;

The Surety shall pay the penal sum to the IEPA or provide closure and post-closure care in accordance with the closure and post-closure care plans for the site if, during the term of the bond, the Principal fails to provide closure or post-closure care for any site in accordance with the closure and post-closure care plans for that site as guaranteed by this bond. The Principal fails to so provide when the Principal:

a) Abandons the site;

b) Is adjudicated bankrupt;

c) Fails to initiate closure of the site or post-closure care when ordered to do so by the Illinois Pollution Control Board or a court of competent jurisdiction;

d) Notifies the IEPA that it has initiated closure, or initiates closure, but fails to close the site or provide post-closure care in accordance with the closure and post-closure care plans; or

e) Fails to provide alternate financial assurance and obtain the IEPA written approval of the assurance provided within 90 days after receipt by both the Principal and the IEPA of a notice from the Surety that the bond will not be renewed for another term.

The Surety shall pay the penal sum of the bond to the IEPA or notify the IEPA that it

intends to provide closure and post-closure care in accordance with the closure and post-closure care plans for the site within 30 days after the IEPA mails notice to the Surety that the Principal has met one or more of the conditions described above. Payment shall be made by check or draft payable to the State of Illinois, Landfill Closure and Post-Closure Fund.

If the Surety notifies the IEPA that it intends to provide closure and post-closure care, then the Surety must initiate closure and post-closure care within 60 days after the IEPA mailed notice to the Surety that the Principal met one or more of the conditions described above. The Surety must complete closure and post-closure care in accordance with the closure and post-closure care plans, or pay the penal sum.

The liability of the Surety shall not be discharged by any payment or succession of payments unless and until such payment or payments shall amount in the aggregate to the penal sum of the bond. In no event shall the obligation of the Surety exceed the amount of the penal sum.

This bond shall expire on the 21^{st} day of June , 2022 [date]; but such expiration date shall be automatically extended for a period of <u>One</u> [at least one year] on 21^{st} day of June, 2022 [date] and on each successive expiration date, unless, at least 120 days before the current expiration date, the Surety notifies both the IEPA and the Principal by certified mail that the Surety has decided not to extend the term of this surety bond beyond the current expiration date. The 120 days will begin on the date when both the Principal and the IEPA have received the notice, as evidenced by the return receipts.

The Principal may terminate this bond by sending written notice to the Surety; provided, however, that no such notice shall become effective until the Surety receives written authorization for termination of the bond from the IEPA in accordance with 35 Ill. Adm. Code 807.604.

In Witness Whereof, the Principal and Surety have executed this Performance Bond and have affixed their seals on the date set forth above.

The persons whose signatures appear below certify that they are authorized to execute this surety bond on behalf of the Principal and Surety and that the wording of this surety bond is identical to the wording specified in 35 Ill. Adm. Code 807.Appendix A, Illustration D as such regulation was constituted on the date this bond was executed.

Principal: NRG Energy, Inc. on behalf of Midwest Generation, LLC	Corporate Surety					
Signature & Chatgarthe	Name: Arch Insuran	ce Con	npany			
Typed Name Edward Christopher Krupa	Address: Harborside 3, 210 Hudson Street, Suite 300, Jersey City, NJ 07311 1107					
Title Vice President	State of Incorporation: Missourt					
Date 6/21/2021	Signature MWXAAD					
	Typed Name: Mark W. Edwards, II					
	Title-Attorney-in-Fact					
Corporate seal	Corporate seal					
	Bond premium:	\$	184,924.00			

(Source: Amended at 35 Ill. Reg. 18867, effective October 24, 2011)

Section 807. APPENDIX A Financial Assurance Forms

This Power of Attorney limits the acts of those named herein, and they have no authority to bind the Company except in the manner and to the extent herein stated. Not valid for Note, Loan, Letter of Credit, Currency Rate, Interest Rate or Residential Value Guarantees. POWER OF ATTORNEY

Know All Persons By These Presents:

That the Arch Insurance Company, a corporation organized and existing under the laws of the State of Missouri, having its principal administrative office in Jersey City, New Jersey (hereinafter referred to as the "Company") does hereby appoint:

Alisa B. Ferris, Anna Childress, Jeffrey M. Wilson, Mark W. Edwards II, Richard H. Mitchell, Robert R. Freel and William M. Smith of Birmingham, AL (EACH)

R. E. Daniels and Shelby E. Daniels of Pensacola, FL (EACH)

its true and lawful Attorney(s)in-Fact, to make, execute, seal, and deliver from the date of issuance of this power for and on its behalf as surety, and as its act and deed: Any and all bonds, undertakings, recognizances and other surety obligations, in the penal sum not exceeding <u>Ninety Million</u> Dollars (<u>\$90,000,000,000</u>). This authority does not permit the same obligation to be split into two or more bonds In order to bring each such bond within the dollar limit of authority as set forth herein.

The execution of such bonds, undertakings, recognizances and other surety obligations in pursuance of these presents shall be as binding upon the said Company as fully and amply to all intents and purposes, as if the same had been duly executed and acknowledged by its regularly elected officers at its principal administrative office in Jersey City, New Jersey.

This Power of Attorney is executed by authority of resolutions adopted by unanimous consent of the Board of Directors of the Company on December 10, 2020, true and accurate copies of which are hereinafter set forth and are hereby certified to by the undersigned Secretary as being in full force and effect:

"VOTED, That the Chairman of the Board, the President, or the Executive Vice President, or any Senior Vice President, of the Surety Business Division, or their appointees designated in writing and filed with the Secretary, or the Secretary shall have the power and authority to appoint agents and attorneys-in-fact, and to authorize them subject to the limitations set forth in their respective powers of attorney, to execute on behalf of the Company, and attach the seal of the Company thereto, bonds, undertakings, recognizances and other surety obligations obligatory in the nature thereof, and any such officers of the Company may appoint agents for acceptance of process."

This Power of Attorney is signed, sealed and certified by facsimile under and by authority of the following resolution adopted by the unanimous consent of the Board of Directors of the Company on December 10, 2020:

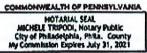
VOTED, That the signature of the Chairman of the Board, the President, or the Executive Vice President, or any Senior Vice President, of the Surety Business Division, or their appointees designated in writing and filed with the Secretary, and the signature of the Secretary, the seal of the Company, and certifications by the Secretary, may be affixed by facsimile on any power of attorney or bond executed pursuant to the resolution adopted by the Board of Directors on December 10, 2020, and any such power so executed, sealed and certified with respect to any bond or undertaking to which it is attached, shall continue to be valid and binding upon the Company. In Testimony Whereof, the Company has caused this instrument to be signed and its corporate seal to be affixed by their authorized officers, this <u>23rd</u> day of <u>April</u>, 20<u>21</u>.

CORPORATE

SEAL 1971

LO'L

Attested and Certified


Ren A. Sr Regan A. Shulman, Secretary

STATE OF PENNSYLVANIA SS

COUNTY OF PHILADELPHIA SS

I, Michele Tripodi, a Notary Public, do hereby certify that Regan A. Shulman and Stephen C. Ruschak personally known to me to be the same persons whose names are respectively as Secretary and Executive Vice President of the Arch Insurance Company, a Corporation organized and existing under the laws of the State of Missouri, subscribed to the foregoing instrument, appeared before me this day in person and severally acknowledged that they being thereunto duly authorized signed, sealed with the corporate seal and delivered the said instrument as the free and voluntary act of said corporation and as their own free and voluntary acts for the uses and purposes therein set forth.

Missouri

de Michele Tripodi, Notary Public

Stephen C. Ruschak, Executive Vice President

Arch Insurance Company

My commission expires 07/31/2021

CERTIFICATION

I, Regan A. Shulman, Secretary of the Arch Insurance Company, do hereby certify that the attached Power of Attorney dated <u>April 23, 2021</u> on behalf of the person(s) as listed above is a true and correct copy and that the same has been in full force and effect since the date thereof and is in full force and effect on the date of this certificate; and I do further certify that the said Stephen C. Ruschak, who executed the Power of Attorney as Executive Vice President, was on the date of execution of the attached Power of Attorney the duly elected Executive Vice President of the Arch Insurance Company. IN TESTIMONY WHEREOF, I have hereunto subscribed my name and affixed the corporate seal of the Arch Insurance Company on this 21⁵ day of J1/2.

Ren A. M A. Shulman, Secretary

This Power of Attorney limits the acts of those named therein to the bonds and undertakings specifically named therein and they have no authority to bind the Company except in the manner and to the extent herein stated.

PLEASE SEND ALL CLAIM INQUIRIES RELATING TO THIS BOND TO THE FOLLOWING ADDRESS: Arch Insurance – Surety Division 3 Parkway, Suite 1500 Philadelphia, PA 19102

To verify the authenticity of this Power of Attorney, please contact Arch Insurance Company at SuretyAuthentic@archinsurance.com Please refer to the above named Attorney-in-Fact and the details of the bond to which the power is attached.

ATTACHMENT 15 HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

Attachment 15 – No Attachment

<u>ATTACHMENT 16</u> STRUCTURAL STABILITY ASSESSMENT

Attachment 16 - No Attachment

ATTACHMENT 17 SAFETY FACTOR ASSESSMENT

Attachment 17 – No Attachment

<u>ATTACHMENT 18</u> INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN LINCOLN STONE QUARRY JOLIET 9 STATION OCTOBER 2021

Pursuant to Illinois Administrative Code (IAC) Part 845.510, Geosyntec Consultants, Inc. (Geosyntec) prepared this Inflow Design Flood Control System Plan for the CCR surface impoundment referred to as the Lincoln Stone Quarry (Quarry) at the Joliet 9 Station (Site) in Joliet, Illinois. The Quarry is leased and operated by Midwest Generation, LLC (Midwest Generation).

Section 845.510(a) of the CCR Rule requires that operators of every existing or new CCR surface impoundment design, construct, operate, and maintain an inflow design flood control system plan that adequately manages flow into the CCR unit during and following the peak discharge of the inflow design flood.

This Inflow Design Flood Control System Plan is being completed in accordance with Section 845.510(c), which requires the plan be submitted with the first annual inspection report. The inflow design flood control system consists of an outflow pipe and maintaining minimum operating freeboard. Justification and documentation of the adequacy of the inflow design flood control systems are presented in the sections below.

The work presented in this report was performed under the direction of Ms. Olivia Covert, of Geosyntec in accordance with Section 845.510(c). Mr. Jesse Varsho, P.E. reviewed this plan in accordance with Geosyntec's senior review policy.

1. Quarry Design

The Quarry is located east of the Site's former coal pile and approximately 1,000 feet south of the Des Plaines River. The Quarry is bounded on the north by Patterson Road and on the east by Brandon Road. The Quarry is considered incised in accordance with 35 IAC Section 845.120 (Geosyntec, 2021) and is bounded on the north, south, and east boundaries by cut slopes. The western portion of the Quarry, referred to as the West Filled Area, has been backfilled to existing adjacent grades and capped. Prior to the conversion of the Joliet 9 Station to natural gas in spring 2016, the Quarry received sluiced CCR from Joliet Units 6, 7, and 8, through a piping system that discharged into the southwest corner (Units 7 and 8) and the northwest corner (Unit 6) of the Quarry. The Quarry stopped receiving CCR in 2019; therefore, rainfall and storm water runoff from the farmland and wooded area to the south are the only sources of discharge to the Quarry. Discharge of water from the Quarry is controlled through two pipes that gravity drain to a quarry

located north of Patterson Road which is then discharged to the Des Plaines River. The invert elevation of these pipes is approximately 527 feet Mean Sea Level (ft MSL), above the ash accumulation level in that area of the Quarry. Gate valves on the outlet pipes are controlled manually by Midwest Generation staff to comply with the Quarry's Bureau of Land Permit No. 1994-241-LFM requirement that local groundwater gradients flow from east to west and from south to north. Discharge from the Quarry is handled in accordance with the surface water requirements in Section 845.110(b)(3) and 35 IAC Subtitle C.

2. Inflow Design Flood Control System Plan Documentation

Table 1 below provides a summary of applicable documentation demonstrating how the system has been designed and constructed to meet the requirements of Section 845.510.

Documentation	Assessment
Identification of the design storm event for the catchment area and CCR unit	Identification of the design storm event is provided in Section 3. A drawing of the Quarry and catchment area is presented in Figure 1 .
Characterization of the rainfall abstractions, including but not limited to depression storage and infiltration in the upstream catchment area and selection of the appropriate run-off model	The selected run-off model, calculations, and upstream catchment area assumptions are provided in Appendix A .
Identification and characterization of and intake or decant structures	Outflow pipes are described in Section 1. Because there is sufficient freeboard in the Quarry to prevent overflow during the design event, as described in Section 6, capacity of outflow pipes is not evaluated.
Appropriate characterization and capacity of spillways	The Quarry does include a spillway.
Characterization of downstream hydraulic structures	Because there is sufficient freeboard in the Quarry to prevent overflow during the design event, as described in Section 6, characterization of downstream structures is not required.

 Table 1: Additional Documentation

3. Design Event

As the Quarry is considered incised in accordance with 35 IAC Section 845.120 (Geosyntec, 2021), the inflow design flood is the 25-year flood in accordance with Section 845.510(a)(3). Flood flows are typically established by performing statistical analysis on historical stream gauge

records. In instances where measured stream flow records are not available, deterministic methods such as a design storm method (ASCE, 1996) is used to establish flood flows. In the design storm method, a rainfall to runoff analysis (e.g., Runoff Curve Number Method) is used to establish the stormwater runoff flows. The underlying assumptions in the design storm method are: 1) rainfall will occur uniformly across the entire contributing watershed; and 2) a specified return period storm event produces the same return period flood flow (e.g., 25-year storm event produces the 25-year flood). Since there are no measured stream flow records at the Quarry, the design storm method was used to estimate the inflows to the Quarry for the 24-hour, 25-year precipitation event.

4. Existing Quarry Water Level

Water accumulates inside the Quarry due to its incised characteristics, and water levels within the Quarry are controlled to meet the Quarry's permitting requirements (see Section 1). Midwest Generation monitors the surface water level within the Quarry daily and controls outflow from the Quarry to influence the localized groundwater gradients. Average daily water level data within the Quarry is shown in **Figure 2** and indicates that the surface water level has been maintained below 548 ft MSL over the last five years. The operating level of the Quarry is assumed to be 548 ft MSL or below. Based on the site topography¹, the water level within the Quarry could rise to approximately 572 ft MSL before discharging from the Quarry.

5. Catchment Area

A description of the area surround ding the Quarry is shown in the following table.

Direction	Land Use
North	Patterson Road, two small quarries, woodland, Des Plaines River.
West	Woodland, heavy industrial site.
South	Grass and farmland, woodland, heavy industrial site.
East	South Brandon Road, low density residential area, inactive quarry,
East	grass and farmland, large active quarry (Southeast)

The catchment area of the Quarry was delineated using topographic maps and images. The catchment area is approximately 89 acres, see Figure 1.

¹ Topography is dated May 2014, generated by Sidwell from Aerial photo taken in 2014.

6. Analysis of Inflow Design Flow and Storage Capacity

The inflow design flow for the 25-year event was calculated based on runoff associated with the 24-hour, 25-year storm event for the upstream catchment area, which was estimated based on regional topography and the Runoff Curve Number Method. Analysis demonstrating the inflow design flow is included in **Appendix A**. The total inflow into the Quarry during the 24-hour 25-year storm event is estimated to be 38.4 acre-feet. Based on 2021 surface water conditions, the surface area of the impounded water within the Quarry is approximately 12.5 acres. The estimated potential water level increase is calculated to be 3.1 ft from the design event. Therefore, the water level in the Quarry after the design event is estimated to be at or below 552 ft MSL (operating level of 548 ft MSL plus 4 ft).

The freeboard after the design event is estimated to be a minimum of 20 ft (572 ft MSL - 552 ft MSL). As the existing freeboard is estimated to be at least 20 feet, sufficient storage capacity exists within Quarry to manage the inflow from the design flood event. The inflow design system, as designed and constructed, meets the requirements of Section 845.510.

7. Limitations and Certification

The inflow design flood control system plan meets the requirements of 35 IAC Section 845.510 and was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.

1 all

Jesse P. Varsho, P.E. Illinois Professional Engineer No. 062.059069 License Expires: November 30, 2021

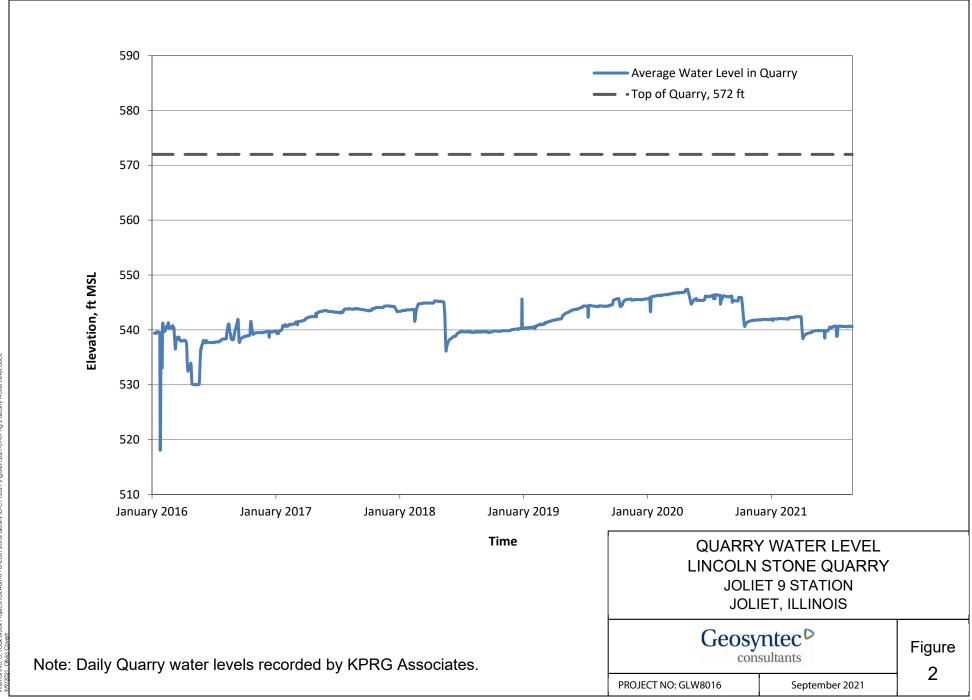
8. References

- ASCE, 1996. American Society of Civil Engineers Task Committee on Hydrology Handbook. Hydrology Handbook. ASCE Publications.
- Geosyntec Consultants, 2021, Lincoln Stone Quarry Site Visit, CCR Rule Compliance Demonstrations, Midwest Generation LLC Power Stations, Illinois, dated 31 August.

Attachments

Figure 1:	Catchment Area
Figure 2:	Quarry Water Level
Appendix A:	Stormwater Run-on Calculations

Figures



Aerial imagery from ArcGIS Online, September 2021.Topography based on May 2014 topography provided by KPRG.

Project No: GLW8016 L \\chicago-01\data\DWG\N\NRG\LSQ\IDFCP\2021 Plan\GIS\MXDs\20210915_Lincoln Stone Quarry.mxd. ASoltero. 9/16/2021. Project/Phase/Task.

1

September 2021

Appendix A

Stormwater Run-on Calculations

Geosyntec consultants

COMPUTATION COVER SHEET

Client:	Midwest Generation	Project:	Joliet 9 Station	Project/ Proposal No.: <u>GLW8016</u> Task No.
Title of Co	omputations		AWATER RUN-ON CALCUI E QUARRY	LATIONS, LINCOLN
Computati	ions by:	Signature	Ofini Cond	20 September 2021
	-	Printed Name	Olivia Covert	Date
	-	Title	Professional	
Assumptic Procedures by:	ons and s Checked	Signature	Reglan	27 September 2021
(peer revie	ewer)	Printed Name	Regan Welch	Date
	-	Title	Project Engineer	
Computati Checked b		Signature	Reglan	27 September 2021
	-	Printed Name	Regan Welch	Date
	-	Title	Project Engineer	
Computati backcheck	ted by:	Signature	Olii Coul	27 September 2021
(originator	r) –	Printed Name	Olivia Covert	Date
	-	Title	Professional	
Approved		Signature	a all	29 September 2021
(pm or des	signate)	Printed Name	Jesse Varsho, P.E.	Date
	-	Title	Principal Engineer	
Approval	notes:			
Revisions	(number and in	iitial all revisions)	

				(•	/ntec ^b sultants
				Page	2	of <u>6</u>
Written by: OC	Date:	20 / 09 / 21 DD MM YY	Reviewed by:	RW	Date:	27 / 09 /2021 DD MM YY
Client: Midwest Generation	Project:	Joliet 9	Project/Prop No.:	GLW8016	Task No.:	1

STORMWATER RUN-ON CALCULATIONS LINCOLN STONE QUARRY JOLIET 9 STATION

INTRODUCTION

Pursuant to 35 Illinois Administration Code (IAC) Section 845.510(c), Geosyntec Consultants, Inc. (Geosyntec) prepared this calculation package to support development of the Inflow Design Flood Control System Plan for the Lincoln Stone Quarry (Quarry) at the Joliet 9 Station (Site) in Joliet, Illinois. 35 IAC Section 845.510(c) requires that operators of every existing or new CCR (Coal Combustion Residuals) surface impoundment design, construct, operate, and maintain an inflow design flood control system that adequately manages flow into the CCR unit during and following the peak discharge of the inflow design flood. This calculation evaluates the inflow design flood and evaluates the capacity of the Quarry to handle inflow from this event.

CALCULATION OF INFLOW DESIGN FLOW

The City of Joliet's "Consolidated Stormwater Management, Soil Erosion and Sediment Control and Floodplain Management Regulations specifies that the Soil Conservation Service (SCS) Runoff Curve Number Method be used to calculate design runoff volumes. The SCS method and its current application are documented in Technical Release 55 (TR-55) published by Natural Resources Conservation Service (NRCS). The SCS runoff equation is:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S}$$

Where:

Q = runoff (in) P = rainfall (in) S = potential maxim

S = potential maximum retention after runoff begins (in) and

 $I_a = initial abstraction (in)$

The initial abstraction (I_a) accounts for all losses prior to the beginning of runoff including water retained in surface depressions, intercepted by vegetation, evaporation, and

					cor	sultants
				Page	3	of <u>6</u>
Written by: OC	Date:	20 / 09 / 21	Reviewed by:	RW	Date:	27 / 09 /2021
Client: Midwest Generation	Project:	DD MM YY Joliet 9	Project/Prop No.:	GLW8016	Task No.:	DD MM YY 1

Geosyntec[>]

infiltration. I_a is typically correlated with soil cover parameters and is approximated by the equation:

$$I_a = 0.2S$$

S is a function of the soil type and cover and is related to the runoff curve number (CN) by the equation:

$$S = \frac{1000}{CN} - 10$$

Where:

CN = Runoff Curve Number

CN is determined by the Hydrologic Soils Group (HSG) and cover type, treatment, hydrologic condition, and antecedent moisture condition. In cases where multiple land uses occur in the same drainage area, a composite CN is determined by the area weighted method.

After calculating runoff (Q) for a design storm event, the total volume of runoff is then calculated by multiplying the runoff by the drainage area (A).

DRAINAGE AREA (A)

The area of the drainage basin of the Quarry was delineated using topographic maps¹ and aerial images². The catchment area has an estimated area of 89.2 acres (refer to Figure 1), and was subdivided into four areas based on land use (cover) and soil type (HSG) for determination of CN. The catchment area outside of the Quarry footprint is located to the south.

RUNOFF CURVE NUMBER (CN)

The value of the runoff curve number (CN) has been extensively studied in the literature. Its value depends on the land use and type of soil (HSG). In general, the value of CN is

¹ Topography is dated May 2014, generated by Sidwell from Aerial photo taken in 2014.

² ESRI ArcGIS online images accessed in September 2021. Imagery credit: ESRI

				,	•	sultants
				Page	4	of <u>6</u>
Written by: OC	Date:	20 / 09 / 21 DD MM YY	Reviewed by:	RW	Date:	27 / 09 /2021 DD MM YY
Client: Midwest Generation	Project:	Joliet 9	Project/Prop No.:	GLW8016	Task No.:	1

Coogentoop

higher for developed, impervious surfaces, and Type D soils. Correspondingly, CN has lower values for undeveloped pervious surfaces, and Type A soils.

Land use in the drainage basin within the Quarry is mostly rock or standing water. Land use in the drainage basin outside of the Quarry is mostly pasture, grass and farmland. Industrial sites to the south and east of the Quarry are located outside the drainage basin.

HSG for use in CN selection was determined by importing the watershed boundary into the Natural Resources Conservation Service Web Soil Survey (Attachment A). Approximately 0.5% of the site consists of vegetated Type B soils, 45.2% of the site consists of vegetated Type C soils, 11.4% vegetated Type D soils, 42.9% water. Based on the HSG and land use analysis a composite CN of 88.5 was determined for the drainage area. The following table summarized the analysis of the runoff curve number.

Description	Area (acres)	HSG	Cover Type	CN	Weighted
Pond	38.3	W	Water	100	42.9
Vegetated	0.4	В	Open Space-Fair	69	0.3
Vegetated	40.3	С	Open Space-Fair	79	35.7
Vegetated	10.2	D	Open Space-Fair	84	9.6
Total	89.2 acres		Cor	nposite	88.5

RAINFALL DEPTH (P)

In accordance with 35 IAC Section 845.510(a)(3)(C), the inflow design flood for an incised CCR surface impoundment, such as the Quarry, is the 25-year flood.

The City of Joliet requires the use of the Illinois State Water Survey Bulletin 70, Northeast Sectional rainfall statistics. Will County requires the use of the Illinois State Water Survey Updated Bulletin 70, Northeast Sectional Code (Angel and Marcus, 2019) in runoff volume calculations. The 1989 Bulletin 70 has a 25-year, 24-hour rainfall depth of 6.04 inches and the Updated Bulletin 70 has a higher 25-year, 24-hour rainfall depth (6.45 inches). Therefore, the Updated Bulletin 70 publication value was used in the calculations for the Quarry.

INFLOW DESIGN FLOW

The following table summarizes the inflow design flow calculations.

				(•	/ntec [▷]
				Page	5	of <u>6</u>
Written by: OC	Date:	20 / 09 / 21 DD MM YY	Reviewed by:	RW	Date:	27 / 09 /2021 DD MM YY
Client: Midwest Generation	Project:	Joliet 9	Project/Prop No.:	GLW8016	Task No.:	1

Parameter	25-Year, 24-Hour Precipitation Event
CN	88.5
S	1.3
Р	6.5
Ia	0.3
Q (in)	5.2
Area (Ac)	89.2
Volume (ac-ft)	38.4

The potential increase in Quarry water surface elevation was estimated by dividing the total inflow (38.4 acre-ft for the design event) by the Quarry wet area (estimated to be 12.5 acres based on 2021 aerial images). The increase in water depth in the Quarry for the design event is approximately 3.1 ft.

WATER LEVEL AND FREEBOARD

Water accumulates inside the Quarry due to its incised characteristics, and water levels within the Quarry are controlled to meet the Quarry's Bureau of Land Permit No. 1994-241-LFM requirement that local groundwater gradients flow from east to west and from south to north. Midwest Generation monitors the surface water level within the Quarry daily and implements engineering controls to influence the localized groundwater gradients. Average daily water level data within the Quarry indicates that the surface water level has been maintained below 548 feet mean seal level (ft MSL) over the last five years (Figure 2). The water surface elevation for the design event, assuming the water level is at 548 ft prior to the start of the design event, is 552 ft.

Based on the site topography³, the water level within the Quarry could rise to approximately 572 ft MSL before discharging. The freeboard after the design event is estimated to be at least 20 ft (572 ft MSL – 552 ft MSL). As the existing freeboard is estimated to be 20 feet (minimum), sufficient storage capacity exists within Quarry to manage the design flood event without discharge.

³ Topography is dated May 2014, generated by Sidwell from Aerial photo taken in 2014.

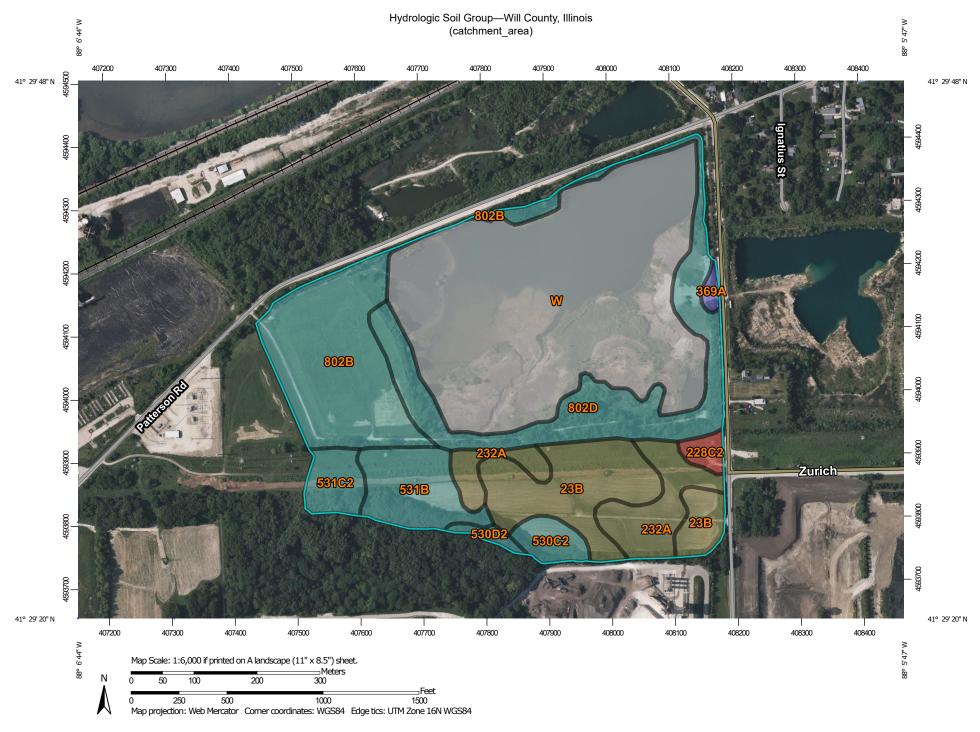
					cor	isultants
				Page	6	of <u>6</u>
Written by: OC	Date:	20 / 09 / 21	Reviewed by:	RW	Date:	27 / 09 /2021
		DD MM YY	- ,		Dute.	DD MM YY

Ceosyntec

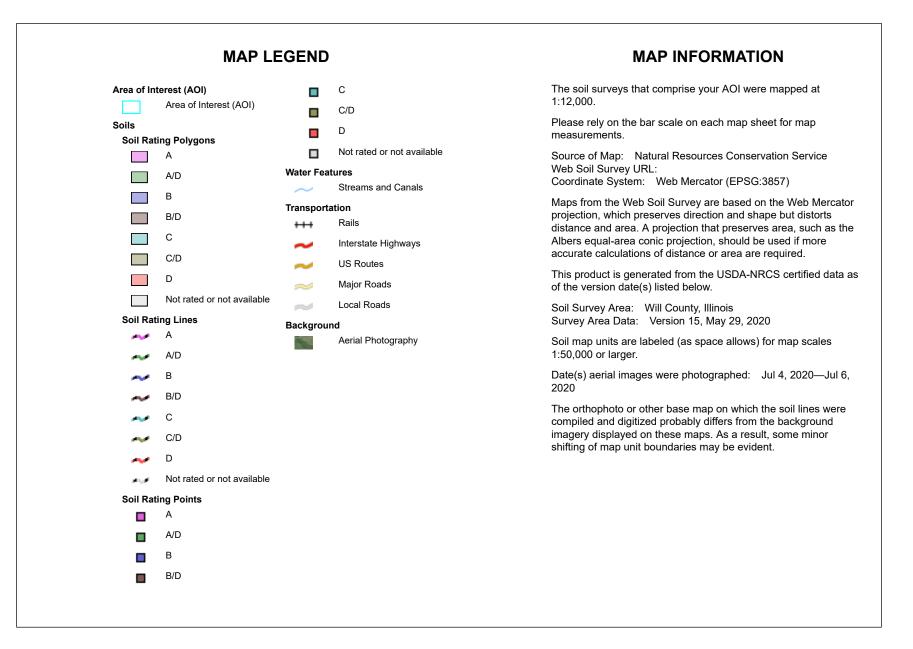
1. REFERENCES

- City of Joliet, 2003, Consolidated Storm Water Management, Soil Erosion and Sediment Control and Floodplain Management Regulations.
- Angel, James, and Markus, Momcilo, March 2019. Frequency Distributions of Heavy Precipitation in Illinois: Updated Bulletin 70 (Updated Bulletin 70, Illinois State Water Survey).
- Technical Release 55 (TR-55), Natural Resources Conservation Service, USDA, 2016, Soil Map, Will County, Illinois, Web Soil Survey, National Cooperative Soil Survey. USDA Natural Resources Conservation Service.

Water Resource Ordinance for Unincorporated Will County.


ATTACHMENTS

- Attachment A: Soil Map from USDA Natural Resources Conservation Service
- Attachment B: Illinois State Water Survey Updated Bulletin 70



Attachment A

Soil Map from USDA – Natural Resources Conservation Service

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
23B	Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	C/D	9.4	10.5%
228C2	Nappanee silty clay loam, 4 to 6 percent slopes, eroded	D	0.8	0.9%
232A	Ashkum silty clay loam, 0 to 2 percent slopes	C/D	6.0	6.7%
369A	Waupecan silt loam, 0 to 2 percent slopes	В	0.4	0.5%
530C2	Ozaukee silt loam, 4 to 6 percent slopes, eroded	С	1.7	1.9%
530D2	Ozaukee silt loam, 6 to 12 percent slopes, eroded	С	0.6	0.6%
531B	Markham silt loam, 2 to 4 percent slopes	С	4.9	5.5%
531C2	Markham silt loam, 4 to 6 percent slopes, eroded	С	2.2	2.5%
802B	Orthents, loamy, undulating	С	12.6	14.2%
802D	Orthents, loamy, rolling	С	12.3	13.8%
W	Water		38.3	42.9%
Totals for Area of Inter	rest		89.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Attachment B Illinois State Water Survey Updated Bulletin 70

Frequency Distributions of Heavy Precipitation in Illinois: Updated Bulletin 70

James Angel and Momcilo Markus

March 2019

ILLINOIS Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

Results

Frequency Estimates

To determine the precipitation frequency, the previously described regional frequency analysis was applied to the AMS data. The results were then converted to the PDS domain based on the relationship defined in Eq. 1 and adjusted for the trend (Eq. 3). These results, however, still had occasional minor inconsistencies caused by several factors, such as variable data length for different durations, which resulted in irregular frequency curves. To produce the final curves, these irregularities had to be smoothed out, which was done based on the authors' professional judgment and knowledge of specific regions and gages.

The results for all sections are shown in the following tables. Table 4 displays the key for the codes used in Table 5, where the results are presented numerically. The results are shown graphically in Figures 8–12.

Storm Code		Sectional Code		
1	240 hours	1	Northwest	
2	120 hours	2	Northeast	
3	72 hours	3	West	
4	48 hours	4	Central	
5	24 hours	5	East	
6	18 hours	6	West Southwest	
7	12 hours	7	East Southeast	
8	6 hours	8	Southwest	
9	3 hours	9	Southeast	
10	2 hours	10	South	
11	1 hour			

Table 4 Storm and Sectional Codes for Table 5

Rainfall (inches) for given recurrence interval								
Storm	Section	2-year	5-year	10-year	25-year	50-year	100-	500-
code	code						year	year
4	1	3.61	4.59	5.43	6.72	7.73	8.83	11.53
4	2	3.66	4.71	5.62	6.99	8.13	9.28	12.10
4	3	3.76	4.76	5.62	6.81	7.72	8.60	10.58
4	4	3.59	4.61	5.47	6.65	7.55	8.40	10.21
4	5	3.54	4.49	5.32	6.48	7.38	8.27	10.26
4	6	3.66	4.61	5.38	6.48	7.33	8.11	9.93
4	7	3.92	4.85	5.61	6.67	7.46	8.21	9.76
4	8	4.28	5.29	6.10	7.25	8.15	9.08	11.40
4	9	4.64	5.54	6.27	7.24	7.94	8.58	10.06
4	10	4.06	5.02	5.86	7.04	8.01	9.02	11.56
5	1	3.34	4.22	5.03	6.20	7.20	8.25	10.84
5	2	3.34	4.30	5.15	6.45	7.50	8.57	11.24
5	3	3.48	4.45	5.24	6.38	7.25	8.06	9.91
5	4	3.32	4.30	5.10	6.20	7.05	7.85	9.53
5	5	3.12	3.97	4.71	5.78	6.62	7.43	9.32
5	6	3.23	4.07	4.76	5.79	6.56	7.31	9.04
5	7	3.49	4.33	5.00	5.98	6.71	7.40	8.84
5	8	3.69	4.56	5.27	6.30	7.14	7.96	10.06
5	9	4.07	4.89	5.55	6.42	7.06	7.68	8.99
5	10	3.63	4.52	5.28	6.38	7.29	8.23	10.57
6	1	3.14	3.97	4.73	5.83	6.77	7.75	10.19
6	2	3.14	4.04	4.84	6.06	7.05	8.06	10.57
6	3	3.27	4.18	4.93	6.00	6.82	7.58	9.32
6	4	3.12	4.04	4.79	5.83	6.63	7.38	8.96
6	5	2.93	3.73	4.43	5.43	6.22	6.98	8.76
6	6	3.04	3.83	4.47	5.44	6.17	6.87	8.50
6	7	3.28	4.07	4.70	5.62	6.31	6.96	8.31
6	8	3.47	4.29	4.95	5.92	6.71	7.48	9.45
6	9	3.83	4.60	5.22	6.03	6.64	7.22	8.45
6	10	3.41	4.25	4.96	6.00	6.85	7.73	9.93

Rainfall (inches) for given recurrence interval

Storm Code	Section Code	Recurrence interval						
		2-year	5-year	10-year	25-year	50-year	100-year	500-year
5	1	3.34	4.22	5.03	6.20	7.20	8.25	10.84
		(3.00 -	(3.79 -	(4.50 -	(5.51 -	(6.34 -	(7.20 -	(9.16 -
		3.69)	4.68)	5.61)	6.99)	8.21)	9.54)	13.00)
5	2	3.34	4.30	5.15	6.45	7.50	8.57	11.24
		(3.00 -	(3.85 -	(4.60 -	(5.71 -	(6.59 -	(7.46 -	(9.48 -
		3.69)	4.77)	5.73)	7.26)	8.55)	9.93)	13.63)
5	3	3.48	4.45	5.24	6.38	7.25	8.06	9.91
		(3.19 -	(4.07 -	(4.79 -	(5.81 -	(6.56 -	(7.23 -	(8.61 -
		3.79)	4.86)	5.74)	7.05)	8.09)	9.07)	11.47)
5	4	3.32	4.30	5.10	6.20	7.05	7.85	9.53
		(3.01 -	(3.89 -	(4.61 -	(5.58 -	(6.31 -	(6.99 -	(8.31 -
		3.65)	4.74)	5.64)	6.91)	7.93)	8.92)	11.16)
5	5	3.12	3.97	4.71	5.78	6.62	7.43	9.32
		(2.86 -	(3.64 -	(4.30 -	(5.25 -	(5.97 -	(6.63 -	(8.08 -
		3.38)	4.31)	5.15)	6.38)	7.39)	8.41)	10.96)
5	6	3.23	4.07	4.76	5.79	6.56	7.31	9.04
		(2.95 -	(3.71 -	(4.32 -	(5.21 -	(5.85 -	(6.45 -	(7.73 -
		3.54)	4.47)	5.26)	6.45)	7.37)	8.30)	10.59)
5	7	3.49	4.33	5.00	5.98	6.71	7.40	8.84
		(3.18 -	(3.93 -	(4.53 -	(5.39 -	(6.00 -	(6.54 -	(7.58 -
		3.80)	4.74)	5.50)	6.64)	7.54)	8.42)	10.44)
5	8	3.69	4.56	5.27	6.3	7.14	7.96	10.06
		(3.36 -	(4.15 -	(4.78 -	(5.67 -	(6.37 -	(7.03 -	(8.60 -
		4.04)	5.01)	5.82)	7.03)	8.03)	9.05)	11.78)
5	9	4.07	4.89	5.55	6.42	7.06	7.68	8.99
		(3.71 -	(4.45 -	(5.03 -	(5.79 -	(6.32 -	(6.80 -	(7.73 -
		4.44)	5.35)	6.10)	7.12)	7.91)	8.70)	10.51)
5	10	3.63	4.52	5.28	6.38	7.29	8.23	10.57
		(3.29 -	(4.08 -	(4.73 -	(5.66 -	(6.36 -	(7.07 -	(8.67 -
		4.00)	5.01)	5.88)	7.21)	8.36)	9.59)	13.03)

Table 6 Precipitation Frequency Estimates (in inches) with 90% Confidence Intervals (continued)

<u>ATTACHMENT 19</u> SAFETY AND HEALTH PLAN

1.0 **SAFETY REQUIREMENTS**

1.1 The entire performance of the Work shall comply with the standards authorized by the latest issue of the U.S. Department of Labor Occupational Safety and Health Act (OSHA), as well as state and local jurisdictional requirements.

1.2 CONTRACTORS SAFETY MANUAL

- A. The Contractor shall have on file with the Midwest Generation corporate safety office a copy of the most current Safety and Industrial Hygiene Manual. As a minimum, this Manual must address the following items when applicable to their trade: OSHA Compliance, Accident Investigation, Corrective Action, First Aid Treatment, Inspections and Reporting of Deficiencies, Material Handling and Rigging, Performance and Accountability, Personal Safety Equipment, Safety Guidelines, Safety Meetings, Training, Housekeeping, Hearing Protection, Respiratory Protection, Fire Prevention, Grounding Program, Confined Space Entry, Hazard Communication, Fall Protection, Working on or near water and Trenching and Shoring.
- B. The Contractor's superintendent or other responsible person must have a copy of the Contractor's most current Safety and Industrial Hygiene Manual available at the job site.

1.3 PRE-MOBILIZATION MEETING

- A. The Contractor shall meet with the Purchasers Representative(s) for a premobilization meeting. The pre-mobilization meeting will include a review of safety requirements, job hazard identification, a job specific safety plan (to be developed by the Contractor and provided to Midwest Generation), submittal requirements for health & safety records, scope and schedule. Hazard identification and assessment will include all chemical constituents found present in the analyses of the CCR and/or other waste streams within the impoundment(s). Recommendations within the NIOSH Pocket Guide to Chemical Hazards will be reviewed and considered. Applicable safety data sheets will be provided, as necessary.
- B. Prior to the start of the work at the job site. Contractor shall contact Purchaser's Representative to arrange to receive Purchasers site safety orientation. This session will last approximately 2 hours. The Contractor will be provided with information on the potential hazardous constituents of the CCR
- C. Contractor shall provide his employees with orientation in all Contractor, and job specific safety requirements related to their work area. Contractor shall provide Purchaser with completed training documents showing date of training and each employees craft related training as it relates to OSHA requirements. (i.e. competent person, scaffold builder, fork truck and crane operators)

- D. The Contractor Shall provide proof of training for all on site personnel in the following:
 - HAZWOPER 29CFR1910.120/29CFR1926.65
 - OSHA 10 Hour or 30 Hour Voluntary Compliance Training for Construction
 - Hazard Communication 29 CFR 1910.1200
 - Contractor's Safety Plan
- E. A Competent Person shall be identified by name for Excavations, Fall Protection ,etc. if applicable.
- 1.4 FITNESS FOR DUTY
 - A. The Contractor/Sub-Contractor/Supplier is required to have a drug and alcohol screening program for all employees assigned to work on Purchaser's property. The program must provide screening for pre-access testing, "for cause" testing and random testing. The Contractor/Sub-Contractor/Supplier shall certify that their employees have passed the appropriate screening test in accordance with their programs.
 - B. Personnel covered by this program shall be denied access to, or may be required to leave the Purchaser's location if there are reasonable grounds to believe that the individual is:
 - 1. Under the influence of using, possessing, buying, selling, or otherwise exchanging (whether or not for profit) controlled substances or drug paraphernalia.
 - 2. Under the influence of consuming, possessing, buying, selling, or otherwise exchanging (whether or not for profit) alcoholic beverages.

1.5 PERSONNEL PROTECTIVE EQUIPMENT (PPE)

- A. Prior to starting work, the contractor shall perform a Hazard assessment for PPE
 - 1. The Contractor will conduct a walk-through survey of each work area to identify sources of work hazards. Each survey will be documented in which it will identify the work area surveyed, the relevant task, the person conducting the survey, findings of potential hazards, control measures, and date of the survey.
 - 2. The Contractor will conduct, review, and update the hazard assessment for PPE whenever:
 - A job changes
 - New equipment or process is installed
 - There has been an accident
 - Whenever a supervisor or employee requests it
 - o Or at least every year
 - Any new PPE requirements that are developed will be added into the Contractors written safety program.

- B. Head Protection/ Hard Hats: Hard hats shall be worn in all work areas.
 - 1. Hard hats must not be more than 5 years old, and the harness shall not be more than 1 year old.
 - 2. Hard hats must be worn with brim forward
 - 3. Hard hats must be assigned and used in accordance with ANSI/ISEA Z89.1-2014(R2019)
 - 4. Hard Hats must be cleaned and maintained in accordance with the manufacturer's instruction.
- C. Eye Protection: Eye protection shall be worn in all work areas.
 - 1. At a minimum, ANSI Z87-1-2020 compliant Safety Glasses shall be worn.
 - 2. Goggles and face shields shall be used for splash hazards.
 - 3. Fogging potential shall be considered for humid conditions and appropriate anti-fog materials may be used.
 - 4. Detachable side protectors (e.g. clip-on or slide on side shields) that meet OSHA Rule 29 CFR Part 1910.133 and ANSI Z87.1 specifications are also acceptable to wear with prescription glasses. Prescription glasses used with detachable side shields must conform to ANSI Z87.1
 - 5. Employees must keep eyewear in clean condition and fit for use at all times.
 - D. Protection Foot Wear
 - 1. All foot wear must be compliant with ASTM F2413-18: Performance Requirements For Protective (Safety) Toe Cap Footwear
 - 2. For work on or near the CCR impoundments, consideration shall be given to traction and slip issues.
 - 3. Safety shoes must be maintained and cleaned in accordance with the manufacturer's guidelines.
 - 4. Boot covers or Rubber boots shall be used in all areas that do or may contain CCR. These covers or boots must be cleaned or disposed of prior to leaving the work area.
 - E. Hand Protection
 - 1. Employers shall base the selection of the appropriate hand protection on an evaluation of the performance characteristics of the hand protection relative to the task(s) to be performed, conditions present, duration of use, and the hazards and potential hazards identified.
 - 2. Impervious disposable gloves shall be used when working with CCR. Leather, Cotton or other readily absorbable gloves shall not be used.
 - F. Personal Flotation Devices
 - 1. When working with 10 feet of the water in the impoundments the following shall apply:
 - a. All personnel shall wear a Coast Guard Approved PFD
 - Type I: Off-Shore Life Jacket; effective for all waters or where rescue may be delayed.
 - Type II: Near-Shore Buoyant Vest; intended for calm, inland water or where there is a good chance of quick rescue.

- Type III: Flotation aid; good for calm, inland water, or where there is a good chance of rescue.
- Type IV: PFD's are throwable devices. They are used to aid persons who have fallen into the water.
- Type V: Flotation aids such as boardsailing vests, deck suits, work vests, and inflatable PFD's marked for commercial use.
- 2. Serviceable condition: A PFD is considered to be in serviceable condition only if the following conditions are met.
 - a. No PFD may exhibit deterioration that could diminish the performance of the PFD, including:

1. Metal or plastic hardware used to secure the PFD on the wearer that is broken, deformed, or weakened by corrosion;

2. Webbings or straps used to secure the PFD on the wearer that are ripped, torn, or which have become separated from an attachment point on the PFD; or

3. Any other rotted or deteriorated structural component that fails when tugged;

4. Rips, tears, or open seams in fabric or coatings, that are large enough to allow the loss of buoyant material;

5. Buoyant material that has become hardened, non-resilient, permanently compressed, waterlogged, oil-soaked, or which shows evidence of fungus or mildew; or

6. Loss of buoyant material or buoyant material that is not securely held in position.

1.6 EXISTING PLANT FACILITIES

- A. Contractor shall be aware that Work may be performed in and around operating equipment.
- B. The Contractor shall give proper notices, make all necessary arrangements, and perform all other services required to avoid damage to all utilities, including gas mains, water pipes, sewer pipes, electric cables, fire hydrants, lamp posts, etc., for which Purchaser could be held liable.
- C. The Contractor shall barricade or cover any opening created during the course of work for excavations, or grating removal. Barricades shall be a "hard" barrier such as cable or pipe and clamp, safety barrier tape is unacceptable. In addition, any openings creating a fall hazard of 4 feet or more must have a permit authorized before the barrier can be removed. See section 11.4 below for permit requirements.
- D. Housekeeping, walkways and tripping hazards

All equipment and material must be kept in an orderly manner. Aisles exits stairways and emergency equipment must never be obstructed. Hoses and welding cables must be tied above walkways so as to not pose as a trip hazard. Barricades, signs and notifications provided by the contractor when required. The owner and contractor will conduct periodic housekeeping audits to assure compliance.

- E. Contractor's personnel shall observe all safety, warning, equipment identification instructional signs and tags. Do not remove any tag without prior consent of Purchaser's Representative.
- F. When work has been completed, and Contractor decides equipment is ready to be returned to service, Contractor employees shall have all of their employees (working party members) sign off the permit. Contractor shall notify Purchaser's Representative in whose name the outage is being held.

1.7 WELDING, CUTTING and BURNING PERMITS

- A. Contractor shall not start welding or cutting operations without a "Welding and Cutting Permit". Permits shall be obtained from Purchaser and posted in accordance with Station site-specific Safety Training requirements.
- B. Contractor shall use non-asbestos, fire retardant blankets as required to protect Purchaser's equipment, cable trays, coal transport and storage areas, etc. and to cover gratings (for personnel safety) when welding, grinding and flame cutting processes are used overhead or in such close proximity as to pose a hazard.
- C. Contractor shall supply appropriate portable fire extinguishers in welding and cutting areas.
- D. Contractor shall furnish a designated "Fire-watch" employee to monitor the area above to the sides and below the cutting and burning area. The fire-watch is to extinguish fires started by sparks from the acts of cutting or welding. The fire-watch employee is to continue monitoring on the job 30 minutes after cutting or burning has been completed.

1.8 SAFETY DATA SHEETS

- A. The Purchaser shall make Safety Data Sheets (SDS's) readily available to the Contractor for those substances to which the Contractor's employees may be exposed during normal working conditions and which are under the Purchaser's control.
- B. The Contractor shall make Safety Data Sheets (SDS's) readily available to the Purchaser for those substances which are furnished by and under the control of the Contractor. These are to be available at the time of delivery of the substance to the Purchaser's Premises.
- C. It is the responsibility of the Contractor to train their employees on SDS's.

1.9 CHEMICALS, SOLVENTS AND GASES

A. Contractor shall comply with all federal, state and local regulations and codes pertaining to handling and storage of flammable liquids and gases.

- B. Cleaning agents, solvents, or other substances brought by Contractor onto any of Purchaser's properties by Contractor shall be stored, handled and used in accordance with applicable standards.
- C. Contractor shall ensure that liquids or solids will not be poured (disposed of) into Purchaser's drain, sewer systems, lake (where applicable), or onto ground. Contractor shall be liable for any damage and cleanup of improperly disposed liquids or solids.
- D. The Contractor is to provide the Purchaser with the name and quantity of usage of any listed Section 313 Toxic Chemical of the Emergency Planning and Community Right-to-Know Act of 1986 (40CFR372).
- E. Signage must be posted detailing the presence of and hazards of CCR.
- 1.10 DISTURBANCE OF DUST

Contractor's work practices shall minimize dust generated while working with CCR. A fugitive dust mitigation plan shall be submitted to the facility prior to activities beginning.

1.11 FALL PROTECTION

Mandatory fall protection is required when working near an area where a fall hazard of **4** feet or more exits. Mandatory fall protection is required when working within 6 feet of the edge of the quarry.

1.12 BARRIERS AND WARNING SYSTEMS

- A. Warning and barricade systems shall be used to divert personnel from a work area. All warning barriers shall be tagged with yellow "Caution Cards". The caution card shall state the hazard, the date erected and a contact name, company and phone number. There are 2 levels of barricade systems. The barricade systems shall be taken down immediately when the hazard has been removed or at the end of the work shift.
- B. A <u>conditional warning</u> is designated with 'Yellow" safety warning tape. This is used to warn workers of a hazard such as wet floors, welding and cutting in an area, or other hazards that with an awareness and proper PPE can be approached.
- C. An <u>Unconditional warning</u> is designated with "Red" safety warning tape. This is used to worn workers of a hazard such as a crane lift or overhead work. Red safety tape barriers cannot be access or removed until permission is granted from the person responsible for installing it.
- D. Fire and Evacuation warning sirens. Each plant has a siren for fire notification and evacuation notification. The response location and procedure will be addressed in the pre-mobilization meeting and plant site-specific orientation.
- 1.13 For Contractor's and subcontractor's employees, visitors and any other individuals: Smoking is prohibited on the work site.

- 1.14 The Contractor is expected to pre-arrange medical emergency services for on-site and off-site treatment. This includes, but is not limited to, first aid and confined space rescue.
- 1.15 WORKING ON OR NEAR WATER:
 - A. Life jackets and work vests shall be inspected before and after each use.
 - B. Ring buoys or Class IV rescue device with at least 90 feet of line shall be provided and readily available for employee rescue operations.
 - C. The distance from ring buoys to each worker shall not exceed 200 feet.
 - D. At least one lifesaving skiff shall be immediately available at locations where employees are working over water and/or the local coast guard shall be notified when working in navigable waterways.
 - E. Under no circumstances will team members enter water bodies without protective clothing (e.g.; waders, wet suit)
 - F. At least one person should remain on shore as a lookout if other methods of rescue are not available.

1.16 EXCAVATIONS

- A. A Competent person shall determine the proper slope or identify engineering controls for all excavations in the CCR area.
- B. An inspection of the banks shall be made and documented at least daily to determine any impact of the excavation.

2.0 CONTRACTOR'S FACILITIES

- 2.1 Temporary chemical toilet accommodations shall be furnished and maintained by Contractor for the use of his employees. Location shall be as directed by Purchaser's Representative. Use of Purchaser's toilet facilities by Contractor's employees is not permitted.
- 2.2 Contractor shall provide his own storage vessels, coolers, ice, water containers, etc., as required for his own drinking water use. Contractor shall supply a trash can with each drinking water container to receive used paper cups. Contractor shall maintain drinking water container, supply suitable water cups and dispose of trash as required. Open drinking cups and containers in the plant areas are not permitted.
- 2.3 Each Contractor is expected to pre-arrange medical emergency services for onsite and off site treatment. This includes, but is not limited to, first aid and confined space rescue.

2.4 FIRE PROTECTION FACILITIES

- A. Contractor shall provide his own temporary fire protection facilities for the equipment and materials furnished by him or by Purchaser and for his temporary construction buildings and structures. This equipment shall be maintained and inspected in accordance with applicable NFPA codes.
- B. Furnish a suitable quantity and type of portable fire extinguishers and equipment, to meet OSHA and applicable codes.
- 2.5 Purchaser will not furnish any additional illumination of aisles, passages in the buildings, floodlighting of outdoor areas or lighting inside equipment other than that which is existing. Any additional lighting required by the Contractor shall be provided by the Contractor.
- 2.6 Contractor shall provide and maintain suitably located distribution centers with fused switching equipment and Ground Fault Interruption protection. The equipment supplied shall comply with OSHA regulations and standards.
- 2.7 Contractor shall supply all adapters and equipment required to connect to station air, water, and electrical systems. All air hoses shall be safety clipped together.
- 2.8 Any heating facilities required for the performance of the Work shall be furnished, maintained, and removed by Contractor. Open fires WILL NOT BE PERMITTED at any time. Heating equipment shall be as approved by Purchaser's Representative.

3.0 CONTRACTOR'S TOOLS AND EQUIPMENT

- 3.1 TOOLS AND EQUIPMENT
 - A. Contractor shall maintain, inspect and store tools and equipment for safe and proper use. This includes guards, shields, safety switches and electrical cords.
 - B. Contractor shall provide hoisting equipment as required to perform the Work. Provide all the necessary guards, signals, and safety devices required for its safe operation. Construction and operation of hoisting equipment shall comply with all applicable requirements of ANSI A10.5, the AGC Manual of Accident Prevention in Construction, and to all applicable federal, state, and local codes. Hoisting equipment shall not be used to transport personnel.

3.2 RIGGING

A. Contractor shall design, furnish, and maintain rigging required for the Work. All rigging plans must be designed by an Illinois licensed structural engineer.

- B. Purchaser reserves the right to examine Contractor's design calculations, engineering data, plans, and procedures. Contractor shall submit any documentation requested by the Purchaser for the purpose of this review, including, but not limited to, calculations, diagrams and documents associated with computer-aided analyses and programs. If requested information is considered proprietary by Contractor, Contractor shall allow the Purchaser to review the information at Contractor's offices with the understanding that no copies of proprietary information will be given to the Purchaser. Purchaser's review and approval of submitted information is for general detail only and will not relieve the Contractor of responsibility for meeting all requirements and for accuracy.
- C. Lifting and rigging areas shall have the target area and corresponding personnel access landings barricaded with "red" safety tape or hard barriers. No one is allowed under the load or in the target area during lifts.
- D. All cranes, hoists, or derricks shall be operated in compliance with existing State and Federal regulations or orders. Cranes and hoists shall be inspected in accordance with OSHA and ANSI requirements. Cranes and hoists shall not be operated near high voltage lines or equipment until a safe operating clearance plan has been established.

ATTACHMENT 20 CLOSURE PRIORITY CATEGORIZATION

Attachment 20 - No Attachment