
2023 Annual Groundwater Monitoring and Corrective Action Report

Limestone Electric Generating Station, Jewett, Texas

CCR RN 115 Landfill Unit (Unit 004)

January 31, 2024

Prepared For NRG Texas Power, LLC Jewett, Texas

Tony Dunk

Tony Dworaczyk, PG Senior Project Manager Gregory E. Tieman Senior Client Service Manager

TRC Environmental Corporation | NRG Texas Power, LLC 2023 Annual Groundwater Monitoring and Corrective Action Report

Table of Contents

Executive	Summary	iii
Section 1 I	ntroduction	1-1
1.1	CCR Program Summary	1-1
1.2	Corrective Measures and Corrective Action	1-2
1.3	Station Overview	1-2
Section 2 (Groundwater Monitoring System and Hydrogeology	2-1
2.1	Groundwater Monitoring Systems	2-1
2.2	Semi-annual Detection Monitoring Sampling	2-1
2.3	Laboratory Data Quality Review	
2.4	Groundwater Flow Direction, Gradient, and Rate	2-3
2.5	Monitoring Wells Installed or Decommissioned	2-3
Section 3 S	Status of Groundwater Monitoring and Corrective Action Program	3-1
3.1	Semi-annual Detection Monitoring Summary	3-1
3.2	Key Actions Completed	3-1
3.3	Problems Encountered and Resolution	3-2
Section 4 S	Statistical Analysis and Results	4-1
4.1	April 2023 Semi-annual Detection Monitoring Event	4-1
4.2	October 2023 Semi-annual Detection Monitoring Event	4-2
Section 5 A	Alternative Source Demonstrations	5-1
5.1	Summary of ASDs	5-2
5.2	Detection Monitoring During 2023	
5.3	Transition Between Monitoring Programs	
Section 6 I	Projected Key Activities and Timelines for 2024	6-1
Section 7 (Conclusions and Recommendations	7-1
Section 8 I	References	8-1

Figures

Figure 1-1 Site Location Map Figure 1-2 Landfill CCR Unit Location Map Figure 2-1 Groundwater Monitoring Network –Landfill Figure 2-2 Potentiometric Surface, April 2023 Figure 2-3 Potentiometric Surface, October 2023

Tables

Table 2-1 Summary of Groundwater Elevation Data Table 2-2 Summary of Groundwater Monitoring Data – Appendix III Table 4-1 Potential SSI-April 2023, Detection Monitoring, Landfill Table 4-2 Potential SSI-October 2023, Detection Monitoring, Landfill

Appendices

Appendix A Detection Monitoring Data (April 2023) Appendix B Detection Monitoring Data (October 2023) Appendix C Laboratory Data Quality Review Appendix D Alternative Source Demonstrations Pursuant to 30 Texas Administrative Code (30 TAC) Chapter 352, Coal Combustion Residuals Waste Management and Registration Program for Coal Combustion Residuals (CCR), the owner or operator of an existing CCR unit must prepare an annual groundwater monitoring and corrective action report (Annual Report) no later than January 31, 2024, addressing the preceding calendar year. The information to be provided in the Annual Report is described in Subsection 1.2 of the Texas Commission on Environmental Quality (TCEQ) Draft Technical Guidance No. 32, Coal Combustion Residuals Groundwater Monitoring and Corrective Action. In addition, at the request of TCEQ, this Annual Report provides the field and laboratory analytical results for three years of monitoring: 2021, 2022, and 2023.

TRC Environmental Corporation (TRC) has prepared the 2023 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) for the Landfill (Unit 004) CCR unit located at the Limestone Electric Generating Station (Station) on behalf of NRG Texas Power, LLC (NRG). The Landfill (Unit 004) was the only CCR unit in operation at the Station during 2023. This Annual Report also provides the following information:

- The groundwater monitoring systems for the Landfill CCR unit operated under detection monitoring at the start and end of 2023; and
- Potential statistically significant increases (SSIs) of Appendix III CCR constituents identified above background in groundwater and provides the alternative source demonstrations (ASDs) addressing the potential SSIs that were successfully completed during 2023.

In conclusion, this Annual Report contains the information required pursuant to 30 TAC §352.901 and 30 TAC §352.902 of the TCEQ CCR Permit Program and TCEQ Draft Technical Guidance No. 32. In addition, at the request of TCEQ, this Annual Report provides the field and laboratory analytical results for three years of monitoring: 2021, 2022, and 2023. This information is provided in this Annual Report. No other information is required to be included in the Annual Report as specified in 30 TAC §352.971 and §352.981 of the TCEQ CCR Permit Program.

Based on the key activities performed during 2023, it is recommended that the Landfill (Unit 004) remain in detection monitoring subject to the following key activities and that the following project timeline be implemented during 2024:

The 2023 Annual Report will be prepared and placed into the Facility Operating Record (FOR) by January 31, 2024, submitted to the TCEQ within 30 days of placement in the FOR, and posted to the Station's publicly accessible CCR website by March 2, 2024;

- Both semi-annual groundwater detection monitoring events will be performed during the first and second halves of 2024 (April and October) for the Appendix III detection monitoring parameters;
- As necessary, the first and second half 2024 resampling detection monitoring events for the Landfill CCR will be performed within 30 days of the original monitoring events and samples will be reanalyzed for select Appendix III detection monitoring constituents;
- Groundwater potentiometric surface maps will be prepared for the first and second halves of 2024 semi-annual detection monitoring events;
- The flow rates and directions of groundwater flow will be determined for the first and second halves of 2024 semi-annual detection monitoring events;
- Statistical analysis and identification of potential SSIs will be performed for the first and second halves of 2024 semi-annual detection monitoring events;
- NRG will notify TCEQ, if required, if potential SSIs are identified and whether ASDs will be prepared for the first and second halves of 2024 semi-annual detection monitoring events; and
- Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network, to provide spacing per guidance between monitoring wells along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 and 2025 to develop a background water quality database and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.
- Written ASDs will be prepared and submitted to TCEQ for review and approval, if required, to evaluate potential SSIs above background for the first and second halves of 2024 semi-annual detection monitoring events for the Landfill CCR unit.

1.1 CCR Program Summary

On June 28, 2021, the United States Environmental Protection Agency (USEPA) published the final approval of the TCEQ partial State Coal Combustion Residuals (CCR) Permit Program, which became effective on July 28, 2021. The TCEQ adopted by reference the Federal CCR Program (40 CFR Part 257) as amended through the July 30, 2018 issue of the Federal Register (83 FR 36435), subject to the changes and additions provided in the TCEQ CCR Permit Program. As stated in USEPA's approval of the TCEQ CCR Permit Program on June 28, 2021, the TCEQ CCR Permit Program now operates in lieu of the Federal CCR program. Therefore, during 2023, the Landfill (Unit 004) CCR unit operated pursuant to the requirements of the TCEQ CCR Permit Program for the entirety of 2023.

Pursuant to the TCEQ CCR Permit Program, no later than January 31 of each calendar year, the owner or operator must prepare an annual groundwater monitoring and corrective action report (Annual Report) for the CCR unit(s) addressing the preceding calendar year. At a minimum, per TCEQ Draft Technical Guidance No. 32, the Annual Report must contain:

- A map, aerial image, or diagram showing the CCR unit(s) and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit(s);
- Narrative description of the Facility and Unit Descriptions and groundwater monitoring system, monitoring well inspection;
- Hydrogeology (groundwater flow rate and direction) with potentiometric surface map;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs and laboratory reports;
- Statistical analysis and results;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over

background levels); and other information required to be included in the annual report, as specified in 30 TAC §§352.971 and 352.981; and

 Summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, conclusions and recommendations, and project timelines and key activities for the upcoming year.

TRC Environmental Corporation (TRC) has prepared the 2023 Groundwater Monitoring and Corrective Action Report for the Landfill (Unit 004) CCR unit located at the Limestone Electric Generating Station (Station) on behalf of NRG Texas Power, LLC (NRG) in accordance with 30 TAC §352.901 and 30 TAC §352.902 of the TCEQ CCR Permit Program and TCEQ Draft Technical Guidance No. 32.

Pursuant to the TCEQ CCR Permit Program, NRG will comply with the recordkeeping requirements, the notification requirements, and will post the Annual Report to NRG's publicly accessible CCR Web site. In addition, pursuant to §352.902 of the TCEQ CCR Permit Program, NRG will submit the Annual Report to the TCEQ for review no later than 30 days after the report has been placed into the Station's FOR.

1.2 Corrective Measures and Corrective Action

Finally, since the Landfill (Unit 004) is not currently subject to corrective measures or corrective action activities under the TCEQ CCR Permit Program, the provisions of 30 TAC §352.971 and §352.981 of the TCEQ CCR Permit Program do not apply. Therefore, per §352.901 of the TCEQ CCR Permit Program, no other information relative to corrective measures or corrective action must be provided in this Annual Report.

1.3 Station Overview

The Station is located northwest of Jewett, near the borders of Limestone, Freestone, and Leon Counties, Texas (see Figure 1-1). The Station is bisected by Farm-to-Market Road 39 (FM39) with the electricity generating portion of the Station located to the west of FM39 in Limestone County and a solid waste disposal area (SWDA), which includes the Landfill (Unit 004). The Station currently uses western United States coal as a fuel source to power the boilers. The spent coal fuels or CCR have been classified by the TCEQ as a Class II Nonhazardous waste and consist of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge. During 2023, the Station had the following active CCR unit per the TCEQ CCR Permit Program:

Landfill Unit (Unit 004).

The Landfill is located east of FM39 in the northern portion of the Station. The Landfill is located to the north of the intermittent Lynn Creek. The Landfill was constructed in 1980 and is

used for the final placement of CCR. The Landfill is divided into multiple areas for organization purposes. The western half of the landfill has reached capacity and was capped prior to the effective date of both the Federal CCR Rule on October 19, 2015, and the TCEQ CCR Permit Program. CCR is currently being placed at the southern portion of the landfill.

The location of the Landfill is shown on Figure 1-2.

Section 2 Groundwater Monitoring System and Hydrogeology

2.1 Groundwater Monitoring Systems

The groundwater monitoring system for the Landfill CCR unit at the Station consists of a total of 14 monitoring wells installed into the uppermost aquifer, which are described in the subsections below. Four additional wells: MW-47, MW-48, MW-49, and MW-50; were installed during December 2023. The locations and identification numbers for the background (or upgradient) and downgradient groundwater monitoring wells that are part of the groundwater monitoring program are shown on Figure 2-1.

2.1.1 Landfill (Unit 004)

The groundwater monitoring system for the Landfill consists of 14 monitoring wells (MW-1, MW-2, MW-17, MW-18, MW-19, MW-20, MW-21, MW-22, MW-27R, MW-28R, MW-47, MW-18, MW-49, and MW-50) screened into the uppermost aquifer (see Figure 2-1). Monitoring wells MW-27R and MW-28R are located hydraulically upgradient of the Landfill and monitor background quality in the uppermost aquifer. The remaining eight wells (MW-1, MW-2, MW-17, MW-18, MW-19, MW-20, MW-21, MW-22, MW-47, MW-48, MW-49, and MW-50) are located downgradient of the Landfill and monitor the uppermost aquifer in the uppermost aquifer passing beneath the waste boundary of the Landfill.

Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network, to provide spacing per guidance between monitoring wells along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 and 2025 to develop a background water quality data base and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.

2.2 Semi-annual Detection Monitoring Sampling

Hydrologic Monitoring Inc. (HMI) performed the semi-annual detection monitoring events during the first and second half of 2023 per §352.941 of the TCEQ CCR Permit Program. HMI performed the monitoring activities under contract to TRC.

The first half 2023 semi-annual detection monitoring event was conducted in April 2023, with the second half 2023 semi-annual detection monitoring event being performed in October 2023.

2.2.1 Monitoring Well Inspection

Prior to sample collection, each well was visually inspected for conditions that could potentially affect the validity of the analytical results. The results of the inspection were documented on a Water Sample Log. No deficiencies were noted in the monitoring wells during the 2023 semi-annual detection monitoring events.

2.2.2 Quarterly Background Detection Monitoring

A total of eight quarterly background monitoring events were performed beginning in the third quarter of 2019 through the second quarter of 2021 for the 10 monitoring wells installed during that time period. The quarterly background samples were analyzed for both the Appendix III and Appendix IV Federal CCR Rule parameters. This background data set was used for comparison to 2023 semi-annual sampling events.

2.2.3 Semi-annual Detection Monitoring

The Appendix III field and laboratory analytical data collected during the April 2023 and October 2023 semi-annual detection monitoring events were the fourth and fifth semi-annual detection monitoring events that used the new background water quality data set to identify potential SSIs for the Appendix III data.

2.2.4 Analytical Laboratory

During 2023, the semi-annual detection monitoring groundwater samples were analyzed by ALS Environmental (ALS) located in Houston, Texas, which is a TCEQ certified laboratory (TCEQ ID T104704231-22-29).

2.2.5 Laboratory and Field Analyses

The semi-annual groundwater detection monitoring samples were analyzed for the Appendix III CCR constituents pursuant to 30 TAC Chapter 352. Additionally, field parameters (pH, temperature, specific conductivity, and turbidity) were obtained for all monitoring wells during both semi-annual groundwater monitoring events performed during 2023.

Laboratory and field analytical data are provided in Appendices A and B. Semi-annual detection monitoring analytical data for 2021 through 2023 are summarized in Table 2-2.

2.3 Laboratory Data Quality Review

Upon receipt of the April and October 2023 groundwater monitoring analytical data from the analytical laboratory, the data were evaluated for completeness, overall quality and usability, method-specified sample holding times, precision and accuracy, and potential sample contamination.

TRC concluded that the April and October laboratory analytical data, analyzed by ALS, were complete and usable for the purposes of the CCR semi-annual detection monitoring program. Laboratory data quality review information is provided in Appendix C.

2.4 Groundwater Flow Direction, Gradient, and Rate

Static groundwater elevations were measured for each monitoring well at the Landfill CCR unit during each of the 2023 semi-annual detection monitoring sampling events prior to sample collection. These measurements are provided in Table 2-1. Groundwater potentiometric surface maps were developed for the April and October detection monitoring events to evaluate groundwater flow directions. The potentiometric surface maps are provided as Figures 2-2, and 2-3.

Groundwater is typically encountered at depths ranging from 2.19 (MW-01) to 30.44 (MW-28R) feet below top of casing (btoc) for the Landfill groundwater monitoring system, with the overall direction of groundwater flow beneath and in the vicinity of the Landfill to the south-southeast.

Based on the 2023 detection monitoring groundwater elevation data, there does not appear to be significant seasonal changes in groundwater flow direction at the Landfill CCR unit. The calculated groundwater gradients were variable depending on lithology and ranged from 0.0043 to 0.0127 feet/feet at the Landfill. The average groundwater flow velocity beneath the Landfill was 11 feet/year.

2.5 Monitoring Wells Installed or Decommissioned

Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network, to provide spacing per guidance between monitoring wells along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 and 2025 to develop a background water quality database and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.

Section 3 Status of Groundwater Monitoring and Corrective Action Program

3.1 Semi-annual Detection Monitoring Summary

This Annual Report provides the monitoring data for the semi-annual detection monitoring performed during April and October 2023 for the Landfill. In addition, this Annual Report provides the previous monitoring data from 2021 and 2022. Previous monitoring data were provided in the 2017, 2018, 2019, 2020, 2021, and 2022 Annual Reports. Based on the data and results of the monitoring activities during 2023, the status of the groundwater monitoring and corrective action program at the Station including key actions completed, problems encountered, and actions to resolve the problems are summarized in the following subsections.

3.2 Key Actions Completed

The following key actions were completed during 2023:

- The 2022 Annual Groundwater Monitoring and Corrective Action Report was prepared per §257.90(e) and (f) of the Federal CCR Rule and 30 TAC Chapter 352 of the TCEQ CCR Permit Program, placed into the FOR by January 31, 2023, and posted to NRG's publicly accessible CCR website by March 2, 2023;
- The first and second half 2023 semi-annual detection monitoring events for the Landfill CCR unit were performed during April 2023 and October 2023 and the samples were analyzed for the Appendix III detection monitoring constituents;
- The first and second half 2023 resampling detection monitoring events for the Landfill CCR unit were performed during May 2023 and the samples were reanalyzed for select Appendix III detection monitoring constituents;
- To perform the statistical analysis for the first half 2023 (April) and second half 2023 (October) semi-annual detection monitoring events, the Appendix III analytical results were compared to the new background water quality data set developed using the eight quarterly detection monitoring events performed beginning in the third quarter of 2019 through the second quarter of 2021;
- Groundwater potentiometric surface maps were prepared for the Landfill CCR unit for the April and October 2023 semi-annual detection monitoring events;
- The directions and apparent flow rate of groundwater were determined;

- Potential SSIs above background were identified for the Landfill CCR unit for the first and second half 2023 semi-annual detection monitoring events;
- NRG notified TCEQ in December 2022 pursuant to the TCEQ CCR Permit Program that potential SSIs had been identified for the second half 2022 (October) semi-annual detection monitoring event. An ASD was submitted to TCEQ during the first quarter 2023 and is appended to this Annual Report;
- Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network, along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 and 2025 to develop a background water quality data base and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.
- NRG notified TCEQ in May 2023 pursuant to the TCEQ CCR Permit Program that potential SSIs had been identified for the first half 2023 (April) semi-annual detection monitoring event and that an ASD will be prepared, which was submitted to TCEQ during the third quarter; and
- NRG notified TCEQ in December 2023 pursuant to the TCEQ CCR Permit Program that
 potential SSIs had been identified for the second half 2023 (October) semi-annual detection
 monitoring event and that the ASDs are included with this report.
- NRG intends to prepare and submit an ASD to TCEQ with this Annual Report during the first quarter of 2024.

The Landfill CCR unit remained in detection monitoring during 2023 based on the successful completion/submittal of written ASDs. No corrective action activities were performed for the Landfill CCR unit pursuant to the TCEQ Permit Program during 2023.

3.3 Problems Encountered and Resolution

During 2023, no problems were encountered in the CCR groundwater monitoring program for the Station and no actions were taken to resolve problems.

Section 4 Statistical Analysis and Results

This Annual Report identifies potential SSIs above background that were determined for groundwater samples collected during the April 2023 and October 2023 semi-annual detection monitoring events.

4.1 April 2023 Semi-annual Detection Monitoring Event

Statistical analysis and identification of potential SSIs for the first half (April 2023) semi-annual detection monitoring event were completed in May 2023. Select analytes were resampled in May 2023 following receipt of the April 2023 sampling data. The statistical analysis was conducted in accordance with the revised Statistical Methods Certification (August 2018) using (Lower Tolerance Limits) LTLs where applicable, and Upper Tolerance Limits (UTLs) per §257.93(f)(3) of the Federal CCR Rule and the TCEQ CCR Permit Program.

The eighth and final quarterly background detection monitoring event was performed during April 2021 as part of the development of a new background groundwater quality data set for the groundwater monitoring program. Statistical analysis and identification of potential SSIs for the April 2023 semi-annual detection monitoring event was performed using the new background water quality data set. Per the TCEQ CCR Permit Program, potential SSIs were identified in May 2023 for the April 2023 semi-annual detection monitoring event.

The results of the statistical analysis for the April 2023 semi-annual detection monitoring event for the Landfill are summarized in the following table. One potential SSI was identified for downgradient monitoring wells MW-21 and MW-01, and one potential SSI was identified for upgradient monitoring well MW-28R. An ASD was performed during 2023 to evaluate the potential SSIs as discussed in Section 5.0, which is provided with the 2023 Annual Report. The ASD was also submitted to TCEQ during 2023.

ANALYTE	WELL	LTL	UTL	SAMPLE DATE	VALUE	UNIT
Boron	MW-21	N/A	0.44	5/1/2023	0.734	mg/L
Sulfate	MW-28R	N/A	890	5/1/2023	959	mg/L
pН	MW-01	4.1	7.6	5/1/2023	3.75	SU

Table 4-1
Potential SSI – April 2023, Detection Monitoring, Landfill

mg/L= milligrams per liter LTL – Lower Tolerance Limit N/A = Not Applicable UTL – Upper Tolerance Limit

4.2 October 2023 Semi-annual Detection Monitoring Event

Statistical analysis and identification of potential SSIs for the second half (October 2023) semiannual detection monitoring event was completed in October 2023. The statistical analysis was conducted in accordance with the revised Statistical Methods Certification (August 2018) using LTLs where applicable, and UTLs per §257.93(f)(3) of the Federal CCR Rule and the TCEQ CCR Permit Program.

The results of the statistical analysis for the October 2023 semi-annual detection monitoring event for the Landfill are summarized in the following table. One potential SSI was identified for downgradient monitoring wells MW-21 and MW-01, and one potential SSI was identified for upgradient monitoring well MW-28R. An ASD was performed to evaluate the potential SSIs as discussed in Section 5.0, which is provided with this Annual Report.

ANALYTE	WELL	LTL	UTL	SAMPLE DATE	VALUE	UNIT
Boron	MW-21	N/A	0.44	10/10/2023	0.652	mg/L
рН	MW-01	4.1	7.6	10/10/2023	3.9	SU

 Table 4-2

 Potential SSI – October 2023, Detection Monitoring, Landfill

mg/L= milligrams per liter LTL – Lower Tolerance Limit SU = Standard Units UTL – Upper Tolerance Limit N/A = Not Applicable

Section 5 Alternative Source Demonstrations

As described in Section 4.0, potential SSIs above background levels were identified for the Landfill for the second half (October) 2022, the first half (April) 2023, and the second half (October) 2023 semi-annual detection monitoring events. ASDs were prepared for all three semi-annual detection monitoring events that successfully documented that alternative sources or historical errors in statistical analysis were responsible for the potential SSIs observed. The second half (October) 2023 ASD and the first half (April) 2023 ASD were submitted to TCEQ during 2023. The second half (October) 2023 ASD will be submitted to TCEQ with this Annual Report. All three ASDs are appended to this Annual Report.

Pursuant to §257.94(e)(2) of the Federal CCR Rule and the TCEQ CCR Permit Program, the owner or operator may demonstrate that a source other than the CCR unit caused the SSI(s) over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. To evaluate the potential SSIs and to determine whether an ASD could be successfully demonstrated, ASDs were completed and certified by a qualified Texas P.E. during 202 and 2024 per the Federal CCR Rule as follows:

- In February 2023, an ASD was certified for one potential SSI identified for the Landfill CCR unit for the second half (October 2022) semi-annual detection monitoring and sampling event;
- In August 2023, an ASD was certified for three potential SSIs identified for the Landfill CCR unit for the first half (April 2023) semi-annual detection monitoring sampling event; and
- In January 2024, an ASD was certified for two potential SSIs identified for the Landfill CCR unit for the second half (October) 2023) semi-annual detection monitoring sampling event.

Pursuant to the TCEQ CCR Permit Program, ASDs successfully demonstrated alternative sources or issues with laboratory data analytical quality for the Landfill CCR unit. Therefore, the Landfill remained in detection monitoring during 2023. The ASDs for three semi-annual detection monitoring events are discussed in the subsections below. The completed ASDs are provided in Appendix D.

5.1 Summary of ASDs

5.1.1 Second Half (October) 2022

The second half (October) 2022 ASD was successfully completed for the Landfill during the first quarter of 2023. The results for the ASD for the second half (October) 2022 semiannual detection monitoring sampling event are summarized below:

- October 2022. One potential SSI was identified. Boron was identified for downgradient monitoring well MW-21. Three alternative sources were identified for the potential SSI:
 - 1) Presence of numerous non-CCR sources in the vicinity of the Landfill, including historical and current natural gas wells and their associated well pads and surface pits that are located immediately surrounding the Landfill;
 - 2) Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
 - 3) A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality (boron concentration) and pH of groundwater over a long period of time.

The ASD was submitted to TCEQ during the first quarter 2023 for review and approval by TCEQ.

5.1.2 First Half (April) 2023

The first half (April) 2023 ASD was successfully completed for the Landfill during the third quarter 2023. The results for the ASDs for the first half (April) 2023 semi-annual detection monitoring sampling event is summarized below:

- April 2023. Three potential SSIs were identified. Boron was identified for downgradient monitoring well MW-21; pH was identified for downgradient monitoring well MW-01; and sulfate was identified for upgradient monitoring well MW-28R. Three alternative sources were identified for the potential SSIs:
 - 1) Presence of numerous non-CCR sources in the vicinity of the Landfill, including historical and current natural gas wells and their associated well pads and surface pits that are located immediately surrounding the Landfill;
 - 2) Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
 - 3) A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality (boron concentration) and pH of groundwater over a long period of time.

The ASD was submitted to TCEQ during the third quarter 2023 for review and approval by TCEQ.

5.1.3 Second Half (October) 2023

The second half (October) 2023 ASD was successfully completed for the Landfill during the first quarter 2024. The results for the ASD for the second half (October) 2023 semiannual detection monitoring sampling event is summarized below:

- October 2023. Two potential SSIs were identified. Boron was identified at downgradient monitoring well MW-21; and pH was identified for downgradient monitoring well MW-01. Three alternative sources were identified for the potential SSIs:
 - 1) Presence of numerous non-CCR sources in the vicinity of the Landfill, including historical and current natural gas wells and their associated well pads and surface pits that are located immediately surrounding the Landfill;
 - 2) Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
 - 3) A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality (boron concentrations) and pH of groundwater over a long period of time.

The ASD is submitted to TCEQ as part of this Annual Report.

5.2 Detection Monitoring During 2023

As discussed previously, written ASDs were completed and certified by a qualified Texas P.E. during 2023 and 2024 for the Landfill CCR unit. The ASDs successfully demonstrated that alternative sources were responsible for the potential SSIs identified in groundwater for the first half (April 2023) and second half (October 2023) semi-annual detection monitoring events. Therefore, the Landfill CCR unit remained in the detection monitoring program at the start and end of 2023.

5.3 Transition Between Monitoring Programs

During 2023, the groundwater monitoring system for the Landfill CCR unit remained in detection monitoring. Therefore, there was no transition between detection and assessment monitoring programs for the Landfill CCR unit during 2023.

Section 6 Projected Key Activities and Timelines for 2024

Key activities and project timelines for 2024 will be performed pursuant to TCEQ's CCR Permit Program and are as follows:

- The 2023 Annual Report will be prepared and placed into the FOR by January 31, 2024, submitted to the TCEQ within 30 days of placement in the FOR, and posted to the Station's publicly accessible CCR website by March 2, 2024;
- An ASD for the second half 2023 (October) semi-annual detection monitoring event will be prepared and submitted to the TCEQ with this Annual Report;
- Both semi-annual groundwater detection monitoring events will be performed during the first and second halves of 2024 (April and October) for the Appendix III detection monitoring parameters;
- As necessary, the first and second half 2024 resampling detection monitoring events for the Landfill CCR will be performed within 30 days of the original monitoring events and samples will be reanalyzed for select Appendix III detection monitoring constituents;
- Groundwater potentiometric surface maps will be prepared for the first and second halves of 2024 semi-annual detection monitoring events;
- The flow rates and directions of groundwater flow will be determined for the first and second halves of 2024 semi-annual detection monitoring events;
- Statistical analysis and identification of potential SSIs will be performed for the first and second halves of 2024 semi-annual detection monitoring events;
- NRG will notify TCEQ, if required, if potential SSIs are identified and whether ASDs will be prepared for the first and second halves of 2024 semi-annual detection monitoring events; and
- Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network, to provide a minimum of a 600-foot spacing between monitoring wells along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 to develop a background water quality data base and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.
- An ASD for the second half 2023 (October) semi-annual detection monitoring event will be prepared and submitted to the TCEQ as part of this Annual Report;

 Written ASDs will be prepared and submitted to TCEQ for review and approval, if required, to evaluate potential SSIs above background for the first and second halves of 2024 semi-annual detection monitoring events for the Landfill CCR unit.

Section 7 Conclusions and Recommendations

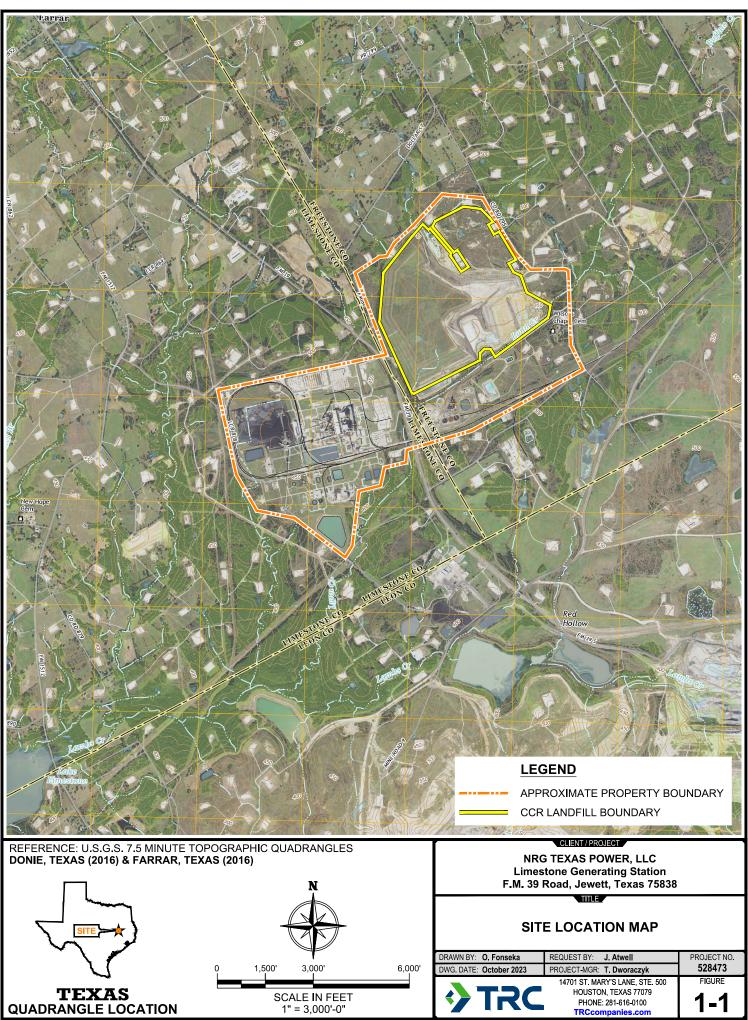
In conclusion, this Annual Report contains the information required pursuant to 30 TAC §352.901 and 30 TAC §352.902 of the TCEQ CCR Permit Program and TCEQ Draft Technical Guidance No. 32 of the TCEQ CCR Permit Program. In addition, at the request of TCEQ, this Annual Report provides the field and laboratory analytical results for three years of monitoring: 2021, 2022, and 2023. This information is provided in this Annual Report. No other information is required to be included in the Annual Report as specified in 30 TAC §352.971 and §352.981 of the TCEQ CCR Permit Program. The following key actions were completed during 2023:

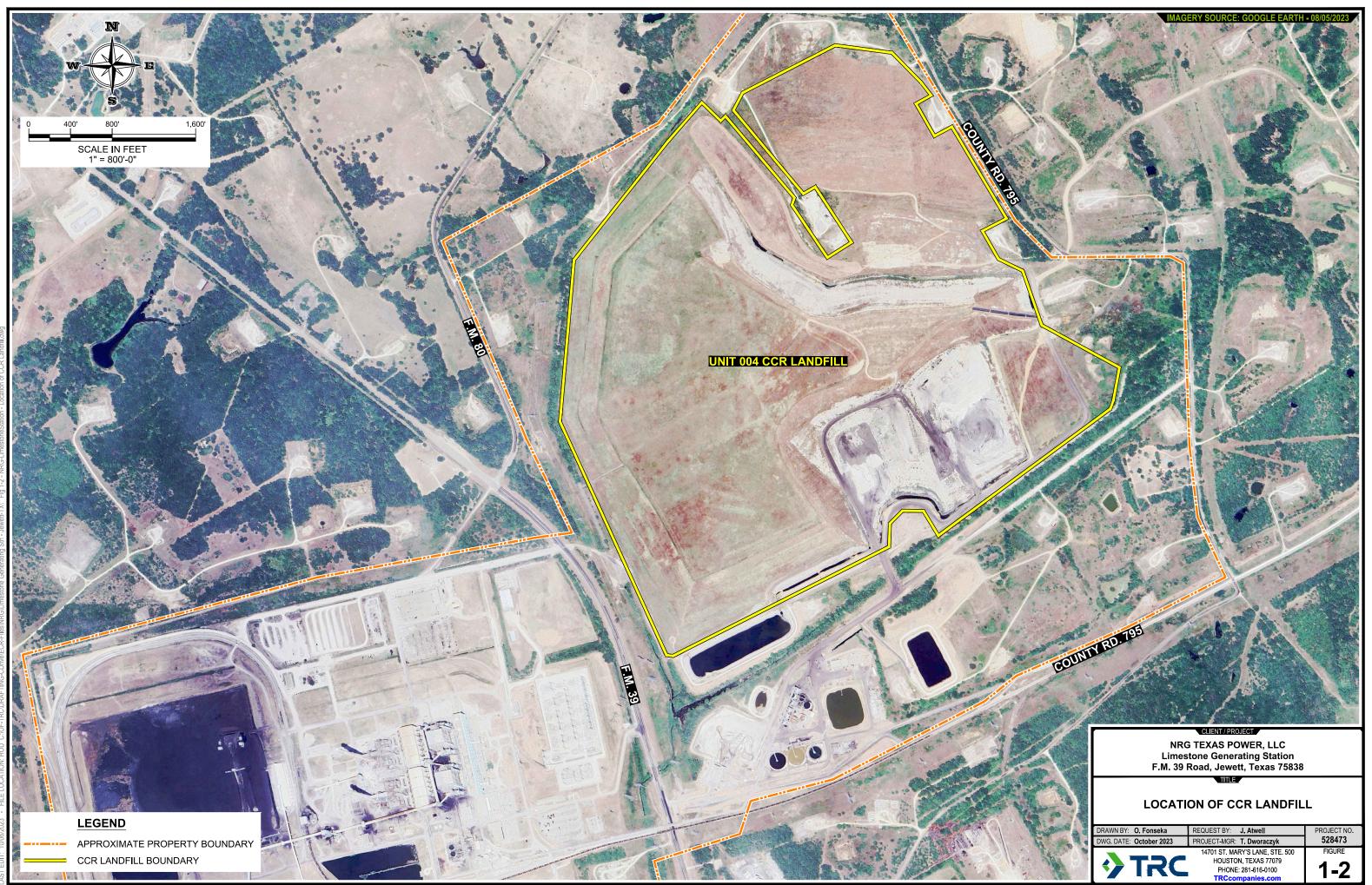
- The 2022 Annual Groundwater Monitoring and Corrective Action Report was prepared per §257.90(e) and (f) of the Federal CCR Rule and 30 TAC Chapter 352 of the TCEQ CCR Permit Program, placed into the FOR by January 31, 2023, and posted to NRG's publicly accessible CCR website by March 2, 2023;
- The first and second half 2023 semi-annual detection monitoring events for the Landfill CCR unit were performed during April 2023 and October 2023 and the samples were analyzed for the Appendix III detection monitoring constituents;
- The first and second half 2023 resampling detection monitoring events for the Landfill CCR unit were performed during May and November 2023 and the samples were reanalyzed for select Appendix III detection monitoring constituents;
- To perform the statistical analysis for the first half 2023 (April) and second half 2023 (October) semi-annual detection monitoring events, the Appendix III analytical results were compared to the new background water quality data set developed using the eight quarterly detection monitoring events performed beginning in the third quarter of 2019 through the second quarter of 2021;
- Groundwater potentiometric surface maps were prepared for the Landfill CCR unit for the April and October 2023 semi-annual detection monitoring events;
- The directions and apparent flow rate of groundwater were determined;
- Potential SSIs above background were identified for the Landfill CCR unit for the first and second half 2023 semi-annual detection monitoring events;
- NRG notified TCEQ in December 2022 pursuant to the TCEQ CCR Permit Program that
 potential SSIs had been identified for the second half 2022 (October) semi-annual detection
 monitoring event. An ASD was submitted to TCEQ during the first quarter 2023 and is
 appended to this Annual Report;

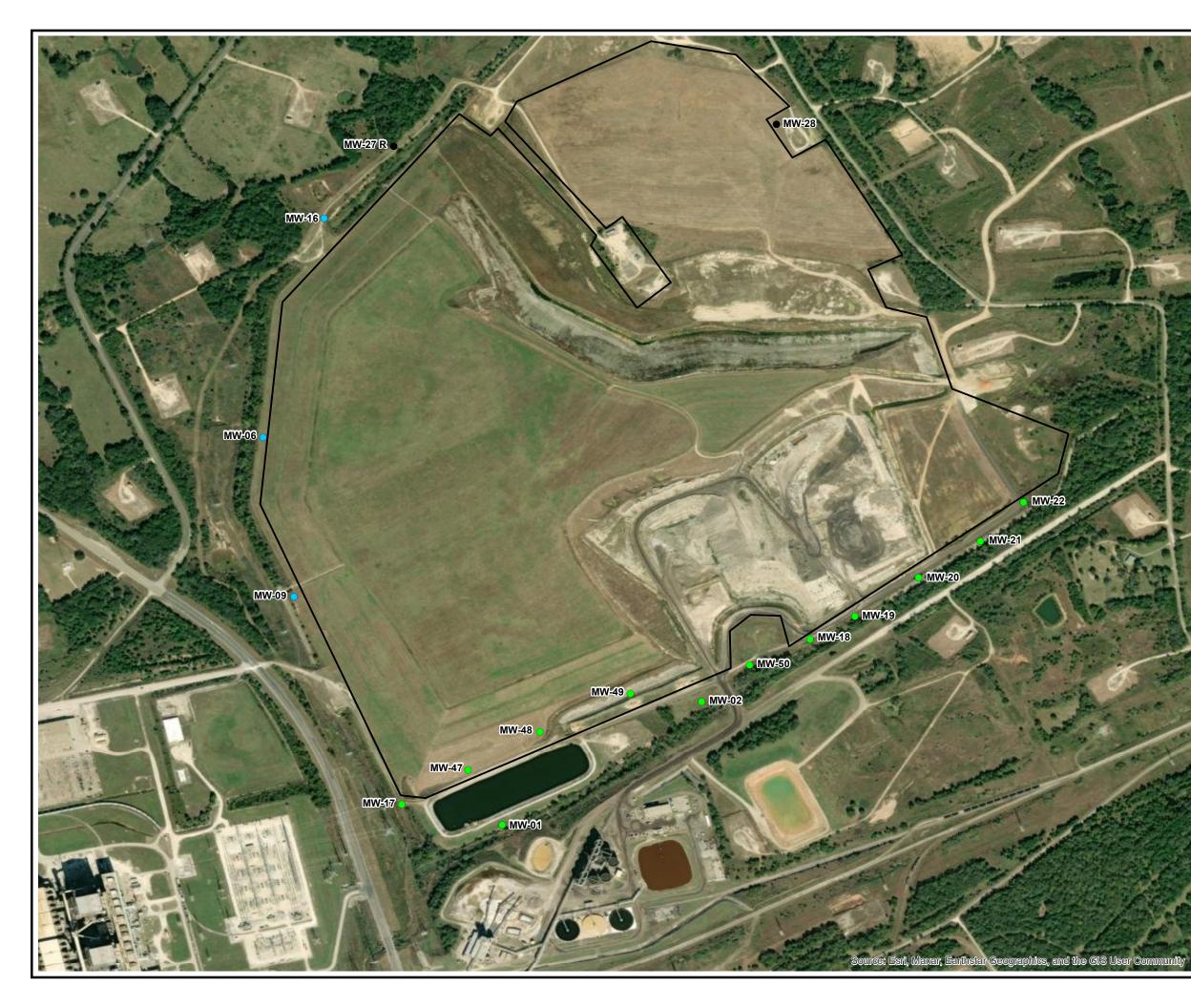
- Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network spacing along the southwestern boundary of the Landfill per spacing guidance. These wells will be sampled quarterly during 2024 and 2025 to develop a background water quality data base and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.
- NRG notified TCEQ in May 2023 pursuant to the TCEQ CCR Permit Program that potential SSIs had been identified for the first half 2023 (April) semi-annual detection monitoring event and that an ASD will be prepared, which was submitted to TCEQ during the third quarter; and
- NRG notified TCEQ in November 2023 pursuant to the TCEQ CCR Permit Program that potential SSIs had been identified for the second half 2023 (October) semi-annual detection monitoring event and that NRG intends to prepare and submit an ASD to TCEQ with this Annual Report during the first quarter of 2024.

Based on the key activities performed during 2023, it is recommended that the Landfill (Unit 004) remain in semi-annual detection monitoring subject to the following key activities and that the following project timeline be implemented during 2024:

- The 2023 Annual Report will be prepared and placed into the FOR by January 31, 2024, submitted to the TCEQ within 30 days of placement in the FOR, and posted to the Station's publicly accessible CCR website by March 2, 2024;
- An ASD for the second half 2023 (October) semi-annual detection monitoring event will be prepared and submitted to the TCEQ with this Annual Report;
- Both semi-annual groundwater detection monitoring events will be performed during the first and second halves of 2024 (April and October) for the Appendix III detection monitoring parameters;
- As necessary, the first and second half 2024 resampling detection monitoring events for the Landfill CCR will be performed within 30 days of the original monitoring events and samples will be reanalyzed for select Appendix III detection monitoring constituents;
- Groundwater potentiometric surface maps will be prepared for the first and second halves of 2024 semi-annual detection monitoring events;
- The flow rates and directions of groundwater flow will be determined for the first and second halves of 2024 semi-annual detection monitoring events;
- Statistical analysis and identification of potential SSIs will be performed for the first and second halves of 2024 semi-annual detection monitoring events;

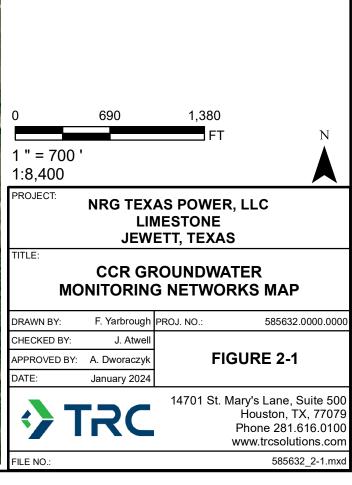

- NRG will notify TCEQ, if required, if potential SSIs are identified and whether ASDs will be prepared for the first and second halves of 2024 semi-annual detection monitoring events; and
- Four new monitoring wells (MW-47, MW-48, MW-49, and MW-50) were installed in December 2023 and added to the Landfill CCR Unit monitoring well network along the southwestern boundary of the Landfill. These wells will be sampled quarterly during 2024 to develop a background water quality data base and the samples will be analyzed for both the Appendix III and Appendix IV CCR constituents.
- An ASD for the second half 2023 (October) semi-annual detection monitoring event will be prepared and submitted to the TCEQ as part of this Annual Report; and
- Written ASDs will be prepared and submitted to TCEQ for review and approval, if required, to evaluate potential SSIs above background for the first and second halves of 2024 semi-annual detection monitoring events for the Landfill CCR unit.

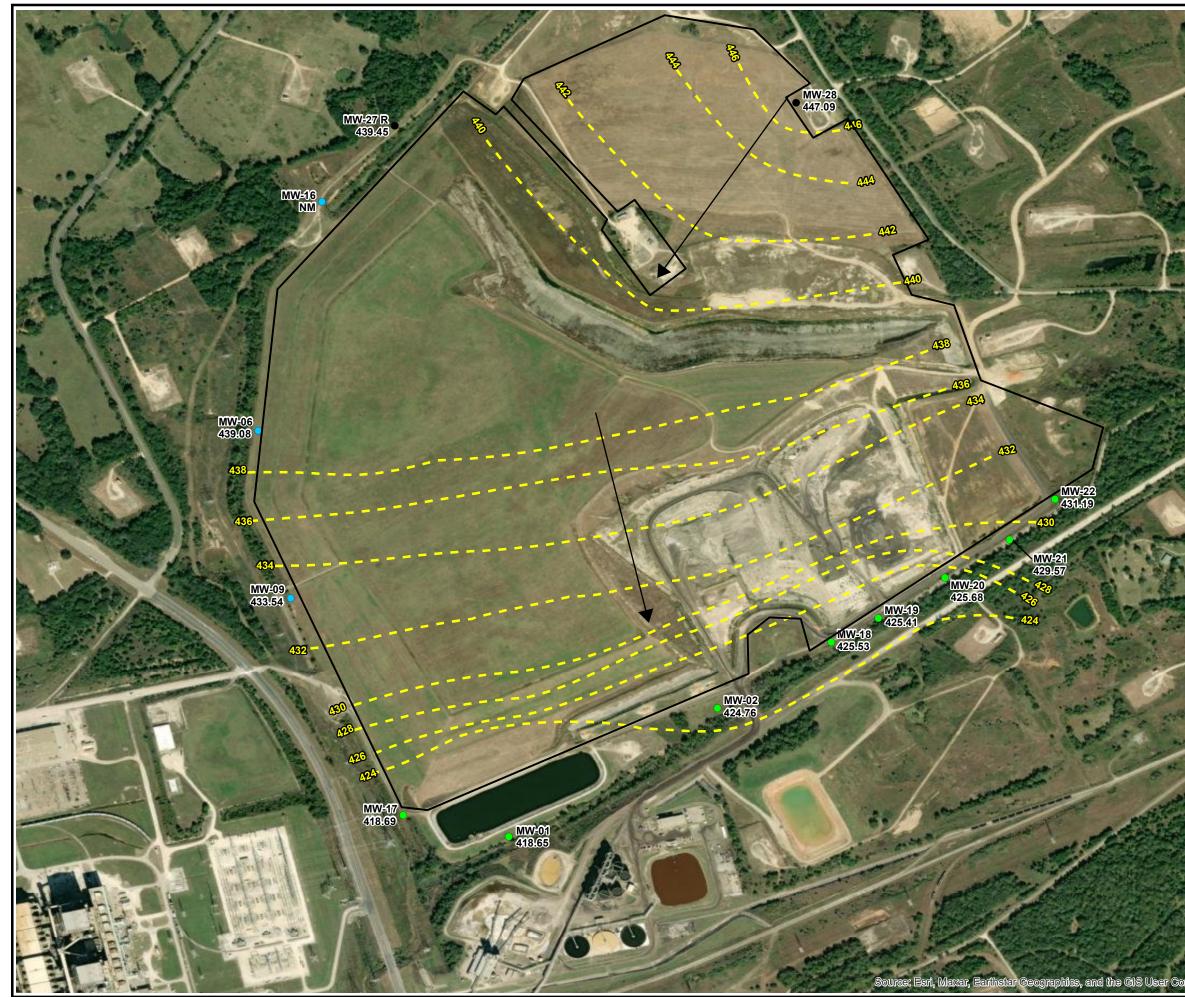

Section 8 References


- Federal Register, Vol. 80 No. 74, April 17, 2015, 40 CFR Parts 257 and 261, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule.
- Federal Register, Vol. 85, No. 168, August 28, 2020, 40 CFR Part 257, Hazardous and Solid Waste Management System; Disposal of CCR from Electric Utilities; A Holistic Approach to Closure Part A: Deadline to Initiate Closure.
- ERM, Sampling and Analysis Plan, October 2017, Limestone Electric Generating Station, Jewett, Texas.
- ERM, CCR Statistical Analysis Plan, October 2017, Limestone Electric Generating Station, Jewett, Texas.
- ERM, Annual Groundwater Monitoring and Corrective Action Report, January 31, 2018, Limestone Electric Generating Station, Secondary E Pond Unit (Unit 003), Jewett, Texas.
- TCEQ, Draft Technical Guidance No. 32, Coal Combustion Residuals Groundwater Monitoring and Corrective Action.
- TCEQ, 30 TAC Chapter 352, Coal Combustion Residuals Waste Management and Registration Program for Coal Combustion Residuals (CCR) Implementation.
- TRC, 2018 Annual Groundwater Monitoring and Corrective Action Report, January 31, 2019, Limestone Electric Generating Station, Secondary E Pond (Unit 003) and Landfill (Unit 004), Jewett, Texas.
- TRC, 2019 Annual Groundwater Monitoring and Corrective Action Report, January 31, 2020, Limestone Electric Generating Station, Secondary E Pond (Unit 003) and Landfill (Unit 004), Jewett, Texas.
- TRC, 2020 Annual Groundwater Monitoring and Corrective Action Report, January 31, 2021, Limestone Electric Generating Station, Secondary E Pond (Unit 003) and Landfill (Unit 004), Jewett, Texas.
- TRC, 2021 Annual Groundwater Monitoring and Corrective Action Report, January 31, 2022, Limestone Electric Generating Station, Landfill (Unit 004), Jewett, Texas.

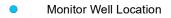
- TRC, 2022 Annual Groundwater Monitoring and Corrective Action Report, January 31, 2023, Limestone Electric Generating Station, Landfill (Unit 004), Jewett, Texas.
- TRC, Alternative Source Demonstration, August 2023, Limestone Electric Generating Station, Landfill (Unit 004), Jewett, Texas.
- TRC, Statistical Methods Certification, August 2018, Limestone Electric Generating Station, Jewett, Texas.

Figures





<u>LEGEND</u>


- Monitor Well Location
- Landfill Background CCR Monitor Well
- Landfill CCR Monitor Well

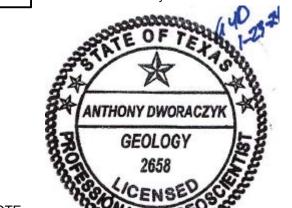
CCR Landfill Boundary

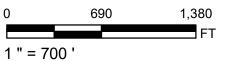
LEGEND

Landfill CCR Monitor Well •

Landfill Background CCR Monitor Well •

447.09 Groundwater Elevation (FT MSL)


NM Not Measured


Groundwater Flow Direction

Groundwater Elevation Contour - Dashed where Inferred (FT MSL)

CCR Landfill Boundary

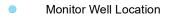
NOTE: GROUND' BY HMI ON APRIL 2023

un

1:8,400

PROJECT:

NRG TEXAS POWER, LLC LIMESTONE JEWETT, TEXAS


TITLE: **GROUNDWATER POTENTIOMETRIC SURFACE - APRIL 2023**

DRAWN BY:	F. Yarbrough	PROJ. NO.:	585632.0000.0000
CHECKED BY:	J. Atwell		
APPROVED BY:	A. Dworaczyk		FIGURE 2-2
DATE:	January 2024		
🤣 T	RC	14701 \$	St. Mary's Lane, Suite 500 Houston, TX, 77079 Phone 281.616.0100 www.trcsolutions.com
FILE NO.:			585632_2-2.mxd

Ν

LEGEND

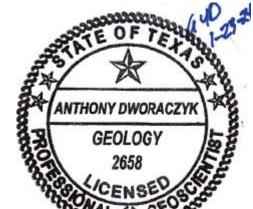
Landfill CCR Monitor Well

Landfill Background CCR Monitor Well

447.08 Groundwater Elevation (FT MSL)

NM

Not Measured



Groundwater Flow Direction


Groundwater Elevation Contour - Dashed where Inferred (FT MSL)

CCR Landfill Boundary

NOTE: GROUNDWATER ELEVATIONS MEASURED BY HMI ON OCTOBER 2023

mmunity

FILE NO.

585632_2-3.mxd

Tables

Table 2-1Summary of Groundwater Elevation DataJanuary - December 2023Limestone Electric Generating Station - Jewett, Texas

					Ground Water
		Measurement	Top of Casing	Depth to Water	Elevation (ft.
Well Description	Monitor Well ID	Date	(ft. MSL)	(ft.)	MSL)
Landfill	1				·
	MW-01	4/4/2023	420.84	2.19	418.65
	MW-01	5/1/2023	420.84	2.15	418.69
	MW-01	10/10/2023	420.84	2.67	418.17
	MW-02	4/4/2023	430.01	5.25	424.76
	MW-02	10/10/2023	430.01	6.18	423.83
	MW-17	4/4/2023	421.22	2.53	418.69
	MW-17	10/10/2023	421.22	3.10	418.12
	MW-18	4/4/2023	436.30	10.77	425.53
	MW-18	10/10/2023	436.30	11.81	424.49
Downgradient	MW-19	4/4/2023	443.79	18.38	425.41
	MW-19	10/10/2023	443.79	19.45	424.34
	MW-20	4/4/2023	445.11	19.43	425.68
	MW-20	10/10/2023	445.11	20.48	424.63
	MW-21	4/4/2023	446.35	16.78	429.57
	MW-21	5/1/2023	446.35	16.75	429.60
	MW-21	10/10/2023	446.35	20.00	426.35
	MW-22	4/4/2023	447.59	16.40	431.19
	MW-22	10/10/2023	447.59	19.39	428.20
	MW-06	4/4/2023	457.62	18.54	439.08
	MW-06	10/10/2023	457.62	19.61	438.01
Course outer	MW-09	4/4/2023	452.03	18.49	433.54
Gauge only	MW-09	10/10/2023	452.03	20.22	431.81
	MW-16	4/4/2023	NM	17.39	NM
	MW-16	10/10/2023	NM	18.52	NM
	MW-27R	4/4/2023	457.89	18.44	439.45
	MW-27R	10/10/2023	457.89	19.51	438.38
Upgradient	MW-28	4/4/2023	477.52	30.43	447.09
	MW-28	5/1/2023	477.52	30.72	446.80
	MW-28	10/10/2023	477.52	30.44	447.08

NotesMSLMean Sea Levelft.feetNMNot measured

Table 2-2Summary of Groundwater Monitoring DataJanuary 2021 through December 2023Limestone Electric Generating Station - Jewett, Texas

		Analy	te Group				NRG Ap	p III		
			Analyte	Boron	Calcium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	pH, Field
			Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	su
			b Method	SW6	020A	E300	A4500-F C-11	E300	M2540C	NA
Well Description	Well ID	Sample Date	Duplicate							
Landfill	1	01/25/2021	N	0.210	499	1800	< 0.10 U	548	3590	6.47
		03/15/2021	N	0.210	307	1800	< 0.10 U	559	4400	6.47 6.49
		03/13/2021	N	0.130	431	1890	< 0.10 U	605	4400	6.49
	NUV 27D	10/13/2021	N	0.170	380	1760	< 0.10 U	619	3620	6.51
	MW-27R	04/07/2022	N	0.211	499	1700	< 0.10 U	556	5040	6.46
		10/05/2022	Ν	0.168	441	1660	< 0.10 U	550	5680	6.46
		04/04/2023	Ν	0.157	482	2230	< 0.10 U	583	5800	6.37
Upgradient		10/10/2023	N	0.132	430	1770	< 0.10 U	638	3640	6.33
18		01/25/2021	N	0.231	599	2420	0.17	623	5080	5.08
		04/05/2021	N	0.217	583	2470	0.19	654	6380	5.01
		10/13/2021 04/07/2022	N N	0.187 0.244	527 600	2500 2390	0.14 < 0.10 U	567 644	4820 7490	4.99 5.16
	MW-28	10/05/2022	N	0.182	416	1430	0.230	792	5630	5.45
		04/04/2023	N	0.217	562	2200	< 0.10 U	1080	6860	5.35
		05/01/2023	N	n/a	n/a	n/a	n/a	959	n/a	5.10
		10/10/2023	Ν	0.193	540	2290	0.240	748	5690	5.34
		01/25/2021	Ν	0.0337 [J]	60.9	267	0.070 J	0.381 J[U]	568	3.65
		04/05/2021	N	0.0331	49.7	290	0.070 J	< 0.200	912	3.72
		10/13/2021	N	0.0377	52.3	283	0.13	0.995	854	3.85
	MW-01	04/07/2022 10/05/2022	N	0.0463	57.5 260.0	269	< 0.10 U	< 0.200	816	4.99
		04/04/2023	N N	0.0341 [J] 0.0356 [J]	48.6	278 289	0.110 < 0.100 U	0.560 < 0.200	870 816	5.64 4.04
		05/01/2023	N	n/a	n/a	n/a	× 0.100 C	< 0.200 n/a	n/a	3.75
		10/10/2023	N	0.0382	54.4	273	0.0600 J	<0.200	682	3.90
		01/25/2021	N	0.0289 [J]	217	302	< 0.10 U	674	1200	5.50
		04/05/2021	Ν	0.0401	164	340	< 0.10 U	660	1610	5.68
		10/13/2021	Ν	0.0444	109	408	< 0.10 U	162	1240	5.63
	MW-02	04/07/2022	N	0.123 [J]	137	363	< 0.10 U	352	1580	5.57
		10/05/2022	N	0.0842 [J]	132	354	< 0.10 U	271	1340	5.57
		04/04/2023	N N	0.425 <0.220	178 147	301 [JL] 310	< 0.10 U	664	1420 1380	5.53 5.40
		10/10/2023 01/25/2021	N N	<0.220 0.0440 [J]	3.06	9.40	<0.10 U 0.15	527 [JL] 7.68	1380	6.13
		04/05/2021	N	0.0258	3.12	9.81	0.15	8.33	140	6.19
		10/13/2021	N	0.0297	2.84	9.27	0.18	7.25	116	6.11
	MW-17	04/07/2022	N	0.0348	3.14	8.92	< 0.10 U	7.10	120	6.28
		10/05/2022	Ν	0.0238 [J]	2.70	9.05	0.110	7.45	146	5.77
		04/04/2023	Ν	0.0249 [J]	2.38	8.60	0.120	7.79	122 [J]	5.81
Downgradient		10/10/2023	N	0.0207	3.55	8.58	0.150	7.67	100.0 [J]	5.69
		10/13/2021	N	0.0390	59.7	5.46	0.17	29.7	342	6.20
	MW-18	04/07/2022	N	0.0554 0.0322 [J]	67.3	6.82	< 0.10 U	29.6	344	6.30
	101 00 - 10	10/05/2022 04/04/2023	N N	0.0322 [J] 0.0443	66.2 67.1	7.33 9.64	0.100 0.110	28.3 34.3	368 342	6.19 6.32
		10/10/2023	N	0.0349	65.4	8.31	0.110	31.1	326	5.94
	-	01/25/2021	N	0.0421 [J]	40.4	44.9	0.060 J	89.3	184	5.44
		01/25/2021	FD	0.0496 [J]	39.6	45.2	0.090 J	89.4	214	n/a
		04/05/2021	FD	0.0488	33.8	36.9	0.060 J	78.3	320	n/a
		04/05/2021	Ν	0.0434	33.8	47.4	0.060 J	91.5	350	5.55
		10/13/2021	FD	0.0430	36.2	40.1	0.64 [J]	92.4	352	n/a
		10/13/2021	N	0.0387	33.2	39.6	0.080 J[J]	91.2	324	5.52
	MW-19	04/07/2022 04/07/2022	FD N	0.0500	33.9 33.1	37.6 37.3	< 0.10 U < 0.10 U	91.8 90.9	346 302	n/a 5.91
		10/05/2022	FD	0.0343 0.0327 [J]	32.5	37.9	< 0.10 U < 0.10 U	90.9 86.9	302 328	5.91 n/a
		10/05/2022	rd N	0.0327 [J] 0.0343 [J]	34.1	37.9	< 0.10 U	85.7	328	5.59
		04/04/2023	FD	0.0468	35.2	37.2	< 0.100 U	99.2	292	n/a
		04/04/2023	N	0.0467	34.6	37.5	< 0.100 U	99.6	308	5.74
		10/10/2023	FD	0.0166 J[J]	34.0	36.8	<.10 U	96.7	292	n/a
		10/10/2023	Ν	0.0335 [J]	31.4	36.9	0.0600 J	96.7	308	5.64
	MW-20	01/25/2021	Ν	0.0463 [J]	42.5	17.4	0.21	75.8	138	6.19
		04/05/2021	N	0.0457	36.3	18.9	0.22	80.7	416	6.36

Table 2-2 Summary of Groundwater Monitoring Data January 2021 through December 2023 Limestone Electric Generating Station - Jewett, Texas

	Analy	yte Group				NRG App	III			
Analyte				Boron	Calcium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	pH, Field
Unit				mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	su
		La	b Method	SW6	020A	E300	A4500-F C-11	E300	M2540C	NA
Well Description	Well ID	Sample Date	Duplicate							
		10/13/2021	Ν	0.0418	30.8	19.2	0.26	36.6	336	6.32
		04/07/2022	N	0.0568	28.9	19.0	0.080 J	26.2	354	6.38
	MW-20	10/05/2022	N	0.0333 [J]	28.7	18.1	0.210	28.5	342	6.28
		04/04/2023	N	0.0461	30.8	18.2	< 0.100 U	24.0	308	6.29
		10/10/2023	N	0.0241	28.6	17.4	0.220	26.8	280	6.17
		01/25/2021	N	0.594	98.8	44.8	< 0.10 U	377	588	5.26
	MW-21	04/05/2021	N	0.594	84.8	42.8	< 0.10 U	425	770	5.26
		10/13/2021	N	NU	NU	NU	NU	NU	NU	5.26
		11/11/2021	N	0.691	70.2	28.5	< 0.10 U	354	602	5.01
		04/07/2022	N	0.754	68.4	23.4	< 0.10 U	318	620	5.89
Downgradient		10/05/2022	N	0.786 [J]	73.5	20.8	< 0.10 U	306	594	5.15
Downgradient		11/22/2022	N	1.48	n/a	n/a	n/a	n/a	n/a	5.37
		04/04/2023	N	1.06 [J]	62.3	17.4	< 0.100 U	292	496	5.43
		05/01/2023	N	0.734	n/a	n/a	n/a	n/a	n/a	5.33
		10/10/2023	N	0.652	55.6	14.6	<0.10 U	254	402	5.33
		01/25/2021	N	0.0383 [J]	60.5	39.8	0.060 J	93.6	198	5.72
		04/05/2021	Ν	0.0491	53.6	43.0	0.060 J	99.6	372	5.56
		10/13/2021	N	0.0450	53.4	38.4	0.080 J	107	336	5.42
	MW-22	04/07/2022	Ν	0.0487	54.0	32.5	< 0.10 U	114	372	5.54
		10/05/2022	N	0.0538 [J]	53.5	34.8	< 0.10 U	118	356	5.27
		04/04/2023	Ν	0.0403	59.1	33.2	< 0.100 U	135	338	5.69
		10/10/2023	Ν	0.018 J	50.0	33.3	0.0600 J	131	332	5.35

Notes

N Normal sample

FD Field Duplicate

J Concentration is an estimated value. Result is less than the method quantition limit but \geq to the method detection limit.

JL Estimated data - bias in sample, likely to be low.; the reported quantitation limit or sample concentration is

approximated due to exceedance of one or more QC requirements.

U Analyte was not detected at or above the method detection limit.

NU Resampled for analyte. Data not used.

n/a Not analyzed

mg/L Milligrams per liter

su Standard units

Appendix A Detection Monitoring Data (April 2023)

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

April 13, 2023

Lori Burris TRC Corporation 14701 St. Mary's Lane Suite 500 Houston, TX 77079

Work Order: HS23040177

Laboratory Results for: NRG Limestone - Appedix III

Dear Lori Burris,

ALS Environmental received 12 sample(s) on Apr 04, 2023 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

march

Generated By: JUMOKE.LAWAL Andy C. Neir

Client:	TRC Corporation	
Project:	NRG Limestone - Appedix III	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS23040177	i ackage oover i age

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Client:	TRC Corporation	
Project:	NRG Limestone - Appedix III	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS23040177	Fachage Cover Fage
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

march

Andy C. Neir

		Laboratory Review Checklist: 1							
		J	C Date:04/13/2						
Proje	ect Na	11	boratory Job Numb		r: HS23	040177			
Revie	ewer l		ep Batch Numb 125,192190,R4320		32202,R4	32235,R4	32320		
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵	
R1	OI	Chain-of-custody (C-O-C)							
		Did samples meet the laboratory's standard conditions of sample	e acceptability	37					
		upon receipt?		X X				-	
R2	OI	Were all departures from standard conditions described in an ex- Sample and quality control (QC) identification	ception report?	Å					
<u>K2</u>	01	Are all field sample ID numbers cross-referenced to the laborate	ory ID numbers?	Х					
		Are all laboratory ID numbers cross-referenced to the correspon		X					
R3	OI	Test reports							
		Were all samples prepared and analyzed within holding times?		Х					
		Other than those results < MQL, were all other raw values brack	teted by						
		calibration standards?		Х					
		Were calculations checked by a peer or supervisor?		Х					
		Were all analyte identifications checked by a peer or supervisor		Х					
		Were sample detection limits reported for all analytes not detect		Х		37			
		Were all results for soil and sediment samples reported on a dry Were % moisture (or solids) reported for all soil and sediment sa				X X			
		Were bulk soils/solids samples for volatile analysis extracted wi				Λ	-		
		SW-846 Method 5035?	an methanor per			x			
		If required for the project, TICs reported?				X X			
R4	0	Surrogate recovery data							
		Were surrogates added prior to extraction?				Х			
		Were surrogate percent recoveries in all samples within the labo	ratory QC	-					
		limits?				Х			
R5	OI	Test reports/summary forms for blank samples							
		Were appropriate type(s) of blanks analyzed?		X X					
			ks analyzed at the appropriate frequency?						
		Were method blanks taken through the entire analytical process, preparation and, if applicable, cleanup procedures?	menuaing	Х					
		Were blank concentrations < MQL?		X			-		
R6	OI	Laboratory control samples (LCS):							
		Were all COCs included in the LCS?		Х					
		Was each LCS taken through the entire analytical procedure, inc	cluding prep and						
	<u> </u>	cleanup steps?		Х					
		Were LCSs analyzed at the required frequency?		Х					
		Were LCS (and LCSD, if applicable) %Rs within the laboratory		Х					
		Does the detectability data document the laboratory's capability	to detect the	\mathbf{v}					
		COCs at the MDL used to calculate the SDLs? Was the LCSD RPD within QC limits?		X X			-		
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data		Λ					
		Were the project/method specified analytes included in the MS a	and MSD?	Х					
		Were MS/MSD analyzed at the appropriate frequency?		X	1	1	1	1	
		Were MS (and MSD, if applicable) %Rs within the laboratory Q	C limits?		Х			1	
		Were MS/MSD RPDs within laboratory QC limits?		Х					
R8	OI	Analytical duplicate data							
		Were appropriate analytical duplicates analyzed for each matrix		X					
		Were analytical duplicates analyzed at the appropriate frequency		X					
DA		Were RPDs or relative standard deviations within the laboratory	QC limits?	Х					
R9	OI	Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laborator	ny data maalza aa?	Х					
		Do the MQLs for each method analyte included in the laborator Do the MQLs correspond to the concentration of the lowest non		Λ					
		standard?		Х					
	1	Are unadjusted MQLs and DCSs included in the laboratory data	package?	X			1		
R10	OI	Other problems/anomalies	. 0						
		Are all known problems/anomalies/special conditions noted in the	his LRC and						
		ER?		Х				2	
		Were all necessary corrective actions performed for the reported		Х					
		Was applicable and available technology used to lower the SDL	and minimize	37					
		the matrix interference effects on the sample results?	Dao car f	Х					
		Is the laboratory NELAC-accredited under the Texas Laboratory the analytes, matrices and methods associated with this laborato		Х					
		the analytes, matrices and methods associated with this laborato	i y uata package?	Λ			-		
	1								

		Laboratory Review Check	list: Supporting Da	ita					
Labo	ratory	Name: ALS Laboratory Group	RC Date: 04/13/2	023					
Proje	ect Nai	ne: NRG Limestone - Appendix III L	aboratory Job Nu	mber:	HS2304	0177			
		P	rep Batch Number	r(s):					
Revi	ewer l	Jame: Andy Neir 19	92125,192190,R43	32019,	R43220	2,R4322 NA ³	235,R43	2320	
# ¹	A ²	Description		Yes	No	NR ⁴			
S1	OI	Initial calibration (ICAL)							
		Were response factors and/or relative response factors for each	n analyte within QC	v					
		limits? Were percent RSDs or correlation coefficient criteria met?		X X					
		Was the number of standards recommended in the method use	d for all analytes?	X					
		Were all points generated between the lowest and highest stan							
		calculate the curve?		Х					
		Are ICAL data available for all instruments used?		Х					
		Has the initial calibration curve been verified using an appropriate	riate second source						
		standard?		Х					
		Initial and continuing calibration verification (ICCV and C	CCV) and						
S2 OI	continuing calibration blank (CCB)								
		Was the CCV analyzed at the method-required frequency?		X					
	Were percent differences for each analyte within the method-r	equired QC limits?	Х				-		
		Was the ICAL curve verified for each analyte?		Х					
		Was the absolute value of the analyte concentration in the inor	ganic CCB < MDL?		Х			3	
S3	0	Mass spectral tuning:							
		Was the appropriate compound for the method used for tuning		Х					
~ .		Were ion abundance data within the method-required QC limit	ts?	Х					
S4	0	Internal standards (IS):	· 1001	V					
		Were IS area counts and retention times within the method-rec Raw data (NELAC section 1 appendix A glossary, and section		Х					
S 5	OI	17025 section							
00	01	Were the raw data (for example, chromatograms, spectral data							
		analyst?	,	Х					
		Were data associated with manual integrations flagged on the	raw data?	Х					
S6	0	Dual column confirmation							
~-	-	Did dual column confirmation results meet the method-require	ed QC?			Х			
S 7	0	Tentatively identified compounds (TICs):	1						
		If TICs were requested, were the mass spectra and TIC data su checks?	bject to appropriate			х			
S8	I	Interference Check Sample (ICS) results:				Λ			
	-	Were percent recoveries within method QC limits?		Х					
S9	Ι	Serial dilutions, post digestion spikes, and method of stand	ard additions						
		Were percent differences, recoveries, and the linearity within	the QC limits						
		specified in the method?			Х			4	
S10	OI	Method detection limit (MDL) studies		N					
		Was a MDL study performed for each reported analyte?	10 - 9	X X					
S11	OI	Is the MDL either adjusted or supported by the analysis of DC Proficiency test reports:	.091	Λ					
~ • • •		Was the laboratory's performance acceptable on the applicable	proficiency tests or						
		evaluation studies?		Х					
S12	OI	Standards documentation							
		Are all standards used in the analyses NIST-traceable or obtain	ned from other						
612	OT	appropriate sources?		X					
S13	OI	Compound/analyte identification procedures Are the procedures for compound/analyte identification docum	nented?	X					
S14	OI	Demonstration of analyst competency (DOC)							
~11		Was DOC conducted consistent with NELAC Chapter 5C or I	SO/IEC 4?	Х					
		Is documentation of the analyst's competency up-to-date and o		X					
		Verification/validation documentation for methods (NELA							
S15	OI	ISO/IEC 17025 Section 5)							
		Are all the methods used to generate the data documented, ver	ntied, and validated,	v					
S16	OI	where applicable?		X					
510	01	Laboratory standard operating procedures (SOPs): Are laboratory SOPs current and on file for each method performed	ormed?	X					
Items	identifi	ed by the letter "R" must be included in the laboratory data			I TRRP_re	I Annired re	nort(e)	ltems	
		the letter "S" should be retained and made available upon					· · · · · · · · · · · · · · · · · · ·		
identif	ieu bv		requestion the abbi	opriate	TCICITIIO				

	Laboratory Review Che	cklist: Exception Reports
Labor	ratory Name: ALS Laboratory Group	LRC Date: 04/13/2023
Proje	ct Name: NRG Limestone - Appendix III	Laboratory Job Number: HS23040177
		Prep Batch Number(s):
Revie	ewer Name: Andy Neir	192125,192190,R432019,R432202,R432235,R432320
ER# ⁵	Description	
1	in the parent sample is greater than 4x the spike amount Batch 192190, Metals Method SW6020, sample MW-21, MS an in the parent sample is greater than 4x the spike amount	d MSD recovered outside the control limit for Calcium, however the result d MSD recovered outside the control limit for Calcium, however the result recovered outside the control limit for Sulfate due to suspect matrix effect.
2	The analysis for Fluoride was subcontracted to ALS Environmen Login Notes: IDs differ - times match. COC - MW-28 Labels - MW-28R	ntal in Holland, MI. Final report attached
3	See Run Log and CCB Exceptions Report.	
4	parent sample is greater than 4x the spike amount	ecovered outside the control limit for Calcium however the result in the covered outside the control limit for Calcium however the result in the
	Batch 192190, Metals Method SW6020, sample MW-21 The pewere greater than 10% for Boron	rcent difference between the results of the sample and the serial dilution
identifi O = Or NA = N NR = N	dentified by the letter "R" must be included in the laboratory ed by the letter "S" should be retained and made available u ganic Analyses; I = Inorganic Analyses (and general chemis Jot Applicable; Jot Reviewed; Exception Report identification number (an Exception Report	try, when applicable);

Client: TRC Corporation

Project: NRG Limestone - Appedix III

WorkOrder: HS23040177

Start Date: 11-Apr-2023

End Date: 12-Apr-2023

Run ID:ICPMS06_432302 Instrument:ICPMS06 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
ICV	1	11-Apr-2023 10:56	026_ICV.d	B CA NA
LLICV2	1	11-Apr-2023 10:57	 027LCV2.d	B CA NA
LLICV5	1	11-Apr-2023 10:59	028LCV5.d	B CA NA
ICB	1	11-Apr-2023 11:01	029_ICB.d	B CA NA
ICSA	1	11-Apr-2023 11:05	 031ICSA.d	B CA NA
ICSAB	1	11-Apr-2023 11:08	032ICSB.d	B CA NA
CCV 1	1	11-Apr-2023 11:16	035 CCV.d	B CA NA
CCB 1	1	11-Apr-2023 11:18	 036_CCB.d	B CA NA
CCV 2	1	11-Apr-2023 11:41	047_CCV.d	B CA NA
CCB 2	1	11-Apr-2023 11:43	048_CCB.d	B CA NA
CCV 3	1	11-Apr-2023 12:08	059_CCV.d	B CA NA
CCB 3	1	11-Apr-2023 12:10	 060_CCB.d	B CA NA
CCB 4	1	11-Apr-2023 12:35	072_CCB.d	B CA NA
CCV 4	1	11-Apr-2023 12:37	073_CCV.d	B CA NA
CCV 5	1	11-Apr-2023 12:59	084_CCV.d	B CA NA
CCB 5	1	11-Apr-2023 13:01	085_CCB.d	B CA NA
CCV 6	1	11-Apr-2023 13:23	096_CCV.d	B CA NA
CCB 6	1	11-Apr-2023 13:25	097_CCB.d	B CA NA
CCV 7	1	11-Apr-2023 13:46	108_CCV.d	B CA NA
CCB 7	1	11-Apr-2023 13:48	109_CCB.d	B CA NA
CCV 8	1	11-Apr-2023 14:14	120 CCV.d	B CA NA
CCB 8	1	11-Apr-2023 14:15	121_CCB.d	B CA NA
CCV 9	1	11-Apr-2023 14:49	132_CCV.d	B CA NA
CCB 9	1	11-Apr-2023 14:51	133_CCB.d	B CA NA
CCV 10	1	11-Apr-2023 15:14	144_CCV.d	B CA NA
CCB 10	1	11-Apr-2023 15:15	145_CCB.d	B CA NA
CCV 11	1	11-Apr-2023 15:43	156_CCV.d	B CA NA
CCB 11	1	11-Apr-2023 15:45	157_CCB.d	B CA NA
CCV 12	1	11-Apr-2023 16:08	168_CCV.d	B CA NA
CCB 12	1	11-Apr-2023 16:10	169_CCB.d	B CA NA
CCV 13	1	11-Apr-2023 16:20	173_CCV.d	B CA NA
CCB 13	1	11-Apr-2023 16:22	174_CCB.d	B CA NA
CCV 14	1	11-Apr-2023 16:46	183_CCV.d	B CA NA
CCB 14	1	11-Apr-2023 16:47	184_CCB.d	B CA NA
CCV 15	1	11-Apr-2023 17:18	195_CCV.d	B CA NA
CCB 15	1	11-Apr-2023 17:24	198 CCB.d	B CA NA
CCV 16	1	11-Apr-2023 17:54	209_CCV.d	B CA NA
CCB 16	1	11-Apr-2023 17:55	210_CCB.d	B CA NA
CCV 17	1	11-Apr-2023 18:19	221_CCV.d	B CA NA
CCB 17	1	11-Apr-2023 18:20	222_CCB.d	B CA NA
CCV 18	1	11-Apr-2023 18:43	233_CCV.d	B CA NA
CCB 18	1	11-Apr-2023 18:45	234_CCB.d	B CA NA
ICCV 19		11-Apr-2023 20:11	266 ICV.d	B CA NA
LLCCV2	1 1	11-Apr-2023 20:11	267LCV2.d	B CA NA
LLCCV5	1	11-Apr-2023 20:15	268LCV5.d	B CA NA
ICCB 19	1	11-Apr-2023 20:15	269 ICB.d	B CA NA
CCV 20	1	11-Apr-2023 20:17	209_ICB.d 271_CCV.d	B CA NA
CCB 20		11-Apr-2023 20:23		
CCV 21	1	11-Apr-2023 20:23	272_CCB.d 308_CCV.d	B CA NA
CCB 21	1	11-Apr-2023 21:39	308_CCV.d 309_CCB.d	B CA NA
	1	11-Apr-2023 21.40	509_00D.u	

Privileged and Confidential

Client: TRC Corporation

Project: NRG Limestone - Appedix III

WorkOrder: HS23040177

Start Date: 11-Apr-2023

End Date: 12-Apr-2023

Run ID:ICPMS06_432302
Instrument:ICPMS06
Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
MBLK-192125	1	11-Apr-2023 21:42	310SMPL.d	B CA
LCS-192125	1	11-Apr-2023 21:44	311SMPL.d	B CA
MW-02	1	11-Apr-2023 21:46	312SMPL.d	B CA
MW-02SD	5	11-Apr-2023 21:48	313SMPL.d	B CA
MW-02MS	1	11-Apr-2023 21:50	314SMPL.d	B CA
MW-02MSD	1	11-Apr-2023 21:52	315SMPL.d	B CA
MW-02PDS	1	11-Apr-2023 21:54	316SMPL.d	B CA
CCV 22	1	11-Apr-2023 21:56	317_CCV.d	B CA NA
CCB 22	1	11-Apr-2023 21:58	318_CCB.d	B CA NA
CCV 23	1	11-Apr-2023 22:14		B CA NA
CCB 23	1	11-Apr-2023 22:15		B CA NA
CCV 24	1	11-Apr-2023 22:33		B CA NA
CCB 24	1	11-Apr-2023 22:35	337_CCB.d	B CA NA
MW-01	1	11-Apr-2023 22:45	 342SMPL.d	ВСА
MW-17	1	11-Apr-2023 22:47	343SMPL.d	BCA
CCV 25	1	11-Apr-2023 22:51	345_CCV.d	B CA NA
CCB 25	1	11-Apr-2023 22:53	346_CCB.d	B CA NA
MBLK-192190	1	11-Apr-2023 22:59	348SMPL.d	B CA NA
LCS-192190	1	11-Apr-2023 23:01	349SMPL.d	B CA NA
MW-21	1	11-Apr-2023 23:03	350SMPL.d	CANA
MW-21SD	5	11-Apr-2023 23:05	351SMPL.d	CANA
MW-21MS	1	11-Apr-2023 23:07	352SMPL.d	BCA
MW-21MSD	1	11-Apr-2023 23:09	353SMPL.d	B CA NA
MW-21PDS	1	11-Apr-2023 23:10	354SMPL.d	CANA
CCV 26	1	11-Apr-2023 23:14	356_CCV.d	B CA NA
CCB 26	1	11-Apr-2023 23:16	357_CCB.d	B CA NA
CCV 27	1	11-Apr-2023 23:36	367_CCV.d	B CA NA
CCB 27	1	11-Apr-2023 23:38	368_CCB.d	B CA NA
MW-18	1	11-Apr-2023 23:40	369SMPL.d	BCA
MW-19	1	11-Apr-2023 23:42	370SMPL.d	BCA
MW-20	1	11-Apr-2023 23:44	371SMPL.d	BCA
MW-22	1	11-Apr-2023 23:46	372SMPL.d	BCA
MW-27R	1	11-Apr-2023 23:48	373SMPL.d	B
MW-28	1	11-Apr-2023 23:50	374SMPL.d	B
Field Blank-01	1	11-Apr-2023 23:52	375SMPL.d	BCA
Field Dup[licate-01	1	11-Apr-2023 23:54	376SMPL.d	BCA
CCV 28	1	11-Apr-2023 23:58	378 CCV.d	B CA NA
CCB 28	1	12-Apr-2023 00:00	379_CCB.d	B CA NA
CCV 29	1	12-Apr-2023 00:00	387_CCV.d	B CA NA
CCB 29	1	12-Apr-2023 00:18	388_CCB.d	B CA NA
LLCCV2	1	12-Apr-2023 00:10	389LCV2.d	B CA NA
LLCCV5	1	12-Apr-2023 00:20	390LCV5.d	B CA NA
ICSA		12-Apr-2023 00:23	391ICSA.d	B CA NA
ICSAB	1	12-Apr-2023 00:25	392ICSB.d	B CA NA
	I	12-Ap1-2023 00.20	532105D.u	

Client: TRC Corporation

Project: NRG Limestone - Appedix III

WorkOrder: HS23040177

Start Date: 12-Apr-2023

End Date: 13-Apr-2023

Run ID:ICPMS06_432437 Instrument:ICPMS06 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
LLICV2	1	12-Apr-2023 11:07	025LCV2.d	BCA
LLICV5	1	12-Apr-2023 11:09	026LCV5.d	B CA
ICB	1	12-Apr-2023 11:11	027_ICB.d	B CA NA
ICV	1	12-Apr-2023 11:13	028_ICV.d	B CA NA
ICSA	1	12-Apr-2023 11:17	030ICSA.d	B CA
ICSAB	1	12-Apr-2023 11:19	031ICSB.d	BCA
CCV 1	1	12-Apr-2023 11:52	046_CCV.d	B CA NA
CCB 1	1	12-Apr-2023 11:54	047_CCB.d	B CA NA
MW-02MSD	1	12-Apr-2023 12:00	049SMPL.d	
MW-21MS	1	12-Apr-2023 12:04	051SMPL.d	NA
MW-21	10	12-Apr-2023 12:06	052SMPL.d	В
MW-21SD	50	12-Apr-2023 12:07	053SMPL.d	В
MW-21PDS	10	12-Apr-2023 12:09	054SMPL.d	В
CCV 2	1	12-Apr-2023 12:18	058_CCV.d	B CA NA
CCB 2	1	12-Apr-2023 12:20	059_CCB.d	B CA NA
MW-27R	20	12-Apr-2023 12:22	060SMPL.d	CA
MW-28	20	12-Apr-2023 12:24	061SMPL.d	CA
CCV 3	1	12-Apr-2023 12:39	067_CCV.d	B CA NA
CCB 3	1	12-Apr-2023 12:41	 068_CCB.d	B CA NA
CCV 4	1	12-Apr-2023 13:04	079_CCV.d	B CA NA
CCB 4	1	12-Apr-2023 13:05	 080_CCB.d	B CA NA
CCV 5	1	12-Apr-2023 13:35	 091_CCV.d	B CA NA
CCB 5	1	12-Apr-2023 13:37	092_CCB.d	B CA NA
CCV 6	1	12-Apr-2023 13:51	 099 CCV.d	B CA NA
CCB 6	1	12-Apr-2023 13:52	100_CCB.d	B CA NA
CCV 7	1	12-Apr-2023 14:31	111_CCV.d	B CA NA
CCB 7	1	12-Apr-2023 14:33	112_CCB.d	B CA NA
CCV 8	1	12-Apr-2023 15:03	 124_CCV.d	B CA NA
CCB 8	1	12-Apr-2023 15:05	 125_CCB.d	B CA NA
ICCV 9	1	12-Apr-2023 15:47	 145_ICV.d	B CA NA
LLCCV2	1	12-Apr-2023 15:49	146LCV2.d	BCA
LLCCV5	1	12-Apr-2023 15:51	147LCV5.d	BCA
ICCB 9	1	12-Apr-2023 15:53	148_ICB.d	B CA NA
CCV 10	1	12-Apr-2023 15:57	150_CCV.d	B CA NA
CCB 10	1	12-Apr-2023 15:59	151_CCB.d	B CA NA
CCV 11	1	12-Apr-2023 16:30	162_CCV.d	B CA NA
CCB 11	1	12-Apr-2023 16:32		B CA NA
CCV 12	1	12-Apr-2023 17:03	174 CCV.d	B CA NA
CCB 12	1	12-Apr-2023 17:05	175_CCB.d	B CA NA
CCB 13	1	12-Apr-2023 17:30	187_CCB.d	B CA NA
CCV 13	1	12-Apr-2023 17:35	189_CCV.d	B CA NA
CCV 14	1	12-Apr-2023 17:58	200 CCV.d	B CA NA
CCB 14	1	12-Apr-2023 18:00	201_CCB.d	B CA NA
CCV 15	1	12-Apr-2023 18:12	207_CCV.d	BCANA
CCB 15	1	12-Apr-2023 18:14	208_CCB.d	B CA NA
CCV 16	1	12-Apr-2023 18:46	219_CCV.d	B CA NA
CCB 16	1	12-Apr-2023 18:48	220_CCB.d	B CA NA
CCV 17	1	12-Apr-2023 19:06	229_CCV.d	B CA NA
CCB 17	1	12-Apr-2023 19:08	230_CCB.d	B CA NA
CCV 18	1	12-Apr-2023 19:20	236_CCV.d	B CA NA
• •	•			

Privileged and Confidential

Client: TRC Corporation

Project: NRG Limestone - Appedix III

WorkOrder: HS23040177

Start Date: 12-Apr-2023

End Date: 13-Apr-2023

Run ID:ICPMS06_432437
Instrument:ICPMS06
Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
CCB 18	1	12-Apr-2023 19:22	237_CCB.d	B CA NA
CCV 19	1	12-Apr-2023 20:07	247_CCV.d	B CA NA
CCB 19	1	12-Apr-2023 20:09	248_CCB.d	B CA NA
CCV 20	1	12-Apr-2023 20:25	256_CCV.d	B CA NA
CCB 20	1	12-Apr-2023 20:27	257_CCB.d	B CA NA
CCV 21	1	12-Apr-2023 20:48	268_CCV.d	B CA NA
CCB 21	1	12-Apr-2023 20:50	269_CCB.d	B CA NA
CCV 22	1	12-Apr-2023 21:08	278_CCV.d	B CA NA
CCB 22	1	12-Apr-2023 21:10	279_CCB.d	B CA NA
CCV 23	1	12-Apr-2023 21:22	285_CCV.d	B CA NA
CCB 23	1	12-Apr-2023 21:23	286_CCB.d	B CA NA
CCV 24	1	12-Apr-2023 21:37	292_CCV.d	B CA NA
CCB 24	1	12-Apr-2023 21:39	293_CCB.d	B CA NA
CCV 25	1	12-Apr-2023 21:53	300_CCV.d	B CA NA
CCB 25	1	12-Apr-2023 21:55	301_CCB.d	B CA NA
ICCV 26	1	12-Apr-2023 22:22	315_ICV.d	B CA NA
LLCCV2	1	12-Apr-2023 22:24	316LCV2.d	B CA
LLCCV5	1	12-Apr-2023 22:25	317LCV5.d	B CA
ICCB 26	1	12-Apr-2023 22:27	318_ICB.d	B CA NA
CCV 27	1	12-Apr-2023 22:31	320_CCV.d	B CA NA
CCB 27	1	12-Apr-2023 22:33	321_CCB.d	B CA NA
CCV 28	1	12-Apr-2023 22:49	329_CCV.d	B CA NA
CCB 28	1	12-Apr-2023 22:51	330_CCB.d	B CA NA
CCV 29	1	12-Apr-2023 23:12	341_CCV.d	B CA NA
CCB 29	1	12-Apr-2023 23:14	342_CCB.d	B CA NA
CCV 30	1	13-Apr-2023 00:17	351_CCV.d	B CA NA
CCB 30	1	13-Apr-2023 00:19	352_CCB.d	B CA NA
CCV 31	1	13-Apr-2023 00:41	363_CCV.d	B CA NA
CCB 31	1	13-Apr-2023 00:43	364_CCB.d	B CA NA
CCV 32	1	13-Apr-2023 00:53	369_CCV.d	B CA NA
CCB 32	1	13-Apr-2023 00:55	370_CCB.d	B CA NA
LLCCV2	1	13-Apr-2023 00:56	371LCV2.d	B CA
LLCCV5	1	13-Apr-2023 00:58	372LCV5.d	B CA
ICSA	1	13-Apr-2023 01:00	373ICSA.d	B CA
ICSAB	1	13-Apr-2023 01:02	374ICSB.d	B CA

Client: Project: WorkOrder	TRC Corporation NRG Limestone - Appedix III : HS23040177			Insti	Run ID:ICPMS06_432302 rument:ICPMS06 /lethod:SW6020A	
CCB 2	Date: 11-Apr-2023 11:43	Seq: 7228469		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Sodium		16.99	14	200	
CCB 3	Date: 11-Apr-2023 12:10	Seq: 7228527		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		12.82	11	20	
	Sodium		16.32	14	200	
CCB 5	Date: 11-Apr-2023 13:01	Seq: 7228662		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		12.22	11	20	
	Sodium		20.49	14	200	
CCB 7	Date: 11-Apr-2023 13:48	Seq: 7228719		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		11.1	11	20	
	Sodium		15.34	14	200	
CCB 8	Date: 11-Apr-2023 14:15	Seq: 7228870		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		12.93	11	20	
	Sodium		44.84	14	200	
CCB 9	Date: 11-Apr-2023 14:51	Seq: 7228882		D/F:	0	
	Analyte		Result	MDL	Report Limit	
	Sodium		68.22	14	200	
CCB 10	Date: 11-Apr-2023 15:15	Seq: 7229452		D/F:	0	
	Analyte		Result	MDL	Report Limit	
	Boron		12.15	11	20	
	Sodium		59.64	14	200	
CCB 11	Date: 11-Apr-2023 15:45	Seq: 7229539		D/F:	0	
	Analyte		Result	MDL	Report Limit	
	Boron		11.99	11	20	
0.05.40	Sodium	0 7000554	43.66	14	200	
CCB 12	Date: 11-Apr-2023 16:10	Seq: 7229551		D/F:	•	
	Analyte		Result	MDL	Report Limit	
	Sodium		37.45	14	200	
CCB 13	Date: 11-Apr-2023 16:22	Seq: 7229650		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		11.32	11	20	
	Sodium	_	382	14	200	
CCB 14	Date: 11-Apr-2023 16:47	Seq: 7229657		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Sodium		47.63	14	200	
CCB 15	Date: 11-Apr-2023 17:24	Seq: 7229783		D/F:	1 Units: ug/L	

Privileged and Confidential

Client:TRC CorporationProject:NRG Limestone - Appedix IIIWorkOrder:HS23040177					Run ID:ICPMS06_432302 Instrument:ICPMS06 Method:SW6020A			
	В	oron		15.48	11	20		
	S	odium		14.72	14	200		
CCB 16	Date: 11-A	pr-2023 17:55	Seq: 7229889		D/F	י:1 נ	Jnits: ug/L	
	A	nalyte		Result	MDL	Report Limit		
		oron		13.34	11	20		
	S	odium		291.1	14	200		
CCB 17	Date: 11-A	pr-2023 18:20	Seq: 7229901		D/F	-: 1 I	Jnits: ug/L	
	A	nalyte		Result	MDL	Report Limit		
	S	odium		96.26	14	200		
CCB 18	Date: 11-A	pr-2023 18:45	Seq: 7229913		D/F	። 1	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	S	odium		193.3	14	200		
CCB 21	Date: 11-A	pr-2023 21:40	Seq: 7230191		D/F	:1 I	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	S	odium		16.38	14	200		
CCB 22	Date: 11-A	pr-2023 21:58	Seq: 7230200		D/F	⁻ : 1 ሀ	Jnits: ug/L	
	A	nalyte		Result	MDL	Report Limit		
	В	oron		22.77	11	20		
	S	odium		20.26	14	200		
CCB 24	Date: 11-A	pr-2023 22:35	Seq: 7230179		D/F	:1 I	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	В	oron		13.12	11	20		
CCB 26	Date: 11-A	pr-2023 23:16	Seq: 7230211		D/F	: 1 נ	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	В	oron		21.92	11	20		
CCB 28	Date: 12-A	pr-2023 00:00	Seq: 7230233		D/F	-: 1 I	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	S	odium		-14.96	14	200		
CCB 29	Date: 12-A	pr-2023 00:18	Seq: 7230239		D/F	-: 1 U	Jnits: ug/L	
	Α	nalyte		Result	MDL	Report Limit		
	S	odium		-19.82	14	200		

Date: 13-Apr-23

CCB 1 Date: 12-Apr-2023 11:54 Seq: 7231433 D/F: 1 Units: ug/L Analyte Result MDL Report Limit	
Boron 12.82 11 20	
Sodium 24.14 14 200	
CCB 2 Date: 12-Apr-2023 12:20 Seq: 7231474 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Boron 11.57 11 20	
Sodium 69.11 14 200	
CCB 3 Date: 12-Apr-2023 12:41 Seq: 7231516 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium 16.23 14 200	
CCB 4 Date: 12-Apr-2023 13:05 Seq: 7231763 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium 70.73 14 200	
CCB 5 Date: 12-Apr-2023 13:37 Seq: 7231770 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium 44.63 14 200	
CCB 6 Date: 12-Apr-2023 13:52 Seq: 7231776 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium 30.44 14 200	
CCB 7 Date: 12-Apr-2023 14:33 Seq: 7232098 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium 41.57 14 200	
CCB 8 Date: 12-Apr-2023 15:05 Seq: 7232241 D/F: 1 Units: ug/L	
AnalyteResultMDLReport LimitBoron12.481120	
Sodium 47.1 14 200	
CCB 11 Date: 12-Apr-2023 16:32 Seq: 7232551 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	
Sodium16.7314200	
CCB 14 Date: 12-Apr-2023 18:00 Seq: 7232878 D/F: 1 Units: ug/L	
AnalyteResultMDLReport LimitBoron13.811120	
Analyte Result MDL Report Limit	
Boron 17.25 11 20 Sodium 26.09 14 200	
CCB 16 Date: 12-Apr-2023 18:48 Seq: 7233241 D/F: 1 Units: ug/L	
AnalyteResultMDLReport LimitSodium35.1114200	
CCB 17 Date: 12-Apr-2023 19:08 Seq: 7233251 D/F: 1 Units: ug/L	
Analyte Result MDL Report Limit	

Privileged and Confidential

				ee	
Client: TRC	Corporation				Run ID:ICPMS06_432437
Project: NRG	Limestone - Appedix III			Inst	rument:ICPMS06
, WorkOrder: HS23	040177			Ν	Method:SW6020A
	Sodium		321.8	14	200
CCB 18	Date: 12-Apr-2023 19:22	Seq: 7233258	02.110	D/F:	
	Analyte	009.7200200	Result	MDL	Report Limit
	Sodium		400.7	14	200
CCB 19		Sog: 7022067	400.7	D/F:	
CCB 19	Date: 12-Apr-2023 20:09	Seq: 7233267	Result		9
	Analyte Boron		103.7	MDL	Report Limit 20
	Calcium		103.7	<u> </u>	500
	Sodium		2948	14	200
CCB 20	Date: 12-Apr-2023 20:27	Seq: 7233276		D/F:	1 Units: ug/L
	Analyte		Result	MDL	Report Limit
	Boron		66.56	11	20
	Sodium		674.6	11	200
CCB 21	Date: 12-Apr-2023 20:50	Seq: 7233288		D/F:	1 Units: ug/L
00021	•	000.7200200	Result	MDL	9
	Analyte Boron		75.69		Report Limit 20
	Sodium		295.8	11 14	200
CCB 22	Date: 12-Apr-2023 21:10	Seq: 7233298	20010	D/F:	
000 22	•	0eq. 7200290	Desult		6
	Analyte		Result	MDL	Report Limit
	Boron Sodium		55.52 251.5	<u> </u>	20 200
CCB 23	Date: 12-Apr-2023 21:23	Seq: 7233305	201.0	D/F:	
CCB 23	•	Seq. 7255505	Desult		9
	Analyte Boron		47.85	MDL	Report Limit 20
	Sodium		274.8	<u> </u>	20
CCB 24		Sog: 7022212	21110	D/F:	
CCB 24	Date: 12-Apr-2023 21:39	Seq: 7233312	Desult		9
	Analyte		Result	MDL	Report Limit
	Boron Sodium		27.92	11	20 200
CCB 25		Com 700000	120.0		
ССБ 25	Date: 12-Apr-2023 21:55	Seq: 7233320	D	D/F:	Ũ
	Analyte		Result	MDL	Report Limit
	Boron Sodium		33.55 184.1	11	20 200
		Soc. 700007	104.1	14 D/F:	
ICCB 26	Date: 12-Apr-2023 22:27	Seq: 7233337	D 11	D/F:	•
	Analyte		Result	MDL	Report Limit
	Sodium		-25.68	14	200
					1 Inite: ug/l
CCB 27	Date: 12-Apr-2023 22:33	Seq: 7233340		D/F:	1 Units: ug/L
CCB 27	Analyte	Seq: 7233340	Result	D/F: MDL	Report Limit
CCB 27	•	Seq: 7233340	Result -27.56		8
CCB 27 CCB 28	Analyte	Seq: 7233340 Seq: 7233349		MDL	Report Limit 200
	Analyte Sodium			MDL 14	Report Limit 200

Client:	TRC Corporation				Run ID:ICPMS06_432437		
Project:	roject: NRG Limestone - Appedix III Instrument:ICPMS06						
WorkOrde	r: HS23040177				Method:SW6020A		
CCB 29	Date: 12-Apr-2023 23:14	Seq: 7233361		D/F	: 1 Units: ug/L		
	Analyte		Result	MDL	Report Limit		
	Sodium		-37.27	14	200		
CCB 30	Date: 13-Apr-2023 00:19	Seq: 7233366		D/F	: 1 Units: ug/L		
	Analyte		Result	MDL	Report Limit		
	Analyte Sodium		-23.6	MDL 14	Report Limit 200		
CCB 31	-	Seq: 7233378			200		
CCB 31	Sodium	Seq: 7233378		14	200		
CCB 31	Sodium Date: 13-Apr-2023 00:43	Seq: 7233378	-23.6	14 D/F	200 : 1 Units: ug/L		
CCB 31 CCB 32	Sodium Date: 13-Apr-2023 00:43 Analyte	Seq: 7233378 Seq: 7233384	-23.6	14 D/F MDL	200 1 Units: ug/L Report Limit 200		
	Sodium Date: 13-Apr-2023 00:43 Analyte Sodium		-23.6	14 D/F MDL 14	200 1 Units: ug/L Report Limit 200		

Client:TRC CorporationProject:NRG Limestone - Appedix IIIWork Order:HS23040177

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS23040177-01	MW-01	Water		04-Apr-2023 09:50	04-Apr-2023 15:00	
HS23040177-02	MW-02	Water		04-Apr-2023 09:05	04-Apr-2023 15:00	
HS23040177-03	MW-17	Water		04-Apr-2023 10:30	04-Apr-2023 15:00	
HS23040177-04	MW-18	Water		04-Apr-2023 11:10	04-Apr-2023 15:00	
HS23040177-05	MW-19	Water		04-Apr-2023 12:30	04-Apr-2023 15:00	
HS23040177-06	MW-20	Water		04-Apr-2023 11:50	04-Apr-2023 15:00	
HS23040177-07	MW-21	Water		04-Apr-2023 12:35	04-Apr-2023 15:00	
HS23040177-08	MW-22	Water		04-Apr-2023 11:55	04-Apr-2023 15:00	
HS23040177-09	MW-27R	Water		04-Apr-2023 09:25	04-Apr-2023 15:00	
HS23040177-10	MW-28	Water		04-Apr-2023 10:15	04-Apr-2023 15:00	
HS23040177-11	Field Blank-01	Water		04-Apr-2023 12:40	04-Apr-2023 15:00	
HS23040177-12	Field Dup[licate-01	Water		04-Apr-2023 10:00	04-Apr-2023 15:00	

Client:	TRC Corporation	ANALYTICAL REPORT				
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177				
Sample ID:	MW-01	Lab ID:HS23040177-01				
Collection Date:	04-Apr-2023 09:50	Matrix:Water				
		DILUTION DATE				

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:S	W6020A		Prep:SW3010A	/ 10-Apr-2023	Analyst: JC
Boron	0.0356		0.0110	0.0200	mg/L	1	11-Apr-2023 22:45
Calcium	48.6		0.0340	0.500	mg/L	1	11-Apr-2023 22:45
ANIONS BY E300.0, REV 2.1, 199	3	Method	:E300				Analyst: TH
Chloride	289		2.00	5.00	mg/L	10	06-Apr-2023 15:27
Sulfate	< 0.200		0.200	0.500	mg/L	1	06-Apr-2023 19:08
TOTAL DISSOLVED SOLIDS BY S -2011	SM2540C	Method:	//2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	816		5.00	10.0	mg/L	1	07-Apr-2023 01:30
SUBCONTRACT ANALYSIS - FLOURIDE		Metho	d:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177
Sample ID:	MW-02	Lab ID:HS23040177-02
Collection Date:	04-Apr-2023 09:05	Matrix:Water
ANALYSES	RESULT QUAL SDL	DILUTION DATE MQL UNITS FACTOR ANALYZED

ANALISES	RESULT	QUAL	SDL	WQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6	020A		Prep:SW3010	A / 10-Apr-2023	Analyst: JC
Boron	0.425	(0.0110	0.0200	mg/L	1	11-Apr-2023 21:46
Calcium	178	(0.0340	0.500	mg/L	1	11-Apr-2023 21:46
ANIONS BY E300.0, REV 2.1, 199	3	Method:E3	300				Analyst: TH
Chloride	301		4.00	10.0	mg/L	20	06-Apr-2023 16:02
Sulfate	664		4.00	10.0	mg/L	20	06-Apr-2023 16:02
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2	540C				Analyst: DC
Total Dissolved Solids (Residue Filterable)	1,420		5.00	10.0	mg/L	1	07-Apr-2023 01:30
SUBCONTRACT ANALYSIS - FL	Method:N	IA				Analyst: SUBHO	
Subcontract Analysis	See Attached		0			1	11-Apr-2023 14:32

Client:	TRC Corporation		ANALYTICAL REPORT				
Project:	NRG Limestone - Appedix III		WorkOrder:HS23040177				
Sample ID:	MW-17		Lab ID:HS23040177-03				
Collection Date:	04-Apr-2023 10:30		Matrix:Water				
ANALYSES	RESULT QUAL SDL	MQL	DILUTION DATE UNITS FACTOR ANALYZED				

ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010	A / 10-Apr-2023	Analyst: JC
Boron	0.0249	0.0110	0.0200	mg/L	1	11-Apr-2023 22:47
Calcium	2.38	0.0340	0.500	mg/L	1	11-Apr-2023 22:47
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	8.60	0.200	0.500	mg/L	1	06-Apr-2023 15:33
Sulfate	7.79	0.200	0.500	mg/L	1	06-Apr-2023 15:33
TOTAL DISSOLVED SOLIDS BY S -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	122	5.00	10.0	mg/L	1	07-Apr-2023 01:30
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT			
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177			
Sample ID:	MW-18	Lab ID:HS23040177-04			
Collection Date:	04-Apr-2023 11:10	Matrix:Water			
		DILUTION DATE			

ANALYSES	RESULT	QUAL SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010A	/ 11-Apr-2023	Analyst: JC
Boron	0.0443	0.0110	0.0200	mg/L	1	11-Apr-2023 23:40
Calcium	67.1	0.0340	0.500	mg/L	1	11-Apr-2023 23:40
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	9.64	0.200	0.500	mg/L	1	06-Apr-2023 16:19
Sulfate	34.3	0.200	0.500	mg/L	1	06-Apr-2023 16:19
TOTAL DISSOLVED SOLIDS BY 3 -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	342	5.00	10.0	mg/L	1	07-Apr-2023 01:30
SUBCONTRACT ANALYSIS - FLO	OURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	11-Apr-2023 14:32

Client:	TRC Corporation		ANALY	TICAL REPORT	
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177			
Sample ID:	MW-19		Lab ID:HS2	3040177-05	
Collection Date:	04-Apr-2023 12:30		Matrix:Wate	er	
ANALYSES	RESULT QUAL SDL	MQL	DILUTIO UNITS FACTOR		

ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010	0A / 11-Apr-2023	Analyst: JC
Boron	0.0467	0.0110	0.0200	mg/L	1	11-Apr-2023 23:42
Calcium	34.6	0.0340	0.500	mg/L	1	11-Apr-2023 23:42
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	37.5	0.200	0.500	mg/L	1	06-Apr-2023 16:25
Sulfate	99.6	0.200	0.500	mg/L	1	06-Apr-2023 16:25
TOTAL DISSOLVED SOLIDS BY - -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	308	5.00	10.0	mg/L	1	07-Apr-2023 01:30
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177
Sample ID:	MW-20	Lab ID:HS23040177-06
Collection Date:	04-Apr-2023 11:50	Matrix:Water
		DILUTION DATE

ANALYSES	RESULT	QUAL S	DL MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020	A	Prep:SW3010A	/ 11-Apr-2023	Analyst: JC
Boron	0.0461	0.01	10 0.0200	mg/L	1	11-Apr-2023 23:44
Calcium	30.8	0.03	40 0.500	mg/L	1	11-Apr-2023 23:44
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	18.2	0.2	00 0.500	mg/L	1	06-Apr-2023 16:31
Sulfate	24.0	0.2	00 0.500	mg/L	1	06-Apr-2023 16:31
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M25400	;			Analyst: DC
Total Dissolved Solids (Residue, Filterable)	308	5.	00 10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FL	OURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0		1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177
Sample ID:	MW-21	Lab ID:HS23040177-07
Collection Date:	04-Apr-2023 12:35	Matrix:Water
		DILUTION DATE

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:S	V6020A		Prep:SW3010A	A / 11-Apr-2023	Analyst: JC
Boron	1.06		0.110	0.200	mg/L	10	12-Apr-2023 12:06
Calcium	62.3		0.0340	0.500	mg/L	1	11-Apr-2023 23:03
Sodium	15.8		0.0140	0.200	mg/L	1	11-Apr-2023 23:03
ANIONS BY E300.0, REV 2.1, 1993	;	Method	E300				Analyst: TH
Chloride	17.4		0.200	0.500	mg/L	1	06-Apr-2023 16:48
Sulfate	292		1.00	2.50	mg/L	5	06-Apr-2023 19:13
TOTAL DISSOLVED SOLIDS BY S -2011	M2540C	Method:N	12540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	496		5.00	10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FLC	URIDE	Method	I:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT			
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177			
Sample ID:	MW-22	Lab ID:HS23040177-08			
Collection Date:	04-Apr-2023 11:55	Matrix:Water			
		DILUTION DATE			

ANALYSES	RESULT	QUAL S	DL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW602	DA		Prep:SW3010A	/ 11-Apr-2023	Analyst: JC
Boron	0.0403	0.0	110	0.0200	mg/L	1	11-Apr-2023 23:46
Calcium	59.1	0.03	340	0.500	mg/L	1	11-Apr-2023 23:46
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300					Analyst: TH
Chloride	33.2	0.2	200	0.500	mg/L	1	06-Apr-2023 16:54
Sulfate	135	1	.00	2.50	mg/L	5	06-Apr-2023 19:19
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2540	с				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	338	5	.00	10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FL	OURIDE	Method:NA					Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	11-Apr-2023 14:32

Client:	TRC Corporation		ANALYTICAL REPORT
Project:	NRG Limestone - Appedix III		WorkOrder:HS23040177
Sample ID:	MW-27R		Lab ID:HS23040177-09
Collection Date:	04-Apr-2023 09:25		Matrix:Water
ANALYSES	RESULT QUAL SDL	MQL L	DILUTION DATE JNITS FACTOR ANALYZED

ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010	A / 11-Apr-2023	Analyst: JC
Boron	0.157	0.0110	0.0200	mg/L	1	11-Apr-2023 23:48
Calcium	482	0.680	10.0	mg/L	20	12-Apr-2023 12:22
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	2,230	10.0	25.0	mg/L	50	06-Apr-2023 17:58
Sulfate	583	2.00	5.00	mg/L	10	06-Apr-2023 17:46
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	5,800	5.00	10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	11-Apr-2023 14:32

Client:	TRC Corporation	ANALYTICAL REPORT			
Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177			
Sample ID:	MW-28	Lab ID:HS23040177-10			
Collection Date:	04-Apr-2023 10:15	Matrix:Water			
ANALYSES	RESULT QUAL SDL	DILUTION DATE MOL UNITS FACTOR ANALYZED			

ANALYSES	RESULT	QUAL SL	L MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020	A	Prep:SW3010A	A / 11-Apr-2023	Analyst: JC
Boron 0.217		0.01	0 0.0200	mg/L	1	11-Apr-2023 23:50
Calcium	562	0.68	80 10.0	mg/L	20	12-Apr-2023 12:24
ANIONS BY E300.0, REV 2.1, 1993		Method:E300				Analyst: TH
Chloride	2,200	10	.0 25.0	mg/L	50	06-Apr-2023 17:52
Sulfate	1,080	10	.0 25.0	mg/L	50	06-Apr-2023 17:52
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	6,860	5.0	00 10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0		1	11-Apr-2023 14:32

Project:NRG Limestone - Appedix IIIWorkOrder:HS23040177Sample ID:Field Blank-01Lab ID:HS23040177-11	Client:	TRC Corporation	ANALYTICAL REPORT
·	Project:	NRG Limestone - Appedix III	WorkOrder:HS23040177
	Sample ID:	Field Blank-01	Lab ID:HS23040177-11
Collection Date: 04-Apr-2023 12:40 Matrix:Water	Collection Date:	04-Apr-2023 12:40	Matrix:Water

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:	SW6020A		Prep:SW3010	A / 11-Apr-2023	Analyst: JC
Boron	< 0.0110		0.0110	0.0200	mg/L	1	11-Apr-2023 23:52
Calcium	0.118	J	0.0340	0.500	mg/L	1	11-Apr-2023 23:52
ANIONS BY E300.0, REV 2.1, 1993		Metho	d:E300				Analyst: TH
Chloride	0.217	J	0.200	0.500	mg/L	1	06-Apr-2023 18:04
Sulfate	< 0.200		0.200	0.500	mg/L	1	06-Apr-2023 18:04
TOTAL DISSOLVED SOLIDS BY SM2540C -2011		Method	:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	66.0		5.00	10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS - FLO	OURIDE	Meth	od:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	11-Apr-2023 14:32

Client:	TRC Corporation	on				ANALYTI	CAL REPORT
Project:	NRG Limestone	e - Appec	lix III	WorkOrder:HS23040177			
Sample ID:	Field Dup[licate	e-01		Lab ID:HS23040177-12			
Collection Date: 04-Apr-2023 10:00					Ν	latrix:Wate	r
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW	6020A	Method:SV	V6020A		Prep:SW3010	A / 11-Apr-2023	Analyst: JC
Boron	0.0468		0.0110	0.0200	mg/L	1	11-Apr-2023 23:54
Calcium	35.2		0.0340	0.500	mg/L	1	11-Apr-2023 23:54
ANIONS BY E300.0, REV	/ 2.1, 1993	Method:	E300				Analyst: TH
	07.0						

Chloride	37.2	0.200	0.500	mg/L	1	06-Apr-2023 18:10
Sulfate	99.2	0.200	0.500	mg/L	1	06-Apr-2023 18:10
TOTAL DISSOLVED SOLIDS E -2011	BY SM2540C Meth	od:M2540C				Analyst: DC
Total Dissolved Solids (Reside Filterable)	ue, 292	5.00	10.0	mg/L	1	07-Apr-2023 12:01
SUBCONTRACT ANALYSIS -	FLOURIDE Me	ethod:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	11-Apr-2023 14:32

Weight / Prep Log

Client:	TRC Corporation
Project:	NRG Limestone - Appedix III
WorkOrde	r: HS23040177

Batch ID: 192125		Start Date	e: 10 Apr 202	3 14:00	End Date: 10 Apr 2023 18:00
Method: WATER - SW301	0A				Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23040177-01		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-02		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-03		10 (mL)	10 (mL)	1	120 plastic HNO3
Batch ID: 192190		Start Date	e: 11 Apr 202	3 12:30	End Date: 11 Apr 2023 16:30
Method: WATER - SW3010A					Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS23040177-04		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-05		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-06		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-07		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-08		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-09		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-10		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-11		10 (mL)	10 (mL)	1	120 plastic HNO3
HS23040177-12		10 (mL)	10 (mL)	1	120 plastic HNO3

DATES REPORT

Client:TRC CorporationProject:NRG Limestone - Appedix IIIWorkOrder:HS23040177

workOrder:	HS23040177					
Sample ID	Client Samp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 19212	5(0) Test Name	: ICP-MS METALS BY S	W6020A		Matrix: Water	
HS23040177-01	MW-01	04 Apr 2023 09:50		10 Apr 2023 14:00	11 Apr 2023 22:45	1
HS23040177-02	MW-02	04 Apr 2023 09:05		10 Apr 2023 14:00	11 Apr 2023 21:46	1
HS23040177-03	MW-17	04 Apr 2023 10:30		10 Apr 2023 14:00	11 Apr 2023 22:47	1
Batch ID: 192190	0(0) Test Name	: ICP-MS METALS BY S	W6020A		Matrix: Water	
HS23040177-04	MW-18	04 Apr 2023 11:10		11 Apr 2023 12:30	11 Apr 2023 23:40	1
HS23040177-05	MW-19	04 Apr 2023 12:30		11 Apr 2023 12:30	11 Apr 2023 23:42	1
HS23040177-06	MW-20	04 Apr 2023 11:50		11 Apr 2023 12:30	11 Apr 2023 23:44	1
HS23040177-07	MW-21	04 Apr 2023 12:35		11 Apr 2023 12:30	12 Apr 2023 12:06	10
HS23040177-07	MW-21	04 Apr 2023 12:35		11 Apr 2023 12:30	11 Apr 2023 23:03	1
HS23040177-08	MW-22	04 Apr 2023 11:55		11 Apr 2023 12:30	11 Apr 2023 23:46	1
HS23040177-09	MW-27R	04 Apr 2023 09:25		11 Apr 2023 12:30	12 Apr 2023 12:22	20
HS23040177-09	MW-27R	04 Apr 2023 09:25		11 Apr 2023 12:30	11 Apr 2023 23:48	1
HS23040177-10	MW-28	04 Apr 2023 10:15		11 Apr 2023 12:30	12 Apr 2023 12:24	20
HS23040177-10	MW-28	04 Apr 2023 10:15		11 Apr 2023 12:30	11 Apr 2023 23:50	1
HS23040177-11	Field Blank-01	04 Apr 2023 12:40		11 Apr 2023 12:30	11 Apr 2023 23:52	1
HS23040177-12	Field Dup[licate-01	04 Apr 2023 10:00		11 Apr 2023 12:30	11 Apr 2023 23:54	1
Batch ID: R4320	19 (0) Test Name	ANIONS BY E300.0, RI	EV 2.1, 1993		Matrix: Water	
HS23040177-01	MW-01	04 Apr 2023 09:50			06 Apr 2023 19:08	1
HS23040177-01	MW-01	04 Apr 2023 09:50			06 Apr 2023 15:27	10
HS23040177-02	MW-02	04 Apr 2023 09:05			06 Apr 2023 16:02	20
HS23040177-03	MW-17	04 Apr 2023 10:30			06 Apr 2023 15:33	1
HS23040177-04	MW-18	04 Apr 2023 11:10			06 Apr 2023 16:19	1
HS23040177-05	MW-19	04 Apr 2023 12:30			06 Apr 2023 16:25	1
HS23040177-06	MW-20	04 Apr 2023 11:50			06 Apr 2023 16:31	1
HS23040177-07	MW-21	04 Apr 2023 12:35			06 Apr 2023 19:13	5
HS23040177-07	MW-21	04 Apr 2023 12:35			06 Apr 2023 16:48	1
HS23040177-08	MW-22	04 Apr 2023 11:55			06 Apr 2023 19:19	5
HS23040177-08	MW-22	04 Apr 2023 11:55			06 Apr 2023 16:54	1
HS23040177-09	MW-27R	04 Apr 2023 09:25			06 Apr 2023 17:58	50
HS23040177-09	MW-27R	04 Apr 2023 09:25			06 Apr 2023 17:46	10
HS23040177-10	MW-28	04 Apr 2023 10:15			06 Apr 2023 17:52	50
HS23040177-11	Field Blank-01	04 Apr 2023 12:40			06 Apr 2023 18:04	1
HS23040177-12	Field Dup[licate-01	04 Apr 2023 10:00			06 Apr 2023 18:10	1

WorkOrder: HS23040 Sample ID Client Samp			Prep Date	DATES RE Analysis Date	DF
Sample ID Client Samp Batch ID: R432202 (0)	ID Collection Date		Prep Date	Analysis Date	DF
Batch ID: R432202 (0)	Test Name: TOTAL DISSOLVE		Prep Date	Analysis Date	DF
() ()		D SOLIDS BY SM2540			
HS23040177-06 MW-20	04 Apr 2023 11		C-2011	Matrix: Water	
	017401202011	:50		07 Apr 2023 12:01	1
HS23040177-07 MW-21	04 Apr 2023 12	:35		07 Apr 2023 12:01	1
HS23040177-08 MW-22	04 Apr 2023 11	:55		07 Apr 2023 12:01	1
HS23040177-09 MW-27R	04 Apr 2023 09	:25		07 Apr 2023 12:01	1
HS23040177-10 MW-28	04 Apr 2023 10	:15		07 Apr 2023 12:01	1
HS23040177-11 Field Blank-0	1 04 Apr 2023 12	:40		07 Apr 2023 12:01	1
HS23040177-12 Field Dup[lica	te-01 04 Apr 2023 10	:00		07 Apr 2023 12:01	1
Batch ID: R432235 (0)	Test Name : TOTAL DISSOLVE	D SOLIDS BY SM2540	C-2011	Matrix: Water	
HS23040177-01 MW-01	04 Apr 2023 09	:50		07 Apr 2023 01:30	1
HS23040177-02 MW-02	04 Apr 2023 09	:05		07 Apr 2023 01:30	1
HS23040177-03 MW-17	04 Apr 2023 10	:30		07 Apr 2023 01:30	1
HS23040177-04 MW-18	04 Apr 2023 11	:10		07 Apr 2023 01:30	1
HS23040177-05 MW-19	04 Apr 2023 12	:30		07 Apr 2023 01:30	1
Batch ID: R432320 (0)	Test Name : SUBCONTRACT A	ANALYSIS - FLOURIDE		Matrix: Water	
HS23040177-01 MW-01	04 Apr 2023 09	:50		11 Apr 2023 14:32	1
HS23040177-02 MW-02	04 Apr 2023 09	:05		11 Apr 2023 14:32	1
HS23040177-03 MW-17	04 Apr 2023 10	:30		11 Apr 2023 14:32	1
HS23040177-04 MW-18	04 Apr 2023 11	:10		11 Apr 2023 14:32	1
HS23040177-05 MW-19	04 Apr 2023 12	:30		11 Apr 2023 14:32	1
HS23040177-06 MW-20	04 Apr 2023 11	:50		11 Apr 2023 14:32	1
HS23040177-07 MW-21	04 Apr 2023 12	:35		11 Apr 2023 14:32	1
HS23040177-08 MW-22	04 Apr 2023 11	:55		11 Apr 2023 14:32	1
HS23040177-09 MW-27R	04 Apr 2023 09	:25		11 Apr 2023 14:32	1
HS23040177-10 MW-28	04 Apr 2023 10	:15		11 Apr 2023 14:32	1
HS23040177-11 Field Blank-0	1 04 Apr 2023 12	:40		11 Apr 2023 14:32	1
HS23040177-12 Field Dup[lica	te-01 04 Apr 2023 10	:00		11 Apr 2023 14:32	1

Instru	Order: umentID: Code:	HS23040177 ICPMS06 ICP TW				HOD DETEC [.] PORTING LIN	
Test	Number: Name:	SW6020A ICP-MS Metals by SW6020A		Matrix: Aqueous	Uni	ts: mg/L	
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL
А	Boron		7440-42-8	0.0500	0.0467	0.0110	0.0200
А	Calcium		7440-70-2	1.00	0.936	0.0340	0.500
А	Sodium		7440-23-5	1.00	1.00	0.0140	0.200

Instru	Order: umentID:	HS23040177 ICS-Integrion				IOD DETECT	
Test	Code:	300_W					
Test	Number:	E300		Matrix: Aqueous	Units	s: mg/L	
Test	Name:	Anions by E300.0, Rev 2.1, 1993	3		Unit	5. mg/L	
Туре	Analyte	C	AS	DCS Spike	DCS	MDL	PQL
А	Chloride	10	6887-00-6	0.250	9.70	0.200	0.500
А	Sulfate	14	4808-79-8	0.250	3.34	0.200	0.500

WorkOrder: InstrumentID:	HS23040177 Balance1			-	D DETECT RTING LIM	-
Test Code:	TDS_W 2540C					
Test Number:	M2540C	Matuiss	Aqueous	L los ida a	mg/L	
Test Name:	Total Dissolved Solids by SM2540C	Matrix:	Aqueous	Units:	mg/∟	
Type Analyte	CAS	DC	S Spike	DCS	MDL	PQL
A Total Disso	Ived Solids (Residue, Filterable) TDS		5.00	4.00	5.00	10.0

QC BATCH REPORT

Client:TRC CorporationProject:NRG Limestone - Appedix IIIWorkOrder:HS23040177

Batch ID:	192125(0)	Inst	rument: I	CPMS06	M	ethod: I	CP-MS MET	ALS BY SWE	020A	
MBLK	Sample ID:	MBLK-192125		Units:	mg/L	Ana	alysis Date:	11-Apr-2023	21:42	
Client ID:		R	un ID: ICPM	S06_432302	SeqNo: 7	230192		10-Apr-2023		
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		< 0.0110	0.0200							
Calcium		< 0.0340	0.500							
LCS	Sample ID:	LCS-192125		Units:	mg/L	Ana	alysis Date:	11-Apr-2023	21:44	
Client ID:		R	un ID: ICPM	S06_432302	SeqNo: 7	230193	PrepDate:	10-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		0.4702	0.0200	0.5	0	94.0	80 - 120			
Calcium		5.108	0.500	5	0	102	80 - 120			
MS	Sample ID:	HS23040177-02M	3	Units:	mg/L	Ana	alysis Date:	11-Apr-2023	21:50	
Client ID:	MW-02	R	un ID: ICPM	S06_432302	SeqNo: 7	230196	PrepDate:	10-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		0.8605	0.0200	0.5	0.4248	87.2	80 - 120			
Calcium		168	0.500	5	178	-202	80 - 120			S
MSD	Sample ID:	HS23040177-02M	SD	Units:	mg/L	Ana	alysis Date:	11-Apr-2023	21:52	
Client ID:	MW-02	R	un ID: ICPM	S06_432302	SeqNo: 7	230197	PrepDate:	10-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		0.9039	0.0200	0.5	0.4248	95.8	80 - 120	0.8605	4.91 20	
Calcium		167.4	0.500	5	178	-213	80 - 120	168	0.33 20	S
PDS	Sample ID:	HS23040177-02PD	S	Units:	mg/L	Ana	alysis Date:	11-Apr-2023	21:54	
Client ID:	MW-02	R	un ID: ICPM	S06_432302	SeqNo: 7	230198	PrepDate:	10-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		0.8827	0.0200	0.5	0.4248	91.6	75 - 125			
Calcium		169.5	0.500	10	178	-85.0	75 - 125			S

ALS Houston, US Date: 13-Apr-23 **Client: TRC** Corporation **QC BATCH REPORT Project:** NRG Limestone - Appedix III WorkOrder: HS23040177 Batch ID: 192125 (0) Instrument: ICPMS06 Method: ICP-MS METALS BY SW6020A SD Sample ID: HS23040177-02SD Units: mg/L Analysis Date: 11-Apr-2023 21:48 Client ID: MW-02 Run ID: ICPMS06_432302 SeqNo: 7230195 PrepDate: 10-Apr-2023 DF: 5 SPK Ref RPD Ref Control %D SPK Val Analyte Result MQL Value %REC Limit Value %D Limit Qual Boron 0.454 0.100 0.4248 6.89 10

HS23040177-02

HS23040177-03

178

3.43 10

171.9

The following samples were analyzed in this batch: HS23040177-01

2.50

Calcium

Sodium

QC BATCH REPORT

Client: TRC Corporation **Project:** NRG Limestone - Appedix III WorkOrder: HS23040177

Batch ID:	192190 (0)	Ins	strument:	ICPMS06	M	ethod: I	CP-MS MET	ALS BY SW6	020A	
MBLK	Sample ID:	MBLK-192190		Units:	mg/L	An	alysis Date:	11-Apr-2023	22:59	
Client ID:		F	Run ID: ICPN	IS06_432302	SeqNo: 7	230202	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	
Boron		< 0.0110	0.0200							
Calcium		< 0.0340	0.500							
Sodium		< 0.0140	0.200							
LCS	Sample ID:	LCS-192190		Units:	mg/L	An	alysis Date:	11-Apr-2023	23:01	
Client ID:		F	Run ID: ICPN	IS06_432302	SeqNo: 7	230203	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	
Boron		0.4627	0.0200	0.5	0	92.5	80 - 120			
Calcium		4.817	0.500	5	0	96.3	80 - 120			
Sodium		4.603	0.200	5	0	92.1	80 - 120			
MS	Sample ID:	HS23040177-07N	IS	Units:	mg/L	An	alysis Date:	11-Apr-2023	23:07	
Client ID:	MW-21	F	Run ID: ICPN	IS06_432302	SeqNo: 7	230206	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	
Boron		1.27	0.0200	0.5	0.7329	107	80 - 120			E
Calcium		73.36	0.500	5	62.27	222	80 - 120			SO
MS	Sample ID:	HS23040177-07N	IS	Units:	mg/L	An	alysis Date:	12-Apr-2023	12:04	
Client ID:	MW-21	F	Run ID: ICPN	IS06_432437	SeqNo: 7	231436	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	
Sodium		21.14	0.200	5	15.83	106	80 - 120			
MSD	Sample ID:	HS23040177-07N	ISD	Units:	mg/L	An	alysis Date:	11-Apr-2023	23:09	
Client ID:	MW-21	F	Run ID: ICPN	IS06_432302	SeqNo: 7	230207	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit	
Boron		1.28	0.0200	0.5	0.7329	110	80 - 120	1.27	0.852 20	E
Calcium		72.06	0.500	5	62.27	196	80 - 120	73.36	1.79 20	SO

5

15.83

119

80 - 120

21.93

0.617 20

0.200

21.79

ALS Houston, US

QC BATCH REPORT

Client:	TRC Corporation
Project:	NRG Limestone - Appedix III
WorkOrder:	HS23040177

Batch ID:	192190 (0)	Instrumer	nt: l	CPMS06	M	lethod: I	CP-MS MET	ALS BY SW6	020A	
PDS	Sample ID:	HS23040177-07PDS		Units:	mg/L	Ana	alysis Date:	12-Apr-2023	12:09	
Client ID:	MW-21	Run ID:	ICPM	S06_432437	SeqNo:	7231439	PrepDate:	11-Apr-2023	DF: 1 0)
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RF %RPD Lir	
Boron		5.696	0.200	5	1.056	92.8	75 - 125			
PDS	Sample ID:	HS23040177-07PDS		Units:	mg/L	Ana	alysis Date:	11-Apr-2023	23:10	
Client ID:	MW-21	Run ID:	ICPM	S06_432302	SeqNo:	7230208	PrepDate:	11-Apr-2023	DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RF %RPD Lir	
Calcium		67.77	0.500	10	62.27	55.0	75 - 125			SO
Sodium		23.54	0.200	10	15.83	77.2	75 - 125			
SD	Sample ID:	HS23040177-07SD		Units:	mg/L	Ana	alysis Date:	12-Apr-2023	12:07	
Client ID:	MW-21	Run ID:	ICPM	S06_432437	SeqNo:	7231438	PrepDate:	11-Apr-2023	DF: 50)
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	% %D Lir	D nit Qual
Boron		1.421	1.00					1.056	34.6	10 R
SD	Sample ID:	HS23040177-07SD		Units:	mg/L	Ana	alysis Date:	11-Apr-2023	23:05	
Client ID:	MW-21	Run ID:	ICPM	S06_432302	SeqNo:	7230205	PrepDate:	11-Apr-2023	DF: 5	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	% %D Lir	D nit Qual
Calcium		62.84	2.50					62.27	0.91	10
Sodium		15.88	1.00					15.83	0.317	10
The followin	g samples were analyz	ed in this batch: HS2304017 HS2304017 HS2304017 HS2304017	7-08	HS2304017 HS2304017		HS230401 HS230401		HS23040177- HS23040177-		

Client: TRC Corporation **QC BATCH REPORT Project:** NRG Limestone - Appedix III WorkOrder: HS23040177 Batch ID: R432019 (0) Instrument: **ICS-Integrion** Method: ANIONS BY E300.0, REV 2.1, 1993 MBLK Sample ID: Units: mg/L MBLK Analysis Date: 06-Apr-2023 15:16 Client ID: Run ID: ICS-Integrion_432019 SeqNo: 7221395 PrepDate: DF: 1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val %REC %RPD Limit Qual Value Limit Value Chloride < 0.200 0.500 Sulfate < 0.200 0.500 Units: mg/L LCS Sample ID: LCS Analysis Date: 06-Apr-2023 15:21 Client ID: Run ID: ICS-Integrion_432019 SeqNo: 7221396 PrepDate: DF: 1 Control RPD Ref SPK Ref RPD MQL Analyte Result SPK Val Value %REC Limit Value %RPD Limit Qual Chloride 20.5 0.500 20 0 103 90 - 110 Sulfate 20.85 0.500 20 0 104 90 - 110 MS Sample ID: HS23040177-06MS Units: mg/L Analysis Date: 06-Apr-2023 17:12 Client ID: MW-20 Run ID: ICS-Integrion_432019 SeqNo: 7221409 PrepDate: DF: 1 SPK Ref RPD Ref Control RPD MQL SPK Val Value %REC %RPD Limit Qual Analyte Result Limit Value Chloride 28.04 0.500 10 18.24 80 - 120 98.1 Sulfate 33.72 0.500 10 24 97.2 80 - 120 MS Sample ID: HS23040177-02MS Units: mg/L Analysis Date: 06-Apr-2023 16:08 Client ID: MW-02 Run ID: ICS-Integrion_432019 SeqNo: 7221402 PrepDate: DF: 20 SPK Ref RPD Ref RPD Control SPK Val Analyte Result MQL Value %REC Limit Value %RPD Limit Qual Chloride 472.7 10.0 200 300.6 86.1 80 - 120 Sulfate 785.2 10.0 200 663.6 60.8 80 - 120 S MSD Sample ID: HS23040177-06MSD Units: mg/L Analysis Date: 06-Apr-2023 17:17 Client ID: MW-20 Run ID: ICS-Integrion_432019 SeqNo: 7221410 PrepDate: DF-1 SPK Ref RPD Ref RPD Control %RPD Limit Qual Analyte Result MQL SPK Val Value %REC Limit Value Chloride 28.5 0.500 10 18.24 103 80 - 120 28.04 1.61 20 Sulfate 34.09 0.500 10 24 101 80 - 120 33.72 1.08 20

Date: 13-Apr-23

ALS Houston, US

Client:	TRC Corporation
Project:	NRG Limestone - Appedix III
WorkOrder:	HS23040177

Batch ID:	R432019(0)	Instrume	nt:	ICS-Integrion	N	lethod:	ANIONS BY	E300.0, REV 2	2.1, 1993	
MSD	Sample ID:	HS23040177-02MSD		Units: m	ng/L	Ana	alysis Date:	06-Apr-2023	16:13	
Client ID:	MW-02	Run ID	ICS-	Integrion_432019	SeqNo:	7221403	PrepDate:		DF: 2	20
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		R %RPD L	PD imit Qua
Chloride		472	10.0	200	300.6	85.7	80 - 120	472.7	0.161	20
Sulfate		777.7	10.0	200	663.6	57.0	80 - 120	785.2	0.97	20
The followin	g samples were analyze	d in this batch: HS2304017 HS2304017 HS2304017 HS2304017	77-05	HS23040177-0 HS23040177-0 HS23040177-1	06	HS230401 HS230401 HS230401	77-07	HS23040177- HS23040177- HS23040177-	08	

Client:	TRC Corporation
Project:	NRG Limestone - Appedix III
WorkOrder:	HS23040177

Batch ID:	R432202(0)	Instrume	nt:	Balance1	N	ietnoù.	FOTAL DISS 2011	OLVED SOL	IDS BY SM2540C-
MBLK	Sample ID:	WBLK-04072023		Units:	mg/L	An	alysis Date:	07-Apr-2023	12:01
Client ID:		Run ID	Bala	ance1_432202	SeqNo:	7225571	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolv Filterable)	ed Solids (Residue,	< 5.00	10.0						
LCS	Sample ID:	LCS-04072023		Units:	mg/L	An	alysis Date:	07-Apr-2023	12:01
Client ID:		Run ID	Bala	ance1_432202	SeqNo:	7225570	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolv Filterable)	ed Solids (Residue,	1096	10.0	1000	0	110	85 - 115		
DUP	Sample ID:	HS23040218-01DUP		Units:	mg/L	An	alysis Date:	07-Apr-2023	12:01
Client ID:		Run ID	Bala	ance1_432202	SeqNo:	7225558	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolv Filterable)	ed Solids (Residue,	470	10.0					468	0.426 20
DUP	Sample ID:	HS23040177-08DUP		Units:	mg/L	An	alysis Date:	07-Apr-2023	12:01
Client ID:	MW-22	Run ID	Bala	ance1_432202	SeqNo:	7225551	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissolv Filterable)	ed Solids (Residue,	340	10.0					338	0.59 20
The following	samples were analyze	d in this batch: HS2304017 HS2304017		HS2304017 HS2304017		HS230401 HS230401		HS23040177	-09

Privileged and Confidential

Client:TRC CorporationProject:NRG Limestone - Appedix IIIWorkOrder:HS23040177

Batch ID:	R432235 (0)	Instrum	ent:	Balance1	М	emoa.	TOTAL DISS 2011	OLVED SOL	IDS BY SM2540C-
MBLK	Sample ID:	WBLK-04072023		Units:	mg/L	An	alysis Date:	07-Apr-2023	01:30
Client ID:		Run I	D: Bala	ance1_432235	SeqNo: 7	7226124	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	< 5.00	10.0						
LCS	Sample ID:	LCS-04072023		Units:	mg/L	An	alysis Date:	07-Apr-2023	01:30
Client ID:		Run I	D: Bala	ance1_432235	SeqNo: 7	7226123	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1070	10.0	1000	0	107	85 - 115		
DUP	Sample ID:	HS23040177-02DUP		Units:	mg/L	An	alysis Date:	07-Apr-2023	01:30
Client ID:	MW-02	Run I	D: Bala	ance1_432235	SeqNo: 7	7226110	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1420	10.0					1416	0.282 20
DUP	Sample ID:	HS23040078-01DUP		Units:	mg/L	An	alysis Date:	07-Apr-2023	01:30
Client ID:		Run I	D: Bala	ance1_432235	SeqNo: 7	7226102	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1284	10.0					1288	0.311 20
The following	g samples were analyze	d in this batch: HS23040 HS23040		HS2304017	77-02	HS230401	77-03	HS23040177	-04

ALS Houston, US

Client: Project:	TRC Corporation NRG Limestone - Appedix III	QUALIFIERS, ACRONYMS, UNITS
WorkOrder:	HS23040177	
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
М	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
California	2919 2022-2023	30-Apr-2023
Dept of Defense	L21-682	31-Dec-2023
Florida	E87611-36	30-Jun-2023
Illinois	2000322022-9	09-May-2023
Kansas	E-10352; 2022-2023	31-Jul-2023
Kentucky	123043, 2022-2023	30-Apr-2023
Louisiana	03087, 2022-2023	30-Jun-2023
Maryland	343, 2022-2023	30-Jun-2023
North Carolina	624-2023	31-Dec-2023
North Dakota	R-193 2022-2023	30-Apr-2023
Oklahoma	2022-141	31-Aug-2023
Texas	T104704231-22-29	30-Apr-2023
Utah	TX026932022-13	31-Jul-2023

					Sample Receipt Checklist
Work Order ID: Client Name:	HS23040177 TRC-HOU			Time Received: ived by:	04-Apr-2023 15:00 Corey Grandits
Completed By	: /S/ Paresh M. Giga	04-Apr-2023 18:49	Reviewed by: /S/	Nieka.Carson	05-Apr-2023 09:31
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	Water		Carrier name:	<u>Client</u>	
Custody seals i Custody seals i VOA/TX1005/T Chain of custod Chain of custod Samplers name Chain of custod Samples in prop Sample contain Sufficient samp All samples rec	ly signed when relinquished an e present on COC? ly agrees with sample labels? per container/bottle?	ealed vials? d received?	Yes Ves Ves Ves Ves Ves Ves Ves Ves Ves V	No No No No No No No No No No	Not Present Not Present Not Present 2 Page(s) COC IDs:293335/293334
)/Thermometer(s):		1.8C/1.3C U/C		IR31
Cooler(s)/Kit(s)	:		50058		
Date/Time sam	ple(s) sent to storage:		4/4/23 19:10		
	als have zero headspace? eptable upon receipt? :		Yes Yes Yes	No No No No Vo	No VOA vials submitted N/A N/A N/A
Login Notes:	IDs differ - times match. COC - MW-28 Labels - MW-2	8R			
Client Contacte		Date Contacted:		Person Con	tacted:
Contacted By:		Regarding:			
Comments:					
Corrective Action	on:				

		Cincinnati, +1 513 733 Everett, WA +1 425 356	5336	+1 970 Hollan	ollins, CO 0 490 151 id, MI 5 399 607(Page)	ustody		n			hand of the second s	TR	C Co	040 1 prpora	tion		والإخدامية ومداخر والإخاطية والإلام المتحد والمحادث
	a and and y						COC ID:	2933	35					RG Lir	mesto	ne - Ap	pedix		
	Customer Information							ect Manage	er:										
Purchase Order	179967			Project	t Nomo	Project Inform													
Work Order	1/990/					NRG Limesto	stone- Appendix III A ICP_TW (B and Ca					(App I	ll))		*** ******		11 12 12 14 14 1		
ompany Name				Project N					В	300_V	/ (CI, S	604)					-	and the second sec	
end Report To	TRC Corporation			Bill To Co	II To Company TRC		ion						Fluoric	le to A	LSM	ichigar)		
enu report to	Lori Burris			Invoid	ce Attn	A/P		-	1000				1				·,		
Address	14701 St. Mary's Lane Suite 500			A	ddress	14701 St. Mar Suite 500	y's Lane		D TDS_W2540C (TDS) E ICP_TW (B, Ca, and Na (App III))										
City/State/Zip	Houston, TX 77079			City/Sta	te/Zip	Houston TX 7	7070		G					-					
Phone	(713) 244-1000				Phone				H					:					
Fax	(713) 244-1099				Fax	(713) 244-100		-					1						
-Mail Address	LBurris@trcsolutions.com	m				(713) 244-109	-												
	Sample Description			e-Mail Ac		apinvoiceappro			J										
MW-01			U.	.4-23	951			# Bottles	643 <u>(6805,686</u>)	B	C	D	E	F	G	H	1	J	Но
MW-02				105	90	and the second state of the second state of the second state back back to the second state of the second state	2,8	3	X	X	Х	X	-		-				
MW-17							2,8	3	X	X	X	X							
MW-18					103		2,8	3	X	X	X	Х							
MW-19				-	1110		2,8	3	X	X	X	Х							
MW-20					123	O Water	2,8	3	X	X	X	X							
MW-21					1150) Water	2,8	3	X	X	X	X							
					123	5 Water	2,8	3		X	Х	Х	Х						
MW-22	n an the main formation in an				1153		2,8	3	X	X	X	X				1			
MW-27R					929	5 Water	2,8	3	X	X	Х	X							
MW-28				J	1015	1	2,8	3	X	X	Х	Х							
ipler(s) Please Pr	ME Jean MM	_		Drop	ent Metho of F @	a a secondaria de la compañía de la	equired Turns STD 10 Wk De	round Time:		Box)	Othe	-	П	24 Ho	~	lesults I	Due Da	te:	STATUS CONTRACTOR
nquished by H MARY Date: U/23 nquished by: Date: Date:		1/4/23		500	Receive				Notes:	nionisti minini 1988	S.S	ENGINE CONTRACTOR	PRIVI	ANALYMIN MUCH MARKED AND	monitorial		DENTI	AL	Paint de la companya
iquished by:	Date	5: 7	Time:		Receive	d by (Laboratory):	4432 IS	10	Coo	ler ID	HIS CONTRACTOR OF THE PARTY OF	er Temp	ajami'anatomonese	INTERNAL DESCRIPTION OF THE PARTY OF THE PAR	White and the second second	ck One B		· · · · · · · · · · · · · · · · · · ·	TRANSPORTATION OF THE PARTY OF
ed by (Laboratory):	2:	Time:							Level II Std QC Level III Std QC/Raw Date TRRP Checklist TRRP Level IV										

lote: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly infitted to the terms and conditions stated on the reverse
 3. The Chain of Contract is a back of the terms and conditions stated on the reverse

Copyright 2011 by ALS Environmental.

l	ALS)	Cincinnati, C +1 513 733 ! Everett, WA +1 425 356 2	5336	Hollan	ollins, CO) 490 151 d, MI) 399 607		P	age <u>Z</u> COC ID:	29333	34				Т	RC 0	Corp	017 oratio - Appe	n			V
	Customer Information					Proi	ect Inform		ect Manager	*											Ĩ
Purchase Order	179967			Project	Name																
Work Order				Project N		NRC	3 Limestone	e- Append	ix III	- 1.52 Sec	CP_T	N(Ba	nd Ca	(App I))				<u> </u>		
Company Name	TRC Corporation			Bill To Co						B	300 M	/ (CI, S	(04)								
Send Report To	Lori Burris					To The College of Street o	Corporatio	ท		CS	Sub_Fl	uoride	(Sub	Fluoric	te to A	LS N	lichigar	ו)			
				Invoid	e Attn	A/P			- 	DI	DS V	V 2540	C(TD	\$)							
Address	14701 St. Mary's Lane Suite 500			Ad	dress		01 St. Mary' ∋ 500	s Lane		E I	CP_T\	N (B, C	Ca, an	d Na (/	App III))					
City/State/Zip	Houston, TX 77079			City/Sta	te/Zip	Hous	ston TX 77	079		G											
Phone	(713) 244-1000				Phone) 244-1000			H											****
Fax	(713) 244-1099				Fax) 244-1099		-												
e-Mail Address	LBurris@trcsolutions.co	om		e-Mail Ac				mistional	utions.com												
lo.	Sample Description			Date		me	Matrix	Pres.	# Bottles	J		-	Colors in core			1					
1 MW-02 M	S		ų.	4-73	903	a RUCORD DUACH	Water	2,8	3	A X	B	C X	D X	E	F	G	н	1	J	Ho	bld
2 MW-02 M	SD			1	905		Water	2,8	3	X	X	X	X							<u> </u>	
2 <u>MW-02</u> M 3 Field Blank							Water	2,8	3												*****
4 Field Duplicat	8			J.	124	*********	Water			X	X	X	X								1014 / Inches and
5				1	1000	>	v valei	2,8	3	Х	X	X	X								
6																					New York Control of the
7																					
8									-	:											
9																					
0	·							-													
ampler(s) Please Pr Muson Bond t	111	in			off (dames.	uired Turna	round Time: (C	heck I	Rep		r Days				Results	Due Da	te:		
elinquished by:	by ca Dat	e: 4/4/23	Time:	500	Receive	d by:			and the second	Notes:	and the second	and the second s				Service Services	CONFI	NENT	AL		
elinquished by:	Dat	6: /	Time:		Receive	d by (La	poratory);	1-23 15	14	Cool	er ID	ania wana kata kata kata kata kata kata kata k	er Temp	and a subsection of the subsec	CONTRACTOR OF CONT	CONTRACTOR DESCRIPTION	ck One E	225050100000000000000000000000000000000	l.		ANNESANDOR
gged by (Laboratory): reservative Key:			Time:	5-Na ₂ S ₂ C		d'by (La NaHSO	boratory):		9-5035						Level I	i Stal Qa I Stal Q	C/Raw Dat	X	TRRF	? Checklist ⁵ Level IV	

Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental
 Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse

Copyright 2011 by ALS Environmental.

	ALS	Allerapy	A second s
	10450 Stancliff Rd., Suite 210 50058 Houston, Texas 77099	Date: 4-4-23	Seal Broken By:
(ALS)	Tel. +1 281 530 5656 Fax. +1 281 530 5887	Name:	
	Fax. +1 281 530 5887 ~	Company:	- G Date:
	82110	APR 0 4 2023	
	20030		
	S.		

Privileged and Confidential

11-Apr-2023

Andrew Neir ALS Environmental 10450 Stancliff Rd Suite 210 Houston, TX 77099

Re: **HS23040177**

Work Order: 23040492

Dear Andrew,

ALS Environmental received 12 samples on 06-Apr-2023 09:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 22.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Cook New

Electronically approved by: Chelsey Cool

Chelsey Cook Project Manager

Report of Laboratory Analysis

Certificate No: TX: T104704494-23-14

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Client:ALS EnvironmentalProject:HS23040177Work Order:23040492

_

Work Order Sample Summary

Lab Samp ID Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
23040492-01 MW-01	Water	HS23040177-01	4/3/2023 09:50	4/6/2023 09:00	
23040492-02 MW-02	Water	HS23040177-02	4/4/2023 09:05	4/6/2023 09:00	
23040492-03 MW-17	Water	HS23040177-03	4/4/2023 10:30	4/6/2023 09:00	
23040492-04 MW-18	Water	HS23040177-04	4/4/2023 11:10	4/6/2023 09:00	
23040492-05 MW-19	Water	HS23040177-05	4/4/2023 12:30	4/6/2023 09:00	
23040492-06 MW-20	Water	HS23040177-06	4/4/2023 11:50	4/6/2023 09:00	
23040492-07 MW-21	Water	HS23040177-07	4/4/2023 12:35	4/6/2023 09:00	
23040492-08 MW-22	Water	HS23040177-08	4/4/2023 11:55	4/6/2023 09:00	
23040492-09 MW-27R	Water	HS23040177-09	4/4/2023 09:25	4/6/2023 09:00	
23040492-10 MW-28	Water	HS23040177-10	4/4/2023 10:15	4/6/2023 09:00	
23040492-11 Field Blank-01	Water	HS23040177-11	4/4/2023 12:40	4/6/2023 09:00	
23040492-12 Field Duplicate-01	Water	HS23040177-12	4/4/2023 10:00	4/6/2023 09:00	

Client:	ALS Environmental	QUALIFIERS,
Project:	HS23040177	- ,
WorkOrder:	23040492	ACRONYMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
а	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Analyte accreditation is not offered
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)

- MBLK Method Blank MDL Method Detection Limit
- MS Matrix Spike MSD Matrix Spike Duplicate
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference
- TDL Target Detection Limit
- TNTC Too Numerous To Count A APHA Standard Methods
- A APHA Sta D ASTM
- E EPA
- SW SW-846 Update III

Units Reported Description

mg/L Milligrams per Liter

Client:	ALS Environmental	
Project:	HS23040177	Case Narrative
Work Order:	23040492	

Samples for the above noted Work Order were received on 04/06/2023. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Wet Chemistry: No deviations or anomalies were noted.

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order: 23	040492
Sample ID:	MW-01					Lab ID: 23	040492-01
Collection Date: 4/3/2023 09:50 AM						Matrix: W	ATER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	ר	0.10	mg/L	1	4/7/2023 10:29 AM

FLUORIDE Fluoride		N	ר	A4500-F 0.10	C-11 mg/L	1	4/	Analyst: QTN 7/2023 10:29 AM
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
Collection Date: 4/4/2023 09:05 AM						Matrix:	WATER	
Sample ID:					Lab ID:	23040492-02		
Project:				W	ork Order:	23040492		
Client:	ALS Environmental							

FLUORIDE Fluoride		0.12	0	A4500-F 0.10	C-11 mg/L	1	Analyst: QTN 4/7/2023 10:29 AM
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Collection Date:					Matrix: V	VATER	
Sample ID:	MW-17					Lab ID: 2	3040492-03
Project:	HS23040177				W	ork Order: 2	3040492
Client:	ALS Environmental						

FLUORIDE Fluoride		0.11	0	A4500-F 0.10		1	Analyst: QTN 4/7/2023 10:29 AM
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Collection Date:					Matrix: W	VATER	
Sample ID:	MW-18					Lab ID: 2	3040492-04
Project:	HS23040177				W	ork Order: 2	3040492
Client:	ALS Environmental						

Analyses FLUORIDE		Result	Qual	Limit A4500-F	Units	Factor	Date Analyze Analyst: QTN
Collection Date: 4/4/2023 12:30 PM				Report		Matrix:	WATER
Sample ID:						23040492-05	
Project:				W	ork Order:	23040492	
Client:	ALS Environmental						

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order: 23	040492
Sample ID:	MW-20					Lab ID: 23	040492-06
Collection Date: 4/4/2023 11:50 AM						Matrix: W	ATER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	D	0.10	mg/L	1	4/10/2023 04:38 PM

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order: 230	040492
Sample ID:	MW-21					Lab ID: 230	040492-07
Collection Date	: 4/4/2023 12:35 PM					Matrix: WA	ATER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	D	0.10	mg/L	1	4/10/2023 04:38 PM

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order: 23	3040492
Sample ID:	MW-22					Lab ID: 23	3040492-08
Collection Date	: 4/4/2023 11:55 AM					Matrix: W	ATER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	D	0.10	mg/L	1	4/10/2023 04:38 PM

FLUORIDE Fluoride		N	C	A4500-F 0.10		1	Analyst: QTN 4/10/2023 04:38 PM
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Collection Date:	4/4/2023 09:25 AM					Matrix: WAT	ER
Sample ID:	MW-27R					Lab ID: 2304	0492-09
Project:	HS23040177				W	ork Order: 2304	0492
Client:	ALS Environmental						

FLUORIDE Fluoride		NI		A4500-F 0.10	C-11 mg/L			Analyst: QTN 10/2023 04:38 PM
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
Collection Date:	4/4/2023 10:15 AM					Matrix:	WATER	
Sample ID:	MW-28					Lab ID:	23040492-10	
Project:	HS23040177				W	ork Order:	23040492	
Client:	ALS Environmental							

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order: 2304	40492
Sample ID:	Field Blank-01					Lab ID: 2304	40492-11
Collection Date	4/4/2023 12:40 PM					Matrix: WA	TER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	П	0.10	mg/L	1	4/10/2023 04:38 PM

Client:	ALS Environmental						
Project:	HS23040177				W	ork Order:	23040492
Sample ID:	Field Duplicate-01					Lab ID:	23040492-12
Collection Date:	: 4/4/2023 10:00 AM					Matrix:	WATER
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
FLUORIDE				A4500-F	C-11		Analyst: QTN
Fluoride		N	П	0.10	mg/L	1	4/10/2023 04:38 PM

Client:	ALS Environmental
Work Order:	23040492
Project:	HS23040177

QC BATCH REPORT

Batch ID: R368036	Instrument ID Titr	ator 1		Method	d: A4500	-F C-	11					
MBLK	Sample ID: MB-R36803	6-R368036				U	nits: mg/ l	L	Analysi	s Date: 4/7 /	2023 10:2	9 AM
Client ID:		Run ID:	TITRAT	OR 1_2304	07A	Sec	qNo: 941 9	9430	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		ND	0.10									
LCS	Sample ID: LCS-R3680	36-D36803	6			11	nits: mg /l	1	Analys	s Date: 4/7 /	2023 10.2	9 A M
Client ID:				OR 1_2304	07A		qNo: 9419		Prep Date:	S Date. 4/11	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Fluoride		4.83	0.10	5		0	96.6	90-110	()		
MS	Sample ID: 23040366-0	5AMS				U	nits: mg/ l	L	Analys	s Date: 4/7 /	2023 10:2	9 AM
Client ID:		Run ID:	TITRAT	OR 1_2304	07A	Sec	qNo: 941 9	433	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		6.35	0.10	5	1.	53	96.4	90-110	()		
MS	Sample ID: 23040366-1	9AMS				U	nits: mg/ l	L	Analys	s Date: 4/7/	2023 10:2	9 AM
Client ID:		Run ID:	TITRAT	OR 1_2304	07A	Sec	qNo: 941 9	9443	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		4.98	0.10	5	().2	95.6	90-110	()		
MS	Sample ID: 23040492-0	2AMS				U	nits: mg/ l	L	Analys	s Date: 4/7/	2023 10:2	9 AM
Client ID: MW-02		Run ID:	TITRAT	OR 1_2304	07A	Sec	qNo: 941 9	9454	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		4.72	0.10	5	0.	05	93.4	90-110	()		
MSD	Sample ID: 23040366-0	5AMSD				U	nits: mg /l	L	Analysi	s Date: 4/7/	2023 10:2	9 AM
Client ID:			TITRAT	OR 1_2304	07A	Sec	qNo: 9419	9434	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		6.24	0.10	5	1.	53	94.2	90-110	6.3		20	
MSD	Sample ID: 23040366-1	9AMSD					nits: mg /	L		s Date: 4/7 /		9 AM
Client ID:			TITRAT	OR 1_2304	07A		qNo: 941		Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

5.09

0.10

Fluoride

5

0.2

97.8

90-110

4.98

2.18

20

Client: Work Order: Project:	ALS Environmental 23040492 HS23040177								QC I	BATCI	H REI	PORT
Batch ID: R368036	Instrument ID Titra	ator 1		Method	d: A4500	-F C-	-11					
MSD	Sample ID: 23040492-02	2AMSD				U	nits: mg/l	L	Analysis	Date: 4/7/2	2023 10:2	9 AM
Client ID: MW-02		Run ID:	TITRAT	OR 1_2304	07A	Sec	qNo: 9419	9455	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		4.7	0.10	5	0.	05	93	90-110	4.72	0.425	20	
The following sam	ples were analyzed in this	s batch:	-	040492-01A 040492-04A		30404	492-02A	23	040492-03A			

Batch ID: R368190 Instrument ID Titrator 1 Method: A4500-F C-11

MBLK	Sample ID: MB-R36819	0-R368190)			U	nits: mg/l	_	Analy	sis	Date: 4/10	/2023 04:	38 PM
Client ID:		Run ID:	TITRA	FOR 1_2304 [,]	10B	Sec	qNo: 942	5722	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Fluoride		ND	0.10										
LCS	Sample ID: LCS-R36819	90-R36819	0			U	nits: mg/l	_	Analy	sis	Date: 4/10	/2023 04:	38 PM
Client ID:		Run ID:	TITRA	FOR 1_2304 [,]	10B	Sec	qNo: 942 8	5723	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Fluoride		4.98	0.10	5		0	99.6	90-110		0			
MS	Sample ID: 23040492-0	5A MS				U	nits: mg/l	_	Analy	sis	Date: 4/10)/2023 04:	38 PM
Client ID: MW-19		Run ID:	TITRA	FOR 1_2304 [,]	10B	Sec	qNo: 942	5726	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Fluoride		5	0.10	5	0.	01	99.8	90-110		0			
MSD	Sample ID: 23040492-0	5A MSD				U	nits: mg/l	_	Analy	sis	Date: 4/10	/2023 04:	38 PM
Client ID: MW-19		Run ID:	TITRA	FOR 1_2304 [,]	10B	Sec	qNo: 942	5727	Prep Date:			DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value		%RPD	RPD Limit	Qua
Fluoride		5.02	0.10	5	0.	01	100	90-110		5	0.399	20	
The following sam	ples were analyzed in this	s batch:	23	3040492-05A 3040492-08A 3040492-11A	A 23	3040	492-06A 492-09A 492-12A		040492-07A 040492-10A				

10450 Stancliff Rd, Ste 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887 www.alsglobal.com

Subcontract Chain of Custody

SAMPLING STATE: Texas

COC ID: 21346

SUBCONTRACT TO:

ALS Laboratory Group 3352 128th Ave. Holland, MI 494249263

CUSTOMER INFORMATION:

Company:	ALS Houston
Contact:	Andy C. Neir
Address:	10450 Stancliff Rd, Ste 210
Phone:	+1 281 530 5656
Email:	Andrew.Neir@ALSGlobal.com
Alternate Contact: Email:	

Phone: +1 616 399 6070

INVOICE INFORMATION:

Company:	ALS Houston
Contact:	Accounts Payable
Address:	10450 Stancliff Rd, Ste 210
Phone:	+1 281 530 5656
Reference:	HS23040177
TSR:	Ron Martino

12	LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	COLLECT DATE
	ANALYSIS F	REQUESTED		DUE DATE
1.	HS23040177-01	MW-01	Water	04 Apr 2023 09:50
	Fluoride by ISE	E 4500, EQuis EDD		11 Apr 2023
2.	HS23040177-02	MW-02	Water	04 Apr 2023 09:05
	Fluoride by ISE	E 4500. EQuis EDD		11 Apr 2023
3.	HS23040177-03	MW-17	Water	04 Apr 2023 10:30
	Fluoride by ISE	E 4500. EQuis EDD		11 Apr 2023
4.	HS23040177-04	MW-18	Water	04 Apr 2023 11:10
	Fluoride by ISE	E 4500. EQuis EDD		11 Apr 2023
5.	HS23040177-05	MW-19	Water	04 Apr 2023 12:30
	Fluoride by IS	E 4500. EQuis EDD		11 Apr 2023
5.	HS23040177-06	MW-20	Water	04 Apr 2023 11:50
	Fluoride by IS	E 4500. EQuis EDD		11 Apr 2023
7.	HS23040177-07	MW-21	Water	04 Apr 2023 12:35
	Fluoride by IS	E 4500. EQuis EDD		11 Apr 2023
8.	HS23040177-08	MW-22	Water	04 Apr 2023 11:55
	Fluoride by ISE 4500. EQuis EDD			11 Apr 2023
9.	HS23040177-09	MW-27R	Water	04 Apr 2023 09:25

RIGHT SOLUTIONS | RIGHT PARTNER

Custody

SAMPLING STATE: Texas

COC ID: 21346

	LAB SAMPLE ID CLIENT SAMPLE ID ANALYSIS REQUESTED		MATRIX	COLLECT DATE DUE DATE	
	Fluoride by ISE	4500. EQuis EDD		11 Apr 2023	
10.	HS23040177-10	MW-28	Water	04 Apr 2023 10:15	
	Fluoride by ISE 4500. EQuis EDD			11 Apr 2023	
11.	HS23040177-11	Field Blank-01	Water	04 Apr 2023 12:40	
	Fluoride by ISE	4500. EQuis EDD		11 Apr 2023	
12.	HS23040177-12	Field Dup[licate-01	Water	04 Apr 2023 10:00	
	Fluoride by ISE	4500. EQuis EDD		11 Apr 2023	

Comments: Please analyze for the analysis listed above. Send report to the emails shown above. HS23040177-02 = ms/msd. Batch client samples together. MS/MSD must be performed on client sample.

QC Level: TRRP LRC (TRRP checklist only+Level II (normal))

	Relinquished By:	1 ca	Date/Time:	4-5-23 1800	
Fedex	Received By:	/Karlinjalilasi	Date/Time:	416123	0900
	Cooler ID(s):	/ IR3	Temperature(s):	2.0°C	
	L				

04 Apr 2023

Page 2 of 2

ALS Group, USA Holland, Michigan

Sample Receipt Checklist

Client Name: ALS - HOUSTON		Date/Time F	Received:	06-Apr-23	<u>09:00</u>
Work Order: 23040492		Received by	/:	<u>KYB</u>	
Checklist completed by Karly Yablonski	06-Apr-23 Date	Reviewed by:	Chelsey eSignature	Cook	07-Apr-23 Date
Matrices: <u>water</u> Carrier name: <u>FedEx</u>			-		I
Shipping container/cooler in good condition?	Yes 🗸	No	Not Prese	ent	
Custody seals intact on shipping container/cooler?	Yes 🗸	No	Not Prese	ent 🗌	
Custody seals intact on sample bottles?	Yes	No	Not Prese	ent 🗹	
Chain of custody present?	Yes 🗸	No			
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌			
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Sample containers intact?	Yes 🗸	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗸	No 🗌			
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ⊻ 2.0/3.0C	No 🗌	IR3		
Cooler(s)/Kit(s):					
Date/Time sample(s) sent to storage:	4/6/2023 12				_
Water - VOA vials have zero headspace?	Yes	No	No VOA vials	submitted	
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A		
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A		

Login Notes:

Date Contacted:	Person Contacted:
Regarding:	
Privileged and Confidentia	l SF
	Regarding:

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

May 09, 2023

Lori Burris TRC Corporation 14701 St. Mary's Lane Suite 500 Houston, TX 77079

Work Order: HS23050035

Laboratory Results for: NRG Limestone -Appendix III -Resample

Dear Lori Burris,

ALS Environmental received 3 sample(s) on May 01, 2023 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Indr Ch_

Generated By: JUMOKE.LAWAL Andy C. Neir

ALS Houston, US

Client:TRC CorporationProject:NRG Limestone -Appendix III -ResampleWorkOrder:HS23050035

TRRP Laboratory Data Package Cover Page

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Client:	TRC Corporation	
Project:	NRG Limestone - Appendix III - Resample	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS23050035	rackaye cover raye
Pel	ease Statement: I am responsible for the release of this laboratory data n	ackage This laboratory is

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

march

Andy C. Neir

т.1.		Laboratory Review Check						
		Name: ALS Laboratory Group	LRC Date:05/09/2		1100		-	
		me: NRG Limestone -Appendix III -Resample	Laboratory Job N					
		Name: Andy Neir	Prep Batch Numb	~ ~	1			
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)	amula aggantability					
		Did samples meet the laboratory's standard conditions of s upon receipt?	ample acceptability	х				
		Were all departures from standard conditions described in	an exception report?	X				
R2	OI	Sample and quality control (QC) identification						
	01	Are all field sample ID numbers cross-referenced to the lab	ooratory ID numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corre		Х				
R3	OI	Test reports	• • •					
		Were all samples prepared and analyzed within holding tin			Х			1
		Other than those results < MQL, were all other raw values	bracketed by					
		calibration standards?		X				
		Were calculations checked by a peer or supervisor?	· .	X				-
		Were all analyte identifications checked by a peer or super Were sample detection limits reported for all analytes not c		X X				
	-	Were all results for soil and sediment samples reported on		Λ		X		
		Were % moisture (or solids) reported for all soil and sedim				X		
		Were bulk soils/solids samples for volatile analysis extract			1		-	
		SW-846 Method 5035?	ea mai monunoi poi			Х		
	İ	If required for the project, TICs reported?		İ	ĺ	X X		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?				Х		
		Were surrogate percent recoveries in all samples within the						
D5	01	limits?				X		
R5	OI	Test reports/summary forms for blank samples Were appropriate type(s) of blanks analyzed?		Х				
		Were blanks analyzed at the appropriate frequency?		X				
		Were method blanks taken through the entire analytical pro	Λ					
		preparation and, if applicable, cleanup procedures?	Х					
		Were blank concentrations < MQL?		Х				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		Х				
		Was each LCS taken through the entire analytical procedur	re, including prep and	37				
		cleanup steps?		X X				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the labor	ratory OC limits?	X				-
		Does the detectability data document the laboratory's capa		Λ				
		COCs at the MDL used to calculate the SDLs?	onity to detect the	Х				
		Was the LCSD RPD within QC limits?		X				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) d	ata					
		Were the project/method specified analytes included in the		Х				
		Were MS/MSD analyzed at the appropriate frequency?		Х				
		Were MS (and MSD, if applicable) %Rs within the laborat	tory QC limits?	Х				
D	0.7	Were MS/MSD RPDs within laboratory QC limits?		Х				
R8	OI	Analytical duplicate data		v				
		Were appropriate analytical duplicates analyzed for each n		X X				
		Were analytical duplicates analyzed at the appropriate freq Were RPDs or relative standard deviations within the labor		X		+	-	+
R9	OI	Method quantitation limits (MQLs):		Λ				
		Are the MQLs for each method analyte included in the lab	oratory data nackage?	Х				
	1	Do the MQLs correspond to the concentration of the lowes		<u> </u>	1	1		
	L	standard?		Х				
		Are unadjusted MQLs and DCSs included in the laboratory	y data package?	Х				
R10	OI	Other problems/anomalies						
		Are all known problems/anomalies/special conditions note	d in this LRC and					
	<u> </u>	ER?	4 1 1 4 9	X				
		Were all necessary corrective actions performed for the rep		Х		+		
		Was applicable and available technology used to lower the the matrix interference effects on the sample results?	SDL and minimize	х			1	
		Is the laboratory NELAC-accredited under the Texas Labo	ratory Program for	Λ				
		the analytes, matrices and methods associated with this lab		Х				
			,		1	1	1	1
	1							

		Laboratory Review Che	ecklist: Supporting Da	ta				
Labo	oratory	Name: ALS Laboratory Group	LRC Date: 05/09/2	023				
Proje	ect Na	me: NRG Limestone - Appendix III - Resample	Laboratory Job Nu	mber:	HS230	50035		
		Name: Andy Neir	Prep Batch Number	r(s): 1	93380.	R434468	3.R4346	91
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for	each analyte within QC					
		limits?		Х				
		Were percent RSDs or correlation coefficient criteria met		Х				
		Was the number of standards recommended in the method		Х				
		Were all points generated between the lowest and highest	standard used to					
		calculate the curve?		X				
		Are ICAL data available for all instruments used?		Х	-	_		-
		Has the initial calibration curve been verified using an app standard?	ropriate second source	x				
S2	OI	Initial and continuing calibration verification (ICCV a continuing calibration blank (CCB)	nd CCV) and					
		Was the CCV analyzed at the method-required frequency?		Х				
		Were percent differences for each analyte within the method	Х					
			37					
		Was the ICAL curve verified for each analyte?	in angonia CCD < MDL9	X X		-	+	+
S 3	0	Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?	X				
33	0	Mass spectral tuning: Was the appropriate compound for the method used for tur	Х					
		Were ion abundance data within the method-required QC		X				
S4				Л				
54	0	Were IS area counts and retention times within the method	l-required OC limits?	X				
		Raw data (NELAC section 1 appendix A glossary, and se		Λ				
S5 OI		17025 section	cubii 5.12 of 150/120					
20	01	Were the raw data (for example, chromatograms, spectral)	data) reviewed by an					
		analyst?)	Х				
		Were data associated with manual integrations flagged on	the raw data?	Х				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-rec	uired QC?			Х		
S7	0	Tentatively identified compounds (TICs):						
		If TICs were requested, were the mass spectra and TIC dat	a subject to appropriate					
~ ~	-	checks?				Х		
S8	Ι	Interference Check Sample (ICS) results:						
C O	T	Were percent recoveries within method QC limits?		Х				
S9	1	Serial dilutions, post digestion spikes, and method of st						
		Were percent differences, recoveries, and the linearity wit specified in the method?	hin the QC limits	х				
S10	OI	Method detection limit (MDL) studies		Л				
510	01	Was a MDL study performed for each reported analyte?		Х				
		Is the MDL either adjusted or supported by the analysis of	DCSs?	X				
S11	OI	Proficiency test reports:	2005.	11				
	01	Was the laboratory's performance acceptable on the applic	able proficiency tests or					
		evaluation studies?	1 5	Х				
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or o	btained from other					
		appropriate sources?		Х				
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification do	ocumented?	Х				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5C		X			_	_
		Is documentation of the analyst's competency up-to-date a		Х				
C15	OT	Verification/validation documentation for methods (NE	LAC Chap 5 or					
S15	OI	ISO/IEC 17025 Section 5)	vanified and valid-4-d					
		Are all the methods used to generate the data documented, where applicable?	vermen, and validated,	Х				
S16	OI	Laboratory standard operating procedures (SOPs):		Λ				
510		Are laboratory SOPs current and on file for each method p	erformed?	Х				
	1	ed by the letter "R" must be included in the laboratory of			I			

O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable);NA = Not Applicable; NR = Not Reviewed; R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

	Laboratory Review Checklist: Exception Reports								
Laboratory Name: ALS Laboratory Group LRC Date: 05/09/2023									
Project Name: NRG Limestone - Appendix III - Resample Laboratory Job Number: HS23050035									
Revie	ewer Name: Andy Neir	Prep Batch Number(s): 193380,R434468,R434691							
ER# ⁵	Description								
1	Sample received outside method holding time for pH. pH is an immediate test. Sample results are flagged with an "H" qualifier. The temperature at the time of pH is reported. Please note that all pH results are already normalized to a temperature of 25 degrees C.								
identifi O = Or NA = N NR = N	Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable); NA = Not Applicable; NR = Not Reviewed;								
_ R# = E	Exception Report identification number (an Exception Report	should be completed for an item if "NR" or "No" is checked).							

Client:TRC CorporationProject:NRG Limestone -Appendix III -ResampleWork Order:HS23050035

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS23050035-01	MW-01	Water		01-May-2023 10:15	01-May-2023 12:50	
HS23050035-02	MW-21	Water		01-May-2023 09:40	01-May-2023 12:50	
HS23050035-03	MW-28	Water		01-May-2023 08:55	01-May-2023 12:50	

Client:	TRC Corporation	on			ANALYTICAL REPORT				
Project:	NRG Limeston	e -Appe	endix III -Resamp	le	WorkOrder:HS23050035				
Sample ID:	MW-01				Lab ID:HS23050035-01				
Collection Date:	01-May-2023 1	0:15			Matrix:Water				
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
PH BY SW9040C		Method:	SW9040C				Analyst: CD		
рН	3.84	Н	0.100	0.100	pH Units	1	05-May-2023 14:15		
Temp Deg C @pH	19.5	Н	0	0	DEG C	1	05-May-2023 14:15		

ALS Houston, US					Date: 09-May-23				
Client:	TRC Corporati	ion			ANALYTICAL REPORT				
Project:	NRG Limeston	ne -Appe	endix III -Resamp	le	WorkOrder:HS23050035				
Sample ID:	MW-21				Lab ID:HS23050035-02				
Collection Date:	01-May-2023 (09:40		Matrix:Water					
ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
ICP-MS METALS BY SW60204	A Contraction of the second seco	Method:	SW6020A		Prep:SW3010A	A / 04-May-2023	Analyst: MSC		
Boron	0.734		0.0220	0.0400	mg/L	2	05-May-2023 13:52		

ALS Houston, US				Date: 09-May-23				
Client:	TRC Corporation			ANALYTICAL REPORT				
Project:	NRG Limestone -Apper	NRG Limestone -Appendix III -Resample WorkOrder:HS23050						
Sample ID:	MW-28	MW-28 Lab ID:HS23050035						
Collection Date:	01-May-2023 08:55		Matrix:Water					
ANALYSES	RESULT QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED		
ANIONS BY E300.0, REV	/ 2.1, 1993 Method	:E300				Analyst: TH		
Sulfate	959	4.00	10.0	mg/L	20	08-May-2023 16:37		

Weight / Prep Log

Client:TRC CorporationProject:NRG Limestone -Appendix III -ResampleWorkOrder:HS23050035

Batch ID: 193380		Start Date	Start Date: 04 May 2023 15:00		End Date: 04 May 2023 19:00		
Method: WATER - SW307				Prep Code: 3010A			
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor			
HS23050035-02		10 (mL)	10 (mL)	1	120 plastic HNO3		

Client: Project: WorkOrder:		rporation nestone -Appenc 0035	DATES REPOR				
Sample ID	Client Samp	DID Co	ollection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 193380	0(0)	Test Name : ICP-M	IS METALS BY SV	W6020A		Matrix: Water	
HS23050035-02	MW-21	01	May 2023 09:40		04 May 2023 15:00	05 May 2023 13:52	2
Batch ID: R43446	68(0)	Test Name: PH B	Y SW9040C			Matrix: Water	
HS23050035-01	MW-01	01	May 2023 10:15			05 May 2023 14:15	1
Batch ID: R43469	91(0)	Test Name : ANIO	NS BY E300.0, RE	EV 2.1, 1993		Matrix: Water	
HS23050035-03	MW-28	01	May 2023 08:55			08 May 2023 16:37	20

WorkOrder: InstrumentID:	HS23050035 ICPMS06					HOD DETEC ⁻ PORTING LIN	
Test Code: Test Number:	ICP_TW SW6020A						
Test Name:	ICP-MS Metals by SW6020A		Matrix:	Aqueous	Uni	ts: mg/L	
Type Analyte		CAS	DC	S Spike	DCS	MDL	PQL
A Boron		7440-42-8		0.0500	0.0467	0.0110	0.0200

WorkOrder: InstrumentID:	HS23050035 ICS-Integrion			HOD DETEC ⁻ PORTING LIN	
Test Code:	300_W				
Test Number:	E300	Matrix: Aqueous	Unit	s: mg/L	
Test Name:	Anions by E300.0, Rev 2.1, 1993		Unit		
Type Analyte	CAS	DCS Spike	DCS	MDL	PQL
A Sulfate	14808-79-8	0.250	3.34	0.200	0.500

WorkOrder: InstrumentID: Test Code:	HS23050035 WetChem_HS pH_W_9040C				IOD DETECT PORTING LIN	
Test Number: Test Name:	SW9040C pH by SW9040C		Matrix: Aqueous	Unit	s: pH Units	3
Type Analyte		CAS	DCS Spike	DCS	MDL	PQL
A pH		PH	0	0	0.100	0.100
A Temp Deg	С @рН	TEMP	0	0	0	0

Client: TRC Corporation **QC BATCH REPORT Project:** NRG Limestone - Appendix III - Resample WorkOrder: HS23050035 Batch ID: 193380 (0) Instrument: ICPMS05 Method: ICP-MS METALS BY SW6020A MBLK Analysis Date: 04-May-2023 21:49 Sample ID: MBLK-193380 Units: mg/L Client ID: Run ID: ICPMS05_434334 SeqNo: 7280376 PrepDate: 04-May-2023 DF·1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val Value %REC Limit %RPD Limit Qual Value Boron < 0.0110 0.0200 LCS Sample ID: LCS-193380 Units: mg/L Analysis Date: 04-May-2023 21:51 Client ID: Run ID: ICPMS05 434334 SeqNo: 7280377 PrepDate: 04-May-2023 DF: 1 SPK Ref RPD Ref Control RPD %REC %RPD Limit Qual Analyte Result MQL SPK Val Value Limit Value Boron 0.5292 0.0200 0.5 0 106 80 - 120 Units: mg/L MS Sample ID: HS23050054-01MS Analysis Date: 04-May-2023 21:57 Run ID: ICPMS05 434334 SeqNo: 7280380 PrepDate: 04-May-2023 Client ID: DF: 1 SPK Ref Control **RPD** Ref RPD %RPD Limit Qual %REC MQL SPK Val Analyte Result Value Limit Value Boron 0.6034 0.0200 0.5 0.09057 103 80 - 120 MSD Sample ID: HS23050054-01MSD Units: mg/L Analysis Date: 04-May-2023 21:59 Run ID: ICPMS05_434334 Client ID: SeqNo: 7280381 PrepDate: 04-May-2023 DF: 1 SPK Ref **RPD** Ref RPD Control SPK Val Analyte Result MQL Value %REC Limit Value %RPD Limit Qual Boron 0.6248 0.0200 0.5 0.09057 107 80 - 120 0.6034 3.47 20 SD Sample ID: HS23050054-01SD Units: mg/L Analysis Date: 04-May-2023 21:55 Client ID: Run ID: ICPMS05 434334 SeqNo: 7280379 PrepDate: 04-May-2023 DF: 5 SPK Ref Control RPD Ref %D Analyte Result MQL SPK Val Value %REC Limit Value Limit Qual %D 0.111 0.100 0.09057 0 10 Boron

Date: 09-May-23

The following samples were analyzed in this batch: HS23050035-02

ALS Houston, US

ALS Houston, US Date: 09-May-23 **Client: TRC** Corporation **QC BATCH REPORT Project:** NRG Limestone -Appendix III -Resample WorkOrder: HS23050035 Batch ID: R434468 (0) Instrument: WetChem_HS Method: PH BY SW9040C DUP HS23050030-07DUP Sample ID: Units: pH Units Analysis Date: 05-May-2023 14:15 Client ID: Run ID: WetChem_HS_434468 SeqNo: 7282121 PrepDate: DF: 1 SPK Ref RPD Ref Control RPD SPK Val %RPD Limit Qual Analyte Result MQL Value %REC Limit Value pН 7.18 0.100 7.2 0.278 10 Temp Deg C @pH 19.5 0 19.5 0 10

The following samples were analyzed in this batch: HS23050035-01

Client: TRC Corporation QC BATCH REPORT **Project:** NRG Limestone - Appendix III - Resample WorkOrder: HS23050035 Batch ID: R434691 (0) Instrument: **ICS-Integrion** Method: ANIONS BY E300.0, REV 2.1, 1993 MBLK Sample ID: MBLK Units: mg/L Analysis Date: 08-May-2023 13:58 Client ID: Run ID: ICS-Integrion_434691 SeqNo: 7287541 PrepDate: DF·1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val %REC %RPD Limit Qual Value Limit Value Sulfate < 0.200 0.500 LCS Sample ID: LCS Units: mg/L Analysis Date: 08-May-2023 14:09 Client ID: Run ID: ICS-Integrion_434691 SeqNo: 7287542 PrepDate: DF: 1 SPK Ref Control RPD Ref RPD %RPD Limit Qual Analyte Result MQL SPK Val Value %REC Limit Value Sulfate 20.2 0.500 20 0 101 90 - 110 MS HS23041449-01MS Units: mg/L Analysis Date: 08-May-2023 17:41 Sample ID: Run ID: ICS-Integrion 434691 SeqNo: 7287568 Client ID: PrepDate: DF: 1 SPK Ref Control **RPD** Ref RPD SPK Val %RPD Limit Qual MQL %REC Analyte Result Value Limit Value Sulfate 11.89 0.500 10 1.138 108 80 - 120 MS Sample ID: HS23041446-01MS Units: mg/L Analysis Date: 08-May-2023 17:24 Client ID: Run ID: ICS-Integrion_434691 SeqNo: 7287565 PrepDate: DF: 1 SPK Ref Control RPD Ref RPD Analyte Result MQL SPK Val Value %REC Limit %RPD Limit Qual Value Sulfate 11.2 0.500 10 1.27 99.3 80 - 120 MSD Sample ID: HS23041449-01MSD Units: mg/L Analysis Date: 08-May-2023 17:47 Run ID: ICS-Integrion_434691 SeqNo: 7287569 PrepDate: Client ID: DF: 1 SPK Ref Control **RPD** Ref RPD Analyte Result MQL SPK Val Value %REC Limit %RPD Limit Qual Value Sulfate 0.500 10 1.138 109 80 - 120 11.89 0.849 20 11 99 MSD Sample ID: HS23041446-01MSD Units: mg/L Analysis Date: 08-May-2023 17:30 Client ID: Run ID: ICS-Integrion_434691 SeqNo: 7287566 PrepDate: DF: 1 SPK Ref Control RPD Ref RPD %RPD Limit Qual Analyte Result MQL SPK Val %REC Value Limit Value Sulfate 11.13 0.500 10 1.27 98.6 80 - 120 11.2 0.616 20 The following samples were analyzed in this batch: HS23050035-03

ALS Houston, US

Date: 09-May-23

Client: Project: WorkOrder:	TRC Corporation NRG Limestone -Appendix III -Resample HS23050035	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
Μ	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Dept of Defense	L21-682	31-Dec-2023
Florida	E87611-36	30-Jun-2023
Kansas	E-10352; 2022-2023	31-Jul-2023
Louisiana	03087, 2022-2023	30-Jun-2023
Maryland	343, 2022-2023	30-Jun-2023
North Carolina	624-2023	31-Dec-2023
Oklahoma	2022-141	31-Aug-2023
Utah	TX026932022-13	31-Jul-2023

					Sample Receipt Checklist
Work Order ID:	HS23050035		Date/	Time Received:	<u>01-May-2023 12:50</u>
Client Name:	TRC-HOU		Rece	ived by:	Corey Grandits
Completed By:	/S/ Malcolm Burleson	01-May-2023 14:32	Reviewed by:		
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	WATER		Carrier name:	<u>Client</u>	
Shipping contai	ner/cooler in good condition?		Yes 🔽	No 🗌	Not Present
Custody seals in	ntact on shipping container/co	oler?	Yes 🔽	No 🗌	Not Present
Custody seals in	ntact on sample bottles?		Yes 📃	No 🗌	Not Present 🛛 🔽
VOA/TX1005/TX	X1006 Solids in hermetically s	ealed vials?	Yes 📃	No 🗌	Not Present 🛛 🔽
Chain of custod	y present?		Yes 🔽	No 📃	1 Page(s)
Chain of custod	y signed when relinquished ar	nd received?	Yes 🔽	No 📃	COC IDs:289472
Samplers name	present on COC?		Yes 📝	No 📃	
Chain of custod	y agrees with sample labels?		Yes 📃	No 🗹	
Samples in prop	per container/bottle?		Yes 🗹	No 🗌	
Sample contain	ers intact?		Yes 🔽	No 🗌	
Sufficient sampl	le volume for indicated test?		Yes 🔽	No 🗌	
All samples rece	eived within holding time?		Yes 🗹	No 📃	
Container/Temp	Blank temperature in complia	ance?	Yes 🗹	No 🗌	
Temperature(s)	/Thermometer(s):		0.9/0.8C		IR31
Cooler(s)/Kit(s):			45762		
Date/Time sam	ole(s) sent to storage:		04012023		
Water - VOA via	als have zero headspace?		Yes	No 📃	No VOA vials submitted
Water - pH acce	eptable upon receipt?		Yes 🔽	No 🔲	N/A
pH adjusted?			Yes 📃	No 🗹	N/A
pH adjusted by:					
C C	Sample Rec'd COC MW-01 1 3 MW-21 1 3 MW-28 1 3	2			
Client Contacted	d:	Date Contacted:		Person Cor	ntacted:
Contacted By:		Regarding:			
Comments:					
Corrective Actio	n:				

Date: 09-May-23

		Cincinnati, OH +1 513 733 5336	Fort Coll +1 970 4		Cł	nain (of Cusi	tody Fo	orn	n					0500				N
	AA	Everett, WA +1 425 356 2600	Holland, +1 616 3			Pag	eof _			NE	RG L in	astan			rpora	ition e -Appe	omativ. II		
(A	LS)			55 567 5		CC	DC ID: 2	8947	2									I-Res	
		an an an an an an an an an an an an an a					LS Project												
C	Sustomer Information			di	Project Ir	nformat	ion												
Purchase Order	20012		Project I	lame	NRG LI	mestone	e- Appendix	III -Resa	A	ICP_T	W(B (App III))						
Work Order	A THE CONTRACT OF A WAYNE AND A CARD AND A CARD AND A CARD A C		Project Nu	mber					в	300_V	V (SO4	l)							
Company Name	TRC Corporation		Bill To Com	pany	TRC Co	rporatio	xn	an an an an an an an an an an an an an a	С	Sub_F	luoride	(Sub I	Fluorio	ie to A	LS Mic	higan)			
Send Report To	Lori Burris		Invoice	Attn	A/P			4.900-900	D	TDS_1	N 2540	IC (TD	S)						
	14701 St. Mary's La	ne			14701 \$	St. Mary	's Lane	899 8 Provinsion - Conception -	E	ICP_T	W(B, 0	Ca, and	i Na (App III))				
Address	Suite 500		Ade	dress	Suite 50	00			F	pH_W	_90400	>							
City/State/Zip	Houston, TX 77079		City/Stat	e/Zip	Houstor	n TX 77	7079	, 	G		******			****					
Phone	(713) 244-1000			hone	(713) 24	44-1000			H										1992-1997 (Maria (Maria Maria (Maria)
Fax	(713) 244-1099			Fax	(713) 24	44-1099			1										
e-Mail Address	LBurnis@tresolutions	s.com	e-Mail Ad		apinvoid	ceappro	val@trcsolu	itions.com	J							1			
No.	Sample Description		Date		me	Matrix	Pres.	# Bottles	A	В	C	D	E	F	G	H	1 J	Но	bld
1 MVV-01			5-1-23	101	5 V	Vater	8	3						Х					
2 MW-21				94(Vater	2,8	3		X									
3 MW-28			d'	85		Vater	8	3		X									
4					-														
5			999				-												
6																			
7		An an in a familie an an an an an an an an an an an an an		-					1										-
8			na wij natad Partanakko natanalijano 14 dala Grani natika mada kanana -																
9			an faran sa mangan nganangan nga panganan nga manganan nga mang panganan na gana ng																
10				-		nya nya pana kana kana ang kana kana kana kana ka													
	rint & Sign	1	Shipmo	ant Meth	od	Req	uired Turnard				Boolector	ner	 			sults Due	Date:		*****
Muson bo	<u>d Merce</u>	<u> </u>	Dre				STD 10 Wk D	ays X	200000000000000000000000000000000000000	Days	second	Wk Days	545	24		~~~ 1717		****	
100		5-1-23	ime: 1250	Receiv	ed by: ed by (Labora	toni			Note	ACHINE CONSIGNATION OF THE OWNER	ากระบาท	álla a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a seo a s	on a fair and the second second second second second second second second second second second second second s	80040000000000000000000000000000000000	****		and an experimental statement of the second statement of the second statement of the second statement of the se		
Relinquished by:	-	Date: T	ime:	rieceiv «	Ct	1.01y): 1 -1-1	23 1250			ooler ID		er Temp.		SSOC States and a second second	el II Std QC	One Box	Below)	TRRP Chec	cklist
Logged by (Laboratory)	•	Date: T	ime:	Check	ed by (Labora	atory):			415762 CF=-0.1			2 0.9		Level III Std QC/Raw Date			TRRPLeve	чV	
Preservative Key:	1-HCI 2-HNO ₃ 3	B-H₂SO₄ 4-NaC	0H 5-Na ₂ S ₂ (73 6	NaHSO₄	7-Othe	er 8-4°C	9-5035		1				Cthe	91 IV SVV84 97	argur	- Torivitation and the second se	or an active state of the state	4)-(*+2+2)-(******************

 Vote:
 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 Image 31

 2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 Page 21 of 22

Copyright 2011 by ALS Environmental.

ALS 10450 Stancliff Rd., Suite 210 Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 5887

45762 MAY 0 1 2023

Appendix B Detection Monitoring Data (October 2023)

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

October 18, 2023

Lori Burris TRC Corporation 14701 St. Mary's Lane Suite 500 Houston, TX 77079

Work Order: HS23100630

Laboratory Results for: NRG Limestone -Appendix III

Dear Lori Burris,

ALS Environmental received 12 sample(s) on Oct 10, 2023 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Ind CL

Generated By: JUMOKE.LAWAL Andy C. Neir

Client:	TRC Corporation	
Project:	NRG Limestone -Appendix III	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS23100630	i dekage ööver i age

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Client:	TRC Corporation		
Project:	NRG Limestone -Appendix III	TRRP Laboratory Da	
WorkOrder:	HS23100630	Package Cover Page	
Dal	and Statements I am mananciple for the relaged of this laboratory	data maalraga. This laboratemy is	

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

John C.L.

Andy C. Neir

		Laboratory Review Check	list: Reportable Dat	a				
Labor	ratory	Name: ALS Laboratory Group	LRC Date: 10/18/2	023				
Proje	ct Nan	ne: NRG Limestone - Appendix III	Laboratory Job Nur	nber: l	HS2310	0630		
			Prep Batch Number(s					
		ame: Andy Neir	201988,R449144,R44929		1			
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C) Did samples meet the laboratory's standard conditions of s	sample acceptability					
		upon receipt?	sample acceptaomity	Х				
		Were all departures from standard conditions described in	an exception report?	X				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the la	boratory ID numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corr	esponding QC data?	Х				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding tin		Х				_
		Other than those results < MQL, were all other raw values	bracketed by					
		calibration standards?		X				
		Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or super	muiaan)	X X				_
				X X				<u> </u>
		Were sample detection limits reported for all analytes not Were all results for soil and sediment samples reported on				X		
	1	Were % moisture (or solids) reported for all soil and sedin				X	-	
		Were bulk soils/solids samples for volatile analysis extract						1
		SW-846 Method 5035?	per			Х		
	1	If required for the project, TICs reported?		İ		X X		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?				Х		
		Were surrogate percent recoveries in all samples within th	e laboratory QC					
		limits?				Х		_
R5	OI	Test reports/summary forms for blank samples	37					
		Were appropriate type(s) of blanks analyzed?		X				
		Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical pr	a a a a a a in alludin a	Х				_
		preparation and, if applicable, cleanup procedures?	ocess, including	х				
		Were blank concentrations < MQL?		X				-
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		Х				
		Was each LCS taken through the entire analytical procedu	re, including prep and					
		cleanup steps?		Х				
		Were LCSs analyzed at the required frequency?		Х				
		Were LCS (and LCSD, if applicable) %Rs within the labo		Х				
		Does the detectability data document the laboratory's capa	ability to detect the					
		COCs at the MDL used to calculate the SDLs?		X				
D7	OI	Was the LCSD RPD within QC limits?	1.4.	Х				
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) of Were the project/method specified analytes included in the		Х				
		Were MS/MSD analyzed at the appropriate frequency?		X				
		Were MS (and MSD, if applicable) %Rs within the labora	tory OC limits?		X	1	1	1
	1	Were MS/MSD RPDs within laboratory QC limits?		Х				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each r	matrix?	Х				
		Were analytical duplicates analyzed at the appropriate free		Х				
		Were RPDs or relative standard deviations within the labo	oratory QC limits?	Х				
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the lab		Х		-		4
		Do the MQLs correspond to the concentration of the lower	st non-zero calibration					
		standard?	n. data ma-19	X X		-		
D10	OT	Are unadjusted MQLs and DCSs included in the laborator	y data package?	Λ				
R10	OI	Other problems/anomalies Are all known problems/anomalies/special conditions note	ed in this I BC and					
		ER?	a in uns like and	х				2
		Were all necessary corrective actions performed for the re	ported data?	X	ł	1	1	
	+	Was applicable and available technology used to lower the						
								1
			the matrix interference affects on the sample results?					
				X				

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable);NA = Not Applicable; NR = Not Reviewed; R# = Exception Report identification number (an Exception Report Should be completed for an item if "NR" or "No" is checked).

Labo	ratory	Laboratory Review Chec Name: ALS Laboratory Group	LRC Date: 10/18/202					
		ne: NRG Limestone - Appendix Ill	Laboratory Job Num		5231006	530		
			Prep Batch Number(s):					
		ame: Andy Neir	201988,R449144,R449292					
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER#
S1	OI	Initial calibration (ICAL)	1 1 4 41 00					
		Were response factors and/or relative response factors for	each analyte within QC	v				
		limits? Were percent RSDs or correlation coefficient criteria met	7	X X				_
		Was the number of standards recommended in the method		X				
		Were all points generated between the lowest and highest s		Λ		-		-
		calculate the curve?	standard used to	Х				
		Are ICAL data available for all instruments used?		X				
			· · · · ·					
		Has the initial calibration curve been verified using an app	ropriate second source	v				
		standard? Initial and continuing calibration verification (ICCV and	nd CCV) and	Х				
S2	OI	continuing calibration blank (CCB)	nu CC v) anu					
52	01	Was the CCV analyzed at the method-required frequency?	•	Х				
		Were percent differences for each analyte within the method		X				
		Was the ICAL curve verified for each analyte?	ou requireu ço minis.	X				
		Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?		X			3
S3	0	Mass spectral tuning:						-
		Was the appropriate compound for the method used for tur	ning?	Х				
		Were ion abundance data within the method-required QC I		Х				
S4	0	Internal standards (IS):						
		Were IS area counts and retention times within the method	l-required QC limits?	Х				
		Raw data (NELAC section 1 appendix A glossary, and se						
S5	OI	17025 section						
		Were the raw data (for example, chromatograms, spectral	data) reviewed by an					
		analyst?		Х				
		Were data associated with manual integrations flagged on	the raw data?	Х				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-req	juired QC?			Х		
S 7	0	Tentatively identified compounds (TICs):						
		If TICs were requested, were the mass spectra and TIC dat	ta subject to appropriate					
G0	Ŧ	checks?				X		_
S8	Ι	Interference Check Sample (ICS) results:		N				
60	т	Were percent recoveries within method QC limits?		Х				
S9	1	Serial dilutions, post digestion spikes, and method of st	11 1 001					
		Were percent differences, recoveries, and the linearity with specified in the method?	unin the QC minus	Х				
S10	OI	Method detection limit (MDL) studies		Λ				
510		Was a MDL study performed for each reported analyte?		Х				
		Is the MDL either adjusted or supported by the analysis of	DCSs?	X				
S11	OI	Proficiency test reports:	2000.					
511	01	Was the laboratory's performance acceptable on the applic	able proficiency tests or					
		evaluation studies?	Х					
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or of	btained from other					
		appropriate sources?		Х				
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification do	ocumented?	Х				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5C		Х		_		_
		Is documentation of the analyst's competency up-to-date a		Х				
		Verification/validation documentation for methods (NE	ELAC Chap 5 or					
S15	OI	ISO/IEC 17025 Section 5)						
		Are all the methods used to generate the data documented,	verified, and validated,					
a		where applicable?		Х				
S16	OI	Laboratory standard operating procedures (SOPs):	0 10					
Iterre ''	antifi I '	Are laboratory SOPs current and on file for each method p		X		find here !	ottor "O"	
		by the letter "R" must be included in the laboratory data package submi de available upon request for the appropriate retention period.	Inter in the TKKP-required rep	οπ(s). It	ems identi	neu by the l	eller S Sh	Julu Dê
		alyses; I = Inorganic Analyses (and general chemistry, when applicable	e);					
		able; NR = Not Reviewed;						

	Laboratory Review Che	ecklist: Exception Reports			
Laboratory Name: ALS Laboratory Group LRC Date: 10/18/2023					
Projec	et Name: NRG Limestone -Appendix Ill	Laboratory Job Number: HS23100630			
Revie	wer Name: Andy Neir	Prep Batch Number(s): 201988,R449144,R449292,R449336,R449338,R449362			
ER# ⁵	Description				
1	 Batch 201988, Metals Method SW6020, sample HS23100607-1 Batch 201988, Metals Method SW6020, sample MW-02, MS reparent sample is 4x greater than the spike amount. Batch R449292, Anions Method E300, sample MW-02, MS and Batch R449292, Anions Method E300, sample HS23100386-01. Batch R449362, Anions Method E300, sample HS23100830-02. Batch R449362, Anions Method E300, sample HS23100830-01. 	covered outside the control limit for Sodium, however, the result in the MSD recovered outside the control limit for Sulfate , MS and MSD were performed on unrelated sample. , MS and MSD were performed on unrelated sample			
2	The analysis for Fluoride was subcontracted to ALS Environment the final report	ntal in Holland, Report and Laboratory Review Checklist are attached to			
3	See Run Log and CCB Exceptions Report.				
retained O = Orga NA = No NR = No	entified by the letter "R" must be included in the laboratory data package subn and made available upon request for the appropriate retention period. anic Analyses; I = Inorganic Analyses (and general chemistry, when applicabl t Applicable; t Reviewed; ception Report identification number (an Exception Report should be complete				

Client: TRC Corporation

Project: NRG Limestone - Appendix III

WorkOrder: HS23100630

Start Date: 16-Oct-2023

End Date: 17-Oct-2023

Run ID:ICPMS07_449157 Instrument:ICPMS07 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
ICV	1	16-Oct-2023 10:19	020_ICV.d	B CA NA
LLICV2	1	16-Oct-2023 10:23	022LCV2.d	B CA NA
LLICV5	1	16-Oct-2023 10:25	023LCV5.d	B CA NA
ICB	1	16-Oct-2023 10:31	025_ICB.d	B CA NA
ICSA	1	16-Oct-2023 10:33	026ICSA.d	B CA NA
ICSAB	1	16-Oct-2023 10:36	027ICSB.d	B CA NA
CCV 1	1	16-Oct-2023 10:47	030_CCV.d	B CA NA
CCB 1	1	16-Oct-2023 10:50	031_CCB.d	B CA NA
CCV 2	1	16-Oct-2023 11:15	042_CCV.d	B CA NA
CCB 2	1	16-Oct-2023 11:17	043_CCB.d	B CA NA
CCB 3	1	16-Oct-2023 11:19	044_CCB.d	B CA NA
CCV 3	1	16-Oct-2023 11:22	045_CCV.d	B CA NA
CCV 4	1	16-Oct-2023 11:47	056_CCV.d	B CA NA
CCV 5	1	16-Oct-2023 11:47	056_CCV.d	B CA NA
CCB 4	1	16-Oct-2023 11:50	057_CCB.d	B CA NA
CCB 5	1	16-Oct-2023 11:50	057_CCB.d	B CA NA
CCV 6	1	16-Oct-2023 11:52	058_CCV.d	B CA NA
CCV 7	1	16-Oct-2023 11:52	058_CCV.d	B CA NA
CCB 6	1	16-Oct-2023 11:56	059_CCB.d	B CA NA
CCB 7	1	16-Oct-2023 11:56	059_CCB.d	B CA NA
CCB 8	1	16-Oct-2023 12:35	074_CCB.d	B CA NA
CCV 8	1	16-Oct-2023 12:38	075_CCV.d	B CA NA
CCV 9	1	16-Oct-2023 13:02	086_CCV.d	B CA NA
CCB 9	1	16-Oct-2023 13:04	087_CCB.d	B CA NA
CCV 10	1	16-Oct-2023 13:29	098_CCV.d	B CA NA
CCB 10	1	16-Oct-2023 13:31	099_CCB.d	B CA NA
CCB 11	1	16-Oct-2023 13:52	100_CCB.d	B CA NA
CCV 11	1	16-Oct-2023 14:18	111_CCV.d	B CA NA
CCB 12	1	16-Oct-2023 14:20	112_CCB.d	B CA NA
CCB 13	1	16-Oct-2023 14:24	113_CCB.d	B CA NA
CCV 12	1	16-Oct-2023 14:49	124_CCV.d	B CA NA
CCB 14	1	16-Oct-2023 14:52	125_CCB.d	B CA NA
CCB 15	1	16-Oct-2023 14:55	126_CCB.d	B CA NA
CCV 13	1	16-Oct-2023 15:20	137_CCV.d	B CA NA
CCB 16	1	16-Oct-2023 15:22	138_CCB.d	B CA NA
CCB 17	1	16-Oct-2023 15:25	139_CCB.d	B CA NA
CCV 14	1	16-Oct-2023 15:27	140_CCV.d	B CA NA
CCV 15	1	16-Oct-2023 15:52	151_CCV.d	B CA NA
CCB 18	1	16-Oct-2023 15:54	152_CCB.d	B CA NA
CCV 16	1	16-Oct-2023 16:20	163_CCV.d	B CA NA
CCB 19	1	16-Oct-2023 16:22	164_CCB.d	B CA NA
CCV 17	1	16-Oct-2023 17:08	175_CCV.d	B CA NA
CCB 20	1	16-Oct-2023 17:10	176_CCB.d	B CA NA
CCV 18	1	16-Oct-2023 17:35	187_CCV.d	B CA NA
CCB 21	1	16-Oct-2023 17:37	188_CCB.d	B CA NA
CCB 22	1	16-Oct-2023 17:40	189_CCB.d	B CA NA
CCV 19	1	16-Oct-2023 18:05	200_CCV.d	B CA NA
CCB 23	1	16-Oct-2023 18:08	201_CCB.d	B CA NA
CCV 20	1	16-Oct-2023 18:29	210_CCV.d	B CA NA
CCB 24	1	16-Oct-2023 18:31	211_CCB.d	B CA NA

Privileged and Confidential

Client: TRC Corporation

Project: NRG Limestone -Appendix III

WorkOrder: HS23100630

Start Date: 16-Oct-2023

End Date: 17-Oct-2023

Run ID:ICPMS07_449157
Instrument:ICPMS07
Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
CCB 25	1	16-Oct-2023 20:07	214SMPL.d	B CA NA
CCV 21	1	16-Oct-2023 20:09	215_CCV.d	B CA NA
CCV 22	1	16-Oct-2023 20:31	225_CCV.d	B CA NA
CCB 26	1	16-Oct-2023 20:34	226_CCB.d	B CA NA
CCV 23	1	16-Oct-2023 21:04	228_CCV.d	B CA NA
ICCV 24	1	16-Oct-2023 21:32	240_ICV.d	B CA NA
LLCCV5	1	16-Oct-2023 21:34	241LCV5.d	B CA NA
LLCCV2	1	16-Oct-2023 21:36	242LCV2.d	B CA NA
ICCB 27	1	16-Oct-2023 21:38	243_ICB.d	B CA NA
CCV 25	1	16-Oct-2023 21:43	245_CCV.d	B CA NA
CCB 28	1	16-Oct-2023 21:45	246_CCB.d	B CA NA
CCV 26	1	16-Oct-2023 22:05	255_CCV.d	B CA NA
CCB 29	1	16-Oct-2023 22:07	256_CCB.d	B CA NA
CCV 27	1	16-Oct-2023 22:23	263_CCV.d	B CA NA
CCB 30	1	16-Oct-2023 22:25	264_CCB.d	B CA NA
CCV 28	1	16-Oct-2023 22:43	272_CCV.d	B CA NA
CCB 31	1	16-Oct-2023 22:46	273_CCB.d	B CA NA
CCV 29	1	16-Oct-2023 22:55	277_CCV.d	B CA NA
CCB 32	1	16-Oct-2023 22:57	278_CCB.d	B CA NA
CCV 30	1	16-Oct-2023 23:17	287_CCV.d	B CA NA
CCB 33	1	16-Oct-2023 23:20	288_CCB.d	B CA NA
CCV 31	1	16-Oct-2023 23:44	299_CCV.d	B CA NA
CCB 34	1	16-Oct-2023 23:47	300_CCB.d	B CA NA
ICSA	1	16-Oct-2023 23:49	301ICSA.d	B CA NA
ICSAB	1	16-Oct-2023 23:51	302ICSB.d	B CA NA
CCV 32	1	17-Oct-2023 00:05	308_CCV.d	B CA NA
CCB 35	1	17-Oct-2023 00:07	309_CCB.d	B CA NA
CCV 33	1	17-Oct-2023 00:25	317_CCV.d	B CA NA
CCB 36	1	17-Oct-2023 00:27	318_CCB.d	B CA NA
MBLK-201988	1	17-Oct-2023 00:30	319SMPL.d	B CA NA
LCS-201988	1	17-Oct-2023 00:32	320SMPL.d	B CA NA
ZZZZZSD	100	17-Oct-2023 00:36	322SMPL.d	B CA NA
ZZZZZMS	20	17-Oct-2023 00:39	323SMPL.d	B CA NA
ZZZZZMSD	20	17-Oct-2023 00:41	324SMPL.d	B CA NA
ZZZZZPDS	20	17-Oct-2023 00:43	325SMPL.d	B CA NA
CCV 34	1	17-Oct-2023 00:48	327_CCV.d	B CA NA
CCB 37	1	17-Oct-2023 00:50	328_CCB.d	B CA NA
MW-02	20	17-Oct-2023 00:52	329SMPL.d	BCA
MW-02SD	100	17-Oct-2023 00:54	330SMPL.d	B CA NA
MW-02MS	20	17-Oct-2023 00:57	331SMPL.d	CANA
MW-02MSD	20	17-Oct-2023 00:59	332SMPL.d	B CA NA
MW-02PDS	20	17-Oct-2023 01:01	333SMPL.d	B CA NA
CCV 35	1	17-Oct-2023 01:06	335_CCV.d	B CA NA
CCB 38	1	17-Oct-2023 01:08	336_CCB.d	B CA NA
MW-01	20	17-Oct-2023 01:21	342SMPL.d	CA
MW-18	20	17-Oct-2023 01:26	344SMPL.d	CA
MW-19	20	17-Oct-2023 01:28	345SMPL.d	CA
MW-20	20	17-Oct-2023 01:31	346SMPL.d	CA
CCV 36	1	17-Oct-2023 01:33	347_CCV.d	B CA NA
CCB 39	1	17-Oct-2023 01:35		B CA NA

Privileged and Confidential

TRC Corporation NRG Limestone -Append	dix III	
: HS23100630		
16-Oct-2023	End Date:	17-Oct-2023
	•	NRG Limestone -Appendix III HS23100630

Run ID:ICPMS07_449157 Instrument:ICPMS07 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
MW-21	20	17-Oct-2023 01:37	349SMPL.d	B CA NA
MW-22	20	17-Oct-2023 01:40	350SMPL.d	CA
MW-27R	20	17-Oct-2023 01:42	351SMPL.d	CA
MW-28	20	17-Oct-2023 01:44	352SMPL.d	CA
Field Duplicate-01	20	17-Oct-2023 01:49	354SMPL.d	CA
CCV 37	1	17-Oct-2023 02:00	359_CCV.d	B CA NA
CCB 40	1	17-Oct-2023 02:02	360_CCB.d	B CA NA
CCV 38	1	17-Oct-2023 02:05	361_CCV.d	B CA NA
CCB 41	1	17-Oct-2023 02:07	362_CCB.d	B CA NA
LLCCV2	1	17-Oct-2023 02:09	363LCV2.d	B CA NA
LLCCV5	1	17-Oct-2023 02:11	364LCV5.d	B CA NA
ICSA	1	17-Oct-2023 02:14	365ICSA.d	B CA NA
ICSAB	1	17-Oct-2023 02:16	366ICSB.d	B CA NA

TRC Corporation Client:

NRG Limestone -Appendix III Project:

WorkOrder: HS23100630

Start Date: 17-Oct-2023

End Date: 18-Oct-2023

Run ID:ICPMS07_449322 Instrument:ICPMS07 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
ICV	1	17-Oct-2023 11:51	052_ICV.d	B CA NA
LLICV2	1	17-Oct-2023 11:56	 054LCV2.d	BCA
LLICV5	1	17-Oct-2023 11:58	055LCV5.d	BCA
ICB	1	17-Oct-2023 12:08	057_ICB.d	B CA NA
ICSA	1	17-Oct-2023 12:10	058ICSA.d	BCA
ICSAB	1	17-Oct-2023 12:12	059ICSB.d	BCA
CCV 1	1	17-Oct-2023 12:18	061_CCV.d	B CA NA
CCB 1	1	17-Oct-2023 12:20	062_CCB.d	B CA NA
CCB 2	1	17-Oct-2023 12:27	064_CCB.d	B CA NA
CCV 2	1	17-Oct-2023 12:29	065_CCV.d	B CA NA
CCV 3	1	17-Oct-2023 12:54	076_CCV.d	B CA NA
CCB 3	1	17-Oct-2023 12:56	077_CCB.d	B CA NA
CCB 4	1	17-Oct-2023 12:58	078_CCB.d	B CA NA
CCV 4	1	17-Oct-2023 13:01	 079_CCV.d	B CA NA
CCV 5	1	17-Oct-2023 13:25	 090_CCV.d	B CA NA
CCV 6	1	17-Oct-2023 13:25	090 CCV.d	B CA NA
CCB 5	1	17-Oct-2023 13:28	091_CCB.d	B CA NA
CCB 6	1	17-Oct-2023 13:28	091_CCB.d	BCANA
CCB 7	1	17-Oct-2023 13:30	092_CCB.d	BCANA
CCV 7	1	17-Oct-2023 13:32	093_CCV.d	BCANA
MW-02MS	1	17-Oct-2023 13:35	094SMPL.d	
MW-17	1	17-Oct-2023 13:53	102SMPL.d	СА
CCV 8	1	17-Oct-2023 13:57	104_CCV.d	B CA NA
CCB 8	1	17-Oct-2023 14:00	105_CCB.d	B CA NA
CCV 9	1	17-Oct-2023 14:02	106_CCV.d	B CA NA
ICCV 10	1	17-Oct-2023 14:32	117_ICV.d	B CA NA
LLCCV2	1	17-Oct-2023 14:36	119LCV2.d	BCA
LLCCV5	1	17-Oct-2023 14:41	121LCV5.d	BCA
ICCB 9	1	17-Oct-2023 14:46	123_ICB.d	B CA NA
CCV 11	1	17-Oct-2023 14:48	124_CCV.d	B CA NA
CCB 10	1	17-Oct-2023 14:50	125_CCB.d	B CA NA
MW-01	1	17-Oct-2023 15:06	132SMPL.d	В
MW-18	1	17-Oct-2023 15:09	133SMPL.d	В
MW-19	1	17-Oct-2023 15:11	134SMPL.d	В
CCB 11	1	17-Oct-2023 15:13	135SMPL.d	B CA NA
CCV 12	1	17-Oct-2023 15:15	136_CCV.d	B CA NA
CCB 12	1	17-Oct-2023 15:18	137_CCB.d	BCANA
ICCV 13	1	17-Oct-2023 16:31	157_ICV.d	BCANA
LLCCV2	1	17-Oct-2023 16:36	159LCV2.d	BCA
LLCCV5	1	17-Oct-2023 16:38	160LCV5.d	BCA
ICCB 13	1	17-Oct-2023 16:43	162_ICB.d	B CA NA
CCV 14	1	17-Oct-2023 16:47	163_CCV.d	B CA NA
CCB 14	1	17-Oct-2023 16:49	164_CCB.d	B CA NA
MW-17	1	17-Oct-2023 16:52	165SMPL.d	В
MW-20	1	17-Oct-2023 16:54	166SMPL.d	В
MW-22	1	17-Oct-2023 16:56	167SMPL.d	В
MW-27R	1	17-Oct-2023 16:59	168SMPL.d	B
MW-28	1	17-Oct-2023 17:01	169SMPL.d	В
Field Blank-01	1	17-Oct-2023 17:03	170SMPL.d	BCA
Field Duplicate-01	1	17-Oct-2023 17:05	171SMPL.d	B
	•			

Privileged and Confidential

Client: TRC Corporation

Project: NRG Limestone - Appendix III

WorkOrder: HS23100630

Start Date: 17-Oct-2023

End Date: 18-Oct-2023

Run ID:ICPMS07_449322 Instrument:ICPMS07 Method:SW6020A

Sample No.	D/F	Time	FileID	Analytes
MW-02MS	1	17-Oct-2023 17:08	172SMPL.d	B
CCV 15	1	17-Oct-2023 17:14	175_CCV.d	B CA NA
CCB 15	1	17-Oct-2023 17:17		B CA NA
CCV 16	1	17-Oct-2023 17:42		B CA NA
CCB 16	1	17-Oct-2023 17:44		B CA NA
CCV 17	1	17-Oct-2023 17:46		B CA NA
CCV 18	1	17-Oct-2023 17:49		B CA NA
CCB 17	1	17-Oct-2023 17:56		B CA NA
CCV 19	1	17-Oct-2023 18:21	 203_CCV.d	B CA NA
CCB 18	1	17-Oct-2023 18:24	 204_CCB.d	B CA NA
CCB 19	1	17-Oct-2023 18:26	 205_CCB.d	B CA NA
CCV 20	1	17-Oct-2023 18:51	216_CCV.d	B CA NA
CCB 20	1	17-Oct-2023 18:53		B CA NA
CCV 21	1	17-Oct-2023 19:18	 228_CCV.d	B CA NA
CCB 21	1	17-Oct-2023 19:20	 229_CCB.d	B CA NA
CCV 22	1	17-Oct-2023 19:45	240_CCV.d	B CA NA
CCB 22	1	17-Oct-2023 19:47	 241_CCB.d	B CA NA
CCV 23	1	17-Oct-2023 20:00	245_CCV.d	B CA NA
CCB 23	1	17-Oct-2023 20:02	246_CCB.d	B CA NA
CCV 24	1	17-Oct-2023 20:27		B CA NA
CCB 24	1	17-Oct-2023 20:29	258_CCB.d	B CA NA
CCV 25	1	17-Oct-2023 20:41	260_CCV.d	B CA NA
CCV 26	1	17-Oct-2023 21:02	269_CCV.d	B CA NA
CCB 25	1	17-Oct-2023 21:04	 270_CCB.d	B CA NA
CCV 27	1	17-Oct-2023 21:20		B CA NA
CCB 26	1	17-Oct-2023 21:22	 278_CCB.d	B CA NA
CCV 28	1	17-Oct-2023 21:32	 280_CCV.d	B CA NA
CCV 29	1	17-Oct-2023 21:46	 285_CCV.d	B CA NA
CCB 27	1	17-Oct-2023 21:49	 286_CCB.d	B CA NA
CCV 30	1	17-Oct-2023 22:07		B CA NA
CCB 28	1	17-Oct-2023 22:09	 295_CCB.d	B CA NA
CCV 31	1	17-Oct-2023 22:34	 306_CCV.d	B CA NA
CCB 29	1	17-Oct-2023 22:36		B CA NA
CCV 32	1	17-Oct-2023 22:48		B CA NA
ICCV 33	1	17-Oct-2023 23:53	336_ICV.d	B CA NA
LLCCV5	1	17-Oct-2023 23:55		BCA
LLCCV2	1	17-Oct-2023 23:57	338LCV2.d	BCA
ICCB 30	1	18-Oct-2023 00:00	339 ICB.d	B CA NA
CCV 34	1	18-Oct-2023 00:05	341_CCV.d	B CA NA
CCB 31	1	18-Oct-2023 00:07	342_CCB.d	B CA NA
LLCCV2	1	18-Oct-2023 00:10	343LCV2.d	BCA
LLCCV5	1	18-Oct-2023 00:12	344LCV5.d	BCA
ICSA	1	18-Oct-2023 00:14	345ICSA.d	B CA
ICSAB	1	18-Oct-2023 00:17	346ICSB.d	BCA
	•			

Client: Project: WorkOrder	TRC Corporation NRG Limestone -A r: HS23100630	Appendix III			Inst	Run ID:ICPMS03 rument:ICPMS03 Method:SW6020	7
ICB	Date: 16	6-Oct-2023 10:31	Seq: 7610785		D/F:	1 U	nits: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		11.46	11	20	
CCB 1	Date: 16	6-Oct-2023 10:50	Seq: 7610791		D/F:	1 U	nits: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		21.31	11	20	
		Sodium		39.86	14	200	
CCB 2	Date: 16	6-Oct-2023 11:17	Seq: 7610793		D/F:	1 U	nits: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		27.65	11	20	
		Sodium		38.22	14	200	
CCB 3	Date: 16	6-Oct-2023 11:19	Seq: 7610794		D/F:	1 U	nits: ug/L
		Analyte		Result	MDL	Report Limit	
-		Boron		18.26	11	20	
CCB 5	Date: 16	6-Oct-2023 11:50	Seq: 7611081		D/F:	1 U	nits: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		26.91	11	20	
		Calcium		102.5	34	500	
		Sodium		330	14	200	
CCB 4	Date: 16	6-Oct-2023 11:50	Seq: 7610798		D/F:		nits: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		26.91 102.5	<u> </u>	20 500	
		Calcium Sodium		330	14	200	
CCB 6	Date: 16	6-Oct-2023 11:56	Seq: 7610800		D/F:		nits: ug/L
0000	Date. To		000.7010000	Result	MDL		
		Analyte Boron		28.52	11	Report Limit	
		Sodium		74.58	14	200	
CCB 7	Date: 16	-Oct-2023 11:56	Seq: 7611083		D/F:		nits: ug/L
	2	Analyte		Result	MDL	Report Limit	
		Boron		28.52	11	20	
		Sodium		74.58	14	200	
CCB 8	Date: 16	6-Oct-2023 12:35	Seq: 7611096		D/F:	1 U	nits: ug/L
	-	Analyte		Result	MDL	Report Limit	0.
		Sodium		155	14	200	
CCB 9	Date: 16	6-Oct-2023 13:04	Seq: 7611076		D/F:		nits: ug/L
	Date. To	Analyte	004.1011010	Result	MDL	Report Limit	
		Boron		61.33	11	20	
		Calcium		115	34	500	
		Sodium		339.6	14	200	
		ecalam					
CCB 10	Date: 16	6-Oct-2023 13:31	Seq: 7611371		D/F:	1 U	nits: ug/L
CCB 10	Date: 16		Seq: 7611371	Result	D/F: MDL	1 U Report Limit	nits: ug/L

Privileged and Confidential

ALS Houston, US

CCB EXCEPTIONS REPORT

Client: Project: WorkOrder	TRC Corporatio NRG Limestone : HS23100630					Run ID:ICPMS07_44 trument:ICPMS07 Method:SW6020A	49157
		Calcium		118.5	34	500	
	_	Sodium		208.2	14	200	
CCB 11	Date:	16-Oct-2023 13:52	Seq: 7611372		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
-		Boron		44.01	11	20	
CCB 12	Date:	16-Oct-2023 14:20	Seq: 7611444		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		30.81	11	20	
		Sodium		105.2	14	200	
CCB 13	Date:	16-Oct-2023 14:24	Seq: 7611450		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		17.02	11	20	
CCB 14	Date:	16-Oct-2023 14:52	Seq: 7611538		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	-
		Boron		26.37	11	20	
		Sodium		39.41	14	200	
CCB 15	Date:	16-Oct-2023 14:55	Seq: 7611539		D/F	: 1 Units	: ug/L
		Analyte	·	Result	MDL	Report Limit	-
		Boron		13.33	11	20	
		Sodium		-15.12	14	200	
CCB 16	Date:	16-Oct-2023 15:22	Seq: 7611707		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		20.74	11	20	
		Calcium		38.3	34	500	
		Sodium		80	14	200	
CCB 17	Date:	16-Oct-2023 15:25	Seq: 7611708		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		13.14	11	20	
		Sodium		24.01	14	200	
CCB 18	Date:	16-Oct-2023 15:54	Seq: 7611810		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		16.3	11	20	
		Calcium		210	34	500	
		Sodium		1369	14	200	
CCB 19	Date:	16-Oct-2023 16:22	Seq: 7612170		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		31.81	11	20	
		Sodium	_	92.89	14	200	
CCB 20	Date:	16-Oct-2023 17:10	Seq: 7612369		D/F	: 1 Units	: ug/L
		Analyte		Result	MDL	Report Limit	
		Boron		49.44	11	20	
		Sodium		111.5	14	200	

CCB EXCEPTIONS REPORT

CCB EXCEPTIONS REPORT

		n e -Appendix III			Inst	Run ID:ICPMS07_449157 rument:ICPMS07 Method:SW6020A
CCB 21	Date:	16-Oct-2023 17:37	Seq: 7612381		D/F:	1 Units: ug/L
		Analyte		Result	MDL	Report Limit
		Boron		46.14	11	20
		Calcium		705	34	500
005.00		Sodium	0 7040000	584.3	14	200
CCB 22	Date:	16-Oct-2023 17:40	Seq: 7612382	_	D/F:	Ŭ
		Analyte		Result	MDL	Report Limit
		Boron Calcium		18.97 168.4	11	20 500
		Sodium		172.9	34	200
CCB 23	Date:	16-Oct-2023 18:08	Seq: 7612394	112.0	D/F:	
000 23	Dale.	Analyte	Seq. 7012394	Result	MDL	Report Limit
		Boron		31.11	11	20
		Calcium		463	34	500
		Sodium		2663	14	200
CCB 24	Date:	16-Oct-2023 18:31	Seq: 7612419		D/F:	1 Units: ug/L
		Analyte		Result	MDL	Report Limit
		Boron		29.06	11	20
		Calcium		101.6	34	500
		Sodium		3540	14	200
CCB 25	Date:	16-Oct-2023 20:07	Seq: 7612965		D/F:	9
		Analyte		Result	MDL	Report Limit
		Boron		15.01	11	20 200
000.00		Sodium	0 7040070	23.08	14	
CCB 26	Date:	16-Oct-2023 20:34	Seq: 7612976		D/F:	8
		Analyte		Result	MDL	Report Limit
		Boron		32.08 405.4	11	20 500
		Calcium Sodium		635.6	34 14	200
CCB 28	Date:	16-Oct-2023 21:45	Seq: 7612996		D/F:	
		Analyte		Result	MDL	Report Limit
		Calcium		48.1	34	500
		Sodium		31.76	14	200
CCB 29	Date:	16-Oct-2023 22:07	Seq: 7613000		D/F:	1 Units: ug/L
		Analyte		Result	MDL	Report Limit
		Boron		42.48	11	20
		Calcium		145.2	34	500
		Sodium		148.6	14	200
CCB 30	Date:	16-Oct-2023 22:25	Seq: 7613008		D/F:	6
		Analyte		Result	MDL	Report Limit
		Boron		26.87	11	20
		Calcium Sodium		364.2 442.9	34	500 200
		SouidIII		442.9	14	200

Client:

Project:

TRC Corporation

NRG Limestone -Appendix III

CCB EXCEPTIONS REPORT

Run ID:ICPMS07_449157 Instrument:ICPMS07 Method:SW6020A

WorkOrder: HS23100630 D/F: 1 **CCB 31** Date: 16-Oct-2023 22:46 Seq: 7613017 Units: ug/L Result Analyte MDL **Report Limit** Boron 18.52 11 20 Calcium 66.23 34 500 Sodium 200 193.9 14 **CCB 32** Date: 16-Oct-2023 22:57 Seq: 7613028 D/F: 1 Units: ug/L Result MDL **Report Limit** Analyte Boron 14.61 20 11 500 Calcium 83.53 34 Sodium 68.22 200 14 **CCB 33** Date: 16-Oct-2023 23:20 Seq: 7613038 D/F: 1 Units: ug/L Result Analyte MDL **Report Limit** Boron 14.3 20 11 500 Calcium 79.93 34 Sodium 200 58.48 14 **CCB 34** D/F: 1 Date: 16-Oct-2023 23:47 Seq: 7613050 Units: ug/L Result MDL **Report Limit** Analyte Boron 11.6 20 11 Calcium 64.38 500 34 Sodium 54.99 200 14 **CCB 35** Date: 17-Oct-2023 00:07 D/F: 1 Seq: 7613076 Units: ug/L Analyte Result MDL **Report Limit** Calcium 68.7 34 500 Sodium 57.65 14 200 **CCB 36** Date: 17-Oct-2023 00:27 Seq: 7613085 D/F: 1 Units: ug/L Result **Report Limit** Analyte MDL Calcium 56.77 34 500 Sodium 40.18 14 200 **CCB 37** Date: 17-Oct-2023 00:50 Seq: 7613095 D/F: 1 Units: ug/L Result MDL **Report Limit** Analyte Boron 11.76 11 20 500 Calcium 66.47 34 Sodium 200 58.7 14 Seq: 7613072 **CCB 38** Date: 17-Oct-2023 01:08 D/F: 1 Units: ug/L Analyte Result MDL **Report Limit** Boron 14.7 20 11 500 Calcium 84 34 Sodium 66.32 200 14 **CCB 39** Date: 17-Oct-2023 01:35 Seq: 7613111 D/F: 1 Units: ug/L Analyte Result MDL **Report Limit** Calcium 500 69.7 34 Sodium 66.22 14 200 **CCB 40** Date: 17-Oct-2023 02:02 Seq: 7613123 D/F: 1 Units: ug/L Result Analyte MDL **Report Limit**

Privileged and Confidential

Client:	TRC Corporation			Run ID:ICPMS07_449157		
Project:	NRG Limestone -Appendix III		Instrument:ICPMS07			
WorkOrde	r: HS23100630		Method:SW6020A			
	Boron	16.98	11	20		
	Calcium	170.7	34	500		
	Sodium	91.26	14	200		
CCB 41	Date: 17-Oct-2023 02:07	Seq: 7613125	D/F	: 1 Units: ug/L		
	Analyte	Result	MDL	Report Limit		
	Boron	20.07	11	20		
	Calcium	109	34	500		
	Sodium	89.75	14	200		

Client: Project: WorkOrder	TRC Corporation NRG Limestone -Appendix III r: HS23100630			Inst	Run ID:ICPMS07_449322 rument:ICPMS07 Method:SW6020A	
CCB 1	Date: 17-Oct-2023 12:20	Seq: 7614459		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Calcium		123.3	34	500	
CCB 2	Date: 17-Oct-2023 12:27	Seq: 7614461		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		-17.68	11	20	
CCB 3	Date: 17-Oct-2023 12:56	Seq: 7614464		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		13.29	11	20	
	Calcium		442.2	34	500	
CCB 4	Date: 17-Oct-2023 12:58	Seq: 7614465	_	D/F:	0	
	Analyte		Result	MDL	Report Limit	
	Calcium		167.7	34	500	
CCB 6	Date: 17-Oct-2023 13:28	Seq: 7614507		D/F:	0	
	Analyte		Result	MDL	Report Limit	
	Calcium		127	34	500	
CCB 5	Date: 17-Oct-2023 13:28	Seq: 7614456		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Calcium		127	34	500	
CCB 7	Date: 17-Oct-2023 13:30	Seq: 7614508		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Calcium		57.29	34	500	
CCB 8	Date: 17-Oct-2023 14:00	Seq: 7614586		D/F:	1 Units: ug/L	
	Analyte		Result	MDL	Report Limit	
	Boron		11.3	11	20	
000 40		0.000 704 5400	75.12	34	500	
CCB 10	Date: 17-Oct-2023 14:50	Seq: 7615190	.	D/F:		
	Analyte		Result	MDL	Report Limit	
000 44	Boron	0	17.06	11	20	
CCB 11	Date: 17-Oct-2023 15:13	Seq: 7615200		D/F:	9	
	Analyte		Result	MDL	Report Limit	
000 40		0 7045000	297.9	34	500	
CCB 12	Date: 17-Oct-2023 15:18	Seq: 7615202		D/F:	Ŭ	
	Analyte		Result	MDL	Report Limit	
	Boron Calcium		23.84 74.15	<u> </u>	20 500	
CCB 14	Date: 17-Oct-2023 16:49	Seq: 7615594	17.10			
000 14		0eq. 7010094	Result		6	
	Calcium		35.65	MDL 34	S00	
CCD 45		Sog: 7645507	55.05			
CCB 15	Date: 17-Oct-2023 17:17	Seq: 7615597	Beerlt	D/F:	6	
	Calcium		Result 93.25	MDL	S00	
	CaiClum		93.25	34	000	

Privileged and Confidential

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630					Run ID:ICPMS07_449322 Instrument:ICPMS07 Method:SW6020A			
CCB 16	Date:	17-Oct-2023 17:44	Seq: 7615609		D/F	ะ1 เ	Jnits: ug/L	
		Analyte	·	Result	MDL	Report Limit	Ū	
		Boron		20.55		20		
		Calcium		315.2	34	500		
CCB 18	Date:	17-Oct-2023 18:24	Seq: 7615645		D/F	รี: 1 เ	Jnits: ug/L	
		Analyte		Result	MDL	Report Limit		
		Boron		22.92	11	20		
		Calcium		348.1	34	500		
CCB 19	Date:	17-Oct-2023 18:26	Seq: 7615646		D/F		Jnits: ug/L	
		Analyte		Result	MDL	Report Limit	-	
		Calcium		175.8	34	500		
CCB 20	Date:	17-Oct-2023 18:53	Seq: 7616044		D/F	. :1 เ	Jnits: ug/L	
		Analyte	•	Result	MDL	Report Limit	- U	
		Boron		34.58	11	20		
		Calcium		215.7	34	500		
CCB 21	Date:	17-Oct-2023 19:20	Seq: 7616056		D/F	โ :1 เ	Jnits: ug/L	
		Analyte	•	Result	MDL	Report Limit	- U	
		Boron		28.73	11	20		
		Calcium		147.6	34	500		
CCB 22	Date:	17-Oct-2023 19:47	Seq: 7616068		D/F	. :1 เ	Jnits: ug/L	
		Analyte	·	Result	MDL	Report Limit	0	
		Boron		39.03	11	20		
		Calcium		590.4	34	500		
CCB 23	Date:	17-Oct-2023 20:02	Seq: 7616073		D/F	ะ1 เ	Jnits: ug/L	
		Analyte		Result	MDL	Report Limit	-	
		Boron		13.31	11	20		
		Calcium		39.16	34	500		
CCB 24	Date:	17-Oct-2023 20:29	Seq: 7616085		D/F	ะ1 เ	Jnits: ug/L	
		Analyte		Result	MDL	Report Limit		
		Calcium		41.85	34	500		
CCB 25	Date:	17-Oct-2023 21:04	Seq: 7616097		D/F	:1 I	Jnits: ug/L	
		Analyte		Result	MDL	Report Limit		
		Boron		256.5	11	20		
		Calcium		1336	34	500		
CCB 26	Date:	17-Oct-2023 21:22	Seq: 7616100		D/F	÷.1 ι	Jnits: ug/L	
	24.0.	Analyte		Result	MDL	Report Limit		
		Boron		86.79	11	20		
		Calcium		106.6	34	500		
CCB 27	Date [.]	17-Oct-2023 21:49	Seq: 7616128		D/F	:1 I	Jnits: ug/L	
	Balo.	Analyte	204.1010120	Result	MDL	Report Limit		
		Boron		61.45	11	20		
		Boron		01.10		20		

Client:	TRC Corporation				Run ID:ICPMS07_449322	2
Project:	t: NRG Limestone -Appendix III Instrument:ICPMS07					
-	r: HS23100630			I	Method:SW6020A	
CCB 28	Date: 17-Oct-2023 22:09	Seq: 7616107		D/F:	1 Units: ug/l	_
	Analyte		Result	MDL	Report Limit	
	Boron		66.4	11	20	
	Calcium		50.8	34	500	
CCB 29	Date: 17-Oct-2023 22:36	Seq: 7616119		D/F:	1 Units: ug/l	-
	Analyte		Result	MDL	Report Limit	
	Boron		61.93	11	20	
	Calcium		1628	34	500	
ICCB 30	Date: 18-Oct-2023 00:00	Seq: 7616154		D/F:	1 Units: ug/l	
		009.7010104		D/F.	i Onits. ug/i	-
	Analyte	004.7010104	Result	D/F. MDL	Report Limit	-
		000	Result 151.9		5	-
CCB 31	Analyte	Seq: 7616135		MDL	Report Limit	
CCB 31	Analyte Calcium			MDL 34	Report Limit	
CCB 31	Analyte Calcium Date: 18-Oct-2023 00:07		151.9	MDL 34 D/F:	Report Limit 500 1 Units: ug/l	

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWork Order:HS23100630

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS23100630-01	MW-01	Water		10-Oct-2023 09:25	10-Oct-2023 13:20	
HS23100630-02	MW-02	Water		10-Oct-2023 08:40	10-Oct-2023 13:20	
HS23100630-03	MW-17	Water		10-Oct-2023 10:05	10-Oct-2023 13:20	
HS23100630-04	MW-18	Water		10-Oct-2023 11:00	10-Oct-2023 13:20	
HS23100630-05	MW-19	Water		10-Oct-2023 11:05	10-Oct-2023 13:20	
HS23100630-06	MW-20	Water		10-Oct-2023 10:15	10-Oct-2023 13:20	
HS23100630-07	MW-21	Water		10-Oct-2023 09:40	10-Oct-2023 13:20	
HS23100630-08	MW-22	Water		10-Oct-2023 09:05	10-Oct-2023 13:20	
HS23100630-09	MW-27R	Water		10-Oct-2023 09:55	10-Oct-2023 13:20	
HS23100630-10	MW-28	Water		10-Oct-2023 09:10	10-Oct-2023 13:20	
HS23100630-11	Field Blank-01	Water		10-Oct-2023 11:20	10-Oct-2023 13:20	
HS23100630-12	Field Duplicate-01	Water		10-Oct-2023 10:00	10-Oct-2023 13:20	

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	MW-01	Lab ID:HS23100630-01
Collection Date:	10-Oct-2023 09:25	Matrix:Water
		DILUTION DATE

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SV	V6020A		Prep:SW301	0A / 16-Oct-2023	Analyst: MSC
Boron	0.0382		0.0110	0.0200	mg/L	1	17-Oct-2023 15:06
Calcium	54.4		0.680	10.0	mg/L	20	17-Oct-2023 01:21
ANIONS BY E300.0, REV 2.1, 199	3	Method:	E300				Analyst: TH
Chloride	273		2.00	5.00	mg/L	10	16-Oct-2023 14:52
Sulfate	< 0.200		0.200	0.500	mg/L	1	17-Oct-2023 10:44
TOTAL DISSOLVED SOLIDS BY 9 -2011	SM2540C	Method:M	2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	682		5.00	10.0	mg/L	1	16-Oct-2023 12:00
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method	:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation		ANALYTICAL REPORT			
Project:	NRG Limestone -Appendix III		WorkOrder:HS23100630			
Sample ID:	MW-02	Lab ID:HS23100630-02				
Collection Date:	10-Oct-2023 08:40		Matrix:Water			
		MOL	DILUTION DATE			

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6	020A		Prep:SW3010	A / 16-Oct-2023	Analyst: MSC
Boron	< 0.220		0.220	0.400	mg/L	20	17-Oct-2023 00:52
Calcium	147		0.680	10.0	mg/L	20	17-Oct-2023 00:52
ANIONS BY E300.0, REV 2.1, 1993	3	Method:E3	00				Analyst: TH
Chloride	310		4.00	10.0	mg/L	20	16-Oct-2023 14:58
Sulfate	527		4.00	10.0	mg/L	20	16-Oct-2023 14:58
TOTAL DISSOLVED SOLIDS BY S -2011	M2540C	Method:M25	40C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	1,380		5.00	10.0	mg/L	1	16-Oct-2023 12:00
SUBCONTRACT ANALYSIS - FLC	URIDE	Method:N	Α				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT		
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630		
Sample ID:	MW-17	Lab ID:HS23100630-03		
Collection Date:	10-Oct-2023 10:05	Matrix:Water		
ANALYSES	RESULT QUAL SDL	DILUTION DATE MQL UNITS FACTOR ANALYZED		

ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010	A / 16-Oct-2023	Analyst: MSC
Boron	0.0207	0.0110	0.0200	mg/L	1	17-Oct-2023 16:52
Calcium	3.55	0.0340	0.500	mg/L	1	17-Oct-2023 13:53
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	8.58	0.200	0.500	mg/L	1	16-Oct-2023 15:15
Sulfate	7.67	0.200	0.500	mg/L	1	16-Oct-2023 15:15
TOTAL DISSOLVED SOLIDS BY - -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	100.0	5.00	10.0	mg/L	1	16-Oct-2023 12:00
SUBCONTRACT ANALYSIS - FLO	OURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	MW-18	Lab ID:HS23100630-04
Collection Date:	10-Oct-2023 11:00	Matrix:Water
ANALYSES	RESULT QUAL SDL	DILUTION DATE MOL UNITS FACTOR ANALYZED

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW60	20A		Prep:SW301	0A / 16-Oct-2023	Analyst: MSC
Boron	0.0349	0.	0110	0.0200	mg/L	1	17-Oct-2023 15:09
Calcium	65.4	C	.680	10.0	mg/L	20	17-Oct-2023 01:26
ANIONS BY E300.0, REV 2.1, 199	3	Method:E30	0				Analyst: TH
Chloride	8.31	C	.200	0.500	mg/L	1	16-Oct-2023 15:50
Sulfate	31.1	C	.200	0.500	mg/L	1	16-Oct-2023 15:50
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M254	0C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	326		5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLO	Method:NA	١				Analyst: SUBHO	
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REP	ORT			
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630				
Sample ID:	MW-19	Lab ID:HS23100630-0	5			
Collection Date:	10-Oct-2023 11:05	Matrix:Water				
		DILUTION DATE MOI LINITS FACTOR ANALYZ	-			

ANALYSES	RESULT	QUAL SD	L MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020	۱.	Prep:SW3010A	/ 16-Oct-2023	Analyst: MSC
Boron	0.0335	0.011	0 0.0200	mg/L	1	17-Oct-2023 15:11
Calcium	31.4	0.68	0 10.0	mg/L	20	17-Oct-2023 01:28
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	36.9	0.20	0 0.500	mg/L	1	16-Oct-2023 15:55
Sulfate	96.7	0.20	0 0.500	mg/L	1	16-Oct-2023 15:55
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	308	5.0	0 10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0		1	16-Oct-2023 09:10

Client:	TRC Corporation		ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III		WorkOrder:HS23100630
Sample ID:	MW-20		Lab ID:HS23100630-06
Collection Date:	10-Oct-2023 10:15		Matrix:Water
ANALYSES	RESULT QUAL SDL	MQL	DILUTION DATE UNITS FACTOR ANALYZED

	RECOL	QUAL OD		onno	FACTOR	ANALIZED
ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010A	16-Oct-2023	Analyst: MSC
Boron	0.0241	0.011	0.0200	mg/L	1	17-Oct-2023 16:54
Calcium	28.6	0.68) 10.0	mg/L	20	17-Oct-2023 01:31
ANIONS BY E300.0, REV 2.1, 1993	3	Method:E300				Analyst: TH
Chloride	17.4	0.20	0.500	mg/L	1	16-Oct-2023 16:01
Sulfate	26.8	0.20	0.500	mg/L	1	16-Oct-2023 16:01
TOTAL DISSOLVED SOLIDS BY S -2011	M2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	280	5.0) 10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLC	URIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached)		1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	MW-21	Lab ID:HS23100630-07
Collection Date:	10-Oct-2023 09:40	Matrix:Water
		DILUTION DATE

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6	020A		Prep:SW3010A	/ 16-Oct-2023	Analyst: MSC
Boron	0.652		0.220	0.400	mg/L	20	17-Oct-2023 01:37
Calcium	55.6		0.680	10.0	mg/L	20	17-Oct-2023 01:37
Sodium	14.4		0.280	4.00	mg/L	20	17-Oct-2023 01:37
ANIONS BY E300.0, REV 2.1, 19	93	Method:E3	00				Analyst: TH
Chloride	14.6		0.200	0.500	mg/L	1	16-Oct-2023 16:07
Sulfate	254		1.00	2.50	mg/L	5	16-Oct-2023 16:13
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M25	40C				Analyst: DC
Total Dissolved Solids (Residue Filterable)	e, 402		5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FL	OURIDE	Method:N	Α				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	MW-22	Lab ID:HS23100630-08
Collection Date:	10-Oct-2023 09:05	Matrix:Water
ANALYSES	RESULT QUAL SDL	DILUTION DATE MQL UNITS FACTOR ANALYZED

ICP-MS METALS BY SW6020A		Method:S	V6020A		Prep:SW3010	A / 16-Oct-2023	Analyst: MSC
Boron	0.0178	J	0.0110	0.0200	mg/L	1	17-Oct-2023 16:56
Calcium	50.0		0.680	10.0	mg/L	20	17-Oct-2023 01:40
ANIONS BY E300.0, REV 2.1, 199	3	Method	E300				Analyst: TH
Chloride	33.3		0.200	0.500	mg/L	1	16-Oct-2023 16:18
Sulfate	131		1.00	2.50	mg/L	5	17-Oct-2023 10:50
TOTAL DISSOLVED SOLIDS BY 3 -2011	SM2540C	Method:N	12540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	332		5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLOURIDE		Method	I:NA				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALY	TICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS	23100630
Sample ID:	MW-27R	Lab ID:HS	23100630-09
Collection Date:	10-Oct-2023 09:55	Matrix:Wa	ter
ANALYSES	RESULT QUAL SDL	DILUTIO MQL UNITS FACTO	

ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW301	I0A / 16-Oct-2023	Analyst: MSC
Boron	0.132	0.0110	0.0200	mg/L	1	17-Oct-2023 16:59
Calcium	430	0.680	10.0	mg/L	20	17-Oct-2023 01:42
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	1,770	10.0	25.0	mg/L	50	16-Oct-2023 16:24
Sulfate	638	10.0	25.0	mg/L	50	16-Oct-2023 16:24
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	3,640	5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	MW-28	Lab ID:HS23100630-10
Collection Date:	10-Oct-2023 09:10	Matrix:Water
ANALYSES	RESULT QUAL SDL	DILUTION DATE MQL UNITS FACTOR ANALYZED

	RECOL	QUAL ODL	inge	ONTO	FACTOR	ANALIZED
ICP-MS METALS BY SW6020A		Method:SW6020A		Prep:SW3010A /	16-Oct-2023	Analyst: MSC
Boron	0.193	0.0110	0.0200	mg/L	1	17-Oct-2023 17:01
Calcium	540	0.680	10.0	mg/L	20	17-Oct-2023 01:44
ANIONS BY E300.0, REV 2.1, 199	3	Method:E300				Analyst: TH
Chloride	2,290	10.0	25.0	mg/L	50	16-Oct-2023 16:30
Sulfate	748	10.0	25.0	mg/L	50	16-Oct-2023 16:30
TOTAL DISSOLVED SOLIDS BY S -2011	SM2540C	Method:M2540C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	5,690	5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLC	URIDE	Method:NA				Analyst: SUBHO
Subcontract Analysis	See Attached	0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630
Sample ID:	Field Blank-01	Lab ID:HS23100630-11
Collection Date:	10-Oct-2023 11:20	Matrix:Water
		DILUTION DATE

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	FACTOR	ANALYZED
ICP-MS METALS BY SW6020A		Method:SW60	20A		Prep:SW3010	A / 16-Oct-2023	Analyst: MSC
Boron	< 0.0110	0.	0110	0.0200	mg/L	1	17-Oct-2023 17:03
Calcium	2.65	0.	0340	0.500	mg/L	1	17-Oct-2023 17:03
ANIONS BY E300.0, REV 2.1, 199	3	Method:E30	00				Analyst: TH
Chloride	< 0.200	(0.200	0.500	mg/L	1	16-Oct-2023 16:36
Sulfate	< 0.200	(0.200	0.500	mg/L	1	16-Oct-2023 16:36
TOTAL DISSOLVED SOLIDS BY S -2011	SM2540C	Method:M254	10C				Analyst: DC
Total Dissolved Solids (Residue, Filterable)	108		5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FLO	DURIDE	Method:NA	4				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Client:	TRC Corporation	ANALYTICAL REPORT				
Project:	NRG Limestone -Appendix III	WorkOrder:HS23100630				
Sample ID:	Field Duplicate-01	Lab ID:HS23100630-12				
Collection Date:	10-Oct-2023 10:00	Matrix:Water				
ANALYSES	RESULT QUAL SDL	DILUTION DATE MQL UNITS FACTOR ANALYZED				

ICP-MS METALS BY SW6020A		Method:SW6	020A		Prep:SW3	010A / 16-Oct-2023	Analyst: MSC
Boron	0.0166	J	0.0110	0.0200	mg/L	1	17-Oct-2023 17:05
Calcium	34.0		0.680	10.0	mg/L	20	17-Oct-2023 01:49
ANIONS BY E300.0, REV 2.1, 199	3	Method:E3	800				Analyst: TH
Chloride	36.8		0.200	0.500	mg/L	1	16-Oct-2023 16:41
Sulfate	96.7		0.200	0.500	mg/L	1	16-Oct-2023 16:41
TOTAL DISSOLVED SOLIDS BY -2011	SM2540C	Method:M2	540C				Analyst: DC
Total Dissolved Solids (Residue Filterable)	292		5.00	10.0	mg/L	1	16-Oct-2023 13:30
SUBCONTRACT ANALYSIS - FL	OURIDE	Method:N	A				Analyst: SUBHO
Subcontract Analysis	See Attached		0			1	16-Oct-2023 09:10

Weight / Prep Log

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630

Batch ID: 201988		Start Date	e: 16 Oct 202	3 08:00	End Date: 16 Oct 2023 08:00		
Method: WATER - SV	W3010A				Prep Code: 3010A		
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor			
HS23100630-01		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-02		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-03		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-04		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-05		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-06		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-07		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-08		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-09		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-10		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-11		10 (mL)	10 (mL)	1	120 plastic HNO3		
HS23100630-12		10 (mL)	10 (mL)	1	120 plastic HNO3		

Client:	TRC Corporation
Project:	NRG Limestone -Appendix III
WorkOrder:	HS23100630

DATES REPORT

Sample ID	Client Samp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 20198	8(0) Test Name	e: ICP-MS METALS BY S	W6020A		Matrix: Water	
HS23100630-01	MW-01	10 Oct 2023 09:25		16 Oct 2023 08:00	17 Oct 2023 15:06	1
HS23100630-01	MW-01	10 Oct 2023 09:25		16 Oct 2023 08:00	17 Oct 2023 01:21	20
HS23100630-02	MW-02	10 Oct 2023 08:40		16 Oct 2023 08:00	17 Oct 2023 00:52	20
HS23100630-03	MW-17	10 Oct 2023 10:05		16 Oct 2023 08:00	17 Oct 2023 16:52	1
HS23100630-03	MW-17	10 Oct 2023 10:05		16 Oct 2023 08:00	17 Oct 2023 13:53	1
HS23100630-04	MW-18	10 Oct 2023 11:00		16 Oct 2023 08:00	17 Oct 2023 15:09	1
HS23100630-04	MW-18	10 Oct 2023 11:00		16 Oct 2023 08:00	17 Oct 2023 01:26	20
HS23100630-05	MW-19	10 Oct 2023 11:05		16 Oct 2023 08:00	17 Oct 2023 15:11	1
HS23100630-05	MW-19	10 Oct 2023 11:05		16 Oct 2023 08:00	17 Oct 2023 01:28	20
HS23100630-06	MW-20	10 Oct 2023 10:15		16 Oct 2023 08:00	17 Oct 2023 16:54	1
HS23100630-06	MW-20	10 Oct 2023 10:15		16 Oct 2023 08:00	17 Oct 2023 01:31	20
HS23100630-07	MW-21	10 Oct 2023 09:40		16 Oct 2023 08:00	17 Oct 2023 01:37	20
HS23100630-08	MW-22	10 Oct 2023 09:05		16 Oct 2023 08:00	17 Oct 2023 16:56	1
HS23100630-08	MW-22	10 Oct 2023 09:05		16 Oct 2023 08:00	17 Oct 2023 01:40	20
HS23100630-09	MW-27R	10 Oct 2023 09:55		16 Oct 2023 08:00	17 Oct 2023 16:59	1
HS23100630-09	MW-27R	10 Oct 2023 09:55		16 Oct 2023 08:00	17 Oct 2023 01:42	20
HS23100630-10	MW-28	10 Oct 2023 09:10		16 Oct 2023 08:00	17 Oct 2023 17:01	1
HS23100630-10	MW-28	10 Oct 2023 09:10		16 Oct 2023 08:00	17 Oct 2023 01:44	20
HS23100630-11	Field Blank-01	10 Oct 2023 11:20		16 Oct 2023 08:00	17 Oct 2023 17:03	1
HS23100630-12	Field Duplicate-01	10 Oct 2023 10:00		16 Oct 2023 08:00	17 Oct 2023 17:05	1
HS23100630-12	Field Duplicate-01	10 Oct 2023 10:00		16 Oct 2023 08:00	17 Oct 2023 01:49	20
Batch ID: R4491	44 (0) Test Name	: SUBCONTRACT ANAL	YSIS - FLOURIDE		Matrix: Water	
HS23100630-01	MW-01	10 Oct 2023 09:25			16 Oct 2023 09:10	1
HS23100630-02	MW-02	10 Oct 2023 08:40			16 Oct 2023 09:10	1
HS23100630-03	MW-17	10 Oct 2023 10:05			16 Oct 2023 09:10	1
HS23100630-04	MW-18	10 Oct 2023 11:00			16 Oct 2023 09:10	1
HS23100630-05	MW-19	10 Oct 2023 11:05			16 Oct 2023 09:10	1
HS23100630-06	MW-20	10 Oct 2023 10:15			16 Oct 2023 09:10	1
HS23100630-07	MW-21	10 Oct 2023 09:40			16 Oct 2023 09:10	1
HS23100630-08	MW-22	10 Oct 2023 09:05			16 Oct 2023 09:10	1
HS23100630-09	MW-27R	10 Oct 2023 09:55			16 Oct 2023 09:10	1
HS23100630-10	MW-28	10 Oct 2023 09:10			16 Oct 2023 09:10	1
HS23100630-11	Field Blank-01	10 Oct 2023 11:20			16 Oct 2023 09:10	1
HS23100630-12	Field Duplicate-01	10 Oct 2023 10:00			16 Oct 2023 09:10	1

Client:	TRC Corporation
Project:	NRG Limestone -Appendix III
WorkOrder:	HS23100630

DATES REPORT

Sample ID	Client Samp ID	Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: R44929	92 (0) Test	Name: ANIONS BY E300.0, RE	EV 2.1, 1993		Matrix: Water	
HS23100630-01	MW-01	10 Oct 2023 09:25			16 Oct 2023 14:52	10
HS23100630-02	MW-02	10 Oct 2023 08:40			16 Oct 2023 14:58	20
HS23100630-03	MW-17	10 Oct 2023 10:05			16 Oct 2023 15:15	1
HS23100630-04	MW-18	10 Oct 2023 11:00			16 Oct 2023 15:50	1
HS23100630-05	MW-19	10 Oct 2023 11:05			16 Oct 2023 15:55	1
HS23100630-06	MW-20	10 Oct 2023 10:15			16 Oct 2023 16:01	1
HS23100630-07	MW-21	10 Oct 2023 09:40			16 Oct 2023 16:13	5
HS23100630-07	MW-21	10 Oct 2023 09:40			16 Oct 2023 16:07	1
HS23100630-08	MW-22	10 Oct 2023 09:05			16 Oct 2023 16:18	1
HS23100630-09	MW-27R	10 Oct 2023 09:55			16 Oct 2023 16:24	50
HS23100630-10	MW-28	10 Oct 2023 09:10			16 Oct 2023 16:30	50
HS23100630-11	Field Blank-01	10 Oct 2023 11:20			16 Oct 2023 16:36	1
HS23100630-12	Field Duplicate-01	10 Oct 2023 10:00			16 Oct 2023 16:41	1
Batch ID: R44933	36 (0) Test	Name : TOTAL DISSOLVED SC	OLIDS BY SM2540C	-2011	Matrix: Water	
HS23100630-01	MW-01	10 Oct 2023 09:25			16 Oct 2023 12:00	1
HS23100630-02	MW-02	10 Oct 2023 08:40			16 Oct 2023 12:00	1
HS23100630-03	MW-17	10 Oct 2023 10:05			16 Oct 2023 12:00	1
Batch ID: R44933	38 (0) Test	Name : TOTAL DISSOLVED SC	OLIDS BY SM2540C	-2011	Matrix: Water	
HS23100630-04	MW-18	10 Oct 2023 11:00			16 Oct 2023 13:30	1
HS23100630-05	MW-19	10 Oct 2023 11:05			16 Oct 2023 13:30	1
HS23100630-06	MW-20	10 Oct 2023 10:15			16 Oct 2023 13:30	1
HS23100630-07	MW-21	10 Oct 2023 09:40			16 Oct 2023 13:30	1
HS23100630-08	MW-22	10 Oct 2023 09:05			16 Oct 2023 13:30	1
HS23100630-09	MW-27R	10 Oct 2023 09:55			16 Oct 2023 13:30	1
HS23100630-10	MW-28	10 Oct 2023 09:10			16 Oct 2023 13:30	1
HS23100630-11	Field Blank-01	10 Oct 2023 11:20			16 Oct 2023 13:30	1
HS23100630-12	Field Duplicate-01	10 Oct 2023 10:00			16 Oct 2023 13:30	1
Batch ID: R44936	62 (0) Test	Name: ANIONS BY E300.0, RE	EV 2.1, 1993		Matrix: Water	
HS23100630-01	MW-01	10 Oct 2023 09:25			17 Oct 2023 10:44	1
HS23100630-08	MW-22	10 Oct 2023 09:05			17 Oct 2023 10:50	5

	Order: umentID:	HS23100630 ICPMS07			METHOD DETECTION / REPORTING LIMITS			
	Code:	ICP TW						
	Number:	SW6020A						
				Matrix: Aqueous	Unit	t s: mg/L		
Test	Name:	ICP-MS Metals by SW6020A						
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL	
А	Boron		7440-42-8	0.0125	0.0200	0.0110	0.0200	
Α	Calcium		7440-70-2	0.0500	0.0428	0.0340	0.500	
А	Sodium		7440-23-5	0.0500	0.0614	0.0140	0.200	

А	Subcontrac	Analysis		0	0	0	
Туре	Analyte	(CAS	DCS Spike	DCS	MDL	PQ
Test	Name:	Subcontract Analysis - Flouride		Watrix.	Unit	5.	
Test	Number:	NA		Matrix:	Unit	e.	
Test	Code:	Sub_Flouride					
Instru	umentID:	Subcontract			REF	PORTING LIM	IITS
Work	(Order:	HS23100630			METH	HOD DETECT	ION /
14/	0	11000400000					

Instru	Order: umentID: Code:	HS23100630 ICS-Integrion 300 W				DD DETECT DRTING LIM	
Test	Number: Name:	E300 Anions by E300.0, Rev 2.1, 1993	Matrix:	Aqueous	Units:	mg/L	
Туре	Analyte	CAS	DC	S Spike	DCS	MDL	PQL
А	Chloride	16887	-00-6	0.500	0.348	0.200	0.500
А	Sulfate	14808	-79-8	0.500	0.432	0.200	0.500

WorkOrder: InstrumentID:	HS23100630 Balance1				D DETECT RTING LIM	
Test Code:	TDS_W 2540C					
Test Number:	M2540C	Matuiss	Aqueous		mg/L	
Test Name:	Total Dissolved Solids by SM2540C	Matrix:	Aqueous	Units:	mg/L	
Type Analyte	CAS	DC	S Spike	DCS	MDL	PQL
A Total Disso	Ived Solids (Residue, Filterable) TDS		5.00	4.00	5.00	10.0

Date: 18-Oct-23

QC BATCH REPORT

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630

Batch ID:	201988(0)	In	strument:	ICPMS07	м	ethod: I	CP-MS MET	ALS BY SW6	020A
MBLK	Sample ID:	MBLK-201988		Units:	mg/L	Ana	alysis Date:	17-Oct-2023	00:30
Client ID:			Run ID: ICP	MS07_449157	SeqNo: 7	7613086	PrepDate:	16-Oct-2023	DF: 1
Analyte		Result	MQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Boron		< 0.0110	0.0200)					
Calcium		0.0628	0.500)					
Sodium		0.02461	0.200						
LCS	Sample ID:	LCS-201988		Units:	mg/L	Ana	alysis Date:	17-Oct-2023	00:32
Client ID:			Run ID: ICP	MS07_449157	SeqNo: 7	7613087	PrepDate:	16-Oct-2023	DF: 1
Analyte		Result	MQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Boron		0.4275	0.0200	0.5	0	85.5	80 - 120		
Calcium		4.792	0.500	5	0	95.8	80 - 120		
Sodium		4.923	0.200	5	0	98.5	80 - 120		
MS	Sample ID:	HS23100630-02	MS	Units:	mg/L	Ana	alysis Date:	17-Oct-2023	17:08
Client ID:			Run ID: ICP	MS07_449322	SeqNo: 7	7615475	PrepDate:	16-Oct-2023	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Boron		0.5385	0.0200	0.5	0	108	80 - 120		
MS	Sample ID:	HS23100607-19	MS	Units:	mg/L	Ana	alysis Date:	17-Oct-2023	00:39
Client ID:			Run ID: ICP	MS07_449157	SeqNo: 7	7613090	PrepDate:	16-Oct-2023	DF: 20
Analyte		Result	MQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Boron		1.099	0.400	0.25	0.9349	65.6	80 - 120		
Calcium		136	10.0	10	122.3	137	80 - 120		5
Sodium		229.6	4.00	20	205.8	119	80 - 120		
MS	Sample ID:	HS23100630-02	MS	Units:	mg/L	Ana	alysis Date:	17-Oct-2023	00:57
Client ID:	MW-02		Run ID: ICP	MS07_449157	SeqNo: 7	7613098	PrepDate:	16-Oct-2023	DF: 20
Analyte		Result	MQL	. SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qua
Calcium		152.1	10.0	5	147.3	96.1	80 - 120		
Sodium		79.91	4.00	5	76.81	62.2	80 - 120		S

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630

Batch ID:	201988 (0)	Instru	ıment: I	CPMS07	M	ethod: I	CP-MS MET	ALS BY SW6	020A	
MSD	Sample ID:	HS23100630-02MSI)	Units:	mg/L	Ana	lysis Date:	17-Oct-2023	00:59	
Client ID:	MW-02	Rur	ID: ICPM	S07_449157	SeqNo: 7	613099	PrepDate:	16-Oct-2023	DF: 20	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		0.4434	0.400	0.51	0	86.9	80 - 120	0.4053	8.97 20	
Calcium		152.1	10.0	5	147.3	96.1	80 - 120	152.1	0.00135 20	0
Sodium		82.45	4.00	5	76.81	113	80 - 120	79.91	3.13 20	0
MSD	Sample ID:	HS23100607-19MSI)	Units:	mg/L	Ana	lysis Date:	17-Oct-2023	00:41	
Client ID:		Rur	D: ICPM	S07_449157	SeqNo: 7	613091	PrepDate:	16-Oct-2023	DF: 20	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit (Qual
Boron		1.103	0.400	2.5	0.9349	6.73	80 - 120	1.099	0.391 20	S
Calcium		135.5	10.0	10	122.3	132	80 - 120	136	0.367 20	SO
Sodium		223.7	4.00	20	205.8	89.6	80 - 120	229.6	2.58 20	0
PDS	Sample ID:	HS23100630-02PDS	5	Units:	mg/L	Ana	lysis Date:	17-Oct-2023	01:01	
Client ID:	MW-02	Rur	ID: ICPM	S07_449157	SeqNo: 7	613069	PrepDate:	16-Oct-2023	DF: 20	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		9.681	0.400	10	0.06681	96.1	75 - 125			
Calcium		332.7	10.0	200	147.3	92.7	75 - 125			
Sodium		266.7	4.00	200	76.81	95.0	75 - 125			
PDS	Sample ID:	HS23100607-19PDS	5	Units:	mg/L	Ana	lysis Date:	17-Oct-2023	00:43	
Client ID:		Rur	D: ICPM	S07_449157	SeqNo: 7	613092	PrepDate:	16-Oct-2023	DF: 20	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit (Qual
Boron		10.04	0.400	10	0.9349	91.1	75 - 125			
Calcium		314.3	10.0	200	122.3	96.0	75 - 125			
Sodium		406.7	4.00	200	205.8	100	75 - 125			

QC BATCH REPORT

Date: 18-Oct-23

QC BATCH REPORT

Client:TRC CorporationProject:NRG Limestone - Appendix IIIWorkOrder:HS23100630

Batch ID:	201988(0)	Instrume	ent:	ICPMS07	Μ	lethod: I	CP-MS MET	ALS BY SW60	20A	
SD	Sample ID:	HS23100630-02SD		Units:	mg/L	Ana	lysis Date:	17-Oct-2023 (00:54	
Client ID:	MW-02	Run ID	: ICPN	/IS07_449157	SeqNo:	7613097	PrepDate:	16-Oct-2023	DF: 100	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D %D Limit	t Qual
Boron		< 1.10	2.00					0.06681	0 10)
Calcium		150	50.0					147.3	1.85 10)
Sodium		76.47	20.0					76.81	0.433 10)
SD	Sample ID:	HS23100607-19SD		Units:	mg/L	Ana	lysis Date:	17-Oct-2023 (00:36	
Client ID:		Run ID	: ICPN	/IS07_449157	SeqNo:	7613089	PrepDate:	16-Oct-2023	DF: 100	
Analyte		– "			SPK Ref		Control	RPD Ref	%D	
		Result	MQL	SPK Val	Value	%REC	Limit	Value	%D Limit	t Qual
Boron		<pre></pre>	MQL 2.00	SPK Val	Value	%REC	Limit	Value 0.9349	%D Limit	
Boron Calcium				SPK Val	Value	%REC	Limit)
		< 1.10	2.00	SPK Val	Value	%REC	Limit	0.9349	0 10)

Client: TRC Corporation **QC BATCH REPORT** NRG Limestone -Appendix III **Project:** WorkOrder: HS23100630 Batch ID: R449292 (0) Instrument: **ICS-Integrion** Method: ANIONS BY E300.0, REV 2.1, 1993 MBLK Sample ID: Units: mg/L MBLK Analysis Date: 16-Oct-2023 14:34 Client ID: Run ID: ICS-Integrion_449292 SeqNo: 7613618 PrepDate: DF: 1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val %REC %RPD Limit Qual Value Limit Value Chloride < 0.200 0.500 Sulfate < 0.200 0.500 Sample ID: LCS Units: mg/L LCS Analysis Date: 16-Oct-2023 14:46 Client ID: Run ID: ICS-Integrion_449292 SeqNo: 7613619 PrepDate: DF: 1 RPD Ref SPK Ref Control RPD MQL Analyte Result SPK Val Value %REC Limit Value %RPD Limit Qual Chloride 19.46 0.500 20 0 97.3 90 - 110 Sulfate 19 0.500 20 0 95.0 90 - 110 MS Sample ID: HS23100630-02MS Units: mg/L Analysis Date: 16-Oct-2023 15:03 Client ID: MW-02 Run ID: ICS-Integrion_449292 SeqNo: 7613622 PrepDate: DF: 20 SPK Ref RPD Ref Control RPD MQL SPK Val %REC Limit %RPD Limit Qual Analyte Result Value Value Chloride 493.5 10.0 200 310.4 80 - 120 91.6 Sulfate 650.1 10.0 200 527 61.6 80 - 120 s MS Sample ID: HS23100386-01MS Units: mg/L Analysis Date: 16-Oct-2023 17:28 Client ID: Run ID: ICS-Integrion_449292 SeqNo: 7613641 PrepDate: DF: 1 SPK Ref Control RPD Ref RPD SPK Val %RPD Limit Qual Analyte Result MQL Value %REC Limit Value Chloride 46 0.500 10 37.4 80 - 120 85.9 Sulfate 179.7 0.500 10 170.8 88.9 EO 80 - 120 MSD Sample ID: HS23100630-02MSD Units: mg/L Analysis Date: 16-Oct-2023 15:09 Client ID: MW-02 Run ID: ICS-Integrion_449292 SeqNo: 7613623 PrepDate: DF: 20 SPK Ref RPD Ref RPD Control %RPD Limit Qual Analyte Result MQL SPK Val Value %REC Limit Value Chloride 497.6 10.0 200 310.4 93.6 80 - 120 493.5 0.835 20 Sulfate S

Date: 18-Oct-23

ALS Houston, US

200

527

65.5

80 - 120

650.1

1.21 20

658

10.0

Client:TRC CorporationProject:NRG Limestone - Appendix IIIWorkOrder:HS23100630

QC BATCH REPORT

Batch ID:	R449292 (0)	Instrum	ent:	ICS-Integrion	Μ	lethod: A	NIONS BY	E300.0, REV	2.1, 1993		
MSD	Sample ID:	HS23100386-01MSD		Units: r	ng/L	Ana	alysis Date:	16-Oct-2023	17:34		
Client ID:		Run I	D: ICS-	Integrion_449292	SeqNo:	7613642	PrepDate:		DF: 1		
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	R %RPD Li	PD mit Qı	lar
Chloride		45.84	0.500	10	37.4	84.3	80 - 120	46	0.351	20	
Sulfate		178.3	0.500	10	170.8	75.4	80 - 120	179.7	0.751	20 8	SEO
The followin	g samples were analyze	ed in this batch: HS23100 HS23100 HS23100 HS23100	530-05	HS23100630- HS23100630- HS23100630-	06	HS231006 HS231006 HS231006	30-07	HS23100630 HS23100630 HS23100630	-08		

Date: 18-Oct-23

QC BATCH REPORT

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630

Batch ID:	R449336 (0)	Instrumer	nt:	Balance1	М		FOTAL DISS 2011	OLVED SOLI	DS BY SM2540C-
MBLK	Sample ID:	WMBLK-10016023		Units:	mg/L	An	alysis Date:	16-Oct-2023	12:00
Client ID:		Run ID:	Bala	ance1_449336	SeqNo: 7	7614384	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	< 5.00	10.0						
LCS	Sample ID:	WLCS-10162023		Units:	mg/L	An	alysis Date:	16-Oct-2023	12:00
Client ID:		Run ID:	Bala	ance1_449336	SeqNo: 7	7614383	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1074	10.0	1000	0	107	85 - 115		
DUP	Sample ID:	HS23100630-02DUP		Units:	mg/L	An	alysis Date:	16-Oct-2023	12:00
Client ID:	MW-02	Run ID:	Bala	ance1_449336	SeqNo: 7	7614376	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1378	10.0					1380	0.145 20
DUP	Sample ID:	HS23100607-19DUP		Units:	mg/L	An	alysis Date:	16-Oct-2023	12:00
Client ID:		Run ID:	Bala	ance1_449336	SeqNo: 7	7614363	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Dissol Filterable)	ved Solids (Residue,	1152	10.0					1156	0.347 20
The following	samples were analyze	d in this batch: HS2310063)-01	HS2310063	0-02	HS231006	530-03		

Date: 18-Oct-23

QC BATCH REPORT

Client:TRC CorporationProject:NRG Limestone -Appendix IIIWorkOrder:HS23100630

Batch ID:	R449338 (0)	Instrumer	nt:	Balance1	N	nemou.	TOTAL DISS 2011	OLVED SOL	DS BY SM2540C-
MBLK	Sample ID:	WMBLK-10162023		Units:	mg/L	Ana	alysis Date:	16-Oct-2023	13:30
Client ID:		Run ID:	Bala	ance1_449338	SeqNo:	7614418	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	< 5.00	10.0						
LCS	Sample ID:	WLCS-10162023		Units:	mg/L	Ana	alysis Date:	16-Oct-2023	13:30
Client ID:		Run ID:	Bala	ance1_449338	SeqNo:	7614417	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	1096	10.0	1000	0	110	85 - 115		
DUP	Sample ID:	HS23100630-10DUP		Units:	mg/L	Ana	alysis Date:	16-Oct-2023	13:30
Client ID:	MW-28	Run ID:	Bala	ance1_449338	SeqNo:	7614413	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	5692	10.0					5688	0.0703 20
DUP	Sample ID:	HS23100630-04DUP		Units:	mg/L	Ana	alysis Date:	16-Oct-2023	13:30
Client ID:	MW-18	Run ID:	Bala	ance1_449338	SeqNo:	7614406	PrepDate:		DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Total Disso Filterable)	lved Solids (Residue,	326	10.0					326	0 20
The following	g samples were analyze	d in this batch: HS23100630 HS23100630 HS23100630	0-08	HS2310063 HS2310063		HS231006 HS231006		HS23100630 HS23100630	

Project: NRG Limestone -Appendix III WorkOrder: HS23100630 Batch ID: R449362 (0) Instrument: **ICS-Integrion** Method: ANIONS BY E300.0, REV 2.1, 1993 MBLK Sample ID: MBLK Units: mg/L Analysis Date: 17-Oct-2023 09:16 Client ID: Run ID: ICS-Integrion_449362 SeqNo: 7615050 PrepDate: DF: 1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val %REC %RPD Limit Qual Value Limit Value Sulfate < 0.200 0.500 LCS Sample ID: LCS Units: mg/L Analysis Date: 17-Oct-2023 09:22 Client ID: Run ID: ICS-Integrion_449362 SeqNo: 7615051 PrepDate: DF: 1 SPK Ref Control RPD Ref RPD %RPD Limit Qual Analyte Result MQL SPK Val Value %REC Limit Value Sulfate 19.76 0.500 20 0 98.8 90 - 110 MS HS23100830-02MS Units: mg/L Analysis Date: 17-Oct-2023 12:17 Sample ID: Run ID: ICS-Integrion 449362 SeqNo: 7615073 Client ID: PrepDate: DF: 100 SPK Ref Control **RPD** Ref RPD SPK Val %RPD Limit Qual MQL %REC Analyte Result Value Limit Value Sulfate 2213 50.0 1000 1426 78.7 80 - 120 S MS Sample ID: HS23100830-01MS Units: mg/L Analysis Date: 17-Oct-2023 11:24 Client ID: Run ID: ICS-Integrion_449362 SeqNo: 7615067 PrepDate: DF: 100 RPD SPK Ref Control **RPD** Ref Analyte Result MQL SPK Val Value %REC Limit %RPD Limit Qual Value s Sulfate 2355 50.0 1000 1626 72.9 80 - 120 MSD Sample ID: HS23100830-02MSD Units: mg/L Analysis Date: 17-Oct-2023 12:23 Run ID: ICS-Integrion_449362 SeqNo: 7615074 DF: 100 Client ID: PrepDate: SPK Ref Control **RPD** Ref RPD Analyte Result MQL SPK Val Value %REC Limit %RPD Limit Qual Value Sulfate 2213 50.0 1000 1426 78.7 80 - 120 2213 0.0145 20 S MSD Sample ID: HS23100830-01MSD Units: mg/L Analysis Date: 17-Oct-2023 11:30 Client ID: Run ID: ICS-Integrion_449362 SeqNo: 7615068 PrepDate: DF: 100 SPK Ref Control RPD Ref RPD %RPD Limit Qual Analyte MQL SPK Val Value %REC Result Limit Value Sulfate 2360 50.0 1000 1626 73.4 80 - 120 2355 0.225 20 S The following samples were analyzed in this batch: HS23100630-01 HS23100630-08

Date: 18-Oct-23

ALS Houston, US

Client:

TRC Corporation

Page 47 of 77

QC BATCH REPORT

Client: Project: WorkOrder:	TRC Corporation NRG Limestone -Appendix III HS23100630	QUALIFIERS, ACRONYMS, UNITS
	H323100030	
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
Μ	Manually integrated, see raw data for justification	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
Р	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	88-00356	27-Mar-2024
California	2919; 2024	30-Apr-2024
Dept of Defense	L23-358	31-May-2025
Florida	E87611-38	30-Jun-2024
Illinois	2000322023-11	30-Jun-2024
Kansas	E-10352 2023-2024	31-Jul-2024
Louisiana	03087 2023-2024	30-Jun-2024
Maryland	343; 2023-2024	30-Jun-2024
North Carolina	624-2023	31-Dec-2023
North Dakota	R-193 2023-2024	30-Apr-2024
Oklahoma	2023-140	31-Aug-2024
Texas	T104704231-23-31	30-Apr-2024
Utah	TX026932023-14	31-Jul-2024

					Sample Receipt Checklist
Work Order ID: Client Name:	HS23100630 TRC-HOU			Time Received: ived by:	<u>10-Oct-2023 13:20</u> Malcolm Burleson
Completed By:	/S/ Belinda Gomez	10-Oct-2023 16:29	Reviewed by: /S/	Nieka.Carson	11-Oct-2023 10:36
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	w		Carrier name:	<u>Client</u>	
Custody seals in Custody seals in VOA/TX1005/T. Chain of custod Chain of custod Samplers name Chain of custod Samples in prop Sample contain Sufficient samp All samples reco	y signed when relinquished an present on COC? y agrees with sample labels? per container/bottle?	ealed vials? d received?	Yes Ves Ves Ves Ves Ves Ves Ves Ves Ves V	No	Not Present Not Present Not Present Not Present 2 Page(s)
	/Thermometer(s):		10/10/23 1629		ir31
Cooler(s)/Kit(s):	ple(s) sent to storage:		50575 10/10/23 1630		
Water - VOA via	als have zero headspace? eptable upon receipt?		Yes Yes	No No No Vo	No VOA vials submitted N/A N/A N/A
Client Contacte	d:	Date Contacted:		Person Cor	ntacted:
Contacted By:		Regarding:			
Comments:					
Corrective Actic	on:				

		Cincinnati, OH +1 513 733 5336 Everett, WA	Fort Coll +1 970 4 Holland,	90 1511	Cha	Page	of 2	' For	'n			on, TX 530 56 town, F		+1 6	ing City, 510 948 4 : Lake Cit	4903		Charlest 4 356 310 PA	
	LS)	+1 425 356 2600	+1 616 3				<u> </u>) 227				944 55			801 266			7 505 52	30
P197056545555555555555555555555555555555555	an da su de tribilitat de la companya de la companya de la companya de la companya de la companya de la company					ALS P	roject Mana						ALS	Work	Order (#:			
	Customer Information				Project Info	rmation			T		Par	amete	er/Me	thod F	leques	st for A	nalysis		
Purchase Order	206611		Project N	lame	NRG Lime	stone- App	oendix III	A	ICI	P_TW	/(Bar	nd Ca	(App	III))					
Work Order			Project Nu	mber	528473.00	00.0000		В	30	0_W(a, s	04)							
Company Name	TRC Corporation		Bill To Com	pany	TRC Corpo	pration		c	Su	ıb_Flu	oride	(Sub	Fluorio	de to A	LS Mic	chigan)	į		
Send Report To	Lori Burris		Invoice	Attn	A/P			D	TC	x_w	2540	C (TD	S)						
	14701 St. Mary's Lan	e			14701 St. I	Vary's Lar	1e	E	ICI	P_TW	/(B, C	à, an	d Na (App III))				
Address	Suite 500		Add	iress	Suite 500			F	1										
City/State/Zip	Houston, TX 77079		City/State	e/Zip	Houston T	x 77079		G											
Phone	(713) 244-1000		P	hone	(713) 244-	1000		н											
Fax	(713) 244-1099			Fax	(713) 244-	1099		1	1			***************					a)		
e-Mail Address	LBurris@trcsolutions.	com	e-Mail Add	Iress	apinvoicea	pproval@1	rcsolutions.c	om J							tt		nple	-	
No.	Sample Description		Date	Th	ne Mat	trix P	res. # Bot	tles /	A	В	C	D	E	F	G		esar		
1 MW-01			0-10-23-	92	ST Wate	ər 2,8	3 3		Х	X	Х	Х				_ 0	چ ^م بر		
2 MW-02			1	841) Wate	97 2,0	3 3		Х	Х	Х	Х				00630	atic lix II		
3 MW-17				. 100		F 2,8	3 3		Х	Х	Х	Х				- 00	orporation		
4 MW-18	AN BOARD AND AN AN AN AN AN AN AN AN AN AN AN AN AN			1100	184-1	er 2,6	3 3		X	X	X	Х				31	- Apr		
5 MW-19				1105		er 2,6) 3		x	X	Х	Х				HS231	Sc		
6 MW-20				101	1 A los	er 2,0	3		x	X	X	Х				Ť. –	TRC		
7 MW-21				94		er 2,8	3 3			X	X	Х	Х				L in		
8 MW-22				905		er 2,8	3 3		x	X	X	Х					ARG		
9 MW-27R				455	- Wate	er 2,6	3		x	X	X	X							
10 MW-28			\checkmark	91		er 2,8) 3		x	X	X	Х							
Sampler(s) Please P	rint & Sign		Shipme				furnaround Tin						ار غیر ندر			sults Du	ie Date:		
	Musan Band +	HALL LEADA		860		STD 1) Wk Days	X 5 W		nice in the second second second second second second second second second second second second second second s] 2W] 241					
Relinquished by:	ast	1500 1	ne: b-lo-23	Receive	-	and the second se			tes:	NRG	i Lime	stone	OPRI	VILEG	ED & C	CONFIC	DENTIAI	L	
Relinquished by:) D	ate: Tir	ne:	Receive	d by (Laboratory	¢:	101020		Cooler	D	Coole	r Temp.	QCI	132.46g		COne Box	Sid month		
Logged by (Laboratory	p D	ate: Tir	ne:	Checke	d by (Laboratory)• •	· · · · · · · · · · · · · · · · · · ·		057	'5	5.	Ghi			i II Std QC I III Std QC	; C/Raw Date	(contractor)	TRRP Ch	
Preservative Kev:	1-HCI 2-HNO3 3-	H ₂ SO ₄ 4-NaOł	1 5-Na ₂ S ₂ C		l NaHSO₄ 7-	Other 8	-4°C 9-503	35		Ì`	- 0	, 16	┥┝	Level	1 IV SVV846	6/CLP			

Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

			Cincinnati, OH +1 513 733 5336 Everett, WA +1 425 356 2600	+1 970 Hollan	illins, CO 490 1511 1, MI 399 6070		Pa	of Cust	7		n	+1 28 Middle	on, TX 1 530 56 etown, P 7 944 55	A	+1 6 Sait I	19 City, PA 10 948 49 Lake City, 01 266 77	юз UT	+1 30 York,	4 356 3	
070700000000000000000000000000000000000								ALS Project)rder #:	1			8944-1986-28-28-24-24-24-24-24-24-24-24-24-24-24-24-24-
	(Customer Informatio	n			Project	Informa	ation				Par	ramete	er/Me	thod R	equest	for Ar	nalysis		
Pure	hase Order	206611		Project	Name	NRGI	Limestor	ne- Appendix	: 111	A	A ICP_TW (B and Ca (App III))									
	Work Order			Project N	umber	528473.0000.0000				В	300_W (Cl, SO4)									
Com	pany Name	TRC Corporation		Bill To Co	mpany	TRC C	Corporat	ion		С	Sub_F	luoride	e (Sub	Fluori	de to A	LS Mich	igan)			
Send Report To Lori Burris				Invoid	e Attn	A/P				D	TDS_V	V 2540	C (TD	S)						
Address Suite 500				A	dress	14701 Suite (y's Lane		E	ICP_T	W(B, (Ca, an	d Na (App III))				
Cit	y/State/Zip	Houston, TX 7707	9	City/Sta	te/Zip		on TX 7	7079		G										
	Phone	(713) 244-1000			Phone	(713)	244-100	0		Н										
	Fax	(713) 244-1099			Fax	(713)	244-109	9		1								e		
e-M	ail Address	LBurris@trcsolutior	ns.com	e-Mail Ad	Idress	apinvo	xiceappr	oval@trcsolu	tions.com	J								ame		
No.		Sample Description		Date	τ	íme	Matrix	Pres.	# Bottles	A	В	C	D	E	F	G	_	Res		ld
1	energi di da da da da da da da da da da da da da	ИS		10-10-23	84	0	Water	2,8	3			X	Х							
2	MW-02				8	10	Water	2,8	3		X	X	Х			ت ک		endix III		
3	Field Blank	•			117	0	Water	2,8	3			Х	Х			, ,	orporation			
4	Field Duplic	ate -01		V	100	υ	Water	2,8	3	X		X	Х			uessa400620) 7 🚍		
5																	TRC TRC	stor		
6																		me		
7																		NRG L		
8																		ž		
9		dhaine An an an an an an an an an an an an an an																		
10																	I	1	I	
	ler(s) Please P	rint & Sign Masa	a Break + HMIT Tea		ent Meth		Re	quired Turnaro	gunning	Check 5 Wk (Removed granting	her Mk Days	r] 24 н	2 B 3	ilts Du	e Date:		
	uished by: T	- A	Date: 10-10-23 Tir	"1320	Receiv			linan and the standing		Notes		Sterress .	<u>يۇرىيىتىكى ئېزىكى ئ</u> ېزىكى ئېزىكى زىكى ئېزىكى ئېزىكى ئېزىكى ئېزى ئېزى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزى ئېزىكى ئېزى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى ئېزىكى			ED & CO	ONFIC	DENTIA	NL.	
Relinq	uished by:	······ <i>jt</i>	Date: Tir	me:	Receiv	ed by (Labo	ratory):		0 2023 1320	Co	oler ID		er Temp. 3 /		Alikeva	(Check O	ne Box	Contraction of the local division of the loc		
	by (Laboratory) rvative Kev:		Date: Tin 3-H₂SO₄ 4-NaOI	me: H 5-Na ₂ S		ed-by (Labo	ratory): 7-Oth	er 8-4°C	9-5035	:50	1575	5	942 0.10		Level	11 Std QC/F 111 Std QC/F IV SV/848/		, M	TRRP (Checklist .evel IV

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.
 2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.
 3. The Chain of Custody is a legal document. All information must be completed accurately and Confidential

,

CUSTODY SEAL	Seal Broken By:
Date: 0-0-73 Time:	1m
Name:	Date:
Company:	

Privileged and Confidential

Page 53 of 77

16-Oct-2023

Andrew Neir ALS Environmental 10450 Stancliff Rd Suite 210 Houston, TX 77099

Re: **HS23100630**

Work Order: 23101026

Dear Andrew,

ALS Environmental received 12 samples on 11-Oct-2023 09:00 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 24.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Cook New

Electronically approved by: Chelsey Cool

Chelsey Cook Project Manager

Report of Laboratory Analysis

Certificate No: TX: T104704494-23-14

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Date: 16-Oct-23

Client:ALS EnvironmentalProject:HS23100630Work Order:23101026		Work Order Sample Summa							
Lab Samp ID Client Sample ID	<u>Matrix</u>	Tag Number	Collection Date	Date Received Hold					
23101026-01 MW-01	Water	HS23100630-01	10/10/2023 09:25	10/11/2023 09:00					
23101026-02 MW-02	Water	HS23100630-02	10/10/2023 08:40	10/11/2023 09:00 🛛					
23101026-03 MW-17	Water	HS23100630-03	10/10/2023 10:05	10/11/2023 09:00					
23101026-04 MW-18	Water	HS23100630-04	10/10/2023 11:00	10/11/2023 09:00					
23101026-05 MW-19	Water	HS23100630-05	10/10/2023 11:05	10/11/2023 09:00 🛛					
23101026-06 MW-20	Water	HS23100630-06	10/10/2023 10:15	10/11/2023 09:00					
23101026-07 MW-21	Water	HS23100630-07	10/10/2023 09:40	10/11/2023 09:00					
23101026-08 MW-22	Water	HS23100630-08	10/10/2023 09:05	10/11/2023 09:00					
23101026-09 MW-27R	Water	HS23100630-09	10/10/2023 09:55	10/11/2023 09:00					
23101026-10 MW-28	Water	HS23100630-10	10/10/2023 09:10	10/11/2023 09:00					
23101026-11 Field Blank-01	Water	HS23100630-11	10/10/2023 11:20	10/11/2023 09:00					
23101026-12 Field Duplicate-01	Water	HS23100630-12	10/10/2023 10:00	10/11/2023 09:00					

		WET CHI	EMISTRY DATA ASSESSMENT CHECKLIST					
Wet	t Cher	mistry	Batch Number: TITRATOR1_231013A, Instrument ID: TITRATOR1_231013B	TITRA	TORI			
Met	hod:	FL_4500C_W	Work order Number (s): 23101026					
Ana	lyst l	Name: QN	Date: 10/13/2022 Reviewer Name: RM		Date	: 10/	13/2	3
	A^1	Description		Yes	No	NA 2	NR ³	ER
R1	Ι	Chain-of-Custody						
		1) Did samples meet the laboratory's	standard conditions of sample acceptability upon receipt?			Х		
		2) Were all departures from standard	conditions described in an exception report?			Х		
R2	Ι	SAMPLE AND QUALITY CONT	ROL (QC) IDENTIFICATION					
			cross-referenced to the laboratory ID numbers?			Х		İ.
			oss-referenced to the corresponding QC data?			Х		
R3	Ι	TEST REPORTS						
		1) Were all samples prepared and an	alyzed within holding times?	Х				
		2) Other than those results $<$ MQL, v	were all other raw values bracketed by calibration standards?	X				
		3) Were calculations checked by a p		X X				
		4) Were all analyte identifications checked by a peer or supervisor?						
		5) Were sample quantitation limits r	Х					
			nent samples reported on a dry weight basis?			Х		
		7) Was % moisture (or solids) report				Х		
D 4	-	8) If required for the project, TICs re			Х			
R4	1	SURROGATE RECOVERY DAT				37		
		1) Were surrogates added prior to ex				X		-
R5	T		s in all samples within the laboratory QC limits?			Х		
NJ	1	TEST REPORTS/SUMMMARY F 1) Were appropriate type(s) of blank		X				
		2) Were blanks analyzed at the appro-						-
			the entire analytical process, including preparation and, if	X				
		applicable, cleanup procedures?	in the entire analytical process, meruding preparation and, if	Λ				
		4) Were blank concentrations $< \frac{1}{2}$ M	IOL?	X				
R6	Ι	LABORATORY CONTROL SAM						
		1) Were all COCs included in the LO	CS?	Х				
		2) Was each LCS taken through the e	entire analytical procedure, including prep and cleanup steps?	X				
		3) Were LCSs analyzed at the requir		Х				
		4) Were LCS and LCSD %Rs within		X				
			ent the laboratory's capability to detect the COCs at the MDL	Х				
		used to calculate the SQLs?						
		6) Was the LCSD RPD within QC lin		X				L
R 7	1		RIX SPIKE DUPLICATE (MSD) DATA					
			fied analytes included in the MS and MSD?	X X	-			┢
		2) Were MS/MSD analyzed at the ap3) Were MS and MSD %Rs within t		X				┢
		4) Were MS/MSD RPDs within labo						┢
R8	T	ANALYTICAL DUPLICATE DA						┢
NO	1	1) Were appropriate analytical dupli		X				
		 Were analytical duplicates analyz 	· · · · · · · · · · · · · · · · · · ·	X				┢
			eviations within the laboratory QC limits?	X				ŀ
R9	Ι	METHOD QUANTITATION LIM						t
	1		alyte listed and included in the laboratory data package?	X	1			
			oncentration of the lowest non-zero calibration standard?	X				Γ
		3) Are unadjusted MQLs included in				Х		ſ
R10	Ι	OTHER PROBLEMS/ANOMALI						1
			s/special conditions noted in this LRC and ER?	Х				
		2) Were all necessary corrective action	ons performed for the reported data?	X				
			elevated SQLs documented?		1	Х		

Privileged and Confidential

S1	Ι	INITIAL CALIBRATION (ICAL)			
		1) Were response factors (RFs) and/or relative response factors (RRFs) for each analyte within the QC limits?		X	
		2) Were percent RSDs or correlation coefficient criteria met?	X		-
		3) Was the number of standards recommended in the method used for all analytes?	X		
		4) Were all points generated between the lowest and highest standard used to calculate the curve?	X		
		5) Are ICAL data available for all instruments used?	X		
		6) Has the initial calibration curve been verified using an appropriate second source standard?	Х		
S2	Ι	INITIAL AND CONTINUING CALIBRATION VERIFICATION (ICCV AND CCV) AND			
		1) Was the CCV analyzed at the method-required frequency?	Х		
		2) Were percent differences for each analyte within the method-required QC limits?	X		
		3) Was the ICAL curve verified for each analyte?	X		
		4) Was the absolute value of the analyte concentration in the organic CCB < MDL?	X		
S3	Ι	MASS SPECTRAL TUNING:			
		1) Was the appropriate compound for the method used for tuning?		X	
		2) Were ion abundance data within the method-required QC limits?		X	
S4	Ι	INTERNAL STANDARDS (IS):			
		Were IS area counts within the method-required QC limits?		X	
S5	Ι	RAW DATA			
		1) Were the raw data (e.g., chromatograms, spectral data) reviewed by an analyst?	X		
		2) Were data associated with manual integrations flagged on the raw data?	X		
S6	Ι	DUAL COLUMN CONFIRMATION (IF REQUIRED)			
		Did dual column confirmation results meet the method-required QC?		X	
S7	Ι	TENTATIVELY IDENTIFIED COMPOUNDS (TICS):			
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		X	
S8	Ι	INTERFERENCE CHECK SAMPLE (ICS) RESULTS:			
~ ~ ~		Were percent recoveries within method QC limits?		X	
S9	Ι	SERIAL DILUTIONS, POST DIGESTION SPIKES, AND METHOD OF STANDARD			
~ 4 0		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		X	
S10	Ι	PROFICIENCY TEST REPORTS:			
<u></u>		Are proficiency testing or inter-laboratory comparison results on file?	X		
S11	I	METHOD DETECTION LIMIT (MDL) STUDIES			
		1) Was a MDL study performed for each reported analyte?	X		
G12	-	2) Is the MDL either adjusted or supported by the analysis of DCSs?	Χ		
S12	I	STANDARDS DOCUMENTATION	37		
012	T	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X		
S13	1	COMPOUND/ANALYTE IDENTIFICATION PROCEDURES	N		
C14	-	Are the procedures for compound/analyte identification documented?	X		
S14	1	DEMONSTRATION OF ANALYST COMPETENCY (DOC)	V		
		1) Was DOC conducted consistent with NELAC 5C or ISO/IEC 4.2.2?	X X		
S15	T	2) Is documentation of the analyst's competency up-to-date and on file? VERIFICATION/VALIDATION DOCUMENTATION FOR METHODS			
513	1	Are all the methods used to generate the data documented, verified, and validated, where applicable,	X		
		(NELAC 5.10.2 or ISO/IEC 17025 Section 5.4.5)?			
01/	T.				
S16	1	LABORATORY STANDARD OPERATING PROCEDURES (SOPS):	37		
		Are laboratory SOPs current and on file for each method performed?	Х		_

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable). NA = Not applicable. NR = Not Reviewed.1

2 3

4 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

		WET CHEMISTRY DATA ASSE	SSMENT CHECKLIST
Wet Ch	emistry	Batch Number:	
ER #1	DESCRIPTION		
1			
2			
3			
4			
5			
6			

1 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Project: HS	S Environmental 23100630 01026	QUALIFIERS, ACRONYMS, UNITS
WorkOrder: 23	01026	

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
а	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Analyte accreditation is not offered
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference $> 40\%$
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
<u>Acronym</u>	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate

- PQL Practical Quantitation Limit
- RPDRelative Percent DifferenceTDLTarget Detection Limit
- TNTC Too Numerous To Count
- A APHA Standard Methods
- D ASTM
- E EPA
- SW SW-846 Update III

Units Reported Description

mg/L Milligrams per Liter

Client:	ALS Environmental	
Project:	HS23100630	Case Narrative
Work Order:	23101026	

Samples for the above noted Work Order were received on 10/11/2023. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Wet Chemistry: No deviations or anomalies were noted.

1		Damk	0	CDI	MOI	T L	Dilution	Date Analyzed
Collection Date:	10/10/2023 09:25 AM					Μ	atrix: WATE	ER
Sample ID:	MW-01					La	b ID: 231010	026-01
Project:	HS23100630					Work O	Order: 231010	026
Client:	ALS Environmental							

Analyses	Result	Qual	SDL	MQL	Units	Factor	Date Analyzed
FLUORIDE Fluoride	0.0600	Metho J	od: A4500-F C 0.058	-11 0.10	mg/L	1	Analyst: QTN 10/13/2023 11:07

Client:	ALS Environmental	
Project:	HS23100630	Work Order: 23101026
Sample ID:	MW-02	Lab ID: 23101026-02
Collection Date:	10/10/2023 08:40 AM	Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	U	Meth	od: A4500-F C- 0.058		mg/L	1	Analyst: QTN 10/13/2023 11:07

		Dilution
Collection Date:	10/10/2023 10:05 AM	Matrix: WATER
Sample ID:	MW-17	Lab ID: 23101026-03
Project:	HS23100630	Work Order: 23101026
Client:	ALS Environmental	

Analyses	Result Qua	I SDL MQL		ctor Date Analyzed
FLUORIDE Fluoride	0.150	Vethod: A4500-F C-11 0.058 0.10	mg/L	Analyst: QTN 1 10/13/2023 11:07

Work Order: 23101026
Lab ID: 23101026-04
Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	0.120	Method:	A4500-F C 0.058	-11 0.10	mg/L	1	Analyst: QTN 10/13/2023 11:07

		Dilution
Collection Date:	10/10/2023 11:05 AM	Matrix: WATER
Sample ID:	MW-19	Lab ID: 23101026-05
Project:	HS23100630	Work Order: 23101026
Client:	ALS Environmental	

Analyses	Result	Qual	SDL	MQL	Units	Factor	Date Analyzed
FLUORIDE Fluoride	0.0600	Metho J	od: A4500-F C 0.058	C-11 0.10	mg/L	1	Analyst: QTN 10/13/2023 11:07

		Dilution
Collection Date:	10/10/2023 10:15 AM	Matrix: WATER
Sample ID:	MW-20	Lab ID: 23101026-06
Project:	HS23100630	Work Order: 23101026
Client:	ALS Environmental	

Analyses	Result Qual	SDL	MQL	Units	Factor	Date Analyzed
FLUORIDE Fluoride	Me [:] 0.220	hod: A4500-F C 0.058	-11 0.10	ma/l	1	Analyst: QTN 10/13/2023 11:07
Fluoride	0.220	0.058	0.10	mg/L		10/13/2023 11:07

Client:	ALS Environmental	
Project:	HS23100630	Work Order: 23101026
Sample ID:	MW-21	Lab ID: 23101026-07
Collection Date:	10/10/2023 09:40 AM	Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	U	Method:	A4500-F C 0.058		mg/L	1	Analyst: QTN 10/13/2023 15:28

		Dilution
Collection Date:	10/10/2023 09:05 AM	Matrix: WATER
Sample ID:	MW-22	Lab ID: 23101026-08
Project:	HS23100630	Work Order: 23101026
Client:	ALS Environmental	

Analyses	Result	Qual	SDL	MQL	Units	Factor	Date Analyzed
FLUORIDE		Metho	od: A4500-F C	-11			Analyst: QTN
Fluoride	0.0600	J	0.058	0.10	mg/L	1	10/13/2023 15:28

Client:	ALS Environmental	
Project:	HS23100630	Work Order: 23101026
Sample ID:	MW-27R	Lab ID: 23101026-09
Collection Date:	10/10/2023 09:55 AM	Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	U	Method:	A4500-F C - 0.058	• 11 0.10	mg/L	1	Analyst: QTN 10/13/2023 15:28

		Dilution
Collection Date:	10/10/2023 09:10 AM	Matrix: WATER
Sample ID:	MW-28	Lab ID: 23101026-10
Project:	HS23100630	Work Order: 23101026
Client:	ALS Environmental	

Analyses	Result	Qual	SDL	MQL	Units	Factor	Date Analyzed
FLUORIDE		Method:	A4500-F C	-11			Analyst: QTN
Fluoride	0.240		0.058	0.10	mg/L	1	10/13/2023 15:28

Client: ALS Environmental Project: HS23100630 Work Order: 23101026 Sample ID: Field Blank-01 Lab ID: 23101026-11 Collection Date: 10/10/2023 11:20 AM Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	U	Method	: A4500-F C 0.058	11 0.10	mg/L	1	Analyst: QTN 10/13/2023 15:28

Client: ALS Environmental Project: HS23100630 Work Order: 23101026 Sample ID: Field Duplicate-01 Lab ID: 23101026-12 Collection Date: 10/10/2023 10:00 AM Matrix: WATER

Analyses	Result	Qual	SDL	MQL	Units	Dilution Factor	Date Analyzed
FLUORIDE Fluoride	U	Method:	A4500-F C 0.058	-11 0.10	mg/L	1	Analyst: QTN 10/13/2023 15:28

Client:	ALS Environmental
Work Order:	23101026
Project:	HS23100630

QC BATCH REPORT

Batch ID: R385587	Instrument ID Titra	ator 1		Metho	d: A4500	-F C-	11					
MBLK	Sample ID: MB-R38558	7-R385587	,			U	nits: mg/l	L	Analys	is Date: 10 /1	3/2023 1	1:07 AN
Client ID:		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84714	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		U	0.10									
LCS	Sample ID: LCS-R385587-R385587				U	nits: mg/l	L	Analys	Analysis Date: 10/13/2023 11:07 A			
Client ID:		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84715	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		5.15	0.10	5		0	103	90-111	1	0		
MS	Sample ID: 23101001-0	7AMS				U	nits: mg/l	L	Analys	is Date: 10 /1	3/2023 1	1:07 AN
Client ID:		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84717	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		5.46	0.10	5	0.	28	104	90-111		0		
MS	Sample ID: 23101026-0	2AMS				U	nits: mg/l	L	Analys	is Date: 10 /1	3/2023 1	1:07 AN
Client ID: MW-02		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84733	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		5.05	0.10	5	0.	04	100	90-111	1	0		
MSD	Sample ID: 23101001-0	7AMSD				U	nits: mg/l	L	Analys	is Date: 10 /1	3/2023 1	1:07 AN
Client ID:		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84718	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		5.49	0.10	5	0.	28	104	90-111	5.4	6 0.548	20	
MSD	Sample ID: 23101026-0	2AMSD				U	nits: mg/l	L	Analys	is Date: 10 /1	3/2023 1	1:07 AN
Client ID: MW-02		Run ID:	TITRAT	OR 1_2310	13A	Sec	qNo: 1008	84734	Prep Date:		DF: 1	
Analyte		Result	MQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		4.98	0.10	5	Ο	04	98.8	90-111	5.0	5 1.4	20	

The following samples were analyzed in this batch:

 is batch:
 23101026-01A
 23101026-02A
 23101026-03A

 23101026-04A
 23101026-05A
 23101026-06A

QC BATCH REPORT

Batch ID: R385616 Instrument ID Titrator 1 Method: A4500-F C-11

MBLK	Sample ID: MB-R385616-R3	385616				U	nits: mg/l	-	Analys	sis Date: 10/1	3/2023 03	8:28 PM
Client ID:	R	Run ID: TI	TRAT	OR 1_2310	13B	Sec	qNo: 1008	6013	Prep Date:		DF: 1	
Analyte	Res	ult N	/IQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride		U (0.10									
LCS	Sample ID: LCS-R385616-R	385616				U	nits: mg/l	_	Analys	sis Date: 10/1	3/2023 03	8:28 PN
Client ID:	R	Run ID: Ti	TRAT	OR 1_2310 [,]	13B	Sec	qNo: 1008	6014	Prep Date:		DF: 1	
Analyte	Res	sult N	/IQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride	5	5.1 (0.10	5		0	102	90-111		0		
MS	Sample ID: 23101043-05AM	IS				U	nits: mg/l	_	Analys	sis Date: 10/1	3/2023 03	8:28 PN
Client ID:	R	Run ID: Tl	TRAT	OR 1_2310 ⁴	13B	Sec	qNo: 1008	6026	Prep Date:		DF: 1	
Analyte	Res	sult N	/IQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride	4.	98 (0.10	5	C).1	97.6	90-111		0		
MSD	Sample ID: 23101043-05AM	ISD				U	nits: mg/l	_	Analys	sis Date: 10/1	3/2023 03	8:28 PN
Client ID:	R	Run ID: Tl	TRAT	OR 1_2310 ⁴	13B	Sec	qNo: 1008	6027	Prep Date:		DF: 1	
Analyte	Res	sult N	/IQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluoride	5	5.1 (0.10	5	C).1	100	90-111	4.9	8 2.38	20	
The following s	samples were analyzed in this bat	tch:		3101026-07A 3101026-10A			026-08A 026-11A		101026-09A 101026-12A			

10450 Stancliff Rd, Ste 210 Houston, TX 77099 **T:** +1 281 530 5656 **F:** +1 281 530 5887 **www.alsglobal.com**

COC ID: 23479

Supcontract Chain of Custody

SAMPLING STATE: Texas

SUBCONTRACT TO:

ALS Group USA, Corp. 3352 - 128th Ave Holland, MI 494249263

CUSTOMER INFORMATION:

Company:	ALS Houston
Contact:	Andy C. Neir
Address:	10450 Stancliff Rd, Ste 210
Phone:	+1 281 530 5656
Email:	Andrew.Neir@ALSGlobal.com
Alternate Contact: Email:	Jumoke M. Lawal jumoke.lawal@alsglobal.com

Phone: +1 616 399 6070

INVOICE INFORMATION:

Company:	ALS Houston
Contact:	Accounts Payable
Address:	10450 Stancliff Rd, Ste 210
Phone:	+1 281 530 5656
Reference:	HS23100630
TSR:	Ron Martino

1000		x		
	LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	COLLECT DATE
	ANALYSIS RE	QUESTED	[DUE DATE
1.	HS23100630-01	MW-01	Water	10 Oct 2023 09:25
	Fluoride by ISE	4500. EQuis EDD	1	.7 Oct 2023
2.	HS23100630-02	MW-02 (M5/M50)	Water	10 Oct 2023 08:40
	Fluoride by ISE 4	4500. EQuis EDD	1	.7 Oct 2023
з.	HS23100630-03	MW-17	Water	10 Oct 2023 10:05
	Fluoride by ISE 4	4500. EQuis EDD	1	.7 Oct 2023
4.	HS23100630-04	MW-18	Water	10 Oct 2023 11:00
	Fluoride by ISE 4	4500. EQuis EDD	t	7 Oct 2023
5.	HS23100630-05	MW-19	Water	10 Oct 2023 11:05
	Fluoride by ISE 4	4500. EQuis EDD	1	7 Oct 2023
6.	HS23100630-06	MW-20	Water	10 Oct 2023 10:15
	Fluoride by ISE 4	4500. EQuis EDD	t	7 Oct 2023
7.	HS23100630-07	MW-21	Water	10 Oct 2023 09:40
	Fluoride by ISE 4	4500. EQuis EDD	t	7 Oct 2023
8.	HS23100630-08	MW-22	Water	10 Oct 2023 09:05
	Fluoride by ISE 4	4500. EQuis EDD	t	7 Oct 2023
9.	HS23100630-09	MW-27R	Water	10 Oct 2023 09:55

Privileged and Confidential

Subcontract Chain of Custody

SAMI	PLING STATE: T	exas		COC ID: 23479
12.54	LAB SAMPLE ID ANALYSIS R	CLIENT SAMPLE ID	MATRIX	COLLECT DATE DUE DATE
	Fluoride by ISE	4500. EQuis EDD		17 Oct 2023
10.	HS23100630-10	MW-28	Water	10 Oct 2023 09:10
	Fluoride by ISE	4500. EQuis EDD		17 Oct 2023
11.	HS23100630-11	Field Blank-01	Water	10 Oct 2023 11:20
	Fluoride by ISE	4500. EQuis EDD		17 Oct 2023
12.	HS23100630-12	Field Duplicate-01	Water	10 Oct 2023 10:00
	Fluoride by ISE	4500. EQuis EDD		17 Oct 2023
Com		e for the analysis listed above o the emails shown above.	e.	
QC L	evel: TRRP LRC (TR	RRP checklist only+Level II (n	ormal))	
		7		
Relinq	uished By:	4	Date/Time:	10-10-25 1800
Receiv	/ed By:		Date/Time:	10-11-25 Navor)
	r ID(s):		Temperature(s):	BIL OPZ
	(
10 Oct	. 2023			Page 2 vit 2
		Privileged and C	ontidential	

ALS Group, USA Holland, Michigan

Sample Receipt Checklist

Client Name: ALS - HOUSTON		Date/Time I	Received: <u>11-Oct-</u>	<u>23 09:00</u>
Work Order: 23101026		Received b	y: <u>JD</u>	
Checklist completed by Jason Delinger	11-Oct-23 Date	Reviewed by:	Chelsey Cook	11-Oct-23 Date
Matrices: <u>Water</u> Carrier name: <u>FedEx</u>			5	I
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌		
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ✔ <u>3.1/3.1 C</u>	No 🗌	DF2	7
Cooler(s)/Kit(s):				
Date/Time sample(s) sent to storage:	10/11/202	3 2:21:57 PM		
Water - VOA vials have zero headspace?	Yes	No	No VOA vials submitte	ed 🗸
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	N/A	
pH adjusted? pH adjusted by:	Yes	No 🗹	N/A	7

Login Notes:

Client Contacted:	Date Contacted: Person Contact	ted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:	Privileged and Confidential	SDC Dars 4 of 4
	r inviteged and Confidential	SRC Page 1 of 1

Appendix C Laboratory Data Quality Review

TRC Environmental Corporation | NRG Texas Power, LLC 2023 Annual Groundwater Monitoring and Corrective Action Report January 31, 2024

DATA USABILITY SUMMARY

Lori Burris of TRC Environmental Corporation (TRC) reviewed one (1) data package from ALS Global Laboratories (ALS) for the analysis of groundwater samples collected April 4, 2023, at the NRG Limestone Electric Generating Station (Limestone) in Jewett, Texas. Data were reviewed for conformance to the requirements of the guidance document, *Review and Reporting of COC Concentration Data* (RG-366/TRRP-13) (TCEQ 2010). Lori Burris verified that at the time the laboratory data were generated for the project, ALS was NELAC-accredited under the Texas Laboratory Accreditation Program for the matrices, analytes, and methods of analysis requested on the chain-of-custody documentation. ALS's National Environmental Laboratory Accreditation Program (NELAP) certification is included in the laboratory data package.

Intended Use of Data: To provide current data on concentrations of chemicals of concern (COCs) in the groundwater at the property. These data are used for compliance with the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ) Coal Combustion Residuals (CCR) detection monitoring programs. Data are also used for statistical analysis of potential statistically significant increases (SSI).

Analyses requested included:

- ♦ EPA 300.0 Inorganic Anions (Chloride and Sulfate) by ion chromatography;
- ♦ A4500-F C-11 Fluoride by ion selective electrode;
- SW-846 6020A Metals (Calcium, Boron and Sodium) by inductively coupled plasmamass spectrometry (ICP/MS); and
- SM2540C Total Dissolved Solids (TDS) by drying.

Data were reviewed and validated as described in *Review and Reporting of COC Concentration Data*, (RG-366/TRRP-13) and the results of the review/validation are discussed in this DUS.

The following laboratory submittals and field data were examined:

- the reportable data,
- the laboratory review checklists, and
- ♦ field sampling logs.

The results of supporting quality control (QC) analyses were summarized on the Laboratory Review Checklist (LRC) and Exception Report (ER) in the analytical report which was included in this review.

The LRC, associated ER, and reportable data included in this review are attached to this Data Usability Summary (DUS).

DATA REVIEW/VALIDATION RESULTS

Introduction

Ten (10) groundwater samples, one (1) duplicate groundwater sample and one (1) field blank were analyzed for chloride, sulfate, fluoride, metals, and TDS. In addition, groundwater sample MW-21 was also analyzed for sodium. Table 1 lists the field identifications cross-referenced to laboratory identifications.

Analytical Results

The data package contains a minimum of one (1) quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not-detected results are reported as less than the value of the sample detection limit (SDL) as defined by the TRRP rule. The project Sampling and Analysis Plan (SAP) states that quality control percent recoveries of 70% to 130% indicate sufficient accuracy and a relative percent difference (RPD) of 30% indicates adequate precision. Therefore, these limits were used for comparison during this review for accuracy and precision. Data qualified as part of this review are shown in Table 2.

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody. The laboratory mis-labeled the Field Duplicate-01 sample as "Field Dup[licate-01". The samples were received in the appropriate containers with the paperwork filled out properly, except for MW-28R being listed as MW-28 on the chain-of-custody. The laboratory sample receipt checklist stated the samples were received at a temperature of 1.8°C. Samples reported in the data package were prepared and analyzed within holding times.

Calibrations

According to the LRC, initial and continuing calibration data met EPA, Standard Method (SM) and SW-846 Method requirements for boron, chloride, sulfate, fluoride and TDS. Metals continuing calibration blanks (CCBs) had detections of boron and sodium. Associated samples MW-01 and MW-17 were qualified as estimated (J) for boron due to CCB contamination.

Blanks

Metals, chloride, sulfate, fluoride, and TDS were reported as not-detected in the method blanks.

One field blank (Field Blank-01) was collected and analyzed as part of this data package. Estimated detections of calcium (0.118J mg/L) and chloride (0.217J mg/L) and a detection of TDS (66.0 mg/L) were identified in the field blank (Field Blank-01). Associated sample MW-17 was reported for TDS less than 2X the field blank concentration and was qualified as estimated, due to field blank contamination.

Laboratory Control Samples

Laboratory control samples (LCS) met the QC acceptance criteria for chloride, sulfate, fluoride, metals and TDS.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples for fluoride batch R368036 analyzed on sample MW-02, fluoride batch R368190 analyzed on site sample MW-19, boron batch 192125

analyzed on site sample MW-02, boron and sodium in batch 192190 analyzed on site sample MW-21 and sulfate in batch R432019 analyzed on site samples MW-20 and MW-02 were within QC acceptance criteria. MS/MSD analysis is not a requirement of TDS method SM2540C.

Metals batch 1192125 MS/MSD analyzed on site sample MW-02 and batch 192190 MS/MSD analyzed on site sample MW-21 had calcium recovery outside acceptance criteria. However, the amount of calcium spiked was less than 4X the unspiked parent sample and may not represent the matrix effect; therefore, this MS/MSD was not used for qualification purposes.

Chloride batch R432019 had two MS/MSDs analyzed and was within acceptance criteria for the MS/MSD analyzed on site sample MW-20. The MS/MSD analyzed on site sample MW-02 had low recovery for chloride. Sample MW-02 was qualified as estimated low (JL) for chloride, due to low MS/MSD recovery.

Post Digestion Spike and Serial Dilution

The metals post digestion spikes (PDSs) was outside acceptance limits for calcium. However, the amount of calcium spiked was less than 4X the unspiked parent sample and was not used for qualification purposes. The serial dilution for metals analyzed on site sample MW-02 was within laboratory acceptance criteria. However, the serial dilution for metals analyzed on site sample MW-21 had elevated percent difference for boron. Sample MW-21 was qualified as estimated (J) for boron, due to serial dilution outside acceptance criteria.

Laboratory Duplicates

Laboratory duplicate for TDS analyzed on site samples MW-02 and MW-22 were within QC acceptance criteria.

Field Precision

One (1) field duplicate sample was included in this data package (MW-19/Field Duplicate-01). Both sample and duplicate, MW-19/Field Duplicate-01, were reported as detected for boron, calcium, chloride, sulfate, and TDS. The relative percent difference (RPD) between sample and duplicate was within the QC acceptance criteria of 30% for the listed compounds.

Sample/duplicate precision calculations are included in Table 3.

Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the Limestone site.

The data user is advised that samples MW-01 and MW-17 were qualified as estimated (J) for boron due to CCB contamination. Sample MW-17 was reported for TDS less than 2X the field blank concentration and was qualified as estimated (J), due to field blank contamination. Sample MW-02 was qualified as estimated low (JL) for chloride, due to low MS/MSD recovery. Sample MW-21 was qualified as estimated (J) for boron, due to serial dilution outside acceptance criteria.

References:

TCEQ. 2010. TRRP 13: Review and Reporting of COC Concentration Data. Texas Commission for Environmental Quality, Austin, Texas.

Environmental Resources Management (ERM). October 2017. Sampling and Analysis Plan. W.A. Parish Electric Generating Station, Thompsons, Texas.

Table 1 – Cross-Reference between Laboratory and Field Identifications

Laboratory Identification	Field Identification	Matrix Type
HS23040177-01	MW-01	Groundwater
HS23040177-02	MW-02	Groundwater
HS23040177-03	MW-17	Groundwater
HS23040177-04	MW-18	Groundwater
HS23040177-05	MW-19	Groundwater
HS23040177-06	MW-20	Groundwater
HS23040177-07	MW-21	Groundwater
HS23040177-08	MW-22	Groundwater
HS23040177-09	MW-27R	Groundwater
HS23040177-10	MW-28R	Groundwater
HS23040177-11	Field Blank-01	Water
HS23040177-12	Field Duplicate-01	Groundwater

Table 2 – Qualified Analytical Data

Field Identification	Analyte	Qualification	Reason for Qualification
MW-01 MW-17	Boron	J	CCB contamination.
MW-17	TDS	J	Field blank contamination.
MW-02	Chloride	JL	Low MS/MSD recovery.
MW-21	Boron	J	Elevated serial dilution percent difference.
U – Not-detected			

J – Estimated data; the reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.

UJ – The analyte was analyzed for but was not detected above the reported sample detection limit. The associated value is an estimate and may be inaccurate or imprecise.

L – Bias in sample, likely to be low.

H - Bias in sample likely to be high.

Table 3 – Field Precision

Field Identification	Analyte	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD ^a	Qualified
MW-19/Field Duplicate-01	Boron	0.0467	0.0468	0	А
- upnouto 01	Calcium	34.6	35.2	2	А
	Chloride	37.5	37.2	1	А
	Sulfate	99.6	99.2	0	А
	TDS	308	292	5	А

^a RPD = ((SR - DR)*200)/(SR + DR)

A - Acceptable Data.

 A^* - Acceptable Data where results were less than 5X the MQL and the difference between sample and duplicate was less than 2X the MQL.

X – Outside the TRRP-13/SAP acceptance criteria of 30% RPD.

J – Estimated detected.

U - Not-detected.

DATA USABILITY SUMMARY

Lori Burris of TRC Environmental Corporation (TRC) reviewed one (1) data package from ALS Global Laboratories (ALS) for the analysis of a groundwater sample collected May 1, 2023, at the NRG Limestone Electric Generating Station (Limestone) in Jewett, Texas. Data were reviewed for conformance to the requirements of the guidance document, *Review and Reporting of COC Concentration Data* (RG-366/TRRP-13) (TCEQ 2010). Lori Burris verified that at the time the laboratory data were generated for the project, ALS was NELAC-accredited under the Texas Laboratory Accreditation Program for the matrices, analytes, and methods of analysis requested on the chain-of-custody documentation. ALS's National Environmental Laboratory Accreditation Program (NELAP) certification is included in the laboratory data package.

Intended Use of Data: To provide current data on concentrations of chemicals of concern (COCs) in the groundwater at the property. These data are used for compliance with the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ) Coal Combustion Residuals (CCR) detection monitoring programs. Data are also used for statistical analysis of potential statistically significant increases (SSI).

Analyses requested included:

- ♦ EPA 300.0 Inorganic Anions (Sulfate) by ion chromatography;
- SW-846 6020A Metals (Boron) by inductively coupled plasma-mass spectrometry (ICP/MS); and
- SW-846 9040C pH by electrometric measurement.

Data were reviewed and validated as described in *Review and Reporting of COC Concentration Data*, (RG-366/TRRP-13) and the results of the review/validation are discussed in this DUS.

The following laboratory submittals and field data were examined:

- the reportable data,
- the laboratory review checklists, and
- field sampling logs.

The results of supporting quality control (QC) analyses were summarized on the Laboratory Review Checklist (LRC) and Exception Report (ER) in the analytical report which was included in this review.

The LRC, associated ER, and reportable data included in this review are attached to this Data Usability Summary (DUS).

DATA REVIEW/VALIDATION RESULTS

Introduction

Three (3) groundwater samples were collected and analyzed for boron (MW-21), sulfate (MW-28) and pH (MW-01). Sample MW-01 was analyzed for pH as a field check and was not evaluated during this review as pH is a field test. Table 1 lists the field identifications cross-referenced to laboratory identifications.

Analytical Results

The data package contains a minimum of one (1) quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not-detected results are reported as less than the value of the sample detection limit (SDL) as defined by the TRRP rule. The project Sampling and Analysis Plan (SAP) states that quality control percent recoveries of 70% to 130% indicate sufficient accuracy and a relative percent difference (RPD) of 30% indicates adequate precision. Therefore, these limits were used for comparison during this review for accuracy and precision. No data were qualified as part of this review (see Table 2).

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody. The samples were received in the appropriate containers. The chain-of-custody indicated three sample containers were provided; however, the laboratory received one container for each sample. The laboratory sample receipt checklist stated the samples were received at a temperature of 0.8°C. The samples reported in the data package were prepared and analyzed within holding times. pH is an immediate field test and was analyzed out of holding time and qualified by the laboratory.

Calibrations

According to the LRC, initial and continuing calibration data met EPA and SW-846 Method requirements for boron and sulfate.

Blanks

Boron and sulfate were reported as not-detected in the method blanks.

Laboratory Control Samples

Laboratory control samples (LCS) met the QC acceptance criteria for boron and sulfate.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples for boron and sulfate were analyzed on samples not associated with the project site and were not used for qualification purposes.

Post Digestion Spike and Serial Dilution

The serial dilution for boron was analyzed on a sample not associated with the project site and a post digestion spike was not analyzed.

Laboratory Duplicates

Laboratory duplicates were not analyzed as part of this data package.

Field Precision

Field duplicate samples were not analyzed as part of this data package.

Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the Limestone site.

References:

TCEQ. 2010. TRRP 13: Review and Reporting of COC Concentration Data. Texas Commission for Environmental Quality, Austin, Texas.

Environmental Resources Management (ERM). October 2017. Sampling and Analysis Plan. W.A. Parish Electric Generating Station, Thompsons, Texas.

Table 1 – Cross-Reference between Laboratory and Field Identifications

Laboratory Identification	Field Identification	Matrix Type
HS23050035-01	MW-01	Groundwater
HS23050035-02	MW-21	Groundwater
HS23050035-03	MW-28	Groundwater

Table 2 – Qualified Analytical Data

Field Identification	Analyte	Qualification	Reason for Qualification					
No data were qualified as part of this review.								
U – Not-detected								
J – Estimated data; the reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.								
UJ – The analyte was analyzed for but was not detected above the reported sample detection limit. The associated value is an estimate and may be inaccurate or imprecise.								
L – Bias in sample, likely to be low.								
H – Bias in sample likely to be	high.							

DATA USABILITY SUMMARY

Lori Burris of TRC Environmental Corporation (TRC) reviewed one (1) data package from ALS Global Laboratories (ALS) for the analysis of groundwater samples collected October 10, 2023, at the NRG Limestone Electric Generating Station (Limestone) in Jewett, Texas. Data were reviewed for conformance to the requirements of the guidance document, *Review and Reporting of COC Concentration Data* (RG-366/TRRP-13) (TCEQ 2010). Lori Burris verified that at the time the laboratory data were generated for the project, ALS was NELAC-accredited under the Texas Laboratory Accreditation Program for the matrices, analytes, and methods of analysis requested on the chain-of-custody documentation. ALS's National Environmental Laboratory Accreditation Program (NELAP) certification is included in the laboratory data package.

Intended Use of Data: To provide current data on concentrations of chemicals of concern (COCs) in the groundwater at the property. These data are used for compliance with the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ) Coal Combustion Residuals (CCR) detection monitoring programs. Data are also used for statistical analysis of potential statistically significant increases (SSI).

Analyses requested included:

- ♦ EPA 300.0 Inorganic Anions (Chloride and Sulfate) by ion chromatography;
- ♦ A4500-F C-11 Fluoride by ion selective electrode;
- SW-846 6020A Metals (Calcium, Boron and Sodium) by inductively coupled plasmamass spectrometry (ICP/MS); and
- SM2540C Total Dissolved Solids (TDS) by drying.

Data were reviewed and validated as described in *Review and Reporting of COC Concentration Data*, (RG-366/TRRP-13) and the results of the review/validation are discussed in this DUS.

The following laboratory submittals and field data were examined:

- the reportable data,
- the laboratory review checklists, and
- field sampling logs.

The results of supporting quality control (QC) analyses were summarized on the Laboratory Review Checklist (LRC) and Exception Report (ER) in the analytical report which was included in this review.

The LRC, associated ER, and reportable data included in this review are attached to this Data Usability Summary (DUS).

DATA REVIEW/VALIDATION RESULTS

Introduction

Ten (10) groundwater samples, one (1) duplicate groundwater sample and one (1) field blank were analyzed for chloride, sulfate, fluoride, calcium, boron, and TDS. In addition, groundwater sample MW-21 was also analyzed for sodium. Table 1 lists the field identifications cross-referenced to laboratory identifications.

Analytical Results

The data package contains a minimum of one (1) quality control batch per analytical method analyzed. The quality control batch identifies the laboratory QC samples that correspond to the designated field samples. Not-detected results are reported as less than the value of the sample detection limit (SDL) as defined by the TRRP rule. The project Sampling and Analysis Plan (SAP) states that quality control percent recoveries of 70% to 130% indicate sufficient accuracy and a relative percent difference (RPD) of 30% indicates adequate precision. Therefore, these limits were used for comparison during this review for accuracy and precision. Data qualified as part of this review are shown in Table 2.

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody. The samples were received in the appropriate containers with the paperwork filled out properly, except for MW-28R being listed as MW-28 on the chain-of-custody. The laboratory sample receipt checklist stated the samples were received at a temperature of 5.8°C. Samples reported in the data package were prepared and analyzed within holding times.

Calibrations

According to the LRC, initial and continuing calibration data met EPA, Standard Method (SM) and SW-846 Method requirements for chloride, sulfate, fluoride and TDS. Metals continuing calibration blanks (CCBs) had detections of boron, calcium and sodium. Associated sample MW-19 was qualified as estimated (J) for boron due to CCB contamination.

Blanks

Chloride, sulfate, fluoride, and TDS were reported as not-detected in the method blanks. Metals method blank was reported as estimated detected for calcium (0.0628J mg/L) and sodium (0.02461J mg/L). Associated samples were reported as greater than 2X the method blank concentrations for calcium and sodium; therefore, no data were qualified.

One field blank (Field Blank-01) was collected and analyzed as part of this data package. Estimated detections of calcium (2.65 mg/L) and TDS (108 mg/L) were identified in the field blank (Field Blank-01). Associated sample MW-17 was reported for TDS less than 2X the field blank concentration and was qualified as estimated (J), due to field blank contamination.

Laboratory Control Samples

Laboratory control samples (LCS) met the QC acceptance criteria for chloride, sulfate, fluoride, metals and TDS.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples for fluoride batch R385587 analyzed on sample MW-02 was within QC acceptance criteria. Sulfate batch R449362 and Fluoride batch R385616 MS/MSDs were analyzed on samples not associated with the project site and were not evaluated. MS/MSD analysis is not a requirement of TDS method SM2540C.

Metals batch 201988 MS/MSD analyzed on site sample MW-02 had sodium recovery outside acceptance criteria. However, the amount of sodium spiked was less than 4X the unspiked parent sample and may not represent the matrix effect; therefore, this MS/MSD was not used for qualification purposes.

Chloride/sulfate batch R449292 MS/MSD analyzed on site sample MW-02 had low sulfate recovery. Sample MW-02 was qualified as estimated low (JL) for sulfate, due to low MS/MSD recovery.

Post Digestion Spike and Serial Dilution

The metals post digestion spike (PDS) and serial dilution analyzed on site sample MW-02 was within laboratory acceptance criteria.

Laboratory Duplicates

Laboratory duplicate for TDS analyzed on site samples MW-02 and MW-28R were within QC acceptance criteria.

Field Precision

One (1) field duplicate sample was included in this data package (MW-19/Field Duplicate-01). Both sample and duplicate, MW-19/Field Duplicate-01, were reported as detected for boron, calcium, chloride, sulfate, fluoride and TDS. The relative percent difference (RPD) between sample and duplicate was within the QC acceptance criteria of 30% for calcium, chloride, sulfate, fluoride and TDS. Samples MW-19 and Field Duplicate-1 were qualified as estimated (J) for boron, due to sample/precision outside acceptance criteria.

Sample/duplicate precision calculations are included in Table 3.

Summary

The groundwater analytical data are usable for the purpose of determining current concentrations of COCs in this medium at the Limestone site.

The data user is advised that sample MW-19 was qualified as estimated (J) for boron due to CCB contamination. Associated sample MW-17 was reported for TDS less than 2X the field blank concentration and was qualified as estimated (J), due to field blank contamination. Sample MW-02 was qualified as estimated low (JL) for sulfate, due to low MS/MSD recovery. Samples MW-19 and Field Duplicate-1 were qualified as estimated (J) for boron, due to sample/precision outside acceptance criteria.

References:

TCEQ. 2010. TRRP 13: Review and Reporting of COC Concentration Data. Texas Commission for Environmental Quality, Austin, Texas.

Environmental Resources Management (ERM). October 2017. Sampling and Analysis Plan. W.A. Parish Electric Generating Station, Thompsons, Texas.

Table 1 – Cross-Reference between Laboratory and Field Identifications

Laboratory Identification	Field Identification	Matrix Type
HS23100630-01	MW-01	Groundwater
HS23100630-02	MW-02	Groundwater
HS23100630-03	MW-17	Groundwater
HS23100630-04	MW-18	Groundwater
HS23100630-05	MW-19	Groundwater
HS23100630-06	MW-20	Groundwater
HS23100630-07	MW-21	Groundwater
HS23100630-08	MW-22	Groundwater
HS23100630-09	MW-27R	Groundwater
HS23100630-10	MW-28R	Groundwater
HS23100630-11	Field Blank-01	Water
HS23100630-12	Field Duplicate-01	Groundwater

Table 2 – Qualified Analytical Data

Field Identification	Analyte	Qualification	Reason for Qualification
MW-19	Boron	J	CCB contamination and sample/duplicate precision oustide acceptance criteria.
MW-17	TDS	J	Field blank contamination.
MW-02	Sulfate	JL	Low MS/MSD recovery.
Field Duplicate-01	Boron	J	Sample/duplicate precision oustide acceptance criteria.
II Not detected			

U - Not-detected

J – Estimated data; the reported quantitation limit or sample concentration is approximated due to exceedance of one or more QC requirements.

UJ – The analyte was analyzed for but was not detected above the reported sample detection limit. The associated value is an estimate and may be inaccurate or imprecise.

L - Bias in sample, likely to be low.

H - Bias in sample likely to be high.

Table 3 – Field Precision

Field Identification	Analyte	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD ^a	Qualified
MW-19/Field Duplicate-01	Boron	0.0335	0.0166J	68	Х
Daphoato er	Calcium	31.4	34.0	8	А
	Chloride	36.9	36.8	0	А
	Sulfate	96.7	96.7	0	А
	TDS	308	292	5	А
	Fluoride	0.060	0.058	3	А

^a RPD = ((SR - DR)*200)/(SR + DR)

A - Acceptable Data. A* - Acceptable Data where results were less than 5X the MQL and the difference between sample and duplicate was less than 2X the MQL.

X – Outside the TRRP-13/SAP acceptance criteria of 30% RPD.

J – Estimated detected.

U - Not-detected.

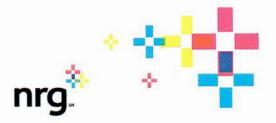
Appendix D Alternative Source Demonstrations

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: <u>February 27, 2023</u> Facility Name: <u>NRG-Limestone Generating Station</u> Permit or Registration No.: <u>CCR 115</u> Nature of Correspondence:

Initial/New

Response/Revision to TCEQ Tracking No.: _____ (from subject line of TCEQ letter regarding initial submission)


Affix this cover sheet to the front of your submission to the Waste Permits Division. Check appropriate box for type of correspondence. Contact WPD at (512) 239-2335 if you have questions regarding this form.

Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
🗌 Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
Transfer/Name Change Modification	Liner Evaluation Report
Temporary Authorization	Soil Boring Plan
Uvoluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	

Table 1 - Municipal Solid Waste Correspondence

Table 2 - Industrial & Hazardous Waste Correspondence

Applications	Reports and Responses
New	Annual/Biennial Site Activity Report
Renewal	CPT Plan/Result
Post-Closure Order	Closure Certification/Report
🗌 Major Amendment	Construction Certification/Report
Minor Amendment	CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	Interim Status Change
Class 3 Modification	Interim Status Closure Plan
Class 2 Modification	Soil Core Monitoring Report
Class 1 ED Modification	Treatability Study
Class 1 Modification	Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	Other:
335.6 Notification	
Other:	

NRG Texas Power LLC 910 Louisiana St. Houston, TX 77002

February 24, 2023

Ms. Gulay Aki, P.E. Section Manager Industrial and Hazardous Waste Permits Section – MC-130 Texas Commission on Environmental Quality PO Box 13087 Austin, Texas 78711-3087

Subject: CCR ASDs for SWMU Landfill 001, APH Preheater Pond 021, and FDG Emergency Pond 020 NRG Texas W.A Parish Electric Generating Station Industrial Solid Waste Registration No. 31631 EPA Identification No. TXD097311849 RN10088312/CN603207218, CCR RN 108

Transmitted via email CCRNotify@tceq.texas.gov

Dear Ms. Aki,

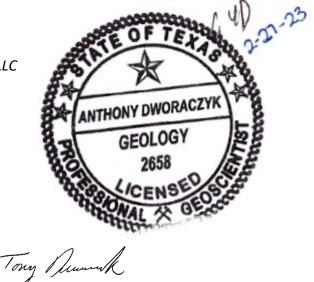
Please find enclosed the Alternate Source Demonstrations (ASDS) for the NRG Texas W.A. Parish Electric Generating Station SWMU Landfill 001, Air Preheater Pond 021, and FDG Emergency Pond 020.

Please do not hesitate to contact me at <u>craig.eckberg@nrg.com</u> or Mr. Carl Burch of my staff at <u>carl.burch@nrg.com</u> or phone at 281-271-9664 if you need additional information or wish to discuss the ASDS.

Sincerely, C.R.&

Craig Eckberg Sr. Director, Environmental Services NRG Energy, South Region

Cc: Tony Dworaczyk, PG (TRC Project Manager) Carl Burch (NRG Senior Manager) Robert Been (NRG Sr. Environmental Specialist, W.A. Parish)


Alternative Source Demonstration

Limestone Electric Generating Station Landfill (Unit 004)

New Coal Combustion Residuals (CCR) Registration No. CCR115 Industrial Solid Waste Registration No. 32490 EPA Identification No. TXD000837336 RN100542927/CN603207218

February 2023

Prepared For NRG Texas Power, LLC Jewett, Texas

Gregory E. Tieman, L.R.S. Senior Client Service Manager

Tony Dworaczyk, P.G. Project Manager

TRC Environmental Corporation | NRG Texas Power, LLC Alternate Source Demonstration, Limestone, Landfill (Unit 004)

S:\NRG\LIMESTONE\2022\CCR\ASDS\FEBRUARY 2023\LMS LANDFILL ASD 2-3-23_GET.DOCX

Table of Contents

Executive Su	mmaryi	i
Section 1 Int	roduction1-	L
1.1	Background1-	L
	1.1.1 Groundwater Monitoring Program1-:	L
1.2	Purpose1-2	2
Section 2 Site	e Geology and Hydrogeology2-2	L
2.1	Hydrogeology2-2	L
2.2	Surrounding Area2-:	L
	2.2.1 Oil and Gas Production Wells2-	L
	2.2.2 Lignite Mine	2
	2.2.3 Lignite/Shale Seams in Monitoring Wells2-3	3
2.3	Groundwater Geochemistry and Boron in Groundwater2-3	3
Section 3 Alt	ernative Source Demonstration3-	L
Section 4 Co	nclusions4-	L
Section 5 Ref	ferences5-:	L

List of Figures

Figure 1	Site Map
Figure 2	Potentiometric Flow Map – October 2022
Figure 3	METGCD Well Map

Attachments

Attachment 1 Boring Logs

Executive Summary

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. Units managing coal combustion residuals (CCR) at the Station are subject to the requirements of 30 Texas Administrative Code (TAC) Chapter 352. CCR generated at the Station consists of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge. The Station has one active CCR unit, the Landfill (Unit 004), that is managed pursuant to 30 TAC Chapter 352, which is the subject of this Alternative Source Demonstration (ASD).

The 11th semi-annual groundwater detection monitoring event was conducted on October 5, 2022. Statistical evaluation of the Appendix III monitoring parameters was performed within 60 days of sample collection to identify apparent statistically significant increases (SSIs) above background pursuant to 30 TAC 352 Subpart H. One apparent SSI: boron; was identified. TRC, on behalf of NRG notified the Texas Commission on Environmental Quality (TCEQ) of its intent to prepare an ASD on December 16, 2022.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the second half 2019 (July) through the second half 2021 (April). The October 2022 semi-annual detection monitoring event analytical results are the second data set statistically evaluated using the new background water quality data set.

This ASD successfully identified alternative sources for the apparent SSI at the Landfill, based on the following lines of reasoning:

- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, electrical conductivity (EC), and/or salinity.

Therefore, NRG will continue performing semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.

Section 1 Introduction

1.1 Background

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. The Station is bisected by Farm-to-Market Road 39 (FM 39), which runs north-south through the middle of the Station. The western portion of the Station is located in Limestone County and includes the electricity generating portion of the Station. The eastern portion of the Station is located in Freestone County and includes the solid waste disposal area (SWDA).

Management of coal combustion residuals (CCR) at the Station is performed pursuant to 30 Texas Administrative Code (TAC) Chapter 352, which became effective during June 2021. Prior to this, management of CCR was performed pursuant to the United States Environmental Protection Agency (USEPA) final rule for the regulation and management of CCR under the Resource Conservation and Recovery Act (RCRA) Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) (CCR Rule, effective date October 17, 2015). CCR generated at the Station consist of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge, which have been classified by the TCEQ as Class II nonhazardous waste. The Station has one active CCR-management unit – Landfill (Unit 004).

The Landfill is located within the eastern portion of the Station as shown on Figure 1. The Landfill was constructed in 1980 and is used for the final disposition of CCR. The western half of the Landfill has reached capacity and historically had been closed and capped prior to the effective date of the CCR Rule (October 19, 2015). CCR is currently being placed at the southern part of the eastern portion of the Landfill.

1.1.1 Groundwater Monitoring Program

The certified CCR monitoring well network for the Landfill consists of two upgradient background monitoring wells (MW-27R and MW-28) and eight downgradient monitoring wells (MW-1, MW-2, MW-17, MW-18, MW-19, MW-20, MW-21, and MW-22). A groundwater potentiometric surface map was prepared by TRC for the October 2022 semiannual detection monitoring event and is provided in this ASD as Figure 2. The direction of groundwater flow beneath the Landfill was to the south - southwest.

On behalf of NRG, Environmental Resources Management, Inc. (ERM) conducted eight independent background groundwater detection monitoring events for both the Appendix III and IV CCR constituents between April 2015 and August 2017 per §257.94(b) of the federal CCR Rule and the first semi-annual detection monitoring event in October 2017. Results of the eight background and first semi-annual

detection monitoring events were documented in the *Annual Groundwater Monitoring Report, Landfill* (Unit 004) (ERM 2018a) pursuant to §257.90(e).

The Station has continued to conduct semi-annual detection monitoring at the Landfill per the federal CCR Rule and 30 TAC Chapter 352. As of the October 2022 sampling event, a total of 11 semi-annual detection monitoring events have now been performed. Following each semi-annual detection monitoring sampling event, the results have been evaluated for potential SSIs, and ASDs have been prepared as needed. Since implementation of 30 TAC Chapter 352, the ASDs have been submitted to TCEQ for review and approval. The semi-annual detection monitoring activities and ASDs have been included in the Annual Groundwater Monitoring and Corrective Action reports, which have been placed into the Facility Operating Record (FOR) and posted to NRG's publicly accessible website.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the third half 2019 (July) through the second half 2021 (April). The October 2022 semi-annual detection monitoring event analytical results, including the November 22, 2022 verification sampling results, are the third data set statistically evaluated using the new background water quality data set.

1.2 Purpose

TRC prepared this ASD to evaluate one apparent SSI above background levels for the 11th semi-annual detection monitoring event in accordance with 30 TAC Chapter 352.

Section 2 Site Geology and Hydrogeology

This section provides information about the geology and hydrogeology of the Station and the area at and surrounding the Landfill.

2.1 Hydrogeology

Based on the *Geologic Atlas of Texas, Waco Sheet* (BEG 1972), the Station is primarily located within the outcrop of the Calvert Bluff Formation of the Wilcox Group. Minor portions of the southeast corner of the Station are located within the outcrop of the Carrizo Sand and minor portions of the southwest corner of the Station are immediately underlain by alluvium. The Calvert Bluff Formation underlies both the Carrizo Sand and alluvium where present.

The Landfill is located solely within the outcrop of the Calvert Bluff Formation (BEG 1972); however, site investigation data indicate the Landfill may also be located within the outcrop of the Carrizo Sand. The Calvert Bluff Formation consists mostly of mudstone interbedded with fine sandstone, lignite, and ironstone concretions. The mudstone contains silt and very fine sand laminae. The Carrizo Sand consists of very fine sand with partings of silty clay, carbonaceous clay, and ironstone. The Carrizo Sand and the Wilcox Group comprise the Carrizo-Wilcox aquifer, which is recognized by the Texas Water Development Board (TWDB) as a major aquifer system in Texas. The Station is located within the outcrop, or the recharge zone, of the Carrizo-Wilcox aquifer (TWDB 2011).

Site investigations were conducted at the Station by Espey, Huston & Associated in 1986; Radian International in 1996 and 1997; EPRI in 2007, and Environmental Resources Management, Inc. (ERM) in 2016. The results of these investigations were summarized in the October 2017 *Ground Water Monitoring Networks for Coal Combustion Residual (CCR) Rule Compliance* report (ERM 2017b). Surficial material at the Landfill consists of in-situ or reworked clay from the Axtell-Tabor soil association. This clay is the source material for the Landfill liner and cap. Boring logs indicate the surficial material is underlain by interbedded clays, silts, and sands of the Quaternary alluvium, Carrizo Sand, and Calvert Bluff Formation. The boundaries between these units are generally indistinguishable.

2.2 Surrounding Area

2.2.1 Oil and Gas Production Wells

The Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of the installation and operation of natural gas production wells. Numerous active natural gas wells and their associated well pads, surface pits, subsurface pipelines, and

infrastructure are located immediately surrounding and within the footprint of the Landfill. Figure 3 is a Mid-East Texas Groundwater Conservation District (METGCD) well map showing the locations of wells in the vicinity of the Landfill. The map is limited to Freestone and Leon counties and does not show wells in Limestone County immediately west of the Landfill. This figure demonstrates the extent to which non-CCR sources of constituents to groundwater pervade the vicinity of the Landfill.

Surface well pits typically contain spent completion fluids or workover fluids. Completion or workover fluids are often brine-containing liquids that are used for well testing and are chemically compatible with the formation fluids; and the spent fluids contained in the pits would have come into contact with formation fluids. According to the United States Geological Survey (USGS) National Produced Waters Geochemical Database, water co-produced with hydrocarbons (referred to as "produced water" or "formation water") from geologic formations underlying the Site has the following composition (USGS 2018):

- pH ranging from 4.67 standard units (SU) to 5.6 SU;
- Calcium ranging from 12,560 milligrams per liter (mg/L) to 33,520 mg/L;
- Chloride ranging from 56,980 mg/L to 96,200 mg/L;
- Sulfate ranging from 480 mg/L to 1,790 mg/L; and
- Total dissolved solids (TDS) ranging from 98,330 mg/L to 152,970 mg/L.

Considering the composition of the formation water with which the completion or workover fluids came into contact and the typical brine composition of these fluids, potential releases of these fluids would be expected to affect groundwater quality within the immediate vicinity and downgradient of the natural gas well pads and surface pits. Even minor releases of these fluids could increase the concentrations of calcium, chloride, sulfate, and TDS and decrease the pH in the nearby Landfill upgradient and downgradient monitoring wells.

2.2.2 Lignite Mine

Approximately 1.5 miles south of the Landfill is the Jewett lignite mine. The Jewett Mine is a 35,000-acre surface-mine complex. The mine, which is one of the largest in Texas, produced about 5.3 million short tons of lignite per year, according to the U.S. Department of Energy (USDOE). The 31-year-old mine provided lignite for combustion at the Station. In 2018, NRG decided to close the mine and is in the process of performing reclamation.

In 2020, the Jewett Mine had four final pits containing water ranging from approximately 340 million to 1.5 billion gallons. The estimated volumes remaining in the pits in 2020 were as follows:

- E-South Final Pit: 342,000,000 gallons;
- RP-D9 Final Pit: 403,000,000 gallons;

- B-North Final Pit: 375,000,000 gallons; and
- BX Final Pit: 1,290,000,000 gallons.

The pits can have depths greater than 100 feet. The groundwater potentiometric surface is generally understood to be above the bottom of the pits. Multiple seams of lignite at varying depths below the ground surface were removed from these pits during mining.

According to the U.S Department of Energy, Office of Scientific and Technical Information, *Trace elements in Texas Lignite*, 1983, during coal mining and utilization, trace elements are released into the environment. Certain of these elements may have beneficial or neutral effects while other trace elements are potentially harmful. On a national basis, nine of these elements: antimony, arsenic, boron, cadmium, germanium, mercury, molybdenum, selenium, and silver; are commonly found in concentrations greater than the levels present in typical crustal rocks. Because of the conditions under which Gulf Coast lignites were deposited and the nature of lignites in general, the modes of occurrence and concentrations of trace elements in Texas lignites are different from coals found elsewhere in the United States. Based on a limited data set of 38 lignite samples from Arkansas, Mississippi, and Alabama compiled in 1975, Gulf Coast lignites were identified as having higher levels of boron, lanthanum, lead, selenium, uranium, yttrium, and zirconium than other US coal regions.

2.2.3 Lignite/Shale Seams in Monitoring Wells

A review of the boring logs for the Landfill monitoring network identified lignite seams and shale starting at around 37 feet below ground surface (bgs) in some of the borings. As noted on the boring logs in Attachment 1, monitor wells were completed across these lignite and shale seams. Although lignite seams and shale are not noted in all of the borings for the monitoring network, the presences of these minerals in the subsurface would have an effect on groundwater quality for the region.

As noted above, lignite contains trace elements that are released into the environment, which include boron. As presented in the Geological Survey Bulletin 1314-A, *Geochemical Investigations of Some Black Shales and Associated Rocks*, trace elements of *boron*, barium, gallium, and strontium are found in the upper cretaceous shales of Texas. The following section discusses the geochemistry of the groundwater in the area.

2.3 Groundwater Geochemistry and Boron in Groundwater

Boron is normally considered to be a minor constituent in groundwater since it is generally present in low concentrations (Palmucci & Rusi, 2014). Apart from a potential boron source area, the primary origin of boron in groundwater is typically associated with the processes of sorption and desorption from mineral surfaces including soil and bedrock (Ravenscroft & McArthur, 2004). Boron is often cited as a contaminant trace chemical and usually occurs as a non-ionized form as H_3BO_3 in soils at pH <8.5, but above this pH, it exists as an anion, $B(OH)_4^-$ (Upadhyaya et al., 2014).

The factors that may influence the concentration of boron in groundwater include weathering, human activity, evaporative concentration, ion-exchange, EC, and pH. Ravenscroft & McArthur (2004) investigated the mechanism of regional boron enrichment in groundwater and the results indicated that the main process resulting in boron enrichment in groundwater was flushing by fresh groundwater. The desorption of boron from mineral surfaces could be affected by pH, ionic strength, salinity, and the HCO₃/CO₃ ratio. Decreases in pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH in rocks, soils, and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

Additional investigations confirmed that the presence of boron in groundwater depends on the EC (salinity), such that the concentration of boron increases with increasing EC. Halim et al. (2010) reported that the increae in Cl⁻ contributes to an increase in EC value since a strong linear correlation ($R^2 = 0.88$) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between elevated concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO₄²⁻/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) determined that the concentration of boron in groundwater was related to SO₄²⁻ and the age affect.

Regarding concentrations of boron in groundwater at the Landfill, the source of boron is more likely natural rather than anthropogenic. Therefore, the increase in concentration of boron at MW-21 can be related to natural variations in groundwater geochemistry related to pH, ion exchanges, EC, and salinity.

Section 3 Alternative Source Demonstration

The 11th semi-annual detection monitoring event was conducted on October 5, 2022 per 30 TAC Chapter 352. Statistical evaluation of the results (comparison of downgradient monitoring results to 95 percent confidence/95 percent coverage upper tolerance limits [UTLs]) was performed within 60 days of sample collection to identify apparent SSIs above background pursuant to 30 TAC 352, Subpart H. One apparent SSI was identified: boron.

The UTLs and sampling results for the for the apparent SSI are provided in Table 1 below.

ANALYTE	WELL	LTL	UTL	SAMPLE DATE	VALUE	UNIT
Boron	MW-21 (DG)	NA	0.44	10/05/2022	1.48	mg/L

Table 1 SSI – April 2022 Semi-annual Detection Monitoring Event

Notes: DG = Downgradient mg/L = milligrams per Liter

Alternative sources for the apparent SSI encompass a range of apparent lines of reasoning and include the following non-CCR sources located in the vicinity of the Landfill:

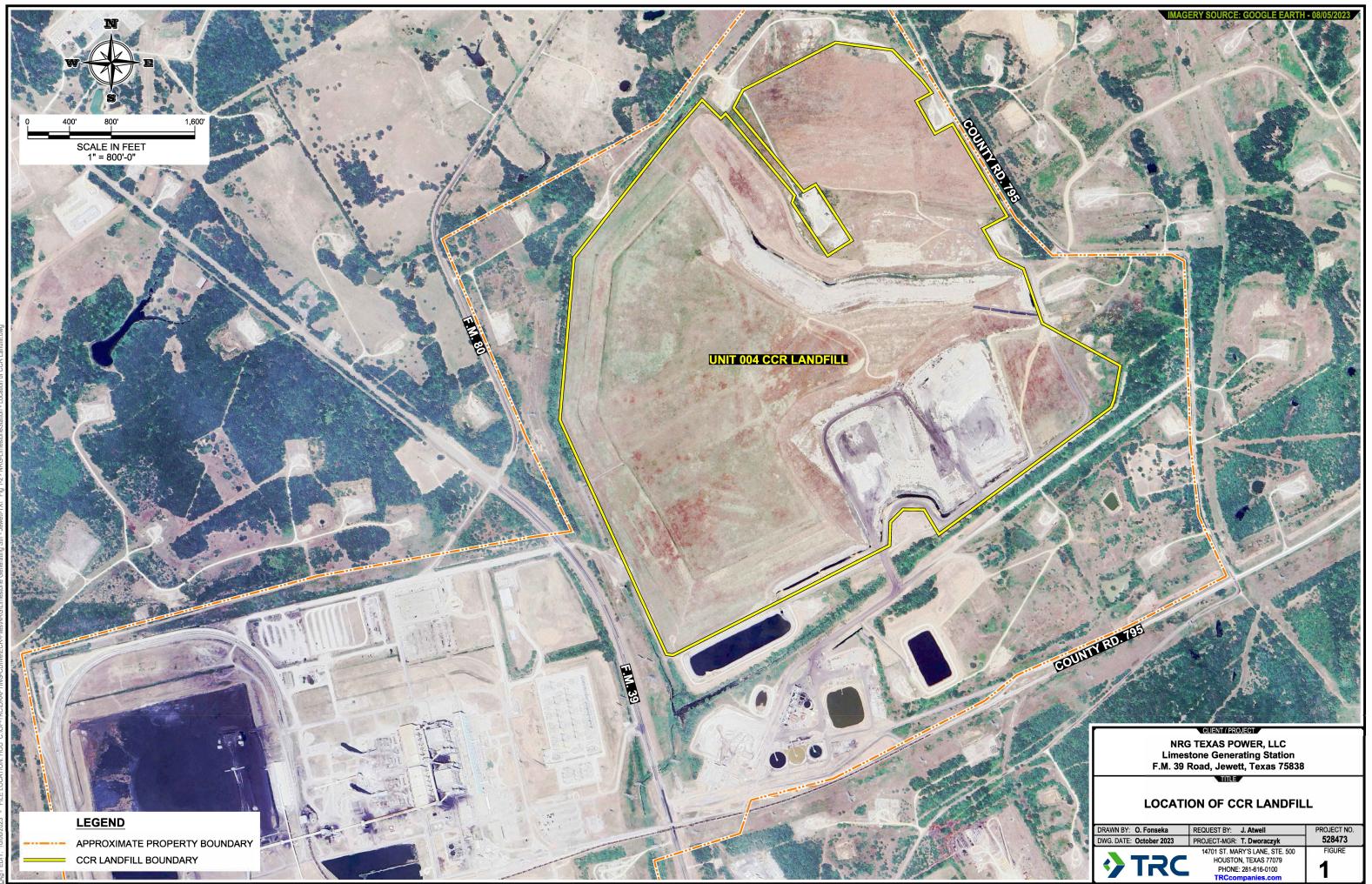
- As presented in Section 2, the Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of natural gas production wells;
- Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
- A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality and pH of groundwater over a long period of time.

Acidity is transported from a mine in groundwater or by surface water runoff that can then infiltrate into groundwater. Through migration, such groundwater can impact groundwater quality at and in the vicinity of the Landfill. During the course of historical detection monitoring at the Landfill, the pH of groundwater at MW-21 has remained within the range of 5.0 to 5.6 S.U. As discussed in Section 2.2, low pH (< 6) conditions are favorable for the dissolution of boron from mineral surfaces in the soil and bedrock.

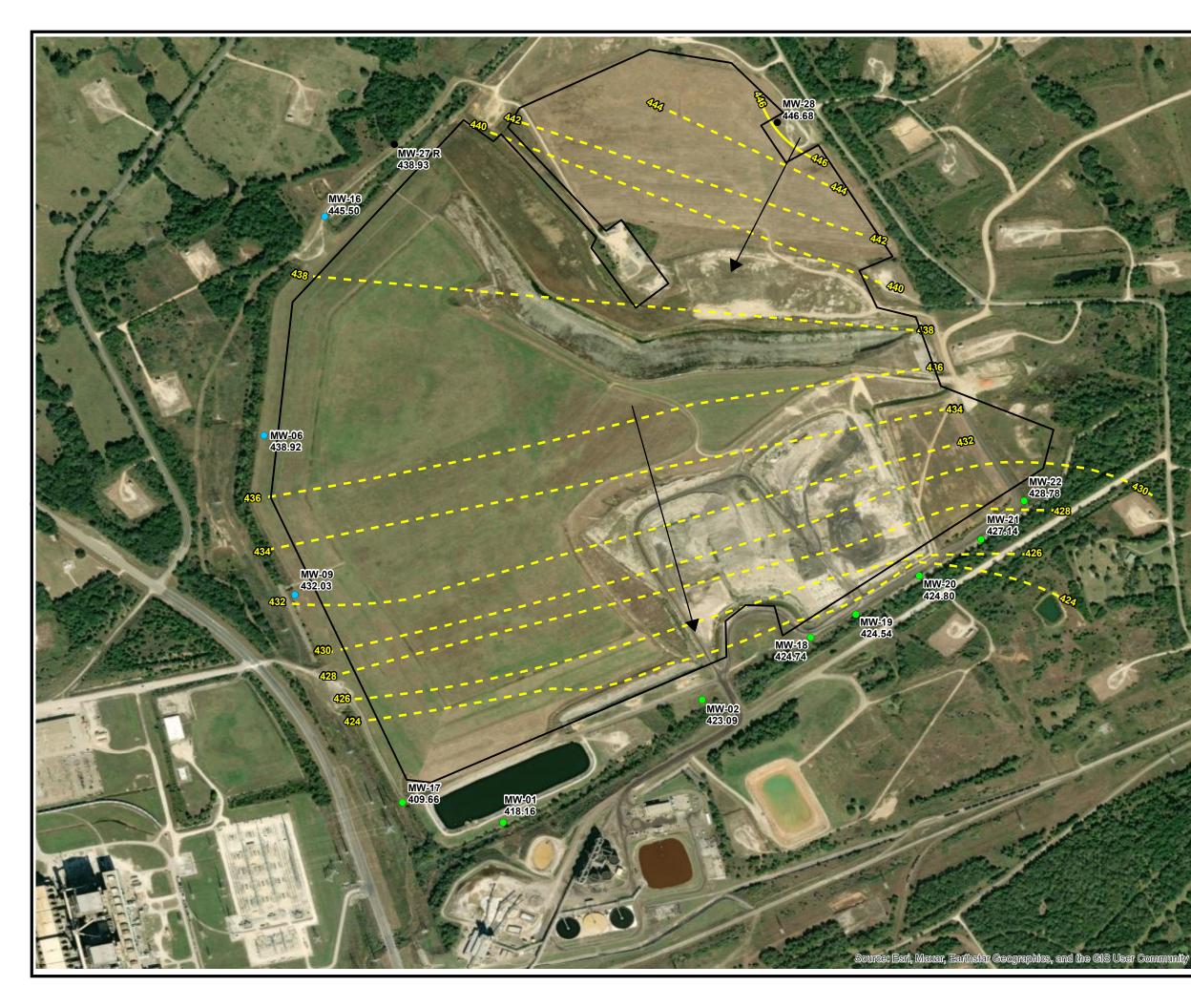
In summary, the apparent boron SSI in MW-21 for the 11th semi-annual detection monitoring event is most likely related to other non-CCR off-site sources (oil and gas activities or the historic lignite mine), the apparent presence of lignite seams withing the screened portion of monitor wells, or natural variations in groundwater geochemistry (acidic pH conditions) rather than a release to groundwater from the Landfill.

Section 4 Conclusions

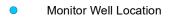
Based on statistical evaluation of the October 5, 2022 semi-annual detection monitoring event analytical results, one apparent SSI: boron; was identified for the Landfill. This ASD has identified the following lines of reasoning that support alternative sources for the apparent SSI:


- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, EC, and/or salinity.

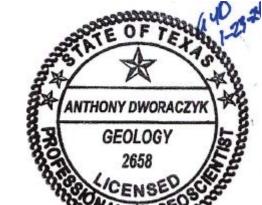
Therefore, based on the lines of reasoning presented in this ASD, alternative sources and/or natural variations in groundwater geochemistry, rather than a release from the Landfill have been demonstrated to be responsible for the apparent SSI observed. Based on this successful ASD, NRG will continue semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.

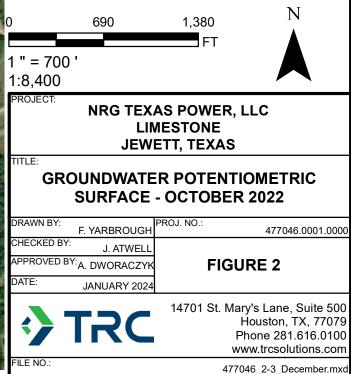

- BEG 1972. *Geologic Atlas of Texas, Waco Sheet*. The University of Texas at Austin, Bureau of Economic Geology. Reprinted 1972.
- Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K., 2010. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: Spatial variability on arsenic and boron enrichment. *Journal of Hazardous Materials*, 180(1–3), 50–62. <u>https://doi.org/10.1016/J.JHAZMAT.2010.01.008</u>.
- Hollis, J. F., Keren, R., & Gal, M., 1988. Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. *Journal of Environmental Quality*, *17*(2), 181–184. <u>https://doi.org/10.2134/JEQ1988.00472425001700020002X</u>.
- Keren, R., & Communar, G., 2009. Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. *Soil Science Society of America Journal*, 73(6), 2021–2025. <u>https://doi.org/10.2136/SSSAJ2008.0381</u>.
- Mid-East Texas Groundwater Conservation District (METGCD), 2019. GIS Data Portal. Available at: <u>https://metgcd.halff.com/Map/Public</u>. Accessed July 2, 2019.
- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. *Environmental Earth Sciences*, 72(12), 5139–5157. <u>https://doi.org/10.1007/s12665-014-3384-5</u>.
- Ravenscroft, P., & McArthur, J. M., 2004. Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. *Applied Geochemistry*, *19*(9), 1413–1430. <u>https://doi.org/10.1016/J.APGEOCHEM.2003.10.014</u>.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T., 2014. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. *Science of The Total Environment*, 473–474, 244–253. <u>https://doi.org/10.1016/J.SCITOTENV.2013.12.029</u>.
- TRC 2018b. Statistical Methods Certification Limestone Electric Generating Station. TRC, August 2018.
- TRC 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2019.
- TRC 2019b. Technical Memorandum on Laboratory Quality Issues. TRC, April 24, 2019.
- TRC 2019c. Technical Memorandum on Laboratory Change for CCR Sampling Events. TRC, July 19, 2019.
- TWDB, 1990. *Aquifers of Texas*. Texas Water Development Board Report 380. Peter George, et al. July 2011.

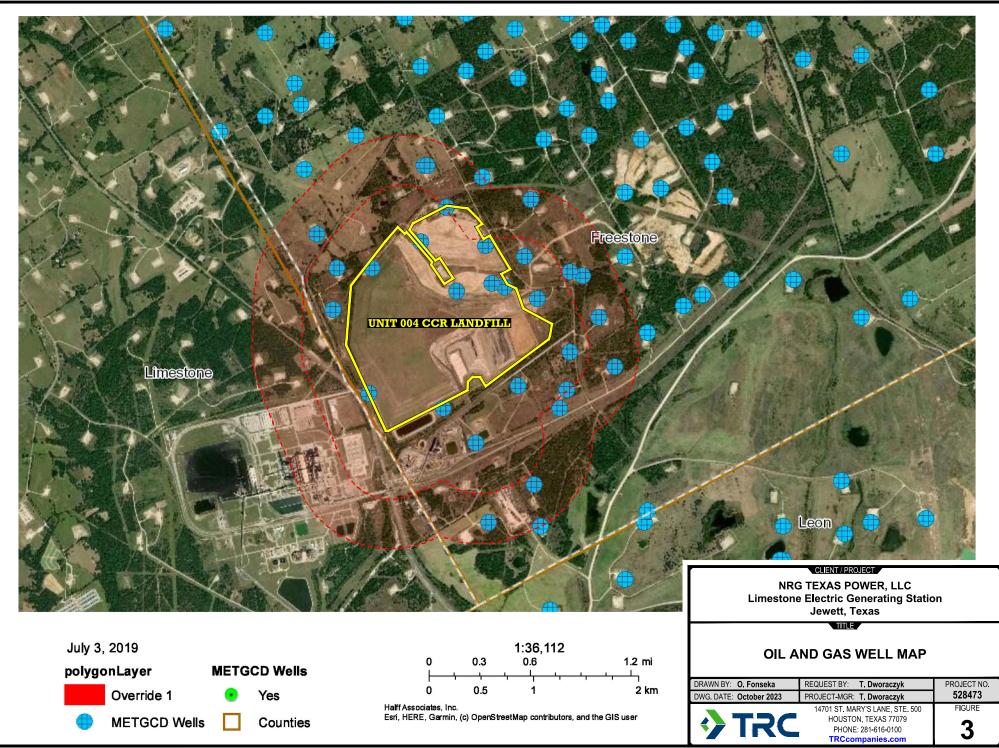
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H., 2014. Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. *Environmental Science and Pollution Research*, *21*(5), 3880–3890. <u>https://doi.org/10.1007/s11356-013-2376-4</u>.
- United States Department of Energy, Office of Scientific and Technical Information, 1983. Trace elements in Texas Lignite.
- United States Environmental Protection Agency, 2008. Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0. https://www.epa.gov/environmental-topics/water-topics.
- United States Geological Survey, 2018. National Produced Waters Geochemical Database, USGS IDs 99922 through 99929. United State Geological Survey. Accessed on July 16, 2018.


Figures

DRAWING By: Oskar Fonseka - FILE NAME: Fig 1-2 - NRG-LimestoneStation - Location of CCR Landfill.dwg


LEGEND


- Landfill CCR Monitor Well
- Landfill Background CCR Monitor Well
- 446.68 Groundwater Elevation (FT MSL)
- NM Not Measured
 - Groundwater Flow Direction


Groundwater Elevation Contour - Dashed where Inferred (FT MSL)

CCR Landfill Boundary

NOTE: GROUNDWATER ELEVATIONS MEASURED BY HMI ON JANUARY 25, 2021

FILE NAME: Fig 3 - NRG-LimestoneStn - Oil and Gas Well Map.dwg

Attachments

Attachment 1 Boring Logs

DRIL	LING I	OG H	OLE.NO.	-1	PROJECT NO.	0754	HOLE			- 1	OF	1
OCATIO					PROJECT/SITE	8754			SHEE	т_1_	OF	<u>_</u>
		stone Ele	ctric Generating	Station	GEO/ENG.	Hous	ton Lie	ghtii	ng É F	Power		
ROUND	±418.	06'	DRILL ANGLE 0°			Clyde	e Smit	h				
OLLAR	None		DRILL DIRECTION Ve	ertical	CONTRACTOR	Reed	E Mo	rris				
OTAL	60'		STARTED	/86	DRILLER	Ray	Reed	-		n		
LEV. ATUM	Surfa	ce	COMPLETED 10/1	/86	RIG	CFD-	1	HO	a state of the local state of the	Rotar	y .	
		DEPTH	DATE	TIME	HOLE DIAMETER	5"				H ₂ O		1
RST FREE					TESTS		SAN	IPLE	S	COM	PLETION	1
	TER LEVEL											
TATIC WAT	TERLEVEL	4.88	10/7/86	1635	I L			-				
ELEV.	DEPTH	LEGEND	CLASSIFIC	CATION/DESC	RIPTION	REC	DV. SAMI	PLES	DR	ILLING F	REMARKS	
			Brown sand and o	lay				-				
	5 _											
	EI		Light gray, fine g	rained san	d with minor	1						
	10		amounts gray o	lay and iro	nstone							
							1					
	15-				2 ³		1					
	-			,	•							
	, T											
	20											
	E		Gray silty clay	ŦĸŎĬŢŶĂĬĬĸĹĬĬĊŎĬŦŎĸĬŔĊĬĊĊţĸŢĊŢŢŎŢŎŎĬŎĬĬĬĬŎ		1						
	25											
	_											
	30											
ŝ,	+		Intoub c d d = d l			1						
	=		Interbedded brow clay	n to tan sai	nd and gray							
	35		5.07									
	Ξ											
	40		- very lignitic	39-41'	· ·							
	_					1				÷		
	45			ill faftere men ger nynge tiger der er en ander								
	1		Fine gray sand wi	th thin inte	erbeds of grav							
	· =		clay		5-7							
	50		-									
	7											
	55-		Gray clay	n Brannan an Annan an Anna <u>Ang</u> arga	ŦŦŢŦŎŎĊĸĸĸĊŎĿŎĬĬŎŦĨĊĿŎŢĸŢĨŢĔĸŎŢŎſŦŎĊIJŎĬĸŢĨŢġĸĸĸĸġĿĿĿŎĬĬ	1	1.0					
	Ē						1					
	60											
	° =		T.D. at 60'					-			an a su a compression a constant	
	-	-				1						
										24H(App1		

WELL COMPLE	TION REC	CORD
JOB NO. 8754 WELL NO. MW1	GEOLOGIST	Clyde Smith
CLIENT HL&P		Reed & Morris
TOP OF CASING ELEVATION FT.	Ĩ	STICK-UP_3.0 FT.
		GROUND SURFACE
)N	
DETAILS OF CONSTRUCTION	NN -	MATERIALS
Date Completed 10/1/86	NИ	CEMENT (sks) 12
Hole Diameter (in) 77/8	NN -	SAND (ft ³)8
Screen Size (in)	NN	PVC (ft)38.5
Screen Length (ft)20	3N	
Casing Size (in)4	NN	
Packer Depth (ft)Bentonite 33-30.5	NN	
Centralizer Depths (ft) <u>54</u> , <u>34</u> , <u>15</u> ,	JN	
······································		
Completion Technique	NN -	
1) Sand Placement Method Tremie	38	
2)Grout Placement Method	NN	TOP OF BENTONITE PACK <u>30,5</u> FT.
Tremie		TOP OF SAND PACK <u>33</u> FT.
Description of Potential Problems With Well: None		TOP OF SCREEN 35.5 FT.
-		· · · · · · · · · · · · · · · · · · ·
	D	BOTTOM OF SCREEN <u>55.5</u> FT.
t		BOTTOM OF HOLE <u>56</u> FT.

NOTE: ALL DEPTHS ARE REFERENCED TO "DEPTH BELOW GROUND SURFACE"

2

·

housed

15

	STATE OF TEXAS WELL REP	E OF TEXAS WELL REPORT for Tracking #178434				
Owner:	NRG Texas Power Limestone Station	Owner Well #:	MW-17			
Address:	Rt. 1 BoX 85 Jewett, TX 75846	Grid #:	39-64-1			
Well Location:	FM 39 N. Jewett, TX 75846	Latitude:	31° 05' 14" N			
		Longitude:	096° 07' 26" W			
Well County:	Limestone	Elevation:	No Data			
Type of Work:	New Well	Proposed Use:	Monitor			

	Diameter	(in.)	Top Depth (ft.)	Bottom Dep	Bottom Depth (ft.)	
Borehole:	8.5		0	55	55	
Drilling Method:	Hollow Stem Auger					
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth (ft.)	F	ilter Material	Size	
Filter Pack Intervals:	38	55		Gravel	20/40	
	Top Depth (ft.)	Bottom Depth (ft.)		Description (number of sacks & material)		
Annular Seal Data:	0	36		4, Portland		
	36	38	anto interconstante a tali da catar ga manda a manana da se ana se	2, Bentonite		
	38	55		12 Sand		
Seal Method: G	rout		Distance	to Property Line (ft.):	No Data	
Sealed By: D	riller			Septic Field or other d contamination (ft.):	No Data	
			Distance	e to Septic Tank (ft.):	No Data	
			Me	ethod of Verification:	No Data	
Surface Completion:	Alternative Pro	ocedure Used				
Water Level:	46 ft. below land surface on 2009-04-20 Measurement Method: Unknown					
Packers:	No Data					

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type
Water Quality:	No Data	No Data
		Chemical Analysis Made: No gly penetrate any strata which trained injurious constituents?: No
Certification Data:	driller's direct supervision) ar correct. The driller understood	Iriller drilled this well (or the well was drilled under the nd that each and all of the statements herein are true and od that failure to complete the required items will result in for completion and resubmittal.
Company Information:	Advanced Drilling System	ns, Inc.
	904 W. Tidwell Houston, TX 77091	
Driller Name:	David Rogers	License Number: 52037
Comments:	No Data	
From (ft) To (ft) Desc	thology: R OF FORMATION MATERIA cription Y CLAY with abundant Red	Casing: BLANK PIPE & WELL SCREEN DATA Dia. (in.) New/Used Type Setting From/To (ft.) 2 New PVC Casing 0-40 sch-40
1-5: Gray very SILTY SA	ND moist with some	2 New PVC Slotted 40-55 0.01
clayey sand seams		
- very silty		
5-12: Gray CLAYEY SAN	ID with abundant strong	
brown mottling		
- very silty		
- some black lignite sear	ms	
- wet		
- abundant yellowish bro	own mottling	
- abuundant strong brow	vn	
- very moist		
12-16: Gray, very SILTY	SAND	
- very moist		
- very fine grained		
- some yellowish brown	mottling	
- very silty		

16-20: Strong brown SILTY CLAY with abundant silty sand seams

- some yellowish brown clayey sand seams

20-26: Yellowish brown CLAYEY SAND with

abundant gray hard brittle clay seams

- some brownish yellow limonitic iron seams

- abundant dark gray clay seams

- very moist

- very silty

26-31: Brown very silty sand, very fine grained

31-42: Brown CLAYEY SAND with abundant

gray clay seams

- very moist

- some muscovite flakes

- abundant dark gray clay seams

- very moist

- some strong brown silty sand seams

- very silty

- very abundant dark gray seams

42-53: Dark gray SILTY SAND, fine grained,

abundant dark gray silty clay seams

- very silty

- saturated @ 46 bgs.

- abundant dark gray silty clay seams

very silty

- very moist

53-55: Very dark gray CLAY, firm

- some light gray silt seams

- lignite seams

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

MW-19 DRILLING LOG

							DRILLING LOG
, _	0345059	Date Drilled <u>2016-05-1</u> 7	SKETCH MAP				
Project _I	Limestone (CCR Rule	Well Installation	Owner_	NRG Ener	ду	
Location _	Limestone E	EGS		Boring T	Г.D. <u>35.40</u>	Boring Diam. <u>9.00 "</u> _	
N. Coord.	10507460.0	<u>0</u> ' E. Coo	ord. <u>3574645.0</u>	00 Surface	Elevation	440.94 ' Ft. MSL Datum	
Screen: Ty	pe <u>Sched</u>						
Casing: Ty	pe <u>Sched</u>	ule 40 PV	C [Diam. <u>2.00 "</u>	Length	25.00 ' Sump Length0.40 '	
	Top of Ca	asing Elev	ation <u>443.79</u>			Stickup2.85 '	NOTES
Depth to Wat	ier:	1. Ft	0.00 () 2.	Ft)	PP = Pocket Penetrometer
Drilling Comp	bany Be	st Drilling	Services	Driller _	Bruce Mil	ton	
Drilling Metho	od <u>Ho</u>	llow Stem	Auger	Log By	Mike Kris		
) et)		_	a	/al	t)		
Elevation (Feet) Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)		
tion th (F	phic	Well struc	ble	ple Inte (Feet)	scrip /al (Description/Soil ((Color, Texture,	
eva Dep	Gra	Con		amp (Des		,
	.			S			
						9	
440.94 - 0 -							
				0-5	0-1.6	SANDY CLAY: Yellowish-brown (10) less than 10 percent, PP=4.0 TSF	YR 6/4), dry, crumbly, hard, sand is
440					1660		
		4 24			1.6-6.2	SILTY SAND: Light yellowish-brown hard, semi-plastic; thinly laminated. F	
	A						C Alternational Andrews
	۵ ۵						
- 5-	^			5-10			
435	^ _			5-10			
					6.2-8	SANDY CLAY: Light yellowish-browr (10YR 5/8), dry to damp, stiff to hard	
							, semi-plastic, thirty laminated.
					8-10	No Recovery	
- 10-				10-15	10-18.5	SILTY SAND: Dark yellowish-brown	
430	<u> </u>					wet at 15.5 to 15.8 feet then dry to da friable; thinly bedded. @16.8 feet thin	
	^ ^					rootlets at 10.3 feet.	OF TO
	<u> </u>						TEOFIE
	۵ م					45	10/10/19 *
						*	James R. Davidson
- 15-	<u> </u>			15-20		×	James R. Device
425	^					PROP	10493 0 5
							10493 Q
							GONAL Y GEOS
				~	18.5-20	No Recovery	
- 20-							
			CRANK AND THE PARTY OF THE PARTY OF		TRANSMIT AND A MARY PHOTO A		

MW-19 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> " N. Coord. <u>10507460.00</u> ' E. Coord. <u>3574645.00</u> ' Surface Elevation <u>440.94</u> ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>25.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation 443.79 ' Stickup 2.85 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____(_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Graphic Log Sample Type Depth (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 20-34 SILTY SAND: Light olive-brown (2.5Y 5/3), damp becoming moist at 25 to 25.8 feet, damp 25.5 to 28 feet, damp to moist 28 to 30 feet, soft. 420 friable, thinly bedded; some lenticular clay nodules from 30 to 34 feet. 25 25-30 415 30-30-35 410 34-35.4 No Recovery James R. Davidson 35 T.D. = 35.40 ' Geology 405

40

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Boring T.D. <u>39.40</u> Boring Diam. <u>9.00</u> " Location N. Coord. 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 445.11 ' Stickup _2.99 ' NOTES Ft. <u>0.00</u> (______) 2. Ft. <u>0.00</u> (______) Depth to Water: 1. PP = Pocket Penetrometer **Best Driling Services** Bruce Milton **Drilling Company** Driller _ Log By __Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Construction Type Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 442.12= 0 0-5 0-0.7 SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm, brittle; sand less than 10 percent, 0.7-1.6 thinly laminated. 1.6-4 SILTY SAND: Yellowish-brown (10YR 5/4), dry, soft, friable; sand is fine 440 grained, subangular, silt approximately 10 percent. SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm to stiff, brittle; sand less than 10 percent, thinly laminated. PP=2.5-3.5 TSF 4-5 ~ No Recovery 5 SANDY CLAY: Very dark brown (7.5YR 2.3/3), dry, hard, brittle. 5-10 5-8.5 PP=4.5+TSF @6.8 feet becomes strong brown (7.5YR 4/6); @7.8 feet becomes light olive brown (2.5 Y 5/3) with some angular rock fragments. 435 8.5-10 No Recovery 10 10-15 10-25 SILTY SAND: Light yellowish-brown (2.5Y 6/4) and light gray (2.5Y 7/2) interbedded, dry, friable, well sorted, silt approximately 10 percent. @13.1 feet possible cross-bedding with rip-up (clay) clasts. @17.8 becomes damp, silt content increases to approximately 30 percent. 430 15-15-20 James R. Davidson Geology 425 20

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP Boring/Well ID MW-20 0345059 _____ Date Drilled __2016-05-17 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location ___ Boring T.D. <u>39.40 '___</u> Boring Diam. <u>9.00 "</u>____ 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' N. Coord. _ Ft. MSL Datum Screen: Type Schedule 40 PVC 0.01 " _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u> Sump Length 0.40 ' Top of Casing Elevation 445.11 Stickup 2.99 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Driling Services **Drilling Company** Driller Bruce Milton Log By _____Mike Kristoff Drilling Method Hollow Stem Auger Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Sample Type Graphic Log Construction Depth (Feet) Well Description/Soil Classification (Color, Texture, Structure) 20 20-25 420 25 25-30 25-39.4 SILTY SAND: Olive-brown (2.5Y 4/4), damp to wet (becomes wet at 30-30.8 and 35-35.5 feet), soft, friable. Thinly laminated clay lenses at 37.7 to 37.8 ft. and 38.8 to 39.1 ft., damp, brittle. 415 30 30-35 410 James R. Davidsor 35 35-39.4 Geology 405 T.D. = 39.40 ' 40

2
1

MW-21 ERM Environmental Resources Management **DRILLING LOG** SKETCH MAP 0345059 Boring/Well ID _______ Date Drilled ______2016-05-18 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> N. Coord. <u>10508050.00</u> ' E. Coord. <u>3575406.00</u> ' Surface Elevation _____ 443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>25.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation _446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> (______) Ft. 0.00 Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Hollow Stem Auger Mike Kristoff **Drilling Method** Log By Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Type Construction Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 443.46-0 0-5 0-0.8 SANDY CLAY: Mottled yellowish-brown (10YR 5/4) and yellowish-red (10 YR 4/6), dry, stiff, brittle. PP=3.5 TSF 0.8-1.2 -SILTY SAND: Strong brown (7.5 YR 5/6), dry, soft, friable, well sorted. 1.2-2.9 Silt approx. 10 percent. SANDY CLAY: Dark yellowish-brown interlaminated with light brownish-gray (10YR 6/2), dry to damp, firm, semi-plastic. PP=2.5 TSF 2.9-8 ~ 440 SILTY SAND: Strong brown (7.5 YR 5/6) to yellowish-brown (10YR 4/4), dry, soft, friable, well sorted. Silt approx. 10 percent. @6.1 becomes dark brown (7.5YR 7/2). 5 5-10 8-10 No Recovery 435 10 SILTY SAND: Mottled dark yellowish-brown (10YR 4/4) and gray (10YR 10-15 10-19.5 5/1)dry, soft, friable, silt content about 40 percent. @11.2 feet becomes yellowish-brown (10YR 5/6) interlaminated with gray (10YR 5/1); @13.1 feet silt content decreases to 10 percent 430 -James R. Davidson 15 15-20 Geology 425 19.5-24.5 SILTY SAND: Yellowish-brown (10YR 5/4), moist, soft, friable, thinly bedded with well developed partings. @22.0 to 22.5 and 23.0 to 24.5 feet silt content increases to 40 percent.

20

MW-21 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 ______MW-21______ Date Drilled _____2016-05-18 Proj. No. Boring/Well ID Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. 35.40 ' Boring Diam. 9.00 " N. Coord. __10508050.00 ' E. Coord. _3575406.00 ' Surface Elevation __443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00</u> Length <u>25.00</u> Sump Length <u>0.40</u> Top of Casing Elevation 446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> ____ (______) Depth to Water: 1. Ft. <u>0.00</u> PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller _ Log By ____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Type Depth (Feet) Graphic Log Construction Well Description/Soil Classification Sample (Color, Texture, Structure) 20-20-25 420 24.5-31.4 SILTY SAND: Olive brown (2.5Y 4/5), moist, soft, friable, thinly bedded 25 25-30 with well developed partings. 415 30 30-35.4 31.4-31.9 CLAY: Interlaminated with silty sand. Clay is black (7.5YR 2.5/1), damp, 31.9-35.4 semi-plastic, soft. Silty sand is brown (10YR 4/3), damp, soft, friable. SILTY SAND: mottled yellowish brown (10YR 5/6) and light brownish-gray (10YR 6/2), damp becomes wet at 32.2 to 33 feet, 410 laminated. 35 T.D. = 35.40 ' James R. Davidsor Geology 405 40

MW-22 DRILLING LOG

									DRILLING LOG
Proj. N	oj. No. <u>0345059</u> Boring/Well ID <u>MW-22</u> Date Drilled <u>2016-05-1</u>						Date Drilled <u>2016-05-1</u> 8	SKETCH MAP	
Project	. <u>Li</u>	mestone	CCR Ru	e We	II Installation	Owner_	NRG Ener	ду	· · ·
Locatio	on <u>Li</u>	mestone	EGS			Boring ⁻	r.d. <u>35.00</u>	Boring Diam. <u>9.00 "</u>	
N. Coo	ord1(0508270.	<u>00</u> ' E. C	oord.	3575669.0	0 ' Surface	Elevation _	444.68 Ft. MSL Datum	
Screen: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size <u>0.01 "</u>									
Casing	: Туре	e <u>Sche</u>	dule 40 P	VC	D	iam. <u>2.00 "</u>	Length	24.50 ' Sump Length0.40 '	
		Top of C	Casing El	evatio	n _447.59 '		_	Stickup	NOTES
Depth	to Wate	r:	1. Ft.	0.	00(_) 2.	Ft)	PP = Pocket Penetrometer
Drilling	Compa	anv Be	est Drillin	q Ser	vices	Driller	Bruce Mil	ton	
	Method		ollow Ste						
								ana ta Balana an an an an an an an an an an an an	
Elevation (Feet)	(Feet)	-og	tion	ype		Sample Interval (Feet)	Description Interval (Feet)		
on (I	ר (F∉	hic I	Well struct	le T		ple Inte (Feet)	cripti al (F	Description/Soil ((Color, Texture)	
evati	Depth	Graphic Log	Well Construction	Sample Type		impli (F	Desc		, Structure)
Ele		U	0	S		Sa	<u> </u>		
444.68-	0-					0-5	0-1.6	SILTY SAND: Strong brown (7.5YR	5/6), dry, soft, friable.
	-								
	_						1.6-3.5	SANDY CLAY: Interlaminated dark y brownish-gray (10YR 6/2), damp, se	
-	_							······································	,,
-	_	\bigtriangledown					3.5-5	No Recovery	
440 -	5—	\bigtriangleup				5-10	5-7.5	SILTY SAND: Strong brown (7.5YR	5/6) dry coff frichlo
-	_					5-10	5-7.5		oroj, dry, son, mable.
-									
-		\langle		ł			7.5-8.5	SANDY CLAY: Interlaminated dark y	ellowish-brown (10YR 4/4) and light
_		\rightarrow					8.5-10	brownish-gray (10YR 6/2), damp, se No Recovery	mi-plastic.
435 -	_								
100	10-					10-15	10-19	SILTY SAND: Interlaminated gray (7	
	-							5/6), damp, loose, friable, well sorted 11.6 bioturbation; @12.5 lenticular cl	
	_	A						content increases to 40 percent.	COF TEL
	_							l le	ALL AND
	_							5	101101 *
430 -	15—	<u> </u>				15-20			James R. Davidson
-	_					10 20		PRO	Geology /F
-								×	10493 O
-		4							SISTONAL TOPOS
-		A							
425 -	-	د					19-24	SILTY SAND: Interlaminated silty sa above. Sandy clay is strong brown, o	
120	20 —								ary to damp, ordinoly.

MW-22 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-22 _____ Date Drilled <u>2016-05-1</u>8 Limestone CCR Rule Well Installation Project Owner ___ NRG Energy Limestone EGS Boring Diam. 9.00 " Location Boring T.D. 35.00 ' N. Coord. __10508270.00 ' E. Coord. _3575669.00 ' Surface Elevation _ 444.68 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type Schedule 40 PVC Diam. 2.00 Length 24.50 Sump Length 0.40 ' Top of Casing Elevation 447.59 ' Stickup 2.91 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Bruce Milton **Drilling Company** Hollow Stem Auger Log By _____Mike Kristoff **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Type Interval (Feet) Depth (Feet) Graphic Log Description **Description/Soil Classification** Sample -(Color, Texture, Structure) 20 20-25 24-30 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 420 parting surfaces. Silt content approx. 10 percent. @25.7 feet, silt content 25-25-30 increases to 40 percent. @28.1 silt content decreases to 10 percent. 415 30 30-35 30-31 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 31-31.8 parting surfaces. Silt content approx. 40 percent. 31.8-35 SILTY SAND: Brown, damp to moist, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. 410 35 T.D. = 35.00 ' James R. Davidsor Geology

405

40

ERM	M I	MW-23 DRILLING LOG							
Proj. No	oC	345059			_ Boring/W	/ell IDM	W-23	Date Drilled 2016-04-13	SKETCH MAP
Project	L	imestone	CCR Ru	le We	II Installation	Owner	NRG Energ	ду	
Locatio	n _L	imestone	EGS			Boring	T.D. <u>45.00</u>	Boring Diam. <u>9.00 "</u>	
N. Coo	rd1	0505630.	. <u>00</u> 'E.C	oord.	3571983.0	0 Surface	Elevation _	434.36 ' Ft. MSL Datum	
Screen	: Тур	e PVC	2	10.00 Slot Size 0.01 "					
								30.00 ' Sump Length	
					on _437.25 '			Stickup _ 2.89 '	NOTES
Depth t	o Wate	er:	1. Ft	0.	00(_) 2.	Ft. <u>0.00</u> ()	PP = Pocket Penetrometer
Drilling	Comp	any _B	est Drillin	g Ser	vices	Driller	Sonny To	bola	
Drilling	Metho	d	ollow Ste	m Au	ger				
et)	<u> </u>			0		ସ	(j		
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type		Sample Interval (Feet)	Description Interval (Feet)	Description/Soil C	Naccification
ation	oth (I	aphic	Well	nple		ple Inte (Feet)	scrip val ((Color, Texture,	
Eleva	Dep	Gra	Col	San		Sam	De Inter		
			Π	-					
			+~+						
434.36-	0 -	2000				0-5	0-0.5	GRAVEL: Roadbase - crushed limes	tone with silt matrix, greenish-gray
	-	$\langle \rangle \rangle$		1			0.5-10.6	(Gley 1/6/10Y). SANDY CLAY: Fill Material - Light ye	0 0 9
	-							thinly laminated, brittle. PP =1.0 TSF	
	-	$\langle \rangle$							
	-	\sum							TE OF TEX
430 -	5-	$\langle \rangle \rangle$				5-10			ST to A shall be a
	_	$\langle \rangle \rangle$				5-10		+	James R. Davidson
	_	\sum							Geology E
-	_	$\langle \rangle \rangle$							0 10493 0
	_	\sum							10493 D TICENSE DONAL TGEOSC
425 -	10-	$\langle \rangle \rangle$				10.15			AL YOU
-	10	$\langle \cdot \rangle$				10-15	10.6-10.61	LIGNITE: Black organic plant materia	I consisting of decaying rootlets
-		\sum					10.61-17.5	and grass. SANDY CLAY: Dark red (2.5 YR 3/6)	dry firm to stiff rootlets at 13.4 ft
-	_							becomes thinly bedded at 14.3 ft. Sh	
-	_								
420 -	_	\sum							
-	15-					15-20	8		
-	-	$\langle \rangle$							
-	_	\sum		1 🛛			17.5-27.4	SILTY SAND: Very dark grayish-brow	vn (10YR 3/2) grading down to light
-	-							gray (10YR 7/1), soft, friable; thinly b	edded, sand is fine grained, well
415-	-							sorted, subangular to angular. @23.1 yellowish-brown.	Decomes mottled with dark
	20-								

H:\DWG\F16\Log\0345059-MW-23.dwg 6/29/2016 9:59:27 AM

MW-23 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-23 Date Drilled _2016-04-13 Limestone CCR Rule Well Installation Owner NRG Energy Project Boring T.D. <u>45.00</u> Boring Diam. <u>9.00</u> " Location Limestone EGS N. Coord. 10505630.00 ' E. Coord. 3571983.00 ' Surface Elevation 434.36 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size _ 0.01 " Casing: Type PVC ___ Diam. <u>2.00 "</u> Length <u>30.00 '</u> 0.40 ' Sump Length Top of Casing Elevation _437.25 ' Stickup _ 2.89 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____ Depth to Water: _) PP = Pocket Penetrometer Best Drilling Services **Drilling Company** ____ Driller ___ Sonny Tobola Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval Elevation (Feet) Well Construction Description Interval (Feet) **Graphic Log** Sample Type Depth (Feet) (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 James R. Davidson 410 25 25-30 27.4-30.6 SAND: Light greenish-gray (Gley 1/7/10Y), moist, soft, friable, sand is fine grained, well sorted, subangular, trace of silt. @28 ft. rootlets. 405 30 30-35 30.6-32.4 SILTY SAND: Strong brown (7.5YR 4/6), dry to damp, sand is fine grained, well sorted, lenticular clay clasts at base. 32.4-33.1 SHALE: Light brownish-gray (2.5Y 6/2), dry, blocky, thinly laminated, brittle. 33.1-42.5 SILTY SAND: Strong brown (7.5YR 4/6), damp becoming wet at 40 feet, sand is fine grained, well sorted, @35.7 - Shale seam, hard, @38.0-38.1 400 - Shale seam, thinly laminated, crumbly; @38.7 shale interclasts. 35 35-40 395 40

ERM Environ	mental Resource	s Managem	t	MW-23 DRILLING LOG
Proj. No. 0345059 Project Limestone C Location Limestone E N. Coord. 10505630.00 Screen: Type PVC Casing: Type PVC Top of Casing: Top of Casing	Boring/W CCR Rule Well Installation GS O' E. Coord. 3571983.0 O state GS O state GS O state GS O state O state	Vell ID <u>MW-23</u> Owner <u>NR</u> Boring T.D. <u>00</u> ' Surface Eleva Diam. <u>2.00 "</u> Len Diam. <u>2.00 "</u> Len	Date Drilled <u>2016-04-1</u> 3 nergy .00 ' Boring Diam. <u>9.00 "</u> n <u>434.36 ' Ft. MSL</u> Datum <u>10.00 '</u> Slot Size <u>0.01 "</u> <u>30.00 '</u> Sump Length <u>0.40 '</u>	DRILLING LOG SKETCH MAP NOTES PP = Pocket Penetrometer
	st Drilling Services		r Tobola Kristoff	
Feet) set)	Well Construction Sample Type	Sample Interval (Feet) Description	Description/Soil (Color, Textur	
		40-45 42.5 43.	brittlo	6/2), dry, blocky, thinly laminated,

Environmental Resources Management

DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID ______ Date Drilled _______ 2016-04-14 Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. __10511130.00 ' E. Coord. __3573967.00 ' Surface Elevation ___474.57 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " _____ Diam. <u>2.00 "</u> Length <u>50.00 '</u> Sump Length <u>0.40 '</u> Casing: Type PVC Top of Casing Elevation 477.52 ' Stickup 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Type Depth (Feet) Graphic Log Sample 1 **Description/Soil Classification** (Color, Texture, Structure) 474.57-0 0-5 0-5 NOT SAMPLED: Hydrovac 470 5 5-10 5-18 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30 %: fine grained, subangular. @ 10 ft, sand content decreases to approx. 10%, breaks along laminae. 465 -10. 10-15 Davidson James R. Geology 460 15 15-20 CLAYEY SAND: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly bedded, fine grained, uncemented, cohesive, well sorted, subangular, clay approx. 40% - dry, damp. 18-18.4

18.4-22.5

455

20

SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly

subangular, 7.5YR/5/8 strong brown.

laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained,

MW-28

MW-28 **Environmental Resources Management** DRILLING LOG SKETCH MAP 0345059 Proj. No. Boring/Well ID MW-28 Date Drilled 2016-04-14 Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 Stickup 2.95 ' NOTES Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Driller ____ Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Type Depth (Feet) **Graphic Log Description/Soil Classification** Sample 1 (Color, Texture, Structure) 20 20-25 Davidsor James R. Geology 03 22.5-25 No Recovery 450 25 25-30 25-25.8 SILTY SAND: Glev 1/7/10Y Light Greenish Grav, fine grained. subangular to subrounded, uncemented, well sorted, damp to moist, 25.8-27.3 cohesive, silt approx. 10% SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% -27.3-28.5 fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 28.5-30 SILTY SAND: Gley 1/7/10Y Light Greenish Gray, fine grained, 445 subangular to subrounded, uncemented, well sorted, dry to damp, 30 cohesive, silt approx. 10% 30-35 30-32.5 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 32.5-35 INTERBEDDED CLAY AND SAND: Silty Sand - 30-30.3 ft, 31.2-31.4 ft, 32.2-32.4 ft. - Gley 1/7/10Y Light Greenish Gray, fine grained, subangular to subrounded, uncemented, well sorted, damp to moist, cohesive, silt approx. 10%. Sandy Clay - 30.3-31.2 ft, 31.4-32.2 ft, 440 32.4-32.5 ft. - 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly 35 35-40 35-40 laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. No Recovery INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/5/8 Strong brown, fine grained, uncemented, well sorted, subangular, dry to damp. Shale - 7.5YR/5/1 Gray, non-plastic, dry, 2.0 TSF, trace sand. 435 40

Proj. No.

Project

Location

0345059

Screen: Type PVC

Casing: Type PVC

Depth to Water:

Drilling Company

Drilling Method

Limestone EGS

Hollow Stem Auger

Environmental Resources Management

SKETCH MAP Boring/Well ID _______ Date Drilled ______4 Limestone CCR Rule Well Installation Owner NRG Energy Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup _ 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____ (_____) PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola Log By _____ Don Whitley le Interval ⁻eet) al (Feet) cription Description/Soil Classification (Color Texture Structure)

MW-28

DRILLING LOG

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
	40 — 				40-45	40-45	INTERBEDDED CLAY AND SAND: Shale - 40-40.4 ft, 40.8-41.1 ft, 41.4-43.8 ft, 44.2-45 ft non-plastic, thinly laminated, breaks along laminae, trace sand. Silty Sand - 40.4-40.8 ft, 41.1-41.4 ft, 43.8-44.2 ft 7.5YR/5/8 Strong brown, fine grained, uncemented, subangular, well sorted, damp to moist.
430 - - -					45-50	45-50	INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand.
425 -					50-55	50-56.6	SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 52.9-53.2 Silty Sand seam - 7.5YR/4/3 Brown, fine grained, uncemented, subangular, wet.
420 - - - - 415 -	55 — — — 60 —				55-60	56.6-57.1 57.1-58.5 \ 58.5-60 \	SILTY SAND: 7.5YR/4/2 Brown, fine grained, uncemented, subangular, wet to saturated SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout No Recovery

H:\DWG\ 6\Log\0345059-MW-28.dwg 6/29/2016 10:20:56 AM

Environmental Resources Management DRILLING LOG 0345059 Boring/Well ID <u>MW-28</u> Date Drilled <u>2016-04-1</u>4 SKETCH MAP Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> Location N. Coord. __10511130.00 ' E. Coord. _3573967.00 ' Surface Elevation __ 474.57 Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup _____2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** Hollow Stem Auger Log By _____ Don Whitley Drilling Method Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Depth (Feet) Graphic Log Sample Type Description/Soil Classification (Color, Texture, Structure) 60 60-65 60-60.7 INTERBEDDED CLAY AND SAND: Thinly alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, 60.7-69.5 _\ subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand. SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 61.5-61.7 - Silty Sand lense, 7.5YR/4/2 Brown 410 65 65-70 405 T.D. = 70.00' 70 James R. Davidson 400 75-

395

80

MW-28

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: <u>August 31, 2023</u> Facility Name: <u>NRG-Limestone Generating Station</u> Permit or Registration No.: <u>CCR 115</u> Nature of Correspondence:

Initial/New

Response/Revision to TCEQ Tracking No.: _____ (from subject line of TCEQ letter regarding initial submission)

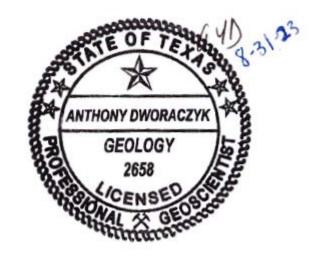
Affix this cover sheet to the front of your submission to the Waste Permits Division. Check appropriate box for type of correspondence. Contact WPD at (512) 239-2335 if you have questions regarding this form.

Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
🗌 Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
Transfer/Name Change Modification	Liner Evaluation Report
Temporary Authorization	Soil Boring Plan
Uvoluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	

Table 1 - Municipal Solid Waste Correspondence

Table 2 - Industrial & Hazardous Waste Correspondence

Applications	Reports and Responses
New	Annual/Biennial Site Activity Report
🗌 Renewal	CPT Plan/Result
Post-Closure Order	Closure Certification/Report
Major Amendment	Construction Certification/Report
Minor Amendment	CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	🗌 Interim Status Change
Class 3 Modification	Interim Status Closure Plan
Class 2 Modification	Soil Core Monitoring Report
Class 1 ED Modification	Treatability Study
Class 1 Modification	🗌 Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	Other:
335.6 Notification	
Other:	


Alternative Source Demonstration

Limestone Electric Generating Station Landfill (Unit 004)

TCEQ Coal Combustion Residuals (CCR) Registration No. CCR115 Industrial Solid Waste Registration No. 32490 EPA Identification No. TXD000837336 RN100542927/CN603207218

August 2023

Prepared For NRG Texas Power, LLC Jewett, Texas

Gregory E. Tieman, L.R.S. Senior Client Service Manager

Tony Rumak

Tony Dworaczyk, P.G. Project Manager

TRC Environmental Corporation | NRG Texas Power, LLC Alternate Source Demonstration, Limestone, Landfill (Unit 004)

\\HOUSTON-FP1\PROJECTS-ECR\NRG\LIMESTONE\2023\CCR\ASDS\LMS LANDFILL ASD 8-2023 DRAFT.DOCX

Table of Contents

Executive Su	ummary	ii
Section 1 In	ntroduction	1-1
1.1	Background	1-1
	1.1.1 Groundwater Monitoring Program	1-1
1.2	Purpose	1-2
Section 2 Sit	ite Geology and Hydrogeology	2-1
2.1	Hydrogeology	2-1
2.2	Surrounding Area	2-1
	2.2.1 Oil and Gas Production Wells	2-1
	2.2.2 Lignite Mine	
	2.2.3 Lignite/Shale Seams in Monitoring Wells	2-3
2.3	Groundwater Geochemistry and Boron in Groundwater	2-3
Section 3 Al	Iternative Source Demonstration	3-1
Section 4 Co	onclusions	4-1
Section 5 Re	eferences	

List of Figures

Figure 1	Site Map
Figure 2	Potentiometric Flow Map – April 2023
Figure 3	METGCD Well Map

Attachments

Attachment 1 Boring Logs

Executive Summary

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. Units managing coal combustion residuals (CCR) at the Station are subject to the requirements of 30 Texas Administrative Code (TAC) Chapter 352. CCR generated at the Station consists of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge. The Station has one active CCR unit, the Landfill (Unit 004), that is managed pursuant to 30 TAC Chapter 352, which is the subject of this Alternative Source Demonstration (ASD).

The 12th semi-annual groundwater detection monitoring event was conducted on April 4, 2023. Verification sampling was performed on May 1, 2023. Statistical evaluation of the Appendix III monitoring parameters was performed within 60 days of sample collection to identify apparent statistically significant increases (SSIs) above background pursuant to 30 TAC 352 Subpart H. Three apparent SSIs: boron, sulfate, and pH; were identified. TRC, on behalf of NRG notified the Texas Commission on Environmental Quality (TCEQ) of its intent to prepare an ASD on June 12, 2023.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the second half 2019 (July) through the first half 2021 (April). The April 2023 semi-annual detection monitoring event analytical results, including the May 2023 verification sample results, are the fourth data set statistically evaluated using the new background water quality data set.

This ASD successfully identified alternative sources for the apparent SSIs at the Landfill, based on the following lines of reasoning:

- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 miles south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, electrical conductivity (EC), and/or salinity.

Therefore, NRG will continue performing semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.

Section 1 Introduction

1.1 Background

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. The Station is bisected by Farm-to-Market Road 39 (FM 39), which runs north-south through the middle of the Station. The western portion of the Station is located in Limestone County and includes the electricity generating portion of the Station. The eastern portion of the Station is located in Freestone County and includes the solid waste disposal area (SWDA).

Management of coal combustion residuals (CCR) at the Station is performed pursuant to 30 Texas Administrative Code (TAC) Chapter 352, which became effective during June 2021. Prior to this, management of CCR was performed pursuant to the United States Environmental Protection Agency (USEPA) final rule for the regulation and management of CCR under the Resource Conservation and Recovery Act (RCRA) Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) (CCR Rule, effective date October 17, 2015). CCR generated at the Station consist of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge, which have been classified by the TCEQ as Class II nonhazardous waste. The Station has one active CCR-management unit – Landfill (Unit 004).

The Landfill is located within the eastern portion of the Station as shown on Figure 1. The Landfill was constructed in 1980 and is used for the final disposition of CCR. The western half of the Landfill has reached capacity and historically had been closed and capped prior to the effective date of the CCR Rule (October 19, 2015). CCR is currently being placed at the southern part of the eastern portion of the Landfill.

1.1.1 Groundwater Monitoring Program

The certified CCR monitoring well network for the Landfill consists of two upgradient background monitoring wells (MW-27R and MW-28) and eight downgradient monitoring wells (MW-01, MW-02, MW-17, MW-18, MW-19, MW-20, MW-21, and MW-22). A groundwater potentiometric surface map was prepared by TRC for the April 2023 semi-annual detection monitoring event and is provided in this ASD as Figure 2. The direction of groundwater flow beneath the Landfill was to the south - southwest.

On behalf of NRG, Environmental Resources Management, Inc. (ERM) conducted eight independent background groundwater detection monitoring events for both the Appendix III and IV CCR constituents between April 2015 and August 2017 per §257.94(b) of the federal CCR Rule and the first semi-annual detection monitoring event in October 2017. Results of the eight background and first semi-annual

detection monitoring events were documented in the *Annual Groundwater Monitoring Report, Landfill* (Unit 004) (ERM 2018a) pursuant to §257.90(e).

The Station has continued to conduct semi-annual detection monitoring at the Landfill per the federal CCR Rule and 30 TAC Chapter 352. As of the April 2023 sampling event, a total of 12 semi-annual detection monitoring events have now been performed. Following each semi-annual detection monitoring sampling event, the results have been evaluated for potential SSIs, and ASDs have been prepared as needed. Since implementation of 30 TAC Chapter 352, the ASDs have been submitted to TCEQ for review and approval. The semi-annual detection monitoring activities and ASDs have been included in the Annual Groundwater Monitoring and Corrective Action reports, which have been placed into the Facility Operating Record (FOR) and posted to NRG's publicly accessible website.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the third half 2019 (July) through the first half 2021 (April). The April 2023 semi-annual detection monitoring event analytical results, including the May 2023 verification sampling results , are the fourth data set statistically evaluated using the new background water quality data set.

1.2 Purpose

TRC prepared this ASD to evaluate three apparent SSIs above background levels: boron, sulfate, and pH; for the 12th semi-annual detection monitoring event in accordance with 30 TAC Chapter 352.

Section 2 Site Geology and Hydrogeology

This section provides information about the geology and hydrogeology of the Station and the area at and surrounding the Landfill.

2.1 Hydrogeology

Based on the *Geologic Atlas of Texas, Waco Sheet* (BEG 1972), the Station is primarily located within the outcrop of the Calvert Bluff Formation of the Wilcox Group. Minor portions of the southeast corner of the Station are located within the outcrop of the Carrizo Sand and minor portions of the southwest corner of the Station are immediately underlain by alluvium. The Calvert Bluff Formation underlies both the Carrizo Sand and alluvium where present.

The Landfill is located solely within the outcrop of the Calvert Bluff Formation (BEG 1972); however, site investigation data indicate the Landfill may also be located within the outcrop of the Carrizo Sand. The Calvert Bluff Formation consists mostly of mudstone interbedded with fine sandstone, lignite, and ironstone concretions. The mudstone contains silt and very fine sand laminae. The Carrizo Sand consists of very fine sand with partings of silty clay, carbonaceous clay, and ironstone. The Carrizo Sand and the Wilcox Group comprise the Carrizo-Wilcox aquifer, which is recognized by the Texas Water Development Board (TWDB) as a major aquifer system in Texas. The Station is located within the outcrop, or the recharge zone, of the Carrizo-Wilcox aquifer (TWDB 2011).

Site investigations were conducted at the Station by Espey, Huston & Associated in 1986; Radian International in 1996 and 1997; EPRI in 2007, and Environmental Resources Management, Inc. (ERM) in 2016. The results of these investigations were summarized in the October 2017 *Ground Water Monitoring Networks for Coal Combustion Residual (CCR) Rule Compliance* report (ERM 2017b). Surficial material at the Landfill consists of in-situ or reworked clay from the Axtell-Tabor soil association. This clay is the source material for the Landfill liner and cap. Boring logs indicate the surficial material is underlain by interbedded clays, silts, and sands of the Quaternary alluvium, Carrizo Sand, and Calvert Bluff Formation. The boundaries between these units are generally indistinguishable.

2.2 Surrounding Area

2.2.1 Oil and Gas Production Wells

The Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of the installation and operation of natural gas production wells. Numerous active natural gas wells and their associated well pads, surface pits, subsurface pipelines, and infrastructure are

located immediately surrounding and within the footprint of the Landfill. Figure 3 is a Mid-East Texas Groundwater Conservation District (METGCD) well map showing the locations of wells in the vicinity of the Landfill. The map is limited to Freestone and Leon counties and does not show wells in Limestone County immediately west of the Landfill. This figure demonstrates the extent to which non-CCR sources of constituents to groundwater pervade the vicinity of the Landfill.

Surface well pits typically contain spent completion fluids or workover fluids. Completion or workover fluids are often brine-containing liquids that are used for well testing and are chemically compatible with the formation fluids; and the spent fluids contained in the pits would have come into contact with formation water According to the United States Geological Survey (USGS) National Produced Waters Geochemical Database, water co-produced with hydrocarbons (referred to as "produced water" or "formation water") from geologic formations underlying the Site has the following composition (USGS 2018):

- pH ranging from 4.67 standard units (SU) to 5.6 SU;
- Calcium ranging from 12,560 milligrams per liter (mg/L) to 33,520 mg/L;
- Chloride ranging from 56,980 mg/L to 96,200 mg/L;
- Sulfate ranging from 480 mg/L to 1,790 mg/L; and
- Total dissolved solids (TDS) ranging from 98,330 mg/L to 152,970 mg/L.

Considering the composition of the formation water with which the completion or workover fluids came into contact and the typical brine composition of these fluids, potential releases of these fluids would be expected to affect groundwater quality within the immediate vicinity and downgradient of the natural gas well pads and surface pits. Even minor releases of these fluids could increase the concentrations of calcium, chloride, sulfate, and TDS and decrease the pH in the nearby Landfill upgradient and downgradient monitoring wells.

2.2.2 Lignite Mine

Approximately 1.5 miles south of the Landfill is the Jewett lignite mine. The Jewett Mine is a 35,000-acre surface-mine complex. The mine, which is one of the largest in Texas, produced about 5.3 million short tons of lignite per year, according to the U.S. Department of Energy (USDOE). The 31-year-old mine provided lignite for combustion at the Station. In 2018, NRG decided to close the mine and is in the process of performing reclamation.

In 2020, the Jewett Mine had four final pits containing water ranging from approximately 340 million to 1.5 billion gallons. The estimated volumes remaining in the pits in 2020 were as follows:

- E-South Final Pit: 342,000,000 gallons;
- RP-D9 Final Pit: 403,000,000 gallons;
- B-North Final Pit: 375,000,000 gallons; and

• BX Final Pit: 1,290,000,000 gallons.

The pits can have depths greater than 100 feet. The groundwater potentiometric surface is generally understood to be above the bottom of the pits. Multiple seams of lignite at varying depths below the ground surface were removed from these pits during mining.

According to the U.S Department of Energy, Office of Scientific and Technical Information, *Trace elements in Texas Lignite*, 1983, during coal mining and utilization, trace elements are released into the environment. Certain of these elements may have beneficial or neutral effects while other trace elements are potentially harmful. On a national basis, nine of these elements: antimony, arsenic, boron, cadmium, germanium, mercury, molybdenum, selenium, and silver; are commonly found in concentrations greater than the levels present in typical crustal rocks. Because of the conditions under which Gulf Coast lignites were deposited and the nature of lignites in general, the modes of occurrence and concentrations of trace elements in Texas lignite samples from Arkansas, Mississippi, and Alabama compiled in 1975, Gulf Coast lignites were identified as having higher levels of boron, lanthanum, lead, selenium, uranium, yttrium, and zirconium than other US coal regions.

2.2.3 Lignite/Shale Seams in Monitoring Wells

A review of the boring logs for the Landfill monitoring network identified lignite seams and shale starting at around 37 feet below ground surface (bgs) in some of the borings. As noted on the boring logs in Attachment 1, monitor wells were completed across these lignite and shale seams. Although lignite seams and shale are not noted in all of the borings for the monitoring network, the presences of these minerals in the subsurface would have an effect on groundwater quality for the region.

As noted above, lignite contains trace elements that are released into the environment, which include boron. As presented in the Geological Survey Bulletin 1314-A, *Geochemical Investigations of Some Black Shales and Associated Rocks*, trace elements of boron, barium, gallium, and strontium are found in the upper cretaceous shales of Texas. The following section discusses the geochemistry of the groundwater in the area.

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics of the groundwater, and analyzing both natural and potential anthropogenic impacts on groundwater. Separate from potential source areas of contamination, geochemical processes are critical in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions, and adsorption-desorption processes.

2.3.1 Boron in Groundwater

Boron is normally considered to be a minor constituent in groundwater since it is generally present in low concentrations (Palmucci & Rusi, 2014). Apart from a potential boron source area, the primary origin of boron in groundwater is typically associated with the processes of sorption and desorption from mineral surfaces including soil and bedrock (Ravenscroft & McArthur, 2004). Boron is often cited as a contaminant trace chemical and usually occurs as a non-ionized form as H_3BO_3 in soils at pH <8.5, but above this pH, it exists as an anion, $B(OH)_4^-$ (Upadhyaya et al., 2014).

The factors that may influence the concentration of boron in groundwater include weathering, human activity, evaporative concentration, ion-exchange, EC, and pH. Ravenscroft & McArthur (2004) investigated the mechanism of regional boron enrichment in groundwater and the results indicated that the main process resulting in boron enrichment in groundwater was flushing by fresh groundwater. The desorption of boron from mineral surfaces could be affected by pH, ionic strength, salinity, and the HCO₃/CO₃ ratio. Decreases in pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH in rocks, soils, and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

Additional investigations confirmed that the presence of boron in groundwater depends on the EC (salinity), such that the concentration of boron increases with increasing EC. Halim et al. (2010) reported that the increae in Cl⁻ contributes to an increase in EC value since a strong linear correlation ($R^2 = 0.88$) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between elevated concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO_4^{2-}/Cl^- ratio. Rodriguez-Espinosa et al. (2020) determined that the concentration of boron in groundwater was related to SO_4^{2-} and the age affect.

Regarding concentrations of boron in groundwater at the Landfill, the source of boron is more likely natural rather than anthropogenic. Therefore, the increase in concentration of boron at MW-21 can be related to natural variations in groundwater geochemistry related to pH, ion exchanges, EC, and salinity.

2.3.2 Sulfate in Groundwater

The presence of sulfate is ubiquitous in groundwater, having both natural and anthropogenic sources. There are many potential sources of sulfate in groundwater including mineral dissolution, atmospheric deposition, and other anthropogenic sources (mining, fertilizer, synthetic detergents, industrial wastewater etc.) (Miao et al., 2012). As groundwater moves through soil and rock formations that contain sulfate minerals, a portion of the sulfate dissolves into the groundwater. Minerals that contain sulfate include magnesium sulfate (Epsom salt), sodium sulfate (Glauber's salt), and calcium sulfate (gypsum). Gypsum is an important contributor to elevated concentrations of sulfate in groundwater aquifers. Elevated concentrations of sulfate in groundwater are common in the western part of the United States (MDH, 2008).

Sulfate is mobile in soil and can impact groundwater quality. Multiple investigations have indicated that atmospheric deposition, dissolution of gypsum, and oxidation of sulfide minerals can contribute to the concentrations of sulfate in groundwater.

Regarding the concentration of sulfate in groundwater at the Landfill, the source of sulfate is more likely natural rather than anthropogenic. Therefore, the increase in concentration of sulfate may be related to natural variations in groundwater geochemistry associated with mineral dissolution and/or atmospheric deposition (Einsiedl & Mayer, 2005; Pu et al., 2012).

2.3.3 pH

The one apparent pH SSI identified in MW-01 appears to be related to natural variations in groundwater quality as impacted by oil and gas activity in the area and the presence of lignite in the subsurface resulting in changes in the geochemistry of the uppermost aquifer system such as pH and oxidation-reduction potential (ORP) and are also related to changes in the measured concentrations of CCR constituents.

Section 3 Alternative Source Demonstration

The 12th semi-annual detection monitoring event was conducted on April 4, 2023 per 30 TAC Chapter 352. Statistical evaluation of the results (comparison of downgradient monitoring results to 95 percent confidence/95 percent coverage upper tolerance limits [UTLs]) was performed within 60 days of sample collection to identify apparent SSIs above background pursuant to 30 TAC 352, Subpart H. Three apparent SSI was identified: boron, sulfate, and pH.

As part of the ASD activities, verification sampling was conducted on May 1, 2023 for the initial three apparent SSIs. Statistical evaluation to identify SSIs for the verification sampling was performed within 60 days of sample collection. Three apparent SSIs were confirmed for boron, sulfate, and pH. Based on the results of the verification sampling and statistical analysis, NRG notified the TCEQ of its intent to prepare an ASD on June 12, 2023, addressing the apparent SSIs for boron, sulfate, and pH.

The UTLs and sampling results for the for the apparent SSIs are provided in Table 1 below.

ANALYTE	WELL	LTL	UTL	SAMPLE DATE	VALUE	UNIT
Boron	MW-21 (DG)	NA	0.44	05/01/2023	0.734	mg/L
Sulfate	MW-28 (UG)	NA	890	05/01/2023	959	mg/L
pН	MW-01 (DG)	4.1	7.6	05/01/2023	3.75	s.u.

 Table 1 SSI – April 2023 Semi-annual Detection Monitoring Event

Notes: DG = Downgradient

UG = Upgradient

mg/L = milligrams per Liter

Alternative sources for the apparent SSIs encompass a range of apparent lines of reasoning and include the following non-CCR sources located in the vicinity of the Landfill:

- The Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of natural gas production wells;
- Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
- A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality and pH of groundwater over a long period of time.

Acidity is transported from a mine in groundwater or by surface water runoff that can then infiltrate into groundwater. Through migration, such groundwater, can impact groundwater quality at and in the vicinity of the Landfill. During the course of historical detection monitoring at the Landfill, the pH of

groundwater at MW-21 has remained within the range of 5.0 to 5.6 S.U. As discussed in Section 2.2, low pH (< 6) conditions are favorable for the dissolution of boron from mineral surfaces in the soil and bedrock.

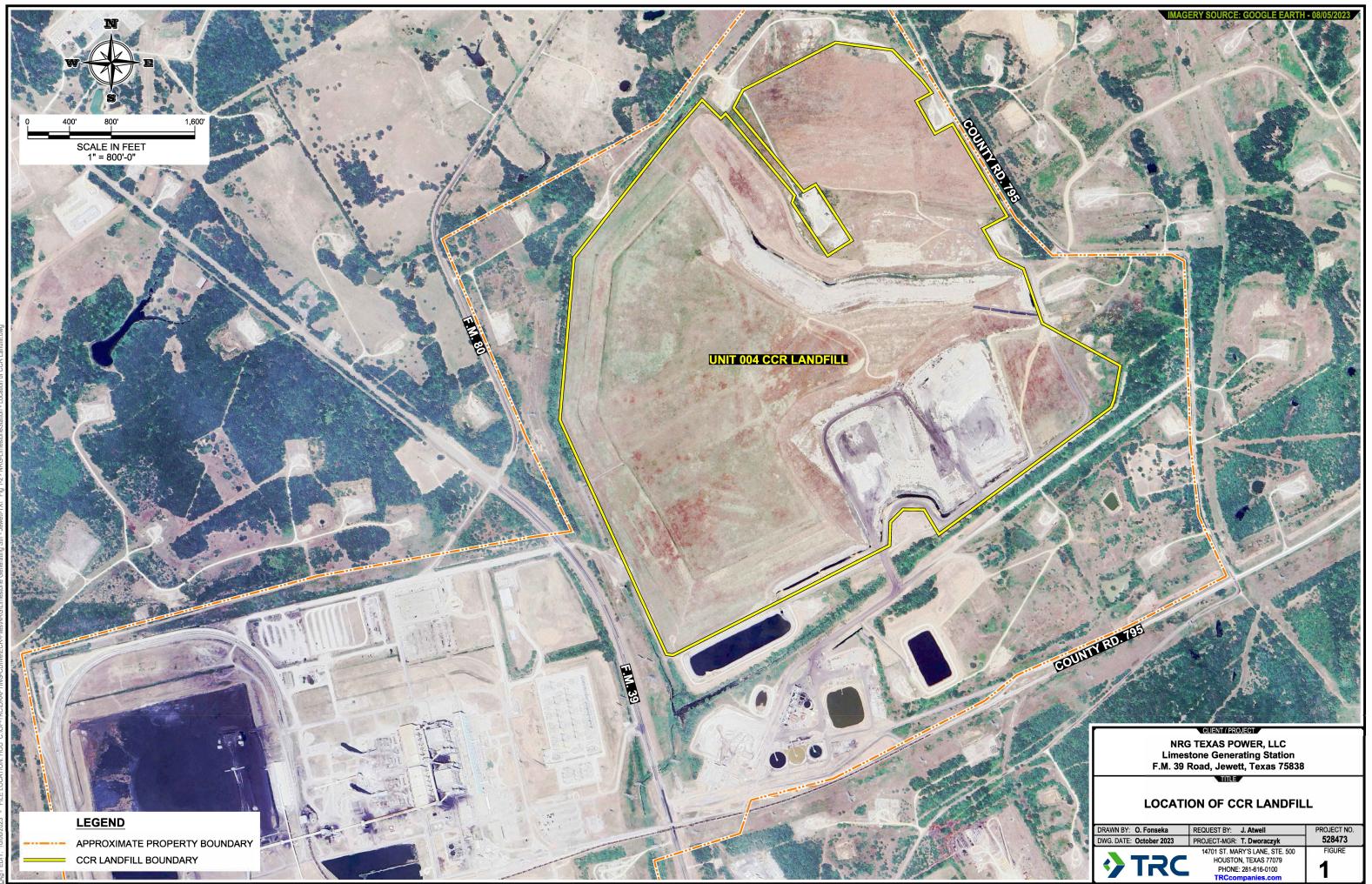
In addition to MW-21, pH at MW-01 was low for the April 2023 monitoring event. As discussed above, acidity is transported from a mine in groundwater or by surface water runoff that can then infiltrate into groundwater. Therefore, it is anticipated that the apparent SSI for pH for MW-01 is associated with the historical lignite mining and/or the oil and gas activities at the Station.

Finally, the concentration of sulfate at MW-28 was slightly greater than its UTL. MW-28 is located hydraulically upgradient of the Landfill and would likely not be related to a release from the Landfill. Therefore, the potential sulfate SSI is related to natural variations in groundwater quality.

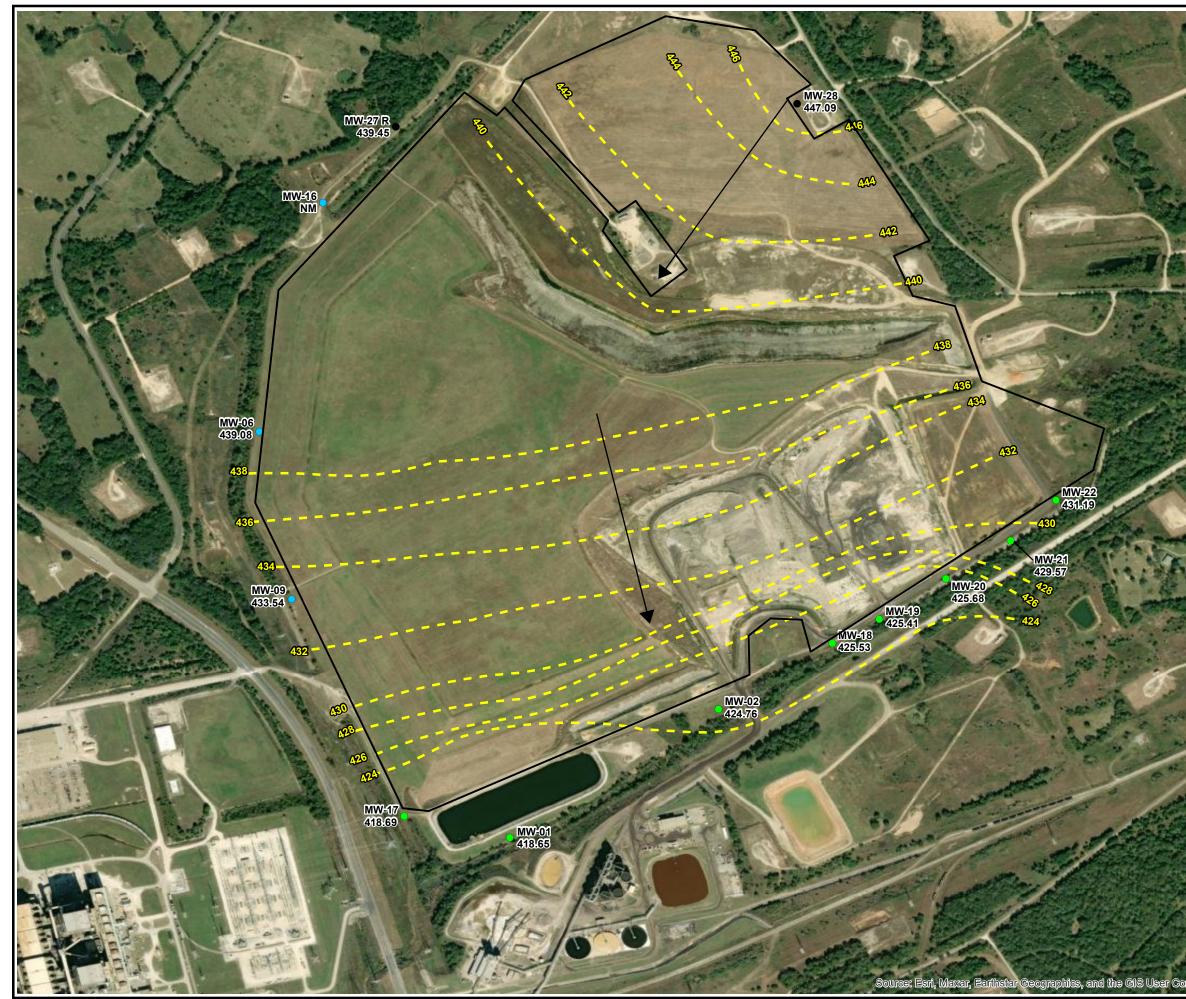
In summary, the apparent SSIs for boron, sulfate, and pH for the 12th semi-annual detection monitoring event are most likely related to other non-CCR off-site sources (oil and gas activities or the historic lignite mine), the apparent presence of lignite seams within the screened portion of the monitor wells, or natural variations in groundwater geochemistry (acidic pH conditions) rather than a release to groundwater from the Landfill. In particular, the apparent SSI in upgradient monitor well MW-28 for sulfate is related to natural variations in groundwater geochemistry associated with mineral dissolution and/or atmospheric deposition (Einsiedl & Mayer, 2005; Pu et al., 2012).

Section 4 Conclusions

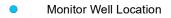
Based on statistical evaluation of the April 4, 2023 semi-annual detection monitoring event analytical results, and the May 2023 verification sampling events analytical results, three apparent SSIs: boron, sulfate, and pH; were identified for the Landfill. This ASD has identified the following lines of reasoning that support alternative sources for the apparent SSIs:


- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, EC, and/or salinity.

Therefore, based on the lines of reasoning presented in this ASD, alternative sources and/or natural variations in groundwater geochemistry, rather than a release from the Landfill have been demonstrated to be responsible for the apparent SSIs observed. Based on this successful ASD, NRG will continue semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.


- BEG 1972. *Geologic Atlas of Texas, Waco Sheet*. The University of Texas at Austin, Bureau of Economic Geology. Reprinted 1972.
- Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K., 2010. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: Spatial variability on arsenic and boron enrichment. *Journal of Hazardous Materials*, 180(1–3), 50–62. https://doi.org/10.1016/J.JHAZMAT.2010.01.008.
- Hollis, J. F., Keren, R., & Gal, M., 1988. Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. *Journal of Environmental Quality*, 17(2), 181–184. <u>https://doi.org/10.2134/JEQ1988.00472425001700020002X</u>.
- Keren, R., & Communar, G., 2009. Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. *Soil Science Society of America Journal*, 73(6), 2021–2025. <u>https://doi.org/10.2136/SSSAJ2008.0381</u>.
- Mid-East Texas Groundwater Conservation District (METGCD), 2019. GIS Data Portal. Available at: <u>https://metgcd.halff.com/Map/Public</u>. Accessed July 2, 2019.
- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. *Environmental Earth Sciences*, 72(12), 5139–5157. <u>https://doi.org/10.1007/s12665-014-3384-5</u>.
- Ravenscroft, P., & McArthur, J. M., 2004. Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. *Applied Geochemistry*, *19*(9), 1413–1430. <u>https://doi.org/10.1016/J.APGEOCHEM.2003.10.014</u>.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T., 2014. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. *Science of The Total Environment*, 473–474, 244–253. <u>https://doi.org/10.1016/J.SCITOTENV.2013.12.029</u>.
- ERM 2018a. 2017 Annual Groundwater Monitoring Report, Landfill (Unit 004). ERM, January 2018
- ERM 2017b. Ground Water Monitoring Networks for Coal Combustion Residual (CCR) Rule Compliance Report. ERM, October 2017.
- TRC 2018b. *Statistical Methods Certification Limestone Electric Generating Station*. TRC, August 2018.
- TRC 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2019.
- TRC 2019b. Technical Memorandum on Laboratory Quality Issues. TRC, April 24, 2019.

- TRC 2019c. Technical Memorandum on Laboratory Change for CCR Sampling Events. TRC, July 19, 2019.
- TWDB, 1990. *Aquifers of Texas*. Texas Water Development Board Report 380. Peter George, et al. July 2011.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H., 2014. Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. *Environmental Science and Pollution Research*, *21*(5), 3880–3890. https://doi.org/10.1007/s11356-013-2376-4.
- United States Department of Energy, Office of Scientific and Technical Information, 1983. Trace elements in Texas Lignite.
- United States Environmental Protection Agency, 2008. Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0. https://www.epa.gov/environmental-topics/water-topics.
- United States Geological Survey, 2018. National Produced Waters Geochemical Database, USGS IDs 99922 through 99929. United State Geological Survey. Accessed on July 16, 2018.
- TRC 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2020.
- TRC 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2021.
- TRC 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2022.
- TRC 2023. 2022 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2023.


Figures

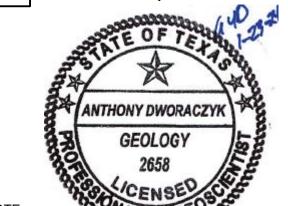
DRAWING By: Oskar Fonseka - FILE NAME: Fig 1-2 - NRG-LimestoneStation - Location of CCR Landfill.dwg

LEGEND

Landfill CCR Monitor Well •

Landfill Background CCR Monitor Well •

447.09 Groundwater Elevation (FT MSL)


Not Measured NM

Groundwater Flow Direction

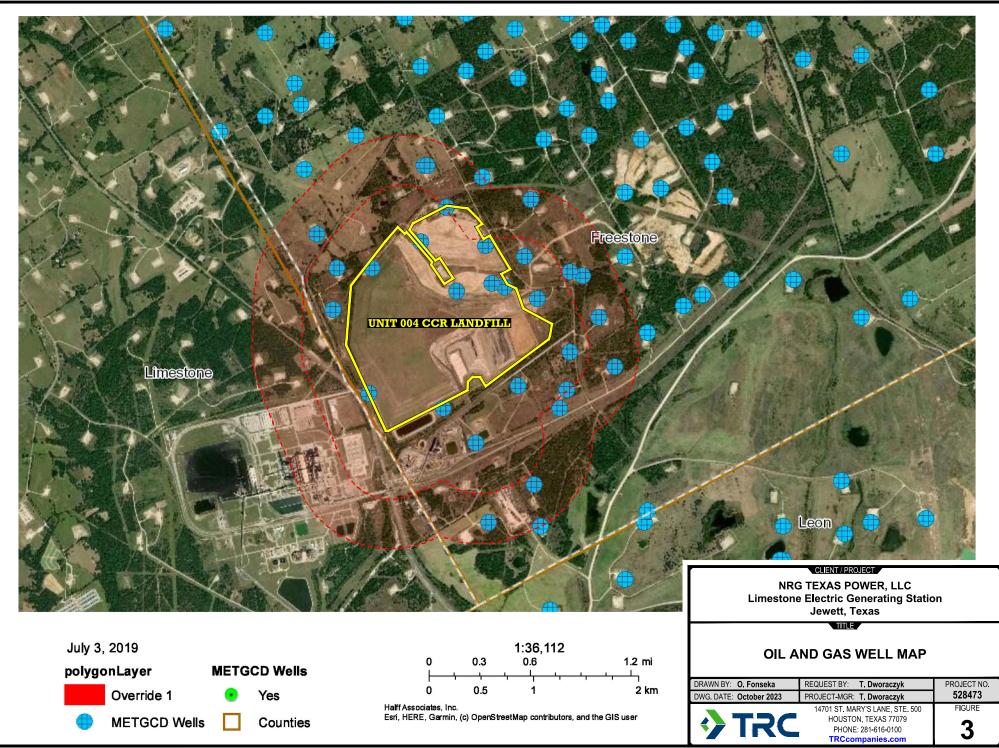
Groundwater Elevation Contour - Dashed where Inferred (FT MSL)

CCR Landfill Boundary

NOTE: GROUND' BY HMI ON APRIL 2023

un

1 " = 700 ' 1:8,400


PROJECT:

NRG TEXAS POWER, LLC LIMESTONE JEWETT, TEXAS

TITLE: **GROUNDWATER POTENTIOMETRIC SURFACE - APRIL 2023**

DRAWN BY:	F. Yarbrough	PROJ. NO.:	585632.0000.0000
CHECKED BY:	J. Atwell		
APPROVED BY:	A. Dworaczyk		FIGURE 2
DATE:	January 2024		
🤣 T	RC	14701 \$	St. Mary's Lane, Suite 500 Houston, TX, 77079 Phone 281.616.0100 www.trcsolutions.com
FILE NO.:			585632_2-2.mxd

Ν

FILE NAME: Fig 3 - NRG-LimestoneStn - Oil and Gas Well Map.dwg

Attachments

DRIL	LING I	OG H	OLE.NO.	-1	PROJECT NO.	0754	HOLE			- 1	OF	1
OCATIO					PROJECT/SITE	8754			SHEE	т_1_	OF	<u>_</u>
		stone Ele	ctric Generating	Station	GEO/ENG.	Hous	ton Lie	ghtii	ng É F	Power		
ROUND	±418.	06'	DRILL ANGLE 0°			Clyde	e Smit	h				
OLLAR	None	a Canal de La Constantina de La Canal de La Canal de La Canal de La Canal de La Canal de La Canal de La Canal d	DRILL DIRECTION Ve	ertical	CONTRACTOR	Reed	E Mo	rris				
OTAL	60'		STARTED	/86	DRILLER	Ray	Reed	-		n		
LEV. ATUM	Surfa	ce	COMPLETED 10/1	/86	RIG	CFD-	1	HO	a state of the local state of the	Rotar	y .	
		DEPTH	DATE	TIME	HOLE DIAMETER	5"				H ₂ O		1
RST FREE					TESTS		SAN	IPLE	S	COM	PLETION	1
	TER LEVEL											
TATIC WAT	TERLEVEL	4.88	10/7/86	1635	I L			-				
ELEV.	DEPTH	LEGEND	CLASSIFIC	CATION/DESC	RIPTION	REC	DV. SAMI	PLES	DR	ILLING F	REMARKS	
			Brown sand and o	lay				-				
	5 _											
	EI		Light gray, fine g	rained san	d with minor	1						
	10		amounts gray o	lay and iro	nstone							
							1					
	15-				2 ³		1					
	-			,	•							
	, T											
	20											
	E		Gray silty clay	ŦĸŎĬŢŶĂĬĬĸĹĬĬĊŎĬŦŎĸĬŔĊĬĊĊţĸŢĊŢŢŎŢŎŎĬŎĬĬĬĬŎ		1						
	25											
	_											
	30											
ŝ,	+		Intoub c d d = d l			1						
	=		Interbedded brow clay	n to tan sai	nd and gray							
	35		5.07									
	Ξ											
	40		- very lignitic	39-41'	· ·							
	_					1				÷		
	45			ili liften mangen synge tij staat de sekere se								
	1		Fine gray sand wi	th thin inte	erbeds of grav							
	· =		clay		5-7							
	50		-									
	7											
	55-		Gray clay	n Brannan an Annan an Anna <u>Ang</u> arga	ŦŦŢŦŎŎĊĸĸĸĊŎĿŎĬĬŎŦĨĊĿŎŢĸŢĨŢĔĸĊŢŎſŦŎĊĬŎĬĬŢŢĸĸĸĸŎĬĬŎĬĬ	1	1.0					
	Ē						1					
	60											
	° =		T.D. at 60'					-			an a su a compression a constant	
	-	-				1						
										24H(App1		

WELL COMPLE		CORD
JOB NO	GEOLOGIS	TClyde Smith
CLIENT HLEP	DRILLER	Reed & Morris
TOP OF CASING ELEVATION FT.	Π	STICK-UP_3.0 FT.
		GROUND SURFACE
		4 (14) 4 (14)
DETAILS OF CONSTRUCTION:	NN.	MATERIALS
Date Completed 10/1/86	NN	CEMENT (sks) 12
Hole Diameter (in) 77/8	NN	SAND (ft ³)8
Screen Size (in)	NN	PVC (ft)38.5
Screen Length (ft)20	3N	
Casing Size (in)4	NN	
Packer Depth (ft)Bentonite 33-30.5	NN	
Centralizer Depths (ft) <u>54</u> , <u>34</u> , <u>15</u> ,	JN -	
,,,,,	NN/	
Completion Technique:	NN -	• • • • • • • •
I) Sand Placement Method	NN	
Tremie	3N	
2)Grout Placement Method	NN	TOP OF BENTONITE PACK 30.5 FT.
Tremie	N	TOP OF SAND PACK <u>33</u> FT.
Description of Potential Problems With Well:		
None		TOP OF SCREEN 35.5 FT.
		· · · · ·
	H	BOTTOM OF SCREEN 55.5 FT.
ł		BOTTOM OF HOLE <u>56</u> FT.

NOTE: ALL DEPTHS ARE REFERENCED TO "DEPTH BELOW GROUND SURFACE"

2

·

Locare J

15

	STATE OF TEXAS WELL REPORT for Tracking #178434									
Owner:	NRG Texas Power Limestone Station	Owner Well #:	MW-17							
Address:	Rt. 1 BoX 85 Jewett, TX 75846	Grid #:	39-64-1							
Well Location:	FM 39 N.	Latitude:	31° 05' 14" N							
	Jewett, TX 75846	Longitude:	096° 07' 26" W							
Well County:	Limestone	Elevation:	No Data							
Type of Work:	New Well	Proposed Use:	Monitor							

	Diameter	(in.)	Top Depth (ft.)	Bottom Dep	oth (ft.)	
Borehole:	8.5		0	55		
Drilling Method:	Hollow Stem A	Auger				
Borehole Completion:	Filter Packed					
	Top Depth (ft.)	Bottom Depth (ft.)	F	ilter Material	Size	
Filter Pack Intervals:	38	55		Gravel	20/40	
	Top Depth (ft.)	Bottom Depth	n (ft.)	Description (number of s	sacks & material)	
Annular Seal Data:	0			4, Portlar	4, Portland	
	36	38	38 2, Bentonite			
	38	55		12 Sand		
Seal Method: G	rout		Distance	to Property Line (ft.):	No Data	
Sealed By: D	riller			Septic Field or other d contamination (ft.):	No Data	
			Distance	e to Septic Tank (ft.):	No Data	
			М	ethod of Verification:	No Data	
Surface Completion:	Alternative Pro	ocedure Used				
Water Level:	46 ft. below land surface on 2009-04-20 Measurement Method: Unknown					
	No Data					
Packers:	No Data					

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type				
Water Quality:	No Data	No Data				
		Chemical Analysis Made: No gly penetrate any strata which trained injurious constituents?: No				
Certification Data:	driller's direct supervision) ar correct. The driller understood	Iriller drilled this well (or the well was drilled under the nd that each and all of the statements herein are true and od that failure to complete the required items will result in for completion and resubmittal.				
Company Information:	Advanced Drilling System	ns, Inc.				
	904 W. Tidwell Houston, TX 77091					
Driller Name:	David Rogers	License Number: 52037				
Comments:	No Data					
From (ft) To (ft) Desc	thology: R OF FORMATION MATERIA cription Y CLAY with abundant Red	Casing: BLANK PIPE & WELL SCREEN DATA Dia. (in.) New/Used Type Setting From/To (ft.) 2 New PVC Casing 0-40 sch-40				
1-5: Gray very SILTY SA	ND moist with some	2 New PVC Slotted 40-55 0.01				
clayey sand seams						
- very silty						
5-12: Gray CLAYEY SAN	ID with abundant strong					
brown mottling						
- very silty						
- some black lignite sear	ms					
- wet						
- abundant yellowish bro	own mottling					
- abuundant strong brow	vn					
- very moist						
12-16: Gray, very SILTY	SAND					
- very moist						
- very fine grained						
- some yellowish brown	mottling					
- very silty						

16-20: Strong brown SILTY CLAY with abundant silty sand seams

- some yellowish brown clayey sand seams

20-26: Yellowish brown CLAYEY SAND with

abundant gray hard brittle clay seams

- some brownish yellow limonitic iron seams

- abundant dark gray clay seams

- very moist

- very silty

26-31: Brown very silty sand, very fine grained

31-42: Brown CLAYEY SAND with abundant

gray clay seams

- very moist

- some muscovite flakes

- abundant dark gray clay seams

- very moist

- some strong brown silty sand seams

- very silty

- very abundant dark gray seams

42-53: Dark gray SILTY SAND, fine grained,

abundant dark gray silty clay seams

- very silty

- saturated @ 46 bgs.

- abundant dark gray silty clay seams

very silty

- very moist

53-55: Very dark gray CLAY, firm

- some light gray silt seams

- lignite seams

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

MW-19 DRILLING LOG

							DRILLINGLOG				
, _	0345059					Date Drilled <u>2016-05-1</u> 7	SKETCH MAP				
Project _I	Limestone (CCR Rule	Well Installation	Owner_	NRG Ener	ду					
Location _											
N. Coord. <u>10507460.00</u> ' E. Coord. <u>3574645.00</u> ' Surface Elevation <u>440.94</u> ' <u>Ft. MSL</u> Datum											
Screen: Type <u>Schedule 40 PVC</u> Diam. <u>2.00</u> " Length <u>10.00</u> ' Slot Size <u>0.01</u> "											
Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>25.00 '</u> Sump Length <u>0.40 '</u>											
	Top of Ca	asing Elev	ation <u>443.79</u>			Stickup2.85 '	NOTES				
Depth to Wat	ter:	1. Ft	0.00 () 2.	Ft)	PP = Pocket Penetrometer				
Drilling Comp	bany Be	st Drilling	Services	Driller _	Bruce Mil	ton					
Drilling Metho	od <u>Ho</u>	llow Stem	Auger	Log By	Mike Kris						
) et)		_	a	'al	t)						
Elevation (Feet) Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)						
tion th (F	phic	Well struc	ble	ple Inte (Feet)	scrip /al (Description/Soil ((Color, Texture,					
eva Dep	Gra	Con		amp (Des		,				
	.			S							
						9					
440.94 - 0 -											
				0-5	0-1.6	SANDY CLAY: Yellowish-brown (10) less than 10 percent, PP=4.0 TSF	YR 6/4), dry, crumbly, hard, sand is				
440					1660						
		4 24			1.6-6.2	SILTY SAND: Light yellowish-brown hard, semi-plastic; thinly laminated. F					
	A						C Alternational Andrews				
	۵ ۵										
- 5-	^			5-10							
435	^ _			5-10							
					6.2-8	SANDY CLAY: Light yellowish-browr (10YR 5/8), dry to damp, stiff to hard					
							, semi-plastic, thirty laminated.				
					8-10	No Recovery					
- 10-				10-15	10-18.5	SILTY SAND: Dark yellowish-brown					
430	<u> </u>					wet at 15.5 to 15.8 feet then dry to da friable; thinly bedded. @16.8 feet thin					
	^ ^					rootlets at 10.3 feet.	OF TO				
	<u> </u>						TEOFIE				
	۵ م					45	10/10/19 *				
						*	James R. Davidson				
- 15-	<u> </u>			15-20		×	James R. Device				
425	^					PROP	10493 0 5				
							10493 Q				
							GONAL Y GEOS				
				~	18.5-20	No Recovery					
- 20-											
			CRANK AND THE PARTY OF THE PARTY OF		TRANSMIT AND A MARY PHOTO A						

MW-19 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> " N. Coord. <u>10507460.00</u> ' E. Coord. <u>3574645.00</u> ' Surface Elevation <u>440.94</u> ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>25.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 443.79 ' Stickup 2.85 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____(_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Graphic Log Sample Type Depth (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 20-34 SILTY SAND: Light olive-brown (2.5Y 5/3), damp becoming moist at 25 to 25.8 feet, damp 25.5 to 28 feet, damp to moist 28 to 30 feet, soft. 420 friable, thinly bedded; some lenticular clay nodules from 30 to 34 feet. 25 25-30 415 30-30-35 410 34-35.4 No Recovery James R. Davidson 35 T.D. = 35.40 ' Geology 405

40

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Boring T.D. <u>39.40</u> Boring Diam. <u>9.00</u> " Location N. Coord. 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 445.11 ' Stickup _2.99 ' NOTES Ft. <u>0.00</u> (______) 2. Ft. <u>0.00</u> (______) Depth to Water: 1. PP = Pocket Penetrometer **Best Driling Services** Bruce Milton **Drilling Company** Driller _ Log By __Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Construction Type Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 442.12= 0 0-5 0-0.7 SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm, brittle; sand less than 10 percent, 0.7-1.6 thinly laminated. 1.6-4 SILTY SAND: Yellowish-brown (10YR 5/4), dry, soft, friable; sand is fine 440 grained, subangular, silt approximately 10 percent. SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm to stiff, brittle; sand less than 10 percent, thinly laminated. PP=2.5-3.5 TSF 4-5 ~ No Recovery 5 SANDY CLAY: Very dark brown (7.5YR 2.3/3), dry, hard, brittle. 5-10 5-8.5 PP=4.5+TSF @6.8 feet becomes strong brown (7.5YR 4/6); @7.8 feet becomes light olive brown (2.5 Y 5/3) with some angular rock fragments. 435 8.5-10 No Recovery 10 10-15 10-25 SILTY SAND: Light yellowish-brown (2.5Y 6/4) and light gray (2.5Y 7/2) interbedded, dry, friable, well sorted, silt approximately 10 percent. @13.1 feet possible cross-bedding with rip-up (clay) clasts. @17.8 becomes damp, silt content increases to approximately 30 percent. 430 15-15-20 James R. Davidson Geology 425 20

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP Boring/Well ID MW-20 0345059 _____ Date Drilled __2016-05-17 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location ___ Boring T.D. <u>_____39.40 '____</u> Boring Diam. <u>_____9.00 "__</u> 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' N. Coord. _ Ft. MSL Datum Screen: Type Schedule 40 PVC 0.01 " _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u> Sump Length 0.40 ' Top of Casing Elevation 445.11 Stickup 2.99 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Driling Services **Drilling Company** Driller Bruce Milton Log By _____Mike Kristoff Drilling Method Hollow Stem Auger Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Sample Type Graphic Log Construction Depth (Feet) Well Description/Soil Classification (Color, Texture, Structure) 20 20-25 420 25 25-30 25-39.4 SILTY SAND: Olive-brown (2.5Y 4/4), damp to wet (becomes wet at 30-30.8 and 35-35.5 feet), soft, friable. Thinly laminated clay lenses at 37.7 to 37.8 ft. and 38.8 to 39.1 ft., damp, brittle. 415 30 30-35 410 James R. Davidsor 35 35-39.4 Geology 405 T.D. = 39.40 ' 40

2
1

MW-21 ERM Environmental Resources Management **DRILLING LOG** SKETCH MAP 0345059 Boring/Well ID _______ Date Drilled ______2016-05-18 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> N. Coord. <u>10508050.00</u> ' E. Coord. <u>3575406.00</u> ' Surface Elevation _____ 443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>25.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation _446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> (______) Ft. 0.00 Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Hollow Stem Auger Mike Kristoff **Drilling Method** Log By Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Type Construction Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 443.46-0 0-5 0-0.8 SANDY CLAY: Mottled yellowish-brown (10YR 5/4) and yellowish-red (10 YR 4/6), dry, stiff, brittle. PP=3.5 TSF 0.8-1.2 -SILTY SAND: Strong brown (7.5 YR 5/6), dry, soft, friable, well sorted. 1.2-2.9 Silt approx. 10 percent. SANDY CLAY: Dark yellowish-brown interlaminated with light brownish-gray (10YR 6/2), dry to damp, firm, semi-plastic. PP=2.5 TSF 2.9-8 ~ 440 SILTY SAND: Strong brown (7.5 YR 5/6) to yellowish-brown (10YR 4/4), dry, soft, friable, well sorted. Silt approx. 10 percent. @6.1 becomes dark brown (7.5YR 7/2). 5 5-10 8-10 No Recovery 435 10 SILTY SAND: Mottled dark yellowish-brown (10YR 4/4) and gray (10YR 10-15 10-19.5 5/1)dry, soft, friable, silt content about 40 percent. @11.2 feet becomes yellowish-brown (10YR 5/6) interlaminated with gray (10YR 5/1); @13.1 feet silt content decreases to 10 percent 430 -James R. Davidson 15 15-20 Geology 425 19.5-24.5 SILTY SAND: Yellowish-brown (10YR 5/4), moist, soft, friable, thinly bedded with well developed partings. @22.0 to 22.5 and 23.0 to 24.5 feet silt content increases to 40 percent.

20

MW-21 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 ______MW-21______ Date Drilled _____2016-05-18 Proj. No. Boring/Well ID Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. 35.40 ' Boring Diam. 9.00 " N. Coord. __10508050.00 ' E. Coord. _3575406.00 ' Surface Elevation __443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00</u> Length <u>25.00</u> Sump Length <u>0.40</u> Top of Casing Elevation 446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> ____ (______) Depth to Water: 1. Ft. <u>0.00</u> PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller _ Log By ____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Type Depth (Feet) Graphic Log Construction Well Description/Soil Classification Sample (Color, Texture, Structure) 20-20-25 420 24.5-31.4 SILTY SAND: Olive brown (2.5Y 4/5), moist, soft, friable, thinly bedded 25 25-30 with well developed partings. 415 30 30-35.4 31.4-31.9 CLAY: Interlaminated with silty sand. Clay is black (7.5YR 2.5/1), damp, 31.9-35.4 semi-plastic, soft. Silty sand is brown (10YR 4/3), damp, soft, friable. SILTY SAND: mottled yellowish brown (10YR 5/6) and light brownish-gray (10YR 6/2), damp becomes wet at 32.2 to 33 feet, 410 laminated. 35 T.D. = 35.40 ' James R. Davidsor Geology 405 40

MW-22 DRILLING LOG

									DRILLING LOG		
Proj. N	o. <u>0</u> 3	345059			Boring/W	ell ID	N-22	Date Drilled <u>2016-05-1</u> 8	SKETCH MAP		
Project	. <u>Li</u>	mestone	CCR Ru	e We	II Installation	Owner_	NRG Ener	ду	· · ·		
Locatio	on <u>Li</u>	mestone	EGS			Boring ⁻	r.d. <u>35.00</u>	Boring Diam. <u>9.00 "</u>			
N. Coo	N. Coord. <u>10508270.00</u> ' E. Coord. <u>3575669.00</u> ' Surface Elevation <u>444.68</u> ' <u>Ft. MSL</u> Datum										
Screen	Screen: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size <u>0.01 "</u>										
Casing	: Туре	e <u>Sche</u>									
		Top of C	Casing El	Stickup	NOTES						
Depth	to Wate	r:	1. Ft.	0.	00(_) 2.	Ft)	PP = Pocket Penetrometer		
Drilling	Compa	anv Be	est Drillin	q Ser	vices	Driller	Bruce Mil	ton			
	Method		ollow Ste								
								ana ta Balana an an an an an an an an an an an an			
Elevation (Feet)	(Feet)	-og	tion	ype		Sample Interval (Feet)	Description Interval (Feet)				
on (I	ר (F∉	hic I	Well struct	le T		ple Inte (Feet)	cripti al (F	Description/Soil ((Color, Texture)			
evati	Depth	Graphic Log	Well Construction	Sample Type		impli (F	Desc		, Structure)		
Ele		U	0	S		Sa	<u> </u>				
444.68-	0-					0-5	0-1.6	SILTY SAND: Strong brown (7.5YR	5/6), dry, soft, friable.		
	-										
	_						1.6-3.5	SANDY CLAY: Interlaminated dark y brownish-gray (10YR 6/2), damp, se			
-	_							······································	,,		
-	_	\bigtriangledown					3.5-5	No Recovery			
440 -	5—	\bigtriangleup				5-10	5-7.5	SILTY SAND: Strong brown (7.5YR	5/6) dry coff frichlo		
-	_					5-10	5-7.5		oroj, dry, son, mable.		
-											
-		\langle		ł			7.5-8.5	SANDY CLAY: Interlaminated dark y	ellowish-brown (10YR 4/4) and light		
_		\rightarrow					8.5-10	brownish-gray (10YR 6/2), damp, se No Recovery	mi-plastic.		
435 -	_										
100	10-					10-15	10-19	SILTY SAND: Interlaminated gray (7			
	-							5/6), damp, loose, friable, well sorted 11.6 bioturbation; @12.5 lenticular cl			
	_	A		╎╿				content increases to 40 percent.	COF TEL		
	_							l le	ALL AND		
	_							5	101101 *		
430 -	15—	<u> </u>				15-20			James R. Davidson		
-	_					10 20		PRO	Geology /F		
-								×	10493 0 2 SE //CENSE 55		
-		4							SISTONAL TOPOS		
-		A									
425 -	-	د					19-24	SILTY SAND: Interlaminated silty sa above. Sandy clay is strong brown, o			
120	20 —								ary to damp, ordinoly.		

MW-22 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-22 _____ Date Drilled <u>2016-05-1</u>8 Limestone CCR Rule Well Installation Project Owner ___ NRG Energy Limestone EGS Boring Diam. 9.00 " Location Boring T.D. 35.00 ' N. Coord. __10508270.00 ' E. Coord. _3575669.00 ' Surface Elevation _ 444.68 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type Schedule 40 PVC Diam. 2.00 Length 24.50 Sump Length 0.40 ' Top of Casing Elevation 447.59 ' Stickup 2.91 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Bruce Milton **Drilling Company** Hollow Stem Auger Log By _____Mike Kristoff **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Type Interval (Feet) Depth (Feet) Graphic Log Description **Description/Soil Classification** Sample -(Color, Texture, Structure) 20 20-25 24-30 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 420 parting surfaces. Silt content approx. 10 percent. @25.7 feet, silt content 25-25-30 increases to 40 percent. @28.1 silt content decreases to 10 percent. 415 30 30-35 30-31 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 31-31.8 parting surfaces. Silt content approx. 40 percent. 31.8-35 SILTY SAND: Brown, damp to moist, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. 410 35 T.D. = 35.00 ' James R. Davidsor Geology

405

40

ERM	M I	Enviro	nmen	tal F	Resource	s Manag	gement		MW-23 DRILLING LOG			
Proj. No	oC	345059			_ Boring/W	/ell IDM	W-23	Date Drilled 2016-04-13	SKETCH MAP			
Project	L	imestone	CCR Ru	le We	II Installation	Owner	NRG Energ	ΥΥ Υ				
Locatio	Location Limestone EGS Boring T.D. <u>45.00</u> Boring Diam. <u>9.00</u> "											
N. Coo	N. Coord. <u>10505630.00</u> ' E. Coord. <u>3571983.00</u> ' Surface Elevation <u>434.36</u> ' <u>Ft. MSL</u> Datum											
Screen	Screen: Type <u>PVC</u> Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size <u>0.01 "</u>											
								30.00 ' Sump Length				
					on _437.25 '			Stickup _ 2.89 '	NOTES			
Depth t	o Wate	er:	1. Ft	0.	00(_) 2.	Ft. <u>0.00</u> ()	PP = Pocket Penetrometer			
Drilling	Comp	any _B	est Drillin	g Ser	vices	Driller	Sonny To	bola				
Drilling	Metho	d	ollow Ste	m Au	ger							
et)	<u> </u>			0		ସ	(j					
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type		Sample Interval (Feet)	Description Interval (Feet)	Description/Soil C	Naccification			
ation	oth (I	aphic	Well	nple		ple Inte (Feet)	scrip val ((Color, Texture,				
Eleva	Dep	Gra	Col	San		Sam	De Inter					
			Π	-								
			+~+									
434.36-	0 -	2000				0-5	0-0.5	GRAVEL: Roadbase - crushed limes	tone with silt matrix, greenish-gray			
	-	$\langle \rangle \rangle$		1			0.5-10.6	(Gley 1/6/10Y). SANDY CLAY: Fill Material - Light ye	0 0 9			
	-							thinly laminated, brittle. PP =1.0 TSF				
	-	$\langle \rangle$										
	-	\sum							TE OF TEX			
430 -	5-	$\langle \rangle \rangle$				5-10			ST to A shall be a			
	_	$\langle \rangle \rangle$				5-10		+	James R. Davidson			
	_	\sum							Geology E			
-	_	$\langle \rangle \rangle$							0 10493 0			
	_	\sum							10493 D TICENSE DONAL TGEOSC			
425 -	10-	$\langle \rangle \rangle$				10.15			AL YOU			
-	10	$\langle \cdot \rangle$				10-15	10.6-10.61	LIGNITE: Black organic plant materia	I consisting of decaying rootlets			
-		\sum					10.61-17.5	and grass. SANDY CLAY: Dark red (2.5 YR 3/6)	dry firm to stiff rootlets at 13.4 ft			
-	_							becomes thinly bedded at 14.3 ft. Sh				
-	_											
420 -	_	\sum										
-	15-					15-20	8					
-	-	$\langle \rangle$										
-		\sum		1 🛛			17.5-27.4	SILTY SAND: Very dark grayish-brow	vn (10YR 3/2) grading down to light			
-	-							gray (10YR 7/1), soft, friable; thinly b	edded, sand is fine grained, well			
415-	-							sorted, subangular to angular. @23.1 yellowish-brown.	Decomes mottled with dark			
	20-											

H:\DWG\F16\Log\0345059-MW-23.dwg 6/29/2016 9:59:27 AM

MW-23 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-23 Date Drilled _2016-04-13 Limestone CCR Rule Well Installation Owner NRG Energy Project Boring T.D. <u>45.00</u> Boring Diam. <u>9.00</u> " Location Limestone EGS N. Coord. 10505630.00 ' E. Coord. 3571983.00 ' Surface Elevation 434.36 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size _ 0.01 " Casing: Type PVC ___ Diam. <u>2.00 "</u> Length <u>30.00 '</u> 0.40 ' Sump Length Top of Casing Elevation _437.25 ' Stickup _ 2.89 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____ Depth to Water: _) PP = Pocket Penetrometer Best Drilling Services **Drilling Company** ____ Driller ___ Sonny Tobola Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval Elevation (Feet) Well Construction Description Interval (Feet) **Graphic Log** Sample Type Depth (Feet) (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 James R. Davidson 410 25 25-30 27.4-30.6 SAND: Light greenish-gray (Gley 1/7/10Y), moist, soft, friable, sand is fine grained, well sorted, subangular, trace of silt. @28 ft. rootlets. 405 30 30-35 30.6-32.4 SILTY SAND: Strong brown (7.5YR 4/6), dry to damp, sand is fine grained, well sorted, lenticular clay clasts at base. 32.4-33.1 SHALE: Light brownish-gray (2.5Y 6/2), dry, blocky, thinly laminated, brittle. 33.1-42.5 SILTY SAND: Strong brown (7.5YR 4/6), damp becoming wet at 40 feet, sand is fine grained, well sorted, @35.7 - Shale seam, hard, @38.0-38.1 400 - Shale seam, thinly laminated, crumbly; @38.7 shale interclasts. 35 35-40 395 40

ERM Environ	mental Resource	s Managem	t	MW-23 DRILLING LOG
Proj. No. 0345059 Project Limestone C Location Limestone E N. Coord. 10505630.00 Screen: Type PVC Casing: Type PVC Top of Casing: Top of Casing	Boring/W CCR Rule Well Installation GS O' E. Coord. 3571983.0 O state Image: Solution state State <td< td=""><td>Vell ID <u>MW-23</u> Owner <u>NR</u> Boring T.D. <u>00</u>' Surface Eleva Diam. <u>2.00 "</u> Len Diam. <u>2.00 "</u> Len</td><td> Date Drilled <u>2016-04-1</u>3 nergy .00 ' Boring Diam. <u>9.00 "</u> n <u>434.36 ' Ft. MSL</u> Datum <u>10.00 '</u> Slot Size <u>0.01 "</u> <u>30.00 '</u> Sump Length <u>0.40 '</u></td><td>DRILLING LOG SKETCH MAP NOTES PP = Pocket Penetrometer</td></td<>	Vell ID <u>MW-23</u> Owner <u>NR</u> Boring T.D. <u>00</u> ' Surface Eleva Diam. <u>2.00 "</u> Len Diam. <u>2.00 "</u> Len	Date Drilled <u>2016-04-1</u> 3 nergy .00 ' Boring Diam. <u>9.00 "</u> n <u>434.36 ' Ft. MSL</u> Datum <u>10.00 '</u> Slot Size <u>0.01 "</u> <u>30.00 '</u> Sump Length <u>0.40 '</u>	DRILLING LOG SKETCH MAP NOTES PP = Pocket Penetrometer
	st Drilling Services		r Tobola Kristoff	
Feet) set)	Well Construction Sample Type	Sample Interval (Feet) Description	Description/Soil (Color, Textur	
		40-45 42.5 43.	brittlo	6/2), dry, blocky, thinly laminated,

Environmental Resources Management

DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID ______ Date Drilled _______ 2016-04-14 Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. __10511130.00 ' E. Coord. __3573967.00 ' Surface Elevation ___474.57 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " _____ Diam. <u>2.00 "</u> Length <u>50.00 '</u> Sump Length <u>0.40 '</u> Casing: Type PVC Top of Casing Elevation 477.52 ' Stickup 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Type Depth (Feet) Graphic Log Sample 1 **Description/Soil Classification** (Color, Texture, Structure) 474.57-0 0-5 0-5 NOT SAMPLED: Hydrovac 470 5 5-10 5-18 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30 %: fine grained, subangular. @ 10 ft, sand content decreases to approx. 10%, breaks along laminae. 465 -10. 10-15 Davidson James R. Geology 460 15 15-20 CLAYEY SAND: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly bedded, fine grained, uncemented, cohesive, well sorted, subangular, clay approx. 40% - dry, damp. 18-18.4

18.4-22.5

455

20

SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly

subangular, 7.5YR/5/8 strong brown.

laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained,

MW-28

MW-28 **Environmental Resources Management** DRILLING LOG SKETCH MAP 0345059 Proj. No. Boring/Well ID MW-28 Date Drilled 2016-04-14 Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 Stickup 2.95 ' NOTES Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Driller ____ Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Type Depth (Feet) **Graphic Log Description/Soil Classification** Sample 1 (Color, Texture, Structure) 20 20-25 Davidsor James R. Geology 03 22.5-25 No Recovery 450 25 25-30 25-25.8 SILTY SAND: Glev 1/7/10Y Light Greenish Grav, fine grained. subangular to subrounded, uncemented, well sorted, damp to moist, 25.8-27.3 cohesive, silt approx. 10% SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% -27.3-28.5 fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 28.5-30 SILTY SAND: Gley 1/7/10Y Light Greenish Gray, fine grained, 445 subangular to subrounded, uncemented, well sorted, dry to damp, 30 cohesive, silt approx. 10% 30-35 30-32.5 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 32.5-35 INTERBEDDED CLAY AND SAND: Silty Sand - 30-30.3 ft, 31.2-31.4 ft, 32.2-32.4 ft. - Gley 1/7/10Y Light Greenish Gray, fine grained, subangular to subrounded, uncemented, well sorted, damp to moist, cohesive, silt approx. 10%. Sandy Clay - 30.3-31.2 ft, 31.4-32.2 ft, 440 32.4-32.5 ft. - 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly 35 35-40 35-40 laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. No Recovery INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/5/8 Strong brown, fine grained, uncemented, well sorted, subangular, dry to damp. Shale - 7.5YR/5/1 Gray, non-plastic, dry, 2.0 TSF, trace sand. 435 40

Proj. No.

Project

Location

0345059

Screen: Type PVC

Casing: Type PVC

Depth to Water:

Drilling Company

Drilling Method

Limestone EGS

Hollow Stem Auger

Environmental Resources Management

SKETCH MAP Boring/Well ID _______ Date Drilled ______4 Limestone CCR Rule Well Installation Owner NRG Energy Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup _ 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____ (_____) PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola Log By _____ Don Whitley le Interval ⁻eet) al (Feet) cription Description/Soil Classification (Color Texture Structure)

MW-28

DRILLING LOG

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
	40 — 				40-45	40-45	INTERBEDDED CLAY AND SAND: Shale - 40-40.4 ft, 40.8-41.1 ft, 41.4-43.8 ft, 44.2-45 ft non-plastic, thinly laminated, breaks along laminae, trace sand. Silty Sand - 40.4-40.8 ft, 41.1-41.4 ft, 43.8-44.2 ft 7.5YR/5/8 Strong brown, fine grained, uncemented, subangular, well sorted, damp to moist.
430 - - -				X	45-50	45-50	INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand.
425 -					50-55	50-56.6	SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 52.9-53.2 Silty Sand seam - 7.5YR/4/3 Brown, fine grained, uncemented, subangular, wet.
420 - - - - 415 -	55 — — — 60 —				55-60	56.6-57.1 57.1-58.5 \ 58.5-60	SILTY SAND: 7.5YR/4/2 Brown, fine grained, uncemented, subangular, wet to saturated SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout No Recovery

H:\DWG\ 6\Log\0345059-MW-28.dwg 6/29/2016 10:20:56 AM

Environmental Resources Management DRILLING LOG 0345059 Boring/Well ID <u>MW-28</u> Date Drilled <u>2016-04-1</u>4 SKETCH MAP Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> Location N. Coord. __10511130.00 ' E. Coord. _3573967.00 ' Surface Elevation __ 474.57 Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup _____2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** Hollow Stem Auger Log By _____ Don Whitley Drilling Method Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Depth (Feet) Graphic Log Sample Type Description/Soil Classification (Color, Texture, Structure) 60 60-65 60-60.7 INTERBEDDED CLAY AND SAND: Thinly alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, 60.7-69.5 _\ subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand. SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 61.5-61.7 - Silty Sand lense, 7.5YR/4/2 Brown 410 65 65-70 405 T.D. = 70.00' 70 James R. Davidson 400 75-

395

80

MW-28

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: January 31, 2024 Facility Name: <u>NRG-Limestone Generating Station</u> Permit or Registration No.: <u>CCR 115</u> Nature of Correspondence:

Initial/New

Response/Revision to TCEQ Tracking No.: _____ (from subject line of TCEQ letter regarding initial submission)

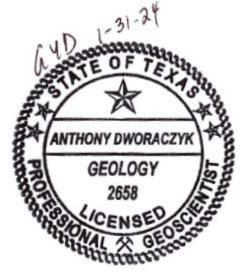
Affix this cover sheet to the front of your submission to the Waste Permits Division. Check appropriate box for type of correspondence. Contact WPD at (512) 239-2335 if you have questions regarding this form.

Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
New Permit (including Subchapter T)	Compost Report
New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
🗌 Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
Transfer/Name Change Modification	Liner Evaluation Report
Temporary Authorization	Soil Boring Plan
Uvoluntary Revocation	Special Waste Request
Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	

Table 1 - Municipal Solid Waste Correspondence

Table 2 - Industrial & Hazardous Waste Correspondence

Applications	Reports and Responses
New	Annual/Biennial Site Activity Report
Renewal	CPT Plan/Result
Post-Closure Order	Closure Certification/Report
🗌 Major Amendment	Construction Certification/Report
🗌 Minor Amendment	CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	Interim Status Change
Class 3 Modification	Interim Status Closure Plan
Class 2 Modification	Soil Core Monitoring Report
Class 1 ED Modification	Treatability Study
Class 1 Modification	Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	Other:
335.6 Notification	
Other:	


Alternative Source Demonstration

Limestone Electric Generating Station Landfill (Unit 004)

TCEQ Coal Combustion Residuals (CCR) Registration No. CCR115 Industrial Solid Waste Registration No. 32490 EPA Identification No. TXD000837336 RN100542927/CN603207218

January 2024

Prepared For NRG Texas Power, LLC Jewett, Texas

Gregory E. Tieman, L.R.S. Senior Client Service Manager

Tony Rumak

Tony Dworaczyk, P.G. Project Manager

TRC Environmental Corporation | NRG Texas Power, LLC Alternate Source Demonstration, Limestone, Landfill (Unit 004)

\\EMPLOYEES.ROOT.LOCAL\ENV\ECW\HST\PROJECTS\NRG\LIMESTONE\2023\CCR\ASDS\JAN 2024\LMS LANDFILL ASD 1-2024 DRAFT.DOCX

Table of Contents

Executive S	ummary	'ii	
Section 1 In	itroducti	on1-1	
1.1	Backgr	ound1-1	
	1.1.1	Groundwater Monitoring Program1-1	
1.2	Purpos	5e1-2	
Section 2 Si	te Geolo	ogy and Hydrogeology2-1	
2.1	Hydrogeology2-1		
2.2	Surrou	nding Area2-1	
	2.2.1	Oil and Gas Production Wells2-1	
	2.2.2	Lignite Mine2-2	
	2.2.3	Lignite/Shale Seams in Monitoring Wells2-3	
2.3	3 Groundwater Geochemistry		
	2.3.1	Boron in Groundwater	
	2.3.2	pH2-4	
Section 3 A	lternativ	e Source Demonstration3-1	
Section 4 Co	onclusio	ns4-1	
Section 5 R	eference	es5-1	

List of Figures

Figure 1	Site Map
Figure 2	Potentiometric Flow Map – October 2023
Figure 3	METGCD Well Map

Attachments

Attachment 1	Boring Logs
--------------	-------------

Executive Summary

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. Units managing coal combustion residuals (CCR) at the Station are subject to the requirements of 30 Texas Administrative Code (TAC) Chapter 352. CCR generated at the Station consists of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge. The Station has one active CCR unit, the Landfill (Unit 004), that is managed pursuant to 30 TAC Chapter 352, which is the subject of this Alternative Source Demonstration (ASD).

The 13th semi-annual groundwater detection monitoring event was conducted on October 10, 2023. Verification sampling was not performed for this sampling event. Statistical evaluation of the Appendix III monitoring parameters was performed within 60 days of sample collection to identify apparent statistically significant increases (SSIs) above background pursuant to 30 TAC 352 Subpart H. Two apparent SSI: boron and pH were identified. TRC, on behalf of NRG notified the Texas Commission on Environmental Quality (TCEQ) of its intent to prepare an ASD on December 9, 2023.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the second half 2019 (July) through the first half 2021 (April). The April 2023 semi-annual detection monitoring event analytical results, including the May 2023 verification sample results, are the fourth data set statistically evaluated using the new background water quality data set.

This ASD successfully identified alternative sources for the apparent SSIs at the Landfill, based on the following lines of reasoning:

- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 miles south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, electrical conductivity (EC), and/or salinity.

Therefore, NRG will continue performing semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.

Section 1 Introduction

1.1 Background

The NRG Texas Power, LLC (NRG) Limestone Electric Generating Station (Station) is located approximately seven miles northwest of Jewett, Texas and approximately 0.5 miles north of the intersection of Limestone, Freestone, and Leon Counties. The Station is bisected by Farm-to-Market Road 39 (FM 39), which runs north-south through the middle of the Station. The western portion of the Station is located in Limestone County and includes the electricity generating portion of the Station. The eastern portion of the Station is located in Freestone County and includes the solid waste disposal area (SWDA).

Management of coal combustion residuals (CCR) at the Station is performed pursuant to 30 Texas Administrative Code (TAC) Chapter 352, which became effective during June 2021. Prior to this, management of CCR was performed pursuant to the United States Environmental Protection Agency (USEPA) final rule for the regulation and management of CCR under the Resource Conservation and Recovery Act (RCRA) Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) (CCR Rule, effective date October 17, 2015). CCR generated at the Station consist of fly ash, bottom ash, and flue gas desulfurization (FGD) scrubber sludge, which have been classified by the TCEQ as Class II nonhazardous waste. The Station has one active CCR-management unit – Landfill (Unit 004).

The Landfill is located within the eastern portion of the Station as shown on Figure 1. The Landfill was constructed in 1980 and is used for the final disposition of CCR. The western half of the Landfill has reached capacity and historically had been closed and capped prior to the effective date of the CCR Rule (October 19, 2015). CCR is currently being placed at the southern part of the eastern portion of the Landfill.

1.1.1 Groundwater Monitoring Program

The certified CCR monitoring well network for the Landfill consists of two upgradient background monitoring wells (MW-27R and MW-28) and eight downgradient monitoring wells (MW-01, MW-02, MW-17, MW-18, MW-19, MW-20, MW-21, and MW-22). A groundwater potentiometric surface map was prepared by TRC for the October 2023 semi-annual detection monitoring event and is provided in this ASD as Figure 2. The direction of groundwater flow beneath the Landfill was to the south - southwest.

On behalf of NRG, Environmental Resources Management, Inc. (ERM) conducted eight independent background groundwater detection monitoring events for both the Appendix III and IV CCR constituents between April 2015 and August 2017 per §257.94(b) of the federal CCR Rule and the first semi-annual detection monitoring event in October 2017. Results of the eight background and first semi-annual

detection monitoring events were documented in the *Annual Groundwater Monitoring Report, Landfill* (Unit 004) (ERM 2018a) pursuant to §257.90(e).

The Station has continued to conduct semi-annual detection monitoring at the Landfill per the federal CCR Rule and 30 TAC Chapter 352. As of the April 2023 sampling event, a total of 12 semi-annual detection monitoring events have now been performed. Following each semi-annual detection monitoring sampling event, the results have been evaluated for potential SSIs, and ASDs have been prepared as needed. Since implementation of 30 TAC Chapter 352, the ASDs have been submitted to TCEQ for review and approval. The semi-annual detection monitoring activities and ASDs have been included in the Annual Groundwater Monitoring and Corrective Action reports, which have been placed into the Facility Operating Record (FOR) and posted to NRG's publicly accessible website.

As previously described in the ASD for the third semi-annual detection monitoring event, persistent, unresolvable issues with data quality necessitated establishment of a new background water quality data set. The new background water quality data set was developed for both Appendix III and Appendix IV CCR constituents collected quarterly from the third half 2019 (July) through the first half 2021 (April). The October 2023 semi-annual detection monitoring event analytical results are the fifth data set statistically evaluated using the new background water quality data set.

1.2 Purpose

TRC prepared this ASD to evaluate two apparent SSIs above background levels: boron and pH; for the 13th semi-annual detection monitoring event in accordance with 30 TAC Chapter 352.

Section 2 Site Geology and Hydrogeology

This section provides information about the geology and hydrogeology of the Station and the area at and surrounding the Landfill.

2.1 Hydrogeology

Based on the *Geologic Atlas of Texas, Waco Sheet* (BEG 1972), the Station is primarily located within the outcrop of the Calvert Bluff Formation of the Wilcox Group. Minor portions of the southeast corner of the Station are located within the outcrop of the Carrizo Sand and minor portions of the southwest corner of the Station are immediately underlain by alluvium. The Calvert Bluff Formation underlies both the Carrizo Sand and alluvium where present.

The Landfill is located solely within the outcrop of the Calvert Bluff Formation (BEG 1972); however, site investigation data indicate the Landfill may also be located within the outcrop of the Carrizo Sand. The Calvert Bluff Formation consists mostly of mudstone interbedded with fine sandstone, lignite, and ironstone concretions. The mudstone contains silt and very fine sand laminae. The Carrizo Sand consists of very fine sand with partings of silty clay, carbonaceous clay, and ironstone. The Carrizo Sand and the Wilcox Group comprise the Carrizo-Wilcox aquifer, which is recognized by the Texas Water Development Board (TWDB) as a major aquifer system in Texas. The Station is located within the outcrop, or the recharge zone, of the Carrizo-Wilcox aquifer (TWDB 2011).

Site investigations were conducted at the Station by Espey, Huston & Associated in 1986; Radian International in 1996 and 1997; EPRI in 2007, and Environmental Resources Management, Inc. (ERM) in 2016. The results of these investigations were summarized in the October 2017 *Ground Water Monitoring Networks for Coal Combustion Residual (CCR) Rule Compliance* report (ERM 2017b). Surficial material at the Landfill consists of in-situ or reworked clay from the Axtell-Tabor soil association. This clay is the source material for the Landfill liner and cap. Boring logs indicate the surficial material is underlain by interbedded clays, silts, and sands of the Quaternary alluvium, Carrizo Sand, and Calvert Bluff Formation. The boundaries between these units are generally indistinguishable.

2.2 Surrounding Area

2.2.1 Oil and Gas Production Wells

The Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of the installation and operation of natural gas production wells. Numerous active natural gas wells and their associated well pads, surface pits, subsurface pipelines, and infrastructure are

located immediately surrounding and within the footprint of the Landfill. Figure 3 is a Mid-East Texas Groundwater Conservation District (METGCD) well map showing the locations of wells in the vicinity of the Landfill. The map is limited to Freestone and Leon counties and does not show wells in Limestone County immediately west of the Landfill. This figure demonstrates the extent to which non-CCR sources of constituents to groundwater pervade the vicinity of the Landfill.

Surface well pits typically contain spent completion fluids or workover fluids. Completion or workover fluids are often brine-containing liquids that are used for well testing and are chemically compatible with the formation fluids; and the spent fluids contained in the pits would have come into contact with formation water According to the United States Geological Survey (USGS) National Produced Waters Geochemical Database, water co-produced with hydrocarbons (referred to as "produced water" or "formation water") from geologic formations underlying the Site has the following composition (USGS 2018):

- pH ranging from 4.67 standard units (SU) to 5.6 SU;
- Calcium ranging from 12,560 milligrams per liter (mg/L) to 33,520 mg/L;
- Chloride ranging from 56,980 mg/L to 96,200 mg/L;
- Sulfate ranging from 480 mg/L to 1,790 mg/L; and
- Total dissolved solids (TDS) ranging from 98,330 mg/L to 152,970 mg/L.

Considering the composition of the formation water with which the completion or workover fluids came into contact and the typical brine composition of these fluids, potential releases of these fluids would be expected to affect groundwater quality within the immediate vicinity and downgradient of the natural gas well pads and surface pits. Even minor releases of these fluids could increase the concentrations of calcium, chloride, sulfate, and TDS and decrease the pH in the nearby Landfill upgradient and downgradient monitoring wells.

2.2.2 Lignite Mine

Approximately 1.5 miles south of the Landfill is the Jewett lignite mine. The Jewett Mine is a 35,000-acre surface-mine complex. The mine, which is one of the largest in Texas, produced about 5.3 million short tons of lignite per year, according to the U.S. Department of Energy (USDOE). The 31-year-old mine provided lignite for combustion at the Station. In 2018, NRG decided to close the mine and is in the process of performing reclamation.

In 2020, the Jewett Mine had four final pits containing water ranging from approximately 340 million to 1.5 billion gallons. The estimated volumes remaining in the pits in 2020 were as follows:

- E-South Final Pit: 342,000,000 gallons;
- RP-D9 Final Pit: 403,000,000 gallons;
- B-North Final Pit: 375,000,000 gallons; and

• BX Final Pit: 1,290,000,000 gallons.

The pits can have depths greater than 100 feet. The groundwater potentiometric surface is generally understood to be above the bottom of the pits. Multiple seams of lignite at varying depths below the ground surface were removed from these pits during mining.

According to the U.S Department of Energy, Office of Scientific and Technical Information, *Trace elements in Texas Lignite*, 1983, during coal mining and utilization, trace elements are released into the environment. Certain of these elements may have beneficial or neutral effects while other trace elements are potentially harmful. On a national basis, nine of these elements: antimony, arsenic, boron, cadmium, germanium, mercury, molybdenum, selenium, and silver; are commonly found in concentrations greater than the levels present in typical crustal rocks. Because of the conditions under which Gulf Coast lignites were deposited and the nature of lignites in general, the modes of occurrence and concentrations of trace elements in Texas lignite samples from Arkansas, Mississippi, and Alabama compiled in 1975, Gulf Coast lignites were identified as having higher levels of boron, lanthanum, lead, selenium, uranium, yttrium, and zirconium than other US coal regions.

2.2.3 Lignite/Shale Seams in Monitoring Wells

A review of the boring logs for the Landfill monitoring network identified lignite seams and shale starting at around 37 feet below ground surface (bgs) in some of the borings. As noted on the boring logs in Attachment 1, monitor wells were completed across these lignite and shale seams. Although lignite seams and shale are not noted in all of the borings for the monitoring network, the presences of these minerals in the subsurface would have an effect on groundwater quality for the region.

As noted above, lignite contains trace elements that are released into the environment, which include boron. As presented in the Geological Survey Bulletin 1314-A, *Geochemical Investigations of Some Black Shales and Associated Rocks*, trace elements of boron, barium, gallium, and strontium are found in the upper cretaceous shales of Texas. The following section discusses the geochemistry of the groundwater in the area.

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics of the groundwater, and analyzing both natural and potential anthropogenic impacts on groundwater. Separate from potential source areas of contamination, geochemical processes are critical in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions, and adsorption-desorption processes.

2.3.1 Boron in Groundwater

Boron is normally considered to be a minor constituent in groundwater since it is generally present in low concentrations (Palmucci & Rusi, 2014). Apart from a potential boron source area, the primary origin of boron in groundwater is typically associated with the processes of sorption and desorption from mineral surfaces including soil and bedrock (Ravenscroft & McArthur, 2004). Boron is often cited as a contaminant trace chemical and usually occurs as a non-ionized form as H_3BO_3 in soils at pH <8.5, but above this pH, it exists as an anion, $B(OH)_4^-$ (Upadhyaya et al., 2014).

The factors that may influence the concentration of boron in groundwater include weathering, human activity, evaporative concentration, ion-exchange, EC, and pH. Ravenscroft & McArthur (2004) investigated the mechanism of regional boron enrichment in groundwater and the results indicated that the main process resulting in boron enrichment in groundwater was flushing by fresh groundwater. The desorption of boron from mineral surfaces could be affected by pH, ionic strength, salinity, and the HCO₃/CO₃ ratio. Decreases in pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH in rocks, soils, and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

Additional investigations confirmed that the presence of boron in groundwater depends on the EC (salinity), such that the concentration of boron increases with increasing EC. Halim et al. (2010) reported that the increae in Cl⁻ contributes to an increase in EC value since a strong linear correlation ($R^2 = 0.88$) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between elevated concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO₄²⁻/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) determined that the concentration of boron in groundwater was related to SO₄²⁻ and the age affect.

Regarding concentrations of boron in groundwater at the Landfill, the source of boron is more likely natural rather than anthropogenic. Therefore, the increase in concentration of boron at MW-21 can be related to natural variations in groundwater geochemistry related to pH, ion exchanges, EC, and salinity.

2.3.2 pH

The one apparent pH SSI identified in MW-01 appears to be related to natural variations in groundwater quality as impacted by oil and gas activity in the area and the presence of lignite in the subsurface resulting in changes in the geochemistry of the uppermost aquifer system such as pH and oxidation-reduction potential (ORP) and are also related to changes in the measured concentrations of CCR constituents.

Section 3 Alternative Source Demonstration

The 13th semi-annual detection monitoring event was conducted on October 10, 2023 per 30 TAC Chapter 352. Statistical evaluation of the results (comparison of downgradient monitoring results to 95 percent confidence/95 percent coverage upper tolerance limits [UTLs]) was performed within 60 days of sample collection to identify apparent SSIs above background pursuant to 30 TAC 352, Subpart H. Two apparent SSI was identified: boron and pH.

verification sampling was not conducted for the initial tow apparent SSIs. NRG notified the TCEQ of its intent to prepare an ASD on December 9, 2023, addressing the apparent SSIs for boron, sulfate, and pH.

The UTLs and sampling results for the for the apparent SSIs are provided in Table 1 below.

ANALYTE	WELL	LTL	UTL	SAMPLE DATE	VALUE	UNIT
Boron	MW-21 (DG)	NA	0.44	05/01/2023	0.652	mg/L
рН	MW-01 (DG)	4.1	7.6	05/01/2023	3.90	s.u.

 Table 1
 SSI – April 2023 Semi-annual Detection Monitoring Event

Notes: DG = Downgradient UG = Upgradient

mg/L = milligrams per Liter

Alternative sources for the apparent SSIs encompass a range of apparent lines of reasoning and include the following non-CCR sources located in the vicinity of the Landfill:

- The Station and surrounding vicinity are densely populated with historical and current oil and gas activities consisting primarily of natural gas production wells;
- Monitor wells were completed into and screened across both lignite and shale seams that are a source of trace elements such as boron; and
- A lignite mine is located immediately south of the Landfill and mining operations can impact the groundwater quality and pH of groundwater over a long period of time.

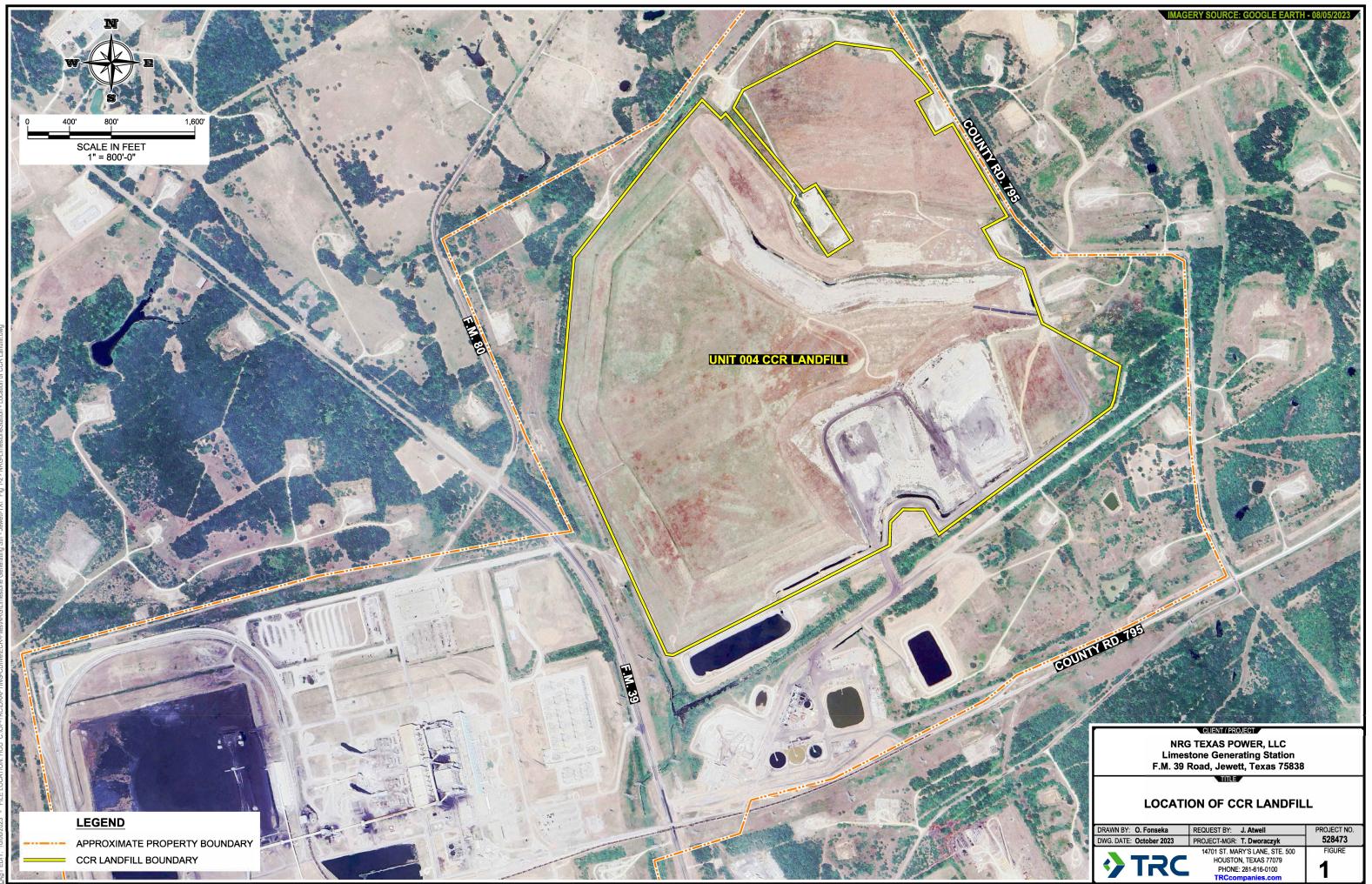
Acidity is transported from a mine in groundwater or by surface water runoff that can then infiltrate into groundwater. Through migration, such groundwater, can impact groundwater quality at and in the vicinity of the Landfill. During historical detection monitoring at the Landfill, the pH of groundwater at MW-21 has remained within the range of 5.0 to 5.6 S.U. As discussed in Section 2.2, low pH (< 6) conditions are favorable for the dissolution of boron from mineral surfaces in the soil and bedrock.

In addition to MW-21, pH at MW-01 was low for the April 2023 monitoring event. As discussed above, acidity is transported from a mine in groundwater or by surface water runoff that can then infiltrate into groundwater. Therefore, it is anticipated that the apparent SSI for pH for MW-01 is associated with the historical lignite mining and/or the oil and gas activities at the Station.

In summary, the apparent SSIs for boron and pH for the 13th semi-annual detection monitoring event are most likely related to other non-CCR off-site sources (oil and gas activities or the historic lignite mine), the apparent presence of lignite seams within the screened portion of the monitor wells, or natural variations in groundwater geochemistry (acidic pH conditions) rather than a release to groundwater from the Landfill

Section 4 Conclusions

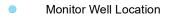
Based on statistical evaluation of the October 10, 2023 semi-annual detection monitoring event analytical results, two apparent SSIs: boron and pH; were identified for the Landfill. This ASD has identified the following lines of reasoning that support alternative sources for the apparent SSIs:


- Numerous historical and active natural gas wells and their associated well pads and surface pits are located immediately surrounding and within the footprint of the Landfill. Well pits associated with the natural gas wells contribute spent completion or workover fluids to groundwater that contain constituents that are also CCR Rule Appendix III detection monitoring constituents;
- As shown on the boring logs for the Landfill CCR groundwater monitoring network, lignite and shale seams that contain trace amounts of boron are present at the Landfill and several monitor wells were installed into and screened across these seams;
- The Jewett lignite surface mine is located approximately 1.5 south of the Landfill; and
- Natural variations in groundwater geochemistry likely related to changes in pH, ion exchanges, EC, and/or salinity.

Therefore, based on the lines of reasoning presented in this ASD, alternative sources and/or natural variations in groundwater geochemistry, rather than a release from the Landfill have been demonstrated to be responsible for the apparent SSIs observed. Based on this successful ASD, NRG will continue semi-annual detection monitoring for the Landfill per 30 TAC Chapter 352.

- BEG 1972. *Geologic Atlas of Texas, Waco Sheet*. The University of Texas at Austin, Bureau of Economic Geology. Reprinted 1972.
- Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K., 2010. Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: Spatial variability on arsenic and boron enrichment. *Journal of Hazardous Materials*, 180(1–3), 50–62. <u>https://doi.org/10.1016/J.JHAZMAT.2010.01.008</u>.
- Hollis, J. F., Keren, R., & Gal, M., 1988. Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. *Journal of Environmental Quality*, 17(2), 181–184. <u>https://doi.org/10.2134/JEQ1988.00472425001700020002X</u>.
- Keren, R., & Communar, G., 2009. Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. *Soil Science Society of America Journal*, 73(6), 2021–2025. <u>https://doi.org/10.2136/SSSAJ2008.0381</u>.
- Mid-East Texas Groundwater Conservation District (METGCD), 2019. GIS Data Portal. Available at: <u>https://metgcd.halff.com/Map/Public</u>. Accessed July 2, 2019.
- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. *Environmental Earth Sciences*, 72(12), 5139–5157. <u>https://doi.org/10.1007/s12665-014-3384-5</u>.
- Ravenscroft, P., & McArthur, J. M., 2004. Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. *Applied Geochemistry*, *19*(9), 1413–1430. <u>https://doi.org/10.1016/J.APGEOCHEM.2003.10.014</u>.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T., 2014. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. *Science of The Total Environment*, 473–474, 244–253. <u>https://doi.org/10.1016/J.SCITOTENV.2013.12.029</u>.
- ERM 2018a. 2017 Annual Groundwater Monitoring Report, Landfill (Unit 004). ERM, January 2018
- ERM 2017b. Ground Water Monitoring Networks for Coal Combustion Residual (CCR) Rule Compliance Report. ERM, October 2017.
- TRC 2018b. Statistical Methods Certification Limestone Electric Generating Station. TRC, August 2018.
- TRC 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2019.
- TRC 2019b. Technical Memorandum on Laboratory Quality Issues. TRC, April 24, 2019.

- TRC 2019c. Technical Memorandum on Laboratory Change for CCR Sampling Events. TRC, July 19, 2019.
- TWDB, 1990. *Aquifers of Texas*. Texas Water Development Board Report 380. Peter George, et al. July 2011.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H., 2014. Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. *Environmental Science and Pollution Research*, *21*(5), 3880–3890. https://doi.org/10.1007/s11356-013-2376-4.
- United States Department of Energy, Office of Scientific and Technical Information, 1983. Trace elements in Texas Lignite.
- United States Environmental Protection Agency, 2008. Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0. https://www.epa.gov/environmental-topics/water-topics.
- United States Geological Survey, 2018. National Produced Waters Geochemical Database, USGS IDs 99922 through 99929. United State Geological Survey. Accessed on July 16, 2018.
- TRC 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2020.
- TRC 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2021.
- TRC 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2022.
- TRC 2023. 2022 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2023.
 - TRC 2024. 2023 Annual Groundwater Monitoring and Corrective Action Report Limestone Electric Generating Station. TRC, January 2024.


Figures

DRAWING By: Oskar Fonseka - FILE NAME: Fig 1-2 - NRG-LimestoneStation - Location of CCR Landfill.dwg

LEGEND

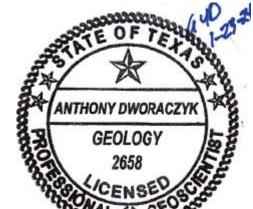
Landfill CCR Monitor Well

Landfill Background CCR Monitor Well

447.08 Groundwater Elevation (FT MSL)

NM

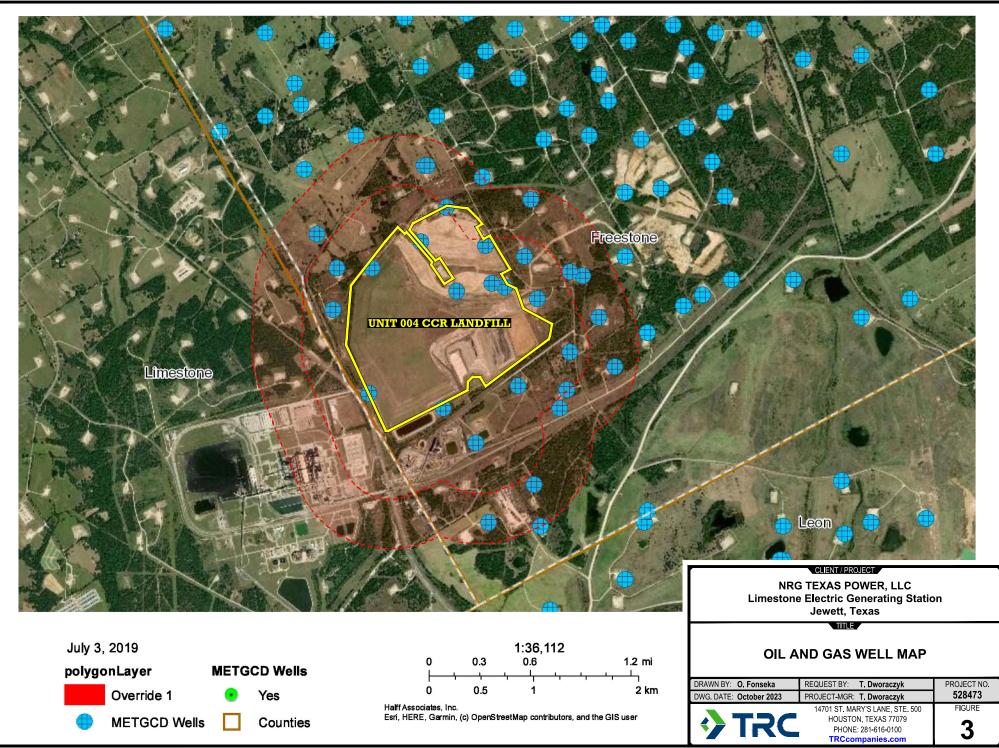
Not Measured



Groundwater Flow Direction

Groundwater Elevation Contour - Dashed where Inferred (FT MSL)

CCR Landfill Boundary


NOTE: GROUNDWATER ELEVATIONS MEASURED BY HMI ON OCTOBER 2023

mmunity

FILE NO.

585632_2-3.mxd

FILE NAME: Fig 3 - NRG-LimestoneStn - Oil and Gas Well Map.dwg

Attachments

DRU	LING I	OG H	OLE.NO.	-1	PROJECT NO.	0754	HOLE			- 1	OF	1
OCATIO					PROJECT/SITE	8754			SHEE	т_1_	OF	<u>_</u>
		stone Ele	ctric Generating	Station	GEO/ENG.	Hous	ton Lie	ghtii	ng É F	Power		
ROUND	±418.	06'	DRILL ANGLE 0°			Clyde	e Smit	h				
OLLAR	None	a Canal de La Constantina de La Canal de La Canal de La Canal de La Canal de La Canal de La Canal de La Canal d	DRILL DIRECTION Ve	ertical	CONTRACTOR	Reed	E Mo	rris				
OTAL	60'		STARTED	/86	DRILLER	Ray	Reed	-		n		
LEV. ATUM	Surfa	ce	COMPLETED 10/1	/86	RIG	CFD-	1	HO	a state of the local state of the	Rotar	y .	
		DEPTH	DATE	TIME	HOLE DIAMETER	5"				H ₂ O		1
RST FREE					TESTS		SAN	IPLE	S	COM	PLETION	1
	TER LEVEL											
TATIC WAT	TERLEVEL	4.88	10/7/86	1635	I L			-				
ELEV.	DEPTH	LEGEND	CLASSIFIC	CATION/DESC	RIPTION	REC	DV. SAMI	PLES	DR	ILLING F	REMARKS	
			Brown sand and o	lay				-				
	5 _											
	EI		Light gray, fine g	rained san	d with minor	1						
	10		amounts gray o	lay and iro	nstone							
							1					
	15-				2 ³		1					
	-			,								
	, T											
	20											
	E		Gray silty clay	ŦĸŎĬŢŶĂĬĬĸĹĬĬĊŎĬŦŎĸĬŔĊĬĊĊţĸŢĊŢŢŎŢŎŎĬŎĬĬĬĬŎ		1						
	25											
	_											
	30											
ŝ,	+		Intoub c d d = d l			1						
	=		Interbedded brow clay	n to tan sai	nd and gray							
	35		5.07									
	Ξ											
	40		- very lignitic	39-41'	· ·							
	_					1				÷		
	45			ill faftere men ger nynge tiger der er en ander								
	1		Fine gray sand wi	th thin inte	erbeds of grav							
	· =		clay		5-7							
	50		-									
	7											
	55-		Gray clay	n Brannan an Annan an Anna <u>Ang</u> arga	ŦŦŢŦŎŎĊĸĸĸĊŎĿŎĬĬŎŦĨĊĿŎŢĸŢĨŢĔĸŎŢŎſŦŎĊIJŎĬĸŢĨŢġĸĸĸĸġĿĿĿŎĬĬ	1	1.0					
	Ē						1					
	60											
	° =		T.D. at 60'					-			an a su a compression a constant	
	-	-				1						
										24H(App1		

WELL COMPLE		CORD
JOB NO	GEOLOGIS	TClyde Smith
CLIENT HLEP	DRILLER	Reed & Morris
TOP OF CASING ELEVATION FT.	Π	STICK-UP_3.0 FT.
		GROUND SURFACE
		4 (14) 4 (14)
DETAILS OF CONSTRUCTION:	NN.	MATERIALS
Date Completed 10/1/86	NN	CEMENT (sks) 12
Hole Diameter (in) 77/8	NN	SAND (ft ³)8
Screen Size (in)	NN	PVC (ft)38.5
Screen Length (ft)20	3N	
Casing Size (in)4	NN	
Packer Depth (ft)Bentonite 33-30.5	NN	
Centralizer Depths (ft) <u>54</u> , <u>34</u> , <u>15</u> ,	JN	
,,,,,	NN/	
Completion Technique:	NN -	• • • • • • • •
I) Sand Placement Method	NN	
Tremie	3N	
2)Grout Placement Method	NN	TOP OF BENTONITE PACK 30.5 FT.
Tremie	N	TOP OF SAND PACK <u>33</u> FT.
Description of Potential Problems With Well:		
None		TOP OF SCREEN 35.5 FT.
		· · · · ·
	H	BOTTOM OF SCREEN 55.5 FT.
ł		BOTTOM OF HOLE <u>56</u> FT.

NOTE: ALL DEPTHS ARE REFERENCED TO "DEPTH BELOW GROUND SURFACE"

2

·

Locare J

15

	STATE OF TEXAS WELL REPORT for Tracking #178434									
Owner:	NRG Texas Power Limestone Station	Owner Well #:	MW-17							
Address:	Rt. 1 BoX 85 Jewett, TX 75846	Grid #:	39-64-1							
Well Location:	FM 39 N.	Latitude:	31° 05' 14" N							
	Jewett, TX 75846	Longitude:	096° 07' 26" W							
Well County:	Limestone	Elevation:	No Data							
Type of Work:	New Well	Proposed Use:	Monitor							

	Diameter	(in.)	Top Depth (ft.)	Bottom Dep	oth (ft.)		
Borehole:	8.5		0	55			
Drilling Method:	Hollow Stem A	Auger					
Borehole Completion:	Filter Packed						
	Top Depth (ft.)	Bottom Depth (ft.)	F	ilter Material	Size		
Filter Pack Intervals:	38	55		Gravel	20/40		
	Top Depth (ft.)	Bottom Depth	n (ft.)	Description (number of s	er of sacks & material)		
Annular Seal Data:	0	36		4, Portland			
	36	38	n Mill Star Landston and Star Later oper ministration and an analysis of spectra	2, Bentonite			
	38	55		12 Sanc	Sand		
Seal Method: G	rout		Distance	to Property Line (ft.):	No Data		
Sealed By: D	riller			Septic Field or other d contamination (ft.):	No Data		
			Distance	e to Septic Tank (ft.):	No Data		
			М	ethod of Verification:	No Data		
Surface Completion:	Alternative Pro	ocedure Used					
Water Level:	46 ft. below la	46 ft. below land surface on 2009-04-20 Measurement Method: Unknown					
	No Data						
Packers:	No Data						

Well Tests: No Test Data Specified

	Strata Depth (ft.)	Water Type				
Water Quality:	No Data	No Data				
		Chemical Analysis Made: No gly penetrate any strata which trained injurious constituents?: No				
Certification Data:	driller's direct supervision) ar correct. The driller understood	Iriller drilled this well (or the well was drilled under the nd that each and all of the statements herein are true and od that failure to complete the required items will result in for completion and resubmittal.				
Company Information:	Advanced Drilling System	ns, Inc.				
	904 W. Tidwell Houston, TX 77091					
Driller Name:	David Rogers	License Number: 52037				
Comments:	No Data					
DESCRIPTION & COLOF From (ft) To (ft) Desc	thology: R OF FORMATION MATERIA cription Y CLAY with abundant Red	Casing: BLANK PIPE & WELL SCREEN DATA Dia. (in.) New/Used Type Setting From/To (ft.) 2 New PVC Casing 0-40 sch-40				
1-5: Gray very SILTY SA	ND moist with some	2 New PVC Slotted 40-55 0.01				
clayey sand seams						
- very silty						
5-12: Gray CLAYEY SAN	ID with abundant strong					
brown mottling						
- very silty						
- some black lignite sear	ms					
- wet						
- abundant yellowish bro	own mottling					
- abuundant strong brow	vn					
- very moist						
12-16: Gray, very SILTY	SAND					
- very moist						
- very fine grained						
- some yellowish brown	mottling					
- very silty						

16-20: Strong brown SILTY CLAY with abundant silty sand seams

- some yellowish brown clayey sand seams

20-26: Yellowish brown CLAYEY SAND with

abundant gray hard brittle clay seams

- some brownish yellow limonitic iron seams

- abundant dark gray clay seams

- very moist

- very silty

26-31: Brown very silty sand, very fine grained

31-42: Brown CLAYEY SAND with abundant

gray clay seams

- very moist

- some muscovite flakes

- abundant dark gray clay seams

- very moist

- some strong brown silty sand seams

- very silty

- very abundant dark gray seams

42-53: Dark gray SILTY SAND, fine grained,

abundant dark gray silty clay seams

- very silty

- saturated @ 46 bgs.

- abundant dark gray silty clay seams

very silty

- very moist

53-55: Very dark gray CLAY, firm

- some light gray silt seams

- lignite seams

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking Number on your written request.

Texas Department of Licensing and Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

MW-19 DRILLING LOG

							DRILLINGLOG				
, _	0345059					Date Drilled <u>2016-05-1</u> 7	SKETCH MAP				
Project _I	Limestone (CCR Rule	Well Installation	Owner_	NRG Ener	ду					
Location _	Limestone E	EGS		Boring T	Г.D. <u>35.40</u>	Boring Diam. <u>9.00 "</u> _					
N. Coord.	N. Coord. <u>10507460.00</u> ' E. Coord. <u>3574645.00</u> ' Surface Elevation <u>440.94</u> ' <u>Ft. MSL</u> Datum										
Screen: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size <u>0.01 "</u>											
Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>25.00 '</u> Sump Length <u>0.40 '</u>											
	Top of Ca	NOTES									
Depth to Wat	ter:	1. Ft	0.00 () 2.	Ft)	PP = Pocket Penetrometer				
Drilling Comp	bany Be	st Drilling	Services	Driller _	Bruce Mil	ton					
Drilling Metho	od <u>Ho</u>	llow Stem	Auger	Log By	Mike Kris						
) et)		_	a	'al	t)						
Elevation (Feet) Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)						
tion th (F	phic	Well struc	ble	ple Inte (Feet)	scrip /al (Description/Soil ((Color, Texture,					
eva Dep	Gra	Con		amp (Des		,				
	.			S							
						9					
440.94 - 0 -											
				0-5	0-1.6	SANDY CLAY: Yellowish-brown (10) less than 10 percent, PP=4.0 TSF	YR 6/4), dry, crumbly, hard, sand is				
440					1660						
		4 24			1.6-6.2	SILTY SAND: Light yellowish-brown hard, semi-plastic; thinly laminated. F					
	A						C Alternational Andrews				
	۵ ۵										
- 5-	^			5-10							
435	^ _			5-10							
					6.2-8	SANDY CLAY: Light yellowish-browr (10YR 5/8), dry to damp, stiff to hard					
							, semi-plastic, thirty laminated.				
					8-10	No Recovery					
- 10-				10-15	10-18.5	SILTY SAND: Dark yellowish-brown					
430	<u> </u>					wet at 15.5 to 15.8 feet then dry to da friable; thinly bedded. @16.8 feet thin					
	^ ^					rootlets at 10.3 feet.	OF TO				
	<u> </u>						TEOFIE				
	۵ م					45	10/10/19 *				
						*	James R. Davidson				
- 15-	<u> </u>			15-20		×	James R. Device				
425	^					PROP	10493 0 5				
							10493 Q				
							GONAL Y GEOS				
				~	18.5-20	No Recovery					
- 20-											
			CRANK AND THE PARTY OF THE PARTY OF		TRANSMIT AND A MARY PHOTO A						

MW-19 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> " N. Coord. <u>10507460.00</u> ' E. Coord. <u>3574645.00</u> ' Surface Elevation <u>440.94</u> ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>25.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 443.79 ' Stickup 2.85 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____(_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Graphic Log Sample Type Depth (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 20-34 SILTY SAND: Light olive-brown (2.5Y 5/3), damp becoming moist at 25 to 25.8 feet, damp 25.5 to 28 feet, damp to moist 28 to 30 feet, soft. 420 friable, thinly bedded; some lenticular clay nodules from 30 to 34 feet. 25 25-30 415 30-30-35 410 34-35.4 No Recovery James R. Davidson 35 T.D. = 35.40 ' Geology 405

40

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 Boring/Well ID ______ Date Drilled ______7 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Boring T.D. <u>39.40</u> Boring Diam. <u>9.00</u> " Location N. Coord. 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 445.11 ' Stickup _2.99 ' NOTES Ft. <u>0.00</u> (______) 2. Ft. <u>0.00</u> (______) Depth to Water: 1. PP = Pocket Penetrometer **Best Driling Services** Bruce Milton **Drilling Company** Driller _ Log By __Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Construction Type Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 442.12= 0 0-5 0-0.7 SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm, brittle; sand less than 10 percent, 0.7-1.6 thinly laminated. 1.6-4 SILTY SAND: Yellowish-brown (10YR 5/4), dry, soft, friable; sand is fine 440 grained, subangular, silt approximately 10 percent. SANDY CLAY: Mottled light yellowish-brown (10YR 5/4) and light brownish-gray (10YR 6/2), dry, firm to stiff, brittle; sand less than 10 percent, thinly laminated. PP=2.5-3.5 TSF 4-5 ~ No Recovery 5 SANDY CLAY: Very dark brown (7.5YR 2.3/3), dry, hard, brittle. 5-10 5-8.5 PP=4.5+TSF @6.8 feet becomes strong brown (7.5YR 4/6); @7.8 feet becomes light olive brown (2.5 Y 5/3) with some angular rock fragments. 435 8.5-10 No Recovery 10 10-15 10-25 SILTY SAND: Light yellowish-brown (2.5Y 6/4) and light gray (2.5Y 7/2) interbedded, dry, friable, well sorted, silt approximately 10 percent. @13.1 feet possible cross-bedding with rip-up (clay) clasts. @17.8 becomes damp, silt content increases to approximately 30 percent. 430 15-15-20 James R. Davidson Geology 425 20

MW-20 Environmental Resources Management DRILLING LOG SKETCH MAP Boring/Well ID MW-20 0345059 _____ Date Drilled __2016-05-17 Proj. No. Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location ___ Boring T.D. <u>_____39.40 '____</u> Boring Diam. <u>_____9.00 "__</u> 10507730.00 ' E. Coord. 3574995.00 ' Surface Elevation 442.12 ' N. Coord. _ Ft. MSL Datum Screen: Type Schedule 40 PVC 0.01 " _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u>Length <u>29.00 '</u> Sump Length 0.40 ' Top of Casing Elevation 445.11 Stickup 2.99 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Driling Services **Drilling Company** Driller Bruce Milton Log By _____Mike Kristoff Drilling Method Hollow Stem Auger Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Sample Type Graphic Log Construction Depth (Feet) Well Description/Soil Classification (Color, Texture, Structure) 20 20-25 420 25 25-30 25-39.4 SILTY SAND: Olive-brown (2.5Y 4/4), damp to wet (becomes wet at 30-30.8 and 35-35.5 feet), soft, friable. Thinly laminated clay lenses at 37.7 to 37.8 ft. and 38.8 to 39.1 ft., damp, brittle. 415 30 30-35 410 James R. Davidsor 35 35-39.4 Geology 405 T.D. = 39.40 ' 40

2
1

MW-21 ERM Environmental Resources Management **DRILLING LOG** SKETCH MAP 0345059 Boring/Well ID _______ Date Drilled ______2016-05-18 Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>35.40</u> Boring Diam. <u>9.00</u> N. Coord. <u>10508050.00</u> ' E. Coord. <u>3575406.00</u> ' Surface Elevation _____ 443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00 "</u> Length <u>25.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation _446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> (______) Ft. 0.00 Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller Hollow Stem Auger Mike Kristoff **Drilling Method** Log By Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Graphic Log Type Construction Depth (Feet) Well Description/Soil Classification Sample 1 (Color, Texture, Structure) 443.46-0 0-5 0-0.8 SANDY CLAY: Mottled yellowish-brown (10YR 5/4) and yellowish-red (10 YR 4/6), dry, stiff, brittle. PP=3.5 TSF 0.8-1.2 -SILTY SAND: Strong brown (7.5 YR 5/6), dry, soft, friable, well sorted. 1.2-2.9 Silt approx. 10 percent. SANDY CLAY: Dark yellowish-brown interlaminated with light brownish-gray (10YR 6/2), dry to damp, firm, semi-plastic. PP=2.5 TSF 2.9-8 ~ 440 SILTY SAND: Strong brown (7.5 YR 5/6) to yellowish-brown (10YR 4/4), dry, soft, friable, well sorted. Silt approx. 10 percent. @6.1 becomes dark brown (7.5YR 7/2). 5 5-10 8-10 No Recovery 435 10 SILTY SAND: Mottled dark yellowish-brown (10YR 4/4) and gray (10YR 10-15 10-19.5 5/1)dry, soft, friable, silt content about 40 percent. @11.2 feet becomes yellowish-brown (10YR 5/6) interlaminated with gray (10YR 5/1); @13.1 feet silt content decreases to 10 percent 430 -James R. Davidson 15 15-20 Geology 425 19.5-24.5 SILTY SAND: Yellowish-brown (10YR 5/4), moist, soft, friable, thinly bedded with well developed partings. @22.0 to 22.5 and 23.0 to 24.5 feet silt content increases to 40 percent.

20

MW-21 Environmental Resources Management DRILLING LOG SKETCH MAP 0345059 ______MW-21______ Date Drilled _____2016-05-18 Proj. No. Boring/Well ID Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. 35.40 ' Boring Diam. 9.00 " N. Coord. __10508050.00 ' E. Coord. _3575406.00 ' Surface Elevation __443.46 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type <u>Schedule 40 PVC</u> Diam. <u>2.00</u> Length <u>25.00</u> Sump Length <u>0.40</u> Top of Casing Elevation 446.35 ' Stickup 2.89 ' NOTES _____ (______) 2. Ft. <u>0.00</u> ____ (______) Depth to Water: 1. Ft. <u>0.00</u> PP = Pocket Penetrometer Best Drilling Services Bruce Milton **Drilling Company** Driller _ Log By ____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Type Depth (Feet) Graphic Log Construction Well Description/Soil Classification Sample (Color, Texture, Structure) 20-20-25 420 24.5-31.4 SILTY SAND: Olive brown (2.5Y 4/5), moist, soft, friable, thinly bedded 25 25-30 with well developed partings. 415 30 30-35.4 31.4-31.9 CLAY: Interlaminated with silty sand. Clay is black (7.5YR 2.5/1), damp, 31.9-35.4 semi-plastic, soft. Silty sand is brown (10YR 4/3), damp, soft, friable. SILTY SAND: mottled yellowish brown (10YR 5/6) and light brownish-gray (10YR 6/2), damp becomes wet at 32.2 to 33 feet, 410 laminated. 35 T.D. = 35.40 ' James R. Davidsor Geology 405 40

MW-22 DRILLING LOG

									DRILLING LOG
Proj. N	. No. <u>0345059</u> Boring/Well ID <u>MW-22</u> Date Drilled <u>2016-05-1</u> 8 ect <u>Limestone CCR Rule Well Installation</u> Owner <u>NRG Energy</u>								SKETCH MAP
Project	. <u>Li</u>	mestone	CCR Ru	e We	II Installation	Owner_	NRG Ener	ду	· · ·
Locatio	on <u>Li</u>	mestone	EGS			Boring ⁻	r.d. <u>35.00</u>	Boring Diam. <u>9.00 "</u>	
N. Coo	ord1(0508270.	<u>00</u> 'E.C	oord.	3575669.0	0 ' Surface	Elevation _	444.68 Ft. MSL Datum	
Screen									
Casing	: Туре	e <u>Sche</u>	dule 40 P	24.50 ' Sump Length0.40 '					
		Top of C	Casing El	evatio	n _447.59 '	Stickup	NOTES		
Depth	to Wate	r:	1. Ft.	0.	00(_) 2.	Ft)	PP = Pocket Penetrometer
Drilling	Compa	anv Be	est Drillin	q Ser	vices	Driller	Bruce Mil	ton	
	Method		ollow Ste						
								ana ta Balana an an an an an an an an an an an an	
Elevation (Feet)	(Feet)	-og	tion	ype		Sample Interval (Feet)	Description Interval (Feet)		
on (I	ר (F∉	hic I	Well struct	le T		ple Inte (Feet)	cripti al (F	Description/Soil ((Color, Texture)	
evati	Depth	Graphic Log	Well Construction	Sample Type		impli (F	Desc		, Structure)
Ele		U	0	S		Sa	<u> </u>		
444.68-	0-					0-5	0-1.6	SILTY SAND: Strong brown (7.5YR	5/6), dry, soft, friable.
	-								
	_						1.6-3.5	SANDY CLAY: Interlaminated dark y brownish-gray (10YR 6/2), damp, se	
-	_							······································	,,
-	_	\bigtriangledown					3.5-5	No Recovery	
440 -	5—	\bigtriangleup				5-10	5-7.5	SILTY SAND: Strong brown (7.5YR	5/6) dry coff frichlo
-	_					5-10	5-7.5		oroj, dry, son, mable.
-									
-		\langle		ł			7.5-8.5	SANDY CLAY: Interlaminated dark y	ellowish-brown (10YR 4/4) and light
_		\rightarrow					8.5-10	brownish-gray (10YR 6/2), damp, se No Recovery	mi-plastic.
435 -	_								
100	10-					10-15	10-19	SILTY SAND: Interlaminated gray (7	
	-							5/6), damp, loose, friable, well sorted 11.6 bioturbation; @12.5 lenticular cl	
	_	A						content increases to 40 percent.	COF TEL
	_							l le	ALL AND
	_							5	101101 *
430 -	15—	<u> </u>				15-20			James R. Davidson
-	_					10 20		PRO	Geology /F
-								×	10493 0 2 SE //CENSE 55
-		4							SISTONAL TOPOS
-		A							
425 -	-	د					19-24	SILTY SAND: Interlaminated silty sa above. Sandy clay is strong brown, o	
120	20 —								ary to damp, ordinoly.

MW-22 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-22 _____ Date Drilled <u>2016-05-1</u>8 Limestone CCR Rule Well Installation Project Owner ___ NRG Energy Limestone EGS Boring Diam. 9.00 " Location Boring T.D. 35.00 ' N. Coord. __10508270.00 ' E. Coord. _3575669.00 ' Surface Elevation _ 444.68 ' Ft. MSL Datum Screen: Type Schedule 40 PVC Diam. 2.00 Length 10.00 Slot Size 0.01 " Casing: Type Schedule 40 PVC Diam. 2.00 Length 24.50 Sump Length 0.40 ' Top of Casing Elevation 447.59 ' Stickup 2.91 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Bruce Milton **Drilling Company** Hollow Stem Auger Log By _____Mike Kristoff **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Type Interval (Feet) Depth (Feet) Graphic Log Description **Description/Soil Classification** Sample -(Color, Texture, Structure) 20 20-25 24-30 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 420 parting surfaces. Silt content approx. 10 percent. @25.7 feet, silt content 25-25-30 increases to 40 percent. @28.1 silt content decreases to 10 percent. 415 30 30-35 30-31 SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. SILTY SAND: Brown, moist to wet, soft, friable, laminated. breaks along 31-31.8 parting surfaces. Silt content approx. 40 percent. 31.8-35 SILTY SAND: Brown, damp to moist, soft, friable, laminated. breaks along parting surfaces. Silt content approx. 10 percent. 410 35 T.D. = 35.00 ' James R. Davidsor Geology

405

40

ERM	M I	Enviro	nmen	tal F	Resource	s Manag	gement		MW-23 DRILLING LOG		
Proj. No	oC	345059			_ Boring/W	/ell IDM	W-23	Date Drilled 2016-04-13	SKETCH MAP		
Project	L	imestone	CCR Ru	le We	II Installation	Owner	NRG Energ	ΥΥ Υ			
Locatio	n _L	imestone	EGS			Boring	T.D. <u>45.00</u>	Boring Diam. <u>9.00 "</u>			
N. Coo	rd1	0505630.	. <u>00</u> 'E.C	oord.	3571983.0	0 Surface	Elevation _	434.36 ' Ft. MSL Datum			
Screen	: Тур	e_PVC	2		D	iam. <u>2.00 "</u>	Length	10.00 ' Slot Size 0.01 "			
	Screen: Type PVC Diam. 2.00 " Length 10.00 ' Slot Size 0.01 " Casing: Type PVC Diam. 2.00 " Length 30.00 ' Sump Length 0.40 '										
	Top of Casing Elevation _437.25 ' Stickup _2.89 '										
Depth t	o Wate	er:	1. Ft	0.	00(_) 2.	Ft. <u>0.00</u> ()	PP = Pocket Penetrometer		
Drilling	Comp	any _B	est Drillin	g Ser	vices	Driller	Sonny To	bola			
Drilling	Metho	d	ollow Ste	m Au	ger						
et)	<u> </u>			0		ସ	(j				
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type		Sample Interval (Feet)	Description Interval (Feet)	Description/Soil C	Naccification		
ation	oth (I	aphic	Well	nple		ple Inte (Feet)	scrip val ((Color, Texture,			
Eleva	Dep	Gra	Col	San		Sam	De Inter				
			Π	-							
			+~+								
434.36-	0 -	2000				0-5	0-0.5	GRAVEL: Roadbase - crushed limes	tone with silt matrix, greenish-gray		
	-	$\langle \rangle \rangle$		1			0.5-10.6	(Gley 1/6/10Y). SANDY CLAY: Fill Material - Light ye	0 0 9		
	-							thinly laminated, brittle. PP =1.0 TSF			
	-	$\langle \rangle$									
	-	\sum							TE OF TEX		
430 -	5-	$\langle \rangle \rangle$				5-10			ST to A shall be a		
	_	$\langle \rangle \rangle$				5-10		+	James R. Davidson		
	_	\sum							Geology E		
-	_	$\langle \rangle \rangle$							0 10493 0		
	_	\sum							10493 D TICENSE DONAL TGEOSC		
425 -	10-	$\langle \rangle \rangle$				10.15			AL YOU		
-	10	$\langle \cdot \rangle$				10-15	10.6-10.61	LIGNITE: Black organic plant materia	I consisting of decaying rootlets		
-		\sum					10.61-17.5	and grass. SANDY CLAY: Dark red (2.5 YR 3/6)	dry firm to stiff rootlets at 13.4 ft		
-	_							becomes thinly bedded at 14.3 ft. Sh			
-	_										
420 -	_	\sum									
-	15-					15-20	8				
-	-	$\langle \rangle$									
-		\sum		1 🛛			17.5-27.4	SILTY SAND: Very dark grayish-brow	vn (10YR 3/2) grading down to light		
-	-							gray (10YR 7/1), soft, friable; thinly b	edded, sand is fine grained, well		
415-	-							sorted, subangular to angular. @23.1 yellowish-brown.	Decomes mottled with dark		
	20-										

H:\DWG\F16\Log\0345059-MW-23.dwg 6/29/2016 9:59:27 AM

MW-23 Environmental Resources Management DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID MW-23 Date Drilled _2016-04-13 Limestone CCR Rule Well Installation Owner NRG Energy Project Boring T.D. <u>45.00</u> Boring Diam. <u>9.00</u> " Location Limestone EGS N. Coord. 10505630.00 ' E. Coord. 3571983.00 ' Surface Elevation 434.36 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size _ 0.01 " Casing: Type PVC ___ Diam. <u>2.00 "</u> Length <u>30.00 '</u> 0.40 ' Sump Length Top of Casing Elevation _437.25 ' Stickup _ 2.89 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____ Depth to Water: _) PP = Pocket Penetrometer Best Drilling Services **Drilling Company** ____ Driller ___ Sonny Tobola Log By _____Mike Kristoff Hollow Stem Auger **Drilling Method** Sample Interval Elevation (Feet) Well Construction Description Interval (Feet) **Graphic Log** Sample Type Depth (Feet) (Feet) **Description/Soil Classification** (Color, Texture, Structure) 20 20-25 James R. Davidson 410 25 25-30 27.4-30.6 SAND: Light greenish-gray (Gley 1/7/10Y), moist, soft, friable, sand is fine grained, well sorted, subangular, trace of silt. @28 ft. rootlets. 405 30 30-35 30.6-32.4 SILTY SAND: Strong brown (7.5YR 4/6), dry to damp, sand is fine grained, well sorted, lenticular clay clasts at base. 32.4-33.1 SHALE: Light brownish-gray (2.5Y 6/2), dry, blocky, thinly laminated, brittle. 33.1-42.5 SILTY SAND: Strong brown (7.5YR 4/6), damp becoming wet at 40 feet, sand is fine grained, well sorted, @35.7 - Shale seam, hard, @38.0-38.1 400 - Shale seam, thinly laminated, crumbly; @38.7 shale interclasts. 35 35-40 395 40

ERM Environ	mental Resource	s Managem	t	MW-23 DRILLING LOG
Proj. No. 0345059 Project Limestone C Location Limestone E N. Coord. 10505630.00 Screen: Type PVC Casing: Type PVC Top of Casing: Top of Casing	Boring/W CCR Rule Well Installation GS	Vell ID <u>MW-23</u> Owner <u>NR</u> Boring T.D. <u>00</u> ' Surface Eleva Diam. <u>2.00 "</u> Len Diam. <u>2.00 "</u> Len	Date Drilled <u>2016-04-1</u> 3 nergy .00 ' Boring Diam. <u>9.00 "</u> n <u>434.36 ' Ft. MSL</u> Datum <u>10.00 '</u> Slot Size <u>0.01 "</u> <u>30.00 '</u> Sump Length <u>0.40 '</u>	DRILLING LOG SKETCH MAP NOTES PP = Pocket Penetrometer
	st Drilling Services		r Tobola Kristoff	
Feet) set)	Well Construction Sample Type	Sample Interval (Feet) Description	Description/Soil (Color, Textur	
		40-45 42.5 43.	brittlo	6/2), dry, blocky, thinly laminated,

Environmental Resources Management

DRILLING LOG SKETCH MAP Proj. No. 0345059 Boring/Well ID ______ Date Drilled _______ 2016-04-14 Project Limestone CCR Rule Well Installation Owner NRG Energy Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. __10511130.00 ' E. Coord. __3573967.00 ' Surface Elevation ___474.57 ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " _____ Diam. <u>2.00 "</u> Length <u>50.00 '</u> Sump Length <u>0.40 '</u> Casing: Type PVC Top of Casing Elevation 477.52 ' Stickup 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Type Depth (Feet) Graphic Log Sample 1 **Description/Soil Classification** (Color, Texture, Structure) 474.57-0 0-5 0-5 NOT SAMPLED: Hydrovac 470 5 5-10 5-18 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30 %: fine grained, subangular. @ 10 ft, sand content decreases to approx. 10%, breaks along laminae. 465 -10. 10-15 Davidson James R. Geology 460 15 15-20 CLAYEY SAND: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly bedded, fine grained, uncemented, cohesive, well sorted, subangular, clay approx. 40% - dry, damp. 18-18.4

18.4-22.5

455

20

SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly

subangular, 7.5YR/5/8 strong brown.

laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained,

MW-28

MW-28 **Environmental Resources Management** DRILLING LOG SKETCH MAP 0345059 Proj. No. Boring/Well ID MW-28 Date Drilled 2016-04-14 Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Location Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u>Length <u>50.00 '</u>Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 Stickup 2.95 ' NOTES Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: 1. PP = Pocket Penetrometer Best Drilling Services Driller ____ Sonny Tobola **Drilling Company** ___ Log By __Don Whitley Hollow Stem Auger **Drilling Method** Sample Interval (Feet) Elevation (Feet) Well Construction Description Interval (Feet) Type Depth (Feet) **Graphic Log Description/Soil Classification** Sample 1 (Color, Texture, Structure) 20 20-25 Davidsor James R. Geology 03 22.5-25 No Recovery 450 25 25-30 25-25.8 SILTY SAND: Glev 1/7/10Y Light Greenish Grav, fine grained. subangular to subrounded, uncemented, well sorted, damp to moist, 25.8-27.3 cohesive, silt approx. 10% SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% -27.3-28.5 fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 28.5-30 SILTY SAND: Gley 1/7/10Y Light Greenish Gray, fine grained, 445 subangular to subrounded, uncemented, well sorted, dry to damp, 30 cohesive, silt approx. 10% 30-35 30-32.5 SANDY CLAY: 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. 32.5-35 INTERBEDDED CLAY AND SAND: Silty Sand - 30-30.3 ft, 31.2-31.4 ft, 32.2-32.4 ft. - Gley 1/7/10Y Light Greenish Gray, fine grained, subangular to subrounded, uncemented, well sorted, damp to moist, cohesive, silt approx. 10%. Sandy Clay - 30.3-31.2 ft, 31.4-32.2 ft, 440 32.4-32.5 ft. - 7.5YR/5/4 Brown and 7.5YR/7/1 Light Gray, thinly 35 35-40 35-40 laminated, damp, semi- to non-plastic, 2.0-2.5 TSF, sand approx. 30% fine grained, subangular, lenticular pockets of sand - fine grained, subangular, 7.5YR/5/8 strong brown. No Recovery INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/5/8 Strong brown, fine grained, uncemented, well sorted, subangular, dry to damp. Shale - 7.5YR/5/1 Gray, non-plastic, dry, 2.0 TSF, trace sand. 435 40

Proj. No.

Project

Location

0345059

Screen: Type PVC

Casing: Type PVC

Depth to Water:

Drilling Company

eet)

Drilling Method

Feet)

Limestone EGS

Log

Hollow Stem Auger

ction

Lype

Environmental Resources Management

DRILLING LOG SKETCH MAP Boring/Well ID _______ Date Drilled ______4 Limestone CCR Rule Well Installation Owner NRG Energy ____ Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> N. Coord. <u>10511130.00</u> ' E. Coord. <u>3573967.00</u> ' Surface Elevation <u>474.57</u> ' Ft. MSL Datum _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size ___ 0.01 " _____ Diam. <u>2.00 "</u> Length <u>50.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup 2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> ____ (_____) PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola Log By _____ Don Whitley nterval t) otion (Feet) Description/Soil Classification

MW-28

Elevation (Depth (Fe	Graphic	Well Construc	Sample T	Sample Int (Feet)	Descripti Interval (F	Description/Soil Classification (Color, Texture, Structure)
-	40 — — —	· · · · · · · · · · · · · · · · · · ·			40-45	40-45	INTERBEDDED CLAY AND SAND: Shale - 40-40.4 ft, 40.8-41.1 ft, 41.4-43.8 ft, 44.2-45 ft non-plastic, thinly laminated, breaks along laminae, trace sand. Silty Sand - 40.4-40.8 ft, 41.1-41.4 ft, 43.8-44.2 ft 7.5YR/5/8 Strong brown, fine grained, uncemented, subangular, well sorted, damp to moist.
- 430 - - -	45 — — —				45-50	45-50	INTERBEDDED CLAY AND SAND: Thinly bedded, alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand.
- 425 - - - -					50-55	50-56.6	SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 52.9-53.2 Silty Sand seam - 7.5YR/4/3 Brown, fine grained, uncemented, subangular, wet.
- 420 - - -	 55				55-60	56.6-57.1 57.1-58.5 \	SILTY SAND: 7.5YR/4/2 Brown, fine grained, uncemented, subangular, wet to saturated
415 -	 60					58.5-60	SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout No Recovery

H:\DWG\ 6\Log\0345059-MW-28.dwg 6/29/2016 10:20:56 AM

Environmental Resources Management DRILLING LOG 0345059 Boring/Well ID <u>MW-28</u> Date Drilled <u>2016-04-1</u>4 SKETCH MAP Proj. No. Limestone CCR Rule Well Installation Owner NRG Energy Project Limestone EGS Boring T.D. <u>70.00'</u> Boring Diam. <u>9.00 "</u> Location N. Coord. __10511130.00 ' E. Coord. _3573967.00 ' Surface Elevation __ 474.57 Ft. MSL Datum Screen: Type PVC _____ Diam. <u>2.00 "</u> Length <u>10.00 '</u> Slot Size __ 0.01 " Casing: Type <u>PVC</u> Diam. <u>2.00 "</u> Length <u>50.00 '</u> Sump Length <u>0.40 '</u> Top of Casing Elevation 477.52 ' Stickup _____2.95 ' NOTES 1. Ft. <u>0.00</u> (_____) 2. Ft. <u>0.00</u> (_____) Depth to Water: PP = Pocket Penetrometer Best Drilling Services Driller Sonny Tobola **Drilling Company** Hollow Stem Auger Log By _____ Don Whitley Drilling Method Sample Interval (Feet) Elevation (Feet) Description Interval (Feet) Well Construction Depth (Feet) Graphic Log Sample Type Description/Soil Classification (Color, Texture, Structure) 60 60-65 60-60.7 INTERBEDDED CLAY AND SAND: Thinly alternating Silty Sand and Shale. Silty Sand - 7.5YR/6/1 Gray, fine grained, uncemented, 60.7-69.5 _\ subangular, well sorted, dry to damp. Shale - Gley 1/2.5/10Y Greenish Black, non-plastic, dry, trace sand. SHALE: Gley 1/2.5/10Y Greenish Black, non-plastic, dry to damp, thinly laminated, breaks along laminae, trace sand, has thin beds of fine grained sand throughout. @ 61.5-61.7 - Silty Sand lense, 7.5YR/4/2 Brown 410 65 65-70 405 T.D. = 70.00' 70 James R. Davidson 400 75-

395

80

MW-28