Form CCR 1		Illinois Environmental Protection Agency						
		CCR Resid	CCR Residual Surface Impoundment Permit Application					
11			CCR Form 1 – Ger	eneral Provisions				
В	reau of	Water ID Number:		For IE	PA Use Only			
C	CR Pern	nit Number:						
Facility Name: Joliet 29 Generatin Station			t 29 Generating on					
	SE	CTION 1: FACILITY, OPI	ERATOR, AND OWNER	INFORMATION (35 IA	AC 845.210(b))			
	1.1	Facility Name	1. State 1.	11 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1				
			Joliet 29 Gene	rating Station				
	1.2	Illinois EPA CCR Permit	Number (if applicable)					
		Initial Permit						
	1.3	Facility Contact Information						
ation		Name (first and last) DeAndre Coole	y Environm	nental Specialist	Phone Number 779-279-2321			
r Inform		Email address DeAndre.Cooley@NRG.com						
wne	1.4	Facility Mailing Address						
r, and O		Street or P.O. box 1800 Channaho	on Road	<u> </u>	·			
Derato		City or town Joliet	_{State} Illinois		Zip Code 60436			
ity, 0	1.5	Facility Location						
Facil		Street, route number, or of 1800 Channaho	ther specific identifier					
		County name	County code	(if known)				
		City or town Joliet	State Illinois		Zip Code 60436			
	1.6							
	1	Midwest Generation, LLC						

Ifo	1.7	Owner/Operator Contact Information						
owner Ir		Name (first and last) William Naglosky	Title Plant M	anage	ər	Phone Number 815-207-5412		
r, and C		Email address william.naglosky@nrg.com						
erato	1.8	Owner/Operator Mailing Address						
lity, Ope	-	Street or P.O. box 804 Carnegie Cente	er		T.S			
Faci		City or town Princeton		State New	/ Jersey	Zip Code 08540		
		SECTION 2: LEG	AL DESCRIPTION	I (35 IAC	C 845.210(c))			
ion	2.1	Legal Description of the facility b	oundary		a sugar and			
Legal Descript		ALL THT PRT OF THE SE1/4 OF SEC 19. T35N-R10E. LVIN OF 5D SEC 19: THC RUNNING E ON THE S LN OF 5D SEC 30° E, 545.9 FT TO A PT ON THE E LN OF SD SEC 19, WHI THE STATE OF ILLINOIS BY DOCR R68-0138153 & IEX THE PT ON THE S LN OF 5D SEC 19, BEING A CONCRETE MO SD MONUMENT BEING ON THE BOUNDARY LN PER THE PUBLIC SERVICE CO. OF NORTHERN ILLINOIS; THC N OI KNOWN AS CHANNAHON RDJ AS HERETOFORE CONVEN CURVATURE: THC ELY ALG THE ARC OF CURVE CONCA OF N 73 DEG 38' 36° E, 196.99 FT FOR A POB; THC CONT 38,007.20 FT, HAVING A CHORD BEARING OF N 72 DEG 4 FT; THC N 40 DEG 21' 51° W, 348.30 FT TO THE POB. NEW	IG SLY OF THE CENTERLINE OF C 1629 FT: THC N 41 DEG 22 E 240 CH IS 703.6 FT S OF THE CENTERI REFROM THE FOLLOWING DESCI NUMENT 1953.03 FT (RECORD) EA BOUNDARY UN AGREEMENT REC DEG 48'09' W ALG THE SD BOUN YED TO THE STATE OF ILLINOIS PE VE TO THE NORTH, BEING THE S ELY ALG THE ARC OF A CURVE C 3' 48' E, 1024 21 FT, THC S 37 DEG / PARCEL ASSESSMENT DESCRIP	HANNAHON RD 3 FT; THC N 47 JINE OF THE PU: JINE OF THE PU: JINE O FARCEL T ST (AS MEASUP ORDED MARCH DARY LN 594.54 FR QUIT CLAIM / ROW LN OF SD ONCAVE TO THI 17'59' E, 391.3 THON NDA.	NWLY OF A LINE DESCRI DEG 48' E. 587.6 FT; THC N 8LIC HIGHWAY KNOWN AS NO WIT, THT PRT OF THE S VED ALG THE SOUTH LN O 21, 1951 AS DOC # 688037 FT; THC N 73 DEG 47' 25" AUGUST 19. 1968 AS DOCM RTE 6, HAVING A RADIUS E N, BEING THE SD S'LY R 7 FT; THC S 42 DEG 57' 20"	BED AS COMM AT THE SW COR OF THE SE1/4 153 DEG 5 30° E, 371 1 FT; THC N 64 DEG 28' 5 CHANNAHON RD, EX THT PRT TAKEN BY 161/4 OF SEC 19, T3SN:R10E, DAF; COMM AT A F SD SEC 19) OF THE SW COR OF SD SEC 19 BETWEEN CATERPILLAR TRACTOR CO. A E ALG THE S ROW OF RTE 6 (FORMERLY R88-13815, A DIST OF 870.57 FT TO A PT OF OF 39.307.20 FT; AVING A CHORD BEARING OW LN OF RTE 6, HAVING A RADIUS OF W, 785.70 FT; THC N 55 DEG 05' 38' W, 553.84		
	SECT	TION 3: PUBLICLY ACCESSIE	LE INTERNET SI	TE REQ	UIREMENTS	(35 IAC 845.810)		
	3.1	Web Address(es) to publicly accessible internet site(s) (CCR website)						
nternet Site	- 25	https://midwestgenerationIIc.com/illinois-ccr-rule-compliance-data-and-information/						
-	3.2	Is/are the website(s) titled "Illinoi	s CCR Rule Compli	ance Dat	a and Information	on"		
		Yes	No					
		SECTION 4: I	MPOUNDMENT I	DENTIF				
ion	4.1	List all the Impoundment Identifi indicate that you have attached	cation numbers for y a written description	our facili for each	ty and check the impoundment.	e corresponding box to		
ficat		W197045004	7-02		Attached writte	en description		
lenti					Attached writte	en description		
int lo					Attached writte	en description		
ambe					Attached writte	en description		
unod					Attached writte	en description		
Ē					Attached writte	en description		
					Attached writte	en description		

IEPA Form CCR 1

			Attached wr	itten description	
			Attached wr	itten description	
	Mas	SECTION 5: CHECKLIST AND CERTIFICATI	ON STATEM	ENT	N. Q.
	5.1	In Colum 1 below, mark the sections of Form 1 that you hav application. For each section, specify in Column 2 any attac	e completed a chments that y	nd are submitting wit ou are enclosing.	h your
		Column 1		Column	2
		Section 1: Facility, Operator, and Owner Information		w/attachments	
		Section 2: Legal Description		w/attachments	
		Section 3: Publicly Accessible Internet Site Requirement		w/attachments	
		Section 4: Impoundment Identification		w/attachments	Ī
	5.2	Certification Statement			
		I certify under penalty of law that this document and all attact or supervision in accordance with a system designed to ass and evaluate the information submitted. Based on my inqui system, or those persons directly responsible for gathering t to the best of my knowledge and belief, true, accurate, and significant penalties for submitting false information, includin for knowing violations.	chments were pure that qualifierry of the person the information complete. I an ig the possibilit	prepared under my di ed personnel property n or persons who ma , the information sub n aware that there are ty of fine and imprison	rection / gathe nage th mitted i ment
		Name (print or type first and last name) of Owner/Operator		Official Til	ile Moni
		Signature Munam Nasby	/	Date Sign	ed 12

1

1

Fo 20	rm CC	Illinois Environmental Protection Agency					
		CCR Surface Impoundment Permit Application					
Form CCR 2CC – C			osure Construction				
Bu	reau of	Water ID Number:	For IEPA Use Only				
cc	R Perm	it Number:					
Fa	cility Na	ime:					
	Ş	SECTION 1: DESIGN AND CONSTRUCTION PL	ANS (35 III. Adm. Code 845.220)				
	1.1	CCR surface impoundment name.					
		Pond 2					
	1.2	Identification number of the CCR surface impoundment (if one has been assigned by the Agency).					
ory)		W1970450047					
Hist	1.3	Describe the boundaries of the CCR surface impoundment (35 III. Adm. Code 845.210 (c)).					
ns (Construction		ALL THT PRT OF THE SE1/4 OF SEC 19, T35N-R10E., LYING S'LY OF THE CENTERLINE OF CHANNAHON RD; NW'LY OF A LINE DESCRIBED AS COMM AT THE SW SE1/4 OF SD SEC 19; THC RUNNING E ON THE S LN OF SD SEC 1629 FT; THC N 41 DEG 22' E, 249.3 FT; THC N 47 DEG 46' E, 587.6 FT; THC N 53 DEG 5' 30' E, 371. DEG 28' 30' E, 545.9 FT TO A PT ON THE E LN OF SD SEC 19, WHICH S 708.6 FT S OF THE CENTERLINE OF THE PUBLIC HIGHWAY KNOWN AS CHANNAHON RD, TAKEN BY THE STATE OF ILLINOIS BY DOC# R68-013815) & (EX THEREFROM THE FOLLOWING DESCRIBED PARCEL TO WIT; THT PRT OF THE SE1/4 OF SEC 19, COMM AT A PT ON THE S LN OF SD SEC 19, BEING A CONCRETE MONUMENT 1963.03 FT (RECORD) EAST (AS MEASURED ALG THE SOUTH LN OF SD SEC 19) O OF SD SEC 19 SD MONUMENT BEING ON THE BOUNDARY LN PER THE BOUNDARY LN AGREEMENT RECORDED MARCH 21, 1951 AS DOC # 688037 BETWEEN C TRACTOR CO. & PUBLIC SERVICE CO. OF NORTHERN ILLINOIS; THC N 01 DEG 48' 09'' W LAG THE SD BOUNDARY LN 594.54 FT; THC N 73 DEG 47' 26' E ALG THE (FORMERLY KNOWN AS CHANNAHON RD) AS HERETOFORE CONVEYED TO THE STATE OF ILLINOIS PER QUIT CLAIM AUGUST 19. 1986 AS DOC# R68-13815, AI TO A PT OF CURVATURE; THC E'LY ALG THE ARC OF CURVE CONCAVE TO THE NORTH, BEING THE S ROW LN OF SD RTE 6, HAVING A RADIUS OF 38,307.20 FT CHORD BEARING OF N 73 DEG 38' 36'' E, 196.99 FT FOR A POB; THC CONT E'LY ALG THE ARC OF A CURVE CONCAVE TO THE NO FSD SET 0. SHI CS 37''. RADIUS OF 38,307.20 FT, HAVING A CHORD BEARING OF N 72 DEG 43' 48'' E, 1024.21 FT; THC S 37 DEG 17' 58'' E, 391.37 FT; THC S 42 DEG 57'' 20'' W, 785.70 FT; T 38'' W, 553.84 FT; THC N 40 DEG 21' 51'' W, 348.30 FT TO THE POB. NEW PARCEL ASSESSMENT DESCRIPTION NDA:					
n Pla	1.4	State the purpose for which the CCR surface impour	ndment is being used.				
Constructio		Pond 2 is currently not in service and will no	t be used in the future for CCR storage.				
and	1.5	How long has the CCR surface impoundment been in	n operation?				
sign		41 years					
De	1.6	List the types of CCR that have been placed in the C	CR surface impoundment.				
		Bottom ash					

	1.7	List the name of the watershed within which the CCR surface impoundment is located.			
		Des Plaines watershed			
	1.8	What is the size in acres of the watershed within which the CCR surface impoundment is located?			
		28,808 acres			
	1.9	Check the corresponding boxes to indicate that you have attached the following:			
		A description of the physical and engineering properties of the foundation and abutment materials on which the CCR surface impoundment is constructed.			
lued)		A statement of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR surface impoundment.			
(Contin		A statement of the method of site preparation and construction of each zone of the CCR surface impoundment.			
Plans (A statement of the approximate dates of construction of each successive stage of construction of the CCR surface impoundment.			
tion		Drawings satisfying the requirements of 35 III. Adm. Code 845.220(a)(1)(F).			
struc		A description of the type, purpose, and location of existing instrumentation.			
Con		Area capacity curves for the CCR impoundment.			
n and		A description of each spillway and diversion design features and capacities and provide the calculations used in their determination.			
Desig		The construction specifications and provisions for surveillance, maintenance, and repair of the CCR surface impoundment.			
	1.10.1	Is there any record or knowledge of structural instability of the CCR surface impoundment?			
		Yes No			
	1.10.2	If you answered yes to Item 1.10.1, provide detailed explanation of the structural instability.			
		NA			

	SEC	TION 2: NARRATIVE	DESCRIPTION OF THE F	ACILITY (35 III. Adm.	Code 845.220)		
	2.1	List the types of CCR e	xpected in the CCR surface	impoundments.			
		No CCR is expected chemical analysis o	d in the pond because it f the CCR that used to I	is no longer in operat be in the pond	tion. Attached is the		
c	2.2	Have you attached a cl	nemical analysis of each type	e of expected CCR?			
iptio		Yes					
escr	2.3	Estimate of the maximu	um capacity of the surface in	npoundment in gallons or c	cubic yards.		
ive D		53,590 cubic yar	ds				
Narrat	2.4	The rate at which CCR per day and dry tons.	and non-CCR waste stream	s currently enter the CCR	impoundment in gallons		
			GPD		dTn		
	2.5	Estimate length of time	the CCR surface impoundm	ent will receive CCR and	non-CCR waste streams.		
		Pond 2 will no lo	nger be used				
	2.6	Have you attached an on-site transportation plan that includes all existing and planned roads in the facility that will be used during the operation of the CCR surface impoundment?					
		Yes					
		SECTION 3: MAPS (35 III. Adm. Code 845.220)					
	3.1	Check the corresponding	ng boxes to indicate that you	have attached the following	ng maps:		
A site location map on the most recent United Sates Geological the area from the 7 ½ minute series (topographic) or on anothe shows the information required in 35 III. Adm. Code 845.220(a)					ey (USGS) quadrangle of whose scale clearly		
		Site plans map	s satisfying the requirements	s of 35 III. Adm. Code 845.	220(a)(4).		
		SECTION 4: ATTACHMENTS					
	4.1	Check the correspondi	ng boxes to indicate that you	have attached the following	ng:		
nents		A narrative des impoundment a waste streams	cription of the proposed con and any projected changes in	struction of, or modification n the volume or nature of t	n to, a CCR surface he CCR or non-CCR		
vttachn		Plans and spece	cifications fully describing the component of the facility.	e design, nature, function,	and interrelationship of		
4		The signature a	and seal of a qualified profes	sional engineer.			
		Certification that notification and	at the owner or operator of th I public meetings required ur	ne CCR surface impoundm nder 35 III. Adm. Code 845	nent completed the public 5.240.		

		\checkmark	A summary of the issues raised by the public during the public notification and public meetings.
(pən		\checkmark	A summary of any revisions, determinations, or other considerations made in response to those issues raised by the public during the public notification and public meetings.
Contin		\checkmark	A list of interested persons in attendance who would like to be added to the Agency's listserv for the facility.
achments ((\checkmark	Certification that all contractors, subcontractors, and installers utilized to construct, install, modify, or close a CCR surface impoundment are participants in a training program that is approved by and registered with the U.S. Department of Labor's Employment and Training Administration and that includes instruction in erosion control and environmental remediation.
Att		\checkmark	Certification that all contractors, subcontractors, and installers utilized to construct, install, modify, or close a CCR surface impoundment are participants in a training program that is approved by and registered with the U.S. Department of Labor's Employment and Training Administration and that includes instruction in the operation of heavy equipment and excavation.
			SECTION 5: GROUNDWATER MONITORING PROGRAM
oring	5.1	Indicat any mo	e that you have attached the following components of a new groundwater monitoring program or odifications to an existing groundwater monitoring program by checking the corresponding boxes:
Monit		\checkmark	A hydrogeologic site investigation meeting the requirements of 35 III. Adm. Code 845.620, if applicable.
dwater		\checkmark	Design and construction plans of a groundwater monitoring system meeting the requirements of 35 III. Adm. Code 845.630.
Ground		\checkmark	A proposed groundwater sampling and analysis program that includes selection of the statistical procedures to be used for evaluating groundwater monitoring data as required by 35 III. Adm. Code 845.640 and 845.650.
			SECTION 6: CLOSURE (35 III. Adm. Code 845.220(d))
	6.1	What is	s the closure prioritization category under 35 III. Adm. Code 845.700(g), if applicable?
		Cate	gory 3
sure	6.2	Indicat	e that you have attached the following by checking the corresponding boxes:
Clo		\checkmark	The final closure plan, as specified in 35 III. Adm. Code 845.720(b), which includes the closure alternatives analysis required by 35 III. Adm. Code 845.710.
		\checkmark	Proposed schedule to complete closure.
			Post-closure care plan as specified in 35 III. Adm. Code 845.780(d).
		SECT	ION 7: GROUNDWATER MODELING (35 III. Adm. Code 845.220(d)(3))
er	7.1	Indicat	e that you have attached the following by checking the corresponding boxes:
ndwat		\checkmark	The results of groundwater contaminant transport modeling and calculations showing how the closure will achieve compliance with the applicable groundwater standards.
irou		\checkmark	All modeling inputs and assumptions.
0		\checkmark	Description of the fate and transport of contaminants with the selected corrective action over time.

		Capture zone modeling, if applicable.
	\checkmark	Any necessary licenses and software needed to review and access both the model and the data contained within the model.

KPRG and Associates, Inc.

APPLICATION FOR INITIAL CONSTRUCTION PERMIT

JOLIET #29 GENERATING STATION MIDWEST GENERATION, LLC JOLIET, ILLINOIS

Illinois EPA Site No. W1970450047-02

January 28, 2022

Submitted To:

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Prepared For:

Midwest Generation, LLC 1800 Channahon Rd. Joliet, IL 60436

Prepared By:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

Table of Contents

Introduction 1	1
1.0 History of Construction, 845.220(a)(1)	2
1.1 CCR Surface Impoundment Identifying Information2	2
1.2 Purpose of CCR Surface Impoundment	2
1.3 CCR Surface Impoundment Length of Operation	2
1.4 Type of CCR in Surface Impoundment	2
1.5 Name and Size of the Watershed	2
1.6 Description of CCR Surface Impoundment Foundation	2
1.6.2 Engineering Properties of Foundation Materials	3
1.7 Description of the Construction Materials, Methods, and Dates	3
1.7.1 Physical and Engineering Properties of Construction Materials	3
1.7.2 Construction Methods	4
1.8 Detailed Dimensional Drawings5	5
1.9 Instrumentation	5
1.10 Area-Capacity Curve5	5
1.11 Spillway and Diversion Capacities and Calculations	5
1.12 Surveillance, Maintenance, and Repair Construction Specifications	5
1.13 Record of Structural Instability	5
2.0 Narrative Description of the Facility, 845.220(a)(2)	5
2.1 CCR Chemical Analysis	5
2.2 Maximum Capacity	5
2.3 Waste Streams	5
2.4 On-Site Transportation Plan	7
3.0 Site Location Map, 845.220(a)(3)	7
4.0 Site Plan Map, 845.220(a)(4)	3
5.0 Construction Description, 845.220(a)(5)	3
6.0 Facility Component Plans and Specifications, 845.220(a)(6))
7.0 Closure Construction, 845.220(d) 10)
7.1 Closure Prioritization Category10)
7.2 Final Closure Plan 10)
7.3 Closure Alternatives Analysis 10)
7.4 Proposed Closure Schedule)
7.5 Post-Closure Plan 11	1
8.0 Groundwater Modeling, 845.220(d)(3)11	1
8.1 Modeling Inputs and Parameters	1
8.2 Groundwater Modeling Results 11	1
8.4 Capture Zone Modeling 12	2
8.5 Groundwater Modeling Software	2
9.0 Groundwater Monitoring Program, 845.220(a)(7)	2
9.1 Hydrogeologic Site Characterization	2
9.1.1 Geology	3
9.1.2 Hydrogeology14	1
9.2 Groundwater Monitoring System Design and Construction Plans 17	7

9.3 Groundwater Sampling and Analysis Program	
9.3.1 Sample Frequency	
9.3.2 Sampling Preparation and Calibrations	
9.3.3 Groundwater Sample Collection	
9.3.4 Equipment Decontamination	
9.3.5 Sample Preservation, Chain-of-Custody and Shipment	
9.3.6 Analytical Methods	
9.3.7 Quality Assurance and Quality Control	
9.3.8 Statistical Methods	
9.4 Groundwater Monitoring Program	
10.0 Professional Engineer Certification, 845.220(a)(8)	
11.0 Owner Certification, 845.220(a)(9)	

TABLES

Table 2 Pond 2 CCR Chemical Constituents Analytical Results
Table 9-1 Summary of Local Precipitation Data
Table 9-2 Groundwater Elevations
Table 9-3 Hydraulic Gradient, Direction and Seepage Velocity
Table 9-4 CCR Groundwater Data
Table 9-5 Turbidity Measurements
Table 9-6 Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods
Table 9-7 Proposed Groundwater Protection Standards

FIGURES

Figure 1 Area-Capacity Curve Figure 2 Pond 2 Access Roads Figure 9-1 Site Map Figure 9-2 Cross-Section A-A' Figure 9-3 Cross-Section A'-A" Figure 9-4 Cross-Section B-B' Figure 9-5 Hydrograph Figure 9-5 Hydrograph Figure 9-6 Groundwater Flow Map 3Q2020 Figure 9-7 Groundwater Flow Map 4Q2020 Figure 9-8 Groundwater Flow Map 1Q2021 Figure 9-9 Groundwater Flow Map 2Q2021 Figure 9-10 Groundwater Management Zone Figure 9-11 Potable Well Map

ATTACHMENTS

Attachment 1-1 – Construction Drawings

Attachment 1-2 – HDPE Liner Replacement Specifications

Attachment 1-3 – Pond 2 Liner Repair Specifications

Attachment 2 - Joliet 29 CCR Laboratory Data Package

Attachment 3 – Site Location Map

Attachment 4 – Site Plan Map

Attachment 5 - David E. Nielson Expert Opinion

Attachment 6 – No Attachment

- Attachment 7-1 Final Closure Plan
- Attachment 7-2 Closure Alternatives Analysis
- Attachment 8 Groundwater Modeling Report
- Attachment 9-1 Local Well Stratigraphy Information
- Attachment 9-2 Boring Logs
- Attachment 9-3 Historical Groundwater Data
- Attachment 9-4 IL PE Stamp
- Attachment 9-5 CCR Compliance Statistical Approach
- Attachment 9-6 Statistical Evaluation Summary
- Attachment 10 No Attachment
- Attachment 11 Owner Certification

Introduction

Midwest Generation, LLC (Midwest Generation) currently operates the natural gas-fired generating station, referred to as Joliet #29 Generating Station, located in Joliet, Illinois ("site" or "generating station"). MWG converted the generating station from coal to natural gas in 2016. As part of the previous coal-fired operations, the station operated two ash ponds (Ponds 1 and 2) and a service water basin (Pond 3). MWG removed all of the coal combustion residuals ("CCR") from Pond 1 and decontaminated the liner before October 2015 and repurposed the pond as a low volume wastewater pond.¹ Pond 3 is a *de minimis* pond and is not a CCR surface impoundment. Pond 2 was used for CCR management/storage until 2019. In 2019, the CCR was removed, and all other portions of the exposed liner have been decontaminated. Because Pond 2 was used as a CCR surface impoundment after October 2015, Pond 2 is regulated under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). Pond 2 is not currently in service, and no liquids or wastewater is directed into the pond.

The objective of this submittal is to apply for the initial construction permit for Pond 2 at the Joliet #29 Generating Station. Midwest Generation seeks to receive the construction permit to close Pond 2 by removal in compliance with the State CCR Rule. The information required for a construction permit application for existing surface impoundments as specified under 35 Ill. Adm. Code 845.220 of the State CCR Rule is provided in the following sections.

The Permit is organized with supporting Tables and Figures that are referenced in the discussions being provided at the end of the full Permit text with the table numbers and figures tied to the Section number within which they are referenced with sequential numbering (e.g., Tables referenced in Section 9 are numbered 9-1, 9-2, etc. Figures referenced in Section 9 are numbered Figure 9-1, 9-2, etc.). Specific Attachments referenced within each Section are provided in a similar fashion (e.g., Attachment 1 information is tied to Section 1 of the Permit text, Attachment 2 information is tied to Section 2 of the Permit text, etc.). It should be noted that if a Section does not reference an Attachment then that Attachment number is not included as part of the permit application. For example, Section 6 does not reference an Attachment; therefore, there is no Attachment 6 in this permit application.

¹ As a low volume wastewater pond, Pond 1 receives wastewater from other sources at the Station except CCR.

1.0 History of Construction, 845.220(a)(1)

The history of construction of the CCR surface impoundment as specified in Section 845.220(a)(1) is presented below.

1.1 CCR Surface Impoundment Identifying Information

The identifying information associated with the CCR surface impoundments at the generating station are listed in the table below.

Name	Owner/Operator	Impoundment ID Number	
Ash Pond 2	Midwest Generation 804 Carnegie Center Princeton, NJ 08540	W1970450047-02	

1.2 Purpose of CCR Surface Impoundment

Pond 2 formerly served as a settling pond for sluiced CCR and other process water associated with the electrical power generating process occurring at the site. As stated in the Introduction, MWG converted the generating station to natural gas and it no longer burns coal for electrical power generation. All CCR has been removed from Pond 2 down to the warning layer and all exposed liner has been decontaminated. Pond 2 is not in service and will not be used in the future for CCR storage.

1.3 CCR Surface Impoundment Length of Operation

Pond 2 was constructed circa 1978 and operated as a CCR surface impoundment until 2019, thus operated for approximately 41 years. The Notice of Intent to Initiate Closure was submitted on April 11, 2021.

1.4 Type of CCR in Surface Impoundment

The type of CCR formerly stored in Pond 2 was bottom ash that was sluiced into the impoundment. The chemical constituents that make up the bottom ash is discussed in further detail in Section 2.0.

1.5 Name and Size of the Watershed

Pond 2 is located within the Des Plaines River watershed, which is approximately 28,808 acres in size.

1.6 Description of CCR Surface Impoundment Foundation

The Geosyntec October 2016 Federal CCR Rule History of Construction submittal summarized the foundation for Pond 2 as follows:

"Site observations and construction documents show Pond 2 is surrounded by embankments on the south, east, and west. There are no embankments on the north side of the pond where existing ground elevations generally increase to the north; however, Site investigations indicate that fill material may be present along the northern boundary. For engineering purposes, material located along the northern embankment is considered consistent with embankment fill. Native materials do not provide any lateral support for the embankments and therefore the pond does not contain abutments."

The following sections discuss the foundation materials' physical and engineering properties. KPRG reviewed the previously developed History of Construction for the East Ash Pond and the West Ash Pond, along with previously completed site investigations and concurred with Geosyntec's observations and conclusions.

1.6.1 Physical Properties of Foundation Materials

The physical properties of the foundation materials in which the pond is constructed ranges from clay to sand and gravel. Silurian Dolomite is noted at approximately 40 feet below the top of the pond embankments. This information was obtained from published geologic information and field investigations performed by KPRG (2005), Patrick Engineering, and Geosyntec (2015). No abutments are present.

1.6.2 Engineering Properties of Foundation Materials

The engineering properties for the foundation materials listed in the following table are from the periodic structural stability and safety factor assessments performed by Geosyntec for Pond 2. The properties were determined from the site investigation, published correlations, and laboratory testing of samples collected during the site investigations.

Material	Unit Weight	Drained friction	Effective cohesion
	(pcf)	angle	(psf)
		(degrees)	
Sand/Gravel	125	38	25

Based on Geosyntec's structural stability analysis, engineering properties were not determined for the dolomite because of its negligible contributions to the structural stability of the pond. KPRG agrees with this assessment.

1.7 Description of the Construction Materials, Methods, and Dates

The descriptions of the construction materials, methods, and dates are based on the construction drawings created by NUS in 1978 and 1979, the liner replacement drawings created by NRT in 2007 and 2008 and various site investigations referenced as appropriate. The drawings discussed in the following sections are located in Attachment 1.

1.7.1 Physical and Engineering Properties of Construction Materials

Pond 2 was constructed with embankments on the south, east, and west sides, so the physical properties of the construction materials for this section are the same as the physical properties of the foundation materials. As described in Section 1.6.1, the physical properties for the foundation

materials were described as clay to sand and gravel, so for this section, the physical properties for the construction materials will also be described as clay to sand and gravel. The pond inlet structure, outlet structure, and inlet apron are constructed of concrete. The liner was originally constructed as a 1-foot Poz-O-Pac liner system on the bottom and the side slopes with the addition of a bituminous curing coat applied on the Poz-O-Pac side slopes.

Engineering properties for the design and construction of the embankment materials were not available. Engineering properties were estimated by Geosyntec for use in the factor of safety assessment performed for the pond. Those engineering properties are listed in the following table:

Material	Unit Weight	Drained friction	Effective
	(pcf)	angle (degrees)	cohesion (psf)
Brown Clay	115	30	25
Silty Gravel	125	32	25

In 2008, MWG relined Pond 2 by removing the Poz-O-Pac liner system side slopes and covering the Poz-o-Pac liner bottom with the existing high-density polyethylene (HDPE) geomembrane liner system that is now present. In 2016, approximately 100 cubic yards of engineered fill was placed on the Pond 2 embankment crest in the southeast corner to provide additional freeboard for Pond 2.

1.7.2 Construction Methods

Based on construction drawings by NUS, 1978 (Attachment 1-1), Pond 2 was constructed by excavating down from the original ground surface to achieve the side slopes and elevations. Reviewing the drawings shows the original ground surface ranged from 526 ft above mean sea level (amsl) to 535 ft amsl. Section S on drawing 5079 C 5019 Sheet 2 shows the original ground surface was approximately 531 ft amsl in the north-south direction. Section V on drawing 5079 C 5019 Sheet 3 shows the original ground surface was approximately 526 ft amsl on the east side of Pond 2, and Section W shown on drawing 5079 C 5019 Sheet 3 shows the original ground surface was approximately 535 ft amsl on the west side of Pond 2. The embankment crest of Pond 2 was constructed at approximately 535 ft amsl and the bottom was constructed at approximately 516 ft amsl. The construction drawings for Pond 2 indicate that the pond was not constructed with multiple zones of different soil types, therefore discussing the size and range of each construction zone is not applicable.

The interior side slopes of Pond 2 were designed with 3H:1V (horizontal:vertical) slopes, except for the concrete inlet apron which was designed with slopes of 2H:1V. The exterior side slopes of Pond 2 along the south side were designed at 3H:1V based on the construction drawings. The interior side slopes and bottom of Pond 2 were originally designed with a 1-foot thick Poz-O-Pac liner system based on the 1978 NUS construction drawings; Pond 2's concrete inlet apron does not have the Poz-O-Pac liner. The side slopes also had a bituminous curing coat applied to the Poz-O-Pac liner system.

The west embankment for Pond 2 is topped by the access road that divides Pond 1 from Pond 2 and the west side of the embankment is the outlet side/outlet structure of Pond 1. The original ground surface of the west embankment was approximately 535 ft amsl and the as-built

embankment elevation was documented to be approximately 535 ft amsl. The east embankment of Pond 2 is the outlet side/outlet structure of the pond and abuts an access road from Channahon Road that enters the station. The original ground elevation of the east embankment ranged from approximately 530 ft amsl to 536 ft amsl. The as-built elevation of the access road was documented to range from approximately 539 ft amsl to 535 ft amsl, which is equal to or greater than the east embankment crest elevation of 535 ft amsl.

1.7.3 Construction Dates

Based upon the available construction drawings, Pond 2 was likely built in 1978. As stated above, the original Poz-O-Pac liner was overlain in 2008 with a HDPE geomembrane liner and the improvements to the southeast corner of the embankment occurred in 2016.

1.8 Detailed Dimensional Drawings

The detailed dimensional drawings associated with the construction work that has occurred on Pond 2 are located in Attachment 1. The list of the drawings in Attachment 1 are as follows:

- Construction drawings prepared by NUS, dated 1977 and 1978 (Attachment 1-1);
- Liner replacement construction and as-built drawings prepared by NRT, dated 2007 with revision notes dated 2008 (Attachment 1-1);
- The as-built survey prepared by Ruettiger, Tonelli & Associates, Inc, dated 2008 (Attachment 1-1);
- The construction drawings for the liner replacement of Pond 1, which relates to the western boundary of Ash Pond 2, prepared by NRT, dated 2008 (Attachment 1-1); and
- The construction drawing for the improvements to the embankment's southeast corner, prepared by Geosyntec, dated 2016 (Attachment 1-1).

1.9 Instrumentation

A staff gauge will be installed within Pond 2 to allow for the determination of Pond 2's water level. The staff gauge installation is intended to meet new requirements under Section 845.650(b)(3) to allow water level estimates to be made concurrent with monthly groundwater level measurements. Because Pond 2 is not in service, low volume wastewater is not directed to Pond 2 and the water in the pond is either rainfall or runoff. There is no other instrumentation present at Pond 2.

1.10 Area-Capacity Curve

An area-capacity curve created by Geosyntec is provided as Figure 1.

1.11 Spillway and Diversion Capacities and Calculations

The only spillway and/or diversion features at Pond 2 is the existing outlet structure. The outlet structure consists of a rectangular structure in which the water flows over a concrete weir into a trough that is connected to the discharge piping. The outlet structure is gravity drained. Details of the outlet structure are located on Drawing No. 5079 C5503 created by NUS Corporation in

Attachment 1-1. The calculations for the design of the outlet structure are not available. The drainage capacity for the outlet structure and discharge pipe for Pond 2 have adequately discharged water from Pond 2 without affecting the functionality of the pond.

1.12 Surveillance, Maintenance, and Repair Construction Specifications

Specifications for the original construction of Pond 2 were not available for this application. The specifications that were available are from the 2008 replacement of the original liner with a HDPE geomembrane liner. The specifications are included as part of this application in Attachment 1-2. The specifications indicated that a 60-mil HDPE geomembrane be used along with the associated installation and quality control requirements.

The CCR material was removed from Pond 2 in 2019 and the geomembrane liner was repaired as needed and decontaminated. The specifications for the geomembrane liner repair are included in Attachment 1-3.

1.13 Record of Structural Instability

There is no record or knowledge of structural instability associated with Pond 2.

2.0 Narrative Description of the Facility, 845.220(a)(2)

2.1 CCR Chemical Analysis

The CCR in Pond 2 was removed in 2019 with the warning layer and the high-density polyethylene (HDPE) liner remaining. Prior to 2016 when the station was converted to natural gas, Pond 2 did occasionally receive bottom ash CCR when it could not be sluiced to Lincoln Stone Quarry. The bottom ash CCR that was sluiced to Lincoln Stone Quarry was sampled on August 31, 2021 and analyzed for the parameters listed in Section 845.600(a) except for total dissolved solids. The results of those analyses are presented in Table 2. The laboratory data package is included in Attachment 2.

2.2 Maximum Capacity

Pond 2 has a maximum water capacity of approximately 10,782,600 gallons or approximately 53,390 CY.

2.3 Waste Streams

Pond 2 is not in service and does not receive CCR or non-CCR waste streams at this time.

The non-CCR waste streams that entered Pond 2 when it was in service are service water/low volume wastewater from the reverse osmosis (RO) sand filter backwash, the west area basin, the former coal pile runoff pump discharge, and the plant drains, including the Station floor drains, and roof drains and area drains.

Pond 2 will no longer be used to manage CCR. On May 11, 2021, Midwest Generation filed a petition for an adjusted standard to reuse the liner in the pond, instead of the complete removal as required by Section 845.740. *In the Matter of: Midwest Generation LLC's Petition for Adjusted Standard*, PCB AS21-001. MWG is awaiting a decision on the adjusted standard by the IPCB. It should be noted that the petition was filed within 20 days of the Part 845 effective date of April 21, 2021; therefore, in accordance with Section 28.1(e) of the Act, the rule or regulation requiring removal of the liner is stayed pending the results of the petition. If the petition is granted, then Pond 2 will be used to manage non-CCR waste streams. The non-CCR waste streams would be the same non-CCR waste streams mentioned above. If the petition is granted, Pond 2 will be operated as long as the generating station is used to generate electricity. As of the date of this application, Midwest Generation intends to continue operating the station for the foreseeable future. If the petition is not granted, then Pond 2 will be closed.

2.4 On-Site Transportation Plan

The Joliet #29 generating station property is a secure facility. The property boundary is fenced with one main gate that is guarded 24 hours a day, 7 days a week, and 365 days a year. Access to the plant is controlled through the one main gate with visitors required to sign in and out with the guard personnel. Other gates are present at the facility, but they remain locked at all times with access only provided by Midwest Generation personnel.

Upon approval of this permit, Pond 2 will be closed and not used as a CCR surface impoundment. During the closure activities that main gate access road, mentioned above, and the road adjacent to Pond 2 will be used for access by construction personnel to bring materials and equipment that will be used, as shown on Figure 2. If larger truck vehicles are used, there are other roads at the site that can be used to access Pond 2, which are also shown on Figure 2. As needed, truck traffic will take a one way in and one way out traffic flow, which is also shown on Figure 2. The normal day to day operations of Pond 2 does not require access. Midwest Generation personnel use the adjacent road to perform inspections as needed to ensure that no issues arise. On a quarterly basis, groundwater sampling will be performed at the monitoring wells that surround Pond 2 and the adjacent roads will be used to access the wells. Each sampling event requires 2 to 3 days to perform.

As needed, intersections at the property are traffic controlled with stop signs and the speed limit on the property is 5 miles per hour. At intersections near the buildings with limited visibility, vehicle traffic is encouraged to honk their horn to alert pedestrians that may exit the buildings.

3.0 Site Location Map, 845.220(a)(3)

A site location map on the most recent United States Geological Survey (USGS) quadrangle of the area from the 7 ½ minute topographic series has been included in Attachment 3. This map includes details regarding the facility and adjacent properties boundaries extending 1,000 meters (3,280 feet), surface waters, the prevailing wind direction, and the limits of all 100-year floodplains. All natural areas designated as a Dedicated Illinois Nature Preserve under the Natural Areas Preservation Act, all historic and archaeological sites designated by the National Historic

Preservation Act and the Illinois Historic Sites Advisory Council Act, and all areas identified as critical habitat under the Endangered Species Protection Act of 1973 and the Illinois Endangered Species Protection Act are not present at the site or within 1,000 meters of the site and, therefore, not shown on this map.

4.0 Site Plan Map, 845.220(a)(1)(4)

Site plan maps in accordance with 845.220(a)(1)(4) are included in Attachment 4. The information required is depicted on multiple maps. Figure 4-1 shows the entire Joliet 29 Generating Station including the existing groundwater monitoring wells, the existing CCR surface impoundment (Pond 2), the other non-CCR surface impoundments (Pond 1 and Pond 3) and the main service corridors, transportation routes, and access roads. Cross-sectional maps showing the boundaries above and below ground level of the facility and CCR surface impoundments are included on Figures 4-2 through 4-4.

5.0 Construction Description, 845.220(a)(1)(5)

Midwest Generation has filed a petition for an adjusted standard to reuse the existing liner in the pond, instead of the complete removal as required by Section 845.740. *In the Matter of: Midwest Generation LLC's Petition for Adjusted Standard*, PCB AS21-001. MWG is awaiting a decision on the adjusted standard by the IPCB. It should be noted that the petition was filed within 20 days of the Part 845 effective date of April 21, 2021; therefore, in accordance with Section 28.1(e) of the Act, the rule or regulation requiring removal of the liner is stayed pending the results of the petition. The petition seeks to decontaminate the existing geomembrane liner and reuse the liner instead of removing it. If the petition is granted, then Pond 2 will be used to manage non-CCR waste streams. As of the date of application, it is written with the intention of decontaminating the liner and re-using the pond.

Executing the closure by removal for Pond 2 is a multi-step process. First, the remaining CCR was removed from the sides of the liner using an excavator to pull down as much of the material as possible from the slopes onto the warning layer. Next the liner side slopes were pressure washed to remove the rest of the material on the slope. The previously described work was completed in 2019. The next steps would be to remove the warning layer from the base of Pond 2 using an excavator or front-end loader and haul off-site for disposal. The excavator or front-end loader would also use a rubber surface on the edge of the bucket to protect the geomembrane as the material is scooped. Once the warning layer material is removed from the base, the entire slopes and base of Pond 2 would be pressure washed. The liner slopes and base would be visually inspected and any damages observed would be repaired. After the liner is clean and any necessary repairs are made, wipe samples would be collected and analyzed to confirm the geomembrane liner has been decontaminated. The wipe sampling would be performed in accordance with ASTM D6966-18 and laboratory testing would be performed for metals and other chemical constituents, as necessary. One wipe sample and test would be performed per acre of geomembrane liner in Pond 2. Specifications for the described work are included in Attachment 5. The above-described closure process was included in Midwest Generation's petition for an adjusted standard as Exhibit 3. The described closure process from the petition is included in Attachment 5 as part of this construction permit application in the expert opinion of David E. Nielson of Sargent & Lundy.

Once the liner decontamination process is complete and verified, Pond 2 will be used to manage the Joliet 29 station's non-CCR waste streams. These non-CCR waste streams include the service-water/low volume wastewater from the RO sand filter backwash, the west area basin, the former coal pile runoff pump discharge, and the plant drains, including the Station floor drains, and roof drains and area drains.

After contractors have been chosen to conduct the closure construction and prior to earth moving activities, the contractor certifications identified on permit form 2CC will be provided to IEPA.

6.0 Facility Component Plans and Specifications, 845.220(a)(6)

The station has two generating units that now use natural gas to generate electricity. When the station used coal to generate electricity, it would burn it in the boilers associated with the two generating units. Typically, the CCR generated in the boilers would be sluiced to LSQ using an aboveground piping system where the CCR would be ultimately disposed. At times, this piping system was not operational and the CCR could not be sluiced to LSQ. During these times, the CCR was removed from the boilers inside the station and sluiced to Pond 2 using water through aboveground piping. This section discusses the system that sluices the CCR to Pond 2; the system that sluices CCR to LSQ is discussed in the LSQ construction permit application.

Attachment 1-1 contains the drawings that show the extent of the Joliet 29 generating station and sections/details for the construction of the ponds, including Pond 2. Reviewing these documents shows that the piping that sluices CCR to the ponds emanate from the north side of the building, from which the pipe travels east underground for approximately 600 feet, at which point, the pipe rises aboveground and travels shortly north for approximately 100 feet when it turns east and runs adjacent to Pond 1 for approximately 550 feet. At this point, the pipe turns north for approximately 140 feet where it connects to the inlet structure for Pond 2. The sluice water enters Pond 2 on the west side through a concrete inlet flume and distribution trough that evenly distributes the water into Pond 2. Once the water enters Pond 2 it disperses over the approximate 3.2 acres which allows the CCR to settle and remain in the pond. The water is collected on the east side by a concrete weir structure where the water is discharged through an underground reinforced concrete pipe. This pipe gravity drains the Pond 2 effluent water into the Pond 3 service water basin. Pond 3 is used as a polishing pond that removes the silt and/or clay sized particles from the water. The water discharged from Pond 3 is returned to the generating station for reuse in the station's processes. The water is returned to the station via above ground piping that travels from east to west adjacent to Pond 1 and Pond 2 for approximately 1,670 feet, where it turns southwest for approximately 340 feet, where it enters the station at the northeast corner. From this point the water is reused as part of the station's electricity generating process.

7.0 Closure Construction, 845.220(d)

7.1 Closure Prioritization Category

Based on Section 845.700(g), the category designation for Pond 2 is Category 3. The Category 3 designation for Pond 2 is based on the following:

- Pond 2 is an inactive surface impoundment;
- There are no potable wells or setbacks of existing water supply wells downgradient, and as such Midwest Generation, LLC ("MWG") is not aware of any imminent threat to human health or the environment;
- The Illinois EPA EJ Start tool found at <u>https://illinois-epa.maps.arcgis.com/apps/webappviewer/index.html?id=f154845da68a4a3f837cd3b880b</u> 0233c was used to determine that Pond 2 is located within one mile of an area of environmental justice concern.

A Notice of Intent to Initiate Closure for Pond 2 was submitted on April 11, 2021 by Midwest Generation.

7.2 Final Closure Plan

According to the initial Closure Plan prepared by KPRG in October 2016, "the closure of Ash Pond 2 will be by removal of the CCR" as defined in 40 CFR 257.102(c). As indicated previously, the CCR was removed from Pond 2 in 2019 while the warning layer and HDPE liner remains. Midwest Generation has filed a Petition for an Adjusted Standard with the Illinois Pollution Control Board requesting that Midwest Generation may reuse the HDPE liner in Pond 2. *In the Matter of: Petition of Midwest Generation for an Adjusted Standard from 845.740(a) and Finding of Inapplicability of Part 845*, PCB AS21-02. With the petition, "Midwest Generation plans to keep the structure of the pond intact for use for non-CCR material". The previously completed Closure Plan has been revised to address the execution of the final closure for Pond 2 based upon MWG's petition. Pond 2 will be closed by removing the warning layer and decontaminating the liner in accordance with the requested adjusted standard. The Final Closure Plan is included as part of this application in Attachment 7-1.

7.3 Closure Alternatives Analysis

A closure alternatives analysis (CAA) was completed for Pond 2. The CAA evaluated closing Pond 2 by removal in accordance with 845.740 and closure in place in accordance with 845.750. The completed CAA is included in Attachment 7-2.

7.4 Proposed Closure Schedule

The proposed schedule to execute the closure of Pond 2 is included in the Final Closure Plan in Attachment 7-1. The initial closure activity is applying for and obtaining an IEPA construction permit and the final closure step is submitting a closure report and closure certification with the closure construction activities occurring in between. The total time to execute the closure activities

is estimated to be 24 months, which includes time to obtain the construction permit and closure report approval.

7.5 Post-Closure Plan

Since Midwest Generation is seeking an Adjusted Standard to reuse the existing HDPE geomembrane liner as part of reusing Pond 2 and otherwise close Pond 2 by removal in accordance with 845.740(a). The CCR and the warning layer will be removed from Pond 2 and the liner will be decontaminated in accordance with Midwest Generation's Adjusted Standard Petition. As a result, a post-closure plan is not required and Pond 2 will conduct groundwater monitoring for at least three (3) years in accordance with the sampling program discussed in Section 9 below and in accordance with 35 Ill. Adm. Code 845 Subpart F.

8.0 Groundwater Modeling, 845.220(d)(3)

The groundwater modeling of the CCR surface impoundment as specified in Section 845.220(d)(3) is presented below.

8.1 Modeling Inputs and Parameters

The CCR source material has already been removed, therefore the modeling that was conducted is based on a theoretical distribution of dissolved contaminants beneath Pond 2, assuming a source at the pond, to demonstrate the impact of removing the CCR source on the spread of contaminants.

To conduct the support modeling a theoretical unit source with a concentration of "1" was established beneath Pond 2 and projected forward in time with advection and dispersion to establish an equilibrated distribution of contaminants in groundwater if Pond 2 were the source. The equilibrated distribution (base case) of the mass was then used as the initial concentrations in the groundwater for model runs to simulate the closure alternatives to evaluate corresponding improvement in groundwater quality from the base case scenario.

The groundwater modeling inputs and parameters are discussed further in the groundwater modeling report in Attachment 8.

8.2 Groundwater Modeling Results

From this initial equilibrated model run discussed in Section 8.1, the source was removed and the change in concentrations were modeled over 5-years, 25-years, 50-years, and 100-years; these model runs are shown in Figures 1 through 4 located in Attachment 8. On each figure the base case run is illustrated on the left side and the CCR removal scenario is illustrated on the right side. Reviewing Figure 2, which projects out 25-years indicates that groundwater impacts near the river have been reduced by approximately 50% (projected concentration of 0.5 which is half the starting theoretical concentration of 1). The 50-year and 100-year projections on Figures 3 and 4 indicated reductions in groundwater impacts by at least 90% (projected concentration of 0.1 which is 90% less than starting hypothetical concentration of 1). Figure 5, located in Attachment 8, illustrates

the above noted reduction in concentrations over time at a modeling point location near the river and shows that the initial, theoretical concentrations are reduced by approximately 90 percent within about 30 years at which point a relative equilibrium has been reached.

As further required by the State CCR Rule, seasonal fluctuations of the groundwater system were considered. To estimate the potential impacts on contaminant migration under a seasonally varying groundwater flow system, a 100-year transient flow model was simulated with alternating periods of higher and lower recharge to groundwater. The flow model simulated 5 months of higher recharge (April through August) and 7 months of lower recharge (September through March), reflecting trends in the long-term average monthly precipitation records. The initial equilibrated contaminant distribution again served as the starting conditions, the theoretical source was removed, and the concentrations were modeled with advection and dispersion. The results of this modeling are illustrated on Figure 6 located in Attachment 8. As shown on Figure 6 and taking into account seasonal variations, the concentrations from the initial theoretical source are reduced to less than 0.1 (greater than 90%).

As demonstrated in the modeling runs, the removal of the CCR source reduces associated theoretical groundwater impacts in excess of 90% from a base case release scenario. The groundwater modeling results are discussed further in the groundwater modeling report in Attachment 8.

8.3 Capture Zone Modeling

Capture zone modeling is not applicable based on the selected method of closure.

8.4 Groundwater Modeling Software

The groundwater modeling was completed using standard publicly available platforms, which included MODFLOW-NWT and for contaminant transport MT3D-USGS. The graphical user interface is Groundwater Vistas. Both MODFLOW-NWT and MT3D-USGS are publicly available programs that can be downloaded from the USGS website <u>https://water.usgs.gov/water-resources/software/modflow-nwt/</u> and <u>https://www.usgs.gov/software/mt3d-usgs-groundwater-solute-transport-simulator-modflow</u>, respectively.

9.0 Groundwater Monitoring Program, 845.220(a)(7)

The groundwater monitoring program of the CCR surface impoundment as specified in Section 845.220(a)(7) is presented below.

9.1 Hydrogeologic Site Characterization

The following subsections provide information on the geology and hydrogeology of the site as required under Section 845.620(b). Site geology and hydrogeology are discussed separately below.

9.1.1 Geology

The physiography of Will County is made up of ground moraines, end moraines, outwash plains, stream terraces, flood plains and bogs. It is in the Till Plaines and Great Lakes Sections of the Central Lowland Province. Near surface soils in the vicinity of the subject impoundment have been grouped as Kankakee Fine Sandy Loam and Romeo Silt Loam. These soils are well to poorly drained, respectively. Organic content ranges from 2 to 5 percent and have a low to negligible accelerated erosion rate, a moderate to high corrosivity rate and a pH range from slightly acidic to slightly basic (5.6 to 8.4). Surface runoff class is low (Soil Survey of Will County Illinois). Based on the Surficial Geology Map of the Chicago Region (ISGS Circular No. 460, 1971) the surficial deposits in the vicinity of the subject surface impoundment are identified as part of the Henry Formation, which is generally described as sand and gravel with local beds of silt and/or exposed Silurian dolomite bedrock.

The general stratigraphy in the area consists of unconsolidated glacial deposits, which overlay Silurian dolomite. The Silurian dolomite is underlain by the Maquoketa Group, which includes the Scales Shale, which is considered a regional aquitard separating the overlying Silurian dolomite from the deeper Cambro-Ordovician sandstone and limestone aquifers. To evaluate local stratigraphy and as part of groundwater model development in support of the Construction Permit being submitted under separate cover, water and test well logs were obtained for wells in the general vicinity of the Joliet #29 Generation Station (it is noted that all of these wells are upgradient or side gradient of the Station and two wells on property [see Section 9.1.2]). The depths of these wells range from 43 feet to 605 feet. The stratigraphy data from these boring logs and the well locations are provided in Attachment 9-1. In addition, well logs from 11 monitoring wells that were installed in the vicinity of the subject surface impoundment (MW-1 through MW-11; see Figure 9-1) with those borings ranging in depth from 27.5 feet to 41 feet. This information is also included in the stratigraphy table in Attachment 9-1. Boring logs for these monitoring wells are included in Attachment 9-2. Based on an evaluation of this data, the following general site-specific stratigraphy is defined and geologic cross-sections are provided as Figures 9-2, 9-3, and 9-4 based on the 11 on-site monitoring well boring logs:

- Fill (approx. 0' to 8.5' thick) Consisting of a thin layer of top soil and/or coarse gravel fill.
- Silty clay to clay (approx. 0' 15' thick) Consisting of black/brown silty clay and clay with a trace of coarse gravel or sand. Not continuous across site along east-west transect.
- Sand and Gravel (approx. 14' to 40' thick) Consisting of black/brown fine to coarse sand and gravel with limestone fragments noted throughout. May locally include some lenses or interlayering of black silty clay and/or tan silty sand (wells MW-1 and MW-2).
- Sandy silt/silty clay (approx. 0' to 34' thick) Consisting of black/gray sandy silt grading downward to a gray silty clay with coarse sand. Not continuous across site.
- Bedrock Consisting of Silurian dolomite Top of unit encountered at approximately 38.5 feet below ground surface (bgs) at boring location MW-6. Borings noted with increased

limestone fragment at base interpreted to be at or near top of weathered bedrock surface. Description of the dolomite discussed in detail below.

Although no specific borings were extended into the dolomite bedrock at this facility, extensive drilling and investigation of the bedrock was completed at the Joliet #9 Station, Lincoln Stone Quarry facility immediately to the south of the Des Plaines River from the subject site. The Silurian dolomite formation is generally consistent regionally, especially over fairly short distances. Based on that work, the following additional bedrock information is provided.

The Silurian dolomite is divided into four units identified as a weathered bedrock rind, Joliet Formation dolomite, Kankakee Formation dolomite and the Elwood/Wilhelmi dolomite. Beneath the Silurian dolomite is the Ordovician age Maquoketa Group consisting of the Brainerd Shale, Fort Atkinson dolomite and the Scales Shale. Although the Brainerd Shale was identified at the above referenced Lincoln Stone Quarry facility with a thickness of approximately 10 feet, this unit is not necessarily regionally continuous; therefore, it may or may not be present beneath the subject site. The Scales Shale unit, however, is extensive and is a recognized regional aquitard, which hydraulically isolates the deeper bedrock aquifers from the shallower Silurian dolomite. Based on the available information, the dolomite bedrock thickness to the top of the Scales Shale beneath the Joliet #29 site is estimated to be 95 to 115 feet.

Regional and local studies and investigations document fractures in the Silurian dolomite describing a primary joint set that is vertical and oriented about N52°E and N40°W. The N40°W joints are described as "more distinct". Natural spacing between the joint sets ranges from 3 to more than 10 feet, and joint apertures are described as less than 1/16th -inch. Bedding plane fractures are also described. Descriptions from various bedrock quarry walls and from cores obtained during drilling at the Lincoln Stone Quarry site show significant clay infilling of the vertical joints and bedding plane fractures. Evidence of water movement through fractures is interpreted from iron staining and mineralization (primarily calcite, with some pyrite and marcasite).

Silurian dolomite is a calcium-magnesium carbonate rock that includes horizons of cherty (silica) nodules and is documented both regionally and locally to include mineralization along fractures and within vugs. The mineralization includes, but is not limited to calcite (calcium carbonate) and various sulfide minerals such as pyrite, marcasite, etc. As such, the presence of these minerals and associated weathering products can also be expected within the overlying unconsolidated materials.

There are no underground mines beneath the subject CCR surface impoundment.

9.1.2 Hydrogeology

Based on information from the Soil Survey of Will County, the average annual precipitation is approximately 37 inches with about 63% of that total falling between April and October of any given year. The average seasonal snowfall is approximately just over 10 inches. More site-specific precipitation data from four water stations located in Joliet and Elgin, Illinois, is provided in Table 9-1.

The nearest surface water body is the facility intake channel and Des Plaines River located to the south of the subject CCR unit (see Figure 9-1). This reach of river is further identified as the Lower Des Plaines River, which starts upstream of the site at the confluence of the river with the Chicago Ship and Sanitary Canal (CSSC) at the E.J. & E railroad bridge (river mile 290.1). The CSSC is the main tributary to this segment of river contributing approximately 80% of the flow to the river. The segment of river adjacent to the subject site is part of the Dresden Island Pool, which starts at the Brandon Road Lock and Dam (river mile 286) which is immediately upstream of the subject CCR surface impoundment. The Dresden Island Pool is 14 miles in length, approximately 800 feet wide with depth varying between 2 to 15 feet (Lower Des Plaines River Use Attainability Analysis Final Report, IEPA, December 2003). There are no drinking water intakes within the Dresden Island Pool and for that matter on any portion of the Des Plaines River downstream of the site (Meet Your Water – An Introduction to Understanding Drinking Water in Northeastern Illinois, Metropolitan Planning Council, 2017).

Groundwater beneath the subject unit occurs under water table conditions. Saturated conditions are generally encountered between 25 and 35 feet bgs, depending on the well location, within the lower portion of the above-defined sand and gravel unit. Table 9-2 provides groundwater elevation measurements obtained for the 11 on-site monitoring wells in the vicinity of the subject CCR surface impoundment which includes data for the monitoring wells associated specifically with the subject surface impoundment (Pond 2; upgradient well MW-10 and downgradient wells MW-3 thru MW-5). A hydrograph of water levels is provided as Figure 9-5. A review of the hydrograph shows some potential temporal fluctuations with the highest water levels generally occurring within the second or third quarters of the year.

Groundwater flow maps for the four quarters from 3rd quarter 2020 through the 2nd quarter 2021 are provided as Figures 9-6 through 9-9. The maps include groundwater elevation data from all 11 wells in the area, including the specific CCR monitoring wells associated with the subject surface impoundment. Based on a review of the maps, groundwater flow is in a southerly direction towards the associated facility water intake channel and the Des Plaines River. These maps are consistent with historical flow data for the site. The horizontal hydraulic gradient is fairly shallow. Table 9-3 provides a summary of the flow direction, gradient and an estimated rate of groundwater flow for each sampling event. The flow rate was calculated using the following equation:

$$V_{\rm s} = \frac{{\rm K}dh}{n_e dl}$$

Where:

 V_s = seepage velocity (distance/time) K = hydraulic conductivity (distance/time) dh/dl = hydraulic gradient (unitless) n_e = effective porosity (unitless)

Hydraulic conductivity values were initially estimated for monitor wells MW-4, -6, -9, and -11 from slug tests completed by Patrick Engineering in 2010. The geometric mean of the test data for these wells was approximately 310 feet per day (ft/d; 3.59×10^{-3} ft/sec) for each well, as calculated

by Patrick Engineering in the Hydrogeologic Assessment Report – Joliet #29 Generating Station, February 2011. The slug test data were reviewed as part of the modeling study being completed for the Construction Permit application and the data were reanalyzed using corrected input values for the well casing and borehole dimensions and effective porosity of the sand filter pack material. The revised geometric mean of the test data for these wells decreased to approximately 170 ft/d (1.97 x 10^{-3} ft/sec) for each well. This revised value was used in Table 9-3. The estimated effective porosity of the aquifer materials (0.35) was obtained from literature (Applied Hydrogeology, Fetter, 1980).

At this time, based on the geology discussion in Section 9.1.1 and the site-specific hydrogeology discussions above, the groundwater beneath the CCR surface impoundment is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Groundwater Management Zone (GMZ) has been established in the vicinity of the subject CCR surface impoundment in accordance with Section 620.250 as part of a Compliance Commitment Agreement (CCA) between Midwest Generation and Illinois EPA. The extent of the established and approved GMZ is provided on Figure 9-10.

A survey of all potable water sources within a 2,500 feet radius of the Midwest Generation Joliet #29 Generating Station was completed by Natural Resources Technology (NRT) in 2009. The following databases and sources of information were utilized in order to determine community water source and water well locations and construction in the vicinity of the ash pond wastewater treatment systems:

- Illinois State Geological Survey (ISGS) -Water Well Database Query;
- Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and
- Illinois Division of Public Water Supply web-based Geographic System (GIS) files;

As part of this permit preparation, KPRG evaluated the NRT information and reviewed the new Illinois State Geological Survey database and interactive map references as "ILWATER". The survey results are provided on Figure 9-11. Fifteen potable/industrial use wells are within a 2,500-foot radius of the Station's subject CCR surface impoundment. There are no wells directly downgradient of the subject surface impoundment. Eight of the wells are located 1,500 to 2,500 feet north and northwest of the impoundment (upgradient). Two wells, both owned by Midwest Generation, which service the Station, are located to the west and southwest (sidegradient). Both of these wells are greater than 1500 feet deep and screened within the Cambro-Ordovician limestones/sandstones beneath the Maquoketa Shale. There are several wells south of the Des Plaines River, a hydrogeologic discharge boundary, which service the Joliet #9 Generating Station all of which are also greater than 1,500 feet deep. The well that is located within the Des Plaines River (well 00563) is incorrectly located within the ILWATER database and is actually part of the Olin Chemical operations located approximately 0.3 miles to the south of the location shown on the figure.

A search of the Illinois Department of Natural Resources dedicated nature preserve database (<u>https://www2.illinois.gov/dnr/INPC/Pages/NaturePreserveDirectory.aspx</u>) was performed to determine whether there may be a dedicated nature preserve nearby. No dedicated nature preserves were identified in the vicinity of the subject CCR surface impoundment.

Based on the geology of the site presented in Section 9.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from the subject CCR surface impoundment would be downward migration to groundwater within the unconsolidated sand and gravel aquifer. Due to its proximity to the facility intake channel and Des Plaines River, which is a hydrogeologic flow boundary, minimal to no downward vertical flow mixing would be anticipated within the aquifer. There are no other utility or man-made preferential pathway corridors that would act to potentially intercept the flow to move any contamination in a direction other than to the south. There are no potable water wells downgradient of the subject CCR surface impoundment screened within the aquifer of concern. Also, as previously discussed, there are no potable surface water intakes on the Des Plaines River either along or downstream of the subject site.

There is quarterly groundwater quality data associated with the subject CCR surface impoundment and the two other ponds in the area dating back to December 2011 associated with an Illinois EPA request for evaluation of potential ash pond groundwater impacts and subsequently the negotiated CCA. However, that Illinois EPA required parameter list was slightly different from that specified in Section 845.600 and included analysis of dissolved inorganic parameters rather than total inorganic parameters. That historical water quality data is provided in Attachment 9-3.

Pond 2 is subject to the federal requirements under Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule). As required under the Federal CCR Rule, eight rounds of background sampling were completed for the monitoring wells within the monitoring network for the subject CCR surface impoundment (MW-3 through MW-5 and MW-10). This included the full list of Appendix III (detection monitoring) and IV (assessment monitoring) parameters. Subsequently, quarterly groundwater monitoring of these wells was continued for only Appendix III detection monitoring parameters since there were no detections of Appendix III parameters above the established statistical background for those wells. Since the effective date of the new State CCR Rule, quarterly groundwater monitoring for the full list of parameters specified in 845.600, which includes all parameters in the Federal CCR Rule Appendix III/IV, has continued. This data is provided in Table 9-4. In addition, it is noted that Illinois EPA added turbidity measurements to the list with a required eight rounds of background of that parameter for each well in the monitoring network for the subject CCR surface impoundment. The turbidity data is provided in Table 9-5.

9.2 Groundwater Monitoring System Design and Construction Plans

A comprehensive monitoring well network that includes other ponds in the vicinity of Pond 2 was established in response to a previous Illinois EPA request in 2010. The well spacing was developed as part of a previous hydrogeologic assessment completed by Patrick Engineering, Inc. The well depths were determined based on depth to groundwater and the base elevations of the

ponds being monitored and were approved by Illinois EPA. Groundwater flow in the area is generally to the south towards the facility water intake channel and Des Plaines River. Monitoring well MW-10 (see Figure 9-1) is the established up-gradient water quality monitoring point for Pond 2. Groundwater data from this well will be evaluated to provide a statistically representative upgradient water quality prior to that water passing beneath the regulated unit. Wells MW-3, MW-4 and MW-5, which are located essentially at the pond boundary, will serve as down-gradient monitoring points for Pond 2. This proposed monitoring well network will be utilized for determining whether potential pond leakage may be causing or contributing to groundwater impacts in the vicinity of the units.

MW-3, MW-4, MW-5, and MW-10, installed in 2010, were drilled using 4.25-inch hollow stem augers. The wells were completed with standard 2-inch inner-diameter PVC casing with 10-feet of 0.010 slot PVC screen. Filter sand pack around each screen was extended to approximately 2-feet above the top of the well screen. The remainder of the annulus was backfilled with bentonite. Surface completions include stick-up (above grade two to three feet) locking protector casings set in concrete aprons. The wells are further protected by traffic bollards, as necessary. Boring logs and well construction summaries for these wells are provided in Attachment 9-2. Ground surface and top-of-casing elevations were surveyed by an Illinois licensed surveyor and are included in the previously referenced groundwater elevation table (Table 9-2).

MW-3, MW-4, MW-5, and MW-10 are outfitted with a dedicated sampling system. Specifically, each well has a QED Environmental Systems (QED) Well Wizard Model P1101M dedicated sampling pump with Model No. 37789 intake screens (0.010-inch slot). The screens are set within approximately one-foot of the base of the monitoring well.

In accordance with requirements under Section 845.630(g), Attachment 9-4 includes an Illinois licensed Professional Engineer certification of the above-defined monitoring system.

9.3 Groundwater Sampling and Analysis Program

9.3.1 Sample Frequency

Pond 2 is regulated under the Federal CCR Rule. As such, all of the above defined monitoring wells (upgradient and down-gradient) have been sampled on a quarterly basis starting the 4th quarter of 2015 for eight consecutive quarters for both Appendix III and Appendix IV parameters specified in the Federal CCR Rule, which is the same parameter listing as provided under the State CCR Rule Section 845.600(a) plus calcium. This dataset will facilitate the development of proper statistical evaluation procedures for the site and use in development of applicable site-specific Groundwater Protection Standards (GWPSs) for each constituent pursuant to Section 845.600(b) as presented in Section 9.4 below. Additional monitoring data collected since the initial eight rounds of background sampling will also be evaluated to determine whether an expanded dataset can be used in developing an appropriate and representative background for the State CCR Rule compliance. Illinois EPA added turbidity as an additional parameter that will require development of a statistical background. Since this parameter was not included within the Federal CCR Rule, eight rounds of turbidity measurements were obtained within the 180-day period since the effective date of the State Rule. However, this restricted period of background data collection does not

facilitate evaluation of potential seasonal variations during the development of statistical background for this parameter.

Currently, all wells within this CCR monitoring network are being sampled on a quarterly basis for all parameters specified in Section 845.600(a) plus calcium and turbidity. Between quarterly monitoring events, groundwater level measurements from all designated CCR monitoring wells will be also obtained and recorded on a monthly basis. During the initial rounds of monthly groundwater level measurements after the enactment of the State CCR Rule, surface impoundment measurements were not collected because the instrumentation for these measurements was not yet in-place and available for recording the data.

Quarterly groundwater monitoring will continue during the active life of the impoundment and the post-closure care period or, if closure is by removal, then in accordance with monitoring frequency requirements under Section 845.740(b). It is noted that if after 5 years of quarterly monitoring it can be demonstrated that the facility meets the requirements specified in Section 845.650(b)(4), the owner can petition the Illinois EPA to shift the monitoring frequency to semi-annual.

9.3.2 Sampling Preparation and Calibrations

Prior to any sampling event, the Station's designated Environmental Specialist shall be notified in advance of sampling crew arrival so that any arrangements can be made, including security clearance and training.

Prior to sampling activities, and at intervals recommended by the manufacturer, all non-dedicated equipment shall be cleaned and calibrated. Specifically, the field parameter water quality meter to be used for pH, specific conductance, turbidity and temperature will be calibrated using standard reference solutions. In addition, an operational check of the electronic water level probe will also be performed by placing the probe into a bucket of water and ensuring that the audio signal is triggered when the sensor meets the water interface. The associated tape measure of the probe will also be checked for wear.

The monitoring network consists of all dedicated sampling equipment (QED Well Wizard P1101M). The controller used to operate individual bladder pumps will be checked and maintained prior to arrival at the site based on manufacturer specifications.

All lab ware shall be obtained directly from an Illinois certified laboratory. Upon arrival to the site, the monitoring wells will be assessed for structural integrity. Each well cover (either stick-up or flush mount) will be inspected for proper labels, locks, any damage and be cleared of any flora or fauna that may be on the well or in the vicinity that would affect the sample or the sampling operation. In addition to any other notable observations, all of the above shall be entered on the sampling sheets. Once the well is uncovered and unlocked, and the well casing inspected, the well head shall be inspected for damage and cleanliness. At that point, the well will be considered ready for sampling per procedures described below.

9.3.3 Groundwater Sample Collection

Prior to initiating sampling, a round of groundwater levels will be collected from each monitoring well using an electronic water level probe. The timeframe over which these water levels are

collected should be minimized and should not exceed 8 hours. The depth to water will be measured to the nearest one-hundredth of a foot from the top of casing using an electronic water level meter. The water level probe should be properly decontaminated between each reading using procedures specified in Section 9.3.4.

All of the monitoring wells at this Station are equipped with dedicated, down-hole, bladder pumps. At the top of casing for each well is a manifold with air and water quick connects and a port for a water level meter probe to fit so that an undisturbed water level can be obtained. Immediately prior to sampling, the depth to water will be measured again to the nearest one-hundredth of a foot from the top of casing using an electronic water level indicator and recorded onto the sampling sheets. Once recorded, an air compressor and flow controller will be attached to the air side quick connect and disposable tubing attached to the discharge connection. The discharge tubing will be run to a flow-through cell of the water quality meter. A discharge line from the flow-through cell will be placed into a vessel to allow for the measurement of the volume of groundwater removed. The water quality meter will be attached within the flow-through cell that allows for real time readings of pH, specific conductivity and temperature. It is noted that a calibration check of the water quality meter should be performed at the start and end of each day of sampling and recorded in the field notes. If the meter calibration-check shows drift outside of manufacturer specifications, the meter should be recalibrated in the field using standard solutions per manufacturer requirements.

The air controller will be set to the necessary pressure and to the slowest pumping interval, approximately 50 second refill and 10 second pump (flow rates at this setting tend to be less than 100 milliliters/minute), and the compressor will be started. The intent of the low flow pumping will be to minimize drawdown in the well with an ideal goal of keeping the drawdown to 0.30 feet or less. Once the water has filled the flow-through cell, a reading of the parameters will be recorded. Readings will continue to be recorded until such time as all parameters are deemed stable for three consecutive measurements at which point a sample will be collected from the tubing prior to the flow-through cell. An unfiltered groundwater sample shall be collected directly from the water tubing after it is disconnected from the flow-through cell. The laboratory provided bottles shall be properly filled. Once the sample is collected, the bottles shall be properly labeled and placed on ice as necessary.

If the well would pump dry prior to the field parameter readings stabilizing, the well will be allowed to recover for up to 24-hours at which point water sample collection will be initiated.

In the event that a dedicated bladder pump fails to work, the following procedures should be implemented:

- Pull the dedicated tubing and pump from the well and ensure that the tubing does not contact the ground.
- Visually inspect the intake of the pump for clogging from sedimentation. If clogging is noted, clean the intake with distilled water. If there is no clogging, dismantle the pump casing and inspect the bladder for any holes, cracks or tears.

- If the bladder is determined to be compromised (i.e., wear has resulted in cracking or tearing), remove the bladder and replace it with a new bladder. Properly clean all parts of the pump using procedures described in Section 9.3.4, reassemble the pump and slowly lower it back down hole. Continue sampling as described above.
- If the entire pump is determined to have failed, a new pump will need to be ordered for replacement and a modified sampling procedure will be implemented as described below.

In the case of bladder pump failure, at a specific well during a sampling event, the alternate sampling method will be the use of a portable peristaltic pump (the pump itself does not go downhole) assuming depth to water is less than 23 feet bgs. Clean disposable polyethylene tubing will be attached to the pump and the tubing will be slowly lowered down hole along with the water level probe. The pump will be operated at the lowest rate possible to achieve the same goals as for sampling described above (generally below 300 milliliters/minute, which is within the range of standard low flow protocols). Water will be collected in a clean glass jar for field parameter readings. Once stable field parameters are recorded, the sample will be collected directly onto laboratory prepared containers for analysis. Upon completion of sample collection, the water level meter and tubing should be removed from the well. The polyethylene tubing should be disconnected from the pump and discarded. The water level meter should be properly decontaminated as specified in Section 9.3.4. If depth to water is such that a peristaltic pump cannot be used, a submersible pump will need to be used. The submersible pump must be properly cleaned as specified in Section 9.3.4 prior to placement down the well. All subsequent procedures will be the same as above. The alternate sampling pump use will be recorded on the field data sheet for that well and noted in any subsequent reporting summary.

9.3.4 Equipment Decontamination

Any equipment that is used down-hole at more than one sampling location must be thoroughly decontaminated between uses. Based on procedures described above, only the water level meter is anticipated to be in this category, however, if a submersible pump needs to be used during a particular sampling event due to dedicated pump failure (see Section 9.3.3), these procedures will also apply. The water level meter probe and any measuring tape, or any other non-dedicated equipment that may need to be placed down the well that extended below the water surface, will need to be cleaned with an Alconox solution, or equivalent, wash followed by a double rinse with distilled water. Any pump tubing that is not dedicated should be discarded and only clean tubing should be used down-hole.

9.3.5 Sample Preservation, Chain-of-Custody and Shipment

Since measurement of total recoverable metals is required by the State CCR Rule, the samples will not be filtered prior to collection. This will facilitate the analysis to capture both the particulate fraction and dissolved fraction of metals in natural groundwater. Groundwater samples will be collected directly into Illinois certified laboratory provided containers. Those containers will be prepared by the laboratory to contain any necessary chemical preservation. The samples shall be stored at temperatures required by the lab following sample collection. Table 9-6 includes a summary of sample bottle requirements, preservatives and holding times

All groundwater samples collected shall be transferred to the laboratory under proper COC procedures. The laboratory provided COC, completed with all pertinent information, shall be maintained from sample collection through receipt by the laboratory. The information shall include, but is not limited to, the following:

• Project name and number, state samples collected in, sample name and type, time and date collected, analysis requested, and printed name and signatures of person(s) sampling.

The COC shall be completed and properly relinquished by the field sampler(s) with all samples clearly printed or typed.

All samples will be either delivered directly to the laboratory or be shipped using Federal Express or a similar overnight service. It should be noted that Total Dissolved Solids (TDS) analysis has a 7-day holding time. TDS samples should be shipped to the laboratory within 72 hours after collection. All other holding times for the specified parameters are long enough to facilitate one shipment after the full round of sampling is complete.

9.3.6 Analytical Methods

A list of the analytical methods to be used by the laboratory for each specified parameter is included in the above referenced Table 9-6. Individual detection limits for the parameters may change slightly from sample to sample depending on potential matrix interferences with a sample (e.g., amount of suspended solids/sediment) and/or the concentration of the constituent in the sample. However, the base detection limits will be set at or below the applicable standards as defined in Section 845.600(a)(1) for that compound, which are also provided in Table 9-6.

9.3.7 Quality Assurance and Quality Control Laboratory

Only an Illinois certified analytical laboratory will be used for sample analysis. The laboratory will be conducting their work under their specific approved Quality Assurance and Quality Control (QA/QC) program. A copy of their program can be available upon request. A standard Level II data documentation package will be included in all subsequent reporting, however, the lab will be requested to also provide a Level IV data documentation package (i.e., U.S. EPA Contract Laboratory Protocol equivalent) in the event more detailed data validation/evaluation is deemed necessary.

<u>Field</u>

The QA/QC program for fieldwork will include the collection of blind duplicates and the use of a laboratory supplied trip blank. The blind duplicate will be collected from a random well during every sampling event in which more than three (3) samples are collected. The duplicate will be blind in the manner that there will be no way for the laboratory to determine from which well or point the sample was collected.

Upon receipt of the analytical data, a determination will be made if the duplicate is consistent with the sample collected from the well/point. A generally acceptable range for groundwater samples

is +/- 30 percent. If outside the acceptable range, a resample may be determined to be necessary and reanalyzed. The trip blank analytical data will be reviewed for any values other than non-detect. If there are any questions regarding the duplicate, trip blank, or other reported analytical QA/QC runs, the laboratory will be contacted to determine the effect on data quality, if any, and usability. If necessary, a specific well may need to be re-sampled.

9.3.8 Statistical Methods

A proposed statistical evaluation plan meeting the requirements specified in Section 845.640(f) is provided in Attachment 9-5 along with a certification of the plan by an Illinois licensed Professional Engineer.

9.4 Groundwater Monitoring Program

The groundwater sample and water level collection frequency is discussed in Section 9.3.1 above.

As previously noted, the monitoring well system for the subject unit consist of four monitoring wells as follows:

- MW-10 Upgradient
- MW-3 through MW-5 Downgradient

Eight rounds of background sampling for the purposes of statistical evaluation and background determination is available from the initial groundwater sampling which occurred starting in 2015 in compliance with the Federal CCR Rule requirements. Subsequent groundwater sampling has also occurred on a quarterly basis for the seven detection monitoring parameters listed under Appendix III of the Federal CCR Rule detection monitoring requirements. All available CCR monitoring data through the end of the second quarter 2021 is summarized in Table 9-5 and the eight rounds of turbidity data collected since the enactment of the State CCR Rule in April 2021 are provided in Table 9-6.

Using the currently available data for the subject CCR surface impoundment, site specific Groundwater Protection Standards (GWPSs) have been established in accordance with Section 845.600(b) and are summarized in Table 9-7. The background concentrations noted in Table 9-7 were calculated using the statistical evaluation approach noted in Section 9.3.8 and provided in Attachment 9-5. A presentation of the statistical evaluations, which resulted in the background concentration calculations is provided in Attachment 9-6.

Once the proposed GWPSs presented in this permit application are approved by Illinois EPA, these values will be used for all subsequent groundwater monitoring data comparisons. Monitoring will continue on a quarterly basis for all constituents specified in Section 845.600(a)(1) plus calcium and turbidity. In accordance with Section 845.610(b)(3)(D), a data summary report will be submitted to Illinois EPA within 60-days of receipt of all analytical data which will include a groundwater flow map for the quarterly sampling event, summary of water level elevations collected during the reporting period (monthly measurements), and a data summary including summary data tables with a comparison against the established/approved GWPSs. This report will be placed the facility's operating record.

If during a monitoring event, a constituent(s) is/are detected above an established/approved GWPS, that well will be resampled for the specific constituent(s) in accordance with the statistical evaluation procedures outlined in Attachment 9-5. If the resample data confirms that the constituent(s) concentration(s) is/are above the GWPS then the following will occur:

- Characterize the nature and extent of the potential release and any relevant site conditions that may affect the remedy evaluation/selection. This characterization must meet the requirements set forth under Section 845.650(d)(1).
- If groundwater impacts extend off-site, provide off-site landowner/resident notifications as specified under Section 845.650(d)(2) and place the notifications into the facility's operating record. This must occur within no more than 30-days of determination that a GWPS has been exceeded.
- An Alternate Source Demonstration (ASD) may be initiated and completed for submittal to Illinois EPA review/approval as allowed under Section 845.650(e). Place the ASD into the facility's operating record.
- Within 90-days of determining that a constituent(s) was detected above an established/approved GWPS at a downgradient waste boundary monitoring point, initiate an assessment of corrective measures meeting the requirements specified under Section 845.660 unless an ASD is submitted in accordance with Section 845.650(d)(2) and subsequently approved by the Illinois EPA.

By no later January 31st of each year, an Annual Groundwater Monitoring and Corrective Action Report will be prepared for inclusion as part of an Annual Consolidated Report for the facility. The Annual Groundwater Monitoring and Corrective Action Report will meet the requirements set forth under Section 845.610(e)(1 through 4). The Annual Consolidated Report will be placed into the facility's operating record.

10.0 Professional Engineer Certification, 845.220(a)(8)

This construction permit application has been prepared to meet the requirements of 35 III. Adm. Code 845.220(a) and 845.220(d).

1/28/22

Joshua D. Davenport, P.E. Illinois Professional Engineer

<u>11.0 Owner Certification, 845.220(a)(9)</u>

A certification stating that the owner or operator of the CCR surface impoundment has completed the public notification and public meetings that are required under the Ill. Adm. Code Title 35, Part 845 Section 240 is included in Attachment 11. Also included is a summary of the issues raised by the public and a summary of any revisions, determinations, or other considerations made in response to those issues. A list of interested persons in attendance who would like to be added to the Agent's list for the facility.

OPERATING PERMIT TABLES

Table 2. Joliet 29 Generating StationPond 2 CCR Chemical Constituents Analytical Results

	Bottom Ash
Parameter Name	Sample
	8/31/2021
Antimony	<1.8 F1
Arsenic	1.5 F1
Barium	3,000
Beryllium	1.5 F1
Boron	130 F1 V
Cadmium	< 0.18
Calcium	100,000
Chloride	<20
Chromium	12 F1
Cobalt	15
Fluoride	<1.0
Lead	5.6
Lithium	20 V
Mercury	< 0.016
Molybdenum	1.1 F1
Selenium	<0.89 F1
Sulfate	560
Thallium	2.9
Radium 226	1.54
Radium 228	1.63
Radium 226 & 228	3.17

Notes:

All results are in milligrams per kilogram (mg/kg), except for radium, which pCi/L

F1 - MS and/or MSD recovery exceeds control limits

V - Serial Dilution exceeds the control limits

Joliet	#29 Station
Month	Average Monthly Precipitation* (inches)
January	1.09
February	1.27
March	2.01
April	3.66
May	3.9
June	4.65
July	4.41
August	4.08
September	3.02
October	3.09
November	2.4
December	1.81

Notes:

* - Historical precipitation data was obtained from the National Oceanic and Atmospheric Administration. Precipitation data was averaged from four stations located within Joliet and Elgin, Illinois. Dates of precipitation data range from 1894-2020.

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

		Top of Casing			Sampling			Sampling	Depth to
		(TOC)	Ground	Groundwater	Groundwater	Bottom of	Depth to	Depth to	Bottom of
Well ID	Date	Elevation	Elevation	Elevation	Elevation	Well Elevation	Groundwater	Groundwater	Well
wennib	Date	Lievation	Lievation	Lievation	Lievation	Wen Elevation	Groundwater	Groundwater	wen
		(ft above MSL)	(ft below TOC)	(ft below TOC)	(ft below TOC)				
	02/10/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	05/27/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	08/04/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	10/27/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	02/09/16	534.03	531.56	NM	NM	505.50	NM	NM	28.53
	05/10/16	534.03	531.56	505.90	506.18	505.50	28.13	27.85	28.53
	08/30/16	534.03	531.56	506.85	506.91	505.50	27.18	27.12	28.53
	11/01/16	534.03	531.56	505.89	505.53	505.50	28.14	28.50	28.53
	02/06/17	534.03	531.56	NM	NM	505.50	NM	NM	28.53
	04/23/17	524.03	521.56	506 50	NM 506.52	505.50	27.44	27.50	28.55
	10/17/17	524.03	521.56	508.87	508.55	505.50	25.16	27.50	28.53
	02/21/18	534.03	531.56	506.37	509.54	505.50	23.10	23.18	28.53
MW-01	04/25/18	534.03	531.56	505.89	505.58	505.50	28.14	28.45	28.53
	07/31/18	534.03	531.56	505.75	505.50	505.50	28.28	28.53	28.53
	10/16/18	534.03	531.56	506.22	505.93	505.50	27.81	28.10	28.53
	02/04/19	534.03	531.56	505.73	NM	505.50	28.30	NM	28.53
	05/06/19	534.03	531.56	509.00	509.00	505.50	25.03	25.03	28.53
I	08/06/19	534.03	531.56	505.88	NM	505.50	28.15	NM	28.53
	11/06/19	534.03	531.56	507.38	NM	505.50	26.65	NM	28.53
	02/12/20	534.03	531.56	505.69	NM	505.50	28.34	NM	28.53
	05/21/20	534.03	531.56	511.60	NM	505.50	22.43	NM	28.53
	07/30/20	534.03	531.56	505.74	NM	505.50	28.29	NM	28.53
I	10/21/20	534.03	531.56	505.73	NM	505.50	28.30	INM NIM	28.53
	05/17/21	534.03	531.56	505.75	NM	505.50	28.30	NM	28.53
	02/10/15	534.28	531.19	505.17	510.69	504.05	29.11	23 59	30.23
	05/27/15	534.28	531.19	505.34	505.32	504.05	28.94	28.96	30.23
	08/04/15	534.28	531.19	505.14	505.13	504.05	29.14	29.15	30.23
	10/27/15	534.28	531.19	504.89	505.09	504.05	29.39	29.19	30.23
	02/09/16	534.30	531.17	505.59	505.57	504.07	28.71	28.73	30.23
	05/10/16	534.30	531.17	505.89	506.09	504.07	28.41	28.21	30.23
	08/30/16	534.30	531.17	506.83	506.97	504.07	27.47	27.33	30.23
	11/01/16	534.30	531.17	505.90	505.89	504.07	28.40	28.41	30.23
	02/06/17	534.30	531.17	505.46	505.74	504.07	28.84	28.56	30.23
	08/01/17	534.30	531.17	506.59	506.52	504.07	28.01	28.00	30.23
	10/17/17	534.30	531.17	508.82	508.82	504.07	25.48	25.48	30.23
MIN 02	02/21/18	534.30	531.17	506.35	509.65	504.07	27.95	24.65	30.23
MW-02	04/25/18	534.30	531.17	505.87	505.81	504.07	28.43	28.49	30.23
	08/01/18	534.30	531.17	505.22	505.14	504.07	29.08	29.16	30.23
	10/16/18	534.30	531.17	506.17	506.11	504.07	28.13	28.19	30.23
	02/04/19	534.30	531.17	505.68	505.65	504.07	28.62	28.65	30.23
	05/06/19	534.30	531.17	508.95	508.29	504.07	25.35	26.01	30.23
	08/06/19	534.30	531.17	505.16	NM	504.07	29.14	NM	30.23
	02/12/20	534.30	531.17	505.40	NM	504.07	27.03	NM	30.23
	05/21/20	534.30	531.17	510.37	NM	504.07	20.01	23.04	30.23
I	07/30/20	534.30	531.17	504.98	NM	504.07	29.32	NM	30.23
I	10/21/20	534.30	531.17	505.25	NM	504.07	29.05	NM	30.23
I	02/11/21	534.30	531.17	505.15	NM	504.07	29.15	NM	30.23
	05/17/21	534.30	531.17	505.68	NM	504.07	28.62	NM	30.23
	02/10/15	538.78	535.54	505.19	505.20	494.68	33.59	33.58	44.10
I	05/27/15	538.78	535.54	505.36	505.35	494.68	33.42	33.43	44.10
I	08/04/15	538.78	535.54	505.22	505.22	494.68	33.56	33.56	44.10
	10/27/15	538.78	535.54	504.91	505.04	494.68	33.87	33.74	44.10
	02/09/16	538.79	535.53	505.02	505.00	494.08	32.17	33.28	44.10
I	08/30/16	538.79	535.53	506.91	507.22	494.68	31.88	31.57	44.10
	11/01/16	538.79	535.53	505.91	505.94	494.68	32.88	32.85	44.10
	02/06/17	538.79	535.53	505.54	505.54	494.68	33.25	33.25	44.10
I	04/26/17	538.79	535.53	505.73	505.78	494.68	33.06	33.01	44.10
I	08/01/17	538.79	535.53	506.43	506.44	494.68	32.36	32.35	44.10
I	10/18/17	538.79	535.53	508.76	508.54	494.68	30.03	30.25	44.10
MW-03	02/20/18	538.79	535.53	506.38	506.56	494.68	32.41	32.23	44.10
	04/24/18	538.79	535.53	505.96	505.96	494.68	32.83	32.83	44.10
	10/17/18	538 70	535.55	506.21	505.25	494.08	32.50	33.34	44.10
I	02/04/19	538.79	535.53	505.74	505.81	494.68	33.05	32.98	44.10
I	05/06/19	538.79	535.53	508.84	508.61	494.68	29.95	30.18	44.10
I	08/06/19	538.79	535.53	505.26	505.29	494.68	33.53	33.50	44.10
I	11/06/19	538.79	535.53	505.41	505.29	494.68	33.38	33.50	44.10
	02/12/20	538.79	535.53	505.61	505.29	494.68	33.18	33.50	44.10
I	05/20/20	538.79	535.53	511.66	511.66	494.68	27.13	27.13	44.10
	07/30/20	538.79	535.53	505.06	505.04	494.68	33.73	33.75	44.10
	02/11/20	539.70	535.55	50/ 22	505.46	494.00	33.32	33.33	44.10 AA 10
1	05/17/21	529.70	525 52	505.74	505.40	404.69	22.05	22.06	44.10

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

Well ID	Date	Top of Casing (TOC) Elevation	Ground Elevation	Groundwater Elevation	Sampling Groundwater Elevation	Bottom of Well Elevation	Depth to Groundwater	Sampling Depth to Groundwater	Depth to Bottom of Well
	02/10/15	(It above MSL) 530.03	(It above MSL) 535.80	(It above MSL) 505 19	(ft above MSL) 505-18	(ft above MSL) 496-13	(It below TOC)	(It below TOC)	(It below TOC)
	05/27/15	539.03	535.80	505.39	505.37	496.13	33.64	33.66	42.90
	08/04/15 10/27/15	539.03 539.03	535.80 535.80	505.19 504.98	505.19	496.13	33.84	33.84	42.90
	02/09/16	539.01	535.83	505.59	505.44	496.11	33.42	33.57	42.90
	05/10/16 08/30/16	539.01 539.01	535.83 535.83	505.94 506.93	505.95 507.19	496.11 496.11	33.07 32.08	33.06 31.82	42.90
	11/01/16	539.01	535.83	505.85	505.87	496.11	33.16	33.14	42.90
	02/06/17 04/26/17	539.01 539.01	535.83 535.83	505.50 505.72	505.52 505.74	496.11 496.11	33.51 33.29	33.49 33.27	42.90
	08/01/17	539.01	535.83	506.92	506.39	496.11	32.09	32.62	42.90
1000.04	02/20/18	539.01	535.83	508.73	508.50	496.11 496.11	30.28	30.51	42.90
MW-04	04/24/18	539.01	535.83	505.91	505.92	496.11	33.10	33.09	42.90
	10/17/18	539.01	535.83	505.20	505.22	496.11 496.11	33.81 32.85	33.79 32.98	42.90
	02/04/19	539.01	535.83	505.72	505.72	496.11	33.29	33.29	42.90
	05/06/19	539.01	535.83	509.18	508.57	496.11 496.11	29.83	30.44	42.90
	11/06/19	539.01	535.83	507.36	505.21	496.11	31.65	33.80	42.90
	02/12/20 05/20/20	539.01	535.83	505.56	505.26	496.11 496.11	33.45 27.40	33.75	42.90
	07/30/20	539.01	535.83	505.01	505.04	496.11	34.00	33.97	42.90
	10/21/20 02/11/21	539.01 539.01	535.83	505.53	505.46	496.11	33.48	33.55	42.90
	05/17/21	539.01	535.83	505.69	505.69	496.11	33.32	33.32	42.90
	02/11/15 05/27/15	539.69 539.69	536.43 536.43	505.12 505.26	505.12 505.25	494.64 494.64	34.57 34.43	34.57 34.44	45.05
	08/04/15	539.69	536.43	505.14	505.14	494.64	34.55	34.55	45.05
	10/27/15 02/09/16	539.69 539.64	536.43 536.36	504.78 505.46	504.95	494.64 494.59	34.91 34.18	34.74	45.05
	05/10/16	539.64	536.36	505.83	505.86	494.59	33.81	33.78	45.05
	08/30/16	539.64	536.36	506.82	507.09	494.59	32.82	32.55	45.05
	02/06/17	539.64	536.36	505.74	505.40	494.59	34.23	34.24	45.05
	04/26/17	539.64	536.36	505.60	505.66	494.59	34.04	33.98	45.05
	10/18/17	539.64	536.36	506.52	506.24	494.59 494.59	33.12	33.40	45.05
MW-05	02/20/18	539.64	536.36	506.35	506.74	494.59	33.29	32.90	45.05
	04/24/18 07/31/18	539.64 539.64	536.36 536.36	505.85	505.82	494.59	33.79 34.54	33.82 34.53	45.05
	10/17/18	539.64	536.36	506.03	505.91	494.59	33.61	33.73	45.05
	02/04/19	539.64	536.36	505.97	505.96	494.59	33.67	33.68	45.05
	08/06/19	539.64	536.36	505.09	505.09	494.59	34.55	34.55	45.05
	11/06/19	539.64	536.36	507.24	505.09	494.59	32.40	34.55	45.05
	05/20/20	539.64	536.36	511.48	511.48	494.59	28.16	28.16	45.05
	07/30/20	539.64	536.36	504.87	504.88	494.59	34.77	34.76	45.05
	02/11/20	539.64	536.36	505.04	506.09	494.59 494.59	34.52 34.60	33.55	45.05
	05/17/21	539.64	536.36	505.59	505.54	494.59	34.05	34.10	45.05
	05/28/15	539.06	535.86	505.23	505.23	496.86	33.60	33.83	42.20
	08/05/15	539.06	535.86	505.11	505.12	496.86	33.95	33.94	42.20
	02/09/16	539.06	535.86	504.88	504.93	496.86	34.18	34.13 33.59	42.20
	05/10/16	539.05	535.89	506.00	506.94	496.85	33.05	32.11	42.20
	11/01/16	539.05	535.89	506.96	507.36	496.85	32.09	31.69 33.14	42.20
	02/06/17	539.05	535.89	505.56	505.57	496.85	33.49	33.48	42.20
	04/2//17 08/01/17	539.05 539.05	535.89 535.89	505.74	505.77	496.85	33.31	33.28	42.20
	10/19/17	539.05	535.89	508.74	508.14	496.85	30.31	30.91	42.20
MW-06	02/21/18 04/25/18	539.05 539.05	535.89 535.89	506.57 505.94	509.45 505.86	496.85 496.85	32.48	29.60 33.19	42.20
	07/31/18	539.05	535.89	505.27	505.25	496.85	33.78	33.80	42.20
	10/18/18 02/04/19	539.05 539.05	535.89 535.89	506.16 506.12	506.00 506.12	496.85	32.89	33.05	42.20
	05/06/19	539.05	535.89	509.12	508.22	496.85	29.86	30.83	42.20
	08/06/19 11/06/19	539.05 539.05	535.89 535.89	505.26	505.33	496.85	33.79	33.72	42.20
	02/12/20	539.05	535.89	505.63	505.60	496.85	33.42	33.45	42.20
	05/21/20 07/30/20	539.05	535.89	511.51	511.45	496.85	27.54	27.60	42.20
	10/21/20	539.05	535.89	505.30	505.37	496.85	33.75	33.68	42.20
	02/11/21	539.05 539.05	535.89 535.89	505.22 505.73	505.37 505.73	496.85	33.83	33.68	42.20
	02/10/15	539.35	535.86	505.24	505.24	496.12	34.11	34.11	43.23
	05/28/15	539.35	535.86	505.50	505.50	496.12	33.85	33.85	43.23
	10/27/15	539.35	535.86	504.93	505.00	490.12 496.12	34.17	34.18	43.23
	02/09/16	539.35	535.87	505.66	505.51	496.12	33.69	33.84	43.23
	05/10/16 08/30/16	539.35	535.87	506.34	507.02	496.12 496.12	32.31	32.33 31.94	43.23 43.23
	11/01/16	539.35	535.87	505.91	505.93	496.12	33.44	33.42	43.23
	02/06/17 04/27/17	539.35 539.35	535.87 535.87	505.59 505.77	505.62 505.82	496.12 496.12	33.76 33.58	33.73 33.53	43.23 43.23
	08/01/17	539.35	535.87	506.68	506.30	496.12	32.67	33.05	43.23
	10/19/17 02/21/18	539.35 539.35	535.87 535.87	508.76 506.67	508.07 509.64	496.12 496.12	30.59	31.28 29.71	43.23
MW-07	04/25/18	539.35	535.87	505.98	505.89	496.12	33.37	33.46	43.23
	08/01/18	539.35	535.87 535.87	505.30	505.31	496.12	34.05	34.04	43.23
	02/04/19	539.35	535.87	506.19	506.19	496.12	33.16	33.16	43.23
	05/06/19	539.35	535.87	509.22	508.51	496.12	30.13	30.84	43.23
	11/06/19	539.35	535.87	505.33	505.33	496.12 496.12	34.02 31.95	34.02 34.02	43.23 43.23
	02/12/20	539.35	535.87	505.65	505.65	496.12	33.70	33.70	43.23
	05/21/20 07/30/20	539.35 539.35	535.87 535.87	511.53 505.14	511.53	496.12 496.12	27.82	27.82	43.23
	10/21/20	539.35	535.87	505.32	505.65	496.12	34.03	33.70	43.23
	02/11/21 05/17/21	539.35 539.35	535.87 535.87	505.25 505.63	505.65	496.12 496.12	34.10 33.72	33.70 33.75	43.23
	03/1//21		10.01		00.00	+70.12	33.12	33.13	+3.23

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

Well ID	Date	Top of Casing (TOC) Elevation	Ground Elevation	Groundwater Elevation	Sampling Groundwater Elevation	Bottom of Well Elevation	Depth to Groundwater	Sampling Depth to Groundwater	Depth to Bottom of Well
	02/10/15	(IT above MSL) 536.87	(IT above MSL)	(It above MSL) 505.18	(IT above MSL) 505.19	(IT above MSL) 498.81	(it below TOC) 31.69	31.68	38.06
	05/27/15	536.87	533.72	505.36	505.38	498.81	31.51	31.49	38.06
	08/04/15	536.87	533.72	505.19	505.20	498.81	31.68	31.67	38.06
	02/09/16	536.96	533.77	505.72	505.72	498.90	31.24	31.39	38.06
	05/10/16	536.96	533.77	498.00	498.24	498.90	38.96	38.72	38.06
	08/30/16	536.96	533.77	507.05	507.09	498.90	29.91	29.87	38.06
	02/06/17	536.96	533.77	505.58	505.62	498.90	31.38	31.34	38.06
	04/25/17	536.96	533.77	505.74	505.79	498.90	31.22	31.17	38.06
	08/01/17	536.96	533.77	506.78	506.76	498.90	30.18	30.20	38.06
MW-08	02/20/18	536.96	533.77	509.02	508.99	498.90	27.94	30.41	38.06
	08/01/18	536.96	533.77	505.23	505.26	498.90	31.73	31.70	38.06
	10/16/18	536.96	533.77	506.36	506.35	498.90	30.60	30.61	38.06
	02/04/19	536.96	533.77	506.04	506.04	498.90	30.92	30.92	38.06
	08/06/19	536.96	533.77	505.27	505.27	498.90	31.69	31.69	38.06
	11/06/19	536.96	533.77	507.54	507.16	498.90	29.42	29.80	38.06
	02/12/20	536.96	533.77	505.56	505.56	498.90	31.40	31.40	38.06
	07/30/20	536.96	533.77	505.13	505.12	498.90	31.83	31.84	38.06
	10/28/20	536.96	533.77	505.29	505.41	498.90	31.67	31.55	38.06
	02/11/21	536.96	533.77	505.26	505.41	498.90	31.70	31.55	38.06
	02/10/15	534.44	531.13	505.22	504.70	496.90	29.22	29.74	38.00
	05/27/15	534.44	531.13	505.37	504.98	496.29	29.07	29.46	38.15
	08/04/15	534.44	531.13	505.22	504.91	496.29	29.22	29.53	38.15
	10/27/15	534.44	531.13	505.64	504.83	496.29	29.48	29.61	38.15
	05/10/16	534.41	531.08	505.90	506.39	496.26	28.51	28.02	38.15
	08/30/16	534.41	531.08	506.98	506.94	496.26	27.43	27.47	38.15
	11/01/16	534.41	531.08	505.89	505.32	496.26	28.52	29.09	38.15
	02/06/17 04/25/17	534.41	531.08	505.51	505.66	496.26	28.90	28.75	38.15
	08/01/17	534.41	531.08	506.64	506.27	496.26	27.77	28.14	38.15
	10/17/17	534.41	531.08	508.89	508.73	496.26	25.52	25.68	38.15
MW-09	02/20/18	534.41	531.08	506.39	506.99	496.26	28.02	27.42	38.15
	04/26/18	534.41	531.08	505.89	505.05	496.26	28.52	28.83	38.15
	10/16/18	534.41	531.08	506.23	506.12	496.26	28.18	28.29	38.15
	02/04/19	534.41	531.08	506.02	505.99	496.26	28.39	28.42	38.15
	05/06/19	534.41	531.08	509.08	508.09	496.26	25.33	26.32	38.15
	11/06/19	534.41	531.08	507.42	504.61	496.26	26.99	29.80	38.15
	02/12/20	534.41	531.08	505.53	504.89	496.26	28.88	29.52	38.15
	05/20/20	534.41	531.08	511.06	510.76	496.26	23.35	23.65	38.15
	10/21/20	534.41	531.08	505.02	505.05	496.26	29.39	29.36	38.15
	02/11/21	534.41	531.08	505.21	505.05	496.26	29.20	29.36	38.15
	05/17/21	534.41	531.08	505.73	505.36	496.26	28.68	29.05	38.15
	02/11/15	540.03	536.95	505.27	505.27	496.10	34.76	34.76	43.93
	08/04/15	540.03	536.95	505.29	505.30	496.10	34.74	34.73	43.93
	10/27/15	540.03	536.95	504.93	505.07	496.10	35.10	34.96	43.93
	02/09/16	540.02	536.98	505.70	505.61	496.09	34.32	34.41	43.93
	08/30/16	540.02	536.98	507.05	507.38	496.09	32.97	32.64	43.93
	11/01/16	540.02	536.98	505.98	505.97	496.09	34.04	34.05	43.93
	02/06/17	540.02	536.98	505.60	505.62	496.09	34.42	34.40	43.93
	04/26/17 08/01/17	540.02	536.98	505.80	505.84	496.09	34.22	34.18	43.93
	10/18/17	540.02	536.98	508.89	508.61	496.09	31.13	31.41	43.93
MW-10	02/21/18	540.02	536.98	506.19	509.42	496.09	33.83	30.60	43.93
	04/24/18	540.02	536.98	506.05	506.02	496.09	33.97	34.00	43.93
	10/17/18	540.02	536.98	505.27	505.27	496.09	33.73	33.88	43.93
	02/04/19	540.02	536.98	506.11	506.10	496.09	33.91	33.92	43.93
	05/06/19	540.02	536.98	509.44	508.82	496.09	30.58	31.20	43.93
	11/06/19	540.02	536.98	507.60	505.32	496.09	32.42	34.70	43.93
	02/12/20	540.02	536.98	505.67	505.67	496.09	34.35	34.35	43.93
	05/20/20	540.02	536.98	511.83	511.86	496.09	28.19	28.16	43.93
	10/21/20	540.02	536.98	505.14	505.12	496.09	34.88 34.72	34.90	43.93
	02/11/21	540.02	536.98	505.25	505.30	496.09	34.77	34.72	43.93
	05/17/21	540.02	536.98	505.79	505.78	496.09	34.23	34.24	43.93
	02/11/15 05/28/15	539.47	536.52	505.49	505.49	497.14	33.98	33.98	42.33
	08/04/15	539.47	536.52	505.65	505.64	497.14	33.82	33.83	42.33
	10/27/15	539.47	536.52	505.16	505.32	497.14	34.31	34.15	42.33
	02/09/16	539.41	536.62	506.10	505.88	497.08	33.31	33.53	42.33
	05/10/16	539.41	536.62	508.27	508.85	497.08	31.14	30.56	42.33
	11/01/16	539.41	536.62	506.32	506.28	497.08	33.09	33.13	42.33
	02/06/17	539.41	536.62	505.90	505.92	497.08	33.51	33.49	42.33
	04/26/17	539.41	536.62	506.17	506.17	497.08	33.24	33.24	42.33
	10/19/17	539.41	536.62	509.61	509.16	497.08	29.8	30.25	42.33
MW-11	02/21/18	539.41	536.62	506.45	509.85	497.08	32.96	29.56	42.33
	04/25/18	539.41	536.62	505.48	506.40	497.08	33.93	33.01	42.33
	08/01/18	539.41	536.62	506.63	506.51	497.08	33.88	33.87	42.33
	02/04/19	539.41	536.62	506.19	506.19	497.08	33.22	33.22	42.33
	05/06/19	539.41	536.62	510.58	509.98	497.08	28.83	29.43	42.33
	08/06/19	539.41	536.62	505.66	505.66	497.08	33.75	33.75	42.33
	02/12/20	539.41	536.62	508.26	505.66	497.08	31.15	33.75	42.33
	05/20/20	539.41	536.62	512.83	512.81	497.08	26.58	26.60	42.33
	07/30/20	539.41	536.62	505.53	505.48	497.08	33.88	33.93	42.33
	10/21/20	539.41	536.62	505.39	505.39	497.08	34.02	34.02	42.33
	02/11/21	539.41	536.62	505.46	505.39	497.08	33.95	54.02	42.33

Note: Values for Depth to Bottom of Well are from prior to the installation of the dedicated pumps. NM - Not Measured

DATE	Groundwater Flow Direction	Kavg (ft/sec)*	Average Hydraulic Gradient (ft/ft)	Porosity (unitless)**	Estimated Seepage Velocity (ft/day)
10/28/2015	Southerly (SSW-SSE)	1.970E-03	0.0003	0.35	0.13
2/10/2016	Southerly (SSW-SSE)	1.970E-03	0.0007	0.35	0.32
5/12/2016	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.17
8/31/2016	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.17
11/2/2016	Southerly (SSW-SSE)	1.970E-03	0.0007	0.35	0.32
2/6/2017	Southerly (SSW-SSE)	1.970E-03	0.0005	0.35	0.22
4/26/2017	Southerly (SSW-SSE)	1.970E-03	0.0006	0.35	0.29
6/14/2017	Southerly (SSW-SSE)	1.970E-03	0.0006	0.35	0.29
8/2/2017	Southerly (SSW-SSE)	1.970E-03	0.0008	0.35	0.39
10/18/2017	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.19
4/24/2018	Southerly (SSW-SSE)	1.970E-03	0.0008	0.35	0.39
10/16/2018	Southerly (SSW)	1.970E-03	0.00053	0.35	0.26
5/6/2019	Southerly (SSW-SSE)	1.970E-03	0.0010	0.35	0.46
11/6/2019	Southerly (SSW-SSE)	1.970E-03	0.00200	0.35	0.97
5/20/2020	Southerly (SSW-SSE)	1.970E-03	0.0043	0.35	2.11
10/21/2020	Southerly (SSW-SSE)	1.970E-03	0.00080	0.35	0.39
5/17/2021	Southerly (SSW-SSE)	1.970E-03	0.00140	0.35	0.68

Table 9-3. Hydraulic Gradient, Direction and Seepage Velocity - Midwest Generation, LLC, Joliet #29 Generating Station, Joliet, IL.

* Kavg - See Section 9.1.2 discussion for average hydraulic conductivity (feet/second).

** - Porosity estimate from Applied Hydrogeology, Fetter, 1980.

SSW - South-southwest

SSE - South-southeast

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved Solids	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
	10/28/2015	0.47	100	200	0.41	7.04	84	790	< 0.003	< 0.001	0.041	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	0.0060	0.2981	< 0.0025	< 0.002
	2/10/2016	0.41	100	210	0.44	7.17	120	820	< 0.003	0.001	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.011	< 0.0002	0.0067	< 0.438	< 0.0025	< 0.002
	5/12/2016	0.29	100	300	0.42	7.02	110	920	< 0.003	< 0.001	0.046	< 0.001	< 0.0005	< 0.005	< 0.001	0.42	< 0.0005	0.012	< 0.0002	0.0051	< 0.414	< 0.0025	< 0.002
	8/31/2016	0.36	89	170	0.46	6.95	100	760	< 0.003	< 0.001	0.039	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.46	< 0.0005	0.010	< 0.0002	0.0077	< 0.394	< 0.0025	< 0.002
	2/6/2017	0.48	100	130	0.45	6.99	95	720	< 0.003	0.0018	0.035	< 0.001	< 0.0005	< 0.005	< 0.001	0.45	0.0014	0.011	< 0.0002	0.0061	0.626	< 0.0025	< 0.002
	4/26/2017	0.35	120	200	0.35	7.27	87	760	< 0.003	0.0011	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	0.00080	< 0.014	< 0.0002	0.0050	< 0.34	< 0.0025	< 0.002
	6/14/2017	0.29	91	160	0.43	7.48	75	690	< 0.003	< 0.0015	0.034	< 0.001	< 0.0005	< 0.005	< 0.001	0.43	< 0.0005	0.012	< 0.0002	0.0072	< 0.356	< 0.0025	< 0.002
	8/2/2017	0.45	97	170	0.38	7.23	110	750	< 0.003	0.0011	0.036	< 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.011	< 0.0002	0.0079	0.429	< 0.0025	< 0.002
MW-10	10/18/2017	0.61	120	140	0.41	7.11	130	820	< 0.003	0.0012	0.04	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.41	0.00059	0.013	< 0.0002	0.0066	< 0.422	< 0.0025	^ < 0.002
up-gradient	4/24/2018	0.4	110	260	0.39	7.28	120	910	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/17/2018	0.63	120	180	0.42	7.30	110	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/7/2019 K	0.44	130	410	0.39	7.17	95	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/3/2019 R	NA	NA	230	NA	NA	NA	830	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/7/2019	0.35	90	130	0.36	7.40	59	650	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/20/2020	0.85	120	250	0.41	6.90	100	960	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6/11/2020 R	0.26	NA	NA	NA	NA	NA	770	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/2020	0.34	110	230	0.41	7.11	93	850	< 0.003	0.001	0.043	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.011	< 0.0002	0.0057	NA	< 0.0025	< 0.002
	6/29/2021 R	0.55 NA	140	420	0.39 NA	7.10 NA	190	1,200	< 0.005 NA	0.0014 NA	0.00 NA	< 0.001 NA	< 0.0005 NA	< 0.005 NA	< 0.001 NA	0.59 NA	< 0.0005 NA	0.015 NA	< 0.0002 NA	0.0055 NA	< 0.4800 NA	< 0.0023 NA	< 0.002 NA
	10/28/2015	0.34	110	230	0.41	7.11	110	960	< 0.003	0.0015	0.100	^< 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	< 0.0050	0.41	< 0.0025	< 0.002
	2/10/2016	0.49	100	220	0.44	7.31	130	790	< 0.003	0.0017	0.100	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.011	< 0.0002	0.0060	< 1.68	0.0045	< 0.002
	5/10/2016	0.48	95	240	0.44	7.07	130	800	< 0.003	0.0011	0.095	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.012	< 0.0002	0.0062	< 0.326	0.0030	< 0.002
	8/31/2016	0.49	100	250	0.45	7.18	120	920	< 0.003	0.0013	0.095	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.45	< 0.0005	0.012	< 0.0002	0.0086	< 0.373	0.0051	< 0.002
	11/2/2016	0.34	87	190	0.44	7.45	94	780	< 0.003	0.0019	0.082	< 0.001	< 0.0005	0.0051	< 0.001	0.44	< 0.0005	< 0.010	< 0.0002	0.0059	0.965	0.0032	< 0.002
	2/6/2017	0.40	97	140	0.39	7.35	120	720	< 0.003	0.0019	0.093	< 0.001	< 0.0005	< 0.005	< 0.001	0.39	< 0.0005	0.012	< 0.0002	0.0066	< 0.356	0.0028	< 0.002
	6/14/2017	0.54	88	190	0.30	7.03	75	760	< 0.003	0.0017	0.09	< 0.001	< 0.0005	< 0.005	< 0.001	0.50	< 0.0005	0.010	< 0.0002	0.0088	< 0.411	0.0032	< 0.002
	8/2/2017	0.41	99	200	0.40	7.34	110	850	< 0.003	0.0022	0.10	< 0.001	< 0.0005	< 0.005	< 0.001	0.40	< 0.0005	0.012	< 0.0002	0.0065	0.414	0.005	< 0.002
MW-03	10/18/2017	0.35	93	160	0.42	7.11	100	850	< 0.003	0.0015	0.088	< ^ 0.001	< 0.0005	< 0.005	< 0.001	0.42	< 0.0005	0.012	< 0.0002	0.0055	< 0.417	0.0026	^ < 0.002
down-	4/24/2018	0.52	100	220	0.42	7.2	150	930	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
gradient	7/31/2018 R	NA	NA	NA	NA	NA	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/7/2018	0.25	100	250	0.4	7.04	110	8/0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/3/2019 R	NA	NA	NA	NA	NA	65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/7/2019	0.34	100	150	0.4	7.32	65	660	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/20/2020	0.38	100	230	0.42	7.56	78	960	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	6/11/2020 R	NA	NA	NA	NA	NA	NA	930	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/2020	0.32	110	180	0.43	7.23	90	770	< 0.003	0.0014	0.1	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.43	< 0.0005	0.01	< 0.0002	< 0.005	NA	< 0.0025	< 0.002
	5/18/2021 6/29/2021 R	0.28 NA	130 NA	290 NA	0.4 NA	/.13 NA	210	1,200	< 0.005 NA	0.0016 NA	0.14 NA	< 0.001 NA	< 0.0005 NA	< 0.005 NA	0.0011 NA	0.4 NA	< 0.0005 NA	0.014 NA	< 0.0002 NA	< 0.0050 NA	1.1000 NA	< 0.0025 NA	< 0.002 NA
	10/28/2015	0.34	94	F1 200	0.45	7.07	83	740	< 0.003	0.0013	0.082	^ < 0.001	< 0.0005	< 0.005	0.0063	0.45	< 0.0005	0.013	< 0.0002	0.0065	0.741	< 0.0025	< 0.002
	2/10/2016	0.32	97	210	0.47	7.22	140	810	< 0.003	0.0018	0.088	< 0.001	< 0.0005	< 0.005	0.0074	0.47	0.00062	0.011	< 0.0002	0.0063	< 1.52	< 0.0025	< 0.002
	5/10/2016	0.47	100	260	0.46	6.71	150	900	< 0.003	0.0014	0.088	< 0.001	< 0.0005	< 0.005	0.0086	0.46	< 0.0005	0.012	< 0.0002	0.0088	< 0.365	< 0.0025	< 0.002
	8/31/2016	0.42	100	210	0.45	7.07	120	890	< 0.003	0.0014	0.086	^ < 0.001	< 0.0005	< 0.005	0.0035	0.45	< 0.0005	0.011	< 0.0002	0.0083	0.432	< 0.0025	< 0.002
	2/6/2017	0.32	98	200	0.43	7.25	83	750	< 0.003	0.0025	0.079	< 0.001	< 0.0005	< 0.005	0.0100	0.43	0.0012	0.012	< 0.0002	0.007	< 0.463	< 0.0025	< 0.002
	4/26/2017	0.33	100	200	0.37	7.46	89	770	< 0.003	0.0013	0.095	< 0.001	< 0.0005	< 0.005	0.0078	0.37	0.00055	0.013	< 0.0002	0.0069	< 0.35	< 0.0025	< 0.002
	6/14/2017	0.37	92	190	0.47	7.45	80	770	< 0.003	0.0013	0.078	< 0.001	< 0.0005	< 0.005	0.0120	0.47	< 0.0005	0.013	< 0.0002	0.0085	< 0.309	< 0.0025	< 0.002
	8/2/2017	0.35	93	180	0.43	7.41	100	770	< 0.003	0.0013	0.077	< 0.001	< 0.0005	0.04	0.0031	0.43	< 0.0005	0.012	< 0.0002	0.0091	< 0.282	0.0029	< 0.002
MW-04	10/18/2017	0.54	97	140	0.45	7.2	120	790	< 0.003	0.0019	0.082	^ < 0.001	< 0.0005	< 0.005	0.0046	0.45	0.00077	0.015	< 0.0002	0.0071	0.423	0.003	^ < 0.002
down-	4/24/2018	0.4	110	240	0.43	7.21	160	940	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
gradient	10/17/2018 K	0.29	100	230	0.45	7.2	120	NA 840	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/7/2019	0.76	120	340	0.42	7.27	120	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/3/2019 R	0.23	NA	250	NA	NA	NA	870	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/6/2019	0.3	77	140	0.41	7.33	53	670	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/20/2020	0.79	110	250	0.45	7.3	110	1,100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0/11/2020 K 10/22/2020	0.28	NA 100	NA 190	NA 0.48	NA 7.15	NA 83	850	NA < 0.002	NA 0.0015	NA 0.080	NA	NA < 0.0005	NA < 0.005	NA 0.0082	NA 0.48	NA	NA 0.012	NA < 0.0002	NA 0.0061	NA NA	NA	NA < 0.002
	5/18/2021	0.22	120	280	0.43	7.3	190	1,100	< 0.003	0.0015	0.12	< 0.001	< 0.0005	< 0.005	0.0032	0.43	< 0.0005	0.013	< 0.0002	< 0.005	< 0.4450	< 0.0025	< 0.002
	6/29/2021 R	NA	NA	NA	NA	NA	190	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/28/2015	0.64	100	160	0.39	7.12	120	790	< 0.003	0.0011	0.057	^ < 0.001	< 0.0005	< 0.005	0.0013	0.39	< 0.0005	0.018	< 0.0002	0.0088	0.6231	0.0031	< 0.002
	2/10/2016	0.46	110	220	0.39	7.25	120	790	< 0.003	0.0028	0.071	< 0.001	< 0.0005	0.0062	0.0013	0.39	0.0022	< 0.02	< 0.0002	F1 0.0053	1.09	< 0.0025	< 0.002
	5/10/2016	0.8	150	220	0.46	6.88	290	950	< 0.003	0.0023	0.075	< 0.001	< 0.0005	< 0.005	< 0.001	0.46	0.0022	0.014	< 0.0002	0.008	< 0.40	0.019	< 0.002
	8/31/2016	0.41	98	130	0.56	0.81 7.26	260	700	< 0.003	< 0.001	0.07	< 0.001 < 0.001	< 0.0005	< 0.005	< 0.001	0.56	< 0.0005	< 0.01	< 0.0002	0.012	< 0.42	0.02	< 0.002
	2/6/2017	0.41	150	180	0.30	7.22	120	790	< 0.003	0.0016	0.082	< 0.001	< 0.0005	< 0.0051	< 0.001	0.30	0.0017	0.021	< 0.0002	< 0.005	0.564	0.0029	< 0.002
	4/26/2017	0.67	110	F1 190	0.37	7.28	170	770	< 0.003	0.0014	0.063	< 0.001	< 0.0005	< 0.005	< 0.001	0.37	0.0008	< 0.01	< 0.0002	0.0066	< 0.411	0.013	< 0.002
	6/14/2017	0.44	75	150	0.46	7.47	110	670	< 0.003	0.0012	0.044	< 0.001	< 0.0005	< 0.005	< 0.001	0.46	< 0.0005	0.013	< 0.0002	0.0076	< 0.316	0.0029	< 0.002
MW 05	8/2/2017	0.28	83	170	0.35	7.30	99	770	< 0.003	< 0.001	0.054	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	< 0.0005	0.014	< 0.0002	0.0053	0.659	< 0.0025	< 0.002
down-	10/18/2017	0.42	110	110	0.38	7 33	95	720	< 0.003 NA	0.002 NA	0.067 NA	< ^ 0.001	< 0.0005	< 0.005 NA	< 0.001 NA	0.38 NA	0.0023 NA	0.018	< 0.0002	< 0.005 NA	< 0.371	0.0029 N/A	n < 0.002
gradient	7/31/2018 R	0.51 NA	NA	NA	0.54 NA	NA	NA	940	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0	10/17/2018	0.31	110	210	0.36	7.29	93	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/6/2019	0.38	130	500	0.31	7.11	84	1,300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	7/3/2019 R	NA	NA	150	NA	NA	NA	890	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/7/2019 12/4/2010 P	0.31	180	130	0.3	7.44	64	590	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12/4/2019 K 5/20/2020	NA 0.22	100	NA 270	NA 0.27	NA 7.02	NA 67	NA 800	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	10/22/2020	0.52	92	180	0.38	7.16	85	720	< 0.003	0.0012	0.069	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.013	< 0.0002	0.0054	NA	0.003	< 0.002
	5/18/2021	0.37	130	410	0.3	7.00	160	1,300	< 0.003	0.0015	0.1	< 0.001	< 0.0005	< 0.0050	< 0.0010	0.3	< 0.0005	0.023	< 0.0002	< 0.005	< 0.5970	< 0.0025	< 0.002
	6/29/2021 R	NA	NA	430	NA	NΔ	150	1 300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes: All units are in mg/l except pH is in standard units and radium is in pCi/L DNYA - Data not yet available. F1 - MS and/or MSD Recovery outside of limits. NA - Not analyzed. No confirmation resample required.

Table 9-5.Turbidity Measurement Data, Midwest Generation, LLC, Joliet #29 Generating Station

Well ID	Date	Turbidity (NTU)
	3/2/2021	0.45
	4/10/2021	22.9
	4/25/2021	2.40
	5/18/2021	2.53
MW 02	6/11/2021	2.34
MW-03	6/29/2021	2.86
	7/19/2021	37.40
	8/9/2021	2.71
	8/30/2021	5.70
	9/27/2021	10.27
	3/2/2021	81.89
	4/10/2021	5.96
	4/25/2021	3.02
	5/18/2021	2.52
MW 04	6/11/2021	2.8
Mw-04	6/29/201	3.34
	7/19/2021	47.4
	8/9/2021	4.13
	8/30/2021	18.3
	9/27/2021	1.76
	2/25/2021	1.57
	4/10/2021	8.36
	4/25/2021	2.42
	5/17/2021	5.2
MW-05	6/11/2021	14.22
101 00 -000	6/29/2021	5.33
	7/19/2021	26.9
	8/9/2021	3.69
	8/27/2021	8.7
	9/27/2021	14.92
	3/2/2021	26.07
	4/10/2021	7.31
	4/25/2021	5.21
	5/18/2021	3.73
MW-10	6/11/2021	6.65
1,1,1,1,10	6/29/2021	9.49
	7/19/2021	14.5
	8/9/2021	10.08
	8/30/2021	9.3
	9/27/2021	16.3

Table 9-7. Proposed Site-Specific Groundwater Protection Standards - Joliet #29

Upgradient Well(s)	Parameter	Section 845.600 Standards	Interwell Background Prediction Limit	Proposed GWPS
MW-10	Antimony	0.006	0.003	0.006
MW-10	Arsenic	0.01	0.002	0.01
MW-10	Barium	2.0	0.063	2.0
MW-10	Beryllium	0.004	0.001	0.004
MW-10	Boron	2.0	0.831	2.0
MW-10	Cadmium	0.005	0.005	0.005
MW-10*	Chloride*	200	368	368
MW-10	Chromium	0.1	0.005	0.1
MW-10	Cobalt	0.006	0.001	0.006
MW-10	Combined Radium 226 + 228 (pCi/L)	5.0	0.626	5.0
MW-10	Fluoride	4.0	0.486	4.0
MW-10	Lead	0.0075	0.0014	0.0075
MW-10	Lithium	0.04	0.019	0.040
MW-10	Mercury	0.002	0.0002	0.002
MW-10	Molybdenum	0.10	0.009	0.10
MW-10	pH (standard units)	6.5-9.0	6.733-7.569	6.5-9.0
MW-10	Selenium	0.05	0.003	0.050
MW-10	Sulfate	400	214.7	400
MW-10	Thallium	0.002	0.002	0.002
MW-10*	Total Dissolved Solids*	1200	1031	1200
MW-10*	Calcium*	NE	143.0	143.0
MW-10	Turbidity	NE	31.22	31.22

All values are in mg/L (ppm) unless otherwise noted.

* - Limited to original 8 background samples.

NE - Not Established

Bold - Proposed Site-specific Groundwater Protection Standard based on Section 845.600(a)(2)

OPERATING PERMIT FIGURES

FILL: CONSISTING OF A THIN LAYER OF TOP SOIL AND/OR COARSE GRAVEL FILL.

SILTY CLAY TO CLAY: CONSISTING OF BLACK/BROWN SILTY CLAY TO CLAY WITH A TRACE OF COARSE GRAVEL.

WITH LIMESTONE FRAGMENTS NOTED THROUGHOUT. MAY LOCALLY INCLUDE SOME LENSES OR INTERLAYERING OF BLACK SILTY CLAY AND/OR TAN SILTY SAND.

—D —

SANDY SILT/SILTY CLAY: CONSISTING OF BLACK/GRAY SANDY SILT GRADING DOWNWARD TO A GRAY SILTY CLAY WITH COARSE SAND. NOT CONTINUOUS ACROSS SITE.

 $\mathbf{\nabla}$

BEDROCK SURFACE.

WATER LEVEL (5/21)

PROJECTED POND OUTLINE

Midwest Generation Joliet Station #29, Joliet, IL

Groundwater Elevation vs Time

MW-03 4	GROUNDWATER FLOW LINE CCR GROUNDWATER MONITORING WELL NON-CCR GROUNDWATER MONITORING WELL		and and	MW-08 505.13	AND 5	5.
				۲ 505.02	MW- 505.	01 50 ⁵ 05.0
	MW-11 505.53	MW-10 505.14 POND 2 MW-	MW−03 505.06	1	MW-02 504.98	
新	POND 1	4 MW-05 504.87	01			, A
505.5	505.14 MW-06 505.08		2		and the	
i	505.0	5-20/	CHAMIEL			NES RIVER
13	140 ····	Wat	×42		DES PLA	

1	ENVIRC) N M E N T A	LCONSU	LTATION	& REMEDIATION	GROUNDWATER CONTOUR MAP 07/2020 JOLIET #29 GENERATING STATION JOLIET, ILLINOIS				
	Κ	Ρ	R	G	KPRG and Associates, inc.					
0250', N	14665 West Lisb	oon Road, Suite 1A Bro	ookfield, Wisconsin 5	3005 Telephone 262-	-781-0475 Facsimile 262-781-0478	Scale:	1" = 250'	Date: S	eptember 04, 202	.0
APPROXIMATE SCALE	414 Plaza	Drive, Suite 106 West	mont, Illinois 60559	Telephone 630-325-	1300 Facsimile 630-325-1593	KPRG F	^o roject No. ⁻	12313.0	FIGURE 9-6	

414 Plaza Drive, Suite 106 Westmont, Illinois 60559 Telephone 630-325-1300 Facsimile 630-325-1593

OPERATING PERMIT ATTACHMENTS

ATTACHMENT 1 HISTORY OF CONSTRUCTION

<u>Attachment 1-1 – Construction Drawings</u>

SUPPORTS D' 10 107 The TILL	1
10 01 19 anno	Į.
ALTER	-
W AND A CONTRACT REVISE	E
SILOS A CONTROL SI CONTROL SECTIONS	
VEY BLAN	
KETTLAN 847 isu	
	1
4	
2	
	D
1	
	8
5x,7	1
COMIT	
1 N N	
2 J	
AT TIMBER AND ORT	
ST THOSE SETTICE	
2	
lot illerfere	
	C
	1
	1
5 .	
NBRA-NOTED 555 PWG 6-5406 ANDARD PETAILS 685 DWG 6-5600	F-
NE ONES 5079-ME-3155/2 \$ 5079-ME-3155/3.	1
	1
	100
	в
	1
	1
	1
i i	
2	
aware t Uesma	
17525220	
	-
APPROVED FOR CONSTRUCTION	
un 1-27-79	1.
EUCI 7.378 COMMONWEALTH EDISON COMPANY	1 4
WASTE WATER TREATMENT FACILITIES	1
JOLIET 28	
JOLIET *8	1
JOLIET * #8 JOLIET * #8 PIPE SUPPORT PLAN AND DETAILS PS 834 836 THRU 846	1
JOLIET *88 1/7/2 PIPE SUPPORT PLAN AND DETAILS 1/7/2 PIPE SUPPORT PLAN AND DETAILS 1/7/2 PIPE S34 836 THRU 846 CECO CONT B02667 [CECO DWG REV.	
JOLIET 48 JOLIET 5079 JOLIET 5079	
JOLIET *88 7/7/2 PIPE SUPPORT PLAN AND DETAILS PS 834 836 THRU 846 CECO CONT 802667 CECO DWG REV CECO CONT 802667 CECO DWG REV CECO CONT 802667 CECO DWG REV CECO CONT 802667 CECO DWG REV MODELLE 80. MODELLE 80. MODELE	
JOLIET * 88 7/7/2 7/7	
JOLIET 28 Virta PIPE SUPPORT PLAN AND DETAILS PS 834 836 THRU 846 Virta PARCE CECO CONT 802667 CECO DWG REV. VICT TOTAL SOCONLE AND DETAILS SOCONLE AND DETAILS VICT TOTAL SOCONLE AND DETAILS REV. VICT TOTAL SOCINCE AND DETAILS REV.	

PROJECT NO. 1862/5.2	DETAILS AND SECTION	NS
DRAWN BY: KNW 12/19/08	ASH IMPOUND MEN T #1 AND #2 LINER REPI MIDWEST GENERATION, LLC	ACEMEN
CHECKED BY:	JOLIET STATION NO. 29	
HMS 12/19/08	JOLIET, ILLINOIS	
APPROVED BY:	DRAWING NO: D1862C031-00	SHEET NO.
HMS 12/19/08	REFERENCE: 1862/RECORD DWGS/	C031

CONTRACTOR NOTES: 1. CONTRACTOR SHALL FIELD VERIFY LOCATION OF 1. CONTRACTOR SHALL FIELD VERIFY LOCATION OF 2. FS DITUTY LL CONTRACTOR WITH ASSISTANCE OF 0. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND SUBGROVE MATERNALS AT A LOCATION APPROVED BY OWNER AS DISCUSSED DURING PRE-BID MEETING 3. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND SUBGROVE MATERNALS AT A LOCATION APPROVED BY OWNER AS DISCUSSED DURING PRE-BID MEETING 5. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND SUBGROVE MATERNALS AT A LOCATION APPROVED BY OWNER AS DISCUSSED DURING PRE-BID MEETING 5. CONTRACTOR SHALL STORE AND STAGE EQUIPMENT AT A 1. CONTRACTOR SHALL STORE AND STAGE EQUIPMENT AT A 5. CONTRACTOR SHALL STORE AND STAGE FROM IMPOUNDHEAT SUBGROVE AND DISPOSE AT AN APPROVED FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPED STORMER TAMP SUBGRADE SHALL BE SLOPED AS INDICATED ON THIS SHEET.

D) ONTHIS SHEET. ITRACTOR SHALL INSTALL MARKER POSTS ALONG THE THE IMPOUNDMENTS AS SHOWN AND IN ACCORDANCI TECHNICAL SPECIFICATIONS AND DETAIL 1 ON SHEE

CUSI. 8. CONTRACTOR SHALL PLACE 16 OZ. NON WOVEN GEOTEXTLE OVER THE PREPARED SUBGRADE IN ACCOR WITH THE TECHNICAL SPECIFICATIONS AND AS APPROVE GEOWEMBRANE. GEOWEMBRANE.

9. CONTRACTOR SHALL PROVIDE MEANS TO PROTECT 16-OZ. NON WOVEN GEOTEXTILE FROM POTENTIAL DAMAGE DAMAGE TO GEOTEXTILE SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE.

I AND 2 WERE DEVELOPED FROM DRAWINGS HANNO HUMBERS SUFFICIENCE AND ROTACE (03, Distance of any approximations 1 and 2 was notable of any approximations 1 and 2 was notable-official contractions, and as state place East and as companies system, and as state place East and as companies system,

NOT FOR CONSTRUCTION PROJECT NO. LINER SUBGRADE PREPARATION 1862/3.0 ASH IMPOUNDMENT #2 LINER REPLACEMENT MIDWEST GENERATION JOLIET STATION NO. 29 JOLIET, ILLINOIS DRAWN BY: BJK/RLH 07/12/07 CHECKED BY: HMS 08/02/07 APPROVED BY: DRAWING NO: D1862C020-02 SHEET NO. C020

EJT 09/05/07 REFERENCE:1862/3/BID-CON/

CONTRACTOR NOTES: Δ 1. CONTRACTOR SHALL INSTALL 60 MIL HDPE, WHITE, TEXTURED GEOMEMBRANE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION PRIOR TO PLACEMENT OF THE WARNING LAYER. CONTRACTOR SHALL PROVIDE AND FOLLOW AN APPROVED GEOMEMBRANE SHALL BE ANCHORENDED TO THE WARNING LAYER. CONTRACTOR SHALL PROVIDE AND FOLLOW AND CONTRACTOR SHALL PLACE ANCHORENDED TO THE SHOWN IN SECTION D ON SHEET COSI . CONTRACTOR SHALL ADDRES UNKER ANL/OR ENDINER IF ANCHOR TRENCH INTERFERES WITH PIPING. 3. CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GOLDENER SAND MATERIAL AND WARNING LAYER WARERIAL AT BASE AND A FEET ON SIDE SHOWN IN CAYER MATERIAL AT BASE AND A FEET ON SIDE SUPPERS OUTER TO DEVELOPMENT AND MATERIAL. AND WARNING LAYER WARERIAL AT BASE AND A FEET ON SIDE SUPPERS OUTER CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GEOMEMBRANE. SAND MATERIAL AND WARRING LAYER WARERIAL AT BASE AND A FEET ON SIDE SUPPERS OUTER CONTRACTOR SHALL PLACE 12-02. NON-WOVEN INTERFERES SHE TO DE TO DE TO DE WITH TECHNICAL SPECIFICATIONS. (SEE SHEET COSI) 4. RESTORE AREAS DISTURBED BY EQUIPMENT AND MATERIAL ADDRES COUND PIPING TO DE INSTALLED BY OTHERE

DOWN. 5. ABOVE GROUND PIPING TO BE INSTALLED BY OTHERS. 5. CONTRACTOR SHALL PROVIDE SURVEY DOCUMENTATION OF TEMS LISTED IN THE TECHNICAL SPECIFICATIONS. 7. CONTRACTOR SHALL PERFORM A LEAK LOCATION SURVEY ACCORDANCE WITH TECHNICAL SPECIFICATIONS.

2 WOR DEVELOPED FROM DEMONST CANDITS 1 AND 2 WAS

NOT FOR CONSTRUCTION WARNING LAYER PLAN ASH IMPOUNDMENT #2 LINER REPLACEMENT MIDWEST GENERATION JOLIET STATION NO. 29 JOLIET, ILLINOIS APPROVED BY: DRAWING NO: D1862C030-01 SHEET NO. C030

ASBUILT

LEGEND					
	EXISTING GROUND MAJOR CONTOUR (5')				
	EXISTING GROUND MINOR CONTOUR (1')				
	PROPOSED GRADING MAJOR CONTOUR (5')				
	PROPOSED GRADING MINOR CONTOUR (1')				
·	PROPOSED LIMIT OF GRADING				
	GRADE BREAK				

NOTES:

- 1. SOURCE AERIAL TOPOGRAPHY: AERO-METRIC, INC. DATE OF PHOTOGRAPHY: 6/17/2008.
- 2. EARTHWORK VOLUME = 100 CY
- FILL (CA-6 AGGREGATE) SHALL BE PLACED WITH A MAXIMUM LOOSE LIFT THICKNESS OF 10 INCHES WITH A MAXIMUM COMPACTED LIFT THICKNESS OF 6 INCHES. FILL SHALL BE COMPACTED BY A MINIMUM OF 3 PASSES WITH A CAT 34B OR EQUIVALENT SMOOTH DRUM ROLLER (MINIMUM OPERATING WEIGHT OF 8,000 lbs. AND MINIMUM CENTRIFUGAL FORCE PER DRUM OF 5,000 lbs.) AND SHALL BE FIRM AND UNYIELDING.

Geosynt	tec tants	FIGURE
PROJECT NO: SW0251-05	AUGUST 2016	I

Attachment 1-2 – HDPE Liner Replacement Specifications

SECTION 02600 HIGH DENSITY POLYETHYLENE (HDPE) GEOMEMBRANE

PART 1 - GENERAL

1.01 WORK INCLUDES

A. Furnish all labor, materials, tools, supervision, transportation, and installation equipment necessary for installation of 60-mil High Density Polyethylene (HDPE) geomembrane, as specified herein, and as shown on Contract Drawings.

1.02 REFERENCE STANDARDS

- A. ASTM D1004 Test Method for Initial Tear Resistance of Plastic Film and Sheeting.
- B. ASTM D1238 Standard Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer.
- C. ASTM D1505 Test Method for Density of Plastics by the Density-Gradient Technique.
- D. ASTM D1603 Test Method for Carbon Black in Olefin Plastics.
- E. ASTM D4833 Standard Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products.
- F. ASTM D5199 Standard Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes.
- G. ASTM D5397 Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test.
- H. ASTM D5596 Test Method for Microscopic Evaluation of Dispersion of Carbon Black in Polyolefin Geosynthetics.
- I. ASTM D5994 Standard Test Method for Measuring Core Thickness of Textured Geomembranes.
- J. ASTM D6392 –Test Method for Determining the Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods.
- K. ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.
- L. GRI Test Method, GM 13 Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes
- M. GRI Test Method, GM 14 Selecting Variable Intervals for Taking Geomembrane Destructive Seam Samples Using the Method of Attributes.

N. GRI Test Method, GM 19 – Seam Strength and Related Properties of Thermally Bonded Polyolefin Geomembranes.

1.03 DEFINITIONS

- A. Geomembrane Installer: hired by Contractor or Owner responsible for field handling, transporting, storing, deploying, seaming and testing of the geomembrane seams.
- B. Geomembrane Manufacturer: hired by Geomembrane Installer to provide HDPE geomembrane.
- C. Geosynthetic Quality Assurance Consultant: Consultant, independent from the Owner, Manufacturer, and Installer, responsible for field oversight of geosynthetics installation, and related testing, usually under the direction of the Owner.
- D. Geosynthetic Quality Assurance Laboratory (Testing Laboratory): Party, independent from the Owner, Manufacturer and Installer, responsible for conducting laboratory tests on samples of geosynthetics obtained at the site or during manufacturing, usually under the direction of the Owner.
- D. Lot: A quantity of resin (usually the capacity of one rail car) used in the manufacture of geomembranes. Finished roll will be identified by a roll number traceable to the resin lot used.
- E. Resin Supplier: selected by Geomembrane Manufacturer to provide resin used in manufacturing geomembrane.
- F. Panel: Unit area of a geomembrane that will be seamed in the field that is larger than 100 ft².
- G. Patch: Unit area of a geomembrane that will be seamed in the field that is less than 100ft².
- H. Subgrade Surface (Bedding Layer): Soil Layer surface which immediately underlies the geosynthetic material(s).

1.04 QUALITY ASSURANCE

- A. Qualifications:
 - 1. Geomembrane Installer:
 - a. 5 years of continuous experience in installation of HDPE geomembrane.
 - b. Experience totaling a minimum of 5,000,000 square feet of installed HDPE geomembrane on some combination of at least 10 completed facilities.
 - c. Personnel performing seaming operations qualified by experience or by successfully passing seaming tests. Master seamer shall have experience

seaming a minimum of 3,000,000 square feet of geomembrane using same type of seaming apparatus to be used on this project.

- B. Quality Assurance Program:
 - 1. Geomembrane Manufacturer/Installer shall conform with requirements of these Technical Specifications.
 - 2. The Engineer will document geomembrane installation including panel placement, seaming, pre-qualification seam testing, non-destructive seam and repair testing, repair size and locations, weather conditions.
 - 3. The Owner will engage and pay for the services of a Geosynthetic Quality Assurance Consultant and Laboratory to monitor geomembrane installation.

1.05 SUBMITTALS

- A. Prior to project start, submit the following to Geosynthetic Quality Assurance Consultant in accordance with Section 01300, Submittals:
 - 1. Raw Materials:
 - a. Name of Resin Supplier, location of supplier's production plant(s), resin brand name and product number.
 - b. Source and nature of plasticizers, fillers, carbon black and any other additives along with their percent addition to geomembrane material.
 - c. Test results documenting conformance with the "index properties" of GRI Test Method, GM 13.
 - 2. Geomembrane Manufacturer's Certification:
 - a. Written certification that Geomembrane Manufacturer's Quality Control Plan was fully implemented during production of geomembrane material supplied for this project. (Submittal shall be made within 5 working days of delivery to site).
 - 3. Geomembrane Installer's Seaming Personnel
 - a. Corporate background information indicating compliance with qualification requirements.
 - b. Training completed by personnel.
 - c. Seaming experience for each personnel.
 - 4. Geomembrane Manufacturer Production Information:
 - a. Corporate background information indicating compliance with qualification requirements.

- b. Quality control plan for manufacturing.
- c. Copy of quality control certificates demonstrating compliance with the quality control plan for manufacturing and the test property requirements of GRI Test method, GM 13 (i.e. mill certificates).
- 5. Geomembrane Installer's Information:
 - a. Corporate background information indicating compliance with qualification requirements.
 - b. List of completed facilities, totaling 5,000,000 square feet minimum for which Geomembrane Installer has completed installation of a HDPE geomembrane. Include name and purpose of facility, location, date of installation, and quantity installed.
 - c. Resumes of personnel performing field seaming operation, along with pertinent experience information. Include documentation regarding which seamers are qualified to use thermal fusion welding apparatus.
 - d. Installation quality control plan.
- 6. Installation panel layout diagram identifying placement of geomembrane panels, seams, and any variance or additional details which deviate from Contract Drawings or Technical Specifications. Layout shall be drawn to scale and shall be adequate for use as a construction plan. Layout shall include dimensions and pertinent seam and anchorage details.
- 7. Installation Sequence and Schedule shall be included as part of Construction Progress Schedule.
- 8. Description of seaming apparatus to be used indicating compliance with specified requirements.
- B. During installation, submit the following to the Geosynthetic Quality Assurance Consultant:
 - 1. Daily records/logs prepared by Geomembrane Installer documenting work performed, personnel involved, general working conditions, and any problems encountered or anticipated on project. Submit on a weekly basis.
 - 2. Copy of subgrade acceptance signed by Geomembrane Installer for areas to be covered with geomembrane each day.
- C. Within 10 days of geomembrane installation completion, submit the following to Geosynthetic Quality Assurance Consultant:
 - 1. Geomembrane installation certification that Work was performed under Geomembrane Installer's approved quality control plan and in substantial compliance with Technical Specifications and Contract Drawings.

- 2. As-built panel diagram identifying placement of geomembrane panels, seams, repairs, and destructive seam sample locations.
- 3. Copy of warranty for material (including factory seams) and installation covering both for a period of 2 years from the date of substantial completion.
- D. The Geosynthetic Quality Assurance Consultant will review and inspect HDPE geomembrane installation upon completion of all Work specified in this Section. Deficiencies noted shall be corrected at no additional cost to the Owner.
- E. The Geosynthetic Quality Assurance Consultant will provide written final acceptance of the geomembrane installation after completion of material placement above geomembrane. Written conditional geomembrane installation acceptance can be provided to the Contractor prior to completion of material placement above geomembrane when the following conditions are satisfied, if necessary, and requested by the Contractor:
 - 1. The entire geomembrane installation is completed or any pre-determined subsection if the project is phased.
 - 2. All installation quality assurance/control documentation has been completed and submitted to the Geosynthetic Quality Assurance Consultant or Owner.
 - 3. Verification of the adequacy of all field seams, repairs and associated testing is complete.

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Transportation:
 - 1. Geomembrane rolls shall be transported, unloaded and handled at the job site in accordance with manufacturer recommendations. Damaged material may be rejected by the Geosynthetic Quality Assurance Consultant. Manufacturer packaging shall be labeled in accordance with Section 02700, 2.02G.
- B. On-site Storage:
 - 1. Geomembrane rolls which have been delivered to job site shall be unloaded and stored in original, unopened packaging in a secure location, determined by Owner and/or Geosynthetic Quality Assurance Consultant.
 - 2. Store geomembrane rolls to ensure adequate protection against exposure to the following:
 - a. Equipment;
 - b. Strong oxidizing chemicals, acids, or bases;
 - c. Flames, including welding sparks;

- d. Temperatures in excess of 160 deg. F;
- e. Dust;
- f. Ultraviolet radiation (i.e. sunlight); and
- g. Inclement weather.
- 3. Whenever possible, provide a 6-inch minimum air space between rolls.
- 4. Containers/rolls shall not be stacked.
- C. On-Site Handling:
 - 1. Handle rolls per Geomembrane Manufacturer's recommendations and as necessary to prevent damage.

PART 2 - PRODUCTS

2.01 MATERIALS

- A. High Density Polyethylene (HDPE) White Textured Geomembrane.
 - 1. HDPE geomembrane shall be white, textured, 60-mil product approved by the Engineer and/or Geosynthetic Quality Assurance Consultant.
 - 2. The Contractor shall submit, with the bid, written certification from the proposed Geomembrane Manufacturer that geomembrane products proposed in the bid satisfy the following requirements:
 - a. The proposed Geomembrane Manufacturer shall have a minimum of 5 years of continuous experience manufacturing HDPE geomembrane totaling 1,000,000 square feet.
 - b. The proposed HDPE compound shall be comprised entirely of virgin materials. Compliance with this specification shall be documented in accordance with Geomembrane Manufacturer's quality control program and submitted to the Geosynthetic Quality Assurance Consultant with the written conformance certification.
 - c. The proposed Geomembrane Manufacturer shall certify that any plasticizers, fillers and additives incorporated into the manufacturing process for the proposed HDPE geomembrane have demonstrated acceptable performance on past projects.
 - d. The proposed geomembrane shall meet the requirements of Geosynthetic Research Institute's test method GM 13.
 - e. The nominal thickness of proposed geomembrane shall be 60 mil., or as approved by the Engineer and/or Geosynthetic Quality Assurance Consultant.

- 3. Geomembrane sheets shall be visually consistent in appearance and shall contain no holes, blisters, undisbursed raw materials or other signs of contamination by foreign material. Geomembrane must have no striations, roughness or bubbles on the surface.
- B. Seaming Apparatus
 - 1. Thermal fusion welding machines used for joining geomembrane surfaces may be either extrusion or hot wedge. These machines shall include sufficient temperature and rate-of-travel monitoring devices to allow continuous monitoring of operating conditions.
 - 2. One spare, operable thermal fusion seaming device shall be maintained on site at all times.
- C. Field Test Equipment
 - 1. Field Tensiometer: the field tensiometer shall be calibrated within three months prior to project start date over the range of field test values.
 - 2. Air Channel Test Equipment: air channel test equipment shall consist of hoses, fittings, valves and pressure gauge(s) needed to deliver and monitor the pressure of compressed air through an approved pressure feed device.
 - 3. Air Compressor: the air compressor utilized for field testing shall be capable of producing and maintaining an operating pressure of at least 50 psi.
 - 4. Vacuum Box: the vacuum box shall consist of a vacuum gage, valve, and a gasket around the edge of the open bottom needed to apply vacuum to a surface.

2.02. CONFORMANCE TESTING REQUIREMENTS

- A. Geomembrane shipped to site shall undergo conformance testing. Manufacturer's roll certificates may be used for conformance evaluation at the option of the Geosynthetic Assurance Consultant. Nonconforming material shall either be retested at the direction of the Geosynthetic Quality Assurance Consultant or removed from site and replaced at Contractor's expense.
- B. Conformance Test Methods
 - 1. Samples will be located and collected by the Geosynthetic Quality Assurance Consultant at a rate of one sample per 100,000 square feet of geomembrane delivered to site.
 - 2. One sample will be obtained from each geomembrane production batch delivered to the site.

- 3 Samples shall be cut by Geomembrane Installer and be at least 45 square feet in size.
- 4. Samples shall be tested in accordance with Table 1 (Smooth) or Table 2 (Textured) specified in GRI Test Method GM13.
- 5. Geomembrane thickness shall be measured a minimum of three times per panel during deployment to verify conformance with GRI Test Method GM13.
- C. Role of Testing Laboratories
 - 1. The Geosynthetic Quality Assurance Consultant will be responsible for acquiring samples of the geomembrane for conformance testing. The Owner or Geosynthetic Quality Assurance Consultant will retain an independent, third party laboratory to perform conformance testing on samples of geomembrane.
 - 2. Retesting of geomembrane panels by the Geomembrane Installer because of failure to meet any of the conformance specifications can only be authorized by the Geosynthetic Quality Assurance Consultant. Non-conforming panels may be retested in accordance with Subsection 2.03(B) and 2.03(D) under authorization of the Geosynthetic Quality Assurance Consultant only.
 - 3. The Geomembrane Manufacturer and/or Geomembrane Installer may perform independent tests in accordance with methods and procedures specified in Subsection 2.03(B). Results shall not be substituted for quality assurance testing described herein.
- D. Procedures for Determining Conformance Test Failures
 - 1. If conformance test results fail to meet specifications, the roll and/or batch may be retested using specimens from either the original roll sample or from another sample collected by the Geosynthetic Quality Assurance Consultant. Two additional tests (retests) shall be performed for each failed test procedure. Each retest shall consist of multiple specimen tests if multiple specimens are specified in the test procedure. If the results of both retests meet specifications, the roll and batch will be considered to have passed conformance testing.
 - 2. Failure of any retest shall be cause for rejection of the entire roll or batch depending on the type of failing test. The Geosynthetic Quality Assurance Consultant reserves the right to collect samples from other roll of a particular batch for further conformance testing. The Geosynthetic Quality Assurance Consultant may choose to accept only a portion of the batch on the basis of the results of conformance testing of samples collected from other rolls.
 - 3. If retesting does not result in conformance with the specifications as defined in preceding paragraph, or if there are any other nonconformities with the material

specifications, the Contractor shall remove the rolls from use in project. The Contractor shall also be responsible for removal of rejected geomembrane from the site and replacement with acceptable geomembrane at no additional cost to the Owner.

PART 3 - EXECUTION

3.01 PRE-CONSTRUCTION MEETING

- A. A Pre-Construction Meeting shall be held at the site in accordance with Section 01040, Project Administration, to discuss and plan the details of geomembrane installation. This meeting shall be attended by the Geomembrane Installer, Owner, Geosynthetic Quality Assurance Consultant and the General Contractor.
- B. The following topics relating to geomembrane installation shall be addressed:
 - 1. Responsibilities of each party.
 - 2. Lines of authority and communication.
 - 3. Methods for documenting, reporting and distributing documents and reports.
 - 4. Procedures for packaging and storing archive samples.
 - 5. Review of the schedule for all installation and quality assurance testing, including third-party testing turnaround times.
 - 6. Review of panel layout, access and numbering systems for panels and seams including details for marking on the HDPE geomembrane.
 - 7. Procedures and responsibilities for preparation and submittal of as-built drawings.
 - 8. Temperature and weather limitations, installation procedures for adverse weather conditions and defining acceptable subgrade or ambient moisture and temperature conditions for working during liner installation.
 - 9. Subgrade conditions, dewatering responsibilities and subgrade maintenance plan.
 - 10. Deployment techniques including allowable subgrade for geomembrane.
 - 11. Procedures for covering of the geomembrane to prevent damage.
 - 12. Plan for minimizing wrinkles in the geomembrane.
 - 13. Measurement and payment schedules.
 - 14. Site health and safety procedures/protocols.

3.02 SUBGRADE PREPARATION

- A. Contractor shall prepare a subgrade surface in accordance with Section 02243, Subgrade Layer Preparation, and excavate and backfill in accordance with Section 02222, Anchor Trenching, Backfilling and Compaction.
- B. The Contractor shall not excavate more than the amount of anchor trench required for one day of geosynthetics deployment, unless otherwise specified by the Geosynthetic Quality Assurance Consultant. Rounded corners shall be provided in the trenches where the geosynthetics enter the trench to allow them to be uniformly supported by the subgrade and to avoid sharp bends. The geosynthetics shall not be supported by loose soils in anchor trenches.
- C. The Geomembrane Installer shall visually inspect the subgrade immediately prior to geomembrane deployment. Inspection shall verify that there are no potentially harmful foreign objects present, such as sharp rocks and other deleterious debris. Any foreign objects encountered shall be removed by Geomembrane Installer or Contractor. All subgrade damaged by construction equipment and deemed unsuitable for geomembrane deployment shall be repaired prior to geomembrane deployment. All repairs shall be approved by the Geosynthetic Quality Assurance Consultant and Geomembrane Installer. The responsibility for preparation, repairs, and maintenance of the subgrade shall be defined in the preconstruction meeting. The Geomembrane Installer shall provide the Geosynthetic Quality Assurance Consultant with written acceptance of subgrade surface over which geomembrane is deployed (Part 1.05B) for each day of deployment.

3.03 GEOMEMBRANE DEPLOYMENT

- A. Geomembrane shall not be deployed until all applicable certifications/quality control certificates listed in subsection 1.05 of this section and conformance testing listed in subsection 2.03 of this section are submitted and approved by the Geosynthetic Quality Assurance Consultant. Any geomembrane deployed prior to approval by the Geosynthetic Quality Assurance Consultant shall be at the sole risk of the Geomembrane Installer and/or Contractor. If material installed prior to approval by the Geosynthetic Quality Assurance Consultant does not meet the requirements of this specification, it shall be removed from the site at no additional cost to the Owner.
- B. Geomembrane will be deployed according to submitted panel layout drawing as approved by the Geosynthetic Quality Assurance Consultant. The Geosynthetic Quality Assurance Consultant is to be notified of and approve any revisions or modifications to the approved panel layout drawing prior to deploying geomembrane in the area of review.
- C. Adequate temporary anchoring (sand bags, tires, etc.) that will not damage the geomembrane shall be placed on a deployed panel to prevent uplift by wind.
- D. Geomembrane shall not be deployed if:
 - 1. Ambient temperatures are below 41 degrees F (5 degrees C) or above 104 degrees F (40 degrees C) measured six inches above geomembrane surface unless approved by the Geosynthetic Quality Assurance Consultant.
 - 2. Precipitation is expected or in the presence of excessive moisture or ponded water on the subgrade surface.

- 3. Winds are excessive as determined by Geomembrane Installer in agreement with the Geosynthetic Quality Assurance Consultant.
- 4. The Geosynthetic Quality Assurance Consultant will have the authority to suspend work during such conditions.
- E. The Geomembrane Installer shall be responsible for conformance with the following requirements:
 - 1. Equipment utilized for installation/quality assurance testing does not damage geomembrane. Such equipment shall have rubber tires and a ground pressure not exceeding 5 psi or total weight exceeding 750 lbs. Only equipment necessary for installation and quality assurance testing is allowed on the deployed geomembrane.
 - 2. Personnel working on geomembrane do not damage geomembrane (activities such as smoking or wearing damaging clothing shall not be allowed).
 - 3. Method of deployment does not damage geomembrane.
 - 4. Method of deployment minimizes wrinkles.
 - 5. Temporary loading or anchoring does not damage geomembrane.
 - 6. Direct contact with geomembrane is minimized.
- F. No vehicles shall be allowed on deployed geomembrane under any circumstances.

3.04 FIELD SEAMS

- A. Seam Layout
 - 1. In general, seams shall be oriented parallel to the line of the maximum slope. In corners and at other odd-shaped geometric intersections, number of seams should be minimized. If at all possible, seams shall not be located at low points in the subgrade unless geometry requires seaming to be done at these locations.
 - 2. A seam numbering system compatible with the panel numbering system shall be agreed upon at the Pre-Construction Meeting.
- B. Seaming Processes/Equipment
 - 1. Approved processes for field seaming (panel to panel) are extrusion or hot wedge fusion-type seam methods. No other processes can be used without prior written authorization from the Geosynthetic Quality Assurance Consultant. Only equipment which has been specifically approved by make and model shall be used, if applicable.
 - 2. The Geomembrane Installer will meet following requirements regarding use, availability, and cleaning of welding equipment at job site:

- a. Intersecting hot wedge seams shall be patched using extrusion welding process.
- b. Electric generator for equipment shall be placed on a smooth base such that no damage occurs to geomembrane. A smooth insulating plate or fabric shall be placed beneath hot equipment after usage.
- 3. The Geomembrane Installer shall keep records for performance and testing of all seams.
- C. Seaming Requirements/Procedures
 - 1. Weather Conditions Range of weather conditions under which geomembrane seaming can be performed are as follows:
 - a. Unless otherwise authorized in writing by Geosynthetic Quality Assurance Consultant, no seaming shall be attempted or performed at an ambient temperature below 41 degrees F (5 degrees C) or above 104 degrees F (40 degrees C).
 - b. Between ambient temperatures of 32 degrees F (0 degrees C) and 41 degrees F (5 degrees C), seaming shall be performed only if geomembrane is preheated by either sun or a hot air device, provided there is no excessive ambient cooling resulting from high winds. Prequalification seams shall be produced under identical conditions.
 - c. Above 41 degrees F (5 degrees C), no preheating of geomembrane will be required.
 - d. Geomembrane shall be dry and protected from wind.
 - e. Seaming shall not be performed during any precipitation event.
 - f. Seaming shall not be performed in areas where ponded water has collected below surface of geomembrane.
 - 2. If the Geomembrane Installer chooses to use methods which may allow seaming at ambient temperatures below 41 degrees F or above 104 degrees F, the Geomembrane Installer shall demonstrate and submit certification to Geosynthetic Quality Assurance Consultant that methods and techniques used to perform seaming produce seams that are equivalent to seams produced at temperatures above 41 degrees F and below 104 degrees F. The Geosynthetic Quality Assurance Consultant may deny approval for use of the proposed technique regardless of demonstration results.
 - 3. Overlapping Geomembrane panels shall have finished overlap as follows:
 - a. Minimum of 6 inches for thermal fusion welding.
 - b. Insufficient overlap will be considered a failed seam.

- 4. Pre-qualification tests for geomembrane fusion welding shall be conducted by a minimum of 2 pre-qualification seams conducted per day per welding machine by each seaming technician performing welding with that machine. At least one test shall be performed at the start of each work day, with tests at intervals of no greater than 5 hours and additional pre-qualification tests following work interruptions, weather changes, changes to machine settings, or as directed by the Geosynthetic Quality Assurance Consultant. Pre-qualification seams shall be made under the same conditions as the actual seams.
 - a. Pre-qualification seam samples shall be 5 feet long by 1-foot wide (minimum) after seaming, with seam centered along its length. Each pre-qualification seam shall be labeled with the date, geomembrane temperature, seaming unit identifier, seam number or test location, technician performing the test seam and description of testing results.
 - b. Seam overlap shall be in accordance with subsection 3.04(C)(3).
 - c. Pre-qualification seams shall be inspected for proper squeeze-out, footprint pressure, and general appearance.
 - d. Four specimens, each 1-inch in length, shall be cut from opposite ends of the pre-qualification seam sample by the Geomembrane Installer. The remainder of pre-qualification seam shall be retained by the Geosynthetic Quality Assurance Consultant and may be submitted for laboratory testing.
 - e. The Geomembrane Installer shall complete two shear tests and two peel tests.
 - f. Pre-qualification seams failed by inspection or testing may be retested at request of the Geomembrane Installer. If the second pre-qualification seam fails, then the seaming apparatus or seaming technique shall be disqualified from use until two consecutive, satisfactory pre-qualification seams are obtained.
- 5. Seam Preparation
 - a. Prior to seaming, seam area shall be clean and free of moisture, dust, dirt, debris of any kind, and foreign material.
 - b. Seams shall be aligned so as to minimize number of wrinkles and fishmouths.
- 6. General Seaming Procedures
 - a. Fishmouths or wrinkles at seam overlaps shall be cut along ridge of the wrinkle to achieve a flat overlap. Cut fishmouths or wrinkles shall be repaired, and/or patched in accordance with Part 3.07.
 - b. Seaming shall extend to the outside edge of geomembrane panels including material placed in anchor trenches.

c. For cross seams, the intersecting thermal fusion seams shall be patched using the extrusion welding process.

3.05 NON-DESTRUCTIVE TESTING

- A. Each field seam shall be non-destructively tested over its entire length by the Installer. Testing shall be conducted as field seaming progresses, not at completion of all seams, unless specifically agreed to by the Geosynthetic Quality Assurance Consultant in writing.
- B. Vacuum Testing shall be performed in accordance with ASTM D5641, Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber.
- C. Air Pressure Testing shall be performed in accordance with ASTM D5820, Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes, and GRI GM 6, Pressurized Air Channel Test for Dual Seamed Geomembranes.
- D. Each seam tested non-destructively shall be marked with the date of the test, name of the testing technician, length of the seam, test method and results. The same shall also be recorded by the Geosynthetic Quality Assurance Consultant on the appropriate CQA documentation.
- E. Non-Destructive Seam Test Failures
 - 1. Seams failing non-destructive testing shall be repaired by the Geomembrane Installer according to Part 3.07. Seams shall be non-destructively retested. If the seam defect cannot be located, the entire section of seams affected shall be repaired and retested.

3.06 DESTRUCTIVE TESTING

- A. The Owner shall have the option to conduct destructive testing of geomembrane panel seams completed in the field. Destructive seam sampling and testing shall be performed by the Geomembrane Installer under the observation of the Geosynthetic Quality Assurance Consultant.
- B. Sampling Procedure
 - 1. For each sample location, the Geosynthetic Quality Assurance Consultant will:
 - a. Assign a sample number and mark the sample accordingly.
 - b. Record the sample location on the as-built layout drawing.
 - c. By sample number, record reason for collecting sample (e.g., as part of statistical testing program, suspicious seam, retest, etc.).

- d. Record pertinent information, including date, time, seam number, number of seaming unit, and name of seamer, on both the seam sample and CQA documentation.
- 2. Each destructive sample shall be at least 12 inches wide (at least 6 inches on each side of seam) by 54 inches long. Samples will be cut by the Geomembrane Installer into three parts and distributed as follows:
 - a. A 12-inch by 12-inch portion shall be cut and tested in accordance with subsection 3.06(C) by the Geomembrane Installer.
 - b. A 12-inch by 12-inch portion shall be cut and retained by the Geomembrane Installer. The Geomembrane Installer may elect to omit this requirement.
 - c. A 12-inch by 12-inch portion shall be cut and retained by the Geosynthetic Quality Assurance Consultant as an archive sample.
 - A 12-inch by 18-inch portion shall be submitted by the Geosynthetic Quality Assurance Consultant for laboratory testing as described in Part 3.06(D).
- 3. Ten specimens, each 1 inch wide by 12 inches long with seam centered perpendicular to width, shall be collected and field tested by the Geomembrane Installer prior to shipping the sample to the laboratory. If all samples pass field tensiometer test described in Part 3.06(C), then the laboratory sample shall be collected according to procedure described in Part 3.06(B)(2)(d).
- 4. Holes cut into geomembrane resulting from destructive seam sampling shall be immediately repaired by Geomembrane Installer in accordance with repair procedures described in Part 3.07.
- C. Field Test Methods
 - 1. Ten 1-inch-wide samples described above under Part 3.06(B)(3) shall be field tested for peel (5 samples) and shear (5 samples).
 - 2. One end of seam sample shall be field tested for peel and shear at end of each continuous field seam 100 feet long or greater.
 - 3. Testing shall be performed in accordance to with ASTM D6392 using a field tensiometer or equivalent device to qualitatively and quantitatively determine mode of failure.
 - 4. Seam shall be considered passing if failure in both peel and shear meet criteria listed in GRI GM 19, Table 2.

- 5. The procedures specified in Subsection 3.06(D) shall be implemented when sample passes field tensiometer test.
- D. Laboratory Test Methods
 - 1. Laboratory testing of seam samples shall be conducted by the Geosynthetic Quality Asssurance Laboratory under contract with the Geosynthetic Quality Assurance Consultant or Owner. Five specimens shall be tested in shear and five in peel.
 - 2. Laboratory testing shall be conducted in accordance with ASTM D6392.
 - 3. For both seam shear and peel tension tests, an indication will be given for each specimen tested which defines locus of failure.
 - 4. For shear tests, the following values, along with the mean and standard deviation where appropriate, will be reported for each specimen tested:
 - a. Maximum tension in pounds per square inch.
 - b. Elongation at break (up to a tested maximum of 100 percent).
 - c. Locus of failure using ASTM designations.
 - 5. For peel tests, the following values, along with the mean and standard deviation where appropriate, will be reported for each specimen tested:
 - a. Maximum tension in pounds per square inch.
 - b. Seam separation (expressed as percent of original seam area).
 - c. Locus of failure.
 - 4. Retesting of seams due to nonconformance with specifications may be performed at the discretion of the Geosynthetic Quality Assurance Consultant.
- E. Destructive Seam Test Failure
 - 1. Shear and peel test results derived from testing described in Parts 3.06(C) and 3.06(D) shall comply with GRI GM 19, Table 2 for seam to be considered acceptable.
 - 2. The Geomembrane Installer has two options in determining the repair boundary whenever a seam has failed destructive testing:

- a. The seam can be reconstructed between the two previously tested and passed destructive sample locations; or,
- b. The Geomembrane Installer can trace the welding path to an intermediate location at least ten feet from point of failed test in each direction and obtain destructive test samples collected from these locations. If destructive tests on these samples are acceptable, then the seam shall be reconstructed between the intermediate locations. If either sample fails, the process may be repeated until an acceptable seam test has been performed on both sides of the original failed sample. If a passing sample is not realized on one (or both) side of the original failed sample, then seam repair must extend to the end(s) of the seam. Retesting of seams according to this procedure shall utilize the sampling methodology described in Part 3.06(B). The Owner reserves the right to terminate this process, at the discretion of the Geosynthetic Quality Assurance Consultant, after the second retesting. An additional sample taken from the reconstructed zone must pass destructive seam testing, if destructive sample failure(s) causes reconstruction.
- 3. The Geosynthetic Quality Assurance Consultant shall be responsible for documenting all actions taken in repairing seams. The Geomembrane Installer will be responsible for keeping the Geosynthetic Quality Assurance Consultant informed of seaming progress.
- 3. Additional fees for destructive seam test failures shall be assessed to the Contractor and deducted from payment. This fee shall be assessed only if the failing sample is a laboratory sample.

3.07 DEFECTS AND REPAIRS

- A. The geomembrane shall be examined by the Geomembrane Installer and the Engineer for defects, holes, blisters, undispersed raw materials, and any signs of contamination by foreign matter. The geomembrane surface shall be swept and/or washed by the Geomembrane Installer if the amount of dust or mud inhibits examination. The Contractor shall provide a water truck, an operator, clean water and hoses as reasonably necessary to assist the Geomembrane Installer in this activity.
- B. Portions of geomembrane exhibiting flaws, or failing a non-destructive or destructive (if conducted) test, shall be repaired or replaced by the Geomembrane Installer. Repair procedures available include:
 - 1. Patching used to repair large holes, tears, undispersed raw materials, contamination by foreign matter, holes resulting from destructive sampling (if conducted), and locations where seam overlap is insufficient;
 - 2. Capping used to repair large lengths of failed seams; and

- 3. Additional Procedures used upon recommendation of the Geomembrane Installer if agreed to by the Engineer.
- C. Patches or caps.
 - 1. Extend patch or cap 6 inches (minimum) beyond the edge of the defect.
 - 2. Round corners of patch and/or cap (suggest 3-inch radius).
 - 3. Repair procedures, equipment, materials, and techniques will be approved by the Geosynthetic Quality Assurance Consultant prior to repair.
 - 4. Geomembrane below large caps shall be appropriately cut to avoid water or gas collection between two sheets.
- D. The Geomembrane Installer shall mark on the geomembrane (using a non-puncturing writing utensil), repair date, time, and personnel involved.
- E. Each repair shall be non-destructively tested in accordance with Part 3.05. Large caps may require destructive test sampling at the discretion of the Geosynthetic Quality Assurance Consultant (in accordance with Part 3.06).
- F. Repairs which fail testing shall be redone and retested until a passing result is obtained. The Geomembrane Installer will perform non-destructive testing or repairs and will document retesting of repairs.
- G. The Geosynthetic Quality Assurance Consultant will document repairs, repair testing, and retesting results.
- H. The Geomembrane Installer shall cut and seam wrinkles which may adversely affect long-term integrity of the geomembrane, hinder subsequent construction of overlying layers, or impede drainage off of the geomembrane after it is covered by soil. Seaming shall be done in accordance with procedures described in Parts 3.04(B) and 3.04(C), and it shall be subject to test provisions of Parts 3.05 (non-destructive testing) and 3.06 (destructive testing if conducted).

3.08 PROTRUSIONS AND CONNECTIONS TO GEOMEMBRANE

- A. If required, the Geomembrane Installer shall install geomembrane around utility poles, guy wires, and other structures according to the Contract Drawings and the following requirements:
 - 1. Use minimum 1-ft long membrane pipe boots and steel straps to seal the geomembrane around pole or structure.
 - 2. Use standard welding procedures to seam the membrane boot to the geomembrane.
 - 3. Seaming performed on and around penetrations, and other appurtenances shall be non-destructively tested using the vacuum testing method.

3.09 SURVEY DOCUMENTATION

A. The Geomembrane Installer shall survey the completed geomembrane prior to covering and provide the Geosynthetic Quality Assurance Consultant with 24-hour notification of survey. The Contractor shall document the location of all seams (panel corners acceptable), destructive test samples (if conducted) and repairs. The Contractor shall provide survey data to the Geosynthetic Quality Assurance Consultant within one working day of survey completion and in accordance with Section 01050.

3.10 DAILY FIELD INSTALLATION REPORTS

- A. At the beginning of each day, the Geomembrane Installer shall provide the Geosynthetic Quality Assurance Consultant with a report for all work completed the previous day.
- B. The Daily Field Installation Report shall include the following:
 - 1. The total amount and location of geomembrane placed.
 - 2. The total length and location of seams completed, technician name and welding unit numbers.
 - 3. A drawing or sketch depicting the geomembrane installed the previous day including the panel number, seam number and locations of non-destructive and destructive testing (if conducted).
 - 4. Results of pre-qualification test seams, if available.
 - 5. Results of non-destructive testing.
- C. Destructive test results (if conducted) shall be reported within 48 hours or prior to covering the geomembrane, whichever is practical.

3.10 MATERIAL ABOVE GEOMEMBRANE

- A. The Geosynthetic Quality Assurance Consultant and Geomembrane Installer shall verify the area of geomembrane completion prior to placement of material over the geomembrane.
- B. Soils Requirements for placement of general fill are described in Sections 02221 and 02222. Apply following general criteria for covering of the geomembrane:
 - 1. Do not place soils on the geomembrane at an ambient temperature below 32 degrees F, (0 degrees C) nor above 104 degrees F (40 degrees C), unless otherwise specified.
 - 2. Do not drive equipment used for placing soil directly on the geomembrane.
 - 3. A minimum thickness of 1 foot of soil is specified between a low ground pressure dozer (maximum contact pressure of 5 lb/sq. inch) and the geomembrane.

- 4. A minimum thickness of 2 feet of soil is required between rubber-tired vehicles and the geomembrane.
- 5. Do not compact soils placed directly on geomembrane.
- 6. Damage to the geomembrane resulting from placement of cover soils shall be repaired in accordance with Part 3.07 by the Geomembrane Installer at the Contractor's expense.
- 7. Do not push soil downslope. Soil shall be placed over the geomembrane starting from base of the slope, up to top of the slope.

END OF SECTION

Final Cleaning of Joliet Pond 2 (CCR Clean Closure of Pond 2) PHASE 2 Scope-of-Work Performance Testing Requirements Attachment 1

- f. All seams that are vacuum tested shall be marked with the date tested, the name of the technician performing the test and the results of the test
- 6. Double Fusion seams with an enclosed channel shall be air pressure tested by the Geomembrane Installer in accordance with ASTM D 5820 and ASTM D 4437 and the following equipment and procedures:
 - a. Equipment for testing double fusion seams shall be comprised of but not limited to: an air pump equipped with a pressure gauge capable of generating and sustaining a pressure of 210 kPa (30 psig), mounted on a cushion to protect the geomembrane; and a manometer equipped with a sharp hollow needle or other approved pressure feed device.
 - b. The testing activities shall be performed by the Geomembrane Installer. Both ends of the seam to be tested shall be sealed and a needle or other approved pressure feed device inserted into the tunnel created by the double wedge fusion weld. The air pump shall be adjusted to a pressure of 210 kPa (30 psig), and the valve closed. Allow two (2) minutes for the injected air to come to equilibrium in the channel, and sustain pressure for five (5) minutes. If pressure loss does not exceed 28 kPa (4 psig) after this five minute period the seam shall be considered leak tight. Release pressure from the opposite end verifying pressure drop on needle to ensure testing of the entire seam. The needle or other approved pressure feed device shall be removed and the feed hole sealed.
 - c. If loss of pressure exceeds 28 kPa (4 psig) during the testing period or pressure does not stabilize, the faulty area shall be located, repaired and retested by the Geomembrane Installer.
 - d. Results of the pressure testing shall be recorded on the liner at the seam tested and on a pressure testing record.
- B. Spark testing should be done in areas where both air pressure testing and vacuum testing are not possible.
 - 1. Equipment for spark testing shall be comprised of but not limited to a hand held holiday spark tester and conductive wand that generates a high voltage.
 - 2. The testing activities shall be performed by the Geomembrane Installer by placing an electrically conductive tape or wire beneath the seam prior to welding. A trial seam containing a non-welded segment shall be subject to a calibration test to ensure that such a defect (nonwelded segment) will be identified under the planned machine settings and procedures. Upon completion of the weld, enable the spark tester and hold approximately 25mm (1 in) above the weld moving slowly over the entire length of the weld in accordance with ASTM 6365. If there is no spark the weld is considered to be leak free.
 - 3. A spark indicates a hole in the seam. The faulty area shall be located, repaired and retested by the Geomembrane Installer.
 - 4. Care should be taken if flammable gases are present in the area to be tested.

Attachment 1-3 – Pond 2 Liner Repair Specifications

Final Cleaning of Joliet Pond 2 (CCR Clean Closure of Pond 2) PHASE 2 Scope-of-Work Performance Testing Requirements Attachment 1

The performance tests for the repairs of the liner in Pond 2 shall be conducted in accordance with Section 3.05 Field Quality Control located in the Guidelines for Installation of HDPE Geomembrane Installation created by the International Association of Geosynthetic Installers, revised November 1, 2015. The pertinent sections from that document for performance testing are provided below and shall be followed to verify the repair installations.

- A. Field Seam Non-destructive Testing
- 1. All field seams shall be non-destructively tested by the Geomembrane Installer over the full seam length before the seams are covered. Each seam shall be numbered or otherwise designated. The location, date, test unit, name of tester and outcome of all non-destructive testing shall be recorded and submitted to the Owner's Representative.
- 2. Testing should be done as the seaming work progresses, not at the completion of all field seaming, unless agreed to in advance by the Owner's Representative. All defects found during testing shall be numbered and marked immediately after detection. All defects found should be repaired, retested and remarked to indicate acceptable completion of the repair.
- 3. Non-destructive testing shall be performed using vacuum box, air pressure or spark testing equipment.
- 4. Non-destructive tests shall be performed by experienced technicians familiar with the specified test methods. The Geomembrane Installer shall demonstrate to the Owner's Representative all test methods to verify the test procedures are valid.
- 5. Extrusion seams shall be vacuum box tested by the Geomembrane Installer in accordance with ASTM D 4437 and ASTM D 5641 with the following equipment and procedures:
 - a. Equipment for testing extrusion seams shall be comprised of but not limited to: a vacuum box assembly consisting of a rigid housing, a transparent viewing window, a soft rubber gasket attached to the base, port hole or valve assembly and a vacuum gauge; a vacuum pump assembly equipped with a pressure controller and pipe connections; a rubber pressure/vacuum hose with fittings and connections; a plastic bucket; wide paint brush or mop; and a soapy solution.
 - b. The vacuum pump shall be charged and the tank pressure adjusted to approximately 35 kPa (5 psig). c. The Geomembrane Installer shall create a leak tight seal between the gasket and geomembrane interface by wetting a strip of geomembrane approximately 0.3m (12 in) by 1.2m (48 in) (length and width of box) with a soapy solution, placing the box over the wetted area, and then compressing the box against the geomembrane. The Geomembrane Installer shall then close the bleed valve, open the vacuum valve, maintain initial pressure of approximately 35 kPa (5 psig) for approximately five (5) seconds. The geomembrane should be continuously examined through the viewing window for the presence of soap bubbles, indicating a leak. If no bubbles appear after five (5) seconds, the area shall be considered leak free. The box shall be depressurized and moved over the next adjoining area with an appropriate overlap and the process repeated.
 - d. All areas where soap bubbles appear shall be marked, repaired and then retested.
 - e. At locations where seams cannot be nondestructively tested, such as pipe penetrations, alternate nondestructive spark testing (as outlined in section B below) or equivalent should be substituted.

ATTACHMENT 2 CCR LABORATORY DATA PACKAGE

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204544-1

Client Project/Site: Joliet #29 Ash

For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 9/15/2021 5:41:59 PM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	10
Chain of Custody	14
Receipt Checklists	15
Certification Summary	16

Job ID: 500-204544-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204544-1

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-1

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CHI
7471A	Mercury (CVAA)	SW846	TAL CHI
9056A	Anions, Ion Chromatography	SW846	TAL CHI
Moisture	Percent Moisture	EPA	TAL CHI
SM 4500 CI- E	Chloride, Total	SM	TAL CHI
SM 4500 F C	Fluoride	SM	TAL CHI
300_Prep	Anions, Ion Chromatography, 10% Wt/Vol	MCAWW	TAL CHI
3050B	Preparation, Metals	SW846	TAL CHI
7471A	Preparation, Mercury	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash Job ID: 500-204544-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

Job	ID:	500-204544-1
000		2010111

Lab Sample ID: 500-204544-1 Matrix: Solid

Solid

5

6

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.8	F1	1.8		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Arsenic	1.5	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Barium	3000		4.4		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Beryllium	1.5	F1	0.35		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Boron	130	F1 V	4.4		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cadmium	<0.18		0.18		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Calcium	100000		89		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Chromium	12	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cobalt	15		11		mg/Kg		09/10/21 08:41	09/14/21 10:57	25
Lead	5.6		0.44		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Lithium	20	V	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Molybdenum	1.1	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Selenium	<0.89	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Thallium	2.9		0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.016		0.016		mg/Kg		09/09/21 13:15	09/10/21 09:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	560		19		mg/Kg		09/14/21 11:45	09/14/21 17:58	10
Chloride	<20		20		mg/Kg		09/15/21 09:49	09/15/21 15:04	1
Fluoride	<1.0		1.0		mg/Kg		09/15/21 09:49	09/15/21 12:47	1
1 2 3 4 5 6 7 8 9 10 11 12

Qualifiers

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.
V	Serial Dilution exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 500-204544-1

Metals

Prep Batch: 617888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	
Prep Batch: 618052					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	3050B	
MB 500-618052/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	3050B	
– Analysis Batch: 6180)70				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	617888
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	617888
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	617888
Analysis Batch: 6182	247				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
MB 500-618052/1-A	Method Blank	Total/NA	Solid	6010B	618052
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 6184	179				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 618	576				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
General Chemist	ry				
Analysis Batch: 6173	356				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	Moisture	
Prep Batch: 618524					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	300_Prep	
I					

Eurofins TestAmerica, Chicago

General Chemistry (Continued)

Prep Batch: 618524 (Continued)

LCS 500-618692/2-A

Lab Control Sample

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 500-618524/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
Analysis Batch: 618	534				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	9056A	618524
MB 500-618524/1-A	Method Blank	Total/NA	Solid	9056A	618524
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	9056A	618524
Prep Batch: 618692					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	300_Prep	
MB 500-618692/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
Analysis Batch: 618	739				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 F C	618692
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 F C	618692
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 F C	618692
Analysis Batch: 618	775				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 CI- E	618692
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 CI- E	618692

Total/NA

Solid

SM 4500 CI- E

QC Association Summary

618692

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-618052/1-A Matrix: Solid Analysis Batch: 618247

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<2.0		2.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Arsenic	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Barium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Beryllium	<0.40		0.40		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Boron	<5.0		5.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Cadmium	<0.20		0.20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Calcium	<20		20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Chromium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Cobalt	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Lead	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Lithium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Molybdenum	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Selenium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1
Thallium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1

Lab Sample ID: LCS 500-618052/2-A Matrix: Solid Analysis Batch: 618247

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	49.5		mg/Kg		99	80 - 120	
Arsenic	10.0	9.09		mg/Kg		91	80 - 120	
Barium	200	196		mg/Kg		98	80 - 120	
Beryllium	5.00	4.54		mg/Kg		91	80 - 120	
Boron	100	83.6		mg/Kg		84	80 - 120	
Cadmium	5.00	4.69		mg/Kg		94	80 - 120	
Calcium	1000	912		mg/Kg		91	80 - 120	
Chromium	20.0	18.3		mg/Kg		91	80 - 120	
Cobalt	50.0	46.6		mg/Kg		93	80 - 120	
Lead	10.0	9.03		mg/Kg		90	80 - 120	
Lithium	50.0	53.2		mg/Kg		106	80 - 120	
Molybdenum	100	99.6		mg/Kg		100	80 - 120	
Selenium	10.0	8.61		mg/Kg		86	80 - 120	
Thallium	10.0	8.77		mg/Kg		88	80 - 120	

Lab Sample ID: 500-204544-1 MS Matrix: Solid Analysis Batch: 618247

Client Samp	le l	D: .	Jole	et #	29 /	Asł	۱
F	Pre	рТ	ype	e: To	otal	/N/	١

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 618052

Analysis Batch: 618247									Prep Batch: 618052
-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<1.8	F1	49.6	6.04	F1	mg/Kg		12	75 - 125
Arsenic	1.5	F1	9.92	9.59		mg/Kg		81	75 - 125
Beryllium	1.5	F1	4.96	5.09	F1	mg/Kg		72	75 - 125
Boron	130	F1 V	99.2	178	F1	mg/Kg		50	75 - 125
Cadmium	<0.18		4.96	3.82		mg/Kg		75	75 - 125
Chromium	12	F1	19.8	24.8	F1	mg/Kg		67	75 - 125
Lead	5.6		9.92	16.2		mg/Kg		107	75 - 125
Lithium	20	V	49.6	62.1		mg/Kg		85	75 - 125
Molybdenum	1.1	F1	99.2	68.4	F1	mg/Kg		68	75 - 125

Eurofins TestAmerica, Chicago

5 6

9

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 618052

Lab Sample ID: 500-204544-1 MS

Analysis Batch: 618247

Matrix: Solid

Analyte

Cobalt

Boron

Lead

Selenium

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

<0.89 F1

Result Qualifier

Spike

Added

9.92

MS MS

6.39 F1

Result Qualifier

Unit

mg/Kg

D

%Rec

64

Prep Type: Total/NA

Prep Batch: 618052

Client Sample ID: Jolet #29 Ash

%Rec.

Limits

75 - 125

5

Thallium 2.9 9.92 10.9 mg/Kg 80 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Analysis Batch: 618479 Prep Batch: 618052 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added **Result Qualifier** Limits Analyte Unit D %Rec Barium 3000 198 2980 4 11 75 - 125 mg/Kg 100000 992 97600 4 Calcium mg/Kg -533 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618576 Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits 75 - 125 15 49.6 67.5 mg/Kg 105 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid **Prep Type: Total/NA** Prep Batch: 618052 Analysis Batch: 618247 MSD MSD Sample Sample Spike %Rec. RPD **Result Qualifier** Added **Result Qualifier** Unit %Rec Limits RPD Limit Analyte D Antimony <1.8 F1 45.0 4.97 F1 11 75 - 125 19 20 mg/Kg 9.01 74 75 - 125 20 Arsenic 1.5 F1 821 F1 mg/Kg 16 Beryllium 1.5 F1 4.50 4.74 F1 mg/Kg 72 75 - 125 7 20 130 F1 V 90.1 183 F1 mg/Kg 61 75 - 125 3 20 77 Cadmium <0.18 4.50 3.56 mg/Kg 75 - 125 7 20 Chromium 12 F1 18.0 23.7 F1 67 75 - 125 20 mg/Kg 4 5.6 9.01 14.4 mg/Kg 98 75 - 125 12 20 Lithium 20 V 45.0 57.0 mg/Kg 82 75 - 125 9 20 mg/Kg 65 1.1 F1 90.1 59.6 F1 75 - 125 14 20 Molybdenum 9.01 Selenium <0.89 F1 5.78 F1 mg/Kg 64 75 - 125 10 20 Thallium 9.01 10.6 85 75 - 125 20 2.9 mg/Kg 3 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618479 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added **Result Qualifier** %Rec Limits RPD Limit Analyte Unit D 3000 180 3090 4 Barium mg/Kg 74 75 - 125 4 20 Calcium 100000 901 104000 4 mg/Kg 99 75 - 125 6 20

Lab Sample ID: 500-204544-1 MSD Matrix: Solid								ent San	nple ID: J Prep Ty	olet #2 /pe: Tot	9 Ash al/NA	
Analysis Batch: 618576	Analysis Batch: 618576							Prep Batch: 618052				
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Cobalt	15		45.0	58.0		mg/Kg		95	75 - 125	15	20	

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-204544 Matrix: Solid Analysis Batch: 618247	4-1 DU						Client Sam	ple ID: Jolet #2 Prep Type: To Prep Batch: 6	9 Ash tal/NA 18052
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier	F	Result	Qualifier	Unit	D	RPD	Limit
Antimony	<1.8	F1		<1.8		mg/Kg		NC	20
Arsenic	1.5	F1		2.20	F5	mg/Kg		36	20
Beryllium	1.5	F1		1.48		mg/Kg		2	20
Boron	130	F1 V		118		mg/Kg		9	20
Cadmium	<0.18			0.195		mg/Kg		NC	20
Chromium	12	F1		11.3		mg/Kg		2	20
Lead	5.6			5.71		mg/Kg		2	20
Lithium	20	V		19.9		mg/Kg		0	20
Molybdenum	1.1	F1		1.20		mg/Kg		8	20
Selenium	<0.89	F1		<0.90		mg/Kg		NC	20
Thallium	2.9			1.94	F3	mg/Kg		41	20
Lab Sample ID: 500-20454 Matrix: Solid Analysis Batch: 618479	4-1 DU						Client Sam	ple ID: Jolet #2 Prep Type: To Prep Batch: 6	9 Ash tal/NA 18052
-	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier	F	Result	Qualifier	Unit	D	RPD	Limit
Barium	3000			2840		mg/Kg		4	20
Calcium	100000		10	04000		mg/Kg		1	20
Lab Sample ID: 500-204544	4-1 DU						Client Sam	ple ID: Jolet #2	9 Ash
Matrix: Solid								Prep Type: Tot	tal/NA
Analysis Batch: 618576								Prep Batch: 6	18052
-	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier	F	Result	Qualifier	Unit	D	RPD	Limit
Cobalt	15			13.9		mg/Kg		10	20
Method: 7471A - Mercu	ry (CVAA)							
Lab Sample ID: MB 500-61	7888/12-A	-					Client Sam	ple ID: Method	Blank
Analysia Patabi 619070								Prop Botoby 6	17000
Analysis Batch. 010070								Prep Datch. 0	17000
Analyto	Dr	wid wid	ы	N			D Bronarod	Analyzod	Dil Eac
			0.017			a			
	~0		0.017		mg/N	9	00/00/21 10.10	5 00/10/21 00.27	I
Lab Sample ID: LCS 500-6 Matrix: Solid Analysis Batch: 618070	17888/13-A					Clie	ent Sample ID:	Lab Control Sa Prep Type: Top	ample tal/NA

Analysis Batch: 618070							Prep Bat	ch: 6178
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.167	0.179		mg/Kg		107	80 - 120	

_ ____

Eurofins TestAmerica, Chicago

Job ID: 500-204544-1

Method: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 500-618524/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618534 Prep Batch: 618524 MB MB **Result Qualifier** RL MDL Unit Analyzed Dil Fac Analyte D Prepared 2.0 09/14/21 11:45 09/14/21 12:53 Sulfate <2.0 mg/Kg Lab Sample ID: LCS 500-618524/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Prep Batch: 618524 Analysis Batch: 618534 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfate 50.0 53.9 80 - 120 mg/Kg 108 Method: SM 4500 CI- E - Chloride, Total Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618775 Prep Batch: 618692 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared 09/15/21 09:49 09/15/21 15:03 Chloride <20 20 mg/Kg 1 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 618775 **Prep Batch: 618692** Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits Chloride 200 202 mg/Kg 101 85 - 115 Method: SM 4500 F C - Fluoride Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Fluoride <1.0 1.0 mg/Kg 09/15/21 09:49 09/15/21 12:27 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** Spike LCS LCS %Rec.

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

Client Information Clent Contact Richard Gnat

\mathbf{H}	CONTRACTOR OF	N	\forall		Ŵ	-442
`J		IN	V		V	V V V

Carrier Track ng No(s)

State of Origin

COC № 500-94568-41920 1

Page

Page 1 of 1

10

Company			PWSID	101 man, 100 mar 100 ma	Т	Charles in some Th												JOD # FAN O	NAMA
KPRG and Associates Inc			<u> </u>						<u> </u>	nalysis	Req	uest	ed					<u> </u>	<u>04977</u>
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ed																Preservation Cod	M Hexane
City Brookfield	TAT Requested (d	ays)]							I	-					B NaOH C Zn Acetate	N None O AsNaO2
State Zip	Camalianaa Draia	A Yes	4 No		41		g	히분					Гú					D Nitric Acid F NaHSO4	P Na2O4S 0 Na2SO3
WI 53005	Compliance Projec	ct <u>A</u> yes	ANO		4		613						Ð	Щ÷.,	2			F MeOH	R Na2\$203
Filone	4502042860				6		CC PE	SM45				I	62					G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydrate
Email richardg@kprginc.com	WO #				s or l	(oN	a ben	D56A				500.	2045	544 C	oc		2	I Ice J DIWater	V Acetone V MCAA
Project Name Joliet #9 Ash	Project # 50011504				e (Ye	99 Of	hmo	1A 90				I	I	I	-		Itaine	L EDA	Z other (specify)
Site	SSOW#				Ē	Ś		3 2									δ	Other [.]	
Illinois					Sa	NSI	L D	B									ē		
		Sample	Sample Type (C=comp,	Matrix (W=water S=solid, O=waste/oil,	eld Filtered	rform MS/I	3.0 904.0	00_F_C 601									tal Numbe		
Sample Identification	Sample Date	Time	G=grab)	BT~Tissue, A-Air) (Ĕ.)	a s	3 6	4	<u> </u>						_		Ĕ	Special In	structions/Note
		\geq	Preserva	ation Code	X	ХN	N	<u>N</u>]		\downarrow						X		
Jolict #9 Ash	8/31	9:30	C	Solid		$ \rangle$	$\langle \rangle$	$\langle X \rangle$	1										
Jolith #29 Ash	8/30	10,00	C	Solid			׆.	XX	·										
				Solid															
					Π														
					\square				T										
									1										
n an					Π				1						1				
					\square				1					\top					
					Π				1										
Possible Hazard Identification				1	-1	Samp	le Di	ispos	al (A	fee may	be as	sess	ed if	sam	oles a	re reta	aine	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Poise	on B Unkno	wn ^L R	adiological				Retu	ırn To	Clien	t		sposa	I By I	Lab		Ar	rchiv	/e For	Months
Deliverable Requested 1 II III IV Other (specify)						Speci	al Ins	struction	ons/Q	C Requi	remen	ts							
Empty Kit Relinquished by		Date			Tin	ne						М	ethod	of Shu	oment				
Relinquished by Mitchel Ress	Date/Time/3/	13:	30	Company		R		pho	m	e Her	nom	ide	N	Da	te/Time	8131	12	1 1300	ETH-CH
Rel nquished by	Date/Time			Company		R	eceive	d by					0	Da	te/Time				Company
Reinquished by	Date/Time			Company		R	eceive	d by						Da	te/Time				Company
Custody Seals Intact Custody Seal No	1			I		C	ooler T	emper	ature(s) °C and C	ther Re	marks	2'	24	r				<u>.</u>

Chain of Custody Record

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sample Michael Ress

Phone

630-203-7240

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204544-1

List Source: Eurofins TestAmerica, Chicago

5 6 7

12

Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number** Expiration Date Illinois NELAP IL00035 04-29-22 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 7471A 7471A Solid Mercury Percent Moisture Moisture Solid Moisture Solid Percent Solids

Eurofins TestAmerica, Chicago

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-204544-2

Client Project/Site: Joliet #29 Ash

For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 10/26/2021 8:28:20 AM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

..... Links

Review your project results through

Total Access

Have a Question?

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	9
Chain of Custody	10
Receipt Checklists	12
Certification Summary	14
Tracer Carrier Summary	15

Job ID: 500-204544-2

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204544-2

Case Narrative

Comments

No additional comments.

Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

RAD

Methods 903.0, 9315: Radium 226 prep batch 160-527617

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Jolet #29 Ash (500-204544-1), (LCS 160-527617/2-A), (MB 160-527617/1-A), (500-204327-A-20-D) and (500-204327-A-20-E DU)

Method 904.0: Radium-228 prep batch 160-528400:

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. Jolet #29 Ash (500-204544-1), (LCS 160-528400/2-A), (MB 160-528400/1-A), (500-204543-A-1-C) and (500-204543-A-1-D DU)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Methods 6010B, NONE: The following sample was diluted to bring the concentration of target analytes within the calibration range: Jolet #29 Ash (500-204544-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
DPS-0	Preparation, Digestion/ Precipitate	None	TAL SL
DPS-21	Preparation, Digestion/Precipitate Separation (21-Day In-Growth)	None	TAL SL
Protocol Ref	erences:		
EPA = US	Environmental Protection Agency		

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

Job ID: 500-204544-2

Matrix: Solid

Lab Sample ID: 500-204544-1

Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.54		0.311	0.341	1.00	0.252	pCi/g	09/19/21 19:06	10/15/21 17:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier			40 - 110					09/19/21 19:06	10/15/21 17:11	1
 Method: 904.0 -	Radium-228	(GFPC)	Count	Total						
 Method: 904.0 -	Radium-228	(GFPC)	Count Uncert.	Total Uncert.						
Method: 904.0 -	Radium-228	(GFPC) Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Method: 904.0 - Analyte Radium-228	Radium-228	(GFPC) Qualifier	Count Uncert. (2σ+/-) 0.377	Total Uncert. (2σ+/-) 0.406	RL 1.00	MDC 0.443	Unit pCi/g	Prepared 09/22/21 16:04	Analyzed 10/06/21 12:36	Dil Fac
Method: 904.0 - Analyte Radium-228 Carrier	Radium-228 Result 1.63 %Yield	(GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.377 <i>Limits</i>	Total Uncert. (2σ+/-) 0.406	RL 1.00	MDC 0.443	Unit pCi/g	Prepared 09/22/21 16:04 Prepared	Analyzed 10/06/21 12:36 Analyzed	Dil Fac 1 Dil Fac
Method: 904.0 - Analyte Radium-228 Carrier Ba Carrier	Radium-228 	(GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.377 Limits 40 - 110	Total Uncert. (2σ+/-) 0.406	RL 1.00	MDC 0.443	Unit pCi/g	Prepared 09/22/21 16:04 Prepared 09/22/21 16:04	Analyzed 10/06/21 12:36 Analyzed 10/06/21 12:36	Dil Fac

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.17		0.489	0.530	5.00	0.443	pCi/g		10/25/21 17:38	1

Eurofins TestAmerica, Chicago

Qualifier Description

Qualifiers

Rad	
nau	

Qualifier	

U	Result is less than the sample detection limit.		
Glossary			5
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		7
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		0
CNF	Contains No Free Liquid		0
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		9
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)	ļ	
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
TNTC	Too Numerous To Count		

Method Blank

Lab Control Sample

QC Association Summary

Job ID: 500-204544-2

Rad

Prep Batch: 527617

MB 160-528400/1-A

LCS 160-528400/2-A

Lab Sample ID 500-204544-1	Client Sample ID Jolet #29 Ash	Prep Type Total/NA	Matrix Solid	DPS-21	Prep Batch
MB 160-527617/1-A	Method Blank	Total/NA	Solid	DPS-21	
LCS 160-527617/2-A	Lab Control Sample	Total/NA	Solid	DPS-21	
Prep Batch: 528400					
Lab Sample ID 500-204544-1	Client Sample ID	Prep Type Total/NA	Matrix	Method	Prep Batch

Total/NA

Total/NA

Solid

Solid

DPS-0

DPS-0

QC Sample Results

Job ID: 500-204544-2

Method: 903.0 - Radium-226 (GFPC)

Lab Sample	ID: MB 1	60-5276	17/1-A						Clie	ent Samp	ole ID: Method	l Blank
Matrix: Solid	k										Prep Type: To	otal/NA
Analysis Bat	tch: 5319	66									Prep Batch:	527617
				Count	Total							
		MB	MB	Uncert.	Uncert.							
Analyte		Result	Qualifier	(2σ+/-)	(2 σ +/-)	RL	MDC	Unit	P	repared	Analyzed	Dil Fac
Radium-226		0.1252	U	0.144	0.144	1.00	0.234	pCi/g	09/1	9/21 19:06	10/15/21 17:14	1
		МВ	МВ									
Carrier		%Yield	Qualifier	Limits					P	repared	Analyzed	Dil Fac
Ba Carrier		80.9		40 - 110					09/1	9/21 19:06	10/15/21 17:14	1
Lab Sample Matrix: Solid	ID: LCS	160-527	617/2-A					Clie	ent Sai	mple ID:	Lab Control S Prep Type: To	Sample otal/NA
Analysis Bat	tch: 5319	66									Prep Batch:	527617
						Total						
			Spike	LCS	LCS	Uncert.					%Rec.	
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226			11.3	12.04		1.37	1.00	0.272	pCi/g	106	75 - 125	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits									
Ba Carrier	82.8		40 - 110	-								
Vethod: 904 Lab Sample	4.0 - Ra ID: MB 1	dium-2 60-5284	228 (GFPC	C)					Clie	ent Samp	ole ID: Method	l Blank
Method: 904 Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 1 tch: 5304	dium-2 60-5284 53	228 (GFPC 00/1-A	C)					Clie	ent Samp	ole ID: Method Prep Type: To Prep Batch:	l Blank otal/NA 528400
Method: 904 Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 J tch: 5304	dium-2 60-5284 53	228 (GFPC 00/1-A	Count	Total				Clie	ent Samp	ole ID: Methoo Prep Type: To Prep Batch:	l Blank otal/NA 528400
Method: 904 Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 1 tch: 5304	dium-2 60-5284 53 MB Bosult	228 (GFPC 00/1-A MB	Count Uncert.	Total Uncert.	ы	MDC	llait	Clie	ent Samp	ole ID: Method Prep Type: To Prep Batch:	I Blank otal/NA 528400
Method: 904 Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697	228 (GFPC 00/1-A MB Qualifier	Count Uncert. (2σ+/-) 0.277	Total Uncert. (2σ+/-) 0.278	<u></u>	MDC 0.467	Unit pCi/g	Clie P	ent Samp repared 2/21 16:04	ole ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	d Blank otal/NA 528400 Dil Fac
Method: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228	4.0 - Ra ID: MB 1 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697	228 (GFPC 00/1-A MB Qualifier U	Count Uncert. (2σ+/-) 0.277	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie <u>P</u> 09/2	ent Samp repared 2/21 16:04	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	d Blank otal/NA 528400 Dil Fac 1
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228	4.0 - Ra ID: MB 1 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB	MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie <u>P</u> 09/2	repared	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	Blank otal/NA 528400 Dil Fac 1
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier	4.0 - Ra ID: MB 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5	MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Сііс — Р 09/2 Р	repared 2/21 16:04 repared 22/21 16:04	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	Blank otal/NA 528400 Dil Fac 1 Dil Fac
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier	4.0 - Ra ID: MB 1 I tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie - P 09/2 - P 09/2 09/2	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 1
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 tch: 5304 ID: LCS tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie — P 09/2 09/2 09/2 09/2 09/2 ent Sau	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04 mple ID:	Analyzed Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch:	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie — P 09/2 09/2 09/2 09/2 ent Sar	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04 mple ID:	Analyzed Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch:	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.278	RL 1.00	MDC 0.467	Unit pCi/g	Clie — <u>P</u> 09/2 09/2 09/2 ent Sar	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04 mple ID:	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec.	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat	4.0 - Ra ID: MB 1 tch: 5304	dium-2 60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110	Total Uncert. (2σ+/-) 0.278 LCS Qual	RL 1.00 Uncert. (2σ+/-)	MDC 0.467	Unit pCi/g Clia	Clie 	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04 mple ID:	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228	4.0 - Ra ID: MB 1 Itch: 5304	dium-2 60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (20+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Total Uncert. (2σ+/-) 0.278 LCS Qual	RL 1.00 Total Uncert. (2σ+/-) 1.24	MDC 0.467 RL 1.00	Unit pCi/g Clic MDC 0.492	Clie P 09/2	ent Samp repared 2/21 16:04 22/21 16:04 22/21 16:04 mple ID: 	Die ID: Method Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits 75 - 125	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228	4.0 - Ra ID: MB 1 tch: 5304 ID: LCS tch: 5304	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 LCS Result 10.17	Total Uncert. (2σ+/-) 0.278	RL 1.00 Total Uncert. (2σ+/-) 1.24	MDC 0.467 RL 1.00	Unit pCi/g Clio MDC 0.492	Clie P 09/2 0 09/2 00/2 0	repared 2/21 16:04 22/21 16:04 22/21 16:04 22/21 16:04 mple ID: 	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Prep Type: To Prep Type: To Prep Batch: %Rec. Limits 75 - 125	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier	4.0 - Ra ID: MB 1 tch: 5304 ID: LCS tch: 5304 LCS %Yield	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53 LCS Qualifier	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27 Limits	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Total Uncert. (2σ+/-) 0.278 LCS Qual	RL 1.00 Total Uncert. (2σ+/-) 1.24	MDC 0.467 RL 1.00	Unit pCi/g Clie MDC 0.492	Clie P 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2 09/2	ent Samp repared 2/21 16:04 22/21 16:04 22/21 16:04 mple ID: 	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Prep Type: To Prep Type: To Prep Batch: %Rec. Limits 75 - 125	Blank otal/NA 528400 Dil Fac 1 Dil Fac 1 1 Sample otal/NA 528400
Vethod: 904 Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Bat Analyte Radium-228 Carrier Ba Carrier Ba Carrier	4.0 - Ra ID: MB 1 tch: 5304 ID: LCS tch: 5304 LCS <u>%Yield</u> 78.9	dium-2 60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53 53	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A 400/2-A Spike Added 9.27 Limits 40 - 110	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Total Uncert. (2σ+/-) 0.278 UCS Qual	RL 1.00 Total Uncert. (2σ+/-) 1.24	MDC 0.467 RL 1.00	Unit pCi/g Clia MDC 0.492	Clie 	ent Samp repared 2/21 16:04 22/21 16:04 22/21 16:04 mple ID: 	Analyzed 10/06/21 12:35 Analyzed 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 10/06/21 12:35 Prep Type: To Prep Type: To Prep Type: To Prep Batch: %Rec. Limits 75 - 125	Blank otal/NA 528400 Dil Fac 1 2 <i>Dil Fac</i> 1 3 Sample otal/NA 528400

Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

Client Information Clent Contact Richard Gnat

A	TNA	TA	S44- V
	Carrier Track ng No(s)		COC № 500-94568-41920 1

State of Origin

Page

Page 1 of 1

9
-0

Company KPRG and Associates Inc			PWSID		Γ				Anal	lysis Re	quested				JOD # 501-2	04544	٦
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ed	L		ŢŢ			T		TT			Τ		Preservation Cod	es M Hexane	٦
City Brookfield	TAT Requested (d	ays)									' 		l		B NaOH C Zn Acetate	N None O AsNaO2	
State Zip WI 53005	Compliance Proje	ct 🛆 Yes	A No		┨┨		228	5			1				D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3	
Phone	PO#				1		226/2	4500				41			F MeOH G Amchlor	R Na2S2O3 S H2SO4	
-Email	4502042860 WO #				-S		Rad	NS N					1		H Ascorbic Acid I Ice	T TSP Dodecahydrate U Acetone	
richardg@kprginc.com	Data at th				65 O	2	oined	0564			500-2045	44 COC		sie	J DIWater K EDTA	V MCAA W pH 4-5	
Joliet #9 Ash	50011504				2 e	88	Com	71A 5						ntair	l EDA	Z other (specify)	
Site Illinois	SSOW#				Samp	SDO	FPC	IB, 74						of co	Other [.]		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water S=solid, O=waste/oil, BT-Tissue, A-Air)	Field Filtered	Perform MS/M	Ra226Ra228_G	4500_F_C 6010						Total Number	Special In:	structions/Note	
ET THE VI	~/2C	Q.20	Preserva	Solid	Ĥ	XN				+-+	╀╾╀╌╀╴			Å			4
Jolice FIAsh	0/31	9:30		Solid	$\left \cdot \right $	-4		F.			+ $+$ $+$ $+$		+				-
- Jolith #24 Ash	013([0',00		Solid	┢┼┟	+				+ +	+ + +	+-+-					-
	<u> </u>				╂╂		+	+		+		+-+-	+	\square			-
					$\left \right $		+	+		+	+ $+$ $+$	+		$\left[\right]$			-
					┟╂						+						-
					╞┼┼					+-+-	+	╉╼┼╾					-
		·····			┠┟	+		+		+-+-	┼╌┼╌┼╴			┝┥			┥
					$\left \cdot \right $			+			┼╌┼╌┼╴						┥
					$\left + \right $					+-+-	+ + +			$\left - \right $			-
					\square			ļ		<u></u>							_
					Ц								1			and the local states of th	4
Possible Hazard Identification			adiological		1 ^s	samp	ie Dis Retur	n To (l (A fee Client	e may be a	assessed if Disposal By I	samples a .ab	are re	taine Irchn	e a ionger than 1 ve For	month) Months	
Deliverable Requested 1 II III IV Other (specify)			<u></u>		- 5	Specia	al Inst	ructio	ns/QC F	Requireme	nts						٦
Empty Kit Relinquished by		Date			Tim	е					Method	of Shipment					1
Relinquished by Mitchel Ress	Date/Time/3/	13:	30	Company KPRC		Re	ceived	ha	nel	Hemor	nder	Date/Tim	83	1/2	1 1300	Company ETH-CHH	
Rel nquished by	Date/Time			Company		Re	ceived	by			0	Date/Tim	е			Company	7
Relinquished by	Date/Time			Company		Re	ceived	by	~~			Date/Tim	e			Company	1
Custody Seals Intact Custody Seal No						Co	oler Te	mperat	ture(s) °C	and Other R	^{lemarks} 2	24					
				Dama 40	- 1 4											Ver 06/08/2024 100	

Chain of Custody Record

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sampler Michael Ress

Phone

630-203-7240

Eurofins TestAmerica, Chicago														
2417 Bond Street	icq.	ب ب ب ب	7 . Person		-							😵 eurofin	S	
University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211			Istody r	Kecor	D								Enviror Americ	Iment Testing a
Client Information (Sub Contract Lab.)	Sampler:		Lab F	W.				Ca	rier Trackir	id No(s)		COC No:		
Client Contact:	Dhana		Moc	kler, Dian	Ьb							500-152056.1	-	
Shipping/Receiving	Phone:		E-Ma Diar	it: ia.Mockle	r@Eurof	inset.col	F	Sta	te of Origin			Page:		
Company TestAmerica Laboratories, Inc.				Accreditation NEL AD	ons Requir Illinois	ed (See n	ote):					Job #:		
Address: 13715 Rider Trail North,	Due Date Requested: 10/3/2021											500-204544-2 Preservation C	2 Codes:	
City.	TAT Requested (days):				F	Ī		hedue	sted	þ	ļ	A - HCL	M - Hexal	Je
Earth City State, Zp: MO, 63045						8						B - NaOH C - Zn Acetate D - Nitric Acid	N - None O - AsNai P - Na2O	02 4S
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO#:			(77/977					_	E - NaHSO4 F - MeOH G - Amchlor	Q - Na2S R - Na2S S - H2SO	203
Email:	# OM			or No		ם אשם						H - Ascorbic Acid	d T - TSP D U - Acetor	odecahydrate
Project Name: Joliet #29 Ash	Project #: 50005078			e9Y) 6 A 10 au	88	əniam				_	aranit	K - EDTA	V - MCAA W - pH 4- 7 - other /	5 Enerthy
Site	SSOW#:			ample ample	z mul	22/24					1003	Other:		
	Samp	Sample Type ole (C=comp	Matrix (w-water, s=sold.	S berefilit bi SM/SM mot	0_290_290\0	-077EN07					I Number of			
sample identification - Client ID (Lab ID)	Sample Date Tim	e G=grab	BT=Tasue, A=AF)	903 603	706	784	+				atoT	Special	Instruction	s/Note:
Jolet #29 Ash (500-204544-1)	10:0		vauori code.	\$			-						X	
	8/31/21 Centr	le	Solid	×	×		_			_	5			
		_												
					_				_					
				_										
						_								
				-+			_	_						
Note: Since laboratory accreditations are subject to change. Eurofins TestAmeni maintain accreditation in the State of Origin listed above for analysis/lestis/matix TestAmetica alterutori mimmedialety. If all neurated accreditations are current to	ica places the ownership of met x being analyzed, the samples n	hod, analyte & ac nust be shipped t	Creditation compli back to the Eurofin	ance upon c	Dut subconi ica laborate	tract labor	atories.	his sample ons will be	shipment is	s forwarde	d under chi	ain-of-custody. If the	e laboratory do	es not currently
Possible Hazard Identification		or Custody attesti	ng to said complic	ance to Eur	ofins TestA	merica.							מ הם הוחחלווו ור	
Unconfirmed				Sampl	e Dispos	al (A fe	e may	be asses	sed if sa	mples a	re retain	ed longer than	1 month)	Γ
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Ran	k: 2		Special	Instructi	ons/QC	Require	UISPO:	al By Lai		Arch	ive For	Months	
Empty Kit Relinquished by:	, Date:		ſ	ime:				Γ	Method of	Shipment:				
Relinquished by UNN LENT	Date The A	TILLE	Company	₹ E	Piyed by	10 11	2	7		Date/Time	1	2.00	Company	C
Relinquished by:	Date/Time://		Company		eived by:		ğ	5	al a	pate/Time	101	00.2		5
Relinquished by:	Date/Time:		Company	Rec	eived by:)	Date/Time			Company	
Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No				Cool	er Temper	ature(s) °(and Oth	er Remarks						Τ
				-										

Ver: 06/08/2021

10

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Answer	Comment
True	
True	Received same day of collection; chilling process has begun.
True	22.4
True	
N/A	
True	
True	
N/A	
	AnswerTrue

List Source: Eurofins TestAmerica, Chicago

Client: KPRG and Associates, Inc.

Login Number: 204544 List Number: 2 Creator: Korrinhizer, Micha L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204544-2

List Creation: 09/01/21 05:40 PM

List Source: Eurofins TestAmerica, St. Louis

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-2

12 13

Laboratory. Euronn's restamenca, St. Louis
--

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-22
ANAB	Dept. of Defense ELAP	L2305	04-06-22
ANAB	Dept. of Energy	L2305.01	04-06-22
ANAB	ISO/IEC 17025	L2305	04-06-22
Arizona	State	AZ0813	12-08-21
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	06-30-21 *
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	004553	11-30-21
lowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-21
Kentucky (DW)	State	KY90125	01-01-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-21
Louisiana	NELAP	04080	06-30-22
Louisiana (DW)	State	LA011	12-31-21
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-22
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	State	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	03-01-22
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method: 903.0 - Radium-226 (GFPC)

Matrix: Solid

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(40-110)	
500-204544-1	Jolet #29 Ash	104	
LCS 160-527617/2-A	Lab Control Sample	82.8	
MB 160-527617/1-A	Method Blank	80.9	
Tracer/Carrier Legen	d		

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC)

Matrix: Solid

Percent Yield (Acceptance Limits) Ва Υ (40-110) (40-110) Lab Sample ID **Client Sample ID** 500-204544-1 Jolet #29 Ash 78.1 91.3 LCS 160-528400/2-A Lab Control Sample 78.9 77.4 MB 160-528400/1-A Method Blank 87.5 80.0 Tracer/Carrier Legend

Ba = Ba Carrier Y = Y Carrier

Job ID: 500-204544-2

Prep Type: Total/NA

Prep Type: Total/NA

5 13

ATTACHMENT 3 SITE LOCATION MAP

ATTACHMENT 4 SITE PLAN MAPS

FILL: CONSISTING OF A THIN LAYER OF TOP SOIL AND/OR COARSE GRAVEL FILL.

SILTY CLAY TO CLAY: CONSISTING OF BLACK/BROWN SILTY CLAY TO CLAY WITH A TRACE OF COARSE GRAVEL.

WITH LIMESTONE FRAGMENTS NOTED THROUGHOUT. MAY LOCALLY INCLUDE SOME LENSES OR INTERLAYERING OF BLACK SILTY CLAY AND/OR TAN SILTY SAND.

—D —

SANDY SILT/SILTY CLAY: CONSISTING OF BLACK/GRAY SANDY SILT GRADING DOWNWARD TO A GRAY SILTY CLAY WITH COARSE SAND. NOT CONTINUOUS ACROSS SITE.

 $\mathbf{\nabla}$

BEDROCK SURFACE.

WATER LEVEL (5/21)

PROJECTED POND OUTLINE

ATTACHMENT 5 DAVID E. NIELSON EXPERT OPINION

Expert Opinion of David E. Nielson In Support of Midwest Generation, LLC's <u>Petitions for an Adjusted Standard to Reuse the Polyethylene Liners in the</u> <u>Coal Combustion Residual Surface Impoundments</u>

My name is David E. Nielson I am a Sr. Consultant and Sr. Manager with Sargent & Lundy (S&L). S&L is an Illinois-based engineering firm with over 125 years of history focused on the design of electric power generation and transmission systems. I have over 30 years of professional experience as a geotechnical and civil engineer. I have been a licensed professional engineer (civil) in the state of Illinois in good standing since 1993. My professional career has included services associated with coal combustion residuals (CCR), industrial waste surface impoundments, industrial waste landfills, and municipal solid waste (MSW) landfills in numerous states and regulatory environments since 1990. My curriculum vitae is attached (Attachment G).

I have been retained by Midwest Generation, LLC ("MWG") to provide expert testimony on MWG's Petitions for Adjusted Standards from Section 845.740(a) of the Illinois Coal Combustion Residual rule, Part 845 of the Illinois Pollution Control Board's ("Board") rules. Specifically, I am providing testimony supporting the closure of a CCR surface impoundment, by removal of the CCR with decontamination of the geomembrane liner, so it may be reused as a low-volume wastewater pond liner.

In 2020, I was retained by MWG to review and comment on the Illinois Environmental Protection Agency's ("Illinois EPA") proposed Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments as the new Part 845 of the Illinois Pollution Control Board's Rules. *In the Matter of: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments: Proposed New 35 Ill. Adm. Code 845*, PCB 20-19 ("Illinois CCR rule"). In that proceeding, I provided written testimony and oral

Sargent & Lundy

testimony, including my opinion that a competent geomembrane liner may be reused as part of retrofitting a CCR surface impoundment. *Id.* My opinion here is similar to and consistent with my opinion that I provided *In the Matter of: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments: Proposed New 35 Ill. Adm. Code 845*, PCB 20-19.

I. Background

• The Illinois CCR Rule - Section 845.120 states:

""Retrofit" means to remove all CCR and contaminated soils and sediments from the CCR surface impoundment, and to ensure the surface impoundment complies with the requirements in Section 845.410."

The Illinois CCR Rule - Section 845.410 details and references the requirements of a composite liner for new and laterally expanded CCR surface impoundments.

• Section 845.770(a)(4) of the Illinois CCR Rule states

"An owner or operator may request the Agency to approve the use of an existing competent geomembrane liner as a supplemental liner by submitting visual inspection, and analytical testing results to demonstrate that the existing liner is not contaminated with CCR constituents."

Thus, the Illinois EPA and Board have established that existing liners can be considered supplemental liners provided that adequate visual and analytical test results demonstrate it is not contaminated with CCR constituents.

Section 257.102 of the Federal Rule presents the requirements for closure of CCR impoundments by removal. 257.102(c) states "An owner or operator may elect to close a CCR unit by removing and decontaminating all areas affected by releases from the CCR unit. CCR removal and decontamination of the CCR unit are complete when constituent concentrations throughout the CCR unit and any areas affected by releases from the CCR unit have been removed and groundwater monitoring concentrations do not exceed the

Sargent & Lundy

groundwater protection standard established pursuant to §257.95(h) for constituents listed in appendix IV to this part."

This Federal rule does not require the removal of any decontaminated liner systems.

• Section 845.740 of the Illinois Rule requires removal of liner systems for closure by removal as stated:

"...containment system components such as the impoundment liner and contaminated subsoils, and CCR impoundment structures and ancillary equipment have been removed."

II. Geomembrane Liners in CCR Surface Impoundments Can be Decontaminated and Reused for Low-Volume Waste Ponds

In my opinion the reuse of geomembrane liners from CCR Surface impoundments that are properly decontaminated and undamaged can enhance the protection of health and the environment when they are repurposed for non-CCR impoundments, including low-volume waste ponds. My opinion is made to a reasonable degree of scientific certainty. This opinion is based on the following:

A low-volume waste pond is a pond that collects "low volume waste sources." "Low volume waste sources are defined in the Steam Electric Power Generating Effluent Guidelines and Standards as "wastewater from all sources except those for which specific limitations or standards are otherwise established in this part. Low volume waste sources include, but are not limited to, the following: Wastewaters from ion exchange water treatment systems, water treatment evaporator blowdown, laboratory and sampling streams, boiler blowdown, floor drains, cooling tower basin cleaning wastes, recirculating house service water systems, and wet scrubber air pollution control systems whose primary purpose is particulate removal. Sanitary wastes, air conditioning wastes, and wastewater from carbon capture or sequestration systems are not included in this definition." 40 C.F.R. § 423.11(b).
- 2. A low volume waste pond has an unmeasurable amount of non-CCR material because it holds the water required for the station operations and also stormwater. A power generating station uses the low volume waste ponds for temporary storage of large volumes of non-CCR waste streams until the water can be treated and discharged pursuant to the station's NPDES permit. For example, stormwater at a station would be directed to a low volume waste pond to avoid flooding a station and to also avoid discharge of stormwater from the station before treatment.
- 3. Geomembrane liners are flexible membranes that are manufactured of resins such as polyethylene (HDPE, LLDPE, LDPE) and polyvinyl chloride (PVC), which are energy intensive to manufacture and very low permeability. ASTM International defines geomembrane as "an essentially impermeable geosynthetic composed of one or more synthetic sheets." (Attachment A, p. 3).
- 4. Geomembrane liners, including HDPE, are used worldwide, including hazardous waste landfills, municipal solid waste landfills, hazardous waste impoundments, nonhazardous waste impoundments, tailings ponds, dams, and stormwater management ponds.
- 5. My research has not found any evidence that geomembrane liners, such as HDPE become contaminated with waste products that are present in CCR. In fact, I am not aware of a study that shows that polymer liners become saturated with CCR constituents. Thus, there is no basis to conclude that a geomembrane liner would be saturated with CCR constituents such that it cannot be decontaminated for reuse.
- 6. To clean a CCR surface impoundment, first the CCR is carefully removed from the surface impoundment. Following removal, the sides and base of the CCR surface impoundment are methodically cleaned with a high pressure power-washer to remove the residual CCR from the geomembrane. Visual inspections for any damage would also occur, and any potential damage found would be repaired.
- 7. Performing analytical testing on wipe samples to verify suitable decontamination of the exposed surface of undamaged HDPE liner systems is considered a reasonable

path forward to allow existing liners to be repurposed for non-CCR impoundments. The wipe samples would be obtained for the metal and other constituents regulated by the Illinois CCR Rule (845.600(a)(1)).

I suggest the sampling and testing consist of:

- In accordance with ASTM D6966-18 (Attachment B) perform a systematic and repeatable wipe sampling,
- Analytical chemistry testing to quantify the concentrations of the regulated metals and other chemical constituents.

It is my opinion that performing 1 set of wipe samples and tests per acre is an appropriate testing frequency. This opinion is based on the USEPA guidance that one permeability test should be performed per acre per lift of compacted clay liner (Attachment C, Section 2.8.4.3).

- 8. Geomembrane liners have been successfully cleaned for reuse for an alternative purpose. In 2018, a geomembrane lined landfill leachate pond was cleaned so the pond could store clean water. The geomembrane liner had been in use for approximately 25 years. Because the geomembrane liner would be exposed, the owner conducted an analysis of the condition of geomembrane after over two decades of use. The analysis showed that the geomembrane was in good condition with little signs of degradation, and the owner continued using the impoundment for clean water. Attachment D.
- 9. When considering a 60 mil HDPE liner that is 10 acres in extent, it contains over 120,000 pounds or about 60,000 kg of HDPE resin. The energy demand for manufacturing of the resin requires over 76 MJ/kg or 72,000 BTU/kg. (Attachment E, p. 11). Therefore, it is estimated that to manufacture the resin for 10 acres of 60 mil HDPE liner requires over 4,300,000,000 BTU of energy. This includes the energy value of the oil and natural gas products used to make the resin. This does not include the energy required to extrude the resin into sheets,

Sargent & Lundy

transportation, deployment, or seaming. Thus, I conclude that the energy intensive requirements to replace decontaminated, undamaged HDPE liner are not warranted.

- 10. Pond 1 at MWG's Joliet 29 station has a HDPE liner that was repurposed for the existing non-CCR impoundment. Ongoing groundwater testing validates that CCR constituents have not adversely impacted the groundwater. Attachment F.
- 11. When HDPE liner is removed from an impoundment it is not typically rolled to reduce the volume of waste to be transported to a landfill. Instead it is often removed with an excavator and loaded into dump trucks. Because removal of the liner is a demolition project, there would be no need for the excavators to carefully remove the liner. Instead, when the liner is removed, the CCR material that remained in the CCR surface impoundment would likely mix with the underlying soil. To confirm that all sub-soils were removed of CCR, at least 6 inches of subsoil would have to be removed and disposed of as well as the liner.
- 12. It is recognized that the zero air void volume of a typical liner for a 10 acre pond only occupies about 80 cubic yards of volume. However, when the material is placed in a dump truck with an excavator along with the nominal 6 inches of subsoil, it would likely require approximately 500 dump truck loads of the waste liner and subsoil to be hauled to a landfill. Additionally, about 5 over the road tractor trailer loads would be required to transport the new liner material from the factory to the site. In my opinion it is not prudent to require about 500 truck trips per 10 acres of lined impoundment to remove and replace an undamaged decontaminated existing liner.
- 13. Additionally, removing the liner and the subsoil, and installing a virtually identical liner to hold low-volume wastewater will take a significant amount of time compared to removing the CCR and decontaminating the liner. In the Demonstrations for a Site-Specific Alternative Deadline to Initiate Closure of the basins at the MWG Stations that MWG submitted to the U.S. EPA pursuant to the federal CCR rule, MWG committed to providing alternative disposal of the CCR as soon as technically

Sargent & Lundy

feasible. *See* Demonstration for a Site-Specific Alternative Deadline to Initiate Closure, Powerton Station, p. 3-5; Demonstration for a Site-Specific Alternative Deadline to Initiate Closure, Waukegan Station, p. 3-5. Because it is technically feasible to decontaminate a geomembrane liner, by removing the CCR and decontaminating the liner, MWG would be fulfilling its commitment to provide the alternative capacity for CCR and non-CCR wastestreams as soon as technically feasible.

III. Conclusion

I recommend that MWG be granted an adjusted standard from the Illinois CCR Rule requirement to remove the geomembrane liner of a CCR surface impoundment for closure by removal of CCR. A competent geomembrane liner does not become saturated with CCR constituents, and can be cleaned and decontaminated for another purpose. Additionally, wipe samples will be taken to confirm that the decontamination cleaning was successful. As previously noted the adjusted standard as requested is in accordance with the USEPA CCR Rule.

Digitally signed by David E. Nielson Date: 2021.05.09 18:40:37 -05'00'

David E. Nielson, P.E.

ATTACHMENTS

- A. ASTM International, Standard Terminology for Geosynthetics, ASTM D4439 20, January 2020.
- B. ASTM International, Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Determination of Metals, ASTM D6966-18, November 2018.
- C. <u>https://geosyntheticsmagazine.com/2019/02/01/a-leachate-pond-geomembrane-after-25-years-of-service/</u>
- D. Daniel, D. E. and R. M. Koerner. Technical Guidance Document: Quality Assurance and Quality Control for Waste Containment Facilities, EPA/600/R-93/182 (NTIS PB94-159100), 1993.
- E. PlasticsEurope, Eco-profiles of the European Plastics Industry, High Density Polyethylene (HDPE), March 2005.
- F. Midwest Generation, LLC, 2021; Annual and Quarterly Groundwater Monitoring Report, Joliet #29 Generating Station, January 21, 2021.
- G. David E. Nielson, Curriculum Vitae

ATTACHMENT A

Standard Terminology for Geosynthetics ASTM D4439 - 20

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: D4439 – 20

Standard Terminology for Geosynthetics¹

This standard is issued under the fixed designation D4439; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Referenced Documents

- 1.1 ASTM Standards:²
- C125 Terminology Relating to Concrete and Concrete Aggregates
- D1987 Test Method for Biological Clogging of Geotextile or Soil/Geotextile Filters
- D4354 Practice for Sampling of Geosynthetics and Rolled Erosion Control Products (RECPs) for Testing
- D4491/D4491M Test Methods for Water Permeability of Geotextiles by Permittivity
- D4533/D4533M Test Method for Trapezoid Tearing Strength of Geotextiles
- D4594/D4594M Test Method for Effects of Temperature on Stability of Geotextiles
- D4595 Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method
- D4632/D4632M Test Method for Grab Breaking Load and Elongation of Geotextiles
- D4716/D4716M Test Method for Determining the (In-plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head
- D4751 Test Methods for Determining Apparent Opening Size of a Geotextile
- D4759 Practice for Determining the Specification Conformance of Geosynthetics
- D4833/D4833M Test Method for Index Puncture Resistance of Geomembranes and Related Products
- D4873/D4873M Guide for Identification, Storage, and Handling of Geosynthetic Rolls and Samples
- D4884/D4884M Test Method for Strength of Sewn or Bonded Seams of Geotextiles
- D4885 Test Method for Determining Performance Strength of Geomembranes by the Wide Strip Tensile Method
- D5101 Test Method for Measuring the Filtration Compatibility of Soil-Geotextile Systems

- D5141 Test Method for Determining Filtering Efficiency and Flow Rate of the Filtration Component of a Sediment Retention Device
- D5262 Test Method for Evaluating the Unconfined Tension Creep and Creep Rupture Behavior of Geosynthetics
- D5322 Practice for Laboratory Immersion Procedures for Evaluating the Chemical Resistance of Geosynthetics to Liquids
- D5323 Practice for Determination of 2 % Secant Modulus for Polyethylene Geomembranes
- D5397 Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test
- D5494 Test Method for the Determination of Pyramid Puncture Resistance of Unprotected and Protected Geomembranes
- D5496 Practice for In Field Immersion Testing of Geosynthetics
- D5514/D5514M Test Method for Large-Scale Hydrostatic Puncture Testing of Geosynthetics
- D5567 Test Method for Hydraulic Conductivity Ratio (HCR) Testing of Soil/Geotextile Systems
- D5594 Test Method for Determination of the Vinyl Acetate Content of Ethylene-Vinyl Acetate (EVA) Copolymers by Fourier Transform Infrared Spectroscopy (FT-IR)
- D5617 Test Method for Multi-Axial Tension Test for Geosynthetics
- D5641/D5641M Practice for Geomembrane Seam Evaluation by Vacuum Chamber
- D5747/D5747M Practice for Tests to Evaluate the Chemical Resistance of Geomembranes to Liquids
- D5818 Practice for Exposure and Retrieval of Samples to Evaluate Installation Damage of Geosynthetics
- D5820 Practice for Pressurized Air Channel Evaluation of Dual-Seamed Geomembranes
- D5994/D5994M Test Method for Measuring Core Thickness of Textured Geomembranes
- 1.2 Federal Standard:³

Federal Standard 751a Stitches, Seams, and Stitchings

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹This terminology is under the jurisdiction of D35 on Geosynthetics and is the direct responsibility of D35.93 on Editorial and Terminology.

Current edition approved Jan. 1, 2020. Published January 2020. Originally approved in 1984. Last previous edition approved in 2018 as D4439 – 18. DOI: 10.1520/D4439-20.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from DLA Document Services, Building 4/D, 700 Robbins Ave., Philadelphia, PA 19111-5094, http://quicksearch.dla.mil.

2. Terminology

- **absorption**, n—the process by which a liquid is drawn into and tends to fill permeable pores in a porous solid body, also, the increase in mass of a porous solid body resulting from penetration of a liquid into its permeable pores. C125
- **aerobic**, *n*—a condition in which a measurable volume of air is present in the incubation chamber or system. **D1987**
- anaerobic, *n*—a condition in which no measurable volume of air is present in the incubation chamber or system. **D1987**
- apparent opening size (AOS), O₉₅, *n*—for a geotextile, a property which indicates the approximate largest particle that would effectively pass through the geotextile. D4751
- atmosphere for testing geosynthetics, n—air maintained at a relative humidity between 50 to 70 % and a temperature of $21 \pm 2 \degree C (70 \pm 4 \degree F)$. D4439, D4751, D5494
- back flushing, n—a process by which liquid is forced in the reverse direction to the flow direction. D1987
- basis weight—deprecated term (do not use in the sense of mass per unit area). D4439
- bend, vt—in mechanics, to force an object from its natural or manufactured shape into a curve or into increased curvature. D4439
- biocide, n—a chemical used to kill bacteria and other microorganisms. D1987
- **bituminous geosynthetic barrier** (**GBR-B**), *n*—factoryproduced structure of geosynthetic materials in the form of a sheet in which the barrier function is fulfilled by bitumen.
- **blinding**, *n*—for geotextiles, the condition where soil particles block the surface openings of the fabric, thereby reducing the hydraulic conductivity of the system. **D4439**
- breaking force, (F), J, n—the force at failure. D4885
- **breaking load**, *n*—the maximum force applied to a specimen in a tensile test carried to rupture. **D4632/D4632M**
- **breaking toughness,** *T*, (*FL*⁻¹), *Jm*⁻², *n*—for geotextiles, the actual work-to-break per unit surface area of material. **D4595, D4885**
- chemical resistance, *n*—the ability to resist chemical attack. D5322
- clogging, *n*—for geotextiles, the condition where soil particles move into and are retained in the openings of the fabric, thereby reducing the hydraulic conductivity. D4439
- **clogging potential**, *n*—*in geotextiles*, the tendency for a given geotextile to decrease permeability due to soil particles that have either lodged in the geotextile openings or have built up a restrictive layer on the surface of the geotextile. **D5101**
- **compressed thickness** (t, (L), mm), *n*—thickness under a specified stress applied normal to the material. **D4439**

- constant-rate-of-load tensile testing machine (CRL), n—a testing machine in which the rate of increase of the load being applied to the specimen is uniform with time after the first 3 s. D4439
- corresponding force, *n*—synonym for force at specified elongation. **D4885**
- **coupon**, n—a portion of a material or laboratory sample from which multiple specimens can be taken for testing. D5747/D5747M
- **creep**, *n*—the time-dependent increase in accumulative strain in a material resulting from an applied constant force. **D5262**
- critical height (ch), n—the maximum exposed height of a cone
 or pyramid that will not cause a puncture failure of a
 geosynthetic at a specified hydrostatic pressure for a given
 period of time. D5514/D5514M
- cross-machine direction, *n*—the direction in the plane of the fabric perpendicular to the direction of manufacture. D4632/D4632M
- density (p, (ML⁻³), kg/m³), n-mass per unit volume. D4439
- design load—the load at which the geosynthetic is required to operate in order to perform its intended function. D5262
- elastic limit, *n*—*in mechanics*, the stress intensity at which stress and deformation of a material subjected to an increasing force cease to be proportional; the limit of stress within which a material will return to its original size and shape when the force is removed, and hence, not a permanent set. D4885
- elongation at break, *n*—the elongation corresponding to the breaking load, that is, the maximum load. D4632/D4632M
- failure, *n*—an arbitrary point beyond which a material ceases to be functionally capable of its intended use. D4885, D5262
- failure, n—in testing geosynthetics, water or air pressure in the test vessel at failure of the geosynthetic. D5514/D5514M
- **field testing**, *n*—testing performed in the field under actual conditions of temperature and exposure to the fluids for which the immersion testing is being performed. **D5496**
- fill-deprecated term, see filling.
- filling, *n*—yarn running from selvage to selvage at right angles to the warp in a woven fabric. D4439
- **flexible polypropylene**, n—a material having a 2 % secant modulus of less than 300 MPa (40 000 psi) as determined by Practice D5323, produced by polymerization of propylene with or without other alpha olefin monomers.
- force at specific elongation, FASE, n—the force associated with a specific elongation on the force-elongation curve. D4439
- force-elongation curve, *n*—*in a tensile test*, a graphical representation of the relationship between the magnitude of an externally applied force and the change in length of the

Licensee=Sargent & Lundy/5915733100, User=Nielson, David Not for Resale, 04/27/2021 08:51:47 MDT specimen in the direction of the applied force. (Synonym for stress-strain curve.) D4885

- **geocomposite**, *n*—a product composed of two or more materials, at least one of which is a geosynthetic.
- **geofoam**, *n*—block or planar rigid cellular foamed polymeric material used in geotechnical engineering applications.
- **geogrid**, n—a geosynthetic formed by a regular network of integrally connected elements with apertures greater than 6.35 mm ($\frac{1}{4}$ in.) to allow interlocking with surrounding soil, rock, earth, and other surrounding materials to function primarily as reinforcement. **D5262**
- geomembrane, n—an essentially impermeable geosynthetic composed of one or more synthetic sheets. D4439, D4873/D4873M, D4885, D5994/D5994M, D5820
- **geonet**, *n*—a geosynthetic consisting of integrally connected parallel sets of ribs overlying similar sets at various angles for planar drainage of liquids or gases. **D4439**
- **geostrip**—polymeric material in the form of a strip of width not more than 200 mm (7.87 in.), used in contact with soil or other materials in geotechnical and civil engineering applications, or both.
- geosynthetic, n—a planar product manufactured from polymeric material used with soil, rock, earth, or other geotechnical engineering related material as an integral part of a man-made project, structure, or system. D4354, D4759, D4873/D4873M, D5617, D5818
- **geosynthetic barrier**—low-permeability geosynthetic material, used in geotechnical and civil engineering applications with the purpose of reducing or preventing the flow of fluid through the construction.
- **geosynthetic barrier clay** (**GBR-C**), *n*—factory-produced structure of geosynthetic materials in the form of a sheet, in which the barrier function is fulfilled by clay.
- **geosynthetic barrier polymeric (GBR-P),** *n*—factoryproduced structure of geosynthetic materials in the form of a sheet, in which the barrier function is fulfilled by polymers.
- geosynthetic cementitious composite mat (GCCM), n—a factory-assembled geosynthetic composite consisting of a cementitious material contained within layer or layers of geosynthetic materials that becomes hardened when hydrated.
- **geosynthetic clay liner**, *n*—a manufactured hydraulic barrier consisting of clay bonded to a layer or layers of geosynthetic materials.
- geotechnical engineering, *n*—the engineering application of geotechnics. D4439, D4595
- geotechnics, *n*—the application of scientific methods and engineering principles to the acquisition, interpretation, and use of knowledge of materials of the earth's crust to the solution of engineering problems. D4439, D4491/D4491M, D4595, D4716/D4716M, D4751

geotextile, *n*—a permeable geosynthetic comprised solely of textiles.

DISCUSSION—Geotextiles perform several functions in geotechnical engineering applications, including: separation, filtration, drainage, reinforcement, and protection. D1987, D4439, D5594

- grab test, *n*—*in fabric testing*, a tension test in which only a part of the width of the specimen is gripped in the clamps. D4632/D4632M
- **gradient ratio**, *n*—*in geotextiles*, the ratio of the hydraulic gradient through a soil-geotextile system to the hydraulic gradient through the soil alone. **D5101**
- **gravity flow,** *n*—flow in a direction parallel to the plane of a geotextile or related product driven predominately by a difference in elevation between the inlet and outflow points of a specimen. **D4716/D4716M**
- head, n—pressure at a point in a liquid, expressed in terms of the vertical distance of the point below the surface of the liquid.
- **hydraulic conductivity** (*k*), *n*—the rate of discharge of water under laminar flow conditions through a unit cross-sectional area of a porous medium under a unit hydraulic gradient and standard temperature conditions (20 °C). **D5567**
- **hydraulic conductivity ratio** (HCR), *n*—the ratio of the hydraulic conductivity of the soil/geotextile system, k_{sg} , at any time during the test, to the initial hydraulic conductivity, k_{sgo} , measured at the beginning of the test (NEW).
- **hydraulic gradient**, *i*, *s* (*D*)—the loss of hydraulic head per unit distance of flow, dH/dL. **D5101**
- **hydraulic transmissivity,** θ (L² T⁻¹), *n*—for a geotextile or related product, the volumetric flow rate of water per unit width of specimen per unit gradient in a direction parallel to the plane of the specimen. **D4716/D4716M**
- hydrostatic pressure, n—a state of stress in which all the principal stresses are equal (and there is no shear stress), as in a liquid at rest; induced artificially by means of a gaged pressure system; the product of the unit weight of the liquid and the difference in elevation between the given point and the free water elevation.
- index test, n—a test procedure which may contain a known bias but which may be used to establish an order for a set of specimens with respect to the property of interest.

D4833/D4833M, D4885

- inflection point, *n*—the first point of the force-elongation curve at which the second derivative equals zero. D4885
- initial tensile modulus, J_p (FL^{-1}), Nm^{-1} , n—for geosynthetics, the ratio of the change in force per unit width to the change in elongation of the initial portion of a force-elongation curve. D4885
- **in-plane flow,** *n*—fluid flow confined to a direction parallel to the plane of a geotextile or related product. **D4716/D4716M**

3 Licensee=Sargent & Lundy/5915733100, User=Nielson, David Not for Resale, 04/27/2021 08:51:47 MDT

- integral, *adj—in geosynthetics*, forming a necessary part of the whole; constituent. D4439
- **laboratory sample**, n—a portion of material taken to represent the lot sample, or the original material, and used in the laboratory as a source of test specimens. D4354
- laminar flow, n—flow in which the head loss is proportional to the first power of the velocity.
 D4716/D4716M
- **linear density**, *n*—mass per unit length; the quotient obtained by dividing the mass of a fiber or yarn by its length.
- lot, n—a unit of production, or a group of other units or packages, taken for sampling or statistical examination, having one or more common properties and being readily separable from other similar units. D4354
- **lot sample**, *n*—one or more shipping units taken at random to represent an acceptance sampling lot and used as a source of laboratory samples. **D4354**
- machine direction, *n*—the direction in the plane of the fabric parallel to the direction of manufacture. **D4632/D4632M**
- minimum average roll value (MARV), *n*—for geosynthetics, a manufacturing quality control tool used to allow manufacturers to establish published values such that the user/ purchaser will have a 97.7 % confidence that the property in question will meet published values. For normally distributed data, "MARV" is calculated as the typical value minus two (2) standard deviations from documented quality control test results for a defined population from one specific test method associated with one specific property.

DISCUSSION—MARV is applicable to a geosynthetic's intrinsic physical properties such as weight, thickness, and strength. MARV may not be appropriate for some hydraulic, performance, or durability properties.

- **minimum test value**, *n*—*for geosynthetics*, the lowest sample value from documented manufacturing quality control test results for a defined population from one test method associated with one specific property.
- **modulus of elasticity**, MPa (FL^{-2}), *n*—the ratio of stress (nominal) to corresponding strain below the proportional limit of a material, expressed in force per unit area, such as megapascals (pounds-force per square inch). **D5323**
- multi-axial tension, *n*—stress in more than one direction. D5617
- **multi-linear drainage geocomposite**, *n*—a manufactured product composed of a series of parallel single drainage conduits regularly spaced across its width sandwiched between two or more geosynthetics.
- **nominal**, *n*—representative value of a measurable property determined under a set of conditions, by which a product may be described.
- **nominal value**, *n*—representative value of a measurable property by which a product may be described **D4439**
- **normal direction**, *n*—for geotextiles, the direction perpendicular to the plane of a geotextile. **D4439**

- **normal stress,** (FL^{-2}) , *n*—the component of applied stress that is perpendicular to the surface on which the force acts. D4439
- offset modulus, J_{o} (FL^{-1}), Nm^{-1} , n—for geosynthetics, the ratio of the change in force per unit width to the change in elongation below an arbitrary offset point at which there is a proportional relationship between force and elongation, and above the inflection point on the force-elongation curve. D4885
- performance property, *n*—a result obtained by conducting a performance test. **D5141**
- **performance test**, *n*—a test which simulates in the laboratory as closely as practicable selected conditions experienced in the field and which can be used in design. (Synonym for **design test**.) **D4885**
- performance test, n—in geosynthetics, a laboratory procedure
 which simulates selected field conditions which can be used
 in design. D5141
- permeability, n—the rate of flow of a liquid under a differential pressure through a material. D1987, D4491/D4491M
- permeability, n—of geotextiles, hydraulic conductivity. D4491/D4491M
- **permeation**, *n*—the transmissioin of a fluid through a porous medium (NEW).
- **permittivity**, (Ψ) , (T^{-1}) , *n*—of geotextiles, the volumetric flow rate of water per unit cross-sectional area per unit head under laminar flow conditions, in the normal direction through a geotextile. **D1987**, **D4491/D4491M**
- **pore volume of flow** (V_{pq}) , *n*—the cumulative volume of flow through a test specimen divided by the volume of voids within the specimen. **D5567**
- **pre-fabricated vertical drain** (**PVD**), *n*—a geocomposite consisting of geotextile cover and drainage core installed vertically into soil to provide drainage for accelerating consolidation of soils.

DISCUSSION-Also known as band or wick drain.

- pressure flow, *n*—flow in a direction parallel to the plane of a geotextile or related product driven predominately by a differential fluid pressure. D4716/D4716M
- **primary sampling unit**, *n*—the sampling unit containing all the sources of variability which should be considered in acceptance testing; the sampling unit taken in first stage of selection in any procedure for sampling a lot or shipment. D4354
- production unit—as referred to in this practice, is a quantity of geotextile agreed upon by the purchaser and seller for the purpose of sampling. D4354
- **proportional limit**, *n*—the greatest stress which a material is capable of sustaining without any deviation from proportionality of stress to strain (Hooke's law). **D4595**

4 Licensee=Sargent & Lundy/5915733100, User=Nielson, David Not for Resale, 04/27/2021 08:51:47 MDT

- puncture resistance, (F), *n*—the inherent resisting mechanism of the test specimen to the failure by a penetrating or puncturing object. D4833/D4833M
- quality assurance, *n*—all those planned or systematic actions necessary to provide adequate confidence that a material, product, system, or service will satisfy given needs. D4354
- quality control, *n*—the operational techniques and the activities which sustain a quality of material, product, system, or service that will satisfy given needs; also the use of such techniques and activities. D4354
- **rate of creep**, *n*—the slope of the creep-time curve at a given D5262 time.
- **residual shear strength.** *n*—value of shear stress at sufficiently large displacement where the stress remains constant with continued shearing
- **rib**, n—for geogrids, the continuous elements of a geogrid which are interconnected to a node or junction.
- sample, n (1) a portion of material which is taken for testing or for record purposes. (2) a group of specimens used, or of observations made, which provide information that can be used for making statistical inferences about the population(s) from which the specimens are drawn. (See also laboratory sample, lot sample, and specimen.) D4354, D5818

sample, laboratory—See laboratory sample. sample, lot-See lot sample.

sampling unit, *n*—an identifiable, discrete unit or subunit of material that could be taken as part of a sample. (See also primary sampling unit, laboratory sample, and specimen.) D4354

sampling unit, primary—See primary sampling unit. seam, n—a permanent joining of two or more materials. D5820

- seam, *n*—the connection of two or more pieces of material by mechanical, chemical, or fusion methods to provide the integrity of a single piece of the material. D5641/D5641M
- seam allowance, *n*—the width of fabric used in making a seam assembly, bounded by the edge of the fabric and the furthest stitch line. D4884/D4884M
- seam assembly, *n*—the unit obtained by joining fabrics with a seam, including details such as fabric direction(s), seam allowance, sewing threads used, and number of stitches per unit length; and sometimes additional details of fabrication such as sewing-machine type and speed, needle type and D4884/D4884M size, etc.
- seam design engineering, *n*—the procedures used to select a specific thread, a specific stitch type, and a specific seam type to achieve the required seam strength. D4884/D4884M
- seam efficiency, sewn, *n*—*in sewn fabrics*, the ratio expressed as a percentage of seam strength to fabric strength.
- seam interaction, *n*—the result of combining a specific textile, a specific stitch type, and a specific seam type. D4884/D4884M

- seam type, n-in sewn fabrics, an alphanumeric designation relating to the essential characteristics of fabric positioning and rows of stitching in a specific sewn fabric seam (see D4884/D4884M Federal Standard 751).
- secant modulus, *n*—the ratio of stress (nominal) to corresponding strain at any specified point on the stress-strain curve. D5323
- secant modulus, J_{sec} (FL⁻¹), Nm^{-1} , *n*—for geosynthetics, the ratio of change in force per unit width to the change in elongation between two points on a force-elongation curve. D4885
- selvage, *n*—the woven edge portion of a fabric parallel to the D4884/D4884M warp.
- sewing thread, n-a flexible, small-diameter yarn or strand, usually treated with a surface coating, lubricant, or both, intended to be used to stitch one or more pieces of material or an object to a material. D4884/D4884M
- sewn seam, *n*—*in sewn fabrics*, a series of stitches joining two or more separate plies of a material or materials of planar structure such as textile fabric. D4884/D4884M
- sewn seam strength, *n*-for geotextiles, the maximum resistance, measured in kilonewtons per metre, of the junction formed by stitching together two or more planar D4884/D4884M structures.
- **specification**, n—a precise statement of a set of requirements to be satisfied by a material, product, system or service that indicates the procedures for determining whether each of the requirements is satisfied. D4759
- **specific gravity**, *n*—the ratio of the density of the substance in question to the density of a reference substance at specified conditions of temperature and pressure. D4439
- **specimen**, *n*—a specific portion of a material or laboratory sample upon which a test is performed or which is taken for that purpose. (Syn. test specimen) D4354
- standard geosynthetic laboratory environment-a general purposes geosynthetic laboratory should control, monitor, and record the temperature range to 22 ± 3 °C and the relative humidity to 45 to 75 %. In cases of dispute, one should use the "atmosphere for testing" suggested in the appropriate standard test method.
- stiffness, *n*—resistance to bending.
- D4439
- stitch, *n*—the repeated unit formed by the sewing thread in the production of seams in a sewn fabric (see Federal D4884/D4884M Standard 751a).
- strain, *n*—the change in length per unit of length in a given direction. D4439
- stress crack, *n*—an external or internal crack in a plastic caused by tensile stresses less than its short-time mechanical D5397 strength.
- tangent point, *n*-for geotextiles, the first point of the forceelongation curve at which a major decrease in slope occurs. D4595

- tearing strength, (F, (F), kN), *n*—the force required either (1) to start or (2) to continue or propagate a tear in a fabric under specified conditions. D4439, D4533/D4533M
- temperature stability, *n*—for a geotextile, the percent change in tensile strength or in percent elongation as measured at a specified temperature and compared to values obtained at the standard conditions for testing geotextiles. D4594/D4594M
- tensile creep rupture strength, $[FL^{-1}]$, *n*—for geosynthetics, the force per unit width that will produce failure by rupture in a creep test in a given time, at a specified constant environment. D5262
- tensile creep strain, *n*—the total strain at any given time. D5262
- tensile modulus, J, (FL⁻¹), Nm⁻¹, n-for geotextiles, the ratio of the change in tensile force per unit width to a correspond-D4595 ing change in strain (slope).
- tensile strength, *n*—for geotextiles, the maximum resistance to deformation developed for a specific material when subjected to tension by an external force. D4595
- tensile test, *n*—*in textiles*, a test in which a textile material is stretched in one direction to determine the force-elongation characteristics, the breaking force, or the breaking elongation. D4595
- test result, n-a value obtained by applying a given test method, expressed either as a single observation or a specified combination of a number of observations. D4354
- test section, *n*—a distinct area of construction. D5818

thickness, compressed—See compressed thickness.

- turbulent flow, n-that type of flow in which any water particle may move in any direction with respect to any other particle, and in which the head loss is approximately proportional to the second power of the velocity. D4716/D4716M
- turf reinforcement mat (TRM), n-in erosion control, a non-degradable geosynthetic or geocomposite processed

into a matrix sufficient to increase the stability threshold of otherwise unreinforced established vegetation.

DISCUSSION-Products in this category may incorporate ancillary degradable components to enhance the germination and establishment of vegetation.

- typical value, *n*—for geosynthetics, the mean value calculated from documented manufacturing quality control test results for a defined population obtained from one test method associated with on specific property. D4439
- vacuum chamber, n-a device that allows a vacuum to be applied to a surface. D5641/D5641M
- vertical strip drain, n-a geocomposite consisting of a geotextile cover and drainage core installed vertically into soil to provide drainage for accelerating consolidation of soils.

DISCUSSION-Also known as band drain, wick drain, or prefabricated vertical drain (PVD).

- **void ratio** (e, (D)), *n*—the ratio of the volume of void space to the volume of solids. D4439
- warp, *n*—the yarn running lengthwise in a woven fabric. D4884/D4884M

weft, *n*—see filling.

- wide strip tensile test, *n*—for geosynthetics, a tensile test in which the entire width of a 200 mm (8.0 in.) wide specimen is gripped in the clamps and the gage length is 100 mm (4.0 in.). D4885
- wide-width strip tensile test, n—for geotextiles, a uniaxial tensile test in which the entire width of a 200-mm (8.0-in.) wide specimen is gripped in the clamps and the gage length is 100 mm (4.0 in.). D4595
- work-to-break (W, (LF)), n-in tensile testing, the total D4439, D4595, energy required to rupture a specimen. D4885
- vield point, *n*—in geosynthetics, the point on the forceelongation curve at which the first derivative equals zero (the first maximum). D4885

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

ATTACHMENT B

Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Determination of Metals ASTM D6966-18

Designation: D6966 - 18

Standard Practice for Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Determination of Metals¹

This standard is issued under the fixed designation D6966; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the collection of settled dust on surfaces using the wipe sampling method. These samples are collected in a manner that will permit subsequent extraction and determination of target metals in the wipes using laboratory analysis techniques such as atomic spectrometry.

1.2 This practice does not address the sampling design criteria (that is, sampling plan which includes the number and location of samples) that are used for clearance, hazard evaluation, risk assessment, and other purposes. To provide for valid conclusions, sufficient numbers of samples should be obtained as directed by a sampling plan, for example, in accordance with Guide D7659.

1.3 This practice contains notes that are explanatory and are not part of the mandatory requirements of this practice.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

- D1356 Terminology Relating to Sampling and Analysis of Atmospheres
- D4840 Guide for Sample Chain-of-Custody Procedures
- D7144 Practice for Collection of Surface Dust by Microvacuum Sampling for Subsequent Metals Determination
- D7659 Guide for Strategies for Surface Sampling of Metals and Metalloids for Worker Protection
- D7707 Specification for Wipe Sampling Materials for Beryllium in Surface Dust
- E1792 Specification for Wipe Sampling Materials for Lead in Surface Dust

3. Terminology

3.1 For definitions of terms not listed here, see Terminology D1356.

3.2 Definitions:

3.2.1 *batch*, n—a group of field or quality control (QC) samples that are collected or processed together at the same time using the same reagents and equipment.

3.2.2 *wipe*, *n*—a disposable towellette that is moistened with a wetting agent. **E1792**

3.2.2.1 *Discussion*—These towellettes are used to collect samples of settled dust on surfaces for subsequent determination of metals content in the collected dust.

3.3 Definitions of Terms Specific to This Standard:

3.3.1 *field blank, n*—a wipe (see 3.2.2) that is exposed to the same handling as field samples except that no sample is collected (no surface is actually wiped).

3.3.1.1 *Discussion*—Analysis results from field blanks provide information on the analyte background level in the wipe, combined with the potential contamination experienced by samples collected within the batch (see 3.2.1) resulting from handling.

4. Summary of Practice

4.1 Wipe samples of settled dust are collected on surfaces from areas of known dimensions with wipes satisfying certain requirements, using a specified pattern of wiping.

4.2 The collected wipes are then ready for subsequent sample preparation and analysis for the measurement of metals of interest.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹ This practice is under the jurisdiction of ASTM Committee D22 on Air Quality and is the direct responsibility of Subcommittee D22.04 on Workplace Air Quality. Current edition approved Nov. 1, 2018. Published November 2018. Originally approved in 2003. Last previous edition approved in 2013 as D6966 – 13. DOI: 10.1520/D6966-18.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

5. Significance and Use

5.1 This practice is intended for the collection of settled dust samples for the subsequent measurement of target metals. The practice is meant for use in the collection of settled dust samples that are of interest in clearance, hazard evaluation, risk assessment, and other purposes.

5.2 This practice is recommended for the collection of settled dust samples from hard, relatively smooth nonporous surfaces. This practice is less effective for collecting settled dust samples from surfaces with substantial texture such as rough concrete, brickwork, textured ceilings, and soft fibrous surfaces such as upholstery and carpeting. Micro-vacuum sampling using Practice D7144 may be more suitable for these surfaces. Collection efficiency for metals such as lead from smooth, hard surfaces has been found to exceed 75 % (Specification E1792).

6. Apparatus and Materials

6.1 Sampling Templates—One or more of the following: 10 cm by 10 cm (minimum dimensions) reusable or disposable aluminum or plastic template(s), or disposable cardboard templates, (full-square, rectangular, square "U-shaped," rectangular "U-shaped," or "L-shaped," or both); or templates of alternative areas having accurately known dimensions (see Note 1). Templates shall be capable of lying flat on a surface.

NOTE 1-For most surfaces, it is recommended to collect settled dust from a minimum surface area of 100 cm² to provide sufficient material for subsequent laboratory analysis. However, larger areas (for example, 30 cm by 30 cm) may be appropriate for surfaces having little or no visible settled dust, while a smaller sampling area (for example, 10 cm by 10 cm) may be appropriate for surfaces with high levels of visible settled dust. It is recommended to have a suite of templates with various sampling dimensions

6.2 Wipes, for collection of settled dust samples from surfaces. Wipes shall be individually wrapped and fully wetted. The background metal(s) content of the wipes should be as low as possible. At a maximum, the background level of target metal(s) shall be no more than one-tenth the target concentration the metal(s) to be measured.

NOTE 2-Wipes meeting the requirements of Specifications E1792 or D7707, or both, may be suitable.

NOTE 3-Wipes made of cellulosic materials may produce fewer analysis problems than wipes made of synthetic polymeric materials.

6.3 Sample containers, sealable, rigid-walled, 30-mL minimum volume.

NOTE 4-Screw-top plastic centrifuge tubes are an example of a suitable rigid-walled sample container.

NOTE 5-Use of a sealable plastic bag for holding and transporting the settled dust wipe sample is not recommended due to the potential loss of collected dust within the plastic bag during transportation and laboratory handling. Quantitative removal and processing of the settled dust wipe sample by the laboratory is significantly improved through the use of sealable rigid-walled containers.

6.4 *Measuring tool*, tape or ruler, capable of measuring to the nearest ± 0.1 cm.

6.5 Plastic gloves, powderless.

6.6 Cleaning cloths, for cleaning of templates and other equipment.

NOTE 6—Wipes used for dust sampling (6.2) can be used for cleaning templates and other sampling equipment, but other cleaning cloths or wipes not meeting the requirements described in (6.2) may be suitable for this purpose.

6.7 Adhesive tape, suitable for securing the template(s) to the surface(s) to be sampled, and for demarcating sampling areas if templates are not used.

NOTE 7-Masking tape, for example, functions well for these purposes. 6.8 Disposable shoe covers, optional.

7. Procedure

7.1 Use one of the following two options when collecting settled dust samples from each sampling location. For wide, flat locations, it is recommended to use the template-assisted sampling procedure (see 7.1.1.2 (1)). For small locations (for example, window sill, section of a piece of equipment, or portion of a vehicle interior), it will ordinarily be necessary to use the confined-area sampling procedure (see 7.1.1.2 (2)).

NOTE 8-Metal contamination problems during field sampling can be severe and may affect subsequent wipe sample analysis results. Contamination can be minimized through frequent changing of gloves, use of shoe covers (see 6.8), and regular cleaning of sampling equipment with cleaning cloths (see 6.6). Use of disposable shoe covers between different locations, and removal of them prior to leaving the sampling site or entering vehicles, can be helpful in minimizing inadvertent transfer of contaminated dust from one location to another.

7.1.1 Sampling Procedure:

7.1.1.1 Don a pair of clean, powderless, plastic gloves (see 6.5 and Note 8).

7.1.1.2 Use either a template-assisted sampling procedure (1) or tape-defined sampling procedure (2):

(1) Carefully place a clean template on the surface to be sampled in a manner that minimizes disturbance of settled dust at the sampling location. Tape the outside edge of the template to prevent the template from moving during sample collection.

(2) Alternatively, mark the defined area to be sampled with adhesive tape (6.7) being careful not to disturb the settled dust, and measure the area to be sampled using the measuring tool (6.4).

7.1.1.3 Obtain a wipe (6.2) and, if there is a possibility for the package containing the wipe to be contaminated with dust, clean the outside of the package with a cleaning cloth (6.6).

7.1.1.4 Remove the wipe from its package, and inspect the wipe to ensure that it is fully wetted and not contaminated with dust or other material. Discard the wipe if it is found to be too dry or contaminated, or both.

7.1.1.5 Using an open flat hand with the fingers together, place the wipe on the surface to be sampled. Wipe the selected surface area, side to side, in an overlapping "S" or "Z" pattern while applying pressure to the fingertips (refer to Figs. 1 and 2). Wipe the surface so that the entire selected surface area is covered. Perform the wiping procedure using the fingers and not the palm of the hand.

7.1.1.6 Repeat 7.1.1.5 using a different brand of wipe (after selecting a different sampling location) if the wipe originally used significantly changes shape (for example, rolls up by curling) or tears during the wiping process.

NOTE 9-Some surfaces (for example, rough surfaces) may cause certain wipes to curl up or otherwise significantly change shape during the wiping process. A type of wipe that maintains its integrity should be selected for each surface sampled.

NOTE 1—Only the center of the wiping path is shown, not the entire wiping width. Fig. 1a) shows the first "S" wiping pattern over the surface area to be sampled; Fig. 1b) demonstrates the second "S" wiping course over the surface; and Fig. 1c) shows the final wiping which is targeted toward edges and corners.

Note 1—Only the center of the wiping path is shown, not the entire wiping width. Fig. 2a) shows the first "Z" wiping pattern over the surface area to be sampled; Fig. 2b) demonstrates the second "Z" wiping course over the surface; and Fig. 2c) shows the final wiping which is targeted toward edges and corners.

FIG. 2 Schematic of a Side-to-Side Overlapping "Z" Wiping Pattern

7.1.1.7 Fold the wipe in half with the collected dust side folded inward and repeat the preceding wiping procedure (7.1.1.5) within the selected sampling area using an up and down overlapping "S" or "Z" pattern at right angles to the first wiping (see Fig. 1, Fig. 2, and Note 10).

NOTE 10—Wipes are folded to envelop the collected dust within the wipe, to avoid loss of the collected dust, and to expose a clean wipe surface for further dust collection from the sampling location. For sample areas containing large amounts of settled dust, carefully wipe the area to ensure as much dust as possible within the wipe is captured.

7.1.1.8 Fold the wipe in half again with the collected dust side folded inward and repeat the wiping procedure one more time, concentrating on collecting settled dust from edges and corners within the selected surface area (see Fig. 1, Fig. 2, and Note 10).

7.1.1.9 Fold the wipe again with the collected dust side folded inward and insert the wipe into a sample container (6.3).

7.1.1.10 Label the sample container with sufficient information to uniquely and indelibly identify the sample.

7.1.1.11 Record the dimensions (in square centimetres) of the selected sampling area (that is, the internal dimensions defined by the template or the taped area) or that the sample is a blank.

7.1.1.12 Discard the gloves.

7.2 Collect field blanks at a minimum frequency of 5% (at least one field blank for every 20 wipe samples collected). The minimum number of field blanks to collect for each batch of

wipe samples used should be three. Place field blanks in sample containers and label these samples in the same fashion as the collected surface dust samples (see 7.1.1.10).

7.3 Follow sampling chain of custody procedures to ensure sample traceability. Ensure that the documentation which accompanies the samples is suitable for a chain of custody to be established in accordance with Guide D4840.

8. Records

8.1 Field data related to sample collection shall be documented in a sample log form or field notebook (see Note 11). If field notebooks are used, then they shall be bound with pre-numbered pages. All entries on sample data forms and field notebooks shall be made using ink, with the signature and date of entry. Any entry errors shall be corrected by using only a single line through the incorrect entry (no scratch outs), accompanied by the initials of the person making the correction, and the date of the correction (see Note 12).

8.1.1 *Electronic Laboratory Notebooks*—If electronic laboratory notebooks, or ELNs, are used in lieu of a field notebook or sample log, procedures shall be implemented to assure the integrity of the data recorded, including prevention of falsification or other unauthorized changes, and regular backup of data.

NOTE 11—Field notebooks are useful for recording field data even when preprinted sample data forms are used.

Licensee=Sargent & Lundy/5915733100, User=Nielson, David Not for Resale, 04/28/2021 18:09:41 MDT $\ensuremath{\text{Note}}$ 12—These procedures are important to properly document and trace field data.

8.2 At a minimum, the following information shall be documented:

8.2.1 Project or client name, address, and city/state/country location.

8.2.2 General sampling site description.

8.2.3 Information as to the specific collection protocol used (for example, template-assisted; "Z"-wiping pattern, etc.).

8.2.4 Information as to the specific type or brand of wipes used, including manufacturer and lot number.

8.2.5 Information on quality control (QC) samples: which samples are associated with what group of field blanks.

8.2.6 For each sample collected (including field blanks): an individual and unique sample identifier and date of collection. This information shall be recorded on the sample container in addition to the field documentation.

8.2.7 For field samples (not including field blanks), record in field documentation (field notebook or sample log form) the dimensions of each area sampled (in square centimetres).

8.2.8 For each sample collected: name of person collecting the sample, and specific sampling location information from which the sample was removed.

9. Keywords

9.1 metals measurement; sample collection; settled dust; surfaces; wipe

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

ATTACHMENT C

A Leachate Pond Geomembrane After 25 years of Service

Industrial Fabrics Association International

Categories

Awards

IAA IFF

Showstoppers **Business** Safety Conference **Division News** Editorial Expo News Feature Case Study Containment Environmental **Erosion Control** Reinforcement Separation Transportation **GMA** Techline Perspective **Final Inspection** From Our Readers GeoDallas Watch GeoWatch In the Classroom In the Industry Markets Geosynthetics Materials Drainage Materials

Erosion Control

A leachate pond geomembrane after 25 years of service

February 1st, 2019 / By: Richard Thiel / Feature

This article reports on the evaluation of an exposed geomembrane liner in a landfill leachate pond after being in service for 25 years. The evaluation was performed in two

FIGURE 1 Aerial view of operational leachate and rainwater ponds built 25 years ago

campaigns: in August 2014 and in May 2018. The purpose of the evaluation was to determine the condition of the geomembrane and to provide a recommendation to the owner on whether or not it was in need of imminent replacement. The results of the evaluation indicate that the geomembrane appears to be in decent condition and is expected to last some number of additional years, but the definitive number is not possible to estimate. Based on the work performed in 2014, it seems that the material is still readily repairable, if need be. Recommendations for future periodic inspection and testing are provided herein.

The leachate pond is a 5-million-gallon (19-million-L) double-lined leachate storage pond that was constructed

Materials Geocells Geogrids Geomembranes Geosynthetic **Clay Liners** Geotextiles **Member News** News **Company News** COVID-19 **Events GMA News GSI News** IGS-NA (NAGS) Industry News **Industry News** Panorama People Updates **Premier Product** Preview **Press Release Press Release Products ShowStoppers** Projects Resources Designer's Forum Technical **Specifications** Testing & Codes White Papers

for the Headquarters Landfill in Cowlitz County, Wash., in 1993. The pond is designed with a dividing berm that partitions the pond into two equal, symmetric halves. The dividing berm is lined over its top so that the liner system is continuous between the two pond halves. The southern half of the pond has historically contained various levels of clean rainwater, with only occasional containment of leachate toward the end of a few wet winters. The northern half of the pond has historically been the primary management basin for leachate storage, and its sump is used for leachate transfer via an outlet pipe. **Figure 1** shows an aerial view of the ponds.

The pond was operated for 21 years by Weyerhaeuser for its forest products landfill, the leachate of which derived from pulp and paper industrial waste, ash, and related industrial and construction waste. In 2014 the county purchased the landfill, and since that time the landfill has been operated as a mixed municipal solid waste (MSW)/industrial waste landfill.

See.	termined unless d consid in both	Analise Trench Sample Result	Service Reality and Service Reality and Stephen Tellue	Support J Single-Analogy Single-Exposed Result (114	Diff times 2014 Log. Maps and Anchor Trench	South pand adverged weak (015	S.Ponifani S.Ponifani 2014 A.T.	Sample & Burth pand submerged mult 2016	A front and 1014 AT
Robert	the latest	40			1910	- 10	Thin	-	No.
Benaty	101010-001	10	Antyscon	214	New	112	ALC: N	143	1000
Generation	10.04146	329	No.	18	ikers.	141	hine	111	line of
13 Repartment	+62	01	-		10.000		Here	4	-
101	194	820	August and	.702.	itere .	515	~10(2)	. 12	with:
10.000	54	104	Annennen	1711	Them	100.000		Mildow	
Incode paint attemptio	-	- 441	-	- 10	1.14	1.0	~	10	- 11
Reads into	127 ppr (school)	78	1914	- 14	-24	10	-478	- 100	-04
fanata yaitt alongatian	- 14		-		These .		them	- 10	1014
Brude tell stang-	in the last set of		New	40	- 24	- 20	-10	- 107	-0%
Panchare	.01544	128	Automas .	108	Here	10	-01	120	-76
See.	.116	10	horsenan	- 10	Three .	-44	- 10	11	-49
Test DIT	10.00	199	and a second		-04	34	.796		-100
HE-DT	10	40	-	- 84	-04	118	-176	-275	-4%
MARCE.	748	and the second	description of	of Married	There .	- 100	Marrie	100	No.

TABLE 1 Summary of test results for headquarters landfill facility leachate pond primary geomembrane The 80-mil (2mm) primary exposed geomembrane that was installed in 1993 was manufactured by GSE Environmental (then Gundle) as a custom order with three co-

extruded layers. The top layer is textured high-density polyethylene (HDPE) with a white pigment. The middle layer is very low density polyethylene (VLDPE). The bottom layer is smooth HDPE containing extra carbon black to make it electrically conductive for spark testing. The original project specifications and conformance testing results for the primary pond geomembrane are included in **Table 1**.

Sampling strategy and field observations

In 2014 two above-water samples were taken and tested. Sample #1 was taken from the anchor trench. Sample #2 was taken from the middle of the berm slope on the southern pond (which is south facing) near the crest of the slope. The sample was 12-inches wide × 48-inches long (30-cm × 122-cm) (parallel to the slope crest). The hole was easily repaired with HDPE geomembrane that was on-site for construction of a new landfill cell.

In May 2018 two "below-water" samples were taken from rub sheets in the bottoms of both the southern and northern halves of the pond that had been largely submerged for the past 25 years. Sample #3 was taken from the southern pond that typically contained clean rainwater, and Sample #4 was taken from the northern pond that had continuously contained landfill leachate. Due to sediment and sludge buildup around the outlet in the sump of the northern pond, that pond was cleaned in April 2018. The southern pond also had to be completely emptied and cleaned at this time, because it had been used temporarily for leachate management in the past winter and needed to be prepared to store clean water again. The cleaning activities in both ponds at this time allowed access to the pond bottoms where samples could be cut from existing loose rub sheets. It should be noted that the conditions of the rub sheets would be conservative in the sense that both sides of the rub sheets had been exposed to the contained fluids, whereas for the primary geomembrane, only the upper side would have been exposed to the contained fluids.

Visual inspection of the exposed and cleaned geomembrane in both halves of the pond indicated the geomembrane to be in good condition with no signs of degradation or cracks. While

FIGURE 2 Patching a hole in pond liner where a sample was taken for testing in May 2014. The photograph shows trial weld being performed

no repair welds were required in where new HDPE is being welded to old pond liner.

2018, the repair welds performed in 2014 appeared to be successful with excellent trial-weld field test observations. **Figure 2** shows a patch being installed on the sampling location, **Figure 3** shows the beginning of removing sludge from the northern half of the pond in 2018, and **Figure 4** shows the empty northern pond after cleaning.

Results

The samples that were taken in 2014 and 2018 were tested for a suite of index and performance parameters. A summary of the results for both the 2014 and 2018 testing campaigns is presented in **Table 1**. The anchor trench sample appears to meet or exceed the original project specifications. Where there are actual test results from 1993 (thickness, density, carbon black content, carbon black dispersion, tensile break strength and tensile break elongation), there appear to be no degradation in the anchor trench sample. We note there are still substantial oxidative induction time (OIT) and high-pressure oxidative induction time (HP-OIT) values in the anchor trench sample that would exceed current GRI-GM13 standards for new geomembranes. The stress crack results from the single point-notched constant tensile load test (SP-NCTL) are exceptional, which is undoubtedly due to the VLDPE core. Having this stress crack-resistant core was the original purpose of coextruding with VLDPE.

FIGURE 3 April 2018 cleaning sludge from northern half of pond

Comparing the test results between the 2014 abovewater exposed sample, the 2018 belowwater sample from the northern (leachate) side of the pond,

and the 2018 below-water sample from the southern (rainwater) side of the pond indicates very interesting

patterns of degradation. With the exception of HP-OIT, the least amount of degradation (as indicated by the test results) occurred in the below-water sample from the leachate (northern) side of the pond. This result was the opposite of what was expected. For HP-OIT, the least amount of degradation occurred in the above-water sample.

The greatest amount of degradation, across the board, occurred in the below-water sample from the rainwater (southern) side of the pond.

Degradation in the exposed above-water sample from 2014 was generally midway between the other two samples, with the exceptions of melt flow index (MFI) and HP-OIT, where it had the least amount of degradation. The small amounts of apparent degradation in tensile yield strength, puncture and tear (all < 10%) in the below-water samples is probably not substantial.

The increase in MFI of 14% in both of the below-water samples is not excessive but is relatively substantial evidence that some level of polymer-chain breakdown is

FIGURE 4 April 2018 northern half of pond after cleaning

occurring in the primary geomembrane as a result of submergence. However, it is not known in which of the three coextruded layers of the primary geomembrane this might be occurring. That could be determined through more sophisticated testing.

The most significant test parameters of concern that indicate substantive degradation are the OIT test results that reveal a substantial amount of depletion of the antioxidant package. These results indicate that even though there was some significant degradation, especially in the rainwater side of the pond, there are still ample stabilizers present in the material to protect it for some time, but exactly how much time is not predictable. The key performance test result is the SP-NCTL stress crack test data, in which all samples continue to perform well.

Discussion

Why was the below-water leachate sample the least degraded? Perhaps the leachate contains a soup of dissolved solids and compounds that was not aggressive in using up or dissolving the antioxidant package and also provided a low diffusion gradient potential for leaching and blooming of antioxidants from the interior of the geomembrane to its surface, and thus preserved the antioxidants within the geomembrane.

Conversely, the clean rainwater may create a high diffusion-gradient differential to pull antioxidants to the surface of the geomembrane. The "very clean" and aggressive pure rainwater may also react with the antioxidants or cause them to move out of the geomembrane and go into solution with the water. In the same manner, the aggressive and very clean water may have also attacked the polyethylene resin at a higher rate than either the leachate or the atmosphere, resulting in apparent degradation in tensile properties.

One interesting conclusion that could be derived from the testing is that if the geomembrane is going to experience failure, it will likely occur on the clean rainwater side of the pond before the leachate side of the pond. This is good news for the pond operator who is wondering when the liner should be replaced. If a failure would occur significantly in advance in the rainwater side of the pond compared to the leachate side, then that may allow adequate response time and not be of great consequence because the water is clean. The clean (southern) side of the pond could be immediately emptied and relined, followed by a transfer of leachate to the relined southern side, and a subsequent relining of the northern side, hopefully before the northern side fails.

While this study was very fortunate in being able to evaluate four samples from a range of exposure conditions (anchor trench, above-water exposed, belowwater leachate and below-water rainwater), there could exist elevation zones in both halves of the pond, such as at the waterline, or various UV exposure locations that created a higher level of degradation than any of the samples that were retrieved.

FIGURE 5 Photograph from 2014 of original razor-blade slit that extended through the white surface into the VLDPE core. During the NCTL stresscrack test, the sharp notch eventually blunted and did not propagate, which is a testimony to the functionality of the VLDPE core to resist stress cracking. No photographs were taken in 2018, but the NCTL results indicated continued very strong performance for this test. In 2014 the testing laboratory took some close-up photographs (e.g., Figure 5) of the razorblade slit in the test specimen during the SP-NCTL test. It was clear. even in such photographs, that blunting of the sharp razor cut had occurred during the test due to the performance of the VLDPE

core and that cracks will not easily expand through the VLDPE layer. This provides further confidence that a sudden failure may not be catastrophic, especially considering the presence of a complete secondary geomembrane and leakage collection layer between the primary and secondary geomembranes.

Conclusions, recommendations, qualifiers and other considerations

Field observations indicated that the exposed geomembrane is in decent shape after 25 years of service and shows no visible signs of degradation. There does not appear to be any leakage of leachate into the leakage detection layer in these double-lined ponds, which is again indicative of positive primary liner performance.

Laboratory test results of geomembrane samples taken

from the northern and southern halves of the pond support the field observations and indicate that there are still ample stabilizers present to protect this material for some years to come, perhaps even on the order of five to ten years. We must add a caveat that these conclusions with the fact that a limited number of samples were taken, and there could be more critical areas that were not detected.

Based on these results, the team concluded that the leachate pond can continue in operation in the same manner it has been since put into service 26 years ago. The owner was advised to obtain additional samples from the southern pond in three years' time and that it be tested for the same parameters that were tested in this study. This will allow for a better estimate to be made of remaining lifetime. The sample would be of highest value if it could be taken in the summer when the water level is low and a trial weld be performed to continue to assess liner repairability. In addition, the leakage detection sumps should continue to be monitored. Some leakage can be allowed to the extent that it would not exceed 12 inches (30 cm) of head on the secondary liner system outside the sumps. Since there is a dual-basin system in the pond, one side of the pond could be taken out of service, if need be, while the pond was operated from the other side.

Richard Thiel, P.E., is the president of Thiel Engineering in Oregon House, Calif.

More News:

Amsterdam Schiphol Airport: Effective stormwater management

Fabtech Australia replaces huge anaerobic lagoon geosynthetic cover

GMA Techline: Anchors, tie-rods and whalers

GMA Techline: Geomembranes for reinforcement?

GMA Techline: Installing a geomembrane low to high gradient?

Modular geosynthetics construction

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment

Comments are moderated and will show up after being approved.

Name *

Email *

Website

Save my name, email, and website in this browser for the next time I comment.

Working Together to Advance the Industry

Geosynthetics Magazine is a publication of the Industrial Fabrics Association International

LEARN MORE ABOUT IFAI

□ SIGN UP FOR E-NEWSLETTER

Copyright ©2021 Industrial Fabrics Association International. All rights reserved.

1801 County Road B W Roseville, MN 55113-4061, USA

651 222 2508 or 800 225 4324

Terms of Service Privacy Policy

				Privacy Polic							
Publications	Company	Support	Membership	Geosynthetics							
Specialty Fabrics Review	About IFAI Events	Contact Advertise	Member Benefits Member Directory								
Geosynthetics	Divisions	Support	Join IFAI Today								
InTents	Publications	FAQ									
Marine Fabricator											
Advanced Textiles Source											
Fabric											
Architecture											
Become a member today and get discounted pricing on registration JOIN IFAI TODAY											
			Connect								

CCR Clean Closure of Joliet Pond 2 Liner Repair Performance Testing Requirements Attachment 1

The performance tests for the repairs of the liner in Pond 2 shall be conducted in accordance with Section 3.05 Field Quality Control located in the Guidelines for Installation of HDPE Geomembrane Installation created by the International Association of Geosynthetic Installers, revised November 1, 2015. The pertinent sections from that document for performance testing are provided below and shall be followed to verify the repair installations.

- A. Field Seam Non-destructive Testing
- 1. All field seams shall be non-destructively tested by the Geomembrane Installer over the full seam length before the seams are covered. Each seam shall be numbered or otherwise designated. The location, date, test unit, name of tester and outcome of all non-destructive testing shall be recorded and submitted to the Owner's Representative.
- 2. Testing should be done as the seaming work progresses, not at the completion of all field seaming, unless agreed to in advance by the Owner's Representative. All defects found during testing shall be numbered and marked immediately after detection. All defects found should be repaired, retested and remarked to indicate acceptable completion of the repair.
- 3. Non-destructive testing shall be performed using vacuum box, air pressure or spark testing equipment.
- 4. Non-destructive tests shall be performed by experienced technicians familiar with the specified test methods. The Geomembrane Installer shall demonstrate to the Owner's Representative all test methods to verify the test procedures are valid.
- 5. Extrusion seams shall be vacuum box tested by the Geomembrane Installer in accordance with ASTM D 4437 and ASTM D 5641 with the following equipment and procedures:
 - a. Equipment for testing extrusion seams shall be comprised of but not limited to: a vacuum box assembly consisting of a rigid housing, a transparent viewing window, a soft rubber gasket attached to the base, port hole or valve assembly and a vacuum gauge; a vacuum pump assembly equipped with a pressure controller and pipe connections; a rubber pressure/vacuum hose with fittings and connections; a plastic bucket; wide paint brush or mop; and a soapy solution.
 - b. The vacuum pump shall be charged and the tank pressure adjusted to approximately 35 kPa (5 psig). c. The Geomembrane Installer shall create a leak tight seal between the gasket and geomembrane interface by wetting a strip of geomembrane approximately 0.3m (12 in) by 1.2m (48 in) (length and width of box) with a soapy solution, placing the box over the wetted area, and then compressing the box against the geomembrane. The Geomembrane Installer shall then close the bleed valve, open the vacuum valve, maintain initial pressure of approximately 35 kPa (5 psig) for approximately five (5) seconds. The geomembrane should be continuously examined through the viewing window for the presence of soap bubbles, indicating a leak. If no bubbles appear after five (5) seconds, the area shall be considered leak free. The box shall be depressurized and moved over the next adjoining area with an appropriate overlap and the process repeated.
 - d. All areas where soap bubbles appear shall be marked, repaired and then retested.
 - e. At locations where seams cannot be nondestructively tested, such as pipe penetrations, alternate nondestructive spark testing (as outlined in section B below) or equivalent should be substituted.

CCR Clean Closure of Joliet Pond 2 Liner Repair Performance Testing Requirements Attachment 1

- f. All seams that are vacuum tested shall be marked with the date tested, the name of the technician performing the test and the results of the test
- 6. Double Fusion seams with an enclosed channel shall be air pressure tested by the Geomembrane Installer in accordance with ASTM D 5820 and ASTM D 4437 and the following equipment and procedures:
 - a. Equipment for testing double fusion seams shall be comprised of but not limited to: an air pump equipped with a pressure gauge capable of generating and sustaining a pressure of 210 kPa (30 psig), mounted on a cushion to protect the geomembrane; and a manometer equipped with a sharp hollow needle or other approved pressure feed device.
 - b. The testing activities shall be performed by the Geomembrane Installer. Both ends of the seam to be tested shall be sealed and a needle or other approved pressure feed device inserted into the tunnel created by the double wedge fusion weld. The air pump shall be adjusted to a pressure of 210 kPa (30 psig), and the valve closed. Allow two (2) minutes for the injected air to come to equilibrium in the channel, and sustain pressure for five (5) minutes. If pressure loss does not exceed 28 kPa (4 psig) after this five minute period the seam shall be considered leak tight. Release pressure from the opposite end verifying pressure drop on needle to ensure testing of the entire seam. The needle or other approved pressure feed device shall be removed and the feed hole sealed.
 - c. If loss of pressure exceeds 28 kPa (4 psig) during the testing period or pressure does not stabilize, the faulty area shall be located, repaired and retested by the Geomembrane Installer.
 - d. Results of the pressure testing shall be recorded on the liner at the seam tested and on a pressure testing record.
- B. Spark testing should be done in areas where both air pressure testing and vacuum testing are not possible.
 - 1. Equipment for spark testing shall be comprised of but not limited to a hand held holiday spark tester and conductive wand that generates a high voltage.
 - 2. The testing activities shall be performed by the Geomembrane Installer by placing an electrically conductive tape or wire beneath the seam prior to welding. A trial seam containing a non-welded segment shall be subject to a calibration test to ensure that such a defect (nonwelded segment) will be identified under the planned machine settings and procedures. Upon completion of the weld, enable the spark tester and hold approximately 25mm (1 in) above the weld moving slowly over the entire length of the weld in accordance with ASTM 6365. If there is no spark the weld is considered to be leak free.
 - 3. A spark indicates a hole in the seam. The faulty area shall be located, repaired and retested by the Geomembrane Installer.
 - 4. Care should be taken if flammable gases are present in the area to be tested.

CCR Clean Closure of Joliet Pond 2 Scope-Of-Work

- **The vendor shall** remove all solids from Pond 2 and dispose at a licensed disposal facility. The vendor shall use 7,400 tons of material removal (not including liquids) as the estimate for this bid. The vendor shall be paid based on the actual tonnage of the material disposed at the licensed disposal facility. The actual tonnage will be obtained from the licensed disposal facility.
- **The vendor shall** supply all equipment needed for accomplishing this scope of work:
 - The vendor shall remove ALL material from Pond 2, including the entire extent of the warning layer material. (This is a project to clean Pond 2 of all CCR; this is not a simple dredging project in which room is being made for additional solids settling).
 - Vendor shall perform the following:
 - Wash down sides of Pond 2 to an initial clean condition (NRG shall determine cleanliness).
 - Dewater Pond 2 as needed to dredge. The water from this operation shall be placed into pond 1 after contractor filters the water through a filter made for this purpose (e.g., "geotube", "dirtbag", "dewatering bag", etc.). THE WATER PLACED IN POND 1 SHALL BE VISIBLY CLEAR. Visibly clear shall be determined by collecting water in a clear container and allowing water to stand for two (2) minutes at which point it will be viewed by NRG.
 - Plans to be detailed by contractor in bid
 - All removed solids will be transported to a licensed disposal facility.
 - Plans to be detailed by contractor in bid and shall comply with 35 III. Adm. Code 845.740(c).
 - Repair any and all damage to the 60 mil pond liner which results from this scope-of-work. Liner Repairs to be made by sub-contracting the repairs to Clean Air and Water Systems LLC of Dousman, WI, 262-965-4369 or equivalent repair vendor approved by NRG. Repair material required for restoration of the liner integrity shall be the responsibility of the contractor.
 - The Contractor shall detail repair plans in their bid.
 - Attachment 1 contains the liner repair testing requirements.
- **The vendor shall** provide and manage pumping equipment and filtering equipment as needed to dewater Pond 2 such that there is no release of sediment laden water to the environment. The vendor shall dispose of water from dewatering by depositing same into the adjacent Pond 1. All water disposed of (deposited into) Pond 1 shall be visibly clear of suspended solids. Vendor may propose alternate water disposal method in bid proposal for NRG's consideration.
- **The vendor shall** disposal of dewatering liquids such that there is no release of liquids to the public roadways or the environment.
- The vendor shall make any and all necessary repairs to Pond 2 access roads if damaged.
- **The vendor shall** minimize the occurrence of dust. We cannot have any dust complaints from neighbors preventative actions need to be taken before trucking begins.
 - Plan to be detailed in bid.
- **The vendor shall** provide means to clean trucking equipment to avoid getting material on public roads/byways and Joliet Station roadways.
 - Plan to be detailed in bid.

- **The vendor shall** keep track of material removed in a logbook w/ three-way matching/comparison between truck tickets, gatehouse log and invoicing.
- **The vendor shall** provide weight capacity (tons) per truck prior to commencing work. Truck capacity should be w/in 10% of actual capacity.
- **The vendor shall** submit work-loaded schedule with bid proposal. Schedule shall include contingency plan for 10 days of weather-related delays.
- **The vendor shall** leave the area around Pond 2 in the same clean condition as it was in at the beginning of project.
- The vendor shall provide safety spotter at Pond 2 whenever heavy equipment is being used.
- The vendor shall provide all goods, materials, labor and supervision, tools and equipment, and technical expertise to accomplish this scope of work. This vendor supplied equipment shall include, but is not limited to, dewatering pumps and dewatering filters, high pressure washers, excavation and associated heavy equipment, transport trucks, street sweepers (as needed for public roadways), water wagons (for dust control as needed), and Vac Trucks.

<u>ATTACHMENT 6</u> FACILITY/COMPONENT PLANS AND SPECIFICATIONS

Attachment 6 – No Attachment

<u>ATTACHMENT 7</u> CLOSURE CONSTRUCTION

Attachment 7-1 – Final Closure Plan
FINAL CLOSURE PLAN POND 2 JOLIET #29 STATION JANUARY 25, 2022

1.0 Introduction [845.720(b)]

Midwest Generation, LLC (Midwest Generation) currently operates the natural gas-fired generating station, referred to as Joliet #29 Generating Station, located in Joliet, Illinois ("site" or "generating station"). MWG converted the generating station from coal to natural gas in 2016. As part of the previous coal-fired operations, the station operated two ash ponds (Ponds 1 and 2) and a service water basin (Pond 3). MWG removed all of the coal combustion residuals ("CCR") from Pond 1 and decontaminated the liner before October 2015, and repurposed the pond as a low volume wastewater pond.¹ Pond 3 is a *de minimis* pond and is not a CCR surface impoundment. Pond 2 was used for CCR management/storage until 2019. In 2019, the CCR was removed and all other portions of the exposed liner have been decontaminated. Because Pond 2 was used as a CCR surface impoundment after October 2015, Pond 2 is regulated under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). Pond 2 is not currently in service, and no liquids or wastewater is directed into the pond.

As required by 845.700(b), Midwest Generation will be closing Pond 2. A preliminary closure plan was submitted as part of the Joliet 29 Pond 2 operating permit application and is finalized as part of submitting the construction permit application to execute the closure of Pond 2. This final closure plan has been executed in accordance with 845.720(b), which includes completing a closure alternatives analysis. Pursuant to 845.710, a closure alternatives analysis was completed prior to selecting the closure method that will be used for Pond 2 and described in this final closure plan. The closure alternatives analysis was performed to evaluate the closure methods involving closure by removal and closure in place and is included as part of this final closure plan in Attachment 1.

Midwest Generation has filed a Petition for an Adjusted Standard with the Illinois Pollution Control Board requesting that Midwest Generation may reuse the existing HDPE liner in Pond 2. *In the Matter of: Petition of Midwest Generation for an Adjusted Standard from 845.740(a) and Finding of Inapplicability of Part 845*, PCB AS21-02. With the petition, "Midwest Generation plans to keep the structure of the pond intact for use for non-CCR material". Approval of the petition would allow Midwest Generation to keep intact the existing inlet and outlet structures as well as the existing 60-mil HDPE geomembrane liner that was installed in 2008. The petition would seek to remove the existing warning layer and seek to decontaminate the existing geomembrane liner.

¹ As a low volume wastewater pond, Pond 1 receives wastewater from other sources at the Station except CCR.

The closure alternatives analysis report evaluated three different closure methods. The three different methods evaluated consisted of the following:

- Closure by removal in accordance with Section 845.740;
- Closure by Removal based on Midwest Generation's Adjusted Standard Petition;
- Closure in place with a final cover system in accordance with Section 845.740.

The closure alternatives analysis identified that closure by removal based on Midwest Generation's Adjusted Standard Petition is as effective at protecting the environment when compared to the other two options and will cause the least disturbance to the surrounding neighborhood and is selected as the chosen closure alternative. This final closure plan identifies the steps necessary to execute the closure and the schedule to complete the closure for Pond 2.

2.0 Closure Narrative [845.720(a)(1)(A)]

The closure of Pond 2 will be by removal in accordance with Ill. Adm. Code 35 Part 845.740(a) and Midwest Generation's Adjusted Standard Petition. The CCR was previously removed from Pond 2 in 2019 and only the warning layer remains within the bottom of the pond. Executing the closure outlined in this plan would be to remove the remaining warning layer and decontaminate the geomembrane liner, inlet trough, and outlet structure.

Executing the closure by removal for Pond 2 is a multi-step process. First, the remaining CCR was removed from the sides of the liner using an excavator to pull down as much of the material as possible from the slopes onto the warning layer. Next the liner side slopes were pressure washed to remove the rest of the material on the slope. The previously described work was completed in 2019. The next steps would be to remove the warning layer from the base of Pond 2 using an excavator or front end loader and hauled off-site for disposal. The excavator or front end loader would also use a rubber surface on the edge of the bucket to protect the geomembrane as the material is scooped. Once the warning layer material is removed from the base, the entire slopes and base of Pond 2 would be pressure washed. The liner slopes and base would be visually inspected and any damages observed would be repaired. After the liner is clean and any necessary repairs are made, wipe samples would be collected and analyzed to confirm the geomembrane liner has been decontaminated. The wipe sampling would be performed in accordance with ASTM D6966-18 and laboratory testing would be performed for metals and other chemical constituents, as necessary. One wipe sample and test would be performed per acre of geomembrane liner in Pond 2. The above described closure process was included in Midwest Generation's petition for an adjusted standard as Exhibit 3.

Once the liner decontamination process is complete and verified, Pond 2 will be used to manage the Joliet 29 station's non-CCR waste streams. These non-CCR waste streams are the service-water/low volume wastewater from the RO sand filter backwash, the west area basin, the former

coal pile runoff pump discharge, and the plant drains, including the Station floor drains, and roof drains and area drains.

3.0 CCR Removal and Decontamination [845.720(a)(1)(B)]

Closure of Pond 2 will be through removal in accordance with Midwest Generation's Adjusted Standard Petition and 845.740(a). The first step in the closure process is to remove any precipitation that has accumulated within Pond 2 because Pond 2 has not been in service since the spring of 2019 when the CCR was removed. The accumulated water will be mechanically pumped from Pond 2 and discharged into Pond 1 using filtration as necessary to remove any total suspended solids. Excavating sumps, excavating trenches and utilizing earth moving equipment to pile the warning layer may also occur to promote drainage and further dewater the pond, as needed.

The warning layer will be removed through mechanical excavation once the pond has been sufficiently dewatered. A mechanical excavator or other type of loading equipment will excavate the warning layer material and load it into dump trucks. Once the warning layer material has been mechanically loaded it will be hauled to a regulated disposal facility. The trucks hauling the warning layer material will transport the material in accordance with 84.740(c)(1), which includes carrying disposal manifests and moving the material in accordance with a transportation plan. As the warning layer material is being excavated and loaded, on-site fugitive dust control measures will be implemented as needed. Any warning layer remnants will be removed through washing/rinsing and/or vacuuming or another method as determined by the cleaning contractor. The warning layer remnants will be containerized and hauled offsite to a permitted disposal facility. In addition, any CCR remnants will be removed from the pond inlet and outlet structures through mechanical means and also by washing/rinsing. The CCR remnants will be containerized and hauled offsite to a permitted disposal facility.

CCR removal and decontamination will be considered complete when the warning layer has been removed from the pond and the inlet and outlet structures have been decontaminated. The decontamination process will be determined through wipe sampling conducted at a ratio of one wipe test every acre of liner and the wipes will be laboratory analyzed. In addition, groundwater monitoring in accordance with 845.740(b) will be conducted for three years after the completion of the warning layer removal and decontamination.

4.0 Closure with CCR Left in Place [845.720(a)(1)(C)]

Closure of Pond 2 will be through removal of CCR and decontamination of areas affected by CCR. Therefore, this requirement is not applicable.

5.0 Maximum Inventory of CCR [845.720(a)(1)(D)]

The estimated maximum inventory of CCR on-site contained in Pond 2 is approximately 45,000 cubic yards based upon the estimated quantity prior to the pond's cleaning in the spring of 2019.

6.0 Largest Area of CCR Requiring a Final Cover [845.720(a)(1)(E)]

Pond 2 will be closed by removing the CCR in accordance with 845.740 and the Adjusted Standard Petition; therefore, this section is not applicable to this closure plan.

7.0 Closure Schedule [845.720(a)(1)(F)]

Implementation of closure through removal of CCR is estimated to require 2 years. Closure is anticipated to begin in 2022 and estimated to be completed sometime in 2024. Prior to initiation of closure, a notice of intent to close will be prepared in accordance with §845.730(d) and an Illinois Environmental Protection Agency (IEPA) construction permit will be obtained. A preliminary schedule of anticipated closure activities is included below. Some of the activities noted in the table below can occur at the same time and the schedule time listed is the anticipated time to complete both activities.

Closure Activity	Estimated Duration			
Complete Closure Construction Documents and Obtain IEPA Closure Construction Permit	15 months			
Dewater	1 month			
Excavate Warning Layer	1-2 weeks			
Decontaminate Pond Liner	1 month			
Decontaminate Pond Inlet & Outlet Structures	1 month			
Closure Certification and Report	6 months			

Closure Schedule

8.0 Initiation and Completion of Closure Activities [845.730 & 845.760]

Closure activities will commence when one or more of the following conditions have occurred:

- No later than 30 days after the date on which the CCR unit received the known final receipt of CCR or non-CCR waste;
- No later than 30 days after the removal of the known final volume of CCR for the purpose of beneficial use;
- Within two years of the last receipt of waste for a unit that has not received CCR or non-CCR waste; or
- Within two years of the last removal of CCR material for the purposes of beneficial use.

Upon completion of the IEPA approved closure activities, a closure report and closure certification will be submitted to IEPA in accordance with 845.760(e). The closure report will contain the following information, 1) engineering and hydrogeology reports, including monitoring well completion reports and boring logs, all CQA reports, certifications, and designations of CQA officers-in-absentia required by Section 845.290; 2) photographs, including time, date and location information of the photographs, of the final cover system and groundwater collection system, if applicable, and any other photographs relied upon to document construction activities; 3) a written summary of closure requirements and completed activities as stated in the closure plan and in Part 845; and 4) any other information relied upon by the qualified professional engineer in making the closure certification.

In accordance with 845.760(f), notification of closure of a CCR unit will be made within 30 days of IEPA's approval of the submitted closure report and closure certification. The notification will include certification from a qualified professional engineer, as required by 845.760(e)(2) and will be placed in the facility's operating record.

9.0 Closure Plan Amendments [845.720(a)(3)]

This Closure Plan will be amended in accordance with 845.720(a)(3). If a change in the operation of Pond 2 would be substantially affect the content of this Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after closure activities have commenced. Amendments to this Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with 845.720(a)(4).

10.0 Professional Engineer's Certification [845.720(a)(4)]

This Closure Plan has been prepared to meet the requirements of Ill. Adm. Code Title 35 845.720(b).

1/25/22

Joshua D. Davenport, P.E.' Illinois Professional Engineer

-

Attachment 7-2 – Closure Alternatives Analysis

KPRG and Associates, Inc.

CCR COMPLIANCE CLOSURE ALTERNATIVES ANALYSIS REPORT JOLIET 29 POND 2

Midwest Generation, LLC Joliet #29 Generating Station 1800 Channahon Road Joliet, Illinois

Prepared By: KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

January 26, 2022

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 PHYSICAL SITE CONDITIONS
2.1 Summary of Geology and Hydrogeology
2.1.1 Geology
2.1.2 Hydrogeology
3.0 IDENTIFICATION OF CLOSURE ALTERNATIVES
3.1 Complete Closure by Removal in Accordance with Section 845.740 and the Adjusted Standard Petition
3.2 Closure in Place with a Final Cover System
4.0 CLOSURE ALTERNATIVES EVALUATION CRITERIA 10
5.0 GROUNDWATER MODELING 12
5.0 SUMMARY
7.0 PROFESSIONAL ENGINEER'S CERTIFICATION

FIGURES

1 – Site Map

TABLES

- 1 Appendix III Groundwater Analytical Results through 2021
- 2 Appendix IV Groundwater Analytical Result through 2021
- 3 Closure Alternatives Evaluation
- 4 Closure Alternatives Analysis Cost Estimates Comparison

ATTACHMENTS

1 - Groundwater Modeling Plume Distributions

1.0 INTRODUCTION

Midwest Generation, LLC (Midwest Generation) currently operates the natural gas-fired generating station, referred to as Joliet #29 Generating Station, located in Joliet, Illinois ("site" or "generating station"). MWG converted the generating station from coal to natural gas in 2016. As part of the previous coal-fired operations, the station operated two ponds (Ponds 1 and 2) and a service water basin (Pond 3). Ponds 1 and 3 are not CCR surface impoundments. MWG removed all of the coal combustion residuals ("CCR") from Pond 1 and decontaminated the liner before October 2015. Pond 1 is now a low volume wastewater pond.¹ Pond 3 was never a CCR surface impoundment. See Figure 1 for a site map of the facility. Pond 2 was used for CCR management/storage until 2019. In 2019, the CCR was removed and all other portions of the exposed liner have been decontaminated. Because Pond 2 was used as a CCR surface impoundment after October 2015, Pond 2 is regulated as an existing surface impoundment under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). Pond 2 is not currently in service, and no liquids or wastewater is directed into the pond.

In accordance with 35 Illinois Administrative Code Part 845.710(b), a Facility (Owner/Operator) is required to initiate and complete a closure alternatives analysis prior to selecting a final closure method.

This Closure Alternative Analysis is structured to provide the following information:

- The proposed closure alternatives that will be analyzed,
- An analysis of the closure alternatives that meets the requirements set forth in Section 845.710(b)(1) through 845.710(b)(4),
- The results of groundwater contaminant modeling including how the modeled closure alternative will comply with the applicable groundwater protection standards, and
- A description of the fate and transport of contaminants associated with each closure alternative over time, including seasonal variations.

This document presents the results of the closure alternatives analysis for Pond 2 that was completed in accordance with 845.710.

¹ As a low volume wastewater pond, Pond 1 receives wastewater from other sources at the Station except CCR.

2.0 PHYSICAL SITE CONDITIONS

Pond 2 was formally used as a CCR surface impoundment. Pond 2 was constructed with embankments on the south, east, and west sides; the north side is incised. The original ground surface around Pond 2 ranged from 526 ft above mean sea level (amsl) to 535 ft amsl. The west embankment for Pond 2 is topped by the access road that divides Pond 1 from Pond 2 and the west side of the embankment is the outlet side/outlet structure of Pond 1. The original ground surface of the west embankment is approximately 535 ft amsl. The east embankment of Pond 2 is the outlet side/outlet structure of the pond and abuts an access road from Channahon Road that enters the station. The original ground elevation of the east embankment ranged from approximately 530 ft amsl to 536 ft amsl. The as-built elevation of the access road was documented to range from approximately 539 ft amsl to 535 ft amsl, which is equal to or greater than the east embankment crest elevation of 535 ft amsl.

The interior side slopes of Pond 2 were constructed with 3H:1V (horizontal:vertical) slopes, except for the concrete inlet apron which was constructed with slopes of 2H:1V. The exterior side slopes of Pond 2 along the south side were designed at 3H:1V based on the construction drawings. The interior side slopes and bottom of Pond 2 were originally designed with a 1-foot thick Poz-O-Pac liner system when the pond was built in 1978, but the concrete inlet apron does not have the Poz-O-Pac liner. The side slopes also had a bituminous curing coat applied to the Poz-O-Pac liner system. In 2008, Pond 2 was re-lined by removing the existing Poz-O-Pac liner and replacing with a 60-mil high density polyethylene (HDPE) liner topped with a warning layer consisting of 12 inches of sand and 6 inches of limestone screenings.

Pond 2 is approximately 3.2 acres in surface area when measured at the embankment crest. An access road runs along the north, west, and east sides of the pond with abandoned sluice pipes on the south side of the pond.

2.1 <u>Summary of Geology and Hydrogeology</u>

2.1.1 Geology

The physiography of Will County is made up of ground moraines, end moraines, outwash plains, stream terraces, flood plains and bogs. It is in the Till Plaines and Great Lakes Sections of the Central Lowland Province. Near surface soils in the vicinity of the subject impoundment have been grouped as Kankakee Fine Sandy Loam and Romeo Silt Loam. These soils are well to poorly drained, respectively. Organic content ranges from 2 to 5 percent and have a low to negligible accelerated erosion rate, a moderate to high corrosivity rate and a pH range from slightly acidic to slightly basic (5.6 to 8.4). Surface runoff class is low (Soil Survey of Will County Illinois). Based on the Surficial Geology Map of the Chicago Region (ISGS Circular No. 460, 1971) the surficial deposits in the vicinity of the subject surface impoundment are identified as part of the Henry Formation, which is generally described as sand and gravel with local beds of silt and/or exposed Silurian dolomite bedrock.

The general stratigraphy in the area consists of unconsolidated glacial deposits, which overlay Silurian dolomite. The Silurian dolomite is underlain by the Maquoketa Group, which includes the

Scales Shale, which is considered a regional aquitard separating the overlying Silurian dolomite from the deeper Cambro-Ordovician sandstone and limestone aquifers. To evaluate local stratigraphy and as part of groundwater model development in support of the Construction Permit being submitted under separate cover, water and test well logs were obtained for wells in the general vicinity of the Joliet #29 Generation Station (it is noted that all of these wells are upgradient or side gradient of the Station and two wells on property [see Section 2.1.1]). The depths of these wells range from 43 feet to 605 feet. The well logs were also used from the 11 monitoring wells that were installed in the vicinity of Pond 2 (MW-1 through MW-11) with those borings ranging in depth from 27.5 feet to 41 feet. See Figure 1 for the monitoring wells locations. Based on an evaluation of this data, the following general site-specific stratigraphy is defined:

- Fill (approx. 0' to 8.5' thick) Consisting of a thin layer of top soil and/or coarse gravel fill.
- Silty clay to clay (approx. 0' 15' thick) Consisting of black/brown silty clay and clay with a trace of coarse gravel or sand. Not continuous across site along east-west transect.
- Sand and Gravel (approx. 14' to 40' thick) Consisting of black/brown fine to coarse sand and gravel with limestone fragments noted throughout. May locally include some lenses or interlayering of black silty clay and/or tan silty sand.
- Sandy silt/silty clay (approx. 0' to 34' thick) Consisting of black/gray sandy silt grading downward to a gray silty clay with coarse sand. Not continuous across site.
- Bedrock Consisting of Silurian dolomite Top of unit encountered at approximately 38.5 feet below ground surface (bgs) at boring location MW-6. Borings noted with increased limestone fragment at base interpreted to be at or near top of weathered bedrock surface. Description of the dolomite discussed in detail below.

Although no specific borings were extended into the dolomite bedrock at this facility, extensive drilling and investigation of the bedrock was completed at the Joliet #9 Station, Lincoln Stone Quarry facility immediately to the south of the Des Plaines River from the subject site. The Silurian dolomite formation is generally consistent regionally, especially over fairly short distances. Based on that work, the following additional bedrock information is provided.

The Silurian dolomite is divided into four units identified as a weathered bedrock rind, Joliet Formation dolomite, Kankakee Formation dolomite and the Elwood/Wilhelmi dolomite. Beneath the Silurian dolomite is the Ordovician age Maquoketa Group consisting of the Brainerd Shale, Fort Atkinson dolomite and the Scales Shale. Although the Brainerd Shale was identified at the above referenced Lincoln Stone Quarry facility with a thickness of approximately 10 feet, this unit is not necessarily regionally continuous; therefore, it may or may not be present beneath the subject site. The Scales Shale unit, however, is extensive and is a recognized regional aquitard, which hydraulically isolates the deeper bedrock aquifers from the shallower Silurian dolomite. Based on the available information, the dolomite bedrock thickness to the top of the Scales Shale beneath the Joliet #29 site is estimated to be 95 to 115 feet.

Regional and local studies and investigations document fractures in the Silurian dolomite describing a primary joint set that is vertical and oriented about N52°E and N40°W. The N40°W joints are described as "more distinct". Natural spacing between the joint sets ranges from 3 to more than 10 feet, and joint apertures are described as less than 1/16th -inch. Bedding plane fractures are also described. Descriptions from various bedrock quarry walls and from cores obtained during drilling at the Lincoln Stone Quarry site show significant clay infilling of the vertical joints and bedding plane fractures. Evidence of water movement through fractures is interpreted from iron staining and mineralization (primarily calcite, with some pyrite and marcasite).

Silurian dolomite is a calcium-magnesium carbonate rock that includes horizons of cherty (silica) nodules and is documented both regionally and locally to include mineralization along fractures and within vugs. The mineralization includes, but is not limited to calcite (calcium carbonate) and various sulfide minerals such as pyrite, marcasite, etc. As such, the presence of these minerals and associated weathering products can also be expected within the overlying unconsolidated materials.

2.1.2 Hydrogeology

Based on information from the Soil Survey of Will County, the average annual precipitation is approximately 37 inches with about 63% of that total falling between April and October of any given year. The average seasonal snowfall is approximately just over 10 inches.

The nearest surface water body is the facility intake channel and Des Plaines River located to the south of the subject CCR unit (see Figure 1). This reach of river is further identified as the Lower Des Plaines River, which starts upstream of the site at the confluence of the river with the Chicago Ship and Sanitary Canal (CSSC) at the E.J. & E railroad bridge (river mile 290.1). The CSSC is the main tributary to this segment of river contributing approximately 80% of the flow to the river. The segment of river adjacent to the subject site is part of the Dresden Island Pool, which starts at the Brandon Road Lock and Dam (river mile 286) which is immediately upstream of the subject CCR surface impoundment. The Dresden Island Pool is 14 miles in length, approximately 800 feet wide with depth varying between 2 to 15 feet (Lower Des Plaines River Use Attainability Analysis Final Report, IEPA, December 2003). There are no drinking water intakes within the Dresden Island Pool and for that matter on any portion of the Des Plaines River downstream of the site (Meet Your Water – An Introduction to Understanding Drinking Water in Northeastern Illinois, Metropolitan Planning Council, 2017).

Groundwater beneath the subject unit occurs under water table conditions. Saturated conditions are generally encountered between 25 and 35 feet bgs, depending on the well location, within the lower portion of the above-defined sand and gravel unit. Some potential temporal fluctuations with the highest water levels generally occur within the second or third quarters of the year.

Previous site investigations have shown that groundwater flow is in a southerly direction towards the associated facility water intake channel and the Des Plaines River. The horizontal hydraulic gradient is fairly shallow.

As part of the modeling study being completed for the Construction Permit application, the hydraulic conductivity in monitoring wells MW-4, MW-6, and MW-9 were calculated. The geometric mean of the test data for these wells was calculated to be approximately 170 ft/d (1.97 x 10^{-3} ft/sec) for each well. The estimated effective porosity of the aquifer materials (0.35) was obtained from literature (Applied Hydrogeology, Fetter, 1980).

At this time, based on the geology discussion in Section 2.1.1 and the site-specific hydrogeology discussions above, the groundwater beneath the CCR surface impoundment is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Groundwater Management Zone (GMZ) has been established in the vicinity of Pond 2 in accordance with Section 620.250 as part of a Compliance Commitment Agreement (CCA) between Midwest Generation and Illinois EPA. In general, the GMZ encompasses the area occupied by Pond 1, Pond 2, and Pond 3 in the east-west direction and from Channahon Road/Route 6 to the Intake Channel in the north-south direction.

A survey of all potable water sources within a 2,500 feet radius of the Midwest Generation Joliet #29 Generating Station was completed by Natural Resources Technology (NRT) in 2009. As part of the operating permit preparation, KPRG evaluated the NRT information and reviewed the new Illinois State Geological Survey database and interactive map references as "ILWATER". Fifteen potable/industrial use wells are within a 2,500-foot radius of the Station's Pond 2. There are no wells directly downgradient of Pond 2. Eight of the wells are located 1,500 to 2,500 feet north and northwest of Pond 2 (upgradient). Two wells, both owned by Midwest Generation, which service the Station, are located to the west and southwest (sidegradient). Both of these wells are greater than 1,500 feet deep and screened within the Cambro-Ordovician limestones/sandstones beneath the Maquoketa Shale. There are several wells south of the Des Plaines River, a hydrogeologic discharge boundary, which service the Joliet #9 Generating Station all of which are also greater than 1,500 feet deep. The well that is located within the Des Plaines River (well 00563) is incorrectly located within the ILWATER database and is actually part of the Olin Chemical operations located approximately 0.3 miles to the south.

A search of the Illinois Department of Natural Resources dedicated nature preserve database (<u>https://www2.illinois.gov/dnr/INPC/Pages/NaturePreserveDirectory.aspx</u>) was performed to determine whether there may be a dedicated nature preserve nearby. No dedicated nature preserves were identified in the vicinity of Pond 2.

Based on the geology of the site presented in Section 2.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from Pond 2 would be downward migration to groundwater within the unconsolidated sand and gravel aquifer. Due to its proximity to the facility intake channel and Des Plaines River, which is a hydrogeologic flow boundary, minimal to no downward vertical flow mixing would be anticipated within the aquifer. There are no other utility or man-made preferential pathway corridors that would act to potentially intercept the flow to move any contamination in a direction other than to the south. There are no potable water wells downgradient of the subject CCR surface impoundment screened within the

aquifer of concern. Also, as previously discussed, there are no potable surface water intakes on the Des Plaines River either along or downstream of the station and Pond 2.

There is quarterly groundwater quality data associated with Pond 2 and the two other ponds in the area dating back to December 2011 associated with an Illinois EPA request for evaluation of potential ash pond groundwater impacts and subsequently the negotiated CCA. However, that Illinois EPA required parameter list was slightly different from that specified in Section 845.600 and included analysis of dissolved inorganic parameters rather than total inorganic parameters.

Pond 2 is subject to the federal requirements under Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule). As required under the Federal CCR Rule, eight rounds of background sampling were completed for the monitoring wells within the monitoring network for Pond 2 (MW-3 through MW-5 and MW-10). This included the full list of Appendix III (detection monitoring) and IV (assessment monitoring) parameters. Subsequently, quarterly groundwater monitoring of these wells was continued for only Appendix III detection monitoring parameters since there were no detections of Appendix III parameters above the established statistical background for those wells. Since the effective date of the new State CCR Rule, quarterly groundwater monitoring for the full list of parameters specified in 845.600, which includes all parameters in the Federal CCR Rule Appendix III/IV, has continued. This data is provided in Table 1 and Table 2.

3.0 IDENTIFICATION OF CLOSURE ALTERNATIVES

As stated in the Introduction, the CCR in Pond 2 was removed in the summer/fall of 2019 as part of converting the generating station to burning natural gas. The removal of the CCR was done in accordance with the requirements for clean closure in the Federal CCR Rule, 257.102(c), by removing the CCR down to the warning layer, cleaning and repairing, as needed, the existing geomembrane liner and decontaminating any areas of Pond 2 as needed. As indicated in Tables 1 and 2 and as stated at the end of the previous section, the groundwater monitoring results indicate that groundwater impacts are not present from Pond 2 and it has been closed by CCR removal in accordance with the Federal CCR Rule.

As part of the above-described closure, the warning layer was left in place. The closure by removal requirements in the new State CCR Rule Section 845.740 require the removal of CCR, the removal of containment system components such as the impoundment liner and contaminated subsoils, and impoundment structures and ancillary equipment. Based on a review of the closure by removal in accordance with the Federal CCR Rule and the requirements of closure by removal in the State CCR Rule Section 845.740, additional closure activities may be required for Pond 2 to comply with the State CCR Rule Section 845.740 closure by removal standards. On May 11, 2021, MWG filed a petition for an adjusted standard to reuse the liner in the pond, instead of the complete removal as required by Section 845.740. *In the Matter of: Midwest Generation LLC's Petition for Adjusted Standard*, PCB AS21-001. The Illinois EPA's recommendation in response to MWG's petition is due on November 22, 2021. A brief description of each closure alternative is presented below, including alternatives if the Board grants MWG's petition for an adjusted standard.

3.1 <u>Complete Closure by Removal in Accordance with Section 845.740 and the Adjusted</u> <u>Standard Petition</u>

The CCR has already been removed from Pond 2 and all that remains is the warning layer atop the base of the geomembrane liner, and the geomembrane liner on the base and side slopes. MWG filed a petition for an adjusted standard to allow it to decontaminate the liner instead of removal. If the Board grants MWG's petition, MWG would remove the warning layer and decontaminate the liner. The warning layer consists of 12 inches of sand topped with 6 inches of limestone screenings. The warning layer and sand total approximately 3,700 cubic yards (CY) which would be hauled and disposed at an off-site landfill. If MWG is not granted its petition for an adjusted standard, then it will also remove approximately 70,000 square feet of the geomembrane liner on the base and sides. Once the liner is removed, the subsurface will be visually examined for CCR impacts. The geomembrane liner will be cut into pieces and placed in either roll-off boxes for disposal or taken to the landfill for disposal along with the warning layer.

The estimated quantity of warning layer material that would require excavation, transportation, and hauling is 4,810 CY. This quantity is based on the in-place quantity of 3,700 CY swelling by approximately 30% once it is excavated and loaded for transportation. A more detailed discussion of this closure alternative relative to established evaluation criteria is provided in Section 4.0. Detailed cost estimates in accordance with Section 845.710(d)(1) are provided in Table 4.

Based on the location of Pond 2 and the limited remaining quantity of material to be removed, the

only practical transportation option would be typical dump trucks or lower emission trucks. Pond 2 is close to the Des Plaines River, but no slip or loading point for a barge exists. A loading point could be constructed, but a structural evaluation of the bank would be required. In addition, the time required for permitting and loading onto a barge, this limited quantity of material is not practical. Using rail to move such a small quantity of material also make this mode of moving material impracticable to try and permit and construct.

An on-site landfill is not present at the Joliet 29 generating station and due to the time required for permitting, constructing an on-site landfill would be impractical for this limited quantity of material. Lincoln Stone Quarry (LSQ) is located just over a mile away on the south side of the river. All ash previously removed from Pond 2 was transported to and placed into the LSQ. The LSQ has not yet undergone closure and but because the LSQ is a monofill landfill permitted only for CCR, it is unlikely that it could be used to dispose of the warning layer or the liner. Accordingly, off-site disposal will need to be at the Prairie View Recycling & Disposal Facility landfill in Wilmington, Illinois, which would be the closest facility that is currently not within an environmental justice area.

3.2 <u>Closure in Place with a Final Cover System</u>

The closure in place with a final cover system (FCS) alternative would consist of leaving the warning layer in place, placing additional fill material in Pond 2, and covering that material with a final cover system in accordance with 845.750. The final cover system would consist of a geomembrane low permeability layer, which is topped with an alternative final protective layer that provides equivalent performance to a soil final protective layer. The FCS would be sloped to allow for precipitation to runoff and drain into the existing Pond 2 discharge structure, which ultimately discharges into Pond 3. The water from Pond 3 is either re-used as part of the electrical generating process or discharged to the Des Plaines River through the permitted outfall in compliance with the existing NPDES permit.

The FCS product that would be used is the proprietary ClosureTurf cover system created by Watershed Geo. The ClosureTurf FCS consists of a geomembrane low permeability layer that also incorporates a drainage layer. The final protective layer is replaced with engineered synthetic turf that is infilled with sand/small aggregate to provide ballast to the synthetic turf. The infiltration layer will be a 60-mil HDPE geomembrane with a hydraulic conductivity that is no greater than 1×10^{-7} cm/sec. The engineered synthetic turf is comprised of polyethylene fibers that are tufted through a double layer of woven geotextiles that are highly UV and heat resistant. The engineered synthetic turf is then infilled with small aggregate that is approximately 1/8 inch to 1/4 inch diameter in size. The small aggregate is brushed into the synthetic turf to ensure that it settles to the bottom of the turf, which provides ballast and prevents the turf's movement during wind events.

Pond 2 has a crest embankment elevation that ranges between 534 and 535 ft amsl, a bottom elevation between 516 and 517 ft amsl, and the discharge structure has a weir elevation of approximately 532.85 ft amsl. Based on these elevations, Pond 2 is approximately 18 feet to 19 feet deep and if the FCS were to be placed directly on the warning layer, precipitation would accumulate unless the water was collected and mechanically removed. Adding fill material also prevents the need for mechanical evacuation of the water from within Pond 2. In order to place the

FCS and prevent the accumulation of precipitation, Pond 2 will need fill material to be placed from the top of the warning layer up to the same elevation as the discharge structure weir elevation, which is 532.85 ft amsl. Approximately 69,300 CY of fill material is required. From this point, the surface would be sloped up towards the inlet structure of Pond 2 so water drains from the west towards the east and discharges into the discharge structure. The ClosureTurf FCS would then be placed on top of the sloped surface with the geomembrane being attached to the discharge structure, the synthetic turf placed on top of the geomembrane, and the turf infilled with sand/small aggregate. The surface of the final protective layer will be sloped towards the Pond 2 discharge structure to allow for drainage.

The soils used in the FCS will consist of clean material sourced from as close to Pond 2 as possible. Because of the quantity needed, multiple soil sources may be required. A discussion of this closure alternative option relative to established evaluation criteria is provided in Section 4.0.

4.0 CLOSURE ALTERNATIVES EVALUATION CRITERIA

The closure alternatives were evaluated based on requirements under State CCR Rule Part 845.710(b)(1) through 845.710(b)(4). The evaluation criteria consisted of the following:

- Long- and short-term effectiveness and protectiveness, including reliability;
- Effectiveness of controlling future releases;
- Ease or difficulty of Implementation; and
- The degree to which concerns of the community residents are addressed.

Each closure alternative was evaluated using the above criteria and that evaluation is provided in Table 3. The following highlights are provided from that evaluation. Groundwater modeling was performed in accordance with 845.710(d)(2) and 845.710(d)(3) to assist in evaluating the longand short-term effectiveness of each closure alternative. A discussion of the groundwater modeling and the results are presented in Section 5.

Closure by Removal - Warning Layer Removal for Pond Re-use

- Assuming MWG is granted the petition for an adjusted standard, removing the warning layer from Pond 2 would require excavating and hauling 4,810 cubic yards, which would take about 7 days to execute based on 50 truckloads per day and 15 cubic yards per truck.
- Removing the warning layer would remove any remaining de minimis amounts of the CCR source. Groundwater monitoring has shown that impacts to groundwater are not present and any elevated constituents that have been detected in the groundwater are not from Pond 2. Removing the warning layer will not cause any adverse site impacts.
- Reuse of the liner would reduce the volume of material disposed at a landfill, and also reduce the number of trucks required to haul away the waste liner.
- Additionally, the truck traffic removing the CCR will not negatively affect the neighboring properties, including air quality and noise pollution, since the entrance and egress for the trucking would be directly via Channahon Road and not through any residential neighborhood.
- This option will require 3 years of post-closure monitoring.

Closure in Place - ClosureTurf Final Cover System

- ClosureTurf has successfully been used around the country to close CCR surface impoundments and landfills.
- The ClosureTurf final cover will require approximately 69,000 CY of clean fill material and more overall truck traffic to and from the site because Pond 2 has to be filled. It will require approximately 93 days to fill Pond 2 based on 50 truckloads per day and 15 CY per truck.

- The ClosureTurf and soil infill will cover any de minimis CCR on the surface of the warning layer and prevent any human or animal contact.
- The ClosureTurf option will require 30 years of post-closure monitoring.
- The existing CCR source has already been removed; therefore, future impacts to groundwater will not occur relative to a potential release from the unit (i.e., there is no source to result in a release). The existing geomembrane liner has shown to be effective, and the groundwater monitoring data has proven the geomembrane's reliability.

5.0 GROUNDWATER MODELING

This section discusses the results of the groundwater modeling and a description of the fate and transport of each closure alternative over time in accordance with 845.710(d)(2) and 845.710(d)(3). The CCR source material has already been removed, therefore the modeling that was conducted is based on a theoretical distribution of dissolved contaminants beneath Pond 2, assuming a source at the pond, to demonstrate the impact of removing the CCR source on the spread of contaminants.

To conduct the support modeling a theoretical unit source with a concentration of "1" was established beneath Pond 2 and projected forward in time with advection and dispersion to establish an equilibrated distribution of contaminants in groundwater if Pond 2 were the source. The future predictive modeling runs indicated that after approximately 30 years, equilibrated contaminant mass distribution was established. The equilibrated distribution (base case) of the mass was then used as the initial concentrations in the groundwater for model runs to simulate the closure alternatives to evaluate corresponding improvement in groundwater quality from the base case scenario. From this initial equilibrated model run, the source was removed and the change in concentrations were modeled over 5-years, 25-years, 50-years, and 100-years; these model runs are shown in Figures 1 through 4 located in Attachment 1. On each figure the base case run is illustrated on the left side and the CCR removal scenario is illustrated on the right side. Reviewing Figure 2, which projects out 25-years indicates that groundwater impacts near the river have been reduced by approximately 50% (projected concentration of 0.5 which is half the starting theoretical concentration of 1). The 50-year and 100-year projections on Figures 3 and 4 indicated reductions in groundwater impacts by at least 90% (projected concentration of 0.1 which is 90% less than starting hypothetical concentration of 1). Figure 5 illustrates the above noted reduction in concentrations over time at a modeling point location near the river and shows that the initial, theoretical concentrations are reduced by approximately 90 percent within about 30 years at which point a relative equilibrium has been reached.

As further required by the State CCR Rule, seasonal fluctuations of the groundwater system were considered. To estimate the potential impacts on contaminant migration under a seasonally varying groundwater flow system, a 100-year transient flow model was simulated with alternating periods of higher and lower recharge to groundwater. The flow model simulated 5 months of higher recharge (April through August) and 7 months of lower recharge (September through March), reflecting trends in the long-term average monthly precipitation records. The initial equilibrated contaminant distribution again served as the starting conditions, the theoretical source was removed, and the concentrations were modeled with advection and dispersion. The results of this modeling are illustrated on Figure 6. As shown on Figure 6 and taking into account seasonal variations, the concentrations from the initial theoretical source are reduced to less than 0.1 (greater than 90%).

As demonstrated in the modeling runs, the removal of the CCR source reduces associated theoretical groundwater impacts in excess of 90% from a base case release scenario. These modeling runs are used as part of evaluating the long- and short-term effectiveness of each closure option, as shown in Table 3.

6.0 SUMMARY

Two closure options were evaluated as part of the closure alternatives analysis for closure of Pond 2 in accordance with 845.710(b). The two options evaluated are closure by removal and closure with the ClosureTurf FCS. The options were evaluated based on effectiveness/protectiveness, ease of implementation, and addressing the concerns of the community residents.

Closure by removal would require the excavation, transportation, and disposal of 4,810 CY of warning layer material and take approximately 7 days to complete. Once the warning layer is removed, the new geomembrane liner would be tested before Pond 2 is re-used. Once this portion of closure by removal is complete, groundwater monitoring in accordance 845.600 would occur for three (3) years.

The ClosureTurf FCS option requires filling Pond 2 and constructing the FCS on this fill material. The ClosureTurf FCS option would require Pond 2 to be filled with approximately 69,300 CY of additional material in order to bring the grade up to the proper elevation to allow precipitation to gravity flow off the FCS. The ClosureTurf system would then be placed on top of the fill material that is sloped towards Pond 2's existing discharge structure. This option would take approximately 93 days to complete and groundwater monitoring in accordance with 845.600 would occur for thirty (30) years.

The closure by removal option requires less overall truck traffic compared to the ClosureTurf FCS and less overall work time to complete. Because of the less time and overall work to excavate the warning layer, KPRG recommends closure by removal.

7.0 PROFESSIONAL ENGINEER'S CERTIFICATION

This closure alternatives analysis has been prepared in accordance with 35 Ill. Adm. Code 845.710.

1/26/22

Joshua D. Davenport, P.E. Illinois Professional Engineer

SEAL

FIGURES

•

TABLES

Table 1. Appendix III Analytical Groundwater Results through July 2021

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved Solids
	10/28/2015	0.47	100	200	0.41	7.04	84	790
	2/10/2016	0.41	100	210	0.44	7.17	120	820
	5/12/2016	0.29	100	300	0.42	7.02	110	920
	8/31/2016	0.36	89	170	0.46	6.95	100	760
	2/6/2017	0.48	100	130	0.45	6.99	95	820
	4/26/2017	0.35	120	200	0.35	7.27	87	760
	6/14/2017	0.29	91	160	0.43	7.47	75	690
	Pred. Limit*	0.57	131	318	0.51	7.56-6.67	131	959
MW-10	8/2/2017	0.45	97	170	0.38	7.23	110	750
up-	10/18/2017	0.61	120	140	0.41	7.11	130	820
gradient	4/24/2018	0.4	110	260	0.39	7.28	120	910
	11/24/2018 R	0.44	NA	NA	NA	NA	NA	NA
	5/7/2019	0.56	130	<u>410</u>	0.39	7.17	95	1,000
	7/3/2019 R	NA	NA	230	NA	NA	NA	830
	11/7/2019	0.35	90	130	0.36	7.40	59	650
	5/20/2020 6/11/2020 P	0.85	120	250 NA	0.41	6.90 NA	100	<u>960</u> 770
	10/22/2020 R	0.20	110	230	0.41	7.11	93	850
	5/18/2021	0.33	140	350	0.39	7.16	210	1,200
	6/29/2021 R	NA	<u>160</u>	420	NA	NA	<u>190</u>	1,300
	10/28/2015	0.34	110	230	0.41	7.11	110	960
1	2/10/2016	0.49	100	220	0.44	7.31	130	790
1	5/10/2016 8/31/2016	0.48	95	240	0.44	7.07	130	800
1	11/2/2016	0.49	87	190	0.45	7.45	94	780
1	2/6/2017	0.40	97	140	0.39	7.35	77	720
1	4/26/2017	0.54	100	210	0.36	7.03	120	820
1	6/14/2017	0.45	88	190	0.44	7.48	75	760
1	Pred. Limit	0.57	131	316	0.51	7.56-6.67	130	956
MW-03	8/2/2017	0.41	99	200	0.40	7.54	110	850
down-	4/24/2018	0.52	100	220	0.42	7.2	150	930
gradient	7/31/2018 R	NA	NA	NA	NA	NA	110	NA
	10/17/2018	0.25	100	250	0.4	7.04	110	870
	5/7/2019	0.43	120	280	0.4	7.27	<u>140</u>	880
	7/3/2019 R	NA 0.24	100	NA 150	NA 0.4	NA	65	NA 660
	5/20/2020	0.34	100	230	0.42	7.56	78	960
	6/11/2020 R	NA	NA	NA	NA	NA	NA	930
	10/22/2020	0.32	110	180	0.43	7.23	90	770
	5/18/2021	0.28	130	290	0.4	7.13	190	1,200
	6/29/2021 R	NA	NA	NA	NA	NA	<u>210</u>	<u>1,300</u>
	10/28/2015	0.34	94	FI 200	0.45	7.07	83	740
	5/10/2016	0.32	100	210	0.47	6.71	140	900
	8/31/2016	0.42	100	210	0.45	7.07	120	890
	11/2/2016	0.32	98	160	0.43	7.25	83	750
	2/6/2017	0.40	110	200	0.37	7.19	98	790
	4/26/2017	0.33	100	220	0.37	7.46	89	770
	Pred. Limit	0.37	92	316	0.47	7.56-6.67	130	956
MW 04	8/2/2017	0.35	93	180	0.43	7.41	100	770
down-	10/18/2017	0.54	97	140	0.45	7.2	120	790
gradient	4/24/2018	0.4	110	240	0.43	7.21	<u>160</u>	940
<i>a</i>	7/31/2018 R	NA	NA	NA	NA 0.45	NA	120	NA
1	5/7/2019	0.29	120	340	0.45	7 27	130	1.000
1	7/3/2019 R	0.23	NA	250	NA	NA	NA	870
1	11/6/2019	0.3	77	140	0.41	7.33	53	670
1	5/20/2020	<u>0.79</u>	110	250	0.45	7.3	110	<u>1,100</u>
1	6/11/2020 R	0.28	NA 100	NA 100	NA	NA 7.15	NA op	850
	5/18/2021	0.55	100	280	0.48	73	80 190	1.100
1	6/29/2021 R	NA	NA	NA	NA	NA	190	1,200
	10/28/2015	0.64	100	160	0.39	7.12	120	790
1	2/10/2016	0.46	110	220	0.39	7.25	120	790
1	5/10/2016	0.8	150	220	0.46	6.88	290	950
1	8/31/2016	1.0	140	99	0.56	6.81	260	820
1	2/6/2017	0.41	98	130	0.37	7.20	100	790
1	4/26/2017	0.40	110	F1 190	0.37	7.22	120	770
1	6/14/2017	0.44	75	150	0.46	7.45	110	670
1	Pred. Limit	0.57	131	316	0.51	7.56-6.67	130	956
MW-05	8/2/2017	0.28	83	170	0.35	7.30	99	770
down-	10/18/2017	0.42	110	110	0.38	7.16	95	720
gradient	4/24/2018 7/31/2018 P	0.31 NA	NA	500 NA	0.54 NA	7.55 NA	130 NA	940
1	10/17/2018	0.31	110	210	0.36	7.29	93	810
1	5/6/2019	0.38	130	<u>500</u>	0.31	7.11	84	<u>1,300</u>
1	7/3/2019 R	NA	NA	150	NA	NA	NA	890
1	11/7/2019	0.31	<u>180</u>	130	0.3	7.44	64	590
1	12/4/2019 K 5/20/2020	NA 0.32	89	NA 270	NA 0.37	NA 7.03	NA 67	NA 800
1	10/22/2020	0.52	92	180	0.37	7.16	85	720
1	5/18/2021	0.37	130	410	0.3	7.00	160	1,300
1	6/29/2021 P	NIA	NA	420	NA	NA	150	1 200

Notes: All units are in ngl except pH is in standard units. * - Intrawell Prediction Limit. All others are interwell comparisons with MW-10 as background.. **Bodd** - Potential statistically significant increase. FI - NS and/or MSD Recovery outside of limits. Pred. Limit - Prediction Limit *Halles Dute* - First round of Detection Monitoring and resample after statistical background establishment. NA - Not analyzed. No confirmation resample required. R - Resample

,

Table 2. Appendix IV Analytical Groundwater Results through July 2021

Well	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228 Combined	Selenium	Thallium
Fede	eral MCLs	0.006	0.01	2.0	0.004	0.005	0.01	NS	4.0	NS	NS	0.002	NS	5.0 pCi/L	0.05	0.002
State	Standards	0.006	0.01	2.0	0.004	0.005	0.01	1.0	4.0	0.0075	NS	0.002	NS	40 pCi/L	0.05	0.002
	10/28/2015	< 0.003	< 0.001	0.041	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	0.0060	0.2981	< 0.0025	< 0.002
-	2/10/2016	< 0.003	0.001	0.043	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.011	< 0.0002	0.0067	< 0.438	< 0.0025	< 0.002
-	8/31/2016	< 0.003	< 0.001	0.048	< 0.001 ^ < 0.001	< 0.0005	< 0.005	< 0.001	0.42	< 0.0005	0.012	< 0.0002	0.0031	< 0.414	< 0.0025	< 0.002
-	11/2/2016	< 0.003	0.0018	0.035	< 0.001	< 0.0005	< 0.005	< 0.001	0.45	0.0014	0.011	< 0.0002	0.0061	0.626	< 0.0025	< 0.002
	2/6/2017	< 0.003	0.0011	0.048	< 0.001	< 0.0005	< 0.005	< 0.001	0.36	0.00086	0.014	< 0.0002	0.0056	< 0.389	< 0.0025	< 0.002
MW-10	4/26/2017	< 0.003	0.0015	0.046	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	0.0012	< 0.01	< 0.0002	0.006	< 0.34	< 0.0025	< 0.002
up-gradient	8/2/2017	< 0.003	0.001	0.034	< 0.001	< 0.0005	< 0.005	< 0.001	0.43	< 0.0005	0.012	< 0.0002	0.0072	0.429	< 0.0025	< 0.002
-	10/18/2017	< 0.003	0.0012	0.04	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.41	0.00059	0.013	< 0.0002	0.0066	< 0.422	< 0.0025	<^ 0.002
	Average	< 0.003	0.0012	0.041	< 0.001	< 0.0005	< 0.005	< 0.001	0.41	0.0007	0.012	< 0.0002	0.0065	0.4093	< 0.0025	< 0.002
-	Std Dev	0.000	0.0003	0.005	0.000	0.0000	0.000	0.000	0.04	0.0004	0.001	0.0000	0.0010	0.0928	0.0000	0.000
-	10/22/2020	< 0.000	0.2462	0.127	0.000	0.0000	0.000	< 0.000	0.10	< 0.0005	0.115	< 0.0000	0.1480	0.2200 NA	< 0.0000	0.000
-	5/18/2021	< 0.003	0.0014	0.060	< 0.001	< 0.0005	< 0.005	< 0.001	0.39	< 0.0005	0.011	< 0.0002	0.0055	< 0.4800	< 0.0025	< 0.002
	10/28/2015	< 0.003	0.0015	0.100	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	< 0.0050	0.41	< 0.0025	< 0.002
	2/10/2016	< 0.003	0.0017	0.100	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.011	< 0.0002	0.0060	< 1.68	0.0045	< 0.002
-	5/10/2016	< 0.003	0.0011	0.095	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.012	< 0.0002	0.0062	< 0.326	0.0030	< 0.002
-	8/31/2016	< 0.003	0.0013	0.095	< 0.001	< 0.0005	< 0.005	< 0.001	0.45	< 0.0005	< 0.012	< 0.0002	0.0086	< 0.373	0.0051	< 0.002
	2/6/2017	< 0.003	0.0019	0.093	< 0.001	< 0.0005	< 0.005	< 0.001	0.39	< 0.0005	0.012	< 0.0002	0.0066	< 0.356	0.0028	< 0.002
MW-03	4/26/2017	< 0.003	0.0017	0.11	< 0.001	< 0.0005	< 0.005	< 0.001	0.36	< 0.0005	0.010	< 0.0002	0.0088	< 0.411	0.0052	< 0.002
down-gradient	6/14/2017	< 0.003	0.0014	0.09	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.012	< 0.0002	0.0072	< 0.358	0.0037	< 0.002
	8/2/2017	< 0.003	0.0022	0.10	< 0.001	< 0.0005	< 0.005	< 0.001	0.40	< 0.0005	0.011	< 0.0002	0.0065	0.414	0.005	< 0.002
-	Average	< 0.003	0.0015	0.096	< 0.001	< 0.0005	0.0050	< 0.001	0.42	< 0.0005	0.012	< 0.0002	0.0055	0.588	0.0020	< 0.002
	Std Dev	0.000	0.0003	0.008	0.000	0.0000	0.0000	0.000	0.03	0.0000	0.001	0.0000	0.0013	0.454	0.0011	0.000
-	Coeff of Var	0.000	0.2099	0.081	0.000	0.0000	0.0067	0.000	0.07	0.0000	0.089	0.0000	0.1855	0.772	0.2759	0.000
-	10/22/2020	< 0.003	0.0014	0.1	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.43	< 0.0005	0.01	< 0.0002	< 0.005	NA 1 100	< 0.0025	< 0.002
	10/28/2015	< 0.003	0.0013	0.082	< 0.001	< 0.0005	< 0.005	0.0011	0.45	< 0.0005	0.014	< 0.0002	0.0055	0.741	< 0.0025	< 0.002
÷	2/10/2016	< 0.003	0.0015	0.082	< 0.001	< 0.0005	< 0.005	0.0074	0.47	0.00062	0.015	< 0.0002	0.0063	< 1.52	< 0.0025	< 0.002
	5/10/2016	< 0.003	0.0014	0.088	< 0.001	< 0.0005	< 0.005	0.0086	0.46	< 0.0005	0.012	< 0.0002	0.0088	< 0.365	< 0.0025	< 0.002
	8/31/2016	< 0.003	0.0014	0.086	^ < 0.001	< 0.0005	< 0.005	0.0035	0.45	< 0.0005	0.011	< 0.0002	0.0083	0.432	< 0.0025	< 0.002
-	2/6/2017	< 0.003	0.0025	0.079	< 0.001	< 0.0005	< 0.005	0.0100	0.43	0.0012	0.012	< 0.0002	0.007	< 0.463	< 0.0025	< 0.002
	4/26/2017	< 0.003	0.0015	0.095	< 0.001	< 0.0005	< 0.005	0.0078	0.37	0.00055	0.013	< 0.0002	0.0069	< 0.35	< 0.0025	< 0.002
MW-04 down-gradient	6/14/2017	< 0.003	0.0013	0.078	< 0.001	< 0.0005	< 0.005	0.0120	0.47	< 0.0005	0.013	< 0.0002	0.0085	< 0.309	< 0.0025	< 0.002
down-gradient	8/2/2017	< 0.003	0.0013	0.077	< 0.001	< 0.0005	0.04	0.0031	0.43	< 0.0005	0.012	< 0.0002	0.0091	< 0.282	0.0029	< 0.002
	10/18/2017	< 0.003	0.0019	0.082	< ^ 0.001	< 0.0005	< 0.005	0.0046	0.45	0.00077	0.015	< 0.0002	0.0071	0.423	0.003	< ^ 0.002
	Std Dev	0.000	0.0004	0.0079	0.000	0.0000	0.012	0.0040	0.04	0.00023	0.001	0.0002	0.0011	0.393	0.0001	0.000
	Coeff of Var	0.000	0.2629	0.0916	0.000	0.0000	1.313	0.4877	0.09	0.38529	0.065	0.0000	0.1393	0.735	0.0524	0.000
	10/22/2020	< 0.003	0.0015	0.089	< ^ 0.001	< 0.0005	< 0.005	0.0082	0.48	< 0.0005	0.013	< 0.0002	0.0061	NA	< 0.0025	< 0.002
	5/18/2021	< 0.003	0.0019	0.12	< 0.001	< 0.0005	< 0.005	0.0037	0.42	< 0.0005	0.014	< 0.0002	< 0.0050	< 0.445	< 0.0025	< 0.002
	2/10/2016	< 0.003	0.0011	0.057	~ < 0.001	< 0.0005	< 0.005	0.0013	0.39	< 0.0005	0.018	< 0.0002	0.0088 F1 0.0053	1.09	< 0.0031	< 0.002
-	5/10/2016	< 0.003	0.0028	0.075	< 0.001	< 0.0005	< 0.005	< 0.0013	0.46	0.0022	0.014	< 0.0002	0.008	< 0.40	0.019	< 0.002
	8/31/2016	< 0.003	< 0.001	0.07	^ < 0.001	< 0.0005	< 0.005	< 0.001	0.56	< 0.0005	< 0.01	< 0.0002	0.012	< 0.42	0.02	< 0.002
	11/2/2016	< 0.003	0.0022	0.056	< 0.001	< 0.0005	0.0051	< 0.001	0.37	0.0017	0.015	< 0.0002	0.0061	0.438	< 0.0025	< 0.002
	2/6/2017	< 0.003	0.0016	0.082	< 0.001	< 0.0005	< 0.005	< 0.001	0.30	0.0016	0.021	< 0.0002	< 0.005	0.564	0.0029	< 0.002
MW-05	6/14/2017	< 0.003	0.0014	0.003	< 0.001	< 0.0005	< 0.005	< 0.001	0.46	< 0.0005	0.013	< 0.0002	0.0076	< 0.316	0.0029	< 0.002
down-gradient	8/2/2017	< 0.003	< 0.001	0.054	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	< 0.0005	0.014	< 0.0002	0.0053	0.659	< 0.0025	< 0.002
	10/18/2017	< 0.003	0.002	0.067	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.38	0.0023	0.018	< 0.0002	< 0.005	< 0.371	0.0029	< ^ 0.002
	Average	< 0.003	0.0016	0.064	< 0.001	< 0.0005	0.0051	0.0011	0.41	0.0012	0.015	< 0.0002	0.0072	0.5468	0.0076	< 0.002
	Coeff of Var	0.000	0.0007	0.012	0.000	0.0000	0.0004	0.1240	0.08	0.0008	0.004	0.0000	0.0022	0.2352	0.9927	0.000
	10/22/2020	< 0.003	0.0012	0.069	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.013	< 0.0002	0.0054	NA	0.003	< 0.002
	5/18/2021	< 0.003	0.0015	0.10	< 0.001	< 0.0005	< 0.0050	< 0.0010	0.30	< 0.0005	0.023	< 0.0002	< 0.005	< 0.5970	< 0.0025	< 0.002

 Notes:
 All statistics use the detection limit for non-detect results.
 Std Dev - Standard Deviation
 NS - No Standard

 All units are in mg/l except Radium is in pCi/L as noted.
 Coeff of Var - Coefficient of Variance
 NA - Not Analyzed

 State Standards obtained from IAC, Title 35, Chapter I, Part 620, Subpart D, Section 620.410 - Groundwater Quality Standards for Class I: Potable Resource Groundwater.

 Federal Maximum Contaminant Levels (MCLs) obtained from Code of Federal Regulations (CFR) Title 40, Chapter I, Subchapter D, Part 141.

F1 - MS and/or MSD Recovery outside of limits.

^ - Denotes instrument related QC exceeds the control limits

Table 3 - Closure Alternatives Evaluation

35 Ill. Adm. Code Part 845.710(b)(1) through 845.710(b)(4) Requirements		Closure Alternatives				
		Closure by Removal for Pond Re-use	Closure-in-Place wit			
845.710(b)(1)(A)	Magnitude of existing risk reduction	The excavation and removal of the CCR from Pond 2 has removed the potential source. This will prevent about 37 inches per year of precipitation from passing through the unsaturated CCR into the groundwater. The groundwater modeling has shown that by previously removing the CCR source material, a reduction of at least 90% would occur in groundwater concentrations after 50 years.	Closing the warning layer in place with the Clos residual CCR material that may be present on the eliminates human/animal exposure to any residual hazard of an open pond. The final cover system covering with a geomembrane infiltration laye with a synthetic turf/sand infill erosion layer. The since 2009 to effectively close CCR surface imp the groundwater modeling has shown that a 1 The groundwater modeling has shown that by least 90% would occur in groundwater concert			
845.710(b)(1)(B)	Likelihood of future CCR releases	Since the CCR has been removed from Pond 2, the likelihood of a future CCR release is eliminated. Previous site investigations have not identified CCR in the material used to construct Pond 2.	Since the CCR has been removed from Pond 2, site investigations have not identified CCR in the site would be tested to determine that it will c			
845.710(b)(1)(C)	Long-term management required	Long-term management off Pond 2 would be very minimal because the CCR has been removed and FCS is present. Therefore, there is no potential for future releases and no inspections required. Groundwater monitoring is required in accordance with 845.740(b) and 845.600. Groundwater monitoring is required for at least 3 years.	Post-closure activities will be required in accor ClosureTurf FCS and groundwater monitoring.			
845.710(b)(1)(D)	Short-term risks to the community during closure activities	The short-term risk to the community is very minimal to non-existent. The only potential risk would be from an increase in truck traffic hauling the warning layer for offsite disposal and truck traffic to the site that is delivering the new geomembrane material that would be used to replace the existing liner. Approximately 321 truck loads is required to haul the warning layer offsite for disposal and approximately 1 truck is required to deliver the geomembrane that would be used as part of the liner replacement. This has the potential to cause 0.006 traffic accident injuries and 0.0 traffic accident fatalities based on a 60-mile round trip for each truckload. 321 truckloads has the potential to produce approximately 10 lbs of particulate matter emissions.	The short-tem risk to the community is minima fill material and ClosureTurf FCS supplies to th approximately 69,300 CY of clean material and the potential to cause 0.078 traffic accident in round trip for each truckload. 4,620 truckloads particulate matter emissions.			
845.710(b)(1)(E)	Time to complete closure, post-closure or 845.740(b) groundwater monitoring	Excavation and disposal of the warning layer's 4,810 CY is estimated to take 93 days, based on disposing of 50 trucks/day of warning layer material. Post-closure activities are not required when closure by removal is performed, but groundwater monitoring must be conducted for at least 3 years after closure activities.	The total anticipated time to complete closure which includes groundwater monitoring.			
845.710(b)(1)(F)	Potential threat to human health and environment	The potential threat to human health and the environment is minimal to non-existent because the CCR source material has been removed. Groundwater monitoring has shown that impacts to groundwater from the previous operation of Pond 2 is not present.	The potential threat to human health and the material has been removed and the potential f will not impact the environment. Groundwater previous operation of Pond 2 is not present.			

th a ClosureTurf Final Cover System

osureTurf final cover system will prevent infiltration through any the surface of the warning layer. The final cover system also sidual CCR in the warning layer, in addition to removing the m would be constructed by filling Pond 2 with clean material and er that has a permeability of 1×10^{-13} cm/s, which is covered This type of cover system has been used throughout the country poundments. The existing CCR source has been removed and 10 time reduction of groundwater concentrations would occur. γ previously removing the CCR source material, a reduction of at ntrations after 50 years.

, the likelihood of a future CCR release is eliminated. Previous the material used to construct Pond 2. The material brought oncause a future release.

rdance with 845.780 which includes regular inspections of the . The post-closure period is at least 30 years.

hal and would come from the increased truck traffic bringing the ne site. Filling Pond 2 to the required elevations would require d approximately 4,620 trucks to transport this material. This has njuries and 0.0 traffic accident fatalities based on a 60-mile is has the potential to produce approximately 140 lbs of

is 5 months and post-closure activities will take 30 years,

environment is minimal to non-existent because the CCR source for a de minimis amount of CCR to remain in the warning layer r monitoring has shown that impacts to groundwater from the

845.710(b)(1)(G)	Long-term reliability of engineering/institutional controls	Having removed all the CCR source material and the warning layer is the most reliable alternative because the potential for any source material to remain is non-existent.	Geomembrane final cover systems and specif effectively prevent CCR and other solid waste
845.710(b)(1)(H)	Potential for future corrective action	Because the CCR has already been removed, the need for future corrective actions is not present.	Because the CCR has already been removed, t
845.710(b)(2)(A)	The extent containment reduces further releases	The CCR has been removed from Pond 2 and the potential for further releases is non-existent. Groundwater monitoring has shown that a release from Pond 2 has not occurred.	The warning layer would remain within the co shown that a release of CCR has not occurred in the FCS both prevent the migration of wate
845.710(b)(2)(B)	Extent of the use of treatment technologies	Treatment will not be occurring as part of this closure alternative. The only technology used is the 60-mil HDPE geomembrane.	Treatment will not be occurring as part of this create the FCS. ClosureTurf consists of a geon top of the geomembrane. ClosureTurf has be landfills as cover systems.
845.710(b)(3)(A)	Degree of difficulty associated with constructing technology	Removing and disposing of the warning layer will be moderately difficult because the warning layer material has consolidated and compacted, which may require some additional effort to excavate the material. In general, excavation and hauling material for disposal is not difficult. Repairing the geomembrane liner is not difficult and there are companies available to perform this type of work.	Filling, grading, and compacting clean soil into for many years and several construction com- installation of the ClosureTurf system is not d company perform the work. This limits the av contractors is a limited number. ClosureTurf I country beginning in 2009. These states inclu
845.710(b)(3)(B)	Expected operational reliability of the technologies	This closure alternative not require the operation of any technologies. The construction equipment that would be used to excavate and haul the warning layer material and the liner repair equipment are expected to operate without interruption.	ClosureTurf has operated reliably at the other hurricane in South Carolina that produced a 2 minimally displaced the sand infill that no ma
845.710(b)(3)(C)	Need to coordinate with and obtain necessary approvals and permits from other agencies	This closure alternative would require approval from the Illinois EPA.	This closure alternative would require approv

fically ClosureTurf have been used throughout the country to es from impacting human health and the environment.

the need for future corrective actions is not present.

onfinements of Pond 2 and previous groundwater monitoring has d. The geomembrane liner of Pond 2 and the geomembrane used er thereby preventing any further release.

is closure alternative. ClosureTurf technology will be used to membrane liner with synthetic turf and sand/small aggregate on een successfully used at other CCR surface impoundments and

o Pond 2 is not difficult. This is a process that has been occurring panies in the area are capable of performing this work. The difficult, but the provider of ClosureTurf requires a certified vailability of installation contractors because the certified list of has been successfully installed in over 17 states throughtout the ude New York, California, Minnesota, and Massachusetts.

r installations around the country. ClosureTurf experienced a 26-inch rainfall, which did not damage the ClosureTurf and so aintenance was required.

val from the Illinois EPA.

845.710(b)(3)(D)	Availability of necessary equipment and specialists	Equipment and personnel are easily available to excavate the warning layer material. Specialists are required to repair the geomembrane liner; however, these companies are available to perform the work.	This closure alternative would require a contra Several contractors throughout the country ha certified ClosureTurf installer is less than an ea
845.710(b)(3)(E)	Available capacity and location of needed treatment, storage, and disposal services	The available capacity of disposal for 4,810 CY should not be difficult to obtain. The location for any disposal is unknown and would require contacting proper disposal facilities in the area to inquire about space availability.	This closure alternative does not require treat
845.710(b)(4)	Degree to which community concerns are addressed	All the potential closure alternatives address the community concerns. The community is concerned about the potential for future groundwater contamination which is addressed by the closure alternatives. The removal and disposal of the warning layer would occur at an existing disposal facility which has already addressed the concerns of the community residents associated with these closure alternatives and would not create additional concerns.	All the potential closure alternatives address t the potential for future groundwater contamin installation of a FCS would prevent the infiltra groundwater from the de minimum amound c
845.710(d)(4)	Assessment of Impacts to Waters in the State	Both closure alternatives do not impact the Des Plaines River or the station's intake channel. The river are reduced to less than 90% of the original concentration after 50 years. Existing grounds	າe groundwater modeling performed in support vater monitoring has shown that impacts in dov with Pond 2.

actor that is approved by Watershed Geo to install ClosureTurf. ave been certified to install ClosureTurf. The availability of a arthwork contractor, but it should not be a concern.

tment, storage, or disposal services.

the community concerns. The community is concerned about ination which is addressed by the closure alternatives. The ation of precipitation which would prevent any contamination of of CCR present in the warning layer.

rt of this analysis has shown that any theoretical impacts to the owngradient monitoring wells are not present or not assoicated

Table 4: Closure Alternatives Analysis Cost Estimates Comparison

Closure Costs of a ClosureTurf Final Cover System

Construction Activity	Cost
Mobilization/Demobilization	\$20,000
Site Preparation	\$18,118
Dewatering	\$13,454
Pond 2 Fill	\$1,711,416
ClosureTurf Cover System	\$349,571
Construction Subtotal	\$2,112,559

Construction Management (4.5%)	\$95,065
Engineering & Design (10%)	\$211,256
Owner Construction Supervision	
(4.5%)	\$95,065
30% Contingency	\$633,768

CLOSURE TOTAL	\$633,768

ſ

Closure Costs for Closure By Removal & Disposal at Lincoln Stone Quarry					
Construction Activity	Cost				
Mobilization/Demobilization	\$10,000				
Site Preparation	\$18,118				
Dewatering	\$13,454				
Warning Layer Excavation	\$57,817				
Replace Bottom Liner	\$170,845				
Lincoln Stone Quarry Disposal	\$30,303				
Construction Subtotal	\$300,537				

Construction Management (4.5%)	\$13,524
Engineering & Design (10%)	\$27,023
Owner Construction Supervision	
(4.5%)	\$13,524
30% Contingency	\$90,161
CLOSURE TOTAL	\$90,161

Closure Costs for Closure By Removal & Disposal at Lincoln Stone Quarry

Construction Activity	Cost
Mobilization/Demobilization	\$10,000
Site Preparation	\$18,118
Dewatering	\$13,454
Warning Layer Excavation	\$57,817
Replace Bottom Liner	\$170,845
Prairie View RDF Disposal	\$72,391
Construction Subtotal	\$342,625

Construction Management (4.5%)	\$15,418
	<i>\</i>
Engineering & Design (10%)	\$27,023
Owner Construction Supervision (4.5%)	\$15,418
30% Contingency	\$102,787
CLOSURE TOTAL	\$102,787

ATTACHMENT 1

<u>ATTACHMENT 8</u> GROUNDWATER MODELING REPORT

REPORT

NUMERICAL GROUNDWATER FLOW MODEL

Groundwater Flow Modeling in Support of CCR Compliance and Permitting Midwest Generation, LLC Joliet Generating Station No. 29 Joliet, Illinois

Submitted to:

KPRG and Associates, Inc.

14665 W. Lisbon Road, Suite 1A Brookfield, WI 53005

and:

Midwest Generation, LLC

Joliet Generating Station No. 29 1800 Channahon Road Joliet, IL 60436

Prepared by:

BAS Groundwater Consulting Inc.

3649 Evergreen Parkway Ste 1510 Evergreen, Colorado 80437 +1 720 334-8249

January 28, 2022

NUMERICAL GROUNDWATER FLOW MODEL

Groundwater Flow Modeling in Support of CCR Compliance and Permitting Midwest Generation, LLC Joliet Generating Station No. 29 Joliet, Illinois

BAS Project Number 21141301

Submitted to:

KPRG and Associates, Inc.

14665 W. Lisbon Road, Suite 1A Brookfield, WI 53005

and:

Midwest Generation, LLC

Joliet Generating Station No. 29 1800 Channahon Road Joliet, IL 60436

Prepared by:

BAS Groundwater Consulting Inc.

3649 Evergreen Parkway Ste 1510 Evergreen, Colorado 80437 +1 720 334-8249

January 28, 2022

Author:

Betsy Semmens, RG President/BAS Groundwater Consulting Inc.

Contributor:

Dacey Zelman-Fahm Senior GIS Analyst/*BAS Groundwater Consulting Inc.* Rochelle Destrampe, RG Senior Hydrogeologist/*BAS Groundwater Consulting Inc.*

Distribution List

Midwest Generation, LLC

KPRG and Associates, Inc.

Executive Summary

This report documents the results of a numerical groundwater modeling analysis of groundwater flow in the vicinity of the on-site Pond 2 at the Midwest Generation, LLC (Midwest Generation) Joliet #29 Generating Station (Joliet #29 Station). The purpose of the numerical groundwater modeling was to create a tool capable of evaluating groundwater flow paths around Pond 2 and to provide a platform upon which proposed engineering scenarios for pond closures can be overlain and evaluated for their short and long-term effectiveness relative to improvements of groundwater quality. The results of the modeling are intended for input into the engineering considerations and evaluations of various closure alternatives being evaluated for the pond. This modeling is a requirement under Illinois Administrative Code Title 35 Part 845.220(d)(3).

The model has a uniform grid spacing of 50 feet and has seven layers. The groundwater flow model was run in the software MODFLOW-NWT and the transport model was run with the software MT3D-USGS. The model represents the regional flow direction to the Des Plaines River to the south with a constant head boundary on the north side of the model.

The model was calibrated to water levels measured in monitoring wells upgradient and downgradient of the site ponds. The model achieved a good calibration, with a scaled root mean squared error in the site wells of less than 10 percent. The model was the most sensitive to the modeled values of hydraulic conductivity and less sensitive to the regional recharge rate.

The existing groundwater quality data do not suggest that Pond 2 is leaking/discharging contaminants to the water table and all ash has been removed from the pond since 2019. Therefore, to meet the modeling requirements of Part 845.220(d)(3), a hypothetical initial situation was created in which a constant source of a surrogate mass (relative concentration of "1") was modeled at Pond 2 and allowed to discharge freely to groundwater (i.e., assumed the pond was filled with ash and water with a fully compromised or no liner). The resulting hypothetical distribution of concentrations served as the initial concentrations to predictive scenarios of pond closure alternatives. The source removal scenario indicates that the hypothetically introduced mass into groundwater should be flushed through the shallow groundwater system within approximately 30 years.

Table of Contents

1.0	INTRODUCTION1						
2.0	BACKGROUND1						
3.0	REPC	REPORT ORGANIZATION1					
4.0	CONC	CONCEPTUAL MODEL					
	Climate	2					
	4.2	Geology	3				
	4.3	Aquifer Properties	1				
	4.4	Nature of Groundwater Flow	1				
	4.5	Impacted Groundwater	5				
	4.6	Water Budget	5				
	4.6.1	Recharge to Groundwater	5				
	4.6.2	Groundwater Inflow from the North	3				
	4.6.3	Discharge to Des Plaines River	3				
5.0	NUME	RICAL GROUNDWATER FLOW MODEL	7				
	5.1	Model Construction	7				
	5.1.1	Software Selection	7				
	5.1.2	Model Grid and Layering	7				
	5.1.3	Model Boundaries	3				
	5.1.4	Model Stresses	3				
	5.1.5	Numerical Parameters	9				
	5.2	Model Calibration	9				
	5.2.1	Approach	9				
	5.2.2	Model Calibration Results)				
	5.3	Model Sensitivity1	3				
6.0	PREDICTIVE MODEL SIMULATIONS1						
	6.1	Results14	1				
7.0	CONCLUSIONS15						

8.0	REFERENCES	16

Tables

Table 1	Precipitation Data near Joliet 29 Station
Table 2	Compiled Borehole Lithology
Table 3	Hydraulic Conductivity Data for Site Wells
Table 4	Groundwater Elevation Data
Table 5	Calibrated Water Budget
Table 6	Calibration Residuals
Table 7	Calibration Statistics

Figures

- Figure 1 Location Map
- Figure 2 Site Wells
- Figure 3 Climate Stations near Joliet 29 Station
- Figure 4 Surface Geology
- Figure 5 Wells with Borehole Lithology Data
- Figure 6 Borehole Lithology Data
- Figure 7 Wells with Water Level Data
- Figure 8 Model Boundary Conditions
- Figure 9 Model Grid
- Figure 10 Model Layering
- Figure 11a Calibrated Hydraulic Conductivity Distribution in Model Layer 3
- Figure 11b Calibrated Hydraulic Conductivity Distribution in Model Layer 4
- Figure 11c Calibrated Hydraulic Conductivity Distribution in Model Layer 5
- Figure 12 Calibrated Water Level Elevations
- Figure 13 Calibrated Water Level Residuals
- Figure 14 Calibration Scatter Plot
- Figure 15 5-Year Plume Distribution
- Figure 16 25-Year Plume Distribution
- Figure 17 50-Year Plume Distribution
- Figure 18 100-Year Plume Distribution
- Figure 19 Concentrations Over Time
- Figure 20 Seasonal Sensitivity Test

Table of Abbreviations

Abbreviation	Definition
A	Cross sectional area
ADAMP	Adaptive damping solution method
amsl	Above mean sea level
af/yr	Acre-feet per year
CCR	Coal Combustion Residuals
cfd	Cubic feet per day
cm/s	Centimeters per second
dh/dl	Hydraulic gradient
ft bgs	Feet below ground surface
ft/d	Feet per day
ft ²	Square feet
ft/ft	Feet per feet
GHB	General head boundary
GIS	Geographic information system
gpm	Gallons per minute
GWPS	Groundwater Protection Standard
HCLOSEXMD	Head change closure criterion
ISGS	Illinois State Geological Survey
ILWATER	Illinois Water Well Database
ISWS	Illinois State Water Survey
in/yr	Inches per year
LINMETH	XMD linear solution method
К	Hydraulic conductivity
MAP	Mean annual precipitation
mg/l	Milligrams per liter
PCGn	Preconditioned Conjugate Gradient
Q	Darcy Flux

Abbreviation	Definition
RMS	Root Mean Square
TDS	Total Dissolved Solids
%	Percent

1.0 **INTRODUCTION**

This report documents the results of a numerical groundwater modeling analysis of groundwater flow in the vicinity of Pond 2 at the Midwest Generation, LLC (Midwest Generation) Joliet Generating Station No 29 (Joliet 29 Station). The numerical groundwater flow and transport modeling was conducted as required under the III. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals (CCR) in Surface Impoundments (State CCR Rule) Section 845.220(d)(3).

2.0 BACKGROUND

Joliet 29 Station is an active gas-fired generating station located on the northern bank of the Des Plaines River in Joliet, Illinois in Section 19, Township 35 North, Range 10 East. The station switched from coal to natural gas in 2016. The station operated two ash ponds (Ponds 1 and 2) and a service water basin (Pond 3) as part of the previous coal-fired operations. Ponds 1 and 3 are not CCR surface impoundments. Pond 1 was taken out of service before October 2015, all ash was removed, the liner was decontaminated, and the use of the pond was repurposed for low volume wastewater. Pond 3 was a service water basin and did not collect CCR. Pond 2 continued to be used for CCR management/storage until 2019 at which point the ash was removed. The warning layer currently remains in-place and all other portions of the exposed liner have been decontaminated (MWG, 2021). The locations of the facility, Pond 2, and Ponds 1 and 3, are shown on Figure 1. Joliet 29 Station is bordered by industrial properties to the north and the Des Plaines River to the south. There are 11 monitoring wells located on site (MW-1 through MW-11). The locations of the 11 monitor wells are shown on Figure 2. The CCR monitoring network around Pond 2 consists of four of the noted monitoring wells. These are MW-10 (upgradient) and MW-3 through MW-5, which are the downgradient monitoring points.

The purpose of the numerical groundwater modeling was to create a tool capable of evaluating groundwater flow paths near the ponds and to then use this model to overlay various pond closure scenarios to assist in evaluating short and long-term changes to associated downgradient groundwater quality.

3.0 REPORT ORGANIZATION

The remainder of this report is organized as follows:

- Section 4.0: Conceptual Model This section provides information that was used to refine the conceptual model of groundwater flow at Joliet 29 Station. The conceptual model formed the basis for construction and calibration of the numerical model.
- Section 5.0: Numerical Groundwater Flow Model This section provides a description of the numerical model construction, calibration, and sensitivity analysis. The calibrated groundwater flow model was used as the basis to conduct predictive analyses of engineering closure alternatives to assist in the engineering evaluations.

- Section 6.0: Predictive Model Simulations This section provides results of predictive analyses that were used to evaluate changes to the water table, groundwater flow paths, and contaminant concentrations beneath and adjacent to the ponds.
- Section 7.0: Conclusions This section provides a summary of the modeling and predictive analysis.
- Section 8.0: References This section provides a list of references used in the analysis documented in this report.

Figures and tables follow the main text of the report.

4.0 CONCEPTUAL MODEL

Site data were compiled as part of this modeling study and used to update the conceptual model of groundwater flow at Joliet 29 Station. The numerical model was constructed to represent the updated conceptual model.

Components of the conceptual model of groundwater flow include:

- climate
- lithology and geologic framework
- aquifer properties
- nature of groundwater flow
- water budget

Each of these components of the conceptual model is presented below.

4.1 Climate

Joliet 29 Station is located within the humid continental climate zone with warm to hot and humid summers and cold and snowy winters. There are four weather stations located relatively near Joliet 29 Station that provide data to evaluate long-term trends in precipitation. These stations are shown on Figure 3 and are listed here:

- Elwood 8 NW
- Joliet Brandon Road Dam
- Joliet
- Joliet Regional Airport

Precipitation data from complete years from these stations were averaged for monthly and annual averages and are provided in Table 1. These stations provide data for years between 1944 and 2020. Long-term average monthly precipitation has ranged from just over 1 inch in January and February to over 3.5 inches in late Spring

and Summer (April through August). The long-term mean annual precipitation (MAP) from these data is 34.4 inches.

4.2 Geology

The geology at Joliet 29 Station was summarized in the Application for Initial Operating Permit (MWG, 2021) as unconsolidated glacial deposits underlain by Silurian dolomite. The Silurian dolomite is underlain by the Maquoketa Group and includes the Scales Shale, which is considered a regional aquitard separating the overlying Silurian dolomite from the deeper Cambro-Ordovician sandstone and limestone aquifers. Geologic cross-sections are included with the above referenced Application for Operating Permit. The site lithology is summarized as:

- Fill (approximately 0 to 8.5 feet thick) Consisting of a thin layer of topsoil followed by coarse gravel fill.
- Silty Clay (approximately 0 to 14 feet thick) Consisting of black/brown silty clay with a trace of coarse gravel.
- Sand and Gravel (approximately 14 to 40 feet thick) Consisting of black/brown fine to coarse sand and gravel with limestone fragments noted throughout. May locally include some lenses of interlayering of black silty clay and/or tan silty sand in the vicinity of wells MW-1 and MW-2.
- Silty Clay (approximately 5 to 15 feet thick) Consisting of black/brown silty clay with a trace of coarse sand. Not continuous across the site along and east-west transect.
- Sandy Silt/Silty Clay (approximately 0 to 34 feet thick) Consisting of black/gray sandy silt grading downward to a gray silty clay with coarse sand. Not continuous across the site. Appears to be limited to the vicinity of well locations MW-10 and MW-11 on northwest side of pond area.
- Bedrock Consisting of Silurian dolomite Top of unit encountered at approximately 38.5 feet below ground surface (ft bgs) at boring location MW-6. The borings were noted with increased limestone fragments at the bottom, which were interpreted to be at or near the top of the weathered bedrock surface.

Surficial geology was obtained from the Surficial Geology of the Chicago Region (Caron, 2017), (Willman & Lineback, 1970) and is shown on Figure 4. This figure provides some good information but is very generalized as it is part of a larger regional study. It suggests the presence of dolomite bedrock at the surface at the site in the vicinity of the ponds which is inconsistent with site-specific borehole data. The regional, surficial geology can be used to depict overall geologic trends as shown on Figure 4 but is superseded by site-specific geologic information. Borehole logs for the site wells were compiled along with logs for nearby wells from the Illinois State Geological Survey's (ISGS) Water and Related Wells Database (ILWATER) and are presented in Table 2 and on Figure 5. Lithology in the borehole logs is displayed in three dimensions on Figure 6 and includes the groups:

- Topsoil
- Fill
- Loam

- Silt and Clay
- Clay, Sand, and Gravel
- Sandy Clay
- Sand and Gravel
- Flagstone
- Carbonate and Shale
- Carbonate
- Shale

Near the site the lithology is dominated by silt, clay, sand, and gravel. The lithologic intervals provided guidance on initial model calibration through the definition of zones of hydraulic conductivity that were later modified as discussed further in Section 5.2.1.

4.3 Aquifer Properties

Aquifer properties of hydraulic conductivity (K) and storage are important controls on groundwater movement and behavior and are necessary parameters to define in a numerical model. Hydraulic conductivity values were initially estimated for monitor wells MW-4, -6, -9, and -11 from slug tests (Patrick Engineering Inc, 2011). The geometric mean of the test data for these wells was approximately 310 feet per day (ft/d), as calculated by (Patrick Engineering Inc, 2011). The slug test data were reviewed as part of this current modeling study and the data were reanalyzed using corrected input values for the well casing and borehole dimensions and effective porosity of the sand filter pack material. The revised hydraulic conductivity estimated values are summarized in Table 3 for comparison. The revised geometric mean of the test data for these wells data for these wells decreased to approximately 170 ft/d.

4.4 Nature of Groundwater Flow

Shallow groundwater occurs under unconfined conditions with depth to water ranging from approximately 28 feet at monitor well MW-01 to approximately 34 feet at monitor wells MW-05 and MW-10 (monitoring data provided by KPRG). Figures 9-6 through 9-9 of the above referenced Application for Initial Operating Permit\ (MWG, 2021) illustrate that the groundwater flow direction is generally to the south beneath the ponds toward the Des Plaines River. Groundwater flow should be mainly controlled by the Des Plaines River, with shallow groundwater flow directions southward to the Des Plaines River during most periods of the year.

Groundwater level measurements from 11 site wells since June 2011 were provided by KPRG. Wells with available water level data are shown on Figure 7. A summary of these data is provided in Table 4 including minimum and maximum measured water level elevations and the average water level elevation from the 1st and 3rd quartiles to eliminate statistical outliers. These average water levels were used as the water level calibration targets. No recent, shallow water levels were found in the Illinois Domestic Wells Database or the Illinois Water

and Related Wells (ILWATER) Database (Illinois State Geological Survey, 2021) to supplement these site data for the model calibration.

4.5 Impacted Groundwater

As noted above, the CCR groundwater monitoring network for Pond 2 has four wells: MW-3, MW-4, MW-5, and upgradient well MW-10. CCR sampling under the Federal Rule was initiated in 2015 for the identified Appendix III and Appendix IV parameters and quarterly detection monitoring under that program is ongoing for Appendix III parameters. Also, starting in second quarter 2021, sampling under the new State CCR Rule was initiated quarterly for all Federal CCR Rule Appendix III/IV parameters plus turbidity since the State Rule does not distinguish between detection and assessment monitoring parameter lists.

Relative to the most recent (August 2021) and more comprehensive sampling under the State CCR Rule, concentrations of all 22 monitored water quality parameters in the three downgradient monitoring wells were below the Proposed Groundwater Protection Standards (GWPSs) presented in the above referenced Application for Initial Operating Permit. In addition, all parameters were at concentrations below the Part 845.600(a) groundwater quality standards except for chloride in all four monitoring wells including upgradient well MW-10. The chloride detections have been determined to be associated with source(s) other than the subject pond (i.e., the pond is not the source of the noted chloride impacts).

4.6 Water Budget

A conceptual water budget was developed for Joliet 29 Station to provide context of the results of the calibrated model water budget (ASTM D5447-17, 2017). The identified and estimated components of the conceptual water budget included:

- recharge to groundwater
- inflow from the north
- discharge of groundwater to the Des Plaines River

The conceptualized estimate for each of these components of the water budget is discussed below. The conceptual water budget was used as an initial definition of the water budget in the numerical model, and components were adjusted during model calibration.

4.6.1 Recharge to Groundwater

Recharge from the infiltration of precipitation to the water table has been estimated in a regional, general context for northeastern Illinois:

A groundwater/surface water model for the Upper Fox River Basin in Southeastern Wisconsin estimated recharge of approximately 4 to 4.4 inches/year (in/yr) (Feinstein, Fienen, Kennedy, Buchwald, & Greenwood, 2012).

- The Illinois State Water Survey (ISWS) estimated shallow groundwater recharge using a geographic information system (GIS) approach coupled with pattern recognition (Interagency Coordinating Committee on Groundwater, 2010). A generalized map of potential recharge at Illinois power plants shows Joliet 29 Station on the edge of the border between areas with "moderately low to low" to "very high" recharge potential.
- A model previously developed for the Midwest Generation Joliet 9 Generating Station (Lincoln Stone Quarry, located south across the river from the Joliet 29 Station) used a calibrated recharge rate of 1 in/yr (approximately 2.5 to 3 percent of MAP) for the area between the uplands and the river.

Recharge from precipitation was initially assumed in the groundwater model at 1 in/yr, which equates to approximately 3 percent of MAP. This rate over the model domain minus the river (Section 5.1) equates to approximately 55 acre-feet per year (af/yr) (6,548 cubic feet per day (cfd)).

4.6.2 Groundwater Inflow from the North

The boundaries to the groundwater model are discussed below in Section 5.1.3. Groundwater flow into the model domain from the north was estimated using Darcy's Law:

$$Q = KA \frac{dh}{dl}$$

where Q is the Darcy Flux, K is the hydraulic conductivity (ft/d), A is the cross-sectional area (square feet (ft²)), and dh/dl is the hydraulic gradient (ft/ft). Using the length of the northern model boundary (10,438 feet), an assumed thickness of unconsolidated materials above the Silurian dolomite of 35 feet, plus 15 feet of weathered dolomite (50 feet total), hydraulic conductivity of 170 ft/d (the geometric mean of test data from site wells), and a hydraulic gradient of 0.0006 ft/ft estimated from the site water level contours on the above referenced groundwater flow maps (see Section 4.4) (MWG, 2021), a rough estimate of groundwater flow from the north above the intact Silurian dolomite was calculated as 446 af/yr (53,233 cfd).

4.6.3 Discharge to Des Plaines River

The boundaries to the groundwater model are discussed below in Section 5.1.3. Groundwater flow south to the Des Plaines River was also estimated using Darcy's Law. Using the same assumed parameter values as in Section 4.5.2, except with the length of the southern model boundary (10,815 feet), a rough estimate of groundwater flow to the Des Plaines River was calculated as 462 af/yr (55,155 cfd).

It is assumed that the upper portion of the Silurian dolomite is weathered and that groundwater flow through the weathered carbonate bedrock is sufficiently greater than flow through the underlying intact carbonate bedrock resulting in negligible flow in the deeper carbonate bedrock in this focused conceptual water budget.

This discussion of the conceptual water budget is an order-of-magnitude, first approximation to estimate the components of the water budget that will be represented in the numerical model. The conceptual water budget will be used to compare to the modeled water budget, and to provide initial estimates for defined boundary conditions.

5.0 NUMERICAL GROUNDWATER FLOW MODEL

A numerical groundwater flow model was constructed for Joliet 29 Station. This section describes the construction and calibration of the numerical model.

5.1 Model Construction

The numerical model was created to cover the vicinity of Pond 2 at Joliet 29 Station and Midwest Generation property (Figure 8). The model domain extends east and west of the pond one-half mile, north from Midwest Generation property approximately one-quarter mile, and south from Midwest Generation property to the Des Plaines River. The selection of lateral boundaries to the model is further described below. The overall, active model area is approximately 1.4 square miles.

5.1.1 Software Selection

The groundwater flow system was simulated with MODFLOW-NWT (Niswonger, 2011), an advanced version of the widely used MODFLOW software. Groundwater Vistas (Version 8.0) (Environmental Simulaitons Inc. (ESI), 2020), a graphical user interface, was used to parameterize the model input, write MODFLOW files, and visualize results. MODFLOW-NWT was considered over MODFLOW-2000, MODFLOW-2005, or MODFLOW-USG because it has enhanced solvers that employ upstream weighting for non-linear problems, it is a relatively recent, widely used, and non-proprietary release of MODFLOW, and it is coupled with the widely used and non-proprietary transport model MT3DMS (Zheng, 2012), which was used for the transport simulations.

5.1.2 Model Grid and Layering

The model has a uniform grid spacing of 50 feet and has 136 rows and 214 columns and seven layers, and a total of 105,728 active cells (Figure 9). The MODFLOW-NWT model was constructed with length and time units of feet and days, respectively. The coordinate system State Plane Illinois East, NAD 83, FIPS 1201 was used for all coordinates and for GIS data management. The model grid has an origin at coordinates 1,038,526, 1,753,446, rotated 30.2 degrees to the northwest to align the model grid with the overall groundwater flow direction toward the river.

Lithology data was compiled from site well logs and ISGS drill logs and organized into geological units as described in Section 4.2. Contacts were used to create surfaces of the top of the carbonate unit and of the top of the Maquoketa Shale using Seequent Leapfrog[™] software (Seequent Limited, 2021), as well as to visualize the borehole lithology. Model layers one through five represent the unconsolidated materials, and model layers six and seven represent the carbonate unit. The top of model layer 6 was defined from the created carbonate surface and the bottom of the model was defined from the created surface of the Maquoketa Shale.

The top of the model was defined with surface topography from the 3D Elevation Program, 1-Meter Resolution Digital Elevation Model (U.S. Geological Survey, 2021). The volume of unconsolidated material above the carbonate unit was divided into five model layers to simulate groundwater flow through the unconsolidated

sediments. Model layers one through fived, together, range in thickness from 10 to 50 feet across the model domain, and together are approximately 35 feet thick beneath the ponds. Model layer six represents weathered carbonate bedrock and was defined as 10 feet thick, consistent with the well log for monitor well MW-08. Representative sections through the model domain are provided on Figure 10 to show the layering in an east-west model row (row 70) and a north-south model column (column 135) through the site near Pond 3.

5.1.3 Model Boundaries

The outside edges of the model domain must be defined with model boundaries to describe how groundwater inside the model domain interacts with groundwater outside the model domain. Additionally, boundaries can be defined interior to the model domain to represent sources and sinks of groundwater such as pumping wells or infiltration through a pond. Exterior boundaries of the numerical model are shown on Figure 8 and include:

- River boundary along the southern edge of the model domain, aligned with the Des Plaines River.
- No-flow boundaries along the east and west edges of the model.
- Constant head boundaries along the north side of the model.

The river boundary along the model's southern side is defined with a stage set to 505 feet above mean sea level (ft, amsl), consistent with surface topography. The river was defined in model layer 1. The river was assumed to be 10 feet deep, and the conductance was set from the model cell dimensions and an assumed hydraulic conductivity of 50 ft/d and a thickness of 1 foot, to represent relative ease of exchanging water between the river and groundwater.

Constant head boundaries were defined along the north side of the model. The constant heads were defined at an elevation of 509.7 ft amsl from an old (1986) water level in regional well 121972919900. Although this water level is old, it gives an elevation for the constant head boundary. Lower elevations for this boundary were tested in the sensitivity analysis discussed below.

The eastern and western model boundaries were defined with no flow boundaries to represent streamlines (groundwater flow directions) as expected from the conceptualized direction of groundwater flow toward the Des Plaines River.

5.1.4 Model Stresses

In addition to the exterior model boundaries described in Section 5.1.3, MODFLOW's recharge package was used to simulate recharge from precipitation throughout the model domain. Recharge was simulated at approximately 1.03 in/yr (2.35E-04 ft/d) or approximately 3 percent MAP. This is consistent with the initial recharge rate assumed in the conceptual water budget (Section 4.5.1), and with recharge used in previous modelling at Lincoln Stone Quarry across the river (KPRG, 2013) and resulted in a good model calibration. No recharge from precipitation was assigned below the footprint of the ponds which are lined.

5.1.5 Numerical Parameters

The Preconditioned Conjugate Gradient (PCGn) package was used with MODFLOW-NWT to solve the system of equations within the model domain. The type of solver was tested in early model runs and the PCGn solver provided a stable solution in a fast computational time compared to other solvers available with MODFLOW. The solver was used with adaptive damping (ADAMP) and the XMD linear solution method (LINMETH), again to provide a stable and computationally quick solution.

Optimal settings for the PCGn with XMD were found during model calibration. Key numerical parameters were a head change closure criterion (HCLOSEXMD) of 1E-03 feet for inner iterations and 1E-05 feet for outer iterations, 2000 maximum outer iterations and 100 maximum inner iterations.

5.2 Model Calibration

The following sections describe the approach taken to calibrate the model and the results of the model calibration.

5.2.1 Approach

The groundwater flow model was first calibrated through a trial-and-error approach by adjusting hydraulic conductivity and recharge rates until the model reasonably matched field measurements. Model calibration then continued with parameter estimation techniques in PEST software (Doherty, 2010), used with pilot points within Groundwater Vistas.

The flow model calibration relied on the measured water level data provided by KPRG for the site wells. The period of measured water levels from the site wells since 2011 were averaged, having removed outliers determined from the interquartile range, and used as model calibration targets (Table 4). The data from the site wells were considered reliable and were given a target weight of 1.

In addition to calibrating to measured water levels in the wells, qualitative considerations of model calibration included:

- General groundwater flow directions south to the Des Plains River,
- General consistency in the modeled hydraulic conductivity and the field-measured hydraulic conductivity,
- General consistency in the modeled water budget with the conceptual water budget, and
- Eliminating flooding above the surface of the model.

The measure of model calibration, other than the qualitative considerations, was to minimize the calibration residual, measured as the difference between measured and modeled groundwater elevations in wells. A negative residual indicates that the modeled groundwater elevation is higher than the measured elevation, and a positive residual indicates that the modeled groundwater elevation is lower. The statistical measures of average

residual, sum of squared residuals, and root mean square (RMS) error were used to objectively evaluate the calibration.

The RMS error was calculated as:

RMS =
$$\left[\frac{1}{n}\sum_{i=1}^{n}(h_{o} - h_{s})^{2}\right]^{0.5}$$

where $h_o - h_s$ is the target residual and n is the number of observed groundwater elevation values. The RMS error is typically scaled against the range in observed groundwater elevations in the model area. A scaled RMS error of less than 10% is the standard calibration criteria that is generally considered acceptable throughout the industry (Anderson, 2015).

Initially, the lithologic intervals in borehole locations were intersected with the model grid and zones of hydraulic conductivity ("K zones") were drawn around these lithologic groups (i.e., grouped together areas of silty sand, areas of sand and gravel, etc). Hydraulic conductivity was defined for these K zones based on the site K values, literature values, and professional judgement for initial model calibration. After the basic model calibration was completed by varying the values of hydraulic conductivity and recharge, the model calibration was refined using pilot points and PEST software. Pilot points were defined throughout model layers 3 through 5, the layers that contain the site wells for calibration, to estimate the horizontal and vertical hydraulic conductivity values. Initial values of horizontal hydraulic conductivity in the unconsolidated sediments were 170 ft/d, the geometric mean of the site data, with a range between 50 and 500 ft/d, except at the locations of the wells with hydraulic conductivity data in which the upper range was set approximately one-half magnitude lower than the revised estimates of hydraulic conductivity. Additionally, near Pond 2, the deeper unconsolidated sediments were allowed to vary as low as 1 ft/d to represent clay and clayey gravel, consistent with well logs.

5.2.2 Model Calibration Results

The calibrated distribution of horizontal hydraulic conductivity in the model is shown for model layers 3 through 5 on Figures 11a through 11c. The calibrated, model-calculated groundwater level contours are shown on Figure 12. The spatial distribution of the calibration residuals is shown on Figure 13 and a scatter plot of the residuals are shown on Figure 14. The calibrated model water budget is provided in Table 5, the model calibration residuals are provided in Table 6, and the calibrated model statistics are provided in Table 7. Recharge from precipitation was simulated at approximately 1.03 in/yr (2.35E-04 ft/d), consistent with the conceptual model and equal to approximately 3 percent of MAP (Section 4.5.1)

5.2.2.1 Calibrated Hydraulic Conductivity

The model calibrated distribution of horizontal hydraulic conductivity ranges from approximately 1 to 650 ft/d in the unconsolidated sediments in model layers 3 through 5. The horizontal hydraulic conductivity in model layers 1 and 2 were set equal to 170 ft/d, consistent with the geometric mean of the site data. The horizontal hydraulic conductivity of the weathered carbonate bedrock (model layer 6) was set equal to 1 ft/d, and was tested during model calibration between 0.1 and 10 ft/d. The horizontal hydraulic conductivity of the intact carbonate bedrock (model layer 7) was set equal to 0.1 ft/d to represent less permeable material.

Use of PEST software for the model calibration resulted in a krigged distribution of hydraulic conductivity rather than zones of hydraulic conductivity. A krigged surface is more appropriate for the unconsolidated sediments above the carbonates because the bounds of the hydraulic conductivity zones were based on available borehole logs, which include old drillers logs, thereby making the definition of zones uncertain. PEST was used to estimate horizontal and vertical hydraulic conductivity in model layers 3 through 5. The vertical hydraulic conductivity was allowed to be up to three orders of magnitude lower than the horizontal hydraulic conductivity in the unconsolidated sediments in model layers 3 through 5 to represent the presence of clay materials at depth. The vertical hydraulic conductivity was assumed equal to the horizontal hydraulic conductivity in the carbonate bedrock (model layers 6 and 7) and in model layers 1 and 2, in which no monitor wells fall to use for model calibration and to therefore constrain the values of hydraulic conductivity.

The resulting vertical hydraulic conductivity values (Kv) in the unconsolidated sediments (model layers 3 through 5) range from equal to horizontal to three orders of magnitude lower than the horizontal values (Kh), representing a vertical anisotropy ratio that ranges from 1:1 to 1:1000 Kh:Kv, appropriate for clays, and silty, clayey, sands and gravels. The anisotropy ratio is low (close to 1:1) throughout much of the model domain and is highest (lowest Kv values) beneath the ponds (Figures 11a through 11c).

The calibrated values of hydraulic conductivity at wells MW-04, -06, -09, and -11, were compared to the field data for these wells (Table 3). The modeled values of hydraulic conductivity for these four wells are generally consistent with the revised estimates of hydraulic conductivity (Table 3). Each of these wells is located in an area of steep gradient in the modeled distribution of hydraulic conductivity, with hydraulic conductivity varying substantially in a relatively short distance within the model domain. The calibrated model's values of horizontal hydraulic conductivity in the area of model cells containing these monitor wells are:

- MW-04: 488 ft/d,
- MW-06: 102 ft/d,
- MW-09: 130 ft/d, and
- MW-22: 161 ft/d,

These values are, overall, consistent with the new estimates of hydraulic conductivity for these wells (Table 3), except for well MW-04, which is more similar to the original estimates of hydraulic conductivity.

5.2.2.2 Calibrated Water Budget

The model calibrated water budget is provided in Table 5. Groundwater recharge equals 58 af/yr (6,871 cfd), consistent with the conceptual water budget estimate of 55 af/yr. The constant head boundary representing groundwater flow into the model domain from the north provided 16 af/yr (1,935 cfd), lower than the conceptual model estimate of 446 af/yr but representing the balanced water budget with spatially varying hydraulic conductivity.

Outflow from the groundwater model is through discharge to the Des Plaines River. Discharge to the river boundary on the south side of the site equalled 74 af/yr (8,806 cfd), lower than the conceptual water budget estimate but again represents the balanced water budget with spatially varying hydraulic conductivity. The total outflows from the groundwater system balance the inflows at 74 af/yr (8,806 cfd) (Table 5).

5.2.2.3 Statistics and Residuals

The calibration residuals and modeled water level for each well is provided in Table 6. Calibration residuals for the site wells range from -0.06 feet in wells MW -07 and -10 to 0.06 feet in well MW-11. The average residual is 0.0005 feet (Table 7). The RMS error is 0.044 feet, or 8.3 percent of the change in hydraulic head across the model domain. These results are below the recommended threshold of 10 percent for the scaled RMS error (Anderson, 2015).

The sum of squared residuals (phi) for the weighted calibration targets from the manual calibration was 11.8 square feet (ft²), representing the starting point for the PEST calibration. The final, calibrated phi was 0.021 ft², representing a significant improvement of the calibration by the PEST software.

The modeled water level contours and water level elevation in each calibration target (well) is shown on Figure 12. The modeled water level contours match the overall southward groundwater flow direction shown on Figure 4 by KPRG (MWG, 2021). The calibration residuals for each calibration target (well) are shown on Figure 13. Generally, there is no trend toward over or under-estimating the water levels, indicating that the model is not biased toward high or low water level elevations. The overall model calibration to measured groundwater levels in site wells is very close, within one-tenth of a foot everywhere.

A scatter plot of the calibration residuals is provided for site wells on Figure 14. In a perfect model calibration, each point would fall on a 1:1 line. Ideally deviations from the line should be balanced between high and low representing a lack of bias in the model calibration toward over- or under-prediction of the groundwater system. The calibration residuals for all wells are generally close to the 1:1 line, with the points falling both above and below the line, representing a relatively balanced, on whole, calibration to the site wells.

These results demonstrate that the model reasonably matches the overall groundwater elevations across the model domain, and the water balance reasonably represents the conceptual model of groundwater flow. The calibrated model is appropriate to use for predictive simulations.

5.3 Model Sensitivity

A sensitivity analysis was conducted as part of the model calibration. Calibrating the numerical model was an effort of fine-tuning the heterogeneity and distribution of the horizontal and vertical hydraulic conductivity values and the recharge to match measured water levels in the wells. During the PEST and manual trial-and-error calibration model runs, the model was the most sensitive to the values of hydraulic conductivity. The model calibration was particularly sensitive to the hydraulic conductivity values near the ponds, and to the hydraulic conductivity of the underlying shallow bedrock unit. A moderately permeable value of hydraulic conductivity improved the model calibration to the site wells.

The model calibration is sensitive to the recharge rate, but to a lesser extent than it is to hydraulic conductivity. The model calibrated well without recharge (seepage) from Ponds 1, 2, or 3, consistent with the ponds being fully lined. Two sensitivity model runs were conducted with seepage through the ponds applied as recharge: one with the recharge rate two orders of magnitude lower than the background recharge rate, and one equal to the recharge rate. The model calibration was not sensitive to these two variations in the recharge.

A sensitivity model run was also conducted in which the thickness of the moderately permeable, underlying bedrock unit was 15 feet thick instead of 10 feet thick. The model calibration was not sensitive to this change. Another sensitivity model run was conducted in which the upgradient constant head boundary condition was lowered two feet (to 507.5 feet). The appropriate hydraulic head value to use to define the constant head in this area is not well known and this model tested the impact to calibration. Initially the scaled RMS error was increased from 8.3 to 25 percent. The change to the upgradient constant head boundary was balanced with modifications to the hydraulic conductivity values and an increase to background recharge to 5 percent of MAP. Despite these adjustments, the scaled RMS remained worse than the calibrated model, at 10.8 percent. This test indicates that the upgradient constant head value used in the calibrated model is more appropriate to represent the regional and local groundwater flow systems.

6.0 PREDICTIVE MODEL SIMULATIONS

Both evaluated closure alternatives for Pond 2 include removal of the ash (completed in 2019). Two predictive, contaminant transport model runs were conducted to demonstrate the impact to potential impacted groundwater from pond closure. Both evaluated closure alternatives for Pond 2 include removal of the ash, which was already completed in 2019. Transport modeling was performed using the software MT3D-USGS, a widely used and accepted version of the MT3D software designed to be compatible with MODFLOW-NWT.

The calibrated, steady state groundwater flow model was used as the basis for a hypothetical 100-year transport simulation of a surrogate constituent from Pond 2. As previously stated, the current data do not indicate any releases associated with the pond. Furthermore, all ash was removed from this pond in 2019. Therefore, to provide a platform upon which to evaluate potential closure alternative, a hypothetical release from Pond 2 was established. The hypothetical (artificial) release assumes that the pond is full of ash and water and that the liner is fully compromised or non-existent. The surrogate constituent was simulated by hypothetically introducing a concentration in groundwater of "1" beneath Pond 2. The hypothetical mass was defined in groundwater beneath Pond 2 using a constant source boundary condition and forward tracked for 100 years. The resulting hypothetical plume is shown on Figures 15 through 18, at 5 years, 25 years, 50 years, and 100 years, respectively, on the *left-hand side* of these figures. The mass at Pond 2 is continuous in these model runs, therefore the mass is shown at the relative concentration of "1" beneath the pond in all figures.

6.1 Results

A model scenario was then conducted to represent removal of the hypothetical source of mass from Pond 2. In this scenario, the source boundary condition was removed from the water table and the 100-year distribution of dissolved surrogate mass (Figure 18, left-hand side) was used as the initial concentrations. With this model scenario, the distribution of dissolved contaminants that resulted from the hypothetical, continuous release of mass from Pond 2 was reduced over time after the removal of the source mass at the pond. These plumes are shown on the *right-hand side* of Figures 15 through 18 at 5 years, 25 years, 50 years, and 100 years, respectively. As these figures show, the dissolved mass reduced to approximately 50 percent at the river by 25 years and to approximately 10 percent by 100 years with the removal of the source mass. Figure 19 shows a graph of relative concentration of the surrogate mass over time at a hypothetical monitoring point between Pond 2 and the river. This graph illustrates the decay of the surrogate mass over time, and shows that at a point approaching the river, the hypothetical mass is reduced to a relative concentration of about 0 within 30 years, meaning the hypothetical mass has been flushed through the shallow groundwater system within about 30 years.

A second model scenario was conducted to test the impacts of seasonal variations of climate. The typical, annual precipitation pattern is for higher rainfall in the summer and less in the winter. A 100-year transient flow model was run with alternating stress periods of higher and lower recharge (5 months of higher recharge to represent April through August, and 7 months of lower recharge to represent September through March). The same initial distribution of concentrations used in Scenario 1 was used for Scenario 2. The source at Pond 2 was removed, and the initial distribution of concentrations was moved through the seasonally varying flow paths for 100 years. The results of this model scenario are shown on Figure 20. The 100-year distribution of dissolved contaminants is almost identical to the results from Scenario 1. As in Scenario 1, the decay of concentrations over time in a hypothetical location between Pond 2 and the river shows a decline to a relative concentration of approximately 0 within 30 years, meaning the hypothetical mass has been flushed through the shallow groundwater system within about 30 years.

7.0 CONCLUSIONS

A numerical groundwater flow model was created for the vicinity of Pond 2 at the Joliet #29 station. The model was calibrated to current water levels in site wells to replicate the groundwater flow patterns beneath the site. Groundwater flow paths from the pond are predicted to the south toward the Des Plaines River. Because the groundwater data do not indicate a release to groundwater from Pond 2, to meet the requirements of the regulation, the model was used predictively to simulate a hypothetical release scenario to the underlying water table based upon which the effectiveness of engineering closure options can be evaluated. A hypothetical surrogate constituent was simulated at Pond 2 in the groundwater. The hypothetical surrogate mass travelled with the groundwater flow paths toward the Des Plaines River. This hypothetical distribution of mass served as the initial concentrations to a predictive scenario of source removal alternatives at the pond. The hypothetical scenario assumes that Pond 2 is full of ash and water and the liner is fully compromised or non-existent allowing for impacts to freely discharge constituents to the water table. The predictive scenario of source removal (ash already has been removed) then illustrates the relative reduction in the mass concentrations in groundwater as a result. The model indicates that hypothetical downgradient dissolved contaminants would be flushed through the shallow groundwater system within about 30 years.

8.0 **REFERENCES**

- Anderson, M. W. (2015). *Applied Groundwater Modeling, Simulation of Flow and Advective Transport.* San Diego, CA: Elsevier, Inc.
- ASTM D5447-17. (2017). Standard Guide for Application of a Numerical Groundwater Flow Model to a Site-Specific Problem. ASTM International, West Conshohocken, PA.
- Caron, O. (2017). Surficial Geology of Romeoville Quadrangle, Cook, DuPage, and Will Counties, Illinois. ILLINOIS STATE GEOLOGICAL SURVEY.
- Doherty, J. a. (2010). Approaches to highly parameterized inversion A guide to using PEST for groundwatermodel calibration. In U. G. 2010-5169, *Scientific Investigations Report 2010-5169* (p. 59). United States Department of the Interior.
- Environmental Simulations Inc. (ESI). (2020). Groundwater Vistas v.8.0.
- Feinstein, D. T., Fienen, M. N., Kennedy, J. L., Buchwald, C. A., & Greenwood, M. M. (2012). *Development and Application of a Groundwater/Surface-Water Flow Model using MODFLOW-NWT for the Upper Fox River Basin, Southeastern Wisconsin.* Scientific Investigations Report 2012–5108, USGS.
- Illinois State Geological Survey. (2021). *The Illinois Water and Related Wells Map, https://maps.isgs.illinois.edu/ilwater.*
- Interagency Coordinating Committee on Groundwater. (2010). *Illinois Groundwater Protection Program Biennial Comprehensive Status and Self-Assessment Report.* Illinois Environmental Protection Agency, Bureau of Water.
- KPRG. (2013). Revised Groundwater Impact Assessment, Lincoln Stone Quarry Landfill, Addendum to IEPA Application Logs 2004-052 and 2009-213, Volume 2, March 13, 2013.
- Meyer, S., Roadcap, G., Lin, Y.-F., & Walker, D. (2009). *Kane County Water Resources Investigations: Simulation of Groundwater Flow in Kane County and Northeastern Illinois.* Champaign, Illinois: Illinois State Water Survey.
- Midwest Generation (MWG) (2021). Application for Initial Operating Permit, Joliet #29 Generating Station, Midwest Generation, LLC, Joliet, Illinois, October 29, 2021.
- Niswonger, R. P. (2011). MODFLOW-NWT, A Newton formulation for MODFLOW-2005. In U. G. Survey, *Techniques and Methods 6-A37* (p. 44). Reston, Virginia: U.S. Department of the Interior.
- Patrick Engineering Inc. (2011). *Hydrogeologic Assessment Report, Joliet Generating Station No. 29, Joliet, Illinois.* Prepared for Midwest Generation, LLC and submitted to Illinois Environmental Protection Agency.
- Seequent Limited. (2021, June 16). Leapfrog Works 2021.1.2. Brisbane, Australia.
- U.S. Geological Survey. (2021). 3D Elevation Program 1-Meter Resolution Digital Elevation Model. Retrieved from https://www.usgs.gov/core-science-systems/ngp/3dep/data-tools
- Willman, H. B., & Lineback, J. (1970). *Surficial Geology of the Chicago Region.* Urbana, Illinois: Illinois State Geological Survey.

Zheng, C. M. (2012). MT3DMS: Model Use, Calibration, and Validation. Transactions of the ASABE, Volume 55.

Signature Page

BAS Groundwater Consulting Inc.

Betsy Demmens

Betsy Semmens, RG President/BAS Groundwater Consulting

TABLES

Month	Average Monthly Precipitation (inches) ^{1,2}		
lanuary			
Salidal y	1:03		
February	1.27		
March	2.01		
April	3.66		
Мау	3.90		
June	4.65		
July	4.41		
August	4.08		
September	3.02		
October	3.09		
November	2.40		
December	1.81		
Average Annual Precipitation ¹	34.4		

Table 1: Precipitation Data near Joliet 29 Station

Notes:

¹Data were averaged for the periods of complete records available for these stations: Elwood 8 NW, Joliet Brandon Rd Dam, Joliet, Joliet Regional Airport

²Periods of complete records were determined as months with 5 or less missing days and years without months with more than 5 missing days

1/28/2022

Table 2: Compiled Borehole Lithology

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft bgs	ft bgs		
121973265800	0	15	gravel	Sand and gravel
121973265800	15	185	limestone	Carbonate
121973265800	185	267	shale	shale
121973842900	0	8	fill	FILL
121973842900	8	170	lime	Carbonate
121973842900	170	220	shale	Shale
121973842800	0	10	black dirt and rocks	FILL
121973842800	10	135	yellow limestone	Carbonate
121973842800	150	175	limestone	Carbonate
121974206700	0	7	clay	Silt and Clay
1219/4206/00	/	8	broken rock	Carbonate
1219/4206/00	8	50		Carbonate
121974206700	200	200	shale streaks lime	Carbonate
121974206700	200	215		
121974200700	0	223	sindle	Sindle
121974045100	20	140	brown limestone	Carbonate
121974045100	140	200	grav limestone	Carbonate
121972880200	0	200	clay	Silt and Clay
121972880200	25	40	clay & boulders	Silt and Clay
121972880200	40	50	lime	Carbonate
121972880200	50	85	porous lime	Carbonate
121972880200	85	140	white lime	Carbonate
121972880200	140	205	grey lime	Carbonate
121972880200	205	235	white porous lime	Carbonate
121972880200	235	250	grey lime w/shale streaks	Carbonate and Shale
121972880200	250	255	shale	shale
121972738300	0	60	clay	Silt and Clay
121972738300	60	185	limestone	Carbonate
121974359800	0	11	Clay Fill	Silt and Clay
121974359800	11	24	sand & gravel	Sand and gravel
121974359800	24	30.5	Fill	FILL
121974359800	30.5	33	Organic Clay	Silt and Clay
121974359800	33	43	loam .	Loam
121972919900	0	8	clay .	Silt and Clay
1219/2919900	8	100	limestone	Carbonate
1219/3006000	0	60		Slit and Clay
121973006000	60	09		Sanu anu gravei
121973006000	09	125	shale	Shalo
121973006000	135	185		Carbonate
121972758800	0	3	ton soil	Tonsoil
121972758800	3	90	rock	Carbonate
121972758800	90	108	shale	Shale
121972758800	108	138	rock	Carbonate or shale
121972758800	138	200	rock & shale	Carbonate and Shale
121972760100	0	65	clay	Silt and Clay
121972760100	65	70	sand	Sand and gravel
121972760100	70	90	gravel	Sand and gravel
121972760100	90	205	limestone	Carbonate
121972773600	0	90	clay & gravel	clay, sand, gravel
121972773600	90	185	limestone	Carbonate
121973178000	0	10	brown clay	Silt and Clay
121973178000	10	73	shale	Shale
121973179200	0	1	top soil	Topsoil
121973179200	1	75	clay	Silt and Clay
121973179200	75	90	clay/sand/gravel	clay, sand, gravel
121973179200	90	200	limestone	Carbonate
121973179400	0	2		
1219/31/9400	2	3	Clay	Slit and Clay
1219/31/9400	3	18	limestone	Flagstone
1219/31/9400	18	185	limestone	Carbonate

1/28/2022 Table 2, Continued

21141301

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft bgs	ft bgs		
121973179400	185	205	shale	Shale
121973179500	0	26	gravel	Sand and gravel
121973179500	26	120	limestone	Carbonate
121973179500	120	140	shale	Shale
121973179500	140	150	limestone	Carbonate
1219/31/9500	150	1/0	shale	Shale
121973179500	170	205	clay & gravel	carbonate
121973179600	40	115	limestone	Carbonate
121973179700	-+C 0	10	clay	Silt and Clay
121973179700	10	84	gravel	Sand and gravel
121973179700	84	205	limestone	Carbonate
121973624000	0	10	clay	Silt and Clay
121973624000	10	20	gravel	Sand and gravel
121973624000	20	130	limestone	Carbonate
121973624000	130	150	black hard shale	Shale
121973628800	0	6	fill	FILL
121973628800	6	70	dolomite	Carbonate
121973524600	0	5	gravel	Sand and gravel
121973524000	5	200	clay & gravel	
121973686500	8	20	flagstone	Flagstone
121973686500	20	145	grav limestone	Carbonate
121970126200	0	5	FILL	Fill
121970126200	5	102	dolomite	Carbonate
121970126200	102	210	Maquoketa	Shale
121973388700	0	5	fill and black soil	Fill
121973388700	5	35	clay, yellow	Silt and Clay
121973388700	35	68	clay, blue	Silt and Clay
121973388700	68	82	sand & clay	Sandy Clay
121973388700	82	112	rock, hard, white	Carbonate
1219/3388/00	112	1/0	red rock	Shale
121973889900	12	12	Large River Rock	Sand and Gravel
121973889900	12	20	Clay	Silt and Clay
121973889900	20	35	Sand and Large Gravel	Sand and Gravel
121973889900	35	37	broken rock	Carbonate
121973889900	37	95	Lime	Carbonate
121973889900	95	105	Shallow and Lime	Carbonate
121973889900	105	140	Lime and Shale Streaks	Carbonate and Shale
121973889900	140	218	Shale	Shale
121973265900	0	7	black soil	Topsoil
121973265900	7	17	broken limestone	Carbonate
121973265900	17	103	limestone	Carbonate
121970027700	U 10	20	gravel boulders and sand	sand and gravel
121970027700	20	20	vellowish lime	Carbonate
121970027700	23	33	dark gray lime	Carbonate
121970027700	33	73	gray lime	Carbonate
121970027700	73	135	white lime	Carbonate
121970159300	0	1	drift	Topsoil
121970159300	1	133	Silurian dolomite	Carbonate
121970159300	133	143	dolomite withe shale	Carbonate
121970159300	143	145	shale	shale
121970350100	0	2		lopsoil
1219/0350100	2	55	ciay cond	Suit and Clay
121020250100	55 02	ຽຊ ມາ⊑	Imestone	Sanu anu gravel
121970350100	03	225	Drift	Tonsoil
121970119800	3	65	Limestone	Carbonate
121970119800	65	201	Maguoketa	Shale
121970356800	0	1	topsoil	Topsoil
121970356800	1	58	clay & gravel	clay, sand, gravel
121970356800	58	180	limestone	Carbonate
121970356900	0	1	top soil	Topsoil

1/28/2022 Table 2, Continued

21141301

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft bgs	ft bgs		
121970356900	1	76	clay & gravel	clay, sand, gravel
121970356900	76	185	limestone	Carbonate
121970124700	0	12	surface	Topsoil
121970124700	12	135	limestone, hard	Carbonate
121970124700	135	140	shale	Shale
121970124700	140	165	limestone, hard	Carbonate
121970124700	165	175	streaks of limestone, shale	Carbonate and Shale
121970124700	175	245	Maquoketa	Shale
121970124800	0	125	Dolomite	Carbonate
121970124800	125	240	Maquoketa	Shale
121970125000	10	148	Dolomite	Carbonate
121970125000	148	250	Iniaquoketa	shale
121970296100	12	42	limestone	Carbonate
121970290100	42	100	clay & gravel	clay sand gravel
121972646300	40	40	limestone	Carbonate
121972940500	40	6	drift	Tonsoil
121973925800	6	33	limestone	Carbonate
121973925800	33	37	shale	Shale
121970126100	0	98	Dolomite	Carbonate
121970126100	98	210	Maquoketa	shale
121973265600	0	4	black soil	Topsoil
121973265600	4	10	yellow clay and boulders	clay, sand, gravel
121973265600	10	35	yellow clay	Silt and Clay
121973265600	35	55	blue clay	Silt and Clay
121973265600	55	62	sand and gravel	Sand and Gravel
121973265600	62	200	limestone	Carbonate
121973265700	0	14	boulders	Sand and Gravel
121973265700	14	17	rock and gravel	Sand and Gravel
121973265700	17	94	lime	Carbonate
121973265700	94	103	shale and lime	Carbonate and Shale
121973265700	103	137	shale	Shale
MW-01	0	1	FILL: Topsoil with fine to coarse gravel	FILL
MW-01	1	6	FILL: 1' to 2' rounded coarse gravel at surface	FILL
MW-01	6	9	FILL: Fine to coarse sand and gravel, limestone fragments	FILL
NIV-01	9	11	FILL: Limestone fragments	FILL alar and arous
	10	19	Limestone fragments	ciay, sand, gravel
N/W-01	20	20	Eine to coarse cand and gravel, with limestone fragments, weathered	Sand and gravel
MW-01	20	27.5	Fine to coarse grave (CA-6)	Sand and gravel
MW-02	1	1	Brown fine to coarse sand and gravel	Sand and gravel
MW-02	4	6	1" limestone fragments	Sand and gravel
MW-02	6	8	Brown fine to coarse sand and gravel	Sand and gravel
MW-02	8	12.5	1" limestone fragments	Sand and gravel
MW-02	12.5	13.5	Little Silty clay	Silt and Clay
MW-02	13.5	16	Coarse gravel with black silty clay, trace roots, trace coarse sand	clay, sand, gravel
MW-02	18.5	21	Brown silty fine to coarse sand, trace fine gravel	clay, sand, gravel
MW-02	21	24	Limestone fragments, trace light brown silty clay	clay, sand, gravel
MW-02	24	28.5	Limestone fragments	Sand and gravel
MW-03	0	4	Coarse gravel (CA-6)	Sand and gravel
MW-03	4	18.5	Fine to coarse sand and gravel	Sand and gravel
MW-03	18.5	41	Tan fine to coarse sand, with coarse gravel	Sand and gravel
MW-04	0	1	Coarse gravel (CA-6)	Sand and gravel
MW-04	1	6	Brown silty clay, trace coarse sand, stiff	clay, sand, gravel
MW-04	6	17	Brown fine to coarse sand and gravel, trace limestone fragments	Sand and gravel
IVIW-04	17	20	Limestone fragments	Sand and gravel
MW-04	20	23	Brown fine to coarse sand and gravel, trace limestone fragments	Sand and gravel
IVIVV-04	23	33	Fine to coarse sand and gravel	Sand and gravel
IVIVV-U4	33	35.5	Fine to coarse sand	Sand and gravel
N/N/ OF	35.5	40	Fine to coarse sand and gravel, with limestone tragments	Sand and gravel
M/M/-05	0 8 E	0.5	Riack silty clay, coarse sand	clay sand gravel
M/M/_05	0.5	19 22 E	Coarse gravel fragments	Sand and Gravel
MW-05	23.5	31	Tan to light brown fine to coarse sand little coarse gravel	Sand and Gravel
MW-05	31	41	Fine to coarse sand and gravel	Sand and Gravel
			0.0.0	

1/28/2022 Table 2, Continued

21141301

Well Name/Identifier	From ¹	To ¹	Description	Lithology Group
	ft bgs	ft bgs		
MW-05	41	42	Tan to light brown fine to coarse sand, little coarse gravel	Sand and Gravel
MW-06	0	8.5	Gravel (CA-6) topsoil	Topsoil
MW-06	8.5	31	Brown to tan fine to coarse sand and gravel, trace limestone, gravel seams	Sand and Gravel
MW-06	31	38.5	Fine to coarse sand and gravel	Sand and Gravel
MW-06	38.5	40.5	Limestone Bedrock	Carbonate
MW-07	0	8.5	Gravel (CA-6) topsoil	Topsoil
MW-07	8.5	39.5	Tan to brown fine to coarse sand and gravel	Sand and Gravel
MW-08	0	1	Fine to coarse gravel fill	Sand and Gravel
MW-08	1	3.5	Dark brown silty clay, some fine to coarse sand, stiff	Sand and Gravel
MW-08	3.5	6	Black/brown fine to coarse sand and gravel	Sand and Gravel
MW-08	6	20	Limestone fragments	Sand and Gravel
MW-08	20	35.5	Black/brown fine to coarse sand and gravel	Sand and Gravel
MW-09	0	1	Coarse sand and gravel (CA-6)	Sand and Gravel
MW-09	1	3.5	Coarse gravel, with black silty clay, trace root seams	clay, sand, gravel
MW-09	3.5	11	Coarse gravel fragments, with fine to coarse sand	Sand and Gravel
MW-09	11	18.5	Limestone fragments, with light brown silty fine to coarse sand	Sand and Gravel
MW-09	18.5	23.5	Limestone fragments, with light brown to dark orange fine to coarse sand	Sand and Gravel
MW-09	23.5	28.5	Light brown/orange fine to coarse sand, with coarse gravel	Sand and Gravel
MW-09	28.5	35	Light brown coarse sand, some fine to coarse gravel, little fine sand	Sand and Gravel
MW-10	0	3	Coarse gravel	Sand and Gravel
MW-10	3	7	Brown clay	Silt and Clay
MW-10	7	19	Black/gray sandy silt	Silt and Clay
MW-10	19	41	Gray silty clay, trace coarse sand, soft	Sandy Clay
MW-11	0	9	Fine to coarse sand and gravel, fill	Sand and Gravel
MW-11	9	14	Grades to dark gray clayey silt	Silt and Clay
MW-11	14	24	Dark gray clayey silt, soft	Silt and Clay
MW-11	24	39.5	Light brown fine to coarse silt and gravel	clay, sand, gravel

Notes:

¹Depth intervals in feet below ground surface (ft bgs).

4 of 4

1/28/2022

Table 3: Hydraulic Conductivity Data for Site Wells

Well Name	Screened Depth	Screened Geology	Test Name	2011 Hydraulic Con	ductivity Estimate	2021 Hydraulic Conductivity Estimate		
	ft bgs			ft/s	ft/d	ft/s	ft/d	
	Sandy Cravel	U2	6.95E-03	600	3.63E-03	310		
10100-4	29.3 - 39.3	Sandy Graver	D1	4.27E-03	370	3.28E-03	280	
	Sandy Gravel /	U1	5.27E-03	460	1.48E-03	130		
10100-0	50.5 - 40.5	Limestone Bedrock	D2	2.99E-03	260	1.61E-03	140	
	04 75 04 75	Sandy Cravel	U2	1.95E-03	170	1.17E-03	100	
10100-9	24.75 - 34.75	Sandy Gravel	D1	1.93E-03	170	1.41E-03	120	
	20 5 20 5	Silty Croyol	U2	4.69E-03	400	2.38E-03	210	
1/1//	29.0-39.5	Silty Glaver	D1	3.13E-03	270	1.95E-03	170	

Notes:

ft bgs = feet below ground surface ft/d = feet per day ft/s = feet per second

1/28/2022

Table 4: Groundwater Elevation Data

	MW-01	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MW-10	MW-11
Groundwater Elevation:											
Minimum (ft)	504.9	504.9	504.9	503.9	504.8	504.9	504.9	498.0	505.0	504.9	505.2
Maximum (ft)	511.6	512.3	511.7	511.6	511.5	511.5	511.5	511.8	511.1	511.8	512.8
1st Quartile (ft)	505.5	505.2	505.2	505.2	505.1	505.3	505.3	505.2	505.3	505.3	505.5
3rd Quartile (ft)	506.8	506.2	506.0	506.0	506.0	506.2	506.3	506.1	506.2	506.2	506.6
IQR (ft)	1.3	0.9	0.7	0.8	0.9	0.9	1.0	0.8	0.9	0.9	1.1
Lower Bound (ft)	503.6	503.8	504.1	504.0	503.8	503.9	503.8	504.0	503.9	503.9	503.8
Upper Bound (ft)	508.7	507.6	507.1	507.2	507.4	507.5	507.8	507.3	507.5	507.5	508.3
Average (ft) ¹	505.9	505.6	505.6	505.6	505.6	505.7	505.7	505.6	505.7	505.7	506.1

Notes:

ft = feet

IQR = Interquartile range

¹The calculated average water level was used as the calibration head target in the numerical groundwater flow model

Table 5: Calibrated Water Budget

Component	Conceptual Flux	Modeled Flux			
	af/yr	af/yr	cfd		
INFLOWS					
Recharge	55	58	6,871		
Inflow from the North	446	16	1,935		
Total Inflows	501	74	8,806		
OUTFLOWS					
Discharge to Des Plaines					
River	462	74	8,806		
Total Outflows		74	8,806		

Notes:

af/yr = acre-feet per year cfd = cubic feet per day

1/28/2022

21141301

Table 6: Calibration Residuals

Well	Easting	Northing	Target Value ¹	Weight	Modeled Water Level	Residual
	NAD83, State P	Plane, IL East, ft	ft		ft	ft
MW-01	1043517.49	1759791.00	505.9	1	505.87	0.03
MW-02	1043322.89	1759718.93	505.62	1	505.67	-0.05
MW-03	1042813.57	1759529.13	505.57	1	505.56	0.01
MW-04	1042623.77	1759421.02	505.57	1	505.54	0.03
MW-05	1042373.92	1759339.33	505.55	1	505.59	-0.04
MW-06	1042172.11	1759228.82	505.69	1	505.64	0.05
MW-07	1041898.22	1759127.91	505.73	1	505.79	-0.06
MW-08	1043219.58	1760040.85	505.63	1	505.65	-0.02
MW-09	1043044.21	1759795.81	505.67	1	505.63	0.04
MW-10	1042426.77	1759706.92	505.66	1	505.72	-0.06
MW-11	1041912.63	1759507.50	506.08	1	506.02	0.06

Notes:

ft = feet

¹The target value for site-specific wells is the long-term average of measured water levels

Table 7: Calibration Statistics

Parameter	
Average Residual (ft)	0.0005
Minimum Residual (ft)	-0.061
Maximum Residual (ft)	0.062
Sum of Squared Residuals (ft ²)	0.021
RMS Error (ft)	0.044
%RMS ¹	8.3%

Notes:

ft = feet, ft^2 = square feet

RMS = root mean square

¹Calculated by dividing the RMS error by the range in measured values

FIGURES

LEGEND

Coordinate System: NAD_1983_StatePlane_Illinois_East_FIPS_1201_Feet Project File: Figure10_ModelLayering.qgz

K P R G AS GROUNDWATER CONSULTING CLIENT MIDWEST GENERATION SITE JOLIET 29 1800 CHANNAHON RD, JOLIET, IL TITLE MODEL LAYERING SCALE AT ANSI A DRAWN DZF 01/28/2022 CHECKED BAS 01/28/2022 BAS PROJECT No. FIGURE: 10 21141301

500 - 1000

NAD_1983_StatePlane_Illinois_East_FIPS_1201_Feet Project File: Figure 11a CalibratedKsLayers3.qgz

1:30,000	CHECKED	BAS	01/28/2022
S PROJECT No.			FIGURE:
2	1141301		11a

1760010

50 - 100

NAD_1983_StatePlane_Illinois_East_FIPS_1201_Feet Project File: Figure 11c CalibratedKsLayers5.qgz

1:30,000	CHECKED	BAS	01/28/2022
AS PROJECT No.			FIGURE:
21	1141301		11c

1760010

basgroundwater.com

ATTACHMENT 9 GROUNDWATER MONITORING INFORMATION

<u>Attachment 9-1 – Local Well Stratigraphy Information</u>

ID	Well_Count	Well_ID	From	То	Original Logged Description
1		121973265800	0	15	gravel
2		121973265800	15	185	limestone
3	1	121973265800	185	267	shale
4		121973265800	267	605	limestone
5		121973842900	0	8	fill
6		121973842900	8	170	lime
7	2	121973842900	170	220	shale
8		121973842900	220	575	lime
9		121973842800	0	10	black dirt and rocks
10	3	121973842800	10	135	yellow limestone
11	5	121973842800	135	150	shale
12		121973842800	150	175	limestone
13		121974206700	0	7	clay
14		121974206700	7	8	broken rock
15	4	121974206700	8	50	lime
16		121974206700	50	200	white & gray lime
17		121974206700	200	215	shale streaks lime
18		121974206700	215	225	shale
19		121974045100	0	20	sand & gravel
20	5	121974045100	20	140	brown limestone
21		121974045100	140	200	gray limestone
22		121972880200	0	25	clay
23		121972880200	25	40	clay & boulders
24		121972880200	40	50	lime
25	c	121972880200	50	85	porous lime
26	6	121972880200	85	140	white lime
27		1219/2880200	140	205	grey lime
28		121972880200	205	235	white porous lime
29		121972880200	235	250	grey lime w/sh strks
30		121972880200	250	255	
31	7	121972738300	0	105	Clay
22		121972756500	0	105	
33		121974359800	11	24	cand & gravel
25	8	121074250800	24	24	
36		121974359800	24	30.5	
37		121974359800	30.5	43	loam
38		121972919900	0	45 8	clav
39	9	121972919900	8	100	limestone
40		121973006000	0	60	clav
41		121973006000	60	69	sand & gravel
42	10	121973006000	69	91	limestone
43		121973006000	91	135	shale
44		121973006000	135	185	limestone
45		121972758800	0	3	top soil
46	1	121972758800	3	90	rock
47	11	121972758800	90	108	shale
48		121972758800	108	138	rock
49		121972758800	138	200	rock & shale
50		121972760100	0	65	clay
51	10	121972760100	65	70	sand
52	12	121972760100	70	90	gravel
53		121972760100	90	205	limestone
54	12	121972773600	0	90	clay & gravel
55		121972773600	90	185	limestone
56		121973178000	0	10	brown clay
57	14	121973178000	10	73	shale
58		121973178000	73	205	limestone
59		121973179200	0	1	top soil
60	15	121973179200	1	75	clay
61		121973179200	75	90	clay/sand/gravel
62		121973179200	90	200	limestone

63		121973179400	0	2	top soil
64		121973179400	2	3	clay
65	16	121973179400	3	18	flagstone
66		121973179400	18	185	limestone
67		121973179400	185	205	shale
68		121973179500	0	26	gravel
69		121973179500	26	120	limestone
70		121973179500	120	140	shale
71	17	121973179500	140	150	limestone
72		121973179500	150	170	shale
73		121973179500	170	205	limestone
74		121973179600	0	40	clay & gravel
75	18	121973179600	40	115	limestone
76		121973179700	0	10	clay
77	19	121973179700	10	84	gravel
78		121973179700	84	205	limestone
79		121973624000	0	10	clav
80		121973624000	10	20	aravel
80 81	20	121973624000	20	130	
82		121973624000	130	150	hack hard shale
83		121973628800	0	6	fill
0J 04	21	121072628800	6	70	delemite
04		121973028800	0	70	gravel
85	22	121973524000	5	200	limostono
97		121973524000	0	200	clay & gravel
07	23	121973080300	0	20	flagstopo
00	23	121973080300	20	145	grav limestone
00		121975060500	20	145 E	
90	24	121970126200	U E	102	riLL delemite
02	27	121970120200	102	210	Maguakata
92		121970120200	102	210 E	fill and black soil
95		121975566700	5	25	
94		121973388700	25	55	day, blue
95	25	121973388700	69	00	cand & clay
97	25	121973388700	82	112	rock hard white
97		121073388700	112	170	red rock
90		121973388700	170	181	lime dark grav
100		121973889900	0	101	Large River Rock
100		121973889900	12	15	Sand and Gravel
101		121973889900	15	20	Clay
102		121073880000	20	20	Sand and Large Gravel
103	26	121973889900	20	37	broken rock
104	20	121973889900	37	05	
105		121973889900	37 05	105	Shallow and Lime
107	1	121973889900	105	140	Lime and Shale Streaks
102	1	121973889900	140	210	Shale
100		121973265000	0	7	black soil
110	27	121973265900	7	17	hroken limestone
111	27	121973265900	17	103	limestone
112		121970027700	1,	105	boulders
112	1	121970027700	10	20	gravel houlders and sand
113		121970027700	20	20	yellowich lime
115	28	121970027700	20	23	dark gray line
115		121970027700	23	73	
117		121070027700	72	125	Is a vinite lime
110		121970027700	/5	100	drift
110		121970159500	1	122	Silurian dolomite
120	29	121970159500	122	1/2	dolomite withe shale
120		121970159500	1/2	145	chalo
121		121970139300	145	145	ton soil
122	1	121970250100	0 2	2	
123	30	121970250100	۲ ۲	22	loand
124	1	121970250100	22	03 225	Janu
125		1713/0320100	53	225	Innestone

127 128 1297013800 3 65 Imestore 128 1297013800 63 100001 100001 129 12197035800 63 100001 100001 130 12197035800 1 100001 100001 131 12197035800 0 1 100001 132 12197035800 0 1 100001 133 12197035800 0 1 100001 134 12197035800 0 1 100001 135 12197012700 10 12197012700 10 12197012700 136 12197012700 10 12197012700 10 12197012700 10 12197012700 137 12197012700 10 12197012700 10 140 11970712700 10 140 11970712700 10 140 11970712700 10 140 11970712700 10 140 11970712700 10 140 11970712700 10 140	126		121970119800	0	3	Drift
128 129 129/14900 65 201 Magucketa 130 1297055800 0 1 topol 131 12197055800 0 1 topol 132 12197055800 58 180 lmestore 133 12197055800 57 day & gravel 134 33 12197052800 1 76 day & gravel 135 12197012700 0 1 topol unretore, hard 136 12197012700 135 40 date date 137 34 12197012700 140 156 lmestore, hard 138 12197012700 155 257 date date 139 12197012800 0 25 dolomite date 144 36 12197012800 0 date date date 12197012800 0 42 404 day gravel date date 12197012800 0 44<	127	31	121970119800	3	65	Limestone
129 22 1297035800 0 1 toppol 131 1297035800 18 180 interstore 133 33 1297035800 0 1 toppol 133 33 1297035800 0 1 toppol 134 1297035800 0 1 toppol 135 1297035900 1 76 dsy & gravel 136 1297014700 0 12 strafac 137 1297014700 135 140 shele 138 121970124700 135 140 shele 139 121970124700 135 140 shele 121970124700 135 140 shele 121970124700 141 212970124700 135 140 shele 121370124700 145 125 meanoteh 141 21297024800 0 142 dometeh 121370124700 145 121297024800 0 140<	128		121970119800	65	201	Maguoketa
130 22 12197035800 1 5.8 day & gravel 131 12197035800 58 100 linestone 133 33 12197035800 1 10 day & gravel 134 12197014700 1 10 day & gravel 135 12197014700 12 135 136 12197014700 12 136 137 12197014700 13 100 138 12197014700 136 100 139 12197014700 136 100 130 12197014700 137 148 12197014700 140 21297014800 122 20 100 100 141 3 12197012500 148 26 Maguokata 142 12197012500 10 44 Maguokata 143 3 1219702500 0 42 day & gravel 144 3 1219702500 0 42 day & gravel 12197252600	129		121970356800	0	1	topsoil
131 132 133 1297035800 58 100 Immestone 133 1297035600 0 1 top uil 134 1297035600 1 76 doy & gravel 135 1297035600 0 125 sufface 136 1297012700 10 125 sufface 137 1297012700 125 135 linedone, had 139 1297012700 125 125 linedone, had 139 1297012700 125 125 linedone, had 139 1297012800 10 155 linedone, had 130 1297012800 10 148 linedone linedone 141 35 1297012800 10 148 linedone linedone 143 36 129702500 10 42 linedone linedone 144 37 129702500 10 42 linedone linedone 144 38 129725	130	32	121970356800	1	58	clay & gravel
132 33 1297035600 0 1 top soll 133 1297035600 7 6 dy gravel 134 1297035600 7 185 lmestone 135 12970324700 10 12 surface 136 12970124700 135 lmestone, had 137 139 12970124700 135 lmestone, had 139 12970124700 135 lmestone, had 131 133 12970124700 135 ldags of lmestone, had 1319 12970124700 135 ldags of lmestone, had 1319 1297012400 125 240 Magueketa 143 36 1297012600 125 240 Magueketa 144 36 12197026100 12 126 Magueketa 145 12197026100 12 121 121 121 146 12197026100 13 131 Imestone 12197326500 140 12197326500 1219	131		121970356800	58	180	limestone
333 337 337 337 337 337 337 337 337 337 337 337 337 337 337 337 337 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 347 338 338 348 338 <td>132</td> <td></td> <td>121970356900</td> <td>0</td> <td>1</td> <td>top soil</td>	132		121970356900	0	1	top soil
134 135 12197025900 76 185 Investore 135 1219702700 12 125 Suffece 136 1219702700 12 135 Investore, hard 137 138 1219702700 135 Investore, hard 139 1219702700 135 Investore, hard 140 135 1219702700 125 Mayokets 141 1219702700 125 246 Mayokets 142 12197012600 10 148 Dolomite 143 12197012600 10 148 Dolomite 144 12197012600 10 148 Dolomite 146 12197012600 10 426 Mayoketa 1197036200 0 40 Clay & gravet 148 121972046300 0 40 Clay & gravet 149 12197205600 10 31 Investore 151 12197205600 10 110 Investore	133	33	121970356900	1	76	clav & gravel
135 212970242700 0 12 surface 136 1219702142700 12 135 instance, hard 137 1219702142700 135 136 instance, hard 138 1219702142700 135 136 instance, hard 139 121970124200 135 136 instance, hard 140 121970124800 125 244 Maquoketa 141 35 121970124800 125 240 Maquoketa 143 36 121970124800 124 250 Maquoketa 144 36 121970124800 124 260 Maquoketa 144 37 12197024800 42 260 Maquoketa 145 37 12197024800 0 42 day gravel 12197024800 0 42 day gravel 12197325300 135 147 121970254300 0 6 33 linestone 151 12197325500 137	134		121970356900	76	185	limestone
136 137 138 139 139 12 122 135 140 122 135 12100124700 132 140 140 141 12100124700 135 125 140 141 12100124700 135 125 140 141 12100124700 135 125 140 141 12100124700 135 12100124700 135 12100124800 125 12100124800 126 12100124800 126 12100124800 126 12100124800 126 12100124800 126 12100124800 126 12100124800 126 12100124800 126 12100124800 12100124800	135		121970124700	0	12	surface
137 34 122970124700 135 140 153 138 121970124700 140 155 limestone, hard 140 121970124700 175 245 Maguoketa 141 35 121970124700 175 245 Maguoketa 142 35 121970124700 175 245 Maguoketa 142 35 121970124800 125 Delomite 143 36 121970125000 148 Dolomite 143 12197012600 42 clop kg gavel 144 36 121970125000 148 Dolomite 145 37 12197024500 40 clop kg gavel 146 37 12197024500 40 clop kg gavel 151 12197325800 6 33 limestone 152 12197325800 37 block block soli 153 40 1219702500 14 block soli 154 12197325500	136		121970124700	12	135	limestone hard
158 34 12197112700 140 165 175 treatone, hrad 139 121970124700 115 125 dreaks of limestone, shale 140 35 121970124800 125 Dolomite 141 35 121970124800 125 Dolomite 142 35 12197012500 10 148 Dolomite 143 36 12197012500 148 Dolomite 12197012500 148 Dolomite 144 1219702500 14 Dolomite 1219702500 148 Dolomite 147 1219702500 42 Cay & gravel 1219702500 179 1219702500 179 1219702500 180 119 1119 119 119	137		121970124700	135	140	shale
159 12970124700 175 215 streaks of limestone, shale 140 12970124800 0 125 Data Maguoketa 141 36 121970124800 0 125 Data Maguoketa 142 36 121970124800 125 Data Maguoketa 143 36 121970125000 10 148 Dotomite 144 36 121970125000 10 148 Dotomite 145 31 12197025010 42 160 Ilmestone 147 38 121970256300 40 143 Siggesson 148 31 1219728500 6 33 Ilmestone 151 121973925800 37 100 Ilmestone 12197325500 3 37 shale 152 12197325500 3 37 shale 153 40 12197325500 10 35 yellow clay 12197325500 10 35 yellow clay 121	138	34	121970124700	140	165	limestone hard
140 12370124700 175 245 Maguoketa 141 95 12370124800 0 125 Dolomite 142 121970124600 12 240 Maguoketa 143 36 12197012600 148 Dolomite 144 37 1219702500 148 Dolomite 145 37 12197026100 42 clay & gravel 146 12197026010 42 clay & gravel 147 38 1219726400 40 clay & gravel 148 12197325600 6 33 limestone 151 12197325600 33 37 shale 152 12197325600 37 100 limestone 153 40 12197325600 38 210 Maguoketa 155 12197325600 35 55 blue clay 12197325600 10 yellow clay and boulders 12197325600 12197325600 135 yellow clay and boulders </td <td>130</td> <td></td> <td>121970124700</td> <td>165</td> <td>175</td> <td>streaks of limestone, shale</td>	130		121970124700	165	175	streaks of limestone, shale
123 123 123 123 123 123 123 123 141 135 121970124800 125 240 Maguokta 143 136 121970125000 125 240 Maguokta 144 136 121970125000 148 256 Maguokta 144 121970125000 148 256 Maguokta 145 121970256100 0 42 164% gravel 144 12197025600 0 6 drift 147 12197325600 0 6 drift 150 12197325500 33 37 shale 151 12197325500 33 37 shale 152 12197325500 0 4 block soll 12197325500 0 4 block soll 12197325500 10 19 yellow clay and boulders 12197325500 10 19 yellow clay 121973255000 10 19	140		121970124700	175	245	Maguoketa
120 120000 123 120000 142 121970124800 123 120 Maquoketa 143 36 12197012000 148 Delomite 144 36 12197012000 148 Delomite 145 37 12197026100 42 clay & gravel 146 121970250100 42 clay & gravel 147 38 12197264300 0 dol clay & gravel 148 12197264300 0 100 linestone 1151 150 12197325800 33 37 shale 1151 151 12197325800 33 37 shale 1151 153 40 12197016100 0 98 Delomite 12197325600 140 lakskoll 155 12197325600 4 100 yellow clay and boulders 12197325600 12197325600 12197325600 12197325600 141 blockal 156 121973255700 147 1	141		121970124700	0	125	Dolomite
123 121/01/25000 122 120 Induction 143 36 1219701/25000 148 Dolomite 144 36 1219702/5000 148 Zei Age and age age and age	1/12	35	121070124800	125	240	Maguoketa
134 36 113701.2500 1.0 1.48 2000 144 12197025000 0 42 clay & gravel 145 37 12197025000 0 42 clay & gravel 147 38 12197264300 0 40 clay & gravel 148 32 12197264300 0 6 drift 149 121973625800 33 37 shale 1151 151 121973925800 37 tolo Imestone 1151 153 40 121973925800 0 4 Delomite 153 12197325500 37 tolo Imestone 154 12197325600 0 4 Delomite 155 12197325600 0 4 Delomite 12197325600 10 35 ble clay 12197325600 10 35 ble clay 121973256700 11 17 rock and gravel 121973256700 11	142		121970124800	10	1/0	Delemite
145 1137012000 11300120000 11300120000 113001200000 113001200000000000000000000000000000000	143	36	121970125000	1/0	256	Maguakata
145 37 1113/0.254100 0 42 Log grave 146 12137264500 0 40 clay grave 148 12137264500 0 40 clay grave 148 12137264500 0 40 clay grave 149 12137264500 0 6 drift 150 12137264500 0 6 drift 151 12137325800 33 37 shale 152 12137325800 32 100 limestone 153 40 1213702600 0 98 Dolomite 155 12137325600 4 10 yellow clay and boulders 12137325600 10 35 blue clay 12137325600 12137325600 156 121373256700 14 boulders 121373256700 14 boulders 121373256700 17 94 ime 12137325700 12137325700 14 boulders 121373256700 17 <	144		121970125000	140	230	
140 1119/12/264300 4/4 100 Intestine 147 38 12197264300 0 40 115 148 38 12197264300 0 6 6rift 150 39 121973255800 6 33 limestone 151 121973255800 3 37 shale 152 121973255800 0 6 drift 153 40 121973255800 0 4 black soll 154 40 121970126100 0 98 Dolomite 155 121973265600 0 4 black soll 156 121973265600 10 35 yellow clay 12197326500 55 52 3and argravel 12197326500 62 200 limestone 121973265700 14 17 rock and gravel 121973265700 14 17 rock and gravel 121973265700 137 147 lime <tr< td=""><td>145</td><td>37</td><td>121970290100</td><td>42</td><td>42</td><td></td></tr<>	145	37	121970290100	42	42	
147 38 121572646300 0 40 Log gave 148 121572646300 0 6 drift 150 39 121572646300 0 6 drift 150 12197325800 0 6 drift 151 12197325800 33 37 shale 152 12197325800 37 100 limestone 153 40 12197326500 0 49 block sold 155 12197326500 5 10 35 block sold 156 12197326500 5 62 snd and gravel 12197326500 158 12197326500 55 62 snd and gravel 121973265700 14 17 161 121973265700 14 17 rok and gravel 121973265700 14 17 163 121973265700 13 shale and lime 121973265700 14 17 rok and gravel 121973265700 14 17	140		121970290100	42	100	
149 12197/2646300 40 115 Imestone 149 121973925800 6 33 Imestone 151 121973925800 6 33 Imestone 152 121973925800 37 100 Imestone 153 40 121970126100 98 210 Maquokta 155 121973256500 0 4 black soil 121973256500 10 35 156 121973265600 10 35 yellow clay and boulders 121973265600 10 35 159 121973265600 55 50 ble clay 111 <td< td=""><td>147</td><td>38</td><td>121972646300</td><td>0</td><td>40</td><td></td></td<>	147	38	121972646300	0	40	
149 1219/342500 0 6 0 mm 150 39 12197325800 33 37 shale 151 12197325800 37 100 Immestone 153 40 121970126100 98 210 Maquoketa 154 121970126100 98 210 Maquoketa 155 121973256500 0 4 black soil 156 121973265600 10 98 yellow clay and boulders 121973265600 55 50 blue clay 121973265600 10 157 41 121973265700 0 14 boulders 159 121973265700 0 14 boulders 121973265700 17 94 103 shale and lime 121973265700 13 137 shale 111 166 121973265700 13 137 shale 167 MW-01 0 1 FIL: Topoil with fine to coarse gravel 1 surface	148		121972040300	40	115	
150 39 1219/32/2800 6 33 11mestone 151 1219/32/2800 37 100 limestone 153 1219/32/2800 37 100 limestone 154 1219/01/26100 0 98 Dolomite 155 1219/32/26500 0 4 black soil 155 1219/32/26500 0 4 black soil 156 1219/32/26500 55 5 blue clay 1219/32/26500 55 5 blue clay 1219/32/26500 55 5 blue clay 1219/32/26500 62 200 limestone 1219/32/265700 14 17 rock and gravel 1219/32/265700 14 13 shale and lime 163 1219/32/265700 133 shale and lime 164 1219/32/265700 137 144 1219/32/265700 137 147 limestone fragments 170 44 MW-01 0	149		121973925800	0	0	
151 1219*392:5800 33 37 State 152 121970126100 9 9 Dolomite 154 40 121970126100 98 210 Maquoketa 155 12197325500 0 4 black soil 155 12197325500 0 4 black soil 157 12197325500 10 35 vellow clay 158 12197325500 55 50 uc clay 12197325500 62 200 linestone 161 121973255700 0 14 boulders 121973255700 14 17 rock and gravel 121973255700 17 94 lime 121973255700 137 147 lime 121973255700 133 shale and lime 121973255700 137 147 lime 121973255700 137 147 lime 121973265700 137 147 lime 121973265700 137<	150	39	121973925800	6	33	
152 1219/39/2800 37 100 Imestone 153 40 121970126100 9 Dolomite 154 40 121970126100 98 Dolomite 155 121973265600 0 4 black soil 157 41 121973265600 10 35 yellow clay and boulders 159 121973265600 55 62 snad and gravel 121973265700 14 100 Imestone 160 121973265700 0 14 blue clay 1100 Imestone 161 121973265700 14 17 rock and gravel 1100 Imestone 166 121973265700 14 17 rock and gravel 1100 Imestone 166 121973265700 133 137 shale and lime 1100 Imestone	151		121973925800	33	3/	snale
153 40 1219/012100 0 98 Dolomite 154 121970126100 98 2010 Maguoketa 155 12197026100 98 2010 Maguoketa 156 121973265600 0 4 black soil 157 141 121973265600 10 35 yellow clay 158 121973265600 55 62 sand and gravel 12197326500 62 200 linestone 100 160 121973265700 0 14 boulders 161 121973265700 17 94 line 162 121973265700 17 94 line 121973265700 133 shale and lime 121973265700 133 163 121973265700 133 137 shale 164 121973265700 137 147 line 170 43 MW-01 0 1 FILL: fine to carse gravel at surface 170 <t< td=""><td>152</td><td></td><td>1219/3925800</td><td>37</td><td>100</td><td>limestone</td></t<>	152		1219/3925800	37	100	limestone
154 121970126100 98 210 Maquoketa 155 155 121973265600 0 4 black soli 156 121973265600 10 35 yellow clay and boulders 159 121973265600 55 55 blue clay 159 121973265600 62 sand and gravel 161 121973265700 0 14 boulders 162 121973265700 0 14 boulders 163 121973265700 14 17 rock and gravel 164 121973265700 14 17 rock and gravel 121973265700 17 94 lime 121973265700 137 165 121973265700 137 shale and lime 121973265700 137 shale 166 121973265700 137 147 lime 11 me 170 43 MW-01 0 1 FilL: Topsoli with fine to coarse gravel at surface 1717 MW-01	153	40	1219/0126100	0	98	Dolomite
155 12197325500 0 4 black soil 156 12197325500 4 10 yellow clay and boulders 157 12197325500 35 55 blue clay 159 12197325500 55 blue clay 160 12197325500 62 200 limestone 161 12197325500 0 14 boulders 162 12197325500 0 14 boulders 163 121973255700 14 17 rock and gravel 164 121973255700 14 17 rock and gravel 165 121973255700 133 137 shale and lime 166 121973255700 133 147 lime 167 MW-01 0 1 Filtz: Topsoil with fine to coarse gravel at surface 168 MW-01 1 6 Filtz: Fine to coarse gravel at surface 170 43 MW-01 19 11 Fine to coarse sand and gravel, with limestone fragments	154		1219/0126100	98	210	Maquoketa
156 12197325500 4 10 yellow clay and boulders 157 11973255500 10 35 yellow clay 159 121973255500 55 62 sand and gravel 160 121973265500 62 200 limestone 161 121973265700 0 14 boulders 162 121973265700 14 17 rock and gravel 163 121973265700 14 17 rock and gravel 164 121973265700 14 17 rock and gravel 165 121973265700 13 shale and lime 166 121973265700 13 shale 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel 168 MW-01 1 6 FILL: Topsoil with fine to coarse gravel at surface 169 MW-01 1 6 FILL: Topsoil with fine to coarse gravel at surface 170 MW-01 1 19 Limestone fragments 171	155		121973265600	0	4	black soil
157 41 12197326500 10 35 yellow clay 158 1197326500 35 55 blue clay 160 12197326500 62 200 limestone 161 12197326500 62 200 limestone 162 121973265700 0 14 boulders 163 121973265700 14 17 rock and gravel 164 121973265700 17 94 lime 165 121973265700 13 shale and lime 166 121973265700 137 shale 121973265700 137 147 lime 166 121973265700 137 147 167 MW-01 0 1 Filt: Topsol with fine to coarse gravel 168 MW-01 0 1 Filt: Topsol with fine to coarse gravel at surface 170 43 MW-01 10 1 Filt: Lit inestone fragments 171 MW-01 10 20 Limest	156		121973265600	4	10	yellow clay and boulders
158 121973265600 35 55 blue clay 159 121973265600 55 62 sand and gravel 160 121973265600 62 200 limestone 161 121973265700 0 14 boulders 163 121973265700 17 94 lime 164 121973265700 13 137 shale and lime 165 121973265700 103 137 shale 166 121973265700 137 shale 166 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel at surface 168 MW-01 1 6 FILL: Fine to coarse gravel at surface 170 43 MW-01 1 9 11 171 MW-01 19 20 Limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-02 1 Fine to coarse grave (CA-6) 174 MW-02 1	157	41	121973265600	10	35	yellow clay
159 121973265600 55 62 Sand and gravel 160 121973265600 62 200 limestone 161 121973265700 0 14 boulders 162 121973265700 14 17 rock and gravel 163 121973265700 14 17 rock and gravel 164 121973265700 14 17 rock and gravel 165 121973265700 14 103 shale and lime 166 121973265700 137 shale and lime 167 121973265700 137 147 lime 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topoil with fine to coarse gravel straface 168 MW-01 1 6 FILL: Tice to coarse sand and gravel, limestone fragments 170 43 MW-01 11 19 Fine to coarse sand and gravel, some black clay, limestone fragments 172 MW-01 11 19	158		121973265600	35	55	blue clay
160 121973255500 62 200 limestone 161 121973255700 0 14 boulders 162 121973255700 14 17 rock and gravel 163 121973255700 14 17 rock and gravel 164 121973255700 13 shale and lime 165 121973255700 133 shale and lime 166 121973255700 137 147 lime 166 121973255700 137 147 lime 166 121973255700 137 147 lime 167 MW-01 0 1 FILL: Topoil with fine to coarse gravel at surface 168 MW-01 1 6 FILL: Tito 2' rounded coarse gravel at surface 170 43 MW-01 9 11 FIL: timestone fragments 171 MW-01 19 20 Limestone fragments MW-01 173 MW-01 10 27.5 Fine to coarse gravel (A-6) MW-02	159		121973265600	55	62	sand and gravel
161 121973265700 0 14 boulders 162 121973265700 14 17 rock and gravel 163 121973265700 14 17 rock and gravel 164 121973265700 14 103 shale and lime 165 121973265700 103 137 shale 166 121973265700 103 137 shale 166 121973265700 103 137 shale 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel at surface 168 MW-01 1 6 FILL: 1' to 2' rounded coarse gravel at surface 169 MW-01 1 9 Fine to coarse sand and gravel, limestone fragments 170 43 MW-01 19 20 Limestone fragments 171 MW-01 10 27.5 Fine to coarse gravel, with limestone fragments, weathered 174 MW-02 0 1	160		121973265600	62	200	limestone
162 121973265700 14 17 rock and gravel 164 121973265700 17 94 lime 165 121973265700 103 shale and lime 166 121973265700 137 147 lime 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel at surface MW-01 1 6 FILL: 1'to 2' rounded coarse gravel at surface MW-01 1 6 FILL: 1'to 2' rounded coarse gravel at surface MW-01 9 11 FILL: 1'to 2' rounded coarse gravel at surface MW-01 9 11 FILL: The to coarse sand and gravel, limestone fragments MW-01 19 20 Limestone fragments Limestone fragments MW-01 10 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered MW-02 0 1 Fine to coarse gravel (CA-6) MW-02 1 4 Brown fine to coarse sand and gravel MW-02	161		121973265700	0	14	boulders
163 42 121973265700 17 94 lime 164 121973265700 94 103 shale and lime 165 121973265700 137 147 lime 166 121973265700 137 147 lime 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel model coarse gravel at surface 168 MW-01 1 6 FILL: Fine to coarse gravel, limestone fragments 170 43 MW-01 9 11 FIL: the coarse sand and gravel, some black clay, limestone fragments 171 MW-01 19 20 Limestone fragments 173 MW-01 10 27.5 Fine to coarse grave (CA-6) 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 4 6 1" limestone fragments 176 MW-02 8 12.5 1" limestone fragments 177 M	162		121973265700	14	17	rock and gravel
164 121973265700 94 103 shale and lime 165 121973265700 103 137 shale 166 121973265700 103 137 shale 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel at surface 168 MW-01 6 9 FILL: Time to coarse gravel at surface 169 MW-01 6 9 FILL: Fine to coarse gravel, some black clay, limestone fragments 171 MW-01 11 19 Fine to coarse gravel, some black clay, limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-01 19 20 Limestone fragments 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 6 8 Brown fine to coarse sand and gravel 177 MW-02 13.5<	163	42	121973265700	17	94	lime
165 121973265700 103 137 shale 166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel 168 MW-01 1 6 FILL: 1' to 2' rounded coarse gravel at surface 169 MW-01 6 9 FILL: 1' to 2' rounded coarse gravel at surface 170 43 MW-01 9 11 FILL: 1' to 2' rounded coarse gravel at surface 171 MW-01 9 11 FILL: 1' to 2' rounded coarse gravel, limestone fragments 172 MW-01 19 20 Limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-01 10 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse sand and gravel MW-02 175 MW-02 1 4 Brown fine to coarse sand and gravel MW-02 177 MW-02 8	164		121973265700	94	103	shale and lime
166 121973265700 137 147 lime 167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel at surface 168 MW-01 1 6 FILL: 1' to 2' rounded coarse gravel at surface 169 MW-01 6 9 FILL: Fine to coarse gravel at surface 170 43 MW-01 9 11 FILL: Fine to coarse gravel at gravel, some black clay, limestone fragments 171 MW-01 19 20 Limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-01 19 20 Limestone fragments 174 MW-01 10 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse sand and gravel MW-01 175 MW-02 1 4 Brown fine to coarse sand and gravel MW-02 175 MW-02 1 4 Brown fine to coarse sand and gravel MW-02 177 MW	165		121973265700	103	137	shale
167 MW-01 0 1 FILL: Topsoil with fine to coarse gravel 168 MW-01 1 6 FILL: 1' to 2' rounded coarse gravel at surface 169 MW-01 6 9 FILL: 1' to 2' rounded coarse gravel at surface 170 MW-01 6 9 FILL: Limestone fragments 171 MW-01 11 19 Fine to coarse sand and gravel, some black clay, limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-01 19 20 Limestone fragments 174 MW-01 19 20 Limestone fragments 175 MW-02 0 1 Fine to coarse grave (CA-6) 176 MW-02 1 4 Brown fine to coarse sand and gravel 177 MW-02 8 12.5 1" limestone fragments 177 MW-02 8 12.5 1" limestone fragments 177 MW-02 13.5 Little Silty clay MW-02 180 MW-02 13.	166		121973265700	137	147	lime
168 MW-01 1 6 FILL: 1' to 2' rounded coarse gravel at surface 169 MW-01 6 9 FILL: Fine to coarse sand and gravel, limestone fragments 170 43 MW-01 9 11 FILL: Time to coarse sand and gravel, some black clay, limestone fragments 171 MW-01 11 19 Fine to coarse sand and gravel, some black clay, limestone fragments 173 MW-01 19 20 Limestone fragments 173 MW-01 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 1 4 Brown fine to coarse sand and gravel 177 MW-02 8 12.5 1" limestone fragments 177 MW-02 8 12.5 1" limestone fragments 177 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181	167		MW-01	0	1	FILL: Topsoil with fine to coarse gravel
169 MW-01 6 9 FILL: Fine to coarse sand and gravel, limestone fragments 170 MW-01 9 11 FILL: Limestone fragments 171 MW-01 11 19 Fine to coarse sand and gravel, some black clay, limestone fragments 172 MW-01 19 20 Limestone fragments 173 MW-01 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 1 4 Brown fine to coarse sand and gravel 177 MW-02 6 8 Brown fine to coarse sand and gravel 177 MW-02 8 12.5 1" limestone fragments 178 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5	168		MW-01	1	6	FILL: 1' to 2' rounded coarse gravel at surface
17043MW-01911FILL: Limestone fragments171MW-011119Fine to coarse sand and gravel, some black clay, limestone fragments172MW-011920Limestone fragments173MW-012027.5Fine to coarse sand and gravel, with limestone fragments, weathered174MW-0201Fine to coarse grave (CA-6)175MW-0214Brown fine to coarse sand and gravel176MW-02461" limestone fragments177MW-0268Brown fine to coarse sand and gravel178MW-02812.51" limestone fragments179MW-0213.516Coarse gravel with black silty clay, trace roots, trace coarse sand180MW-0218.521Brown silty fine to coarse sand, trace fine gravel181MW-022428.5Limestone fragments184MW-0304Coarse gravel (CA-6)18545MW-03418.5186MW-0318.541186	169		MW-01	6	9	FILL: Fine to coarse sand and gravel, limestone fragments
171MW-011119Fine to coarse sand and gravel, some black clay, limestone fragments172MW-011920Limestone fragments173MW-012027.5Fine to coarse sand and gravel, with limestone fragments, weathered174MW-0201Fine to coarse grave (CA-6)175MW-0214Brown fine to coarse sand and gravel176MW-02461" limestone fragments177MW-0268Brown fine to coarse sand and gravel178MW-0268Brown fine to coarse sand and gravel179MW-0212.513.5Little Silty clay180MW-0213.516Coarse gravel with black silty clay, trace roots, trace coarse sand181MW-0218.521Brown silty fine to coarse sand, trace fine gravel182MW-0218.521Brown silty fine to coarse sand, trace fine gravel184MW-0304Coarse gravel (CA-6)18545MW-03418.5186MW-0318.541Tan fine to coarse sand and gravel	170	43	MW-01	9	11	FILL: Limestone fragments
172 MW-01 19 20 Limestone fragments 173 MW-01 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 4 6 1" limestone fragments 177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 13.5 Little Silty clay 180 MW-02 13.5 Little Silty clay 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 183 MW-02 24 28.5 Limestone fragments 184 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4	171		MW-01	11	19	Fine to coarse sand and gravel, some black clay, limestone fragments
173 MW-01 20 27.5 Fine to coarse sand and gravel, with limestone fragments, weathered 174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 4 6 1" limestone fragments 177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 13.5 Little Silty clay 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 14 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments	172		MW-01	19	20	Limestone fragments
174 MW-02 0 1 Fine to coarse grave (CA-6) 175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 4 6 1" limestone fragments 177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 13.5 Little Silty clay 180 MW-02 13.5 Little Silty clay 181 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 182 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 183 MW-02 21 24 Limestone fragments trace fine gravel 184 MW-03 0 4 Coarse gravel (CA-6) MW-03 185 45 MW-03 18.5 Fine to coarse sand and gravel	173		MW-01	20	27.5	Fine to coarse sand and gravel, with limestone fragments, weathered
175 MW-02 1 4 Brown fine to coarse sand and gravel 176 MW-02 4 6 1" limestone fragments 177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 13.5 Little Silty clay 180 MW-02 13.5 Little Silty clay 181 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 182 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 183 MW-02 14 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) MW-03 4 18.5 Fine to coarse sand and gravel	174		MW-02	0	1	Fine to coarse grave (CA-6)
176 MW-02 4 6 1" limestone fragments 177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 12.5 13.5 Little Silty clay 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 41 Tan fine to coarse gravel	175		MW-02	1	4	Brown fine to coarse sand and gravel
177 MW-02 6 8 Brown fine to coarse sand and gravel 178 MW-02 8 12.5 1" limestone fragments 179 MW-02 12.5 13.5 Little Silty clay 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 41 Tan fine to coarse gravel Muth coarse gravel	176		MW-02	4	6	1" limestone fragments
178 MW-02 8 12.5 1" limestone fragments 179 MW-02 12.5 13.5 Little Silty clay 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 21 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) MW-03 4 18.5 Fine to coarse sand and gravel 185 45 MW-03 18.5 41 Tage fine to coarse gravel	177		MW-02	6	8	Brown fine to coarse sand and gravel
179 MW-02 12.5 13.5 Little Silty clay 180 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 13.5 16 Coarse gravel with black silty clay, trace roots, trace coarse sand 181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 21 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 41 Tage fine to coarse sand with coarse gravel	178	ДЛ	MW-02	8	12.5	1" limestone fragments
180MW-0213.516Coarse gravel with black silty clay, trace roots, trace coarse sand181MW-0218.521Brown silty fine to coarse sand, trace fine gravel182MW-022124Limestone fragments, trace light brown silty clay183MW-022428.5Limestone fragments184MW-0304Coarse gravel (CA-6)18545MW-03418.5186MW-0318.541Tan fine to coarse sand with coarse gravel	179		MW-02	12.5	13.5	Little Silty clay
181 MW-02 18.5 21 Brown silty fine to coarse sand, trace fine gravel 182 MW-02 21 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 41 Tap fine to coarse gravel	180		MW-02	13.5	16	Coarse gravel with black silty clay, trace roots, trace coarse sand
182 MW-02 21 24 Limestone fragments, trace light brown silty clay 183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 A1 Tap fine to coarse sand with coarse gravel	181		MW-02	18.5	21	Brown silty fine to coarse sand, trace fine gravel
183 MW-02 24 28.5 Limestone fragments 184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 A1 Tag fine to coarse sand with coarse gravel	182		MW-02	21	24	Limestone fragments, trace light brown silty clay
184 MW-03 0 4 Coarse gravel (CA-6) 185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 A1 Tag fine to coarse gravel	183		MW-02	24	28.5	Limestone fragments
185 45 MW-03 4 18.5 Fine to coarse sand and gravel 186 MW-03 18.5 .41 Tap fine to coarse sand with coarse gravel	184		MW-03	0	4	Coarse gravel (CA-6)
186 MW-03 18.5 41 Tap fine to coarse sand with coarse gravel	185	45	MW-03	4	18.5	Fine to coarse sand and gravel
	186		MW-03	18.5	41	Tan fine to coarse sand, with coarse gravel

187		MW-04	0	1	Coarse gravel (CA-6)
188		MW-04	1	6	Brown silty clay, trace coarse sand, stiff
189	46	MW-04	6	17	Brown fine to coarse sand and gravel, trace limestone fragments
190		MW-04	17	20	Limestone fragments
191		MW-04	20	23	Brown fien to coarse sand and gravel, trace limestone fragments
192		MW-04	23	33	Fine to coarse sand and gravel
193		MW-04	33	35.5	Fine to coarse sand
194		MW-04	35.5	40	Fine to coarse sand and gravel, with limestone fragments
195		MW-05	0	8.5	Fine to coarse gravel, topsoil
196		MW-05	8.5	19	Black silty clay, coarse sand
197	47	MW-05	19	23.5	Coarse gravel fragments
198	47	MW-05	23.5	31	Tan to light brown fine to coarse sand, little coarse gravel
199		MW-05	31	41	Fine to coarse sand and gravel
200		MW-05	41	42	Tan to light brown fine to coarse sand, little coarse gravel
201		MW-06	0	8.5	Gravel (CA-6) topsoil
202	40	MW-06	8.5	31	Brown to tan fine to coarse sand and gravel, trace limestone, gravel seams
203	40	MW-06	31	38.5	Fine to coarse sand and gravel
204		MW-06	38.5	40.5	Limestone Bedrock
205	40	MW-07	0	8.5	Gravel (CA-6) topsoil
206	49	MW-07	8.5	39.5	Tan to brown fine to coarse sand and gravel
207		MW-08	0	1	Fine to coarse gravel fill
208		MW-08	1	3.5	Dark brown silty clay, some fine to coarse sand, stiff
209	50	MW-08	3.5	6	Black/brown fine to coarse sand and gravel
210		MW-08	6	20	Limestone fragments
211		MW-08	20	35.5	Black/brown fine to coarse sand and gravel
212		MW-09	0	1	Coarse sand and gravel (CA-6)
213		MW-09	1	3.5	Coarse gravel, with black silty clay, trace root seams
214		MW-09	3.5	11	Coarse gravel fragments, with fine to coarse sand
215	51	MW-09	11	18.5	Limestone fragments, with light brown silty fine to coarse sand
216		MW-09	18.5	23.5	Limestone fragments, with light brown to dark orange fine to coarse sand
217		MW-09	23.5	28.5	Light brown/orange fine to coarse sand, with coarse gravel
218		MW-09	28.5	35	Light brown coarse sand, some fine to coarse gravel, little fine sand
219		MW-10	0	3	Coarse gravel
220	52	MW-10	3	7	Brown clay
221	52	MW-10	7	19	Black/gray sandy silt
222		MW-10	19	41	Gray silty clay, trace coarse sand, soft
223		MW-11	0	9	Fine to coarse sand and gravel, fill
224	53	MW-11	9	14	Grades to dark gray clayey silt
225	55	MW-11	14	24	Dark gray clayey silt, soft
226		MW-11	24	39.5	Light brown fine to coarse silt and gravel

Attachment 9-1. Local Well Stratigraphy Information. Midwest Generation, LLC, Joliet #29 Generating Station, Joliet, IL.
Attachment 9-2 – Boring Logs

				BORING	NUMBER	E	3-MW-1		SHEET	1 OF 2		
P		ICK	ENGINEERING INC	CLIENT		Midw	est Generat	tion				
				PROJEC	CT & NO.	2105	3.070					
				LOCATI	ON	Joli	et No. 29					
LOGG	ED B	Y	AFG									
GROU	ND E	LEV	ATION 531.5		1	1)M/a	tor Contont				
NO	ET				SAMPLE			O	LL	NOTES		
AT	Η	ATA	SUL/RUCK		TYPE & NO.	VTS		ed Compre	40 50	&		
E	Ē	TR	DESCRIPTION		RECOVERY(IN		Stre	ength (TSF)	*	TEST RESULTS		
Ш 531 5		s S	Topsoil with fine to coarse gravel m	niet	I.				4 5			
001.0	0.0			0.01								
			1' to 2' rounded coarse gravel at sur	ace	SS-1	8						
					1.0-2.5	10			8			
										Bentonite seal		
		***								protective cover		
						12				installed.		
	:	***			3.5-5.0	32						
					10"R	14						
	20	****	Fine to coarse sand and gravel, lime	stone		1						
			fragments			4						
		***			SS-3 6.0-7.5	12						
:					10"R	7						
		****				-						
			Limestone fragments, wet		SS-4	8						
		****			8.5-10.0	4						
						-						

520.5	11.0	~~~~	Fine to coarse sand and gravel, som	e black	SS-5	5						
			clay, limestone fragments, wet		11.0-12.5	5						
		· · · · ·	6		8"K	5			1			
		· · · · ·			9.22	15						
					13.5-15.0	6				Sand pack		
					6"R	10				14.0'-26.25'		
						1						
					SS-7	8				Set screen (slot		
514.5	17.0		∑ Saturated		10"R	8				0.010) 16.25'-26.25'		
		• • • • •	Saluraleu			4						
					SS-8	14						
			Limestone fragments, saturated		18.5-20.0 6"R	10						
511.5	20.0											
יוופח			RACTOR Groff Testing	REN	ARKS							
				Inct	alled 2" diam	neter F						
			PMENT CME	mon	itoring well.			15.0'				
	ING		TED 10/27/10 ENDED 10/27/10				\ ▼			ļ		
							<u> </u>					

P	ATR	ICK	ENGINEERING INC.	BORING I CLIENT PROJECT LOCATIO	BORING NUMBERB-MW-1CLIENTMidwest GenerationPROJECT & NO.21053.070LOCATIONJoliet No. 29					Sł	HEET	2	OF	2
LOGG	ED B	Y	AFG											
GROU	IND E	LEV	ATION 531.5											
ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	F	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL 10 Un	Wat	er Con O 3 ed Corr ngth (T	tent <u>^</u> pressi SF) >	LL 0 50 Ve K 4 5	TES ⁻	NOTE & F RES	SULTS
511.5	20.0		Fine to coarse sand and gravel, with limestone fragments, weathered, sat	urated	SS-9 21.0-22.5 8"R	22 25 13								

504.0 27.5	Wet to saturated Saturated End of Boring at 27.5'		8"R SS-10 23.5-25.0 8"R SS-11 26.0-27.5 10"R	13 15 11 10 12 16 18						
DRILLING CONT DRILLING METH DRILLING EQUI	RACTOR Groff Testing HOD 4.25" I.D. HSA PMENT CME	REM	ARKS Iled 2" diame toring well.	eter P	VC	<u>₩A</u> 및 1 및 1	TER 7.0	LEVE	L (ft.)	

P	ATR	ICK	ENGINEERING INC.	RING NUMBER ENT DJECT & NO.	I Midw 2105	3-MW-2 est Generat 3.070	S	HEET	1	OF	2
LOGG	ED B' ND E	Y LEVA	AFG ATION 531.2	ATION	Joli	et No. 29					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL 10 _ 2 Unconfin Stre	ter Content 	LL 40 50 ive # 4 5	TEST	NOTE: & RES	S ULTS
531.2 530.2	0.0		Fine to coarse gravel (CA-6) Brown fine to coarse sand and gravel, moist 1" limestone fragments	SS-1 1.0-2.5 6"R SS-2 3.5-5.0 0.5"R	5 7 5 8 12 6				1" - 6" surfac Bentoi 2.0'-14 protec installe	cobble e hite sea J.O'. Stic tive cov	s at I ckup rer

		1" limestone fragments	3	SS-2 5.5-5.0 0.5"R	8 12 6			installed.
525.2	6.0	Brown fine to coarse sand and gravel, moi	ist 5 6	SS-3 5.0-7.5 3"R	5 9 6			
		1" limestone fragments	8.	SS-4 5-10.0 9"R	11 8 10			
		Little silty clay, moist to wet	11	SS-5 .0-12.5 3"R	6 37 11			
517.7	13.5 0 0 0 0	Coarse gravel with black silty clay, trace roots, trace coarse sand, moist	13	SS-6 .5-15.0 4"R	15 4 3			Sand pack 14.0'-26.5'
515.2	16.0	Black silty clay, with fine to coarse sand ar gravel, moist	nd S 16.	SS-7 .0-17.5 8"R	12 6 12			Set screen 16.5'-26.5'
512.7	18:5	☑ Brown silty fine to coarse sand, trace fine gravel, saturated	5 18.	SS-8 .5-20.0 6"R	3 4 3			
DRILL DRILL DRILL DRILL	ING CONT ING METH ING EQUII ING STAR	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME TED 10/29/10 ENDED 10/29/10	REMARK Installed 2 monitorin	S 2" diameto g well.	er PVC	<u>WATER L</u> ⊈ 18.5 ⊈ 21.5' ⊈	<u>EVEL (ft.)</u>	

				Rus, 18	BORING NUMBER B-MV		B-MW	IW-2 SHEET 2 OF 2				2				
Р/	ATR	ICK	ENGI	NEERING INC.	CL	IENT		Midw	est G	enera	tion					
					PR	OJEC	CT & NO.	2105	3.070							
			450		ノLO	CATI	ON	Joii	iet No	. 29						
CPOU				521 2												
				551.2				Т	1	Wa	ter Cor	itent				
10L	(FT	-		SOIL/POCK			SAMPLE		PL	<u> </u>	0-			N	OTE	S
LAV	TH	AT					DEPTH (FT)	NTS NTS		nconfin	ed Cor	npressi	ve		&	-
	DEF	STR					RECOVERY(IN			Stre	ength (1	ſŚF) ≯ ₃ 4	₭ 4 5	TEST	RES	ULTS
511.2	20.0			<u> </u>								ļ				
510.2	21.0				_					:						
		0 0 0	Limesto	ne fragments, trace light bro	wn silt	у — —	SS-9	13								
		• •	ciay, mo	nst			21.0-22.5 8"R	13								
		ہ ہ						-								
		໐ັ໐														
		。 。 。					SS-10	14								
		。					23.5-25.0 4"R	13								
		。。 。	Limesto	ne fragments, saturated												
		•														
		° •														
		° °														
		° °				2										
		• •														
502.7	28.5			End of Boring at 28.5'												
										-						
Ì																
													2			
DRILL	ING C	ONT	RACTOR	Groff Testina		REM	ARKS			WA	TER	LEVF	L (ft.)			J
DRILL		IETH	OD	4.25" I.D. HSA		Insta	lied 2" diam	eter P	vc		18.5	<u> </u>	<u> </u>			
DRILL	ING E	QUIF	MENT	CME		monitoring well.		21.5'								
	ING S	TAR	ED 10/29	/10 ENDED 10/29/10	Jl					X						
<u> </u>					~ `	<u> </u>										

					BORING NUMBER B-MW-3 CLIENT Midwest Generation			ion	S⊦	IEET	1 OF	2			
	AIK	ICK	ENGIN	EERING INC.	PRO	JECT & N	O . :	2105	3.070						
		 Y	AFG		LOC	ATION		Joli	et No.	2 9					
GROL	JND E	LEVA		535.5											
ELEVATION	DEPTH (FT)	STRATA		SOIL/ROCK DESCRIPTION		SAM TYPE DEPT RECOV	IPLE & NO. H (FT) ERY(IN)	BLOW COUNTS	PL 10	Wate	er Cont -O	tent 0 4(0 4(0 4(1 4(SF) ₩ 4 4 4	LL 50 50 70 5	NOT 8 TEST RE	ES SULTS
535.5	0.0	° °	Coarse g	ravel (CA-6)											
						SS 1.0-	-1 -2.5							Bentonite : 2.0'-30.5'.	seal Stickup
			Fine to co	parse sand and gravel, dry		SS 3.5-	-2 -5.0	8 10 12						protective installed.	cover
						SS 6.0-	-3 -7.5								
					*	SS 8.5-	-4 10.0	12 11 10							
						SS 11.0-	-5 12.5								
						SS 13.5-	-6 15.0	9 12 13							
						SS 16.0-	-7 17.5					no a			ž.
517.0	18.5		Tan fine to dry	o coarse sand, with coarse	gravel,	SS 18.5-	-8 20.0	12 17 23							
DRILL DRILL DRILL DRILL	ING C ING M ING E	ONTI ETHO QUIP TART	RACTOR OD MENT TED 11/1/10	Groff Testing 4.25" I.D. HSA CME 0 ENDED 11/1/10	R	EMARKS	diame well.	ter P	vc	 ₩A ⁻ 및 3 및 및	TER L 1.0	_EVEI	<u>. (ft.)</u>		

PATRICK ENGINEERING INC. LIEINT PROJECT & NO. Midwest Generation PROJECT & NO. LOGGED BY AFG GROUND ELEVATION 535.5 SOUL/ROCK SAMPLE TYPE & NO. 20 B B SOUL/ROCK SAMPLE TYPE & NO. B SOUL/ROCK DESCRIPTION B B SOUL/ROCK SAMPLE TYPE & NO. B SOUL/ROCK DESCRIPTION B South of the boost and with coarse gravel. South of the boost and with coarse gravel. S14.5 21.0 ° Tan fine to coarse sand, with coarse gravel. SS-10 23.525.0 S04.5 21.0 ° Tan fine to coarse sand, with coarse gravel. SS-10 23.525.0 S04.5 31.0 ° Tan fine to coarse sand, with coarse gravel. SS-10 23.525.0 S04.5 31.0 ° Saturated S04.5 31.0 ° Saturated S04.5 Staturated Staturated S04.5 Saturated Staturated S04.5 41.0 ° End of Boring at 41.0 °	PATRICK ENGINEERING INC				BORING	NUMBER		B-MW	-3		SH	IEET	2 OF	2	
PROJECT & NO. 21083.070 LOGGED BY AFG GROUND ELEVATION 535.5 Solu/ROCK DESCRIPTION DESCRIPTION DESCRIPTION Status SS-9 21.022.5	P/	ATR	ICK		ERING INC.	CLIENT	-	Midw	est G	enera	tion				
LOCATION Joliet No. 29 LOCATION Joliet No. 29 COCCED BY AFG GROUND ELEVATION 535.5 Statute Solut/ROCK DESCRIPTION Ten fine to course sand, with coarse gravel, SS-9 S14.5 21.09 Ten fine to course sand, with coarse gravel, SS-9 S04.5 31.09 Ten fine to course sand, with coarse gravel, SS-10 S04.5 31.09 Saturated SS-12 S04.5 31.09 Saturated SS-16 S04.5 410 End of Boring at 41.0* Ss-16						PROJEC	CI & NO.	2105	3.070	~~					
Source Same <		בה פי	~	AEG	· · · · · · · · · · · · · · · · · · ·	LOCATI	UN	JOII	et no.	29					
Solution	GROU				5 5										
O L K SOIL/ROCK DESCRIPTION SAMPLE TYPE & NO DEPTH (FT) RECOVERVIN) P	z	<u> </u>	L. V /							Wa	ter Cor	itent			
State Feature Feature Feature State	P	Ē	A		SOIL/ROCK			6	PL [] 0 2	-0-	— — → 30 40	LL 50	NOTE	5
Image: Second state in the second s	A N	H	RAT		DESCRIPTION		DEPTH (FT)	≥Ľ	U	nconfin	ed Cor	npressiv	/e	& TEST DES	
514.5 21.00° 9 Tan fine to coarse sand, with coarse gravel. 25.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>EL</td> <td>B</td> <td>STI</td> <td></td> <td></td> <td></td> <td>RECOVERY(IN</td> <td></td> <td></td> <td>Stre</td> <td>engin (1 2</td> <td>iSF) # 3 4</td> <td>5</td> <td>IESI RES</td> <td>ULIS</td>	EL	B	STI				RECOVERY(IN			Stre	engin (1 2	iSF) # 3 4	5	IESI RES	ULIS
504.5 31.0 ° ° Saturated Saturated 504.5 31.0 ° ° Saturated Saturated 504.5 41.0 ° Saturated Saturated Saturated 504.5 41.0 ° Saturated Saturated Saturated 504.5 41.0 ° Saturated Saturated Saturated	514.5	21.0	0 0 0	Tan fine to	coarse sand, with coarse	gravel,	SS-9								
504.5 31.0 = 35.16 =			0 0 0	ury			21.0-22.5								
504.5 31.0 0			• •					-							
$504.5 31.0 \bigcirc \\ \circ \\$			៰៓៰												
504.5 31.0 ° ° ° SS-11 21 Sand pack 504.5 31.0 ° ° ° ° ° ° 504.5 31.0 ° ° ° ° ° 504.5 31.0 ° ° ° ° 504.5 31.0 ° ° ° ° 504.5 31.0 ° ° ° ° 504.5 31.0 ° ° ° ° 504.5 31.0 ° ° ° ° 504.5 31.0 ° ° ° ° 6 ° ° ° ° ° 6 ° ° ° ° ° 7 ° ° ° ° ° 83.516 300.5 38.540.0 ° ° 844.5 41.0 ° ° ° °			0 0 0				SS-10 23 5-25 0	14							
504.5 31.0 32.5 15 11 11 31.0 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 40.5 31.0 30.5 30.0 30.5 40.5 31.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.0 30.5 30.5 30.5 30.5			。 ° o				20.0 20.0	36							
504.5 31.0			。 。 。					1							
504.5 31.0 <	21		。。				00.44	4							
504.5 31.0 <			•				26.0-27.5								
504.5 31.0 0			0												
504.5 31.0 0 0 2 3 10 0		ľ	0					7							
504.5 31.0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			0 0 0				SS-12	21						Sand pack 28.0'-40.5'	
504.5 31.0 0 Q Z 504.5 31.0 0 Q Z Saturated Saturat			o d o				28.5-30.0	16							
504.5 31.0 0 0 0 √ √ √ √ 58-13 31.0-32.5 15 11 12 Set screen (slat 0.010) 30.5'-40.5' 0.010, 5' 0.010) 30.5'-40.5' 0.010) 30.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5'-40.5' 0.010) 30.5' 0.010) 30.5'-40.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010) 30.5' 0.010)		1	• •					15							
504.5 31.0 - - - - - - - - - - - 0.010) 30.5-40.5' - 0.010) 30.5-40.5' - 0.010) 30.5-40.5' - - 0.010) 30.5-40.5' - - 0.010) 30.5-40.5' - - - 0.010) 30.5-40.5' -		ľ	• •	_										Sataaraan (al	
31.0-32.5 11 Saturated 31.0-32.5 SS-14 33.5-35.0 SS-14 33.5-35.0 SS-15 36.0-37.5 SS-16 50/0.5* SS-16 50/0.5* SS-40.0 38.5-40.0	504.5	31.0	0 0	Ā			SS-13	15						0.010) 30.5'-4	at 0.5'
494.5 41.0			៰៓៰				31.0-32.5	11							
494.5 41.0 End of Boring at 41.0'			° 0	Saturated				- 12							
494.5 41.0 End of Boring at 41.0'			° 0												
494.5 41.0 End of Boring at 41.0'			。 。				SS-14								
494.5 41.0 End of Boring at 41.0'			。 。				33.5-35.0		8						
494.5 41.0 End of Boring at 41.0'	ľ		•					-							
494.5 41.0 End of Boring at 41.0'		ĺ	0												
494.5 41.0 End of Boring at 41.0'		ľ	0				S-15								
494.5 41.0 End of Boring at 41.0'		l	° °				30.0-37.5								ĺ
494.5 41.0 End of Boring at 41.0'		¢						-							
494.5 41.0 End of Boring at 41.0' SS-16 \$0/0.5'		d													ĺ
494.5 41.0 End of Boring at 41.0'		¢	ູ່				SS-16 38.5-40.0	50/0.5							
494.5 41.0 End of Boring at 41.0'		d	្ត័				2210 1010								
494.5 41.0 End of Boring at 41.0'		d	្ត្រី					1							
	494.5	41.0			End of Poring at 44.0										
					Life of boiling at 41.0										
			1			$\overline{)}$									=
DRILLING CONTRACTOR Groff Testing REMARKS WATER LEVEL (ft.)	DRILLI	NG C	ONT	RACTOR (Broff Testing	REM	ARKS			<u>WA</u>	TER	LEVEL	<u> (ft.)</u>		
DRILLING METHOD 4.25" I.D. HSA Installed 2" diameter PVC 2 31.0	DRILLING METHOD 4.25" I.D. HSA						lled 2" diam	eter P	VC	Į ₽	31.0				
	יייופח	DRILLING EQUIPMENT CME								<u>Ā</u>					

	BORING NUMBER	B-MW-4	SHEET	1	OF	2
	CLIENT	Midwest Generation				
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
	LOCATION	Joliet No. 29				
LOGGED BY AFG						
GROUND ELEVATION 535.8						

LEVATION	ЕРТН (FT)	TRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	LOW OUNTS	PL [10 Ur	Wa 2 nconfin Stre	ter Cor O o : ed Cor ed Cor	ntent 	∠ LL 10 50 Ve ¥	NOTES & TEST RESULTS
Ш 535.8	0.0	s °	Coarse gravel (CA-6) dry		ΞŬ			2	3	4 5	
534.8	1.0	0 0 0									
004.0			Brown silty clay, trace coarse sand, stiff, dry	SS-1 1.0-2.5 6"R	6 6 7					-	Bentonite seal 2.0'-27.5'. Stickup
				SS-2 3.5-5.0 10"R	4 7 9						installed.
529.8	6.0	· · · · · · · · · · · · · · · · · · ·	Brown fine to coarse sand and gravel, trace limestone fragments	SS-3 6.0-7.5 6"R	20 22 12						
	1			SS-4 8.5-10.0 6"R	10 12 16					- 	
				SS-5 11.0-12.5 8"R	11 20 23						
				SS-6 13.5-15.0 4"R	9 8 9						
			Limestone fragments, dry	SS-7 16.0-17.5 2"R	31 31						
				SS-8 18.5-20.0 4"R	24 40						<u>.</u>
DRILL DRILL DRILL DRILL	ING C ING M ING E ING S	ONTI IETHO QUIP TART	RACTOR Groff Testing DD 4.25" I.D. HSA MENT CME TED 11/1/10 ENDED 11/1/10	MARKS alled 2" diame nitoring well.	ter P	VC	WA ∑ ∑ ∑ Ţ	<u>.TER</u> 31.5	LEVE	<u>L (ft.)</u>	

					BORING NUMBER B-MW			_	SHEET	2 OF 2				
∥ р	ATR	ICK	ENGINEERING INC.	CLIEN	IT	Midw	est Gener	ation						
				PROJ	ECT & NO.	2105	3.070							
				LOCA	TION	Joli	et No. 29							
LOGG	ED B.	Y	AFG											
GROU		LEVA	ATION 535.8			1	14	latar Car	toni					
NO	Ē		P1		SAMPLE			ater Cor	Δ LL	NOTES				
AT	E	ATA	SOIL/ROCK		TYPE & NO.	/TS	10	20 3	30 40 50	a a a a a a a a a a a a a a a a a a a				
Ē	Ë	LA	DESCRIPTION		RECOVERY(IN)		Si	rength (1	TSF) *	TEST RESULTS				
Ш 515.8	20.0	ہ ہ م	Proven find to oppress pand and grave	trace			1	2	3 4 5					
	20.0	° .	limestone fragments	, uace										
		ັດັ				60/6"								
		° °			21.0-22.5									
		° , d	Fine to coarse sand and gravel, dry		4"R									
	1	៰៓៰												
		° 0								2				
		°			23.5-25.0	35								
		•			6"R									
	ľ	៓៰៓				1								
		• •												
	ľ	° °			SS-11	28								
	-	o o			20.0-27.5 10"R	10								
		。 ° 。								Canadanak				
		。 。								Sand pack 27.5'-39.5'				
		0	13		SS-12	12								
	ľ	0 0 0			28.5-30.0	8								
	4	° °			6"R	8				Set screen (slot				
2	•	៰៓៰								0.010) 29.5'-39.5'				
		oŏq			00.40									
504.3	31.5	° 0	Σ		SS-13 31.0-32.5	13								
		, ° ,	Saturated		8"R	13								
502.8	33.0	0				1								
502.0	50.0	<u> </u>	Fine to coarse sand, saturated		-1									
	4	o a			SS-14	13								
					33.5-35.0 18"R	24								
			Fire to ensure could and should with											
		0	limestone fragments											
	ľ	° °	-		SS-15	-								
	d	o d			36.0-37.5									
	d	o d												
	d	5 9			-]								
		, ° ,												
		ູ່			SS-16 38.5-40.0	21 50/3"								
107.0	40.0	0	End of Boring at 40.0'		10"R									
495.8	40.0]0	o d					l							
DRILL	ING C	ONT	RACTOR Groff Testing	RE	MARKS		W	WATER LEVEL (ft.)						
DRILL	ING M	IETH	OD 4.25" I.D. HSA	Ins	talled 2" diam	eter P	vc 🕎	∑ 31.5						
DRILL	ING E	QUIP	MENT CME	monitoring well.										
	ING S	TAR	TED 11/1/10 ENDED 11/1/10				Y	¥ ¥						

	BORING NUMBER	B-MW-5	SHEET	1	OF	2
DATDICK ENGINEEDING INC	CLIENT	Midwest Generation				
FAIRIOR ENGINEERING INC.	PROJECT & NO.	21053.070				
	LOCATION	Joliet No. 29				
LOGGED BY AFG						
GROUND ELEVATION 536.4						

/ATION	тн (FT)	ATA	SOIL/ROCK		SAMPLE TYPE & NO.	V VTS	PL [Wa	ter Con O 0 3	itent 	LL 10 50	NOTES &
ELEY	DEP	STR/	DESCRIPTION		RECOVERY(IN)	BLOV		Stre	ngth (1	SF)	ve ₭ 4 5	TEST RESULTS
536.4	0.0		Fine to coarse gravel, topsoil, dry		SS-1 1.0-2.5 SS-2 3.5-5.0							Bentonite seal 2.0'-32.0'. Stickup protective cover installed.
527.9	8.5				SS-3 6.0-7.5							
			Black silty clay, coarse sand, moist to wet		SS-4 8.5-10.0 1"R	2 4 2						
					SS-5 13.5-15.0 8″R	2 4 3						
				9	SS-6 16.0-17.5							
			Coarse gravel fragments		SS-7 18.5-20.0 0.5"R	4 3 3						
					SS-8 21.0-22.5							
DRILL	ING C	ONT	RACTOR Groff Testing	REM	ARKS			WA	TER	LEVE	L (ft.)	
	ING M ING E		MENT CME	Insta moni	lled 2" diame toring well.	ter P	VC	I∑ :	31.0			
DRILLING EQUIPMENT CME DRILLING STARTED 11/2/10 ENDED 11/2/10								Ţ				

					BO	RING	NUMBER	I	B-MW	-5		SH	EET	2 (DF	2
Р/	ATR	ICK		IEERING INC.	CLI	ENT		Midw	est G	enera	tion					
					PR	OJEC	CT & NO.	2105	3.070							
					ノLO	CATI	ON	Joli	et No	. 29						
LOGG	ED B	Y	AFG													
GROU	NDE	LEV	ATION !	536.4			1	-	1	14/-	4	-44				
NO	Ē						SAMPLE		PL	wa - — -⊡	O		LL	N IZ		
AT (Ĕ	VTA		SOIL/ROCK			TYPE & NO.	TS			20	30 40	50		21E3 &	>
Ъ	E	2		DESCRIPTION				85		nconfir Stre	ength (mpressive TSF) 米	3	TEST	RESI	JLTS
딦	ā	0'								1	2	3 4	5		-	
513:4	25:0		Tan to lic	the prown fine to coarse sar	d little											
		° .	coarse g	ravel, dry	a, nuo		SS-9	27	-							
		°					23.5-25.0	35								
		• •					12"R	38			1					
		៓														
		o					SS-10	42								
		。					26.0-27.5	49								
		•						-								
	-	•														
	ľ	° °					SS-11	7								
	1	° , d					28.5-30.0	8								
		0 0					<u> </u>							Sand pa	ck	
505.4	31.0	៓៰	∇											30.0'-42	.0'	
000.4	01.0	。	Fine to co	oarse sand and gravel, satu	rated		SS-12	7								
		•					31.0-32.5 4"R	10						. .		
	ľ	0							ĺ					Set scre 0.010") (en (sk 32.0'-4	ot 2.0'
	[,		
	4	ູ່					SS-13]			•					
	4	៓៰				ĺ	33.5-35.0									
		° o						1								
		, ° ,														
		0					SS-14 36.0-37.5									
	C C C C C C C C C C C C C C C C C C C	0					00.0-07.0									
	d															
	d	ا م					00.45									
	d	៓៰					SS-15 38.5-40.0	29								
	c															
		0	Tan to lig	ht brown fine to coarse san	d, little			1								
		່∘່	coarse gr	avel, dry												
494 4	42 0) d											ľ			
	72.0			End of Boring at 42.0'												
		[:					
			D.4.0707	0												$\overline{}$
DRILL		ONT	RACTOR	Groff lesting		REM				WA	TER	LEVEL	<u>(ft.)</u>			
DRILL	ING M	ETH	OD	4.25" I.D. HSA		insta moni	lied 2" diame	eter P	VC	Ā	31.0					
DRILL	ING E	QUIF	MENT	CME		mon	toring well.			Ā						
	ING S	TAR	TED 11/2/1	0 ENDED 11/2/10	ノし					⊥						

					BORII	NG NUMBER	ا Midw	B-MW⊦ ∕est Ge	6 eneratio	S n	HEET	1 OF 2
	AIR	ICK	ENGI	NEERING INC.	PROJ	ECT & NO.	2105	3.070				
		/	AFG		LOCA	TION	Joli	et No.	29			
GROU	IND E	LEV/		535.9								
EVATION	РТН (FT)	RATA		SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT)	DW UNTS		Water	Content	∧ LL 40 50 ive ¥	NOTES & TEST RESULTS
교	B	S S				RECOVERY(IN) 38	1	2	3	∕⊼ 4 5 	
535.9	0.0	<u> </u>	Gravel (CA-6), topsoli, dry								
		10.1				SS-1 1 0-2 5	1					
		<u>5.54</u> 517.3										Bentonite seal
	ľ	<u>i si</u>										2.0'-30.5'. Stickup protective cover
		<u>, 30</u>				SS-2	-					installed.
		<u></u>				3.5-5.0						
		(<u>* 1</u> (), ()					-					
	1	<u></u>				SS-3	-			,		
:		<u></u>				6.0-7.5						
		<u>, 11</u> , 7					-					
527.4	8.5	2 24										
			Brown to trace lim	o tan fine to coarse sand and nestone, gravel seams, dry	l gravel,	SS-4 8.5-10.0	12					
						12"R	12					
		, ° ,										
	c	, °				SS-5	1					
	c					11.0-12.0						
	c	ຸ້					1					
	c	, °				SS-6	23					
	c	, d				13.5-15.0 14"R	30 27					
	c	, d					-					
	c	, o					-					
	C	, a				16.0-17.5				5		
		ູ້					-					
		0 0 0				SS-8 18.5-20.0	18 28					
	c					12"R	24					
	c	°										
				Groff Tasting				<u>_</u>			-1 /64 \	
	ING C		OD	4.25" J.D. HSA		stalled 2" diam	eter F	VC		<u>.rk levt</u> 0	<u>:L (Tt.)</u>	
DRILL	ING E	QUIP	MENT	CME	m	onitoring well.	Jewi I	- +	Ţ Ţ	-		
	ING S	TART	ED 11/3/	10 ENDED 11/3/10					Ţ			J

					BC	ORING	NUMBER	I	B-MW-	-6		SHE	ET	2 OF	2
D		ICK		INC	CL	IENT		Midw	est Ge	enera	tion				
	AIR			INC.	PF	ROJEC	CT & NO.	2105	3.070						
			Ħ		LC	CATI	NC	Joli	et No.	29					
LOGG	ED B	Y	AFG												
GROU	JND E	LEV	ATION 535.9												
Z	F								PL -	Wa	ter Cor	itent			
U E	H H	₹	SOIL/R	ОСК			TYPE & NO.	l s		0 2	<u>)-</u> %		50	NOTE	S
	ЪТ	R	DESCRIF	PTION			DEPTH (FT)	l≥₹	Ur	confin	ed Cor	npressive			
	ШО	ST					RECOVERY(IN	기품장	1	Sue	2 2	3 4	5		JULIO
514.9	21.0	0 0 0	Brown to tan fine to coars	se sand and	grav	el,	SS-9								
		o o	trace limestone, gravel se	eams, dry			21.0-22.5								
		0 0 0						-							
		0 0 0													
		0					SS-10	23							
		0 0 0					23.5-25.0	34							
		0 0					14"R	18/3"							
[٥٥													
		。 。 。					CC 11	-							
		•					26.0-27.5								
		°													
		0 0 0						1							
		• •												Sand pack	i
		៰៓៰					SS-12	33						28.0'-40.5'	
		00	<u>2</u>				12"R	27							
		° .						-							
504.0	21.0	° 0	∇											Set screen (slot
504.5	51.0	° , d	$\stackrel{\underline{\ast}}{=}$ Fine to coarse sand and	gravel, satur	ated		SS-13	1						0.010) 30.5	-40.5'
		0 0					31.0-32.5								
		۰ a					12 1	_			2				
		。 。													
		0					SS-14	-							
		0					33.5-35.0								
		° °													
		៰៓៰													
		。					00.45								
		° .					55-15 36.0-37.5								
		0													
		0 0 0						1							
497.4	38.5	° °												5	
			Limestone bedrock				SS-16	50/0.5	'						
							38.5-40.0 0.5"R								
105 1	40 E														
495.4	40.5		End of Boring	at 40.5'											
			-												
										1.4.4	*				
	ING C		RAUTOR GROTT LESTIN	g		KEM						LEVEL (<u>π.)</u>		
			4.25" I.D. HS	DA		moni	ilea 2° diam toring well	eter P	VU	Ι¥.	31.0				
TDRILL	JING E	JUIF			1					I V					11

Ā

Ţ

DRILLING EQUIPMENT

DRILLING STARTED 11/3/10

CME

ENDED 11/3/10

				BORING	NUMBER	1	B-MW-7	7	SHEET	1 OF 2
D D		ICK		CLIENT		Midw	est Ger	neration		
				PROJEC	CT & NO.	2105	3.070			
				LOCATI	ON	Joli	iet No. 2	29		
LOGG	ED B	Y	AFG							
GROU	IND E		ATION 535.9		1 ······	-r	·r	14/-1	4	
NO	Ē				SAMPLE			vvaterCon ⊢−−−O−	Δ LL	NOTES
/AT	Η Η	ATA	SOIL/ROCK		TYPE & NO.	V		20 3		&
ILE/	Ē	TR/	DESCRIPTION		RECOVERY(IN)	Sc [Strength (T	SF) ¥	TEST RESULTS
535.9	0.0	<u>34.3</u>	Gravel (CA-6), topsoil, dry	· <u>-</u>					3 4 5	
		1/ <u>x 1/</u>				1				
		76.7			SS-1	1				
		<u>17</u> <u>× 17</u>			1.0-2.5					
		$\frac{1}{i} \sqrt{i}$				-				2.0'-28.75'. Stickup
		34 3								protective cover
		<u>12 - 5 - 1</u> 2			SS-2	1				instaneo.
		<u> </u>			3.5-5.0					
		14 × 12 × 12				-				
		4 54								
		<u>14 1</u>			SS-3	1				
		<u>1/ 31/</u>			6.0-7.5			ľ		
		<u>x 1</u> , x				-				
507 A	95	<u></u>								
527.4	0.0	0 0	Tan to brown fine to coarse sand and	d gravel,	SS-4	32				
		៰៓៰	dry		8.5-10.0 8"R	16				
		。 。 。								
		。 。 。								
		0 0 0			SS-5	1				
		° 1			11.0-12.5					
		0				4				
		00								
		° °			SS-6	13				
		0 0 0			13.5-15.0	21				
		° °								
		۰ o							i.	
		៓៰			SS-7	-				
		00			16.0-17.5					
		0 a								
		。 。 。								
		。 。			SS-8	28				
		្៰្រី			18.5-20.0	17				
		0		2						

 DRILLING CONTRACTOR
 Groff Testing

 DRILLING METHOD
 4.25" I.D. HSA

 DRILLING EQUIPMENT
 CME

 DRILLING STARTED 11/3/10
 ENDED 11/3/10

		B-MW-7	SHEET	2	OF	2
DATDICK ENCINEEDING INC	CLIENT	Midwest Generation				
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
	LOCATION	Joliet No. 29				
LOGGED BY AFG						

GROUND ELEVATION 535.9

GRU		EVATION 5	135.9									
ELEVATION	DEPTH (FT)	SIRAIA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)		PL 10 Un	Wate 	er Con 3 ad Con ngth (T	tent 	LL 50 70 6 5	NOTES & TEST RESULTS
ш 515.9 504.9	Ŭ 20.0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Tan to br dry o o o o o o o o o o o o o o o o o o o	own fine to coarse sand and gra	avel,	RECOVERY(IN) SS-9 21.0-22.5 SS-10 23.5-25.0 8"R SS-11 26.0-27.5 SS-12 28.5-30.0 12"R SS-13 31.0-32.5 10"R	21 28 1 22 31 37 12 8 5		Strer		SF) #	5	Sand pack 26.5'-38.75' Set screen (slot 0.010) 28.75'-38.75'
496.4	0 0 39.5		End of Boring at 39.5'									
DRILL DRILL DRILL DRILL	.ING CO .ING ME .ING EQ .ING ST/	NTRACTOR THOD UIPMENT ARTED 11/3/10	Groff Testing 4.25" I.D. HSA CME 0 ENDED 11/3/10	REM. Insta moni	ARKS lled 2" diame toring well.	eter P	VC	<u>₩A</u> ⊻ 3 ⊻	TER 1.0	LEVEI	<u>(ft.)</u>	

P	ATR	ІСК	ENGINEERING INC.	BORING CLIENT PROJEC	S NUMBER	l Midw 2105	B-MW-8 /est Gei 3.070	B neration	SHE	ET 1 OF 2	
				LOCATI	ON	Joli	iet No. 2	29			
LOGGI	ED B'	Υ ι =	AFG								
			ATION 533.7		<u> </u>			Water C	ontent		
	E	<	SOIL/ROCK			S	PL 10	⊢- <u>-</u> -O			
EVA	H L	RAT	DESCRIPTION		DEPTH (FT)	N N	Unc	confined C	mpressive	TEST RESUL	TS
ᆸ	Ш	ST			RECOVERY(IN)	1	2	3 4	5	
533.7 532.7	0.0 1.0		Fine to coarse gravel fill, dry								
		• •	Dark brown silty clay, some fine to c sand, stiff, moist	oarse	SS-1 1.0-2.5	25					
		ິ່			6"R	9				Bentonite seal	
		。 。]				2.0'-25.5'. Stickup protective cover	p
530.2	3.5	0 0	Black/brown fine to coarse sand and	gravel,	SS-2	5				installed.	
	1	ຶ່	moist		3.5-5.0 6"R	5					
		ຸັດ				-					
	4	° °									
	•	- a	Limestone fragments, dry		SS-3 6.0-7.5	13 16					
:	4	0 a			8"R	14					
	e e e e e e e e e e e e e e e e e e e					1					
	ſ	°. d			SS-4	7					
	¢				8.5-10.0 8"P	15					
	¢	• •			<u>ок</u>	- 22					
	ſ	。 。									
		• •			SS-5	15					
					8"R	13					
		, , , , , , , , , , , , , , , , , , ,									
		ဴျ				17					
	Ì				13.5-15.0	14					
	d				8"R	12					
		, o									
	c				SS-7	5					
		, ° o			16.0-17.5 8"R	8					-
	c	, ° o									
	c	, o									
	c	, ° o			55-8 18.5-20.0	9					
	c	, ° o	· · · · · · · · · · · · · · · · · · ·		3"R	9					
		ΟΝΤΙ	RACTOR Groff Testing							(ff)	7
DRILLI	NG M	ETH	DD 4.25" I.D. HSA	Insta	illed 2" diam	eter P	VC	⊻ 27.0	<u>\ </u>	<u></u>	
DRILLI	NG E	QUIP	MENT CME	mon	itoring well.	-		Ā			
DRILLI	NG S	TART	ED 10/27/10 ENDED 10/27/10		· · · · · · · · · · · · · · · · · · ·			Ţ			\mathbb{J}

	BORING NUMBER	B-MW-8	SHEET	2	OF	2
DATDICK ENCINEEDING INC	CLIENT	Midwest Generation				
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
<u></u>	LOCATION	Joliet No. 29				
_OGGED BY AFG						

GROUND ELEVATION 533.7

NOI	(FT)			SAMPLE		PL [Water Con	tent	NOTES
EVAT	PTH	ZAT/	DESCRIPTION	DEPTH (FT)	NTS		nconfined Con	npressive	
	DE	STI		RECOVERY(IN)	COI COI			3 4 5	TEST RESULTS
513.7	20.0		Black/brown fine to coarse sand and gravel, moist						
		0		SS-9	5				
		0 0 0		21.0-22.5 4"R	4 5				
		0 0	51				05		
		0 0 0	Moist to wet	SS-10	6				Sand pack
		0 0 0		23.5-25.0 6"R	9 18				23.0'-35.5'
		° °							
		0 0 0 0		SS-11	6				Screen set (slot 0.010) 25.5'-35.5'
506.7	27.0	0 0 0	$\overline{\mathbf{v}}$	26.0-27.5 8"R	9 8				
		。 。 。	Saturated		_				
		0 0 0		<u> </u>					
		0 0 0		28.5-30.0	4 8 9				
		0 0 0 0			0				
		。 。 。							
		00							
		0 0 0							
		0 0 0							
		0 0 0 0		SS-13 33.5-35.0	50/1"				
		0 0 0		2"R					
498.2	35.5	0	End of Boring at 35.5'	-					
		Í							
						1			
DRILL	.ing C .ing N	ONT IETH	OD 4.25" I.D. HSA	ARKS alled 2" diame	ter P	VC	<u> VATER</u> ∇ 27.0	<u>LEVEL (ft.)</u>	
	ING E	QUIF	PMENT CME mor	itoring well.			Y		
DRILLING STARTED 10/27/10 ENDED 10/27/10				3			¥		

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-9 Midwest Generation 21053.070 Joliet No. 29	SHEET	1	OF	2
LOGGED BY AFG						

GROU	IND E	LEV	ATION 531.1						
N	Ē			SAMPLE		PL -	Water Co	ontent	
Ĭ	H H	₹	SOIL/ROCK	TYPE & NO.	s		20	30 40	50 NOTES
	Ē	₹.	DESCRIPTION	DEPTH (FT)	l≥₽	Ur	nconfined Co	mpressive	
	DEI	STF		RECOVERY(IN)	520	1	Strength	(ISF) ¥ 3 4	5 RESULIS
531.1	0.0	0 0	Coarse sand and gravel (CA-6), dry				·	- 	
530.1	10	0 0							
000.1	1.0	0 0	Coarse gravel, with black silty clay, trace root	SS-1	15				
		0 0	seams, moist	1.0-2.5	14				
		•		6"R	13				Bentonite seal
		0							2.0'-34.75'. Stickup
527.6	3.5	0 0							protective cover
		0 0 0	Coarse gravel fragments, with fine to coarse	SS-2	4				motalied.
		0 0	sand, dry	3.5-5.0	5				
		0 0 0		2 1	0				
		0							
		0							
		0 0 0		6.0-7.5					
		o o							
		0 0							
		•							
		0		SS-4					
		0 0		8.5-10.0					
		0 0							
		。 。 。							
520.1	11.0	0							
		0 0	Limestone fragments, with light brown silty	SS-5	34				
		0 0	fine to coarse sand, dry	11.0-12.5	37				
		0 0							
		•							
		0							
		0 0		SS-6	20				
		៓៰		10"R	16				
		° 。						9	
		0							
		° °		SS-7	10				
		0 0		16.0-17.5	15				
		៓៰		6"R	23				
		, ° ,							
512.6	18.5	៓៰៓							
		o d	Limestone fragments, with light brown to dark	SS-8	15				
		o d	orange fine to coarse sand, moist	18.5-20.0	24				
		° .			20				
	ING C	ONT	RACTOR Groff Testing	IARKS			WATEF	R LEVEL (ft	.)
DRILL	ING N	1ETH	OD 4.25" I.D. HSA Insta	alled 2" diame	ter P	VC			
DRILL	ING E	QUIF	MENT CME	itoring well.			Ā		
	ING S	TAR	TED 10/29/10 ENDED 10/29/10				▼		J

P	ATRIC	(ENG	INEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-9 Midwest Generation 21053.070 Joliet No. 29	SHEET	2	OF	2
LOGG	BED BY	AFG							
GROL	JND ELEV	ATION	531.1						
NO	F.			SAMPLE		tent			

	EVATIO	PTH (F	RATA	SOIL/ROCK DESCRIPTION		TYPE & NO. DEPTH (FT)	UNTS		confined Con	———— 30 40 ↓↓ npressiv) 50 e	NOTES & TEST RESULTS
	Ш	8	ST			RECOVERY(IN)	ЯĞ	1	2	3 4	5	ILOI KLOOLIO
	511.1	20.0		Limestone fragments, with light brown to orange fine to coarse sand, moist	dark							
						SS-9 21.0-22.5						
			0 0									
			• •									Sand pack 22 5'-34 75'
	507.6	23.5	8 8	Light brown/orange fine to coarse sand,	with	SS-10	15					22.0 04.10
			0 0	coarse gravel, moist		23.5-25.0	29					
			0 0 0			12"R	36					Screen set (slot
			0 0									0.010) 24.75'-34.75'
	505.1	26.0	0	Σ.		SS-11	16					
			0			26.0-27.5	10 9					
			•				0		i i			
	500 G	20 5	0									
	502.0	20.0	0 0	Light brown coarse sand, some fine to		SS-12	6					
			0 0	coarse gravel, little fine sand, saturated		28.5-30.0 10"R	10 13					
			៰៓៰				10					
			。 。									
			° °			SS-13						
ľ			0 0 0			31.0-32.5						
			0 0 0									22
			• • •									
			° .			SS-14	18					
			0			33.5-35.0 6"R	50/4"					
	496.1	35.0	<u> </u>	End of Boring at 35.0'								
									[
							2					
1			L					l				
C	RILL	ING (CONT	RACTOR Groff Testing	REM	ARKS			WATER	LEVEL	<u>. (ft.)</u>	
C	RILL	ING N	IETH	OD 4.25" I.D. HSA	Insta	illed 2" diame	ter P	VC	∑ 26.0			
	RILL	ING E		PMENT CME		itoring well.			Ā			
וע	RILL	ING S	AR	1ED 10/29/10 ENDED 10/29/10	\subseteq				¥.			

	BORING NUMBER	B-MW-10 Midwest Generation	SHEET	1	OF	2	
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070					
LOGGED BY AFG	2 LOCATION	Johet No. 29					

GROUND ELEVATION 536.9

Solution Solution Sample TYPE & NO, DESCRIPTION SAMPLE TYPE & NO, DESCRIPTION PL U				30.3						
536.9 0.0 0 Coarse gravel, dry	ELEVATION	ОЕРТН (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [1 Ui	Water Cor 	$\begin{array}{ccc} \text{ntent} \\ \\ 30 \\ 40 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	NOTES
529.9 7.0 Crave silve (av., trace coarse sand, soft, wet 10.2.5 1 517.9 19.0 19.0 Grave silve (av., trace coarse sand, soft, wet 18.52.0 3	536.9	0.0	0 0	Coarse gravel dry					Ī	
529.9 7.0 0 </td <td></td> <td></td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Brown clay</td> <td>SS-1 1.0-2.5 10"R</td> <td>5 4 5</td> <td></td> <td></td> <td></td> <td>Bentonite seal 2.0'-28.0'. Stickup protective cover installed</td>			0 0 0 0 0 0 0 0 0 0 0 0 0	Brown clay	SS-1 1.0-2.5 10"R	5 4 5				Bentonite seal 2.0'-28.0'. Stickup protective cover installed
529.9 7.0 ^o e ⁻ Black/gray sandy silt, moist 6.0-7.5 1 1 1			0 0 0 0 0 0 0 0 0 0		SS-2 3.5-5.0 10"R SS-3	3 2 2 2				
517.9 19.0 Gray silty clay, trace coarse sand, soft, wet 18.5-20.0 3 3 517.9 19.0	529.9	7.0	o o 	Black/gray sandy silt, moist	6.0-7.5 16"R	1 1				
517.9 19.0 Gray silty clay, trace coarse sand, soft, wet 517.9 19.0 517.9 19.0 Gray silty clay, trace coarse sand, soft, wet 517.9 19.0 517.9 19					SS-4 8.5-10.0 12"R	1 3 1				
517.9 19.0 Gray silty clay, trace coarse sand, soft, wet 18.5-20.0					SS-5 11.0-12.5 18"R	1 1 1				
517.9 19.0 Gray silty clay, trace coarse sand, soft, wet 18.5-20.0 3					SS-6 13.5-15.0 18"R	1 2 2				
517.9 19.0 SS-8 2 Gray silty clay, trace coarse sand, soft, wet 18.5-20.0 3					SS-7 16.0-17.5 18"R	1 3 2				
18"R 4	517.9	19.0		Gray silty clay, trace coarse sand, soft, wet	SS-8 18.5-20.0 18"R	2 3 4				
DRILLING CONTRACTOR Groff Testing REMARKS WATER LEVEL (ft.) DRILLING METHOD 4.25" I.D. HSA Installed 2" diameter PVC monitoring well. Image: Starsen of the starsen of	DRILL DRILL DRILL DRILL	ING C ING N ING E ING S		RACTOR Groff Testing OD 4.25" I.D. HSA MENT CME FED 11/2/10 ENDED 11/2/10	EMARKS Istalled 2" diame Ionitoring well.	ter P	VC	<u>WATER</u> ⊻ 31.0 ⊻ ¥	LEVEL (ft.	

					BC	DRING	NUMBER	E	B-MW	-10		SH	EET	2	OF	2
D		ICK	ENGI		CL	IENT		Midw	est Ge	enera	tion					
	AIN		ENGI		PF	ROJEC	T & NO.	2105	3.070							
			<u>.</u>		ノLC	CATI	NC	Joli	et No.	29						
LOGG	ED B	Y	AFG													
GROL	JND E	LEVA		536.9												
Z	F								ы	Wa	ter Con	itent				
E E	E H	<		SOIL/ROCK			TYPE & NO	S	Г [1	0 2	O 20 3	———_∆ 10 40) <u>50</u>	N	IOTE	S
×	E	W I		DESCRIPTION			DEPTH (FT)	NST		nconfin	ed Con	npressiv	e	TEAT	&	
	DEI	STF					RECOVERY(IN)		1	Stre	ength (1 2	"SF) # 3 4	5	1521	KE9	ULIS
515.9	21.0		Gray silt	y clay, trace coarse sand, so	oft, we	et	SS-9	12								
							21.0-22.5	28								
							8"R	31							\simeq	
							66.40									
							23.5-25.0	24								
							10"R	21								
								1								
							SS-11	6								
							20.0-27.5 12"R	13								
								-								
														Sand r	back	
							SS-12	13						28.0'-4	0.5'	
							28.5-30.0	19								
3							18"R	24								
505.9	31.0		₽				CC 12	20						Screen) set (s 30 5'-4	lot 10 5'
							31.0-32.5	20						0.010)	00.0 -	0.0
							10"R	14								
								1					ľ	1		
														1		
							SS-14	16						1		
							33.5-35.0 18"R	12						1		
													1	1		
									[
							SS-15									
							36.0-37.5									
							-									
							SS-16			Í						
							38.5-40.0	14								
							18"R				Ì					
								1								
495.9	41.0															
				End of Boring at 41.0'												
		ONT	RACTOR	Groff Testing			ARKS			W/A	TER		(ft)			
DRILI	ING M	IETHO		4.25" J.D. HSA		Insta	lied 2" diam	eter P	VC		31.0	<u></u>	<u> /</u>			
DRILI	ING F		MENT	CME		moni	toring well.		- +	T.						
DRILL			FD 11/2/1							*						
	1100								_	1-						

				BORING	NUMBER		B-MW	-11	SHE	ET	1 OF 2
P/	ATR	ICK	ENGINEERING INC.			Midw	est G	eneration			
						2105	3.070 iot No	20			
LOGG	ED B	Y	AFG	LOOAN		501		23			
GROU		LEVA	TION 536.5								
N	(F				SAMPLE		PL /	Water Co	ntent	1	
ATIC	H (F	AT A	SOIL/ROCK		TYPE & NO.	TS		20	30 40	50	NOTES
	EPT	TRA	DESCRIPTION		DEPTH (FT) RECOVERY(IN)	§S	Ui	nconfined Co Strength (mpressive (TSF) 米		TEST RESULTS
ш 536.5	 0.0	Ň.	Fine to coarse sand and gravel fill	drv.				2	3 4	5	
					SS-1	1					
		· · · · · · · ·			1.0-2.5						Bentonite seal
						-					2.0'-27.0'. Stickup
											protective cover installed.
					SS-2 3.5-5.0	3					
						2					
						1					
					<u>\$\$-3</u>	-					
					6.0-7.5						
					SS-4	3					
			Grades to dark gray clayey silt		8.5-10.0	2					
						-					
					SS-5						
					11.0-12.5						
	ŀ										
	ŀ										
522.5	14.0	× ×	Dark grav clavov silt soft moist		SS-6 13.5-15.0	1					
	2	×××	Dark gray Gayey Sir, Sort, moist			2					
	2	××									
	,	×××									
	2	××			16.0-17.5						
	>	× ×									
	2	××									
	Ş	ۘ کي ۲			SS-8	1					
	þ	ŶŶ			18.5-20.0	3					
		<u>) × ĵ</u>				5					
DRILL	ING C		RACTOR Groff Testing	REM	ARKS			WATER		ft.)	
DRILL	ING M	IETH	OD 4.25" I.D. HSA	Insta	lled 2" diame	eter P	VC	<u>⊽</u> 31.0			
DRILL	ING E	QUIP	MENT CME	mon	itoring well.			Ţ			
DRILL	ING S	TART	ED 11/4/10 ENDED 11/4/10					Ţ			

				BORIN	NG NUMBER	١	B-MW-11	SHEET	2 OF 2
P	ΔΤR	ICK		CLIEN	IT	Midw	est Generation		
	-			PROJ	ECT & NO.	2105	3.070		
				LOCA	TION	Joli	iet No. 29		
LOGG	ED B	Y	AFG						
GROU	JND E	LEV/	ATION 536.5				Water Cont	lant	·····
NO	E				SAMPLE			.ent 	NOTES
AT /	H	ATA	SOIL/ROCK		TYPE & NO.	V NTS) 40 50	&
Ш Ш		TR	DESCRIPTION		RECOVERY(IN		Strength (T	SF) ¥	TEST RESULTS
ш 516.5	20.0	××	Dark gray clayey silt, soft, moist			O		4 5	
		× x							
		×××			SS-9	1			
		×Č×			21.0-22.5				
		×Ŷ×				-			
		×××							
		×××	Light brown fine to coarse silt and gra	vel,	SS-10	9			
		׈×	moist		23.5-25.0	11			-
·		Ŷ×Ŷ							
		×××							
		××		(5)	SS-11	-			
		x x			26.0-27.5				
		××××				_			Sand pack
		××							27.0-39.5
		x x				- 1			
		×××			28.5-30.0	3			
		××				13			Screen set (slot
		x x							0.010) 29.5'-39.5'
505.5	31.0	×××	<u>↓</u>		<u> </u>				
		××			31.0-32.5	7			
		x x				8			
		×××				1			
		××				4			
		x x			33.5-35.0				
		×××							
		××				-			
		x j							
		×××			SS-15				
		× × ×			00.0-07.0				
		×'×				-			
		× x ×							
=	ĺ	× × × ×			SS-16	36			
497.0	39.5	×)	End of Boring at 20 E		30.0-40.0	50/2"			
				$\overline{}$					
	ING C	ONT	RACTOR Groff Testing	RE	MARKS		WATER L	<u>EVEL (ft.)</u>)
	ING N	/ETH	OD 4.25" I.D. HSA	Ins	stalled 2" diam	eter P	VC ⊈ 31.0		
DRILL	ING E	QUIF	MENT CME	mc	onitoring well.		Ţ		
DRILL	ING S	STAR	TED 11/4/10 ENDED 11/4/10				Ţ		

Attachment 9-3 - Historical CCA Groundwater Data

																																																						T	_
Sample: MW-01	Date	12/6/2	3/2:	3/2011	6/14/2011	9/14/201	1 12/	//2011	3/15/2012	6/19/2012	2 9/19/2	2012 1	12/20/2012	3/5/2013	5/2	3/2013	7/22/2013	10/15/	2013	2/21/2014	5/1/2	014	8/18/2014	1 10	23/2014	2/10/20	15 :	5/2//2015	8/4/2015	5 10	/28/2015	2/9/2010	6 5/	11/2016	8/30/2016	11/3/2	016	2/6/2017	4/25/2017	2/21/2018	8/1/2018	10/17/20	18 2/4	2019	5/7/2019	8/6/2019	11///20	19 2/13/20	0 5/21/202	20 7/30	0/2020 10	//22/2020	3/2/2021	5/18/2021	1
Parameter	Standards	DL.	Result DL	Result	DL Resu	h DL R	sult DL	Result 1	DL Result	DL Res	sult DL	Result D	DL Result	DL Re	sult DL	Result	DL Resu	it DL	Result	DL Result	DL	Result	DL R	sult DL	Result	DL	Result D	L Result	DL Re	esult DL	Result	DL R	esuit DL	Result	DL Rest	ult DL	Result D	. Result	DL Resu	1	DL Rest	h DL Ra	esult DL	Result P	JL Result	DL Res	sult DL P	tesult DL R	sult DL R	esult DL	Result Di	L Result	DL Result	DL Rest	sult
Antimony	0.006	0.0030	0.0043 NS	NS	0.0030 ND	NS	NS NS	NS I	NS NS	NS NS	IS 0.0030	ND N	NS NS	NS N	S 0.0030	0.0052	NS NS	NS	NS	NS NS	NS	NS (0.0030	ND 0.003) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.003	0 ND	0.0030 NE	D 0.0030	ND N	6 NS	NS NS	0.0030 NE	NS NS	0.003 2	ND 0.003	NS 0.f	003 ND	0.003 N ^c	\$ 0.003	ND NS	IS 0.003 0J	0066 NS	NS N	S NS	NS NS	NS NF	۰S
Arsenic	0.010	0.0010	0.0011 NS	NS	0.0010 0.001	4 NS 1	NS NS	NS I	NS NS	NS NS	S 0.0010	0.0012 N	NS NS	NS N	S 0.0010	0.0011	NS NS	NS	NS	NS NS	NS	NS (0.0010	ND 0.0010) ND^	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.001	0 ND ^	0.0010 NE	D 0.0010	ND N	6 NS	NS NS	0.0010 NE	NS NS	0.001 2	ND 0.001	NS 0.f	001 ND	0.001 N ^c	S 0.001	ND NS	IS 0.001 0.1	0012 NS	NS N	S NS	NS NS	NS NF	۰S
Barium	2.0	0.0025	0.13 NS	NS	0.0025 0.14	NS	NS NS	NS 1	NS NS	NS NS	IS 0.0025	0.16 N	NS NS	NS N	IS 0.0025	5 0.15	NS NS	NS	NS	NS NS	NS	NS (0.0025 0	15 0.002	5 0.17	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.002	5 0.15	0.0025 0.07	71 0.0025	0.12 N	6 NS	NS NS	0.0025 0.07	NS NS	0.0025 0	0.12 0.0025	NS 0.0	,025 0.054	0.0025 NF	\$ 0.0025 C	0.051 NS	IS 0.0025 0.	.076 NS	NS N	š NS	NS NS	NS NS	4S
Beryllium	0.004	0.0010	ND NS	NS	0.0010 ND	NS	NS NS	NS I	NS NS	NS NS	S 0.0010	ND N	NS NS	NS N	S 0.0010) ND	NS NS	NS	NS	NS NS	NS	NS (0.0010	ND 0.0010) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.001	0 ND	0.0010 ND	0.0010	ND N	6 NS	NS NS	0.0010 NE	NS NS	0.001 N	ND* 0.001	NS 0.f	001 ND ^	0.001 N ^c	S 0.001	ND NS	IS 0.001 N	aD ^ NS	NS N	S NS	NS NS	NS NF	۰S
Boron	2.0	0.050	0.31 NS	NS	0.050 0.25	NS	NS NS	NS I	NS NS	NS NS	S 0.050	0.38^ N	NS NS	NS N	iS 0.050	0.33	NS NS	NS	NS	NS NS	NS	NS	0.050 0	22 0.050	0.21	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.050	0.18	0.050 0.2	4 0.050	0.25 N	6 NS	NS NS	0.050 0.19	NS NS	0.05 0	0.05	NS 0	:05 0.22	0.05 N ^c	S 0.05	0.22 NS	IS 0.05 0	1.35 NS	NS N	S NS	NS NS	NS NF	۰S
Cadmium	0.005	0.00050	ND NS	NS 0	1.00050 ND	NS	NS NS	NS 1	NS NS	NS NS	S 0.00050	ND N	NS NS	NS N	iS 0.00050	0 ND	NS NS	NS	NS	NS NS	NS	NS 0	1.00050 2	ND 0.0005	0 ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.0005	0 ND	0.00050 NE	D 0.00050	ND N	6 NS	NS NS	0.00050 ND	NS NS	0.0005 ?	ND 0.0005	NS 0.0	.3005 ND	0.0005 N'	.S 0.0005	ND NS	IS 0.0005 1	ND NS	NS N	.S NS	NS NS	NS NS	٨S
Chloride	200.0	10	140 NS	NS	10 170	NS	NS NS	NS	NS NS	NS NS	S 10	120 N	NS NS	NS N	4S 10	210	NS NS	NS	NS	NS NS	NS	NS	10 1	120 10	79	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 50	400	10 93	3 10	73 N	6 NS	NS NS	10 280	NS NS	10 1	130 10	NS 1	10 280	10 N ^e	.S 10	60 NS	IS 10 1	140 NS	NS N	.S NS	NS NS	NS NS	٠S
Chromium	0.1	0.0050	ND NS	NS	0.0050 ND	NS	NS NS	NS	NS NS	NS NS	S 0.0050	ND N	NS NS	NS N	IS 0.0050) ND	NS NS	NS	NS	NS NS	NS	NS (0.0050 2	ND 0.0050) ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.005	0 ND	0.0050 NE	D 0.0050	ND N	6 NS	NS NS	0.0050 NE	NS NS	0.005 2	ND 0.005	NS 0.7	.005 ND	0.005 N ^c	.S 0.005	ND NS	IS 0.005 1	ND NS	NS N	.S NS	NS NS	NS NS	٨S
Cobalt	1.0	0.0010	ND NS	NS	0.0010 0.001	0 NS 1	NS NS	NS 1	NS NS	NS NS	S 0.0010	ND N	NS NS	NS N	4S 0.0010) ND	NS NS	NS	NS	NS NS	NS	NS (0.0010	ND 0.0010) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.001	0 ND	0.0010 NE	D 0.0010	ND N	6 NS	NS NS	0.0010 NE	NS NS	0.001 ?	ND 0.001	NS 0/	.001 ND	0.001 N'	S 0.001	ND NS	IS 0.001 0.0	0011 NS	NS N	.S NS	NS NS	NS NS	4S
Copper	0.65	0.0020	0.0032 NS	NS	0.0020 0.002	5 NS 1	NS NS	NS 1	NS NS	NS NS	S 0.0020	0.0021 N	NS NS	NS N	iS 0.0020) ND	NS NS	NS	NS	NS NS	NS	NS (0.0020 2	ND 0.002) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.002	0 ND	0.0020 NE	D 0.0020	ND N	6 NS	NS NS	0.0020 ND	NS NS	0.002 2	ND 0.002	NS 0/	.002 ND	0.002 N'	S 0.002	ND NS	IS 0.002 1	ND NS	NS N	.S NS	NS NS	NS NS	4S
Cyanide	0.2	0.010	ND NS	NS	0.010 ND	NS	NS NS	NS 1	NS NS	NS NS	S 0.010	ND N	NS NS	NS N	IS 0.010	ND	NS NS	NS	NS	NS NS	NS	NS	0.010	ND 0.010	ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.010	ND	0.010 NE	D 0.010	ND N	6 NS	NS NS	0.010 NE	NS NS	0.01	ND 0.01	NS 0	.01 ND	0.01 N	S 0.01	ND NS	IS 0.01 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Fluoride	4.0	0.10	0.45 NS	NS	0.10 0.43	NS	NS NS	NS	NS NS	NS NS	S 0.10	0.59 N	NS NS	NS N	4S 0.10	0.42	NS NS	NS	NS	NS NS	NS	NS	0.10 0	.47 0.10	0.39	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.10	0.42	0.10 0.3	7 0.10	0.35 N	6 NS	NS NS	0.10 0.4	NS NS	0.1 0	0.36 0.1	NS f	J.1 0.42	0.1 N	S 0.1	0.34 NS	IS 0.1	0.4 NS	NS N	.S NS	NS NS	NS N ^r	.4S
Iron	5.0	0.10	ND NS	NS	0.10 ND	NS	NS NS	NS	NS NS	NS NS	S 0.10	ND N	NS NS	NS N	4S 0.10	ND	NS NS	NS	NS	NS NS	NS	NS	0.10	ND 0.10	ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.10	ND ^	0.10 NE	D 0.10	ND N	6 NS	NS NS	0.10 0.11	NS NS	0.1 2	ND 0.1	NS f	J.1 0.1	0.1 N	S 0.1	ND NS	IS 0.1 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Lead	0.0075	0.00050	ND NS	NS (0.00050 ND	NS	NS NS	NS	NS NS	NS NS	S 0.00050	ND N	NS NS	NS N	IS 0.00050	0 ND	NS NS	NS	NS	NS NS	NS	NS 0	0.00050	ND 0.0005	0 ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.0005	0 ND	0.00050 NE	D 0.00050	ND N	6 NS	NS NS	0.00050 ND	NS NS	0.0005 2	ND 0.0005	NS 0.6	.3005 ND	0.0005 N	S 0.0005	ND NS	IS 0.0005 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Manganese	0.15	0.0025	ND NS	NS	0.0025 ND	NS	NS NS	NS	NS NS	NS NS	S 0.0025	ND N	NS NS	NS N	IS 0.0025	5 ND	NS NS	NS	NS	NS NS	NS	NS (0.0025 0.	012 0.002	0.015	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.002	5 0.0065	0.0025 NE	D 0.0025	0.0032 N	6 NS	NS NS	0.0025 ND	NS NS	0.0025 ?	ND 0.0025	NS 0.6	.0025 ND	0.0025 N	s 0.0025	ND NS	IS 0.0025 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Mercury	0.002	0.00020	ND NS	NS (1.00020 ND	NS	NS NS	NS I	NS NS	NS NS	S 0.00020	ND N	NS NS	NS N	IS 0.00020	0 ND	NS NS	NS	NS	NS NS	NS	NS 0	0.00020 2	ND 0.0002	0 ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.0002	0 ND	0.00020 NE	D 0.00020	ND N	6 NS	NS NS	0.00020 ND	NS NS	0.0002 2	ND 0.0002	NS 0.f	0002 ND	0.0002 N	4S 0.0002	ND NS	IS 0.0002 1	ND NS	NS N	dS NS	NS NS	NS N ^r	NS
Nickel	0.1	0.0020	0.0034 NS	NS	0.0020 0.002	9 NS 1	NS NS	NS	NS NS	NS NS	S 0.0020	0.0029 N	NS NS	NS N	IS 0.0020) ND	NS NS	NS	NS	NS NS	NS	NS (0.0020 0.0	0.0024 0.0020	0.0020	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.002	0 0.0041	0.0020 0.00	22 0.0020	0.0022 N	6 NS	NS NS	0.0020 ND	NS NS	0.002 2	ND 0.002	NS 0/	.002 ND	0.002 N	/S 0.002	ND NS	IS 0.002 0.1	0023 NS	NS N	.S NS	NS NS	NS N ^r	.4S
Nitrogen/Nitrate	10.0	0.10	1.9 NS	NS	0.10 2.9	NS	NS NS	NS	NS NS	NS NS	S 0.10	4.2 N	NS NS	NS N	4S 0.10	3.7	NS NS	NS	NS	NS NS	NS	NS	0.10 0	0.10	0.71	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.10	1.2	0.10 1.5	9 0.10	1.0 N	6 NS	NS NS	0.10 2.6	NS NS	0.1	1.8 0.1	NS f	J.1 2.9	0.1 N	S 0.1	1.6 NS	IS 0.1	2.1 NS	NS N	.S NS	NS NS	NS N ^r	.4S
Nitrogen/Nitrate, Ni	n NA	0.20	1.9 NS	NS	0.20 2.9	NS	NS NS	NS I	NS NS	NS NS	S 0.50	4.2 N	NS NS	NS N	iS 0.50	3.7	NS NS	NS	NS	NS NS	NS	NS	0.10 0	.44 0.10	0.71	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.10	1.2	0.10 1.5	9 0.10	1.0 N	6 NS	NS NS	0.20 2.6	NS NS	0.1	1.8 0.1	NS f	d.1 2.9	0.1 N	-S 0.1	1.6 NS	IS 0.1	2.1 NS	NS N	S NS	NS NS	NS N ^r	.4S
Nitrogen/Nitrite	NA	0.020	ND NS	NS	0.020 ND	NS	NS NS	NS	NS NS	NS NS	S 0.020	ND N	NS NS	NS N	IS 0.020	ND	NS NS	NS	NS	NS NS	NS	NS	0.020 2	ND 0.020	ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.020	ND	0.020 NE	D 0.020	ND N	6 NS	NS NS	0.020 0.02	NS NS	0.02 ?	ND 0.02	NS 0	.02 ND	0.02 N	/S 0.02	ND NS	IS 0.02 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Perchlorate	0.0049	NR	NR NR	NR	NR NR	NS	NS NS	NS I	NS NS	NS NS	S NR	NR N	NS NS	NS N	IS 0.0040) ND	NS NS	NS	NS	NS NS	NS	NS (0.0040	ND 0.004) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.004	0 ND	0.0040 NE	D 0.0040	ND N	6 NS	NS NS	0.0040 ND	NS NS	0.004 2	ND 0.004	NS 0.'	.004 ND	0.004 N	4S 0.004	ND NS	IS 0.004 1	ND NS	NS N	dS NS	NS NS	NS N ^r	NS
Selenium	0.05	0.0025	ND NS	NS	0.0025 ND	NS	NS NS	NS 1	NS NS	NS NS	S 0.0025	ND N	NS NS	NS N	IS 0.0025	5 0.0040	NS NS	NS	NS	NS NS	NS	NS (0.0025 2	ND 0.002	5 ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.013	0.021 ^	0.0025 0.00	0.0025	0.0037 N	6 NS	NS NS	0.0025 0.003	1 NS NS	0.0025 0.0	0071 0.0025	NS 0.f	.0025 0.016	0.0025 N	/S 0.0025	ND NS	IS 0.0025 0.0	0075 NS	NS N	S NS	NS NS	NS N ^r	.4S
Silver	0.05	0.00050	ND NS	NS (0.00050 ND	NS	NS NS	NS 1	NS NS	NS NS	S 0.00050	ND N	NS NS	NS N	IS 0.00050	0 ND	NS NS	NS	NS	NS NS	NS	NS 0	0.00050	ND 0.0005	0 ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.0005	0 ND	0.00050 NE	D 0.00050	ND N	6 NS	NS NS	0.00050 ND	NS NS	0.0005 2	ND 0.0005	NS 0.6	.3005 ND	0.0005 N	S 0.0005	ND NS	IS 0.0005 1	ND NS	NS N	.S NS	NS NS	NS N ^r	.4S
Sulfate	400.0	50	180 NS	NS	25 81	NS	NS NS	NS 1	NS NS	NS NS	S 50	240 N	NS NS	NS N	IS 25	140	NS NS	NS	NS	NS NS	NS	NS	20	59 20	65	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 50	170	25 74	4 20	62 N	6 NS	NS NS	50 2301	1 NS NS	20	56 20	NS	20 84	20 N	4S 20	42 NS	IS 20 1	120 NS	NS N	dS NS	NS NS	NS N ^r	NS
Thallium	0.002	0.0020	ND NS	NS	0.0020 ND	NS	NS NS	NS 1	NS NS	NS NS	S 0.0020	ND N	NS NS	NS N	IS 0.0020) ND	NS NS	NS	NS	NS NS	NS	NS (0.0020 2	ND 0.002) ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.002	0 ND	0.0020 NE	D 0.0020	ND N	6 NS	NS NS	0.0020 ND	NS NS	0.002 2	ND 0.002	NS 0.	.002 ND	0.002 N	4S 0.002	ND NS	IS 0.002 1	ND NS	NS N	dS NS	NS NS	NS N ^r	NS
Total Dissolved Sol	is 1,200	10	590 NS	NS	10 670	NS	NS NS	NS I	NS NS	NS NS	IS 10	630 N	NS NS	NS N	iS 10	700	NS NS	NS	NS	NS NS	NS	NS	10	150 10	570	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 10	1100	10 670	0 10	600 N	6 NS	NS NS	10 990	NS NS	10 1	720 10	NS	10 940	10 N	4S 10	510 NS	IS 10	730 NS	NS N	IS NS	NS NS	NS N ⁵	NS
Vanadium	0.049	NR	NR NR	NR	NR NR	NS	NS NS	NS 1	NS NS	NS NS	IS NR	NR N	NS NS	NS N	IS 0.0050	0.0081	NS NS	NS	NS	NS NS	NS	NS (0.0050 0.0	0.005	0.0068	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.005	0 ND	0.0050 NE	D 0.0050	0.0071 N	6 NS	NS NS	0.0050 ND	NS NS	0.005 N	D^ 0.005	NS 0.	.005 ND	0.005 N	4S 0.005	ND NS	IS 0.005 0.	.005 NS	NS N	dS NS	NS NS	NS N ^r	NS
Zinc	5.0	0.020	ND NS	NS	0.020 ND	NS	NS NS	NS 1	NS NS	NS NS	IS 0.020	ND N	NS NS	NS N	IS 0.020	ND	NS NS	NS	NS	NS NS	NS	NS	0.020 2	ND 0.020	ND	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS 0.020	ND	0.020 NE	D 0.020	ND N	6 NS	NS NS	0.020 ND	NS NS	0.02 2	ND 0.02	NS 0	3.02 ND ^	0.02 N	4S 0.02	ND NS	IS 0.02 1	ND NS	NS N	4S NS	NS NS	NS N ^r	NS
Benzene	0.005	NR	NR NR	NR	NR NR	NS	NS NS	NS 1	NS NS	NS NS	IS NR	NR N	NS NS	NS N	S 0.00050	0 ND	NS NS	NS	NS	NS NS	NS	NS (0.0005	ND 0.000	5 ND	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.000	5 ND	0.0005 NE	D 0.0005	ND N	6 NS	NS NS	0.0005 ND	NS NS	0.0005 2	ND 0.0005	NS 0.f	0005 ND	0.0005 N	4S 0.0005	ND NS	IS 0.0005 1	ND NS	NS N	dS NS	NS NS	NS N ^r	NS
BETX	11.705	NR	NR NR	NR	NR NR	NS	NS NS	NS 1	NS NS	NS NS	IS NR	NR N	NS NS	NS N	IS 0.0025	5 ND	NS NS	NS	NS	NS NS	NS	NS	0.002 2	ND 0.002	0.00056	NS	NS N	S NS	NS N	NS NS	NS	NS	NS 0.002	0.0024	0.002 NE	D 0.002	0.00743 N	6 NS	NS NS	0.0025 ND	NS NS	0.0025 1	ND 0.0025	NS 0.f	0025 ND	0.0025 N	4S 0.0025	ND NS	IS 0.0025 1	ND NS	NS N	dS NS	NS NS	NS N ^r	NS
pH	6.5 - 9.0	NA	7.82 NS	NS	NA 7.25	NS	NS NS	NS 1	NS NS	NS NS	S NA	7.46 N	NS NS	NS N	IS NM	NM	NS NS	NS	NS	NS NS	NS	NS	NA 6	.54 NA	7.08	NS	NS N	S NS	NS N	NS NS	NS	NS	NS NA	7.02	NA 6.5	0 NA	7.08 N	6 NS	NS NS	NA 7.00	NS NS	NA 7	7.20 NA	NS N	NA 7.42	NA N	4S NA	7.9 NS	IS NA 7	7.01 NS	NS N	dS NS	NS NS	NS N ^r	NS
Temperature	NA	NA	7.52 NA	NS	NA 13.9	2 NS	NS NS	NS 1	NS NS	NS NS	S NA	22.01 N	NS NS	NS N	IS NA	NM	NS NS	NS	NS	NS NS	NS	NS	NA 1-	4.06 NA	12.25	NS	NS N	S NS	NS N	NS NS	NS	NS	NS NA	14.78	NA 17.2	29 NA	14.78 N	6 NS	NS NS	NA 9.0	NS NS	NA 1	3.12 NA	NS N	NA 14.8	NA N	4S NA	1.25 NS	IS NA 1	12.7 NS	NS N	S NS	NS NS	NS N ⁵	NS
Conductivity	NA	NA	1.04 NA	NS	NA 1.28	NS	NS NS	NS 1	NS NS	NS NS	S NA	0.97 N	NS NS	NS N	IS NA	NM	NS NS	NS	NS	NS NS	NS	NS	NA 0.	857 NA	0.90	NS	NS N	S NS	NS N	NS NS	NS	NS	NS NA	1.83	NA 1.0	5 NA	0.91 N	6 NS	NS NS	NA 0.9	NS NS	NA 0	0.91 NA	NS N	A 2.25	NA N	4S NA	90.6 NS	IS NA 1.	226 NS	NS N	S NS	NS NS	NS N ⁵	NS
Dissolved Oxygen	NA	NA	NM NA	NS	NA 4.15	NS	NS NS	NS 1	NS NS	NS NS	S NA	7.68 N	NS NS	NS N	IS NA	NM	NS NS	NS	NS	NS NS	NS	NS	NA 3	.38 NA	1.36	NS	NS N	S NS	NS N	NS NS	NS	NS	NS NA	2.64	NA 5.4	0 NA	3.90 N	6 NS	NS NS	NA 8.0	NS NS	NA 9	2.88 NA	NS N	NA 8.62	NA N	4S NA	2.51 NS	IS NA 8	8.61 NS	NS N	S NS	NS NS	NS N ⁵	NS
ORP	NA	NA	NM NA	NS	NA 210.	5 NS	NS NS	NS 1	NS NS	NS NS	S NA	155.0 N	NS NS	NS N	IS NA	NM	NS NS	NS	NS	NS NS	NS	NS	NA I:	50.8 NA	66.2	NS	NS N	S NS	NS 2	NS NS	NS	NS	NS NA	26.4	NA -62	.3 NA	-25.4 N	6 NS	NS NS	NA -13.	NS NS	NA 3	30.4 NA	NS N	NA -246.5	NA N	4S NA	29.4 NS	IS NA 8	37.6 NS	NS N	S NS	NS NS	NS N ^r	NS
Nos	Standards obtained	from IAC, Title 35,	Chapter I, Part 620, Sul	èpart D,	DL- Detection	limit	NR - Not Require	ed		Temper	rature 'C d	degrees Celcius																															•							•				·	

 New South-shouth Smith, The OS, Dayor, Dan CM, Sangara C, Sangara

Sample: MW-02	Date	12/6/2	010 3/2	3/2011 6	5/14/2011	9/14/2011	12/7/20	3/	15/2012	6/19/201	2 9/19	9/2012	12/20/2012	2 3/5/2	2013	5/23/2013	7/22/201	3 10/1	/2013	2/21/2014	5/2/2014	8	/18/2014	10/23/2	014	2/10/2015	5/27/20	015	8/4/2015	10/28/20	15 2/9	9/2016	5/11/2016	8/31/2016	11/1	2016	2/8/2017	4/25/2017	2/21/2018	8/1/2018	10/16/2018	2/4/201	5/7/2	2019 8	/6/2019	11/7/2019	2/13/2020	5/21/2020	7/30/202	/20 10/22	/2020 3	/2/2021 5	<i>i</i> /18/2021
Parameter	Standards	DL	Result DL	Result D	L Result	DL Result	DL R	Result DL	Result	DL Ro	esult DL	Result	DL Resul	alt DL	Result I	6. Result	DL Re	sult DL	Result I	Result	DL Re	sult DL	Result	DL	Result I	L Result	DL I	Result D	L Result	DL R	esult DL	Result	DL Result	DL Res	ult DL	Result D	DL Result	DL Result	t DL Rest	t DL Result	DL Rest	lt DL R	sult DL	Result DL	. Result	DL Result	DL Result	DL Result	DL R	Aesult DL	Result DI	Result I	A. Result
Antimony	0.006	0.0030	0.012 NS	NS 0.0	030 0.0042	0.0030 0.0032	0.0030	ND 0.003	10 ND	NS ?	NS 0.0030	ND (0.0030 ND	0.0030	ND 0.0	030 ND	0.0030 N	D 0.0030	ND 0.0	030 ND	0.0030 N	D 0.003	30 ND	0.0030	ND 0.0	030 ND	0.0030	ND 0.0	030 ND	0.0030	ND 0.0030	ND	0.0030 ND	0.0030 NI	D 0.0030	ND 0.0	030 ND ^	0.0030 ND	0.0030 NE	0.003 ND	0.003 NE	0.003	D 0.003	ND 0.00	03 NS 0	0.003 ND	0.003 NS	0.003 ND	NS	NS NS	NS NS	s NS N	dS NS
Arsenic	0.010	0.0010	ND NS	NS 0.0	050 ND	0.0010 ND	0.0010	ND 0.001	10 ND	NS ?	NS 0.0010	0.0015 0	0.0010 ND	0.0010	ND 0.0	010 ND	0.0010 N	D 0.0010	ND 0.0	010 ND	0.0010 N	D 0.00	10 ND	0.0010	ND^ 0.0	010 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0010	ND	0.0010 ND ^	0.0010 NI	D 0.0010	ND 0.0	010 ND	0.0010 ND	0.0010 ND	0.001 ND	0.001 NE	0.001	D 0.001	ND 0.00	01 NS 0	0.001 ND	0.001 NS	0.001 ND	NS '	NS NS	NS NS	s NS N	4S NS
Barium	2.0	0.0025	0.082 NS	NS 0.0	025 0.081	0.0025 0.10	0.0025	0.12 0.002	15 0.12	NS ?	NS 0.0025	0.12 0	0.0025 0.13	3 0.0025	0.12 0.0	025 0.11	0.0025 0.	.12 0.0025	0.093 0.0	025 0.13	0.0025 0.	11 0.003	3 0.087	0.0025	0.089 0.0	0.088	0.0025	0.092 0.0	025 0.090	0.0025 0	1084 0.0025	0.098	0.0025 0.11	0.0025 0.08	87 0.0025	0.071 0.00	025 0.085	0.0025 0.10	0.0025 0.12	0.0025 0.071	0.0025 0.06	3 0.0025 0.	071 0.0025	0.11 0.002	25 NS 0.	.0025 0.065	0.0025 NS	0.0025 0.089	NS /	NS NS	NS NS	s NS N	4S NS
Beryllium	0.004	0.0010	ND NS	NS 0.0	010 ND	0.0010 ND	0.0010	ND 0.001	10 ND	NS ?	NS 0.0010	ND (0.0010 ND	0.0010	ND 0.0	010 ND	0.0010 N	D 0.0010	ND 0.1	010 ND ^	0.0010 N	D 0.00	10 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010 ND	0.0010	ND 0.0	010 ND ^	0.0010 ND	0.0010 ND	0.001 ND	0.001 ND	0.001	D 0.001	ND 0.00	01 NS 0	0.001 ND	0.001 NS	0.001 ND ^	NS	NS NS	NS NS	s NS N	iS NS
Boron	2.0	0.050	0.31 NS	NS 0.0	0.35	0.050 0.44	0.050	0.74 0.05	0 0.22	NS ?	NS 0.050	0.35^	0.050 0.42	2 0.050	0.41 0.	150 0.35	0.050 0.	29 0.050	0.41 0.	0.50 0.34	0.050 0.	25 0.05	0 0.22	0.050	0.22 0.	050 0.23	0.050	0.35 0.0	150 0.25	0.050	0.21 0.050	0.20	0.050 0.18	0.050 0.1	8 0.050	0.18 0.0	050 0.17	0.050 0.15	0.050 0.19	0.05 0.14	0.05 0.1	0.05 0	14 0.05	0.15 0.05	5 NS (0.05 0.18	0.05 NS	0.05 0.24	NS '	NS NS	NS NS	s NS N	4S NS
Cadmium	0.005	0.00050	ND NS	NS 0.0	025 ND	0.00050 ND	0.00050	ND 0.000	50 ND	NS ?	NS 0.00050	ND 0	.00050 ND	0.00050	ND 0.0	050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 0.00	0.000	50 ND	0.00050	ND 0.0	0050 ND	0.00050 0	0.00	050 ND	0.00050	ND 0.00050	ND 0	100050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 NE	0.0005 2	D 0.0005	ND 0.000	05 NS 0.	.0005 ND	0.0005 NS	0.0005 ND	NS	NS NS	NS NS	s NS N	dS NS
Chloride	200.0	10	140 NS	NS 1	0 230	10 140	10	140 2.0	280	NS ?	NS 10	120	10 150	0 10	260	0 250	10 3	10 10	180	0 240	50 3:	50 10	280	10	240	10 190	50	410 1	0 290	10	130 10	180	10 340	10 17	0 10	97 1	10 140	10 330	10 240	10 200	10 120	10 1	50 10	500 10	NS	10 100	10 NS	10 260	NS '	NS NS	NS NS	s NS N	4S NS
Chromium	0.1	0.0050	ND NS	NS 0.0	125 ND	0.0050 ND	0.0050	ND 0.005	10 ND	NS ?	NS 0.0050	ND (0.0050 ND	0.0050	ND 0.0	050 ND	0.0050 N	D 0.0050	ND 0.0	050 ND	0.0050 N	D 0.005	90 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050 NI	D 0.0050	ND 0.0	050 ND	0.0050 ND	0.0050 ND	0.005 ND	0.005 NE	0.005 2	D 0.005	ND 0.00	15 NS 0	0.005 ND	0.005 NS	0.005 ND	NS 7	NS NS	NS NS	i NS N	as NS
Cobalt	1.0	0.0010	ND NS	NS 0.0	050 ND	0.0010 ND	0.0010	ND 0.001	10 ND	NS ?	NS 0.0010	ND (0.0010 ND	0.0010	ND 0.0	010 ND	0.0010 N	D 0.0010	ND 0.0	010 ND	0.0010 N	D 0.00	10 ND	0.0010	ND 0.0	010 0.0017	0.0010	0.010 0.0	010 0.0027	0.0010 0.	.0017 0.0010	0.0011	0.0010 ND	0.0010 NI	D 0.0010	ND 0.0	010 ND	0.0010 ND	0.0010 NE	0.001 ND	0.001 NE	0.001	D 0.001	ND 0.00	01 NS 0	0.001 ND	0.001 NS	0.001 ND	NS	NS NS	NS NS	s NS N	dS NS
Copper	0.65	0.0020	0.0032 NS	NS 0.0	010 ND	0.0020 ND	0.0020	ND 0.002	20 ND	NS ?	NS 0.0020	ND (0.0020 ND	0.0020	ND 0.0	020 ND	0.0020 N	D 0.0020	ND 0.0	020 ND	0.0020 N	D 0.003	30 ND	0.0020	ND 0.0	020 ND	0.0020 0	0.0059 0.0	020 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020 NI	D 0.0020	ND 0.0	020 ND ^	0.0020 ND ^	0.0020 ND	0.002 ND	0.002 NE	0.002 2	D 0.002	ND 0.00	02 NS 0	0.002 ND	0.002 NS	0.002 ND	NS '	NS NS	NS NS	s NS N	4S NS
Cyanide	0.2	0.010	ND NS	NS 0.0	010 ND	0.010 ND	0.010	ND 0.010	0 ND	NS ?	NS 0.010	ND	0.010 ND	0.010	ND 0.	10 ND	0.010 N	D 0.010	ND 0.	010 ND	0.010 N	D 0.01	0 ND	0.010	ND 0.	010 ND	0.010	ND 0.0	010 ND	0.010	ND 0.010	ND	0.010 ND	0.010 NI	D 0.010	ND 0.0	010 ND F1,2	0.010 ND	0.010 ND	0.01 ND	0.01 NE	0.01 2	D 0.01	ND 0.01	1 NS (0.01 ND	0.01 NS	0.01 ND	NS .	NS NS	NS NS	ś NS N	4S NS
Fluoride	4.0	0.10	0.62 NS	NS 0.	10 0.58	0.10 0.54	0.10	0.51 0.10	0.53	NS ?	NS 0.10	0.64	0.10 0.59	9 0.10	0.59^ 0	10 0.54	0.10 0.	51 0.10	0.56 0	10 0.46	0.10 0.	40 0.10	0.49	0.10	0.45 0	.10 0.40	0.10	0.40 0.	10 0.41	0.10	0.39 0.10	0.38	0.10 0.40	0.10 0.4	4 0.10	0.40 0.1	.10 0.35	0.10 0.32	0.10 0.3	0.1 0.4	0.1 0.4	§ 0.1 0	39 0.1	0.41 0.1	NS NS	0.1 0.38	0.1 NS	0.1 0.41	NS	NS NS	NS NS	s NS N	dS NS
Iron	5.0	0.10	ND NS	NS 0.:	50 ND	0.10 ND	0.10	ND 0.10) ND	NS ?	NS 0.10	ND	0.10 ND	0.10	ND 0	10 ND	0.10 N	D 0.10	ND 0	10 ND	0.10 N	D 0.10) ND	0.10	ND 0	10 ND	0.10	ND 0.	10 ND	0.10	ND 0.10	ND	0.10 ND ^	0.10 NI	D 0.10	ND 0.1	10 ND	0.10 ND	0.10 NE	0.1 ND	0.1 NE	0.1	ID 0.1	ND 0.1	NS NS	0.1 ND	0.1 NS	0.1 ND	NS	NS NS	NS NS	s NS N	dS NS
Lead	0.0075	0.00050	ND NS	NS 0.00	050 ND	0.00050 ND	0.00050	ND 0.000	50 ND	NS ?	NS 0.00050	ND 0	.00050 ND	0.00050	ND 0.0	050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.000	50 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.00050	ND 0	1.00050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 NE	0.0005	D 0.0005	ND 0.000	05 NS 0.	.0005 ND	0.0005 NS	0.0005 ND	NS	NS NS	NS NS	ś NS N	4S NS
Manganese	0.15	0.0025	ND NS	NS 0.0	013 ND	0.0025 0.0025	0.0025	ND 0.002	15 ND^	NS ?	NS 0.0025	ND (1.0025 ND	0.0025	ND 0.0	025 ND	0.0025 0.0	036 0.0025	ND 0.0	025 ND	0.0025 N	D 0.003	3 ND	0.0025	ND 0.0	025 ND	0.0025 0	0.0031 0.0	025 ND	0.0025	ND 0.0025	ND	0.0025 ND	0.0025 NI	D 0.0025	ND 0.0	025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 NE	0.0025 1	D 0.0025	ND 0.002	25 NS 0.	.0025 ND	0.0025 NS	0.0025 ND	NS '	NS NS	NS NS	s NS N	4S NS
Mercury	0.002	0.00020	ND NS	NS 0.00	020 ND^	0.00020 ND	0.00020	ND 0.0003	20 ND	NS ?	NS 0.00020	ND 0	.00020 ND	0.00020	ND 0.0	020 ND	0.00020 N	D 0.00020	ND 0.0	0020 ND	0.00020 N	D 0.000	20 ND	0.00020	ND 0.0	0020 ND	0.00020	ND 0.00	020 ND *	0.00020	ND 0.00020	ND 0	1.00020 ND	0.00020 NI	D 0.00020	ND 0.00	0020 ND	0.00020 ND	0.00020 ND	0.0002 ND	0.0002 NE	0.0002	D 0.0002	ND 0.000	02 NS 0.	.0002 ND	0.0002 NS	0.0002 ND	NS .	NS NS	NS NS	ś NS N	4S NS
Nickel	0.1	0.0020	0.0033 NS	NS 0.0	010 ND	0.0020 0.0027	0.0020 0	0.0023 0.002	10 ND	NS ?	NS 0.0020	0.0024 0	0.0020 0.002	29 0.0020	0.0027 0.0	020 0.0022	0.0020 0.0	061 0.0020	0.0039 0.0	020 ND	0.0020 0.0	023 0.002	30 0.0049	0.0020	0.0069 0.0	020 0.0053	0.0020	0.013 0.0	020 0.0073	0.0020 0.	0031 0.0020	0.0039	0.0020 0.0071	0.0020 0.00	62 0.0020	0.0044 0.00	020 0.0030	0.0020 0.005	0.0020 0.00	4 0.002 0.003	0.002 NE	0.002 0.0	027 0.002	0.0034 0.00	02 NS 0	0.002 0.0021	0.002 NS	0.002 0.0046	5 NS	NS NS	NS NS	s NS N	dS NS
Nitrogen/Nitrate	10.0	0.10	3.1 NS	NS 0.	10 1.8	0.10 2.2	0.10	2.9 0.10) 6.4	NS ?	NS 0.10	4.7	0.10 7.5	0.10	4.4 0	10 3.7	0.10 1	.8 0.10	1.6 0	10 3.4	0.10 2	9 0.10) 1.1	0.10	1.3 0	10 1.3	0.10	0.43 0.3	10 1.2	0.10	1.0 0.10	1.5	0.10 1.4	0.10 1.1	5 0.10	0.79 0.1	.10 1.0	0.10 1.8	0.10 1.6	0.1 0.81	0.1 0.6	8 0.1	.0 0.1	1.8 0.1	I NS	0.1 1.2	0.1 NS	0.1 2.9	NS '	NS NS	NS NS	s NS N	4S NS
Nitrogen/Nitrate, Ni	tri NA	0.20	3.1 NS	NS 0.	10 1.8	0.20 2.2	0.10	2.9 0.50	6.4	NS ?	NS 0.50	4.7	0.50 7.5	0.50	4.4 0	50 3.7	0.10 1	.8 0.10	1.6 0	50 3.4	0.50 2	9 0.10) 1.1	0.10	1.3 0	10 1.3	0.10	0.43 0.	10 1.2	0.10	1.0 0.10	1.5	0.10 1.4	0.10 1.5	5 0.10	0.79 0.1	.10 1.0	0.10 1.8	0.10 1.6	0.1 0.81	0.1 0.6	8 0.1	.0 0.1	1.8 0.1	NS NS	0.1 1.2	0.1 NS	0.1 2.9	NS	NS NS	NS NS	s NS N	dS NS
Nitrogen/Nitrite	NA	0.020	ND NS	NS 0.0	120 ND	0.020 ND	0.020	ND 0.02	0 ND	NS ?	NS 0.020	ND	0.020 ND	0.020	ND 0.	120 ND	0.020 N	D 0.020	ND 0.	020 ND	0.020 N	D 0.02	0 ND	0.020	ND 0.	020 ND	0.020	ND 0.0	120 ND	0.020	ND 0.020	ND	0.020 ND	0.020 NI	D 0.020	ND 0.0	020 ND	0.020 ND	0.020 NE	0.02 ND	0.02 NE	0.02	D 0.02	ND 0.02	2 NS 0	0.02 ND	0.02 NS	0.02 ND	NS	NS NS	NS NS	s NS N	dS NS
Perchlorate	0.0049	NR	NR NR	NR N	R NR	NR NR	NR	NR NR	NR	NS ?	NS NR	NR	0.004 ND	0.0040	ND 0.0	040 ND	0.0040 N	D 0.0040	ND 0.0	040 ND	0.0040 N	D 0.004	10 ND	0.0040	ND 0.0	040 ND	0.0040	ND 0.0	040 ND	0.0040	ND 0.0040	ND	0.0040 ND	0.0040 NI	D 0.0040	ND 0.0	040 ND	0.0040 ND	0.0040 ND	0.004 ND	0.004 NE	0.004 3	D 0.004	ND 0.00	14 NS 0	0.004 ND	0.004 NS	0.004 ND	NS .	NS NS	NS NS	ś NS N	4S NS
Selenium	0.05	0.0025	ND NS	NS 0.0	013 ND	0.0025 0.0038	0.0025 0	0.0055 0.002	15 0.0048	NS ?	NS 0.0025	ND (0.0025 ND	0.0025	0.0034 0.0	025 0.0027	0.0025 N	D 0.0025	ND 0.0	0.0077	0.0025 N	D 0.000	5 ND	0.0025	ND 0.0	025 ND	0.0025	ND 0.0	025 ND	0.0025	ND 0.0025	ND F1	0.0025 ND ^	0.0025 NI	D 0.0025	ND 0.0	025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 NE	0.0025	D 0.0025	ND 0.002	25 NS 0.	.0025 ND	0.0025 NS	0.0025 0.0045	3 NS	NS NS	NS NS	s NS N	dS NS
Silver	0.05	0.00050	ND NS	NS 0.0	025 ND	0.00050 ND	0.00050	ND 0.000	50 ND	NS ?	NS 0.00050	ND 0	.00050 ND	0.00050	ND 0.0	050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.000	50 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.00050	ND (100050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 NE	0.0005 2	D 0.0005	ND 0.000	05 NS 0.	.0005 ND	0.0005 NS	0.0005 ND	NS	NS NS	NS NS	s NS N	dS NS
Sulfate	400.0	50	190 NS	NS 2	5 67	25 110	50	150 50	110	NS ?	NS 50	190	50 140	0 50	130	5 150	50 1	40 25	130	5 61	25 6	8 25	85	25	92 3	30 67	25	100 2	5 85	20	60 20	88	25 100	25 63	2 10	41 2	20 50	25 140	50 160	20 76	20 45	20	1 20	73 20	NS	20 34	20 NS	20 160	NS	NS NS	NS NS	ś NS N	4S NS
Thallium	0.002	0.0020	ND NS	NS 0.0	020 ND	0.0020 ND	0.0020	ND 0.002	20 ND	NS ?	NS 0.0020	ND (1.0020 ND	0.0020	ND 0.0	020 ND	0.0020 N	D 0.0020	ND 0.0	020 ND	0.0020 N	D 0.003	30 ND	0.0020	ND 0.0	020 ND	0.0020	ND 0.0	020 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020 NI	D 0.0020	ND 0.0	020 ND	0.0020 ND	0.0020 ND	0.002 ND	0.002 NE	0.002	D 0.002	ND 0.00	02 NS 0	0.002 ND	0.002 NS	0.002 ND	NS '	NS NS	NS NS	s NS N	4S NS
Total Dissolved Soli	ds 1,200	10	600 NS	NS 1	0 720	10 690	10	750 10	800	NS ?	NS 10	580	10 720	0 10	840	0 860	10 9	80 10	660	0 830	10 11	00 10	850	10	810	10 730	10	1200 1	0 890	10	610 10	750	10 960	10 70	0 10	570 1	10 630	10 890	10 970	10 760	10 520	10 6	90 10	1,100 10	NS	10 580	10 NS	10 910	NS .	NS NS	NS NS	ś NS N	4S NS
Vanadium	0.049	NR	NR NR	NR N	R NR	NR NR	NR	NR NR	NR	NS ?	NS NR	NR (0.0050 ND	0.0050	ND 0.0	050 ND	0.0050 N	D 0.0050	ND 0.0	050 ND	0.0050 N	D 0.00	90 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050 NI	D 0.0050	ND 0.0	050 ND	0.0050 ND	0.0050 NE	0.005 ND	0.005 ND	0.005	D 0.005	ND 0.00	15 NS 0	0.005 ND	0.005 NS	0.005 ND	NS	NS NS	NS NS	s NS N	dS NS
Zinc	5.0	0.020	ND NS	NS 0.	10 ND	0.020 ND	0.020	ND 0.02	0 ND	NS ?	NS 0.020	ND	0.020 ND	0.020	ND 0.	120 ND	0.020 N	D 0.020	ND 0.	020 ND	0.020 N	D 0.02	0 ND	0.020	ND 0.	020 ND	0.020	ND 0.0	120 ND	0.020	ND 0.020	ND	0.020 ND	0.020 NI	D 0.020	ND 0.0	020 ND	0.020 ND	0.020 ND	0.02 ND	0.02 NE	0.02 2	D 0.02	ND 0.02	2 NS 0	0.02 ND	0.02 NS	0.02 ND	NS .	NS NS	NS NS	ś NS N	4S NS
Benzene	0.005	NR	NR NR	NR N	R NR	NR NR	NR	NR NR	NR	NS ?	NS NR	NR (0.0005 ND	0.00050	ND 0.0	050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.0005 N	D 0.000	15 ND	0.0005	ND 0.0	005 ND	0.0005	ND 0.0	005 ND	0.0005	ND 0.0005	ND	0.0005 ND	0.0005 NI	D 0.0005	ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005 0.001	0.0005 NE	0.0005	D 0.0005	ND 0.000	05 NS 0.	.0005 ND	0.0005 NS	0.0005 ND	NS	NS NS	NS NS	ś NS N	4S NS
BETX	11.705	NR	NR NR	NR N	R NR	NR NR	NR	NR NR	NR	NS ?	NS NR	NR (1.0025 ND	0.0025	ND 0.0	025 ND	0.0025 N	D 0.0025	ND 0.0	025 ND	0.002 N	D 0.00	2 ND	0.002	0.00076 0.	002 0.00076	0.002 0	0.00076 0.0	02 ND	0.002	ND 0.002	ND	0.002 0.002	0.002 NI	D 0.002	0.0068 0.0	002 ND	0.002 ND	0.0025 0.000	52 0.0025 0.0142	0.0025 NE	0.0025	D 0.0025	ND 0.002	25 NS 0.	.0025 ND	0.0025 NS	0.0025 ND	NS	NS NS	NS NS	ś NS N	4S NS
pH	6.5 - 9.0	NA	7.85 NS	NS N	A 7.30	NA 7.37	NA	7.37 NA	NM	NS ?	NS NA	7.39	NA 7.39	9 NA	7.52	A 7.44	NA 7.	.08 NA	7.20 ?	IA 9.24	NA 7.	22 NA	7.07	NA	7.31 N	IA 7.46	NA	6.83 N	A 7.61	NA	7.05 NA	7.12	NA 7.13	NA 6.7	0 NA	7.26 N	iA 6.97	NA 7.15	NA 7.2	NA 7.36	NA 7.7) NA 7	32 NA	7.3 NA	NS 1	NA 7.16	NA NS	NA 6.99	NS	NS NS	NS N ^f	5 NS F	4S NS
Temperature	NA	NA	9.3 NA	NS N	A 15.57	NA 18.72	NA 1	13.04 NA	NM	NS ?	NS NA	22.02	NA 14.4	4 NA	9.5 N	A 12.82	NA 16	25 NA	15.37 2	A 11.97	NA 11	55 NA	16.92	NA	14.3 N	IA 9.28	NA	14.63 N	A 16.75	NA 1	5.07 NA	11.10	NA 13.52	NA 18.	75 NA	17.85 N	A 11.92	NA 14.74	NA 7.7	NA 17.40	NA 14.6	8 NA 1	3.4 NA	19.3 NA	NS 1	NA 12.61	NA NS	NA 14.5	NS	NS NS	NS N5	s NS N	4S NS
Conductivity	NA	NA	1.1 NA	NS N	A 1.30	NA 0.98	NA	0.90 NA	NM	NS ?	NS NA	0.90	NA 0.91	1 NA	1.02 2	A 1.008	NA 1.	785 NA	1.02 2	A 1.00	NA 1.	35 NA	1.299	NA	1.30 N	(A 0.94	NA	1.75 N	A 1.38	NA	1.10 NA	0.92	NA 1.38	NA 1.1	1 NA	0.84 N	iA 0.78	NA 1.22	NA 0.91	5 NA 0.961	NA 0.73	5 NA	.1 NA	3.0 NA	NS I	NA 9.67	NA NS	NA 1.577	NS	NS NS	NS N ⁴	5 NS 1	S NS
Dissolved Oxygen	NA	NA	NM NA	NS N	A 6.45	NA 5.21	NA	5.91 NA	NM	NS 2	NS NA	6.02	NA 9.91	1 NA	7.79	A 7.65	NA 14	.83 NA	5.81 2	A 6.17	NA 8.	48 NA	5.14	NA	4.07 N	IA 5.58	NA	1.96 N	A 3.66	NA	4.47 NA	5.38	NA 4.25	NA 4.8	4 NA	3.87 N	iA 4.90	NA 6.60	NA 5.8	NA 5.36	NA 6.2	NA 6	20 NA	6.98 NA	NS I	NA 9.1	NA NS	NA 7.77	NS	NS NS	NS N ⁴	5 NS 1	4S NS
ORP	NA	NA	NM NA	NS N	A 227.3	NA -36.0	NA	81.0 NA	NM	NS ?	NS NA	158.0	NA 41.0	0 NA	58.1 N	A 178.0	NA 13	8.5 NA	-40.3 ?	A -66.1	NA 15	2.4 NA	115.8	NA	57.1 N	IA 73.2	NA	33.9 N	A -51.3	NA 1	10.4 NA	80.7	NA 38.4	NA 47.	8 NA	91.2 N	iA 15.3	NA 10.1	NA 13.1	NA 85.9	NA 36.	i NA E	5.6 NA	NA NA	NS 1	NA -10.5	NA NS	NA 82.1	NS	NS NS	NS N5	ś NS N	4S NS
N -																																																					

New Souldware and Child Strategies and Strategies a

Sample: MW-03	Date	12/7/20	10 3/23	3/2011 0	6/14/2011	9/14/2011	12/7	/2011	3/15/2012	12 6	6/19/2012	9/19/2	2012	12/20/201	12 3/5	5/2013	5/22/201	3 7/22	2/2013	10/15/20	3 2/1	/2014	5/2/2014	8/	8/2014	10/23/2	014	2/10/2015	5/27	2015	8/4/2015	10/28	8/2015	2/10/2016	5/10	/2016	8/31/2016	11/2/2	016 2	/6/2017	4/26/2017	2/20/2018	7/31/2018	10/17/2	.018 2/4	4/2019	5/7/2019	8/7/2	.019 11/	/7/2019	2/17/2020	5/20/2020	7/30/202	20 10/22	/2020 3	3/2/2021	5/18/2021
Parameter	Standards	DL F	lesult DL	Result D	L Result	DL Res	ult DL	Result	DL Re	esult D	AL Resul	t DL	Result	DL Re	sult DL	Result	DL R	suit DL	Result	DL R	sult DL	Result	DL Res	ik DL	Result	DL	Result	DL Resul	it DL	Result	DL Res	at DL	Result	DL Resu	it DL	Result I	DL Result	DL	Result DL	Result	DL Resu	DL Res	it DL Rest	t DL I	Result DL	Result	DL Res	ult DL	Result DL	. Result	DL Result	DL Result	DL R	esult DL	Result D'	AL Result	DL Result
Antimony	0.006	0.0030 0	.0040 0.0030	ND 0.0	130 ND	0.0030 0.00	65 0.0030	0.016 0	1.0030 0.0	.013 0.00	030 ND	0.0030	ND	0.0030 N	(D 0.003f	ND	0.0030	D 0.0030	ND	0.0030 2	D 0.0030	ND	0.0030 NE	0.0030	ND	0.0030	ND 0	.0030 ND	0.0030	ND	0.0030 N	0.0030	ND (.0030 ND	0.0030	ND 0.0	0030 ND	0.0030	ND 0.003	0 ND	0.0030 ND	0.0030 N	0.003 ND	0.003	ND 0.003	ND (0.003 NF	D 0.003	ND 0.003	3 ND /	0.003 ND	0.003 ND	0.003 ?	ND 0.003	ND 0.0'	J03 ND 0	.003 ND
Arsenic	0.010	0.0010	ND 0.0010	0.0011 0.0	050 ND	0.0010 0.00	0.0010	0.0016 0	0.0010 0.0	0014 0.00	010 0.001	1 0.0010	0.0012	0.0010 0.0	.012 0.0010	0.0014	0.0010 0.0	0.0010 0.0010	0.0012	0.0010 0.0	014 0.0010	0.0014	0.0010 0.00	15 0.0010	ND	0.0010	ND ^A 0	.0010 0.001	5 0.0010	0.0015	0.0010 0.00	15 0.0010	ND 0	.0010 0.001	5 0.0010	ND ^ 0.0	0.0011 0.0011	0.0010	0.0013 0.001	0 0.0013	0.0010 0.001	0.0010 0.00	12 0.001 0.001	2 0.001	0.001 0.001	0.0011 (0.001 0.00	01 0.001	ND 0.001	.4 0.0012	0.001 0.0015	0.001 0.0015	0.001 0	.001 0.001	ND 0.0'	J01 0.001 ¢	x001 ND
Barium	2.0	0.0025 0	0.0025	0.085 0.0	025 0.092	0.0025 0.08	81 0.0025	0.084 0	0.0025 0.0	.081 0.0	025 0.088	0.0025	0.097	0.0025 0.0	.09 0.0025	0.089	0.0025 0	.13 0.0025	0.10	0.0025 0.	0.0025	0.098	0.0025 0.1	0.0025	0.075	0.0025	0.089 0	.0025 0.093	3 0.0025	0.094	0.0025 0.0	2 0.0025	0.10 0	.0025 0.09	8 0.0025	0.093 0.0	0.093	0.0025	0.089 0.002	5 0.096	0.0025 0.090	0.0025 0.0	4 0.0025 0.09	0.0025	0.1 0.0025	, 0.089 (*	0.0025 0.1	11 0.0025	0.088 0.002*	_5 0.081 r	0.0025 0.09	0.0025 0.11	0.0025 0.	.093 0.0025	0.1 0.00	025 0.11 0	.0025 0.14
Beryllium	0.004	0.0010	ND 0.0010	ND 0.0	010 ND	0.0010 NI	D 0.0010	ND (1.0010 N	ND 0.0	010 ND	0.0010	ND	0.0010 N	(D 0.0010	ND	0.0010	D 0.0010	ND	0.0010 2	D 0.0010	ND ^	0.0010 NE	0.0010	ND	0.0010	ND 0	.0010 ND	0.0010	ND	0.0010 N	0.0010	ND (.0010 ND	^ 0.0010	ND ^ 0.0	0010 ND ^	0.0010	ND 0.001	0 ND^	0.0010 ND	0.0010 N	0.001 ND	0.001	ND* 0.001	ND /	0.001 NF	D 0.001	ND 0.001	4 ND	0.001 ND	0.001 ND ^	0.001	ND 0.001	ND 0.0'	.J01 ND (*	1001 ND
Boron	2.0	0.050	0.24 0.050	0.36 0.0	50 0.46	0.050 0.2	4 0.050	0.23	0.050 0.	0.0	0.31	0.050	0.22*	0.050 0.2	.28 0.050	0.29	0.050 0.1	4 V 0.050	0.67	0.050 0	27 0.050	0.45	0.050 0.2	7 0.050	0.37	0.050	0.45 (1.050 0.52	0.050	0.54	0.050 0.4	8 0.050	0.29	0.45	0.050	0.44 0.	050 0.37	0.050	0.38 0.050	0 0.39	0.050 0.45	0.050 0.5	0.05 0.33	0.05	0.22 0.05	0.36	0.05 0.4	41 0.05	0.36 0.05	j 0.32	0.05 0.33	0.05 0.36	0.05 0	3.28 0.05	0.29 0.0	05 0.35 r	3.05 0.25
Cadmium	0.005	0.00050	ND 0.00050	ND 0.0	025 ND	0.00050 NI	D 0.00050	ND 0	.00050 0.00	0.0074 0.00	1050 ND	0.00050	ND (1.00050 N	(D 0.0005/) ND	0.00050 ?	D 0.00050	ND	0.00050 2	D 0.00050	ND	0.00050 NE	0.0005	ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	0.00050	ND 0	00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	50 ND	0.00050 ND	0.00050 N	0.0005 ND	0.0005	ND 0.0005	, ND (0.0005 NF	D 0.0005	ND 0.000*	.6 ND /	0.0005 ND	0.0005 ND	0.0005 7	ND 0.0005	ND 0.00	.005 ND 0	.0005 ND
Chloride	200.0	10	260 10	240 1	0 300	50 16	0 10	260	2.0 2	250 1	0 260	10	330	10 25	.90 10	260	50 3	80 10	210	10 2	50 10	200	10 30	10	220	10	180	10 160	10	220	10 23	0 10	230	10 200	10	240	10 240	10	170 10	140	10 210	10 170	1 10 260	10	250 10	160	10 2707	F1 10	220 10	150	10 130	10 230	10 7	170 10	180 16	.0 200	40 290
Chromium	0.1	0.0050	ND 0.0050	ND 0.0	25 ND	0.0050 NI	D 0.0050	ND (1.0050 N	ND 0.0	050 ND	0.0050	ND	0.0050 N	4D 0.0050	ND	0.0050 2	D 0.0050	ND	0.0050 2	D 0.0050	ND	0.0050 NE	0.0050	ND	0.0050	ND 0	.0050 ND	0.0050	ND	0.0050 N	0.0050	ND 0	.0050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.005	0 ND	0.0050 ND	0.0050 N	0.005 ND	0.005	ND 0.005	ND r	0.005 NF	D 0.005	ND 0.005	5 ND /	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.0	.05 ND 0	x005 ND
Cobalt	1.0	0.0010 0	.0013 0.0010	0.0013 0.0	150 ND	0.0010 NI	D 0.0010	ND (1.0010 N	ND 0.0	010 ND	0.0010	ND	0.0010 N	(D 0.0010	ND	0.0010	D 0.0010	ND	0.0010	D 0.0010	ND	0.0010 NE	0.0010	ND	0.0010	ND 0	.0010 ND	0.0010	ND	0.0010 N	0.0010	ND (.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	0 ND	0.0010 ND	0.0010 N	0.001 ND	0.001	ND 0.001	ND /	0.001 NF	D 0.001	ND 0.001	4 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.0'	.J01 ND (*	.001 0.001
Copper	0.65	0.0020	ND 0.0020	ND 0.0	10 ND	0.0020 NI	D 0.0020	ND (1.0020 N	ND 0.0	020 ND	0.0020	ND	0.0020 N	4D 0.0020	ND	0.0020 2	D 0.0020	ND	0.0020 2	D 0.0020	ND	0.0020 NE	0.0020	ND	0.0020	ND 0	.0020 ND	0.0020	ND	0.0020 0.00	21 0.0020	ND 0	.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	0 ND	0.0020 ND	0.0020 N	0.002 ND	0.002	ND 0.002	ND r	0.002 NF	D 0.002	ND 0.002	2 ND /	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.0	.02 ND 0	x002 ND
Cyanide	0.2	0.010	ND 0.010	ND* 0.0	10 ND	0.010 NI	D 0.010	ND	0.010 N	ND 0.0	010 ND	0.010	ND	0.010 N	D 0.010	ND	0.010	D 0.010	ND	0.010 2	D 0.010	ND	0.010 NE	0.010	ND	0.010	ND (.010 ND	0.010	ND	0.010 N	0.010	ND	0.010 ND	0.010	ND 0.	010 ND	0.010	ND 0.010	0 ND	0.010 ND	0.010 N	0.01 ND	0.01	ND 0.01	ND	0.01 NF	D 0.01	ND 0.01	1 ND	0.01 ND	0.01 ND	0.005 0./	.0062 0.01	ND 0.0'	J05 ND (*	1005 ND
Fluoride	4.0	0.10	0.43 0.10	0.40 0.	10 0.41	0.10 0.3	0.10	0.40	0.10 0.	0.39 0.	10 0.43	0.10	0.43	0.10 0.3	.38 0.10	0.42^	0.10 0	.44 0.10	0.45	0.10 0	47 0.10	0.51	0.10 0.4	0.10	0.52	0.10	0.49	0.10 0.46	6 0.10	0.43	0.10 0.4	7 0.10	0.41	0.10 0.48	0.10	0.49 0	.10 0.45	0.10	0.57 0.10	0.39	0.10 0.35	0.10 0.4	2 0.1 0.42	0.1	0.4 0.1	0.43	0.1 0.4	41 0.1	0.39 0.1	0.41	0.1 0.46	0.1 0.42	0.1 0	3.45 0.1	0.44 0.	.1 0.44	0.1 0.4
Iron	5.0	0.10	ND 0.10	ND 0.	50 ND	0.10 NI	D 0.10	ND	0.10 N	ND 0.	10 ND	0.10	ND	0.10 N	4D 0.10	ND	0.10 2	4D 0.10	ND	0.10 2	D 0.10	ND	0.10 NE	0.10	ND	0.10	ND	0.10 ND	0.10	ND	0.10 N	0.10	ND	0.10 0.22	0.10	ND^ 0	.10 ND	0.10	ND 0.10	ND	0.10 0.10	0.10 0.1	0 0.1 ND	0.1	ND 0.1	ND	0.1 NF	D 0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1 2	ND 0.1	ND 0.1	J ND	0.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	050 ND	0.00050 NI	D 0.00050	ND 0	.00050 N	ND 0.00	0050 ND	0.00050	ND (1.00050 N	4D 0.0005/) ND	0.00050 2	D 0.00050	ND	0.00050 2	D 0.00050	ND	0.00050 NE	0.0005	ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	0.00050	ND 0	00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	50 ND	0.00050 ND	0.00050 N	0.0005 ND	0.0005	ND 0.0005	, ND (0.0005 NI	D 0.0005	ND 0.000*	.6 ND (0.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005	ND 0.00	005 ND 0	.0005 ND
Manganese	0.15	0.0025	0.10 0.0025	0.048 0.0	13 ND	0.0025 0.00	0.0025	0.0080 0	1.0025 0.00	0.0	025 0.014	0.0025	0.011	0.0025 0.0	.076 0.0025	0.0068	0.0025 1	D 0.0025	ND	0.0025 2	D 0.0025	ND	0.0025 NE	0.0025	ND	0.0025	ND 0	.0025 ND	0.0025	ND	0.0025 N	0.0025	ND 0	.0025 0.004	0 0.0025	ND 0.0	0025 ND	0.0025	ND 0.002	5 ND	0.0025 ND	0.0025 0.00	28 0.0025 ND	0.0025	ND 0.0025	, ND (0.0025 NF	D 0.0025	ND 0.002*	_5 0.0035 r	0.0025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.00	025 ND 0	.0025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	020 ND^	0.00020 NI	D 0.00020	ND 0	.00020 N	ND 0.00	1020 ND	0.00020	ND (1.00020 N	(D 0.0002) ND	0.00020 ?	D 0.00020	ND	0.00020 2	D 0.00020	ND	0.00020 NE	0.0002	ND	0.00020	ND 0.	00020 ND	0.00020	ND (0.00020 ND	* 0.00020	ND 0	00020 ND	0.00020	ND 0.0	0020 ND	0.00020	ND 0.0002	20 ND	0.00020 ND	0.00020 N	0.0002 ND	0.0002	ND 0.0002	ND (0.0002 NF	D 0.0002	ND 0.000*	.g ND /	0.0002 ND	0.0002 ND	0.0002 7	ND 0.0002	ND 0.00	.002 ND 0	.0002 ND
Nickel	0.1	0.0020	0.011 0.0020	0.0065 0.0	10 ND	0.0020 0.00	41 0.0020	0.0060 0	0.0020 0.0	0046 0.0	020 0.004	4 0.0020	0.0059	0.0020 0.0	.063 0.0020	0.0051	0.0020 0.0	0.0020	0.0043	0.0020 0.0	046 0.0020	0.0033	0.0020 0.00	0.0020	0.0021	0.0020	0.0023 0	.0020 ND	0.0020	0.0026	0.0020 N	0.0020	0.0023 0	.0020 0.002	5 0.0020	ND 0.0	0.0020 0.0020	0.0020	ND 0.002	0 0.0025	0.0020 ND	0.0020 0.00	24 0.002 0.002	5 0.002 0	0.0049 0.002	0.0033 (0.002 0.00	035 0.002	ND 0.002	2 0.0028	0.002 ND	0.002 ND	0.002 ?	ND 0.002	0.0031 0.0'	J02 0.0048 C	x002 0.0072
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.0 0.	10 2.1	0.10 1.	1 0.10	0.79	0.10 N	ND 0.	10 1.3	0.10	0.88	0.10 0.1	.77 0.10	0.86	0.10	6.6 0.10	3.1	0.10	.9 0.10	1.5	0.10 2.3	0.10	1.9	0.10	1.8	0.10 2.5	0.10	2.1	0.10 1.	0.10	1.6	0.10 1.9	0.10	1.5 0	10 3.4	0.10	1.9 0.10	1.4	0.10 2.6	0.10 1.	0.1 1.4	0.1	0.94 0.1	1.0	0.1 2.1	1 0.1	2.7 0.1	1.8	0.1 1.7	0.1 2.1	0.1	3 0.1	2.8 0.1	.1 2.8	0.1 1.9
Nitrogen/Nitrate, Nitr	NA	0.10	ND 0.10	1.0 0.	20 2.1	0.10 1.1	1 0.10	0.79	0.10 N	ND 0.	10 1.3	0.10	0.88	0.10 0.1	.77 0.10	0.86	0.50	6.6 0.50	3.1	0.10	.9 0.10	1.5	0.50 2.3	0.10	1.9	0.10	1.8	0.20 2.5	0.20	2.1	0.10 1.5	0.10	1.6	0.10 1.9	0.20	1.5 0	1.50 3.4	0.10	1.9 0.10	1.4	0.20 2.6	0.10 1.	0.1 1.4	0.1	0.94 0.1	1.0	0.1 2.1	1 0.1	2.7 0.1	1.8	0.1 1.7	0.1 2.1	0.5	3 0.5	2.8 0.	.5 2.8	0.5 1.9
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.0	20 ND	0.020 NI	D 0.020	ND	0.020 N	ND 0.0	120 ND	0.020	ND	0.020 N	4D 0.020	ND	0.020 2	D 0.020	ND	0.020 2	D 0.020	ND	0.020 NE	0.020	ND	0.020	ND (.020 ND	0.020	ND	0.020 N	0.020	ND	.020 ND	0.020	ND 0.	.020 ND	0.020	ND 0.020	0 ND	0.020 ND	0.020 N	0.02 ND	0.02	ND 0.02	ND	0.02 NF	D 0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.0	02 ND (J.02 ND
Perchlorate	0.0049	NR	NR NR	NR N	R NR	NR NF	R NR	NR	NR N	NR N	R NR	NR	NR	0.004 N	4D 0.0040	ND	0.0040 ?	D 0.0040	ND	0.0040 2	D 0.0040	ND	0.0040 NE	0.0040	ND	0.0040	ND 0	.0040 ND	0.0040	ND	0.0040 N	0.0040	ND 0	.0040 ND	0.0040	ND 0.0	0040 ND	0.0040	ND 0.004	0 ND	0.0040 ND	0.0040 N	0.004 ND	0.004	ND 0.004	ND (0.004 NI	D 0.004	ND 0.004	4 ND	0.004 ND	0.004 ND	0.004 ?	ND 0.004	ND 0.0'	J04 ND (x004 ND
Selenium	0.05	0.0025	ND 0.0025	0.0050 0.0	13 ND	0.0025 NI	D 0.0025	ND (1.0025 N	ND 0.0	025 0.004	3 0.0025	ND	0.0025 N	4D 0.0025	0.0031	0.0025 0.	022 0.0025	0.012	0.0025 2	D 0.0025	0.0051	0.0025 NE	0.0025	0.0029	0.0025	0.0036 0	0025 0.005	4 0.0025	0.0063	0.0025 0.00	66 0.0025	ND 0	.0025 0.004	8 0.013	ND ^ 0.0	0025 0.0032	0.0025	0.0031 0.002	5 0.0033	0.0025 0.005	0.0025 N	0.0025 0.003	8 0.0025	ND 0.0025	, 0.0032 (*	0.0025 0.00	156 0.0025	0.0037 0.002*	_5 0.0025 r	0.0025 0.0025	0.0025 0.0039	0.0025 0.0	.0028 0.0025	ND 0.00	025 0.0047 0	.0025 ND
Silver	0.05	0.00050	ND 0.00050	ND 0.0	025 ND	0.00050 NI	D 0.00050	0.00091 0	.00050 N	ND 0.00	1050 ND	0.00050	ND (1.00050 N	/D 0.0005/) ND	0.00050 2	D 0.00050	ND	0.00050 2	D 0.00050	ND	0.00050 NE	0.0005	ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	0.00050	ND 0	00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	50 ND	0.00050 ND	0.00050 N	0.0005 ND	0.0005	ND 0.0005	ND 0	0.0005 NF	D 0.0005	ND 0.0005	,6 ND (0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	005 ND 0.	0005 ND
Sulfate	400.0	50	120 50	160 5	0 120	25 12	0 50	160	50 1	190 2	160	50	150	50 11	10 50	140	50 2	50 50	260	50 2	10 25	89	25 110	40	84	50	130	25 58	25	84	25 91	40	180	50 150	25	130	25 96	20	87 25	75	25 110	50 11	25 110	25	84 25	100	25 16	0 25	71 25	73	25 65	25 100	25 '	77 15	91 2.	.5 140	25 190
Thallium	0.002	0.0020	ND 0.0020	ND 0.0	020 ND	0.0020 NI	D 0.0020	ND (1.0020 N	ND 0.0	020 ND	0.0020	ND	0.0020 N	4D 0.0020	ND	0.0020 2	D 0.0020	ND	0.0020 2	D 0.0020	ND	0.0020 NE	0.0020	ND	0.0020	ND 0	.0020 ND	0.0020	ND	0.0020 N	0.0020	ND 0	.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	0 ND	0.0020 ND	0.0020 N	0.002 ND	0.002	ND 0.002	ND r	0.002 NF	D 0.002	ND 0.002	2 ND /	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.0	.02 ND 0	x002 ND
Total Dissolved Solid	1,200	10	930 10	1100 1	0 1000	10 93	0 10	1100	10 10	000 1	1100	10	1000	10 11	100 10	950	10 1	300 10	1000	10 9	10 10	890	10 110	0 10	810	10	760	10 700	10	830	10 86	0 10	820	10 780	10	850	10 920	10	800 10	740	10 890	10 84	10 920	10	860 10	770	10 90'	10 10	760 10	740	10 610	10 910	30 (580 30	760 10	.0 900	10 1100
Vanadium	0.049	NR	NR NR	NR N	R NR	NR NE	R NR	NR	NR N	NR N	R NR	NR	NR	0.0050 N	4D 0.0050	ND	0.0050 2	D 0.0050	ND	0.0050 2	D 0.0050	ND	0.0050 NE	0.0050	ND	0.0050	ND 0	.0050 ND	0.0050	ND	0.0050 N	0.0050	ND 0	.0050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.005	0 ND	0.0050 ND	0.0050 N	0.005 ND	0.005	ND* 0.005	ND r	0.005 NF	D 0.005	ND 0.005	5 ND /	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.0	.05 ND 0	x005 ND
Zinc	5.0	0.020	ND 0.020	ND 0.	10 ND	0.020 NI	D 0.020	ND	0.020 N	ND 0.0	120 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 ?	D 0.020	ND	0.020 2	D 0.020	ND	0.020 NE	0.020	ND	0.020	ND (1.020 ND	0.020	ND	0.020 N	0.020	ND	.020 ND	0.020	ND 0.	020 ND	0.020	ND 0.020	0 ND	0.020 ND	0.020 N	0.02 ND	0.02	ND 0.02	ND	0.02 NF	D 0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 7	ND 0.02	ND 0.0	.02 ND (J.02 ND
Benzene	0.005	NR	NR NR	NR N	R NR	NR NF	R NR	NR	NR N	NR N	IR NR	NR	NR	0.0005 N	4D 0.0005/) ND	0.00050 2	D 0.00050	ND	0.00050 2	D 0.00050	ND	0.0005 NE	0.0005	ND	0.0005	ND 0	.0005 ND	0.0005	ND	0.0005 N	0.0005	ND 0	.0005 ND	0.0005	ND 0.0	0005 ND	0.0005	0.000	6 ND	0.0005 ND	0.0005 N	0.0005 ND	0.0005	ND 0.0005	/ ND C	0.0005 NI	D 0.0005	ND 0.000'	.15 ND /	0.0005 ND	0.0005 ND	0.0005 1	ND 0.0005	ND 0.00	005 ND 0	.0005 ND
BETX	11.705	NR	NR NR	NR N	R NR	NR NE	R NR	NR	NR N	NR N	R NR	NR	NR	0.0025 N	4S 0.0025	ND	0.0025 1	D 0.0025	ND	0.0025 2	D 0.0025	ND	0.002 NE	0.002	ND	0.002	ND (.002 ND	0.002	0.0015	0.002 N	0.002	0.0065	0.002 ND	0.002	0.0027 0.	.002 ND	0.002	0.02984 0.002	2 ND	0.002 ND	0.0025 0.00	15 0.0025 0.00	0.0025	ND 0.0025	, ND (*	0.0025 NF	D 0.0025	ND 0.002'	25 ND /	0.0025 ND	0.0025 ND	0.0025 N	ND 0.0025	ND 0.00	025 ND 0	.0025 ND
pH	6.5 - 9.0	NA	7.84 NA	7.26 N	A 7.41	NA 7.3	7 NA	7.48	NA 7.	1.34 N	IA 7.21	NA	7.40	NA 7.	.42 NA	7.66	NA 7	.00 NA	7.26	NA 7	22 NA	8.57	NA 7.0	9 NA	6.70	NA	7.16	NA 7.55	NA	7.37	NA 7.2	9 NA	7.11	NA 7.31	NA	7.07	NA 7.18	NA	7.45 NA	7.35	NA 7.03	NA 7.	NA 7.2	NA	7.04 NA	7.44	NA 7.2	27 NA	7.34 NA	. 7.32	NA 7.31	NA 7.56	NA	7.1 NA	7.23 N/	A 7.27	NA 7.13
Temperature	NA	NA	0.91 NA	12.73 N	A 13.04	NA 11.5	90 NA	10.94	NA 13	3.73 N	IA 14.01	NA	13.35	NA 12	.40 NA	11.20	NA I	1.45 NA	17.29	NA I	.91 NA	9.27	NA 11.3	8 NA	18.40	NA	13.97	NA 9.02	NA NA	16.14	NA 17.	5 NA	13.85	NA 6.78	NA NA	13.77	NA 18.94	NA	16.53 NA	12.81	NA 15.3	NA 13.	7 NA 20.1	8 NA	11.69 NA	11.00	NA 12.f	00 NA	13.00 NA	. 11.86	NA 12.00	NA 11.50	NA 1.'	2.50 NA	12.60 N.	A 12.40	NA 12.80
Conductivity	NA	NA	1.83 NA	1.76 N	A 1.74	NA 1.1	5 NA	1.19	NA 1.	1.21 N	IA 1.33	NA	1.41	NA L	.28 NA	1.18	NA 1	.55 NA	1.33	NA 0	99 NA	0.75	NA 1.3	I NA	1.22	NA	1.22	NA 0.90) NA	1.23	NA 1.2	5 NA	1.50	NA 0.80	i NA	1.18	NA 1.35	NA	1.14 NA	0.95	NA 1.05	NA 0.9	5 NA 1.20	5 NA	1.070 NA	123.700	NA 2.3	35 NA	1.37 NA	11.87	NA 9.37	NA 9.92	NA 1	1.36 NA	1.35 N	A 1.561	NA 1.802
Dissolved Oxygen	NA	NA	NM NA	4.73 N	A 7.78	NA 6.0	IS NA	6.07	NA 6	5.07 N	IA 6.47	NA	6.35	NA 6.	.30 NA	7.03	NA 5	31 NA	3.47	NA 2	78 NA	3.32	NA 5.2	5 NA	6.68	NA	5.41	NA 4.84	NA NA	5.49	NA 6.0	3 NA	5.48	NA 5.93	NA	5.65	NA 6.91	NA	5.30 NA	5.69	NA 7.22	NA 5.1	NA 6.7	NA	9.38 NA	7.10	NA 6.4	48 NA	6.09 NA	8.23	NA 5.7	NA 3.98	NA 7	/.65 NA	4.22 N.	A 4.96	NA 5.34
ORP	NA	NA	NM NA	179.1 N	A 223.5	NA -51	.0 NA	145.0	NA 19	93.0 N	IA 114.0	NA	134.0	NA 13	.0.0 NA	196.6	NA -3	0.4 NA	32.2	NA -	9.8 NA	-7.3	NA 141	8 NA	94.8	NA	69.5	NA 71.9	NA	64.1	NA 7.	NA	106.6	NA 94.8	NA	93.8	NA 66.4	NA	66.0 NA	5.1	NA 59.8	NA 11	7 NA 142) NA	101.7 NA	194.7	NA -237	7.9 NA	157.7 NA	-9.8	NA 154.4	NA 160.7	NA 1.	57.4 NA	180.0 N.	A 20.0	NA 88.3

Nex Stadack desard fear MC Table M. Chapter L MC (Stepper L) L Descina Intri Secure Constraints (Stepper L) (Stepper L) L Descina Intri Secure Constraints (Stepper L) (Steppe

Sample: MW-04	Date	12/7/20	10 3/23	3/2011 6	6/14/2011	9/14/2011	12/7	/2011	3/15/2012	6/1	19/2012	9/19/20	012 1	2/20/2012	3/5/2	2013	5/22/2013	7/22/2	013	10/16/2013	3 2/2	1/2014	5/1/2014		8/18/2014	10/2	23/2014	2/10/20	15	5/27/2015	8/4/2	015	10/28/2015	2/10	0/2016	5/10/2016	6 8/31	/2016	11/2/2016	2/6/2	2017	4/26/2017	2/20/2018	7/31/2018	10/17/	2018 2	2/4/2019	5/7/201	019 8/	6/2019	11/6/2019	2/17/2020	5/20/2020	7/31/2/	.020 10/2	2/2020	3/2/2021	5/18/2021
Parameter	Standards	DL F	lesult DL	Result D	L Result	DL Resu	alt DL	Result	DL Resu	alt DL	Result	DL F	Result D	DL Result	DL	Result	DL Resu	t DL	Result	DL Res	ult DL	Result	DL Re	suk Di	L Resu	it DL	Result	DL F	lesult D	L Result	DL	Result	DL Resu	t DL	Result	DL Re	sult DL	Result	DL Rest	ult DL	Result	DL Result	DL Rest	t DL Resu	alt DL	Result DL	Result	DL F	Result DL	. Result	DL Resu'	DL Resu	t DL Rest	alt DL	Result DL	Result	DL Result	DL Result
Antimony	0.006	0.0030	ND 0.0030	ND 0.0	130 ND	0.0030 ND	0.0030	0.0067 0.	0030 0.005	57 0.0030	0 ND	0.0030	ND 0.0	030 ND	0.0030	ND	0.0030 0.01	2 0.0030	ND	0.0030 NI	0.0030	ND	0.0030 N	D 0.00	130 ND	0.0030	ND	0.0030	ND 0.0	030 ND	0.0030	ND 0	.0030 ND	0.0030	ND	0.0030 N	D 0.0030	ND (0.0030 NE	0.0030	ND 0	0030 ND	0.0030 ND	0.003 ND	0.003	ND 0.00	JB ND	0.003	ND 0.003	.3 ND /	0.003 ND	0.003 ND	0.003 NI	0.003	ND 0.003	ND 0	.003 ND	0.003 ND
Arsenic	0.010	0.0010	ND 0.0010	ND 0.0	150 ND	0.0010 ND	0.0010	0.0011 0	0010 ND	0.0010	0 ND	0.0010	ND 0.0	010 ND	0.0010	0.0013	0.0010 0.001	4 0.0010	0.0013	0.0010 0.00	12 0.0010	0.0013	0.0010 N	D 0.00	0.001	12 0.0010	ND	0.0010	ND 0.0	010 0.0013	0.0010	0.0015 0	.0010 ND	0.0010	0.0013	0.0010 N	0.0010	0.0013	0.0010 0.00	12 0.0010	0.0013 0	0010 0.0011	0.0010 0.003	5 0.001 0.001	11 0.001	0.001 0.00	JI 0:0012	0.001 C	0.001 0.003	4 ND /	0.001 0.005	0.001 0.001	4 0.001 0.00	14 0.001	ND 0.001	ND 0	.001 0.0012	3.001 ND
Barium	2.0	0.0025 0	0.065 0.0025	0.067 0.0	025 0.059	0.0025 0.06	90 0.0025	0.069 0	0025 0.07	0 0.0025	5 0.068	0.0025	0.092 0.0	025 0.87	0.0025	0.080	0.0025 0.08	0.0025	0.078	0.0025 0.08	89 0.0025	0.088	0.0025 0.0	0.00	0.07	1 0.0025	0.078	0.0025	1.079 0.0	025 0.090	0.0025	0.067 0	.0025 0.08	0.0025	0.085	0.0025 0.	10 0.0025	0.089	0.0025 0.07	79 0.0025	0.10 0	0025 0.084	0.0025 0.08	0.0025 0.08	9 0.0025	0.093 0.00	25 0.085	0.0025 0	0.091 0.002	.5 0.08 C	0.0025 0.082	0.0025 0.08	0.0025 0.08	.5 0.0025	0.082 0.0025	0.09 0.1	J025 0.099 f	10025 0.12
Beryllium	0.004	0.0010	ND 0.0010	ND 0.0	010 ND	0.0010 ND	0.0010	ND 0	0010 ND	0.0010	0 ND	0.0010	ND 0.0	010 ND	0.0010	ND	0.0010 ND	0.0010	ND	0.0010 NI	D 0.0010	ND ^	0.0010 N	D 0.00	10 ND	0.0010	ND	0.0010	ND 0.0	010 ND	0.0010	ND 0	.0010 ND	0.0010	ND ^	0.0010 N	0.0010	ND ^	0.0010 NE	0.0010	ND ^ 0	0010 ND	0.0010 ND	0.001 ND	0.001	ND* 0.00	JI ND	0.001	ND 0.003	4 ND /	0.001 ND	0.001 ND	0.001 NI	J 0.001	ND 0.001	ND 0	.001 ND	J.001 ND
Boron	2.0	0.050	0.46 0.050	0.37 0.0	50 0.38	0.050 0.25	5 0.050	0.34 0	.050 0.25	9 0.050	0.48	0.050	0.34^ 0.0	050 0.38	0.050	0.40	0.050 0.40	0.050	0.50	0.050 0.4	5 0.050	0.35	0.050 0.	32 0.0	50 0.35	5 0.050	0.41	0.050	0.44 0.0	150 0.36	0.050	0.33	0.050 0.30	0.050	0.35	0.050 0.	51 0.050	0.43	0.050 0.3	2 0.050	0.38 0	.050 0.29	0.050 0.46	0.05 0.35	5 0.05	0.29 0.0	5 0.44	0.05 /	0.77 0.05	0.26	0.05 0.28	0.05 0.2	0.05 0.2	5 0.05	0.23 0.05	0.29 0	105 0.33	0.05 0.2
Cadmium	0.005	0.00050	ND 0.00050	ND 0.0	025 ND	0.00050 ND	0.00050	ND 0.0	00050 ND	0.00050	0 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (.00050 ND	0.00050	ND 0	0.00050 NI	0.00050	ND	0.00050 N	D 0.00	050 ND	0.00050) ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	D 0.00050	ND 0	0.00050 NE	0.00050	ND 0.	0050 ND	0.00050 ND	0.0005 ND	0.0005	ND 0.00	.05 ND	0.0005	ND 0.000	.15 ND f	0.0005 ND	0.0005 ND	0.0005 NI	0.0005	ND 0.0005	ND 0/	3005 ND (10005 ND
Chloride	200.0	10	270 10	270 1	0 250	10 150	0 10	200	2.0 210	0 10	270	10	260 1	10 250	10	230	10 270	10	200	10 210	0 10	220	10 2	70 10	210	0 10	160	10	180 1	0 290	10	200	10 200	10	200	10 2	90 10	200	10 140	0 10	200	10 220	10 150	10 250) 10	210 10	J 190	10	310 10	220	10 140	10 160	10 16	ي 10	170 10	190	10 230	40 290
Chromium	0.1	0.0050	ND 0.0050	ND 0.0	25 ND	0.0050 ND	0.0050	ND 0	0050 ND	0.0050	0 ND	0.0050	ND 0.0	050 ND	0.0050	ND	0.0050 ND	0.0050	ND	0.0050 NI	0.0050	ND	0.0050 N	D 0.00	50 ND	0.0050	ND	0.0050	ND 0.0	050 ND	0.0050	ND 0	.0050 ND	0.0050	ND	0.0050 N	D 0.0050	ND (0.0050 NE	0.0050	ND 0	0050 ND	0.0050 ND	0.005 ND	0.005	ND 0.00	.15 ND	0.005	ND 0.003	5 ND /	0.005 ND	0.005 ND	0.005 NI	0.005	ND 0.005	ND 0	.005 ND	3.005 ND
Cobalt	1.0	0.0010	ND 0.0010	ND 0.0	150 ND	0.0010 0.001	18 0.0010	0.0028 0	0010 0.002	26 0.0010	0 0.0042	0.0010 0	0.0059 0.0	010 0.0045	0.0010	0.0057	0.0010 0.001	2 0.0010	0.014	0.0010 0.00	48 0.0010	0.0022	0.0010 N	D 0.00	0.006	90 0.0010	0.011	0.0010 0	.0076 0.0	010 0.0062	0.0010	0.0047 0	.0010 0.004	0.0010	0.0075	0.0010 0.0	046 0.0010	0.0072	0.0010 0.000	29 0.0010	0.0082 0	0010 0.0052	0.0010 0.008	3 0.001 0.00	18 0.001	ND 0.00	J1 0.0046	0.001	ND 0.003	.4 0.0057 /	0.001 0.001	6 0.001 0.007	1 0.001 0.00	.71 0.001	0.0031 0.001	0.0041 0	.001 0.0059	J.001 0.0025
Copper	0.65	0.0020	ND 0.0020	ND 0.0	10 ND	0.0020 ND	0.0020	ND 0	0020 ND	0.0020	0 ND	0.0020	ND 0.0	020 ND	0.0020	ND	0.0020 ND	0.0020	0.0041	0.0020 NE	0.0020	ND	0.0020 N	D 0.00	20 ND	0.0020	ND	0.0020	ND 0.0	020 ND	0.0020	0.0072 0	.0020 ND	0.0020	ND	0.0020 N	D 0.0020	ND (0.0020 NE	0.0020	ND 0	0020 ND ^	0.0020 ND	0.002 ND	0.002	ND 0.00	.12 ND	0.002	ND 0.002	2 ND /	0.002 ND	0.002 ND	0.002 NI	0.002	ND 0.002	ND 0	.002 ND	3.002 ND
Cyanide	0.2	0.010	ND 0.010	ND* 0.0	10 ND	0.010 ND	0.010	ND 0	.010 ND	0.010) ND	0.010	ND 0.0	010 ND	0.010	ND	0.010 ND	0.010	ND	0.010 NI	D 0.010	ND	0.010 N	D 0.0	10 ND	0.010	ND	0.010	ND 0.0	010 ND	0.010	ND (0.010 ND	0.010	ND	0.010 N	D 0.010	ND	0.010 NE	0.010	ND (.010 ND	0.010 ND	0.01 ND	0.01	ND 0.0	A ND	0.01	ND 0.01	. ND	0.01 ND	0.01 ND	0.01 NI	0.005	0.0057 0.01	ND 0	.005 ND	0.005 ND
Fluoride	4.0	0.10	0.49 0.10	0.38 0.	10 0.44	0.10 0.37	7 0.10	0.44	0.10 0.41	1 0.10	0.46	0.10	0.47 0.	.10 0.41	0.10	0.47^	0.10 0.49	0.10	0.50	0.10 0.5	3 0.10	0.45	0.10 0.	44 0.1	0 0.51	1 0.10	0.49	0.10	0.44 0.	10 0.43	0.10	0.49	0.10 0.45	0.10	0.51	0.10 0.	50 0.10	0.44	0.10 0.4	6 0.10	0.38	0.10 0.37	0.10 0.44	0.1 0.43	3 0.1	0.46 0.1	4 0.46	0.1	0.43 0.1	0.39	0.1 0.42	0.1 0.46	0.1 0.4	6 0.1	0.47 0.1	0.49 /	J.1 0.46	0.1 0.42
Iron	5.0	0.10	ND 0.10	ND 0.:	50 ND	0.10 0.22	2 0.10	ND	0.10 ND	0.10	ND	0.10	ND 0.	.10 ND	0.10	0.46	0.10 0.17	0.10	ND	0.10 NI	D 0.10	ND	0.10 0.	18 0.1	0 ND	0.10	ND	0.10	0.14 0.	10 ND	0.10	ND	0.10 ND	0.10	0.31	0.10 N	0.10	ND	0.10 NE	0.10	ND	10 ND	0.10 0.16	0.1 ND	0.1	ND 0.1	i ND	0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1 NI	0.1	ND 0.1	ND /	J.1 0.14	0.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	050 ND	0.00050 ND	0.00050	ND 0.0	00050 ND	0.00050	0 ND	0.00050	ND 0.00	0050 ND	0.00050	0.00077 0	.00050 ND	0.00050	ND (1.00050 NI	0.00050	ND	0.00050 N	D 0.00	050 ND	0.00050) ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	D 0.00050	ND 0	0.00050 NE	0.00050	ND 0.	0050 ND	0.00050 ND	0.0005 ND	0.0005	ND 0.00	.05 ND	0.0005	ND 0.000	.6 ND f	0.0005 ND	0.0005 ND	0.0005 NI	0.0005	ND 0.0005	ND 0/	3005 ND (10005 ND
Manganese	0.15	0.0025	0.33 0.0025	0.048 0.0	13 0.018	0.0025 0.06	6 0.0025	0.029 0	0025 0.038	8^ 0.0025	5 0.082	0.0025 0	0.043 0.0	025 0.029	0.0025	0.067	0.0025 0.008	1 0.0025	ND	0.0025 NI	D 0.0025	ND	0.0025 N	D 0.00	125 ND	0.0025	ND	0.0025 0	.0044 0.0	025 ND	0.0025	ND 0	.0025 ND	0.0025	0.0054	0.0025 N	D 0.0025	ND (0.0025 NE	0.0025	ND 0	0025 ND	0.0025 0.002	6 0.0025 ND	0.0025	ND 0.00	.25 ND	0.0025	ND 0.002	25 ND f	0.0025 ND	0.0025 ND	0.0025 NI	J 0.0025	ND 0.0025	ND 0.4	J025 0.0033 r	.0025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	020 ND	0.00020 ND	0.00020	ND 0.0	00020 ND	0.00020	0 ND	0.00020	ND 0.00	0020 ND	0.00020	ND (.00020 ND	0.00020	ND (1.00020 NE	0.00020	ND	0.00020 N	D 0.00	020 ND	0.00020) ND	0.00020	ND 0.00	020 ND	0.00020	ND * 0.	00020 ND	0.00020	ND (0.00020 N	D 0.00020	ND 0	0.00020 NE	0.00020	ND 0.	0020 ND	0.00020 ND	0.0002 ND	0.0002	ND 0.00	.02 ND	0.0002	ND 0.000	.12 ND f	0.0002 ND	0.0002 ND	0.0002 NI	0.0002	ND 0.000?	ND 0.'	.0002 ND /	.10002 ND
Nickel	0.1	0.0020 0	.0067 0.0020	0.0037 0.0	10 ND	0.0020 0.002	29 0.0020	0.0038 0	0020 0.003	37 0.0020	0 0.0036	0.0020 0	0.0043 0.0	020 0.0042	0.0020	0.0051	0.0020 0.003	4 0.0020	0.0037	0.0020 0.00	63 0.0020	0.0022	0.0020 0.0	022 0.00	20 ND	0.0020	ND	0.0020	ND 0.0	020 0.0023	0.0020	ND 0	.0020 ND	0.0020	0.0021	0.0020 0.0	021 0.0020	0.0020	0.0020 NE	0.0020	ND 0	0020 ND	0.0020 0.002	0 0.002 ND	0.002	0.0021 0.00	.)2 0.0022	0.002	ND 0.002	.2 ND /	0.002 ND	0.002 ND	0.002 NI	0.002	ND 0.002	ND 0	.002 ND	0.002 0.003
Nitrogen/Nitrate	10.0	0.10	0.81 0.10	1.6 0.	10 2.7	0.10 1.6	5 0.10	1.4	0.10 0.62	2 0.10	1.4	0.10	1.3 0.	.10 0.91	0.10	1.3	0.10 2.9	0.10	2.4	0.10 2.5	5 0.10	2.0	0.10 2	.0 0.1	0 1.9	0.10	1.6	0.10	2.2 0.	10 2.5	0.10	1.3	0.10 1.7	0.10	1.8	0.10 2	.1 0.10	1.8	0.10 1.5	9 0.10	1.8	0.10 2.4	0.10 1.5	0.1 1.7	0.1	1.4 0.1	4 1.4	0.1	2.5 0.1	2.5	0.1 1.8	0.1 1.6	0.1 1.6	i 0.1	2.7 0.1	3.4 /	J.1 1.5	0.1 2.4
Nitrogen/Nitrate, Nitr	NA	0.10	0.81 0.10	1.6 0.3	20 2.7	0.10 1.6	5 0.10	1.4	0.10 0.62	2 0.10	1.4	0.10	1.3 0.	.10 0.91	0.10	1.3	0.20 2.9	0.50	2.4	0.20 2.5	5 0.10	2.0	0.50 2	.0 0.1	0 1.9	0.10	1.6	0.20	2.2 0.2	20 2.5	0.10	1.3	0.10 1.7	0.10	1.8	0.20 2	.1 0.10	1.8	0.10 1.5	9 0.10	1.8	2.4	0.10 1.5	0.1 1.7	0.1	1.4 0.1	1 1.4	0.1	2.5 0.1	2.5	0.1 1.8	0.1 1.6	0.1 1.6	i 0.5	2.7 0.5	3.4 (0.1 1.5	0.5 ND F1
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.0	20 ND	0.020 ND	0.020	ND 0	.020 ND	0.020) ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 ND	0.020	ND	0.020 NI	D 0.020	ND	0.020 N	D 0.0	20 ND	0.020	ND	0.020	ND 0.0	120 ND	0.020	ND (1.020 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 NE	0.020	ND (.020 ND	0.020 ND	0.02 ND	0.02	ND 0.0	.2 ND	0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 NI	0.02	ND 0.02	ND f	102 ND	0.02 0.02
Perchlorate	0.0049	NR	NR NR	NR N	R NR	NR NR	R NR	NR	NR NR	t NR	NR	NR	NR 0.0	004 ND	0.0040	ND	0.0040 ND	0.0040	ND	0.0040 NE	0.0040	ND	0.0040 N	D 0.00	40 ND	0.0040	ND	0.0040	ND 0.0	040 ND	0.0040	ND 0	.0040 ND	0.0040	ND	0.0040 N	D 0.0040	ND (0.0040 NE	0.0040	ND 0	0040 ND	0.0040 ND	0.004 ND	0.004	ND 0.00	34 ND	0.004	ND 0.004	4 ND /	0.004 ND	0.004 ND	0.004 NI	J 0.004	ND 0.004	ND 0	.004 ND	0.004 ND
Selenium	0.05	0.0025 0	.0025 0.0025	ND 0.0	13 ND	0.0025 ND	0.0025	ND 0	0025 ND	0.0025	5 ND	0.0025 0	0.0047 0.0	025 0.0033	0.0025	ND	0.0025 0.002	5 0.0025	ND	0.0025 0.00	67 0.0025	ND	0.0025 N	D 0.00	125 ND	0.0025	ND	0.0025	ND 0.0	025 ND	0.0025	ND 0	.0025 ND	0.0025	ND	0.0025 N	0.0025	ND (0.0025 NE	0.0025	ND 0	0025 ND	0.0025 ND	0.0025 ND	0.0025	ND 0.00	.25 ND	0.0025 0	0.0076 0.002	25 ND f	0.0025 ND	0.0025 ND	0.0025 NI	J 0.0025	ND 0.0025	ND 0.4	J025 0.003 r	.0025 ND
Silver	0.05	0.00050	ND 0.00050	ND 0.0	025 ND	0.00050 ND	0.00050	ND 0.0	00050 ND	0.00050	0 ND	0.00050	ND 0.00	0050 ND	0.00050	ND (.00050 ND	0.00050	ND 0	1.00050 NI	D 0.00050	ND	0.00050 N	D 0.00	050 ND	0.00050) ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.	00050 ND	0.00050	ND (0.00050 N	D 0.00050	ND 0	0.00050 NE	0.00050	ND 0.	0050 ND	0.00050 ND	0.0005 ND	0.0005	ND 0.00	.05 ND	0.0005	ND 0.000	.6 ND f	0.0005 ND	0.0005 ND	0.0005 NI	J 0.0005	ND 0.0005	ND 0.4	J005 ND (10005 ND
Sulfate	400.0	50	300 25	140 2	5 84	25 74	\$ 50	170	50 210	25	110	50	180 5	90 130	50	110	25 120	50	170	50 23	0 25	110	20 1	a0 2	5 89	50	160	25	65 2	0 88	25	92	20 100	25	100	50 1	30 50	100	25 67	25	76	25 80	50 110	50 110) 25	91 25	<i>i</i> 130	25	150 25	74	25 53	25 94	25 94	25	75 15	82	25 150	25 190
Thallium	0.002	0.0020	ND 0.0020	ND 0.0	020 ND	0.0020 ND	0.0020	ND 0	0020 ND	0.0020	0 ND	0.0020	ND 0.0	020 ND	0.0020	ND	0.0020 ND	0.0020	ND	0.0020 NI	D 0.0020	ND	0.0020 N	D 0.00	20 ND	0.0020	ND	0.0020	ND 0.0	020 ND	0.0020	ND 0	.0020 ND	0.0020	ND	0.0020 N	D 0.0020	ND (0.0020 NE	0.0020	ND 0	0020 ND	0.0020 ND	0.002 ND	0.002	ND 0.00	.12 ND	0.002	ND 0.002	.2 ND /	0.002 ND	0.002 ND	0.002 NI	J 0.002	ND 0.002	ND 0	.002 ND	0.002 ND
Total Dissolved Solid	1,200	10	1100 10	1000 1	0 890	10 770	0 10	970	10 930	0 10	1100	10	980 1	10 1000	10	880	10 900	10	840	10 86	0 10	870	10 8	90 10	0 760	0 10	720	10	730 1	0 980	10	770	10 780	10	760	10 8	50 10	800	10 700	0 10	870	10 750	10 800	10 100	0 10	790 10	J 840	10	980 10	770	10 690	10 710	10 71	30	700 30	760	10 920	10 950
Vanadium	0.049	NR	NR NR	NR N	R NR	NR NR	R NR	NR	NR NR	t NR	NR	NR	NR 0.0	050 ND	0.0050	ND	0.0050 ND	0.0050	ND	0.0050 NI	0.0050	ND	0.0050 N	D 0.00	50 ND	0.0050	ND	0.0050	ND 0.0	050 ND	0.0050	ND 0	.0050 ND	0.0050	ND	0.0050 N	D 0.0050	ND (0.0050 NE	0.0050	ND 0	0050 ND	0.0050 ND	0.005 ND	0.005	ND* 0.00	.15 ND	0.005	ND 0.005	5 ND /	0.005 ND	0.005 ND	0.005 NI	J 0.005	ND 0.005	ND 0	.005 ND	0.005 ND
Zinc	5.0	0.020	ND 0.020	ND 0.	10 ND	0.020 ND	0.020	ND 0	.020 ND	0.020) ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 ND	0.020	ND	0.020 NE	0.020	ND	0.020 N	D 0.0	20 ND	0.020	ND	0.020	ND 0.0	120 ND	0.020	ND (0.020 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 NE	0.020	ND (.020 ND	0.020 ND	0.02 ND	0.02	ND 0.0	.2 ND	0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 NI	0.02	ND 0.02	ND f	.402 ND	0.02 ND
Benzene	0.005	NR	NR NR	NR N	R NR	NR NR	R NR	NR	NR NR	t NR	NR	NR	NR 0.0	005 ND	0.00050	ND (.00050 ND	0.00050	ND (1.00050 NE	0.00050	ND	0.0005 N	D 0.00	05 ND	0.0005	ND	0.0005	ND 0.0	005 ND	0.0005	ND 0	.0005 ND	0.0005	ND	0.0005 N	D 0.0005	ND (0.0005 0.00	10 0.0005	ND 0	0005 ND	0.0005 ND	0.0005 0.002	24 0.0005	ND 0.00	.05 ND	0.0005	ND 0.000	.15 ND (0.0005 ND	0.0005 ND	0.0005 NI	0.0005	ND 0.0005	ND 0.'	3005 ND /	10005 ND
BETX	11.705	NR	NR NR	NR N	R NR	NR NR	R NR	NR	NR NR	t NR	NR	NR	NR 0.0	025 NS	0.0025	ND	0.0025 ND	0.0025	ND	0.0025 NE	0.0025	ND	0.002 N	D 0.0	02 ND	0.002	ND	0.002	ND 0.0	02 ND	0.002	ND (1.002 ND	0.002	ND	0.002 0.0	017 0.002	ND	0.002 0.016	675 0.002	ND (.002 ND	0.0025 ND	0.0025 0.008	82 0.0025	ND 0.00	.25 ND	0.0025	ND 0.002	25 ND F	0.0025 ND	0.0025 ND	0.0025 NI	0.0025	ND 0.0025	ND 0.'	3025 ND /	10025 ND
pH	6.5 - 9.0	NA	7.71 NA	7.15 N	A 7.48	NA 7.42	2 NA	7.56	NA 7.40	0 NA	7.31	NA	7.37 N	IA 7.38	NA	7.44	NA 7.18	NA	7.25	NA 7.2	4 NA	9.11	NA 7.	15 N.	A 6.89	9 NA	7.11	NA	7.53 N	A 7.31	NA	6.80	NA 7.07	NA	7.22	NA 6.	71 NA	7.07	NA 7.2	5 NA	7.19	NA 7.46	NA 7.4	NA 7.58	8 NA	7.20 NA	A 7.41	NA	7.27 NA	7.31	NA 7.33	NA 7.20	NA 7.2	6 NA	7.23 NA	7.15	NA 7.36	NA 7.30
Temperature	NA	NA	0.69 NA	12.13 N	A 12.59	NA 11.7	78 NA	9.67	NA 12.5	12 NA	13.59	NA	14.52 N	IA 12.98	NA	9.90	NA 14.2	5 NA	14.76	NA 13.9	91 NA	9.25	NA 10	92 N	A 18.1	3 NA	14.52	NA	8.49 N	A 15.49	NA	18.49	NA 13.4	NA	4.24	NA 12	83 NA	19.61	NA 15.4	48 NA	11.95	NA 15.52	NA 12.6	NA 16.5	4 NA	12.53 NA	A 11.30	NA 1	11.60 NA	12.70	NA 11.7.	NA 11.2) NA 11.1	.0 NA	14.20 NA	14.40	NA 11.30	NA 17.50
Conductivity	NA	NA	1.84 NA	1.76 N	A 1.50	NA 0.94	4 NA	1.04	NA 1.00	6 NA	1.28	NA	1.33 N	IA 1.24	NA	1.05	NA 1.10	5 NA	1.07	NA 1.1	9 NA	0.93	NA 1.	13 N	A 1.18	8 NA	1.18	NA	0.90 N	A 1.34	NA	1.20	NA 1.34	NA	0.80	NA 1.	21 NA	1.33	NA 1.1	0 NA	1.01	NA 1.08	NA 0.85	NA 1.12	5 NA	1.086 NA	A 1.336	NA 1	2.520 NA	1.440	NA 1.08	NA 1.01	5 NA 1.01	16 NA	1.428 NA	0.292	NA 1.605	NA 1.739
Dissolved Oxygen	NA	NA	NM NA	6.80 N	A 8.20	NA 7.17	7 NA	6.95	NA 6.9.	5 NA	6.51	NA	6.26 N	IA 8.19	NA	7.6	NA 6.47	NA	4.4	NA 3.1	3 NA	5.94	NA 4.	23 N	A 5.82	2 NA	5.54	NA	4.57 N	A 6.54	NA	5.60	NA 5.76	NA	6.44	NA 7.	00 NA	7.06	NA 3.5	6 NA	5.06	NA 8.90	NA 7.19	NA 7.54	4 NA	8.36 NA	A 6.32	NA	7.10 NA	52.40	NA 6.65	NA 6.2	NA 6.2	3 NA	7.32 NA	5.33 7	A 6.65	NA 7.47
ORP	NA	NA	NM NA	196.1 N	A 217.5	NA -43.0	.0 NA	135.0	NA 1773	.0 NA	86.0	NA	155.0 N	IA 132.0	NA	140.9	NA -6.4	NA	27.6	NA -80	9 NA	-34.2	NA 10	1.1 N	A 77.4	4 NA	57.6	NA	41.7 N	A 36.7	NA	25.8	NA 104.	NA	99.2	NA 15	0.9 NA	72.1	NA 71.	2 NA	-14.7	NA -15.3	NA 70.1	NA 96.5	5 NA	58.0 NA	A 163.9	NA -	-233.6 NA	182.3	NA 192.f	NA 167.	NA 167	.2 NA	128.4 NA	178.4	AA -5.8	NA 121.7
												· · · · ·																			· · · · ·																									· · · · ·		

														-								_								-							-										<u> </u>							
Sample: MW-05	Date	12/7/20	10 3/23	3/2011 6	/14/2011	9/14/2011	12/7/2011	1 3/1	5/2012	6/19/2012	9/19/2	2012	12/20/2012	3/5/20	13 6/	5/2013	7/23/2013	10/15/2	2013 2	/21/2014	5/1/2014	8	/19/2014	10/23/20	014	2/11/2015	5/27/20	15	8/4/2015	10/28/2	015 2	2/10/2016	5/10/2016	6 8/31	1/2016	11/2/2016	2/6/2017	4/26/	2017 1	2/20/2018	7/31/2018	10/17/2018	2/5/2019	5/6/20?	19 8/6/2/	:019 11/	/7/2019	2/13/2020	5/20/2020	7/31/2020	10/22/2020	2/25/2021	5/17/20	.21
Parameter	Standards	DL I	lesult DL	Result DI	L Result	DL Result	DL Re	sult DL	Result	DL Res	ult DL	Result 1	DL Result	DL	Result DL	Result	DL Res	it DL	Result Di	Result	DL Res	sult DL	Result	DL	Result D	M. Result	DL I	tesult I	DL Result	DL	Result Di	L Result	DL Rei	sult DL	Result	DL Resul	t DL Re	sult DL	Result I	L Result	DL Result	DL Result	DL Rest	alt DL P	desult DL	Result DL	Result F	DL Result	DL Result ?	JL Result	DL Result	DL Result	i DL P	(esult
Antimony	0.006	0.0030	ND 0.0030	ND 0.00	130 ND	0.0030 ND	0.0030 0.0	040 0.0030	0.0035	0.0030 NI	D 0.0030	ND 03	0030 ND	0.0030	ND 0.003	ND	0.0030 NE	0.0030	ND 0.00	30 ND	0.0030 N	D 0.003	30 ND	0.0030	ND 0.0	030 ND	0.0030	ND 0.0	0030 ND	0.0030	ND 0.00	30 ND	0.0030 N	iD 0.0030	ND (0.0030 ND	0.0030 N	D 0.0030	ND 0.0	030 ND	1.003 ND	0.003 ND	0.003 NE	0.003	ND 0.003	ND 0.003	/ ND 0.	.003 ND C	.003 ND 0	.003 ND 0	.003 ND	0.003 ND	0.003	ND
Arsenic	0.010	0.0010	ND 0.0010	ND 0.00	150 ND	0.0010 0.0011	0.0010 0.0	011 0.0010) ND	0.0010 NI	D 0.0010	0.0011 0.0	0010 ND	0.0010	ND 0.0010	ND	0.0010 NE	0.0010	0.0010 0.00	10 ND	0.0010 N	D 0.001	10 ND	0.0010	ND^ 0.0	010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.00	0.0011	0.0010 NE	D^ 0.0010	ND 0	0.0010 ND	0.0010 N	D 0.0010	ND 0.0	010 0.0012	1.001 ND	0.001 ND	0.001 NE	0.001	ND 0.001	ND 0.001	0.0033 0	.001 ND (*	.001 0.0011 0	.001 ND 0	.001 ND	0.001 ND	0.001	ND
Barium	2.0	0.0025	0.061 0.0025	0.092 0.00	0.053	0.0025 0.053	0.0025 0.0	062 0.0025	5 0.069	0.0025 0.03	56 0.0025	0.071 0.0	0025 0.078	0.0025	0.076 0.002	0.060	0.0025 0.05	0 0.0025	0.056 0.00	5 0.091	0.0025 0.0	78 0.002	25 0.054	0.0025	0.057 0.0	025 0.078	0.0025	1.053 0.0	0025 0.060	0.0025	0.057 0.00	25 0.063	0.0025 0.0	065 0.0025	0.066 0	0.0025 0.054	0.0025 0.0	0.0025	0.059 0.0	025 0.098 0	0.061 (0.0025 0.067	0.0025 0.07	6 0.0025 f	0.094 0.0025	0.062 0.002	5 0.062 0.5	.0025 0.072 0	.0025 0.074 0/	.025 0.054 0	.0025 0.07	0.0025 0.091	0.0025 f	J.098
Beryllium	0.004	0.0010	ND 0.0010	ND 0.00	010 ND	0.0010 ND	0.0010 N	D 0.0010) ND	0.0010 NI	D 0.0010	ND 03	0010 ND	0.0010	ND 0.0010	ND	0.0010 NE	0.0010	ND 0.00	10 ND ^	0.0010 N	D 0.001	10 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.00	10 ND^	0.0010 NI	D^ 0.0010	ND^ (0.0010 ND	0.0010 NI	0.0010	ND 0.0	010 ND	0.001 ND	0.001 ND*	0.001 NE	0.001	ND 0.001	ND 0.001	ND 0	1.001 ND (.001 ND^ 0	.001 ND C	.001 ND	0.001 ND ^	0.001	ND
Boron	2.0	0.050	0.42 0.050	0.52 0.03	50 0.47	0.050 0.57	0.050 0.	49 0.050	0.54	0.050 0.4	4 0.050	0.55^ 0	050 0.65	0.050	0.59 0.050	0.69	0.050 0.8	0.050	0.55 0.0	0 0.34	0.050 0.3	36 0.050	0 0.95	0.050	0.57 0.0	050 0.69	0.050	1.0 0.	050 1.1	0.050	0.57 0.0	50 0.45	0.050 0.1	.69 0.050	0.98	0.050 0.40	0.050 0.4	47 0.050	0.62 0.	050 0.25	0.05 0.58	0.05 0.31	0.05 0.25	å 0.05	0.34 0.05	0.5 0.05	0.32 0	0.05 0.43 /	J.05 0.29 r	105 0.47 /	1.05 0.47	0.05 0.29	0.05	0.32
Cadmium	0.005	0.00050	ND 0.00050	ND 0.00	125 ND (0.00050 ND	0.00050 N	D 0.0005	0 0.0016	0.00050 NI	D 0.00050	0.00091 0.0	0050 0.00076	0.00050	ND 0.0005	0 ND (100050 NE	0.00050	ND 0.00	50 ND	0.00050 N	D 0.000	50 0.00060	0.00050	ND 0.00	0050 ND	0.00050	ND 0.0	0.0014	0.00050	ND 0.00	050 ND	0.00050 N	(D 0.00050	ND 0	0.00050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND (0005 ND (0.0005 ND	0.0005 NE	0.0005	ND 0.0005	ND 0.000	5 ND 0/	.0005 ND 0	.0005 ND 0	3005 ND 0	.0005 ND	0.0005 ND	0.0005	ND
Chloride	200.0	10	150 10	240 10	220	10 120	10 19	90 2.0	210	10 22	0 10	240	10 210	10	230 10	180	10 110	10	140 10	240	10 31	70 10	120	10	120 1	10 220	10	250	10 180	10	170 10	210	10 23	30 10	92	10 120	10 18	80 10	190	0 180	10 120	10 200	10 180	J 10	470 10	120 10	130	10 170	10 280	10 180	10 180	10 220	40	410
Chromium	0.1	0.0050	ND 0.0050	ND 0.0.	25 ND	0.0050 ND	0.0050 N	D 0.0050) ND	0.0050 NI	D 0.0050	ND 03	0050 ND	0.0050	ND 0.0050	ND	0.0050 NE	0.0050	ND 0.00	90 ND	0.0050 N	D 0.005	90 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.00	50 ND	0.0050 N	(D 0.0050	ND 0	0.0050 ND	0.0050 N	D 0.0050	ND 0.0	050 ND	1.005 ND	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.005	j 0.0053 0 ⁻	1005 ND (.005 ND 0	.005 ND C	.005 ND	0.005 ND	0.005	ND
Cobalt	1.0	0.0010	ND 0.0010	ND 0.00	150 ND	0.0010 ND	0.0010 N	D 0.0010) ND	0.0010 NI	D 0.0010	0.0040 0.	0.006	0.0010	0.0019 0.0010	ND	0.0010 NE	0.0010	0.0014 0.00	10 ND	0.0010 N	D 0.001	10 ND	0.0010	ND 0.0	010 0.0035	0.0010	ND 0.0	0010 0.0052	0.0010	0.0014 0.00	10 ND	0.0010 N	D 0.0010	ND (0.0010 ND	0.0010 N	D 0.0010	ND 0.0	010 ND	0.001 ND	0.001 ND	0.001 NE	J 0.001	ND 0.001	ND 0.001	0.0015 0	1001 ND (.001 ND 0	.001 ND (.001 ND	0.001 ND	0.001	ND
Copper	0.65	0.0020	ND 0.0020	ND 0.0	10 ND	0.0020 ND	0.0020 N	D 0.0020) ND	0.0020 NI	D 0.0020	0.019 0.0	0020 0.017	0.0020	0.0065 0.002	ND	0.0020 0.003	0 0.0020	ND 0.00	30 ND	0.0020 0.00	057 0.002	30 ND	0.0020	ND 0.0	020 0.013	0.0020 (10026 0.0	0020 0.015	0.0020	0.0032 0.00	20 ND	0.0020 N	D 0.0020	ND (0.0020 ND	0.0020 N	D 0.0020	ND ^ 0.0	020 ND	0.002 ND	0.002 ND	0.002 NE	J 0.002	ND 0.002	ND 0.002	2 0.0063 0	1.002 ND (.002 ND 0	.002 ND (.002 ND	0.002 ND	0.002	ND
Cyanide	0.2	0.010	ND 0.010	ND* 0.0	10 ND	0.010 ND	0.010 N	D 0.010	ND	0.010 NI	D 0.010	ND 0	010 ND	0.010	ND 0.010	ND	0.010 NE	0.010	ND 0.0	0 ND	0.010 N	D 0.010	0 ND	0.010	ND 0.0	010 ND	0.010	ND 0:	.010 ND	0.010	ND 0.0	10 ND	0.010 N	D 0.010	ND	0.010 ND	0.010 N	D 0.010	ND 0.	010 ND	0.01 ND	0.01 ND	0.01 NE	0.01 و	ND 0.01	ND 0.01	ND (0.01 ND	3.01 ND C	.005 ND /	3.01 ND	0.005 ND	0.005	ND
Fluoride	4.0	0.10	0.40 0.10	0.34 0.1	0 0.39	0.10 0.28	0.10 0.1	34 0.10	0.32	0.10 0.3	8 0.10	0.39 (.10 0.35	0.10	0.35^ 0.10	0.39	0.10 0.3	8 0.10	0.41 0.1	0.34	0.10 0.3	32 0.10	0 0.42	0.10	0.44 0.	10 0.42	0.10	0.54 0	0.10 0.52	0.10	0.38 0.1	0 0.42	0.10 0.1	51 0.10	0.56	0.10 0.36	0.10 0.2	29 0.10	0.38 0	10 0.33	0.1 0.38	0.1 0.33	0.1 0.3	3 0.1	0.31 0.1	0.31 0.1	0.31 /	0.1 0.36	0.1 0.37	0.1 0.38	0.1 0.38	0.1 0.34	0.1	0.31
Iron	5.0	0.10	ND 0.10	ND 0.5	10 ND	0.10 ND	0.10 N	D 0.10	ND	0.10 NI	D 0.10	ND (10 ND	0.10	ND 0.10	ND	0.10 NE	0.10	ND 0.1) ND	0.10 N	D 0.10) ND	0.10	ND 0.	10 ND	0.10	ND 0	0.10 ND	0.10	ND 0.1	0 0.28	0.10 NI	D^ 0.10	ND	0.10 ND	0.10 N	D 0.10	ND 0	10 0.15	0.1 ND	0.1 ND	0.1 ND	0.1 و	ND 0.1	ND 0.1	4.1 /	0.1 ND	0.1 0.11	0.1 ND	0.1 ND	0.1 ND	0.1	ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	050 ND (0.00050 ND	0.00050 N	D 0.0005	0 ND	0.00050 NI	D 0.00050	0.00062 0.0	0050 ND	0.00050	ND 0.0005	0 ND (100050 NE	0.00050	ND 0.00	50 ND	0.00050 N	D 0.000	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.0	0.00074	0.00050	ND 0.00	050 ND	0.00050 N	(D 0.00050	ND 0	0.00050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND (10005 ND (0.0005 ND	0.0005 ND	J 0.0005	ND 0.0005	ND 0.000	5 0.0033 0/	.0005 ND 0	.0005 ND 0	.0005 ND 0	.0005 ND	0.0005 ND	0.0005	ND
Manganese	0.15	0.0025 (.0065 0.0025	ND 0.0	13 ND	0.0025 ND	0.0025 N	D 0.0025	5 ND	0.0025 0.00	40 0.0025	0.081 0.0	0025 ND	0.0025	0.0037 0.002	ND	0.0025 NE	0.0025	ND 0.00	5 ND	0.0025 0.0	135 0.002	5 0.0062	0.0025	ND 0.0	0.0076	0.0025	ND 0.0	0025 0.012	0.0025	0.0046 0.00	125 0.0050	0.0025 N	(D 0.0025	ND 0	0.0025 ND	0.0025 N	D 0.0025	ND 0.0	025 0.0062 0	0025 ND (0.0025 ND	0.0025 ND	J 0.0025	ND 0.0025	ND 0.002	5 0.14 0/	.0025 ND 0	.0025 0.0025 0	.0025 ND 0	.0025 ND	0.0025 ND	0.0025	ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	020 ND 0	0.00020 ND	0.00020 N	D 0.0002	0 ND	0.00020 NI	D 0.00020	ND 0.0	0020 ND	0.00020	ND 0.0002	0 ND (100020 NE	0.00020	ND 0.00	20 ND	0.00020 N	D 0.000	20 ND	0.00020	ND 0.00	0020 ND	0.00020	ND 0.0	00020 ND *	0.00020	ND 0.00	020 ND	0.00020 N	(D 0.00020	ND 0	0.00020 ND	0.00020 N	D 0.00020	ND 0.0	0020 ND (10002 ND (0.0002 ND	0.0002 NE	J 0.0002	ND 0.0002	ND 0.000	2 ND 0/	.0002 ND 0	.0002 ND 0	.0002 ND 0	.0002 ND	0.0002 ND	0.0002	ND
Nickel	0.1	0.0020	ND 0.0020	ND 0.0	10 ND	0.0020 0.0021	0.0020 N	D 0.0020) ND	0.0020 0.00	125 0.0020	0.0080 0.	0020 0.02	0.0020	0.0072 0.002	0.0029	0.0020 0.002	8 0.0020	0.0030 0.00	30 ND	0.0020 0.00	033 0.002	30 0.0078	0.0020	0.0035 0.0	020 0.0092	0.0020 0	0055 0.0	0020 0.011	0.0020	0.0037 0.00	20 0.0027	0.0020 0.0	033 0.0020	0.0044 0	0.0020 ND	0.0020 0.0	022 0.0020	0.0025 0.0	020 0.0024	0.002 0.0034	0.002 ND	0.002 NE	J 0.002	ND 0.002	0.0024 0.002	2 0.0072 0	0.002 ND f	.002 ND (*	.002 ND f	.002 ND	0.002 ND	0.002	ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.2 0.1	0 1.3	0.10 1.1	0.10 1.	.5 0.10	0.33	0.10 1.0	0 0.10	ND (.10 0.21	0.10	0.16 0.10	1.7	0.10 1.0	0.10	1.0 0.1) 1.2	0.10 1.	.6 0.10	0 0.53	0.10	1.2 0.	10 1.7	0.10	1.5 0	0.10 0.18	0.10	1.0 0.1	0 1.1	0.10 1.	.7 0.10	0.86	0.10 1.1	0.10 1.	3 0.10	1.6 0	10 2.7	0.1 1.7	0.1 1.3	0.1 0.92	2 0.1	1.8 0.1	1.3 0.1	1.2 /	0.1 1.2	0.1 1.4	J.1 1.3	0.1 0.99	0.1 0.99	0.1	1.7
Nitrogen/Nitrate, Nitri	NA	0.10	ND 0.10	1.2 0.1	0 1.3	0.10 1.1	0.10 1.	.5 0.10	0.33	0.10 1.0	0 0.10	ND (.10 0.21	0.10	0.16 0.10	1.7	0.10 1.0	0.10	1.0 0.1) 1.2	0.10 1.	.7 0.10	0.53	0.10	1.2 0.	10 1.7	0.10	1.5 0	0.10 0.18	0.10	1.0 0.1	0 1.1	0.10 1.	.7 0.10	0.86	0.10 1.1	0.10 1.	3 0.10	1.6 0	20 2.7	0.1 1.7	0.1 1.3	0.1 0.92	2 0.1	1.8 0.1	1.3 0.1	1.2 /	0.1 1.2	0.1 1.4	0.1 1.3	0.1 0.99	0.1 0.99	0.1	1.7
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.03	20 ND	0.020 ND	0.020 N	D 0.020	ND	0.020 NI	D 0.020	ND 0	020 ND	0.020	ND 0.020	ND	0.020 NE	0.020	ND 0.0	0 ND	0.020 0.0	66 0.02	0 ND	0.020	ND 0.0	020 ND	0.020	ND 0:	.020 ND	0.020	ND 0.0	20 ND	0.020 N	D 0.020	ND	0.020 ND	0.020 N	D 0.020	ND 0.	020 ND	0.02 ND	0.02 ND	0.02 NE	J 0.02	ND 0.02	ND 0.02	ND (0.02 ND	3.02 ND /	102 ND /	3.02 ND	0.02 ND	0.02	ND
Perchlorate	0.0049	NR	NR NR	NR NE	R NR	NR NR	NR N	IR NR	NR	NR NE	R NR	NR 0	004 ND	0.0040	ND 0.004	ND	0.0040 NE	0.0040	ND 0.00	10 ND	0.0040 N	D 0.004	10 ND	0.0040	ND 0.0	040 ND	0.0040	ND 0.0	0040 ND	0.0040	ND 0.00	40 ND	0.0040 N	D 0.0040	ND 0	0.0040 ND	0.0040 N	D 0.0040	ND 0.0	040 ND	1.004 ND	0.004 ND	0.004 ND	0.004	ND 0.004	ND 0.00/	4 ND 0	3.004 ND /	1004 ND (.004 ND r	.004 ND	0.004 ND	0.004	ND
Selenium	0.05	0.0025	ND 0.0025	0.0072 0.0	13 ND	0.0025 ND	0.0025 0.0	050 0.0025	5 ND	0.0025 0.00	157 0.0025	ND 03	0025 0.0034	0.0025	ND 0.002	0.025	0.0025 0.01	6 0.0025	0.0026 0.00	5 0.0030	0.0025 N	D 0.002	5 0.017	0.0025	0.0097 0.0	025 0.014	0.0025	1.025 0.0	0025 0.013	0.0025	0.0030 0.00	125 ND	0.013 0.01	18 ^ 0.0025	0.019 0	0.0025 ND	0.0025 N	D 0.0025	0.014 0.0	025 ND (0025 0.023 (0.0025 0.0028	0.0025 ND	J 0.0025	ND 0.0025	0.011 0.002	5 ND 0/	.0025 0.0025 0	.0025 0.0048 0	.0025 0.0029 0	.0025 0.0032	0.0025 ND	0.0025	ND
Silver	0.05	0.00050	ND 0.00050	ND 0.00	125 ND (0.00050 ND	0.00050 N	D 0.0005	0 ND	0.00050 NI	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	0 ND (100050 NE	0.00050	ND 0.00	50 ND	0.00050 N	D 0.000	50 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.0	00050 ND	0.00050	ND 0.00	050 ND	0.00050 N	(D 0.00050	ND 0	0.00050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND (10005 ND (0.0005 ND	0.0005 ND	J 0.0005	ND 0.0005	ND 0.000	6 ND 0/	.0005 ND 0	.0005 ND 0	.0005 ND 0	.0005 ND	0.0005 ND	0.0005	ND
Sulfate	400.0	25	110 50	160 24	5 100	50 140	50 14	40 50	190	25 13	0 50	210	50 210	50	150 50	200	50 290	50	180 24	130	25 10	90 100	360	50	240 5	90 230	50	290 :	50 260	50	140 25	5 110	50 21	70 50	270	25 95	50 13	30 50	170	0 150	50 190	25 110	25 110	J 25	90 25	180 25	68	25 ND	25 190	25 79	15 84	25 140	25	160
Thallium	0.002	0.0020	ND 0.0020	ND 0.00	20 ND	0.0020 ND	0.0020 N	D 0.0020) ND	0.0020 NI	D 0.0020	ND 03	0020 ND	0.0020	ND 0.002	ND	0.0020 NE	0.0020	ND 0.00	30 ND	0.0020 N	D 0.002	30 ND	0.0020	ND 0.0	020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND 0.00	20 ND	0.0020 N	D 0.0020	ND 0	0.0020 ND	0.0020 N	D 0.0020	ND 0.0	020 ND	0.002 ND	0.002 ND	0.002 NE	J 0.002	ND 0.002	ND 0.00°	2 ND 0	0.002 ND f	.002 ND (*	.002 ND f	.002 ND	0.002 ND	0.002	ND
Total Dissolved Solids	1,200	10	750 10	990 10	850	10 800	10 90	00 10	930	10 100	00 10	990	10 1000	10	960 10	1,100	10 910	10	680 10	840	10 11	00 10	1000	10	730 1	10 1000	10	1000	10 930	10	760 10	0 770	10 91	10 10	850	10 630	10 84	40 10	760	0 860	10 1000	10 800	10 720	J 10	1,400 10	770 10	630	10 700	10 920	30 680	30 690	10 880	10	1200
Vanadium	0.049	NR	NR NR	NR NE	R NR	NR NR	NR N	R NR	NR	NR NE	R NR	NR 03	0050 ND	0.0050	ND 0.0050	ND	0.0050 NE	0.0050	ND 0.00	90 ND	0.0050 N	D 0.005	90 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.00	50 ND	0.0050 N	D 0.0050	0.011 0	0.0050 ND	0.0050 N	D 0.0050	0.0087 0.0	050 ND	0.005 0.0077	0.005 ND ^A	0.005 ND	J 0.005	ND 0.005	ND 0.00"	5 0.012 0	1.005 ND f	.005 ND (*	.005 ND r	.005 ND	0.005 ND	0.005	ND
Zinc	5.0	0.020	ND 0.020	ND 0.1	0 ND	0.020 ND	0.020 N	D 0.020	ND	0.020 NI	D 0.020	ND 0	020 ND	0.020	ND 0.020	ND	0.020 NE	0.020	ND 0.0	0 ND	0.020 N	D 0.02	0 ND	0.020	ND 0.0	020 ND	0.020	ND 0:	.020 ND	0.020	ND 0.0	20 ND	0.020 N	(D 0.020	ND	0.020 ND	0.020 N	D 0.020	ND 0.	020 ND	0.02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.02	0.027 0	0.02 ND	3.02 ND /	102 ND	3.02 ND	0.02 ND	0.02	ND
Benzene	0.005	NR	NR NR	NR NE	R NR	NR NR	NR N	IR NR	NR	NR NE	R NR	NR 03	005 ND	0.00050	ND 0.0005	0 ND (100050 NE	0.00050	ND 0.00	50 ND	0.0005 N	D 0.000	15 ND	0.0005	ND 0.0	005 ND	0.0005	ND 0.0	0005 ND	0.0005	0.0008 0.00	05 ND	0.0005 N	D 0.0005	ND 0	0.0005 ND	0.0005 N	D 0.0005	ND 0.0	005 ND (0.0005	0.0005 ND	0.0005 ND	0.0005 f	0.0007 0.0005	ND 0.000	.6 ND 0'	.0005 ND C	.0005 ND 0	.0005 ND C	.0005 ND	0.0005 ND	0.0005	ND
BETX	11.705	NR	NR NR	NR NE	R NR	NR NR	NR N	R NR	NR	NR NE	R NR	NR 0.	0025 NS	0.0025	ND 0.002	ND	0.0025 NE	0.0025	ND 0.00	5 ND	0.002 N	D 0.000	2 ND	0.002	ND 0.0	002 ND	0.002	ND 0.	.002 ND	0.002	0.0031 0.0	02 ND	0.002 0.00	0.002	ND	0.002 ND	0.002 N	D 0.002	ND 0.0	025 0.0012 0	0.00396	0.0025 ND	0.0025 NE	J 0.0025 C	3.0007 0.0025	ND 0.002	5 ND 0.	.0025 ND 0	.0025 ND 0	.0025 ND 0	.0025 ND	0.0025 ND	0.0025	ND
pH	6.5 - 9.0	NA	7.82 NA	7.19 NJ	A 7.44	NA 7.25	NA 7.	44 NA	7.30	NA 7.1	8 NA	7.32	A 7.36	NA	7.34 NA	6.92	NA 6.7	NA	7.21 N	9.09	NA 7.	06 NA	6.40	NA	6.94 N	IA 7.49	NA	7.25	NA 7.31	NA	7.12 N	A 7.25	NA 6.1	.88 NA	6.81	NA 7.26	NA 7.	22 NA	7.28	IA 7.51	NA 7.61	NA 7.29	NA 7.4	.0 NA	7.11 NA	7.03 NA	7.44 2	NA 7.02	NA 7.03	NA 7.28	NA 7.16	NA 7.31	NA	7
Temperature	NA	NA	8.86 NA	13.41 N/	A 13.37	NA 12.15	NA 11.	.23 NA	13.52	NA 16.	19 NA	14.23	A 13.64	NA	10.90 NA	14.95	NA 14.6	5 NA	14.16 N	11.17	NA 11.	87 NA	16.11	NA	16.69 N	IA 8.18	NA	18.15 3	NA 21.19	NA	14.30 N	A 8.60	NA 14.	1.22 NA	21.67	NA 17.16	NA 12	.75 NA	17.02 N	IA 13.35	NA 18.49	NA 14.72	NA 10.7	/0 NA	13 NA	14.2 NA	10.34 ?	NA 13.2	NA 12.8	NA 13.7	NA 14.5	NA 12.1	NA	13.2
Conductivity	NA	NA	1.36 NA	1.65 N/	A 1.38	NA 0.92	NA 13	.02 NA	1.19	NA 1.5	6 NA	1.29	A 1.25	NA	1.08 NA	1.067	NA 1.0	NA	0.93 N	0.96	NA L	46 NA	1.18	NA	1.17 N	IA 1.15	NA	1.49 1	NA 1.47	NA	1.31 N	A 0.84	NA L	24 NA	1.27	NA 0.99	NA 0.	93 NA	1.06	IA 0.835	NA 1.122	NA 1.050	NA 1.11	16 NA	2.95 NA	1.28 NA	10.56	NA 1.058	NA 1.534	NA 1.381	NA 0.278	NA 1.505	NA	2.084
Dissolved Oxygen	NA	NA	NM NA	6.96 N/	A 7.16	NA 6.43	NA 60	.07 NA	6.24	NA 6.5	6 NA	3.68	A 4.27	NA	4.49 NA	4.01	NA 3.5	NA	1.17 N	4.61	NA 1.	10 NA	1.65	NA	4.70 N	IA 4.99	NA	6.73 N	NA 2.77	NA	2.29 N	A 4.11	NA 5.	.76 NA	4.62	NA 4.45	NA 6.	15 NA	6.18 N	IA 6.74	NA 5.67	NA 7.68	NA 5.9	7 NA	4.48 NA	3.53 NA	7.84	NA 6.2	NA 6.85	NA 5.7	NA 4.34	NA 4.63	NA	3.93
ORP	NA	NA	NM NA	197.8 NJ	A 210.0	NA -26.0	NA 12	5.0 NA	228.0	NA 176	.0 NA	155.0	A 112.0	NA	160.5 NA	-1.7	NA 82.	5 NA	-98.4 N	-54.7	NA 91	.1 NA	88.6	NA	62.0 N	IA 85.8	NA	92.2 1	NA -27.6	NA	107.2 N	A 123.3	NA 78	8.3 NA	61.6	NA 73.3	NA 11	1.9 NA	34.0 N	IA 59.1	NA 77.8	NA 42.1	NA 150.	.3 NA -	-281.1 NA	170.6 NA	-11.9	NA 136.4	NA 142.8	NA 119.9	NA 161.3	NA 11.4	NA	161.6
											_						-						1				· · · · ·								-		-	_															-	

Sample: MW-06	Date	12/7/20	10 3/23	3/2011 6	/14/2011	9/14/2011	12/7/.	2011	3/15/2012	6/19/	2012	9/19/2012	12/20	0/2012	3/5/2013	5/22/2	013 7/2	3/2013	10/16/20	3 2/2	/2014	5/2/2014	8/19/2	2014	10/23/2014	2/1	0/2015	5/28/2015	8/5/	/2015	10/27/2015	2/11/	/2016	5/12/2016	9/1/201	6 11	1/3/2016	2/7/2017	4/27/201	7 2/21/2	018 7/31/	2018 1	0/18/2018	2/5/2019	5/6/2010	19 8/7/2	2019 11	1/7/2019	2/13/2020	5/21/2020	7/31/202	:0 10/22/	/2020 2/	/25/2021 :	5/17/2021
Parameter	Standards	DL I	tesult DL	Result DI	. Result	DL Result	it DL	Result E	DL Resul	t DL	Result	DL Resu	at DL	Result	DL Res	it DL	Result DL	Result	DL R	sult DL	Result	DL Result	DL	Result	DL Res	alt DL	Result	DL Res	alt DL	Result	DL Rest	h DL	Result	DL Result	DL R	esult DL	Result	DL Res	it DL R	suit DL	Result DL	Result D	L Result	DL Result	DL R/	Aesult DL	Result DL	Result	DL Result	DL Result	DL R/	zsult DL	Result DI	L Result Γ	JL Result
Antimony	0.006	0.0030	ND 0.0030	ND 0.00	G0 ND 0	0.0030 ND	0.0030	ND 0.0	0030 ND	0.0030	ND (0.0030 ND	0.0030	ND 0	10030 NE	0.0030	0.0045 0.0030	ND	0.0030	D 0.0030	ND	0.0030 ND	0.0030	ND	0.0030 NI	0.0030	ND	0.0030 NE	0.0030	ND	0.0030 NE	0.0030	ND 0	10030 ND	0.0030	ND 0.003	0 ND	0.0030 NI	0.0030 2	D 0.0030	ND 0.003	ND 0.0	03 ND 0	.003 ND	0.003 7	ND 0.003	ND 0.003	ß ND	0.003 ND	0.003 ND	0.003 1	JD 0.003	ND 0.00	.03 ND 0.0	003 ND
Arsenic	0.010	0.0010	ND 0.0010	0.0015 0.00	50 ND (0.0010 ND	0.0010	0.0018 0.0	0.0010 0.0014	6 0.0010	0.0014 0	0.0010 0.001	15 0.0010	0.0014 0	10010 0.00	18 0.0010	0.0018 0.0010	0.0017	0.0010 0.	016 0.0010	0.0015	0.0010 0.0015	0.0010	0.0013	0.0010 0.00	10 0.0010	0.0016	0.0010 0.00	17 0.0010	0.0016	0.0010 NE	0.0010	0.0016 0	10050 ND ^	0.0010 0.	0012 0.0010	0 0.0012	0.0010 0.00	14 0.0010 0.0	012 0.0010	0.0012 0.001	0.0012 0.0	01 0.001 0	.001 0.0011	0.001 0.f	10014 0.001	ND 0.001	/1 0.0011	0.001 0.0014	0.001 0.0011	0.001 0.1	.001 0.001	ND 0.00	.01 0.001 0.4	001 ND
Barium	2.0	0.0025	0.0025	0.12 0.00	25 0.082 0	0.0025 0.094	4 0.0025	0.11 0.0	0025 0.13	0.0025	0.11 0	0.0025 0.14	4 0.0025	0.12 0	10025 0.1	2 0.0025	0.097 0.0025	0.096	0.0025 0	11 0.0025	0.17	0.0025 0.15	0.0025	0.098	0.0025 0.1	2 0.0025	0.14	0.0025 0.1	4 0.0025	0.11	0.0025 0.12	0.0025	0.14 0	0025 0.14	0.0025 0	0.002	5 0.12	0.0025 0.1	6 0.0025 0	10 0.0025	0.16 0.0025	0.1 0.00	025 0.13 0.	0025 0.12	0.0025 0	0.15 0.0025	0.11 0.002	25 0.13	0.0025 0.14	0.0025 0.14	0.0025 0	.13 0.0025	0.13 0.00*	J25 0.16 0.0	025 0.2
Beryllium	0.004	0.0010	ND 0.0010	ND 0.00	10 ND 0	0.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND (0.0010 ND	0.0010	ND 0	10010 NE	0.0010	ND 0.0010	ND	0.0010	D 0.0010	ND ^	0.0010 ND	0.0010	ND	0.0010 NI	0.0010	ND	0.0010 NE	0.0010	ND	0.0010 NE	0.0010	ND^ 0	10010 ND	0.0010 5	D^ 0.001	0 ND	0.0010 ND	^ 0.0010 P	D 0.0010	ND 0.001	ND 0.0	01 ND ^A 0	.001 ND	0.001 ?	ND 0.001	ND 0.001	A ND	0.001 ND	0.001 ND ^	0.001 8	-ID 0.001	ND 0.00	.01 ND ^ 0./	001 ND
Boron	2.0	0.050	0.32 0.050	0.44 0.03	50 0.32	0.050 0.27	0.050	0.30 0.0	050 0.25	0.050	0.26	0.050 0.25	0.050	0.31 (0.050 0.3	3 0.050	0.23 0.050	0.23	0.050 (22 0.050	0.26	0.050 0.17	0.050	0.26	0.050 0.1	9 0.050	0.22	0.050 0.1	9 0.050	0.21	0.050 0.2	0.050	0.17 0	0.050 0.19	0.050	0.28 0.050	0.25	0.050 0.2	2 0.050 0	15 0.050	0.20 0.05	0.21 0.0	05 0.22 0	105 0.24	0.05 f	0.3 0.05	0.21 0.05	5 0.24	0.05 0.2	0.05 0.49	0.05 0	.18 0.05	0.23 0.0*	.15 0.26 0	.05 0.17
Cadmium	0.005	0.00050	ND 0.00050	ND 0.00	150 ND 0	0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	0.00050 ND	0.00050	ND 0.	.00050 NE	0.00050	ND 0.0005	0 ND	0.00050	D 0.00050	ND	1.00050 ND	0.00050	ND	0.00050 NI	0.00050	ND	0.00050 NE	0.00050	ND (0.00050 NE	0.00050	ND 0.	00050 ND	0.00050	ND 0.0005	50 ND	0.00050 NI	0.00050 2	D 0.00050	ND 0.0005	ND 0.00	005 ND 0.	3005 ND	0.0005 ?	ND 0.0005	ND 0.000	d5 ND	0.0005 ND	0.0005 ND	0.0005 8	JD 0.0005	ND 0.00 ^r	J05 ND 0.0	.005 ND
Chloride	200.0	10	130 10	270 10	140	10 140	10	130 2	2.0 240	10	210	10 190	0 10	150	10 16	10	170 10	120	10	20 10	370	50 340	10	120	10 10	0 10	150	10 270	0 10	140	10 130	10	230	10 250	10	79 10	85	10 20	0 10 1	50 50	500 10	140 1	0 150	10 170 F1	10 4	420 10	130 10	, 99	10 150	10 180	10 1	.60 10	160 10	ð 240 r	40 410
Chromium	0.1	0.0050	ND 0.0050	ND 0.0.	25 ND (0.0050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND (0.0050 ND	0.0050	ND 0	10050 NE	0.0050	ND 0.0050	ND	0.0050	D 0.0050	ND	0.0050 ND	0.0050	ND	0.0050 NI	0.0050	ND	0.0050 NE	0.0050	ND	0.0050 NE	0.0050	ND 0	10050 ND	0.0050	ND 0.005	0 ND	0.0050 NI	0.0050 2	D 0.0050	ND 0.005	ND 0.0	05 ND 0	.005 ND	0.005	ND 0.005	ND 0.005	5 ND	0.005 ND	0.005 ND	0.005 Y	AD 0.005	ND 0.00	.05 ND 0./	005 ND
Cobalt	1.0	0.0010	ND 0.0010	0.0019 0.00	50 ND 0	0.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND (0.0010 ND	0.0010	ND 0	10010 NE	0.0010	ND 0.0010	ND	0.0010	D 0.0010	ND	0.0010 ND	0.0010	0.0017	0.0010 NI	0.0010	0.0010	0.0010 0.00	15 0.0010	0.0011	0.0010 NE	0.0010	ND 0	10010 ND	0.0010	ND 0.001	0 ND	0.0010 NI	0.0010 2	D 0.0010	ND 0.001	ND 0.0	01 ND 0	.001 ND	0.001 ?	ND 0.001	ND 0.001	A ND	0.001 ND	0.001 ND	0.001 8	JD 0.001	ND 0.00	.01 ND 0./	001 ND
Copper	0.65	0.0020	ND 0.0020	ND 0.0	10 ND 0	0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND (0.0020 ND	0.0020	ND 0	10020 NE	0.0020	ND 0.0020	ND	0.0020 0.	025 0.0020	ND	0.0020 ND	0.0020	0.0056	0.0020 0.00	21 0.0020	ND	0.0020 NE	0.0020	ND	0.0020 NE	0.0020	ND 0	10020 ND	0.0020	ND 0.002	0 ND	0.0020 NI	0.0020 N	D ^ 0.0020	ND 0.002	ND 0.0	02 ND 0	.002 ND	0.002 ?	ND 0.002	ND 0.002	£ ND	0.002 ND	0.002 ND	0.002 8	JD 0.002	ND 0.00	.02 ND 0./	002 ND
Cyanide	0.2	0.010	ND 0.010	ND 0.0	10 ND	0.010 ND	0.010	ND 0.0	010 ND	0.010	ND	0.010 ND	0.010	ND (0.010 NE	0.010	ND 0.010	ND	0.010	D 0.010	ND	0.010 ND	0.010	ND	0.010 NI	0.010	ND	0.010 0.05	4 0.010	ND	0.010 NE	0.010	ND 0	0.010 ND	0.010	ND 0.010) ND	0.010 NI	0.010 2	D 0.010	ND 0.01	ND 0.0	01 ND (.01 ND	0.01 ?	ND 0.01	ND 0.01	4 ND	0.01 ND	0.01 ND	0.005 0.0	3051 0.01	ND 0.00	.05 ND 0./	.005 ND
Fluoride	4.0	0.10	0.40 0.10	0.36 0.1	0 0.44	0.10 0.29	0.10	0.44 0.	.10 0.36	0.10	0.36	0.10 0.36	5 0.10	0.38	0.10 0.40	^ 0.10	0.43 0.10	0.37	0.10 0	35 0.10	0.34	0.10 0.33	0.10	0.38	0.10 0.3	4 0.10	0.36	0.10 0.3	5 0.10	0.39	0.10 0.3	0.10	0.34	0.10 0.38	0.10	0.34 0.10	0.32	0.10 0.2	7 0.10 0	28 0.10	0.32 0.1	0.31 0.	1 0.34	0.1 0.33	0.1 0	0.34 0.1	0.26 0.1	0.3	0.1 0.37	0.1 0.37	0.1 0	.32 0.1	0.31 0.1	.1 0.36 r	0.1 0.3
Iron	5.0	0.10	ND 0.10	ND 0.5	0 ND	0.10 ND	0.10	ND 0.	.10 ND	0.10	ND	0.10 ND	0.10	ND	0.10 NE	0.10	ND 0.10	ND	0.10	D 0.10	ND	0.10 ND	0.10	ND	0.10 NI	0.10	ND	0.10 NE	0.10	ND	0.10 NE	0.10	ND	0.50 ND	0.10	ND 0.10	ND	0.10 0.1	5 0.10 2	D 0.10	0.27 0.1	ND 0.	.1 ND	0.1 ND	0.1 0	0.26 0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1 8	-ID 0.1	ND 0.1	.1 ND (1.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	150 ND 0	0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	0.00050 ND	0.00050	ND 0.	.00050 NE	0.00050	ND 0.0005) ND	0.00050	D 0.00050	ND	1.00050 ND	0.00050	ND	0.00050 NI	0.00050	ND	0.00050 NE	0.00050	ND (.00050 NE	0.00050	ND 0.	00050 ND	0.00050	ND 0.0005	50 ND	0.00050 NI	0.00050 2	D 0.00050	ND 0.0005	ND 0.00	005 ND 0.	.0005 ND	0.0005 7	ND 0.0005	ND 0.000	.05 ND	0.0005 ND	0.0005 ND	0.0005 2	ND 0.0005	ND 0.00	J05 ND 0.0	J005 ND
Manganese	0.15	0.0025	0.14 0.0025	0.033 0.0	13 ND 0	0.0025 0.036	6 0.0025	0.024 0.0	0025 0.015	0.0025	0.0080 0	0.0025 0.008	87 0.0025	0.0076 0	10025 0.00	47 0.0025	ND 0.0025	ND	0.0025	D 0.0025	ND	0.0025 ND	0.0025	ND	0.0025 NI	0.0025	ND	0.0025 NE	0.0025	ND	0.0025 NE	0.0025	ND 0	10025 ND	0.0025	ND 0.002	5 ND	0.0025 0.00	88 0.0025 2	D 0.0025	0.0048 0.0025	ND 0.00	025 ND 0.	3025 ND	0.0025 0	0.017 0.0025	ND 0.002	25 ND	0.0025 ND	0.0025 ND	0.0025	JD 0.0025	ND 0.00*	J25 ND 0.0	1025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	020 ND 0	0.00020 ND	0.00020	ND 0.0	0020 ND	0.00020	ND 0	0.00020 ND	0.00020	ND 0.	.00020 NE	0.00020	ND 0.0002	0 ND	0.00020	D 0.00020	ND	1.00020 ND	0.00020	ND	0.00020 NI	0.00020	ND	0.00020 NI	0.00020	ND *	1.00020 NE	0.00020	ND 0.	00020 ND	0.00020	ND 0.0002	20 ND	0.00020 NI	0.00020 2	D 0.00020	ND 0.0002	ND 0.00	002 ND 0.	.0002 ND	0.0002 ?	ND 0.0002	ND 0.000	.02 ND	0.0002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.00	J02 ND 0.0	J002 ND
Nickel	0.1	0.0020 (.0056 0.0020	0.0025 0.0	10 ND (0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND (0.0020 ND	0.0020	ND 0	10020 NE	0.0020	ND 0.0020	0.0021	0.0020	D 0.0020	ND	0.0020 ND	0.0020	0.0021	0.0020 0.00	22 0.0020	0.0027	0.0020 0.00	34 0.0020	0.0023	0.0020 0.000	6 0.0020	ND 0	0.0032	0.0020 0.	0027 0.002	0 ND	0.0020 NI	0.0020 2	D 0.0020	0.0020 0.002	ND 0.0	02 ND 0	.002 ND	0.002 0./	10024 0.002	ND 0.002	.12 ND	0.002 ND	0.002 ND	0.002 2	ND 0.002	ND 0.00	.02 ND 0./	.002 ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.3 0.1	0 0.91	0.10 0.31	0.10	0.36 0.	.10 ND	0.10	0.65	0.10 0.55	5 0.10	0.47	0.10 1.0	0.10	1.7 0.10	0.46	0.10	49 0.10	1.7	0.10 1.3	0.10	0.51	0.10 0.6	4 0.10	1.3	0.10 1.2	0.10	0.35	0.10 0.4	0.10	1.6	0.10 1.5	0.10	0.43 0.10	0.31	0.10 0.9	9 0.10	.1 0.10	7.2 0.1	0.43 0.	.1 0.34	0.1 2.2	0.1	1.7 0.1	0.47 0.1	0.61	0.1 0.75	0.1 1.9	0.1 0		0.56 0.1	.1 1.5 0	1.1 1.7
Nitrogen/Nitrate, Ni	ni NA	0.10	ND* 0.10	1.3 0.1	0 0.91	0.10 0.31	0.10	0.36 0.	.10 ND	0.10	0.65	0.10 0.55	5 0.10	0.47	0.10 1.0	0.10	1.7 0.10	0.46	0.10 0	49 0.10	1.7	0.10 1.3	0.10	0.51	0.10 0.6	4 0.10	1.3	0.10 1.2	0.10	0.35	0.10 0.4	0.10	1.6	0.10 1.5	0.10	0.43 0.10	0.31	0.10 0.9	0.10	.1 0.50	7.2 0.1	0.43 0.	1 0.34	0.1 2.2	0.1	1.7 0.1	0.47 0.1	0.61	0.1 0.75	0.1 1.9	0.1 0	1.66 0.1	0.56 0.1	.1 1.5 P	0.1 1.7
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.03	20 ND	0.020 ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 ND	0.020	ND (0.020 NE	0.020	ND 0.020	ND	0.020	D 0.020	ND	0.020 ND	0.020	ND	0.020 NI	0.020	ND	0.020 NE	0.020	ND	0.020 NE	0.020	ND 0	0.020 ND	0.020	ND 0.020) ND	0.020 NI	0.020 2	D 0.020	ND 0.02	ND 0.0	02 ND (.02 ND	0.02 ?	ND 0.02	ND 0.02	.2 ND	0.02 ND	0.02 ND	0.02 2	ND 0.02	ND 0.0*	J2 ND 0	.02 ND
Perchlorate	0.0049	NR	NR NR	NR NE	R NR	NR NR	NR	NR N	R NR	NR	NR	NR NR	0.004	ND 0	10040 NE	0.0040	ND 0.0040	ND	0.0040	D 0.0040	ND	0.0040 ND	0.0040	ND	0.0040 NI	0.0040	ND	0.0040 NE	0.0040	ND	0.0040 NE	0.0040	ND 0	10040 ND	0.0040	ND 0.004	0 ND	0.0040 NI	0.0040 2	D 0.0040	ND 0.004	ND 0.0	04 ND 0	.004 ND	0.004 7	ND 0.004	ND 0.004	4 ND	0.004 ND	0.004 ND	0.004 7	ND 0.004	ND 0.00	.04 ND 0.1	.004 ND
Selenium	0.05	0.0025 (0.0029 0.0025	0.0034 0.0	13 ND (0.0025 ND	0.0025	0.0054 0.0	025 0.005	1 0.0025	0.0069 (0.0025 0.007	73 0.0025	0.0059 0	1.0025 0.01	3 0.0025	0.0032 0.0025	0.0027	0.0025 0.	035 0.0025	0.0034	0.0025 0.0034	0.0025	0.0031	0.0025 0.00	39 0.0025	0.0045	0.0025 0.00	36 0.0025	ND	0.0025 0.00	5 0.0025	0.0027 0	0.0030 /	0.0025 0.	0037 0.002	5 ND	0.0025 0.00	42 0.0025 0.0	026 0.0025	ND 0.0025	ND 0.00	025 0.0034 0.	.0025 0.0026	0.0025 0	0.026 0.0025	ND 0.002	25 ND	0.0025 ND	0.0025 0.053	0.0025	ND 0.0025	ND 0.00*	J25 0.0025 0.f	0.0036
Silver	0.05	0.00050	ND 0.00050	0.00077 0.00	150 ND 0	0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	0.00050 ND	0.00050	ND 0.	.00050 NE	0.00050	ND 0.0005) ND	0.00050	D 0.00050	ND	1.00050 ND	0.00050	ND	0.00050 NI	0.00050	ND	0.00050 NE	0.00050	ND (0.00050 ND I	1 0.00050	ND 0.	00050 ND	0.00050	ND 0.0005	50 ND	0.00050 NI	0.00050 2	D 0.00050	ND 0.0005	ND 0.00	005 ND 0.	.0005 ND	0.0005 7	ND 0.0005	ND 0.000	.05 ND	0.0005 ND F1	0.0005 ND	0.0005 2	ND 0.0005	ND 0.00	J05 ND 0.0	J005 ND
Sulfate	400.0	50	140 50	140 24	87	25 100	50	130	50 110	25	91	25 85	25	120	25 12	25	96 25	110	25	50 25	100	20 120	25	91	25 14	0 50	140	25 94	50	110	25 120	50	140	50 160	50	97 25	97	50 13	25	3 50	160 25	76 2	0 89	20 130	20 1	110 20	7.8 20	78	20 130	20 160	25 1	10 15	83 25	5 160 1	25 130
Thallium	0.002	0.0020	ND 0.0020	ND 0.00	20 ND (0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND (0.0020 ND	0.0020	ND 0	10020 NE	0.0020	ND 0.0020	ND	0.0020	D 0.0020	ND	0.0020 ND	0.0020	ND	0.0020 NI	0.0020	ND	0.0020 NE	0.0020	ND	0.0020 NE	0.0020	ND 0	10020 ND	0.0020	ND 0.002	0 ND	0.0020 NI	0.0020 2	D 0.0020	ND 0.002	ND 0.0	02 ND 0	.002 ND	0.002 ?	ND 0.002	ND 0.002	.12 ND	0.002 ND	0.002 ND	0.002 2	ND 0.002	ND 0.00	.02 ND 0./	.002 ND
Total Dissolved Soli	ls 1,200	10	650 10	1000 10	650	10 620	10	710	10 800	10	860	10 760	0 10	710	10 69	10	690 10	350	10	70 10	930	10 990	10	600	10 53	0 10	710	10 870	0 10	680	10 650	10	820	10 880	10	530 10	590	10 84	0 10 5	90 10	1400 10	620 1	0 640	10 720	10 1	1,200 10	620 10	620	10 710	10 830	30 1	.50 30	640 10	.0 930	10 1200
Vanadium	0.049	NR	NR NR	NR NE	R NR	NR NR	NR	NR N	R NR	NR	NR	NR NR	0.0050	0.0052 0	1.0050 0.00	50 0.0050	0.0056 0.0050	ND	0.0050	D 0.0050	ND	0.0050 0.0055	0.0050	ND	0.0050 0.00	57 0.0050	0.0063	0.0050 0.00	60 0.0050	0.0063	0.0050 NE	0.0050	0.0065 0	10050 ND	0.0050 0.	0054 0.005	0 0.0066	0.0050 0.00	50 0.0050 0.0	054 0.0050	ND 0.005	ND 0.0	05 ND ⁴ 0	.005 ND	0.005 ?	ND 0.005	ND 0.005	.6 ND	0.005 ND	0.005 0.0056	i 0.005 N	ND 0.005	ND 0.00	.05 ND 0./	.005 ND
Zinc	5.0	0.020	ND 0.020	ND 0.1	0 ND	0.020 ND	0.020	ND 0.	020 ND	0.020	ND	0.020 ND	0.020	ND (0.020 NE	0.020	ND 0.020	ND	0.020	D 0.020	ND	0.020 ND	0.020	ND	0.020 NI	0.020	ND	0.020 NE	0.020	ND	0.020 NE	0.020	ND 0	0.020 ND	0.020	ND 0.020) ND	0.020 NI	0.020 2	D 0.020	ND 0.02	ND 0.0	02 ND (.02 ND	0.02 7	ND 0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 7	ND 0.02	ND 0.0'	J2 ND 0	.02 ND
Benzene	0.005	NR	NR NR	NR NE	R NR	NR NR	NR	NR N	R NR	NR	NR	NR NR	0.0005	ND 0.	.00050 NE	0.00050	ND 0.0005) ND	0.00050	D 0.00050	ND	0.0005 ND	0.0005	ND	0.0005 NI	0.0005	ND	0.0005 NE	0.0005	ND	0.0005 NE	0.0005	ND 0	10005 ND	0.0005	ND 0.000	6 ND	0.0005 NI	0.0005 2	D 0.0005	ND 0.0005	ND 0.0	005 ND 0	.0005 ND	0.0005 7	ND 0.0005	ND 0.000	05 ND	0.0005 ND	0.0005 ND	0.0005 7	ND 0.0005	ND 0.00'	305 ND 0.0	J005 ND
BETX	11.705	NR	NR NR	NR NE	R NR	NR NR	NR	NR N	R NR	NR	NR	NR NR	0.0025	NS 0	10025 NE	0.0025	ND 0.0025	ND	0.0025	D 0.0025	ND	0.002 ND	0.002	ND	0.002 NI	0.002	ND	0.002 0.000	0.002	ND	0.002 NE	0.002	ND 0	0.002 0.0029	0.002	ND 0.002	2 0.0027	0.002 NI	0.002 2	D 0.0025	0.0015 0.0025	0.0023 0.0	025 ND 0	.0025 ND	0.0025 ?	ND 0.0025	ND 0.002	.25 ND	0.0025 ND	0.0025 ND	0.0025 2	ND 0.0025	ND 0.00'	J25 ND 0.f	J025 ND
pH	6.5 - 9.0	NA	8.04 NA	7.51 N/	7.71	NA 7.53	8 NA	7.71 N	A 7.57	NA	7.42	NA 7.46	6 NA	7.66	NA 8.0	5 NA	7.35 NA	7.42	NA	31 NA	9.52	NA 7.42	NA	7.29	NA 7.2	9 NA	7.78	NA 7.6	0 NA	7.79	NA 7.0	NA	7.30	NA 7.31	NA	7.36 NA	7.36	NA 6.8	4 NA 7	65 NA	7.65 NA	7.54 N	A 7.63	NA 7.62	NA 7	7.42 NA	7.39 NA	A 7.27	NA 7.42	NA 7.06	NA 7	.44 NA	6.95 N#	A 7.52 M	NA 7.35
Temperature	NA	NA	8.53 NA	12.90 NJ	A 14.26	NA 12.73	3 NA	13.70 N	A 14.45	NA	19.31	NA 14.5	1 NA	13.45	NA 12.2	0 NA	14.48 NA	15.22	NA 1	50 NA	7.33	NA 11.12	NA	18.67	NA 13.9	2 NA	9.51	NA 16.3	0 NA	18.55	NA 14.1	I NA	9.02	NA 13.65	NA 1	8.41 NA	15.80	NA 11.1	6 NA 1	.48 NA	7.63 NA	19.68 N	IA 12.51	NA 13.1	NA 1	11.7 NA	12.8 NA	4 13.84	NA 13.2	NA 12.5	NA 1	.3.2 NA	17.1 NA	A 12.7 N	NA 12.2
Conductivity	NA	NA	1.20 NA	1.65 N/	A 1.05	NA 0.77	NA	0.87 N	A 1.06	NA	1.23	NA 1.02	2 NA	0.93	NA 0.9	4 NA	0.855 NA	0.76	NA (80 NA	0.96	NA 1.37	NA	0.94	NA 0.8	8 NA	0.86	NA 1.1	9 NA	1.11	NA 1.1.	NA	0.89	NA 1.16	NA (194 NA	0.78	NA 0.9	2 NA 0	83 NA	0.891 NA	1.265 N	A 0.825	NA 1159	NA 2	2.83 NA	1.06 NA	A 9.34	NA 0.983	NA 1.141	NA 1	.306 NA	1.2 N#	A 1.539	AA 2.003
Dissolved Oxygen	NA	NA	NM NA	7.44 N/	A 6.82	NA 6.74	I NA	7.05 N	A 7.47	NA	7.21	NA 6.27	7 NA	7.20	NA 8.7) NA	4.77 NA	2.44	NA 3	73 NA	4.78	NA 6.82	NA	3.99	NA 4.4	4 NA	7.08	NA 6.8	0 NA	5.23	NA 5.4	NA	6.28	NA 5.88	NA :	5.35 NA	4.09	NA 6.7	I NA 8	59 NA	8.85 NA	7.19 N	IA 10.56	NA 5.93	NA 1	5.82 NA	51.00 NA	A 9.01	NA 7.71	NA 7.98	NA 7	.06 NA	3.67 N#	A 6.47 1	AA 6.93
ORP	NA	NA	NM NA	183.7 NJ	A 203.8	NA -65.0	0 NA	113.0 N	A 210.0) NA	153.0	NA 1624	0 NA	125.0	NA 186	4 NA	18.1 NA	22.7	NA 4	6.3 NA	-81.0	NA 137.8	NA	60.1	NA 60.	8 NA	88.5	NA 120	7 NA	-16.5	NA 164	8 NA	114.3	NA 50.1	NA	53.4 NA	22.7	NA 201	6 NA -1	6.1 NA	38.6 NA	71.6 N	IA 2.2	NA 112.0	NA -2	-265.1 NA	187.4 NA	4 -11.6	NA 157.2	NA 224.6	NA 1	32.0 NA	157.4 N#	A 3.0 M	NA 161.0
																																_																			ن ا				

New Souldware and Child Strategies and Strategies a

																		-				_																															
Sample: MW-07	Date	12/7/20	0 3/23	/2011 6	5/14/2011	9/14/2011	12/7/201	1 3/1	5/2012	6/19/2012	9/19/20	012 12	/20/2012	3/5/201	3 5/22	2013	7/23/2013	10/16/2	013 2/	21/2014	5/2/2014	8/1	9/2014	10/23/2014	4 2/1	0/2015	5/28/2015	8/5	5/2015	10/27/2015	2/11	1/2016	5/12/2016	9/1/2016	5 11/	/3/2016	2/7/2017	4/27/2017	7 2/21/2	018 8/1/2	2018 10	18/2018 2/	/5/2019	5/6/2019	8/6/2019	11/7/201	9 2/13/	/2020 5/21/	/2020 7/3	/2020 10/2	2/2020 2	:/25/2021	5/17/2021
Parameter	Standards	DL R	esult DL	Result D	L Result	DL Result	DL. Re	sult DL	Result	DL Resu	h DL R	Result DL	. Result	DL R	esult DL	Result I	DL Resul	DL I	Result DL	Result	DL Rest	ik DL	Result	DL Res	ult DL	Result	DL Resu	ik DL	Result	DL Res	at DL	Result	DL Result	DL Re	esult DL	Result Di	DL Result	DL Re	suit DL	Result DL	Result DL	Result DL	Result	DL Result	a DL Res	ult DL Re	sult DL	Result DL	Result DL	Result DL	Result D	JL Result	DL Result
Antimony	0.006	0.0030	0.0030 D	ND 0.00	130 ND	0.0030 ND	0.0030 N	D 0.0030	ND	0.0030 ND	0.0030	ND 0.003	30 ND	0.0030 2	ND 0.0030	ND 0.0	0030 ND	0.0030	ND 0.003	ND	0.0030 ND	0.0030	ND	0.0030 N	D 0.0030	ND	0.0030 ND	0.0030	0 ND	0.0030 N	0.0030	ND 0	0.0030 ND	0.0030 N	ND 0.0030	0 ND 0.00	030 ND	0.0030 N	D 0.0030	ND 0.003	ND 0.003	ND 0.003	8 ND	0.003 ND	0.003 N ^r	0.003 N	ID 0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.0	J03 ND (0.003 ND
Arsenic	0.010	0.0010 0.	0.0010 0.0010	ND 0.00	150 ND	0.0010 ND	0.0010 0.0	014 0.0010	0.0010	0.0010 ND	0.0010 0	0.0013 0.001	10 ND	0.0010 0.0	0011 0.0010	0.0015 0.0	0.001 0.001	0.0010	0.001 0.001	ND	0.0010 0.003	14 0.0010	ND	0.0010 NI	0.0010	ND	0.0010 0.001	13 0.0010	0 0.0013	0.0010 N	0.0010	0.0017 0	0.0050 ND ^	0.0010 N	ND 0.0010	0 0.0011 0.00	010 0.0010	0.0010 N	D 0.0010	0.0014 0.001	ND 0.003	ND 0.001	ND	0.001 ND	0.001 NI	0.001 N	D 0.001	0.0011 0.001	ND 0.001	ND 0.001	ND 0.0	301 ND r	0.001 ND
Barium	2.0	0.0025 0	0.13 0.0025	0.11 0.00	025 0.072	0.0025 0.092	0.0025 0.	.11 0.0025	0.13	0.0025 0.09	2 0.0025	0.12 0.002	25 0.11	0.0025 0	0.12 0.0025	0.11 0.0	0025 0.082	0.0025	0.13 0.002	0.15	0.0025 0.12	2 0.0025	0.091	0.0025 0.1	11 0.0025	0.18	0.0025 0.12	2 0.0025	5 0.10	0.0025 0.1	0.0025	0.15 0	0.0025 0.12	0.0025 0.	.084 0.0025	5 0.11 0.00	025 0.15	0.0025 0.0	96 0.0025	0.17 0.0025	0.093 0.002	0.12 0.002	5 0.13 (0.0025 0.1	0.0025 0.1	1 0.0025 0.	.11 0.0025	0.14 0.0025	0.095 0.0025	0.11 0.0025	j 0.13 0.0 ^o	.025 0.17 0	J0025 0.17
Beryllium	0.004	0.0010	0.0010 ND	ND 0.00	010 ND	0.0010 ND	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.001	10 ND	0.0010 2	ND 0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	ND ^	0.0010 ND	0.0010	ND	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	0 ND	0.0010 N	0.0010	ND^ 0	0.0010 ND	0.0010 N	D^ 0.0010	0 ND 0.00	010 ND ^	0.0010 N	D 0.0010	ND 0.001	ND 0.001	ND* 0.001	ND	0.001 ND	0.001 N ^r	0.001 N	D 0.001	ND 0.001	ND ^ 0.001	ND 0.001	ND 0.0	J01 ND ^ /	0.001 ND
Boron	2.0	0.050	0.050	0.39 0.0	50 0.25	0.050 0.29	0.050 0	35 0.050	0.30	0.050 0.25	0.050 0	0.31^ 0.05	90 0.41	0.050 0	0.39 0.050	0.21 0.5	050 0.21	0.050	0.24 0.050	0.30	0.050 0.1	5 0.050	0.22	0.050 0.1	17 0.050	0.21	0.050 0.16	5 0.050	0.20	0.050 0.1	9 0.050	0.16	0.050 0.20	0.050 0	0.050	0.23 0.0	050 0.19	0.050 0.	13 0.050	0.24 0.05	0.18 0.05	0.25 0.05	0.19	0.05 0.24	0.05 0.2	3 0.05 0.	.19 0.05	0.23 0.05	0.38 0.05	0.19 0.05	0.34 0.	.05 0.22	0.05 0.16
Cadmium	0.005	0.00050	ND 0.00050	ND 0.00	025 ND 0	0.00050 ND	0.00050 N	D 0.00050	ND	0.00050 ND	0.00050	ND 0.000	80 ND	0.00050 2	ND 0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND	0.00050 N	D 0.00050	0.0041	0.00050 ND	0.00050	0 ND	0.00050 N	0.00050	ND 0	1.00050 ND	0.00050 N	ND 0.00050	0 ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0005	ND 0.000	ND 0.000	5 ND (0.0005 ND	0.0005 NF	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.005 ND (*	10005 ND
Chloride	200.0	50	130 10	320 1	0 140	10 99	10 1	40 2.0	300	10 170	10	170 10	140	10 1	190 10	170	10 95	10	130 50	470	10 350	10	110	10 9	8 10	210	10 260	10	130	10 11) 10	240	10 240	10	77 10	84 1	10 240	10 1	60 10	350 10	130 10	140 10	180	10 400 F1	1 10 13	0 10 8	37 10	190 10	190 10	210 10	150 4	40 310	40 440
Chromium	0.1	0.0050	ND 0.0050	ND 0.0	25 ND	0.0050 ND	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	ND 0.005	50 ND	0.0050 2	ND 0.0050	ND 0.0	0050 ND	0.0050	ND 0.005	ND	0.0050 ND	0.0050	ND	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	0 ND	0.0050 N	0.0050	ND 0	0.0050 ND	0.0050 N	ND 0.0050	0 ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.005	ND 0.005	ND 0.005	ND	0.005 ND	0.005 NI	0.005 N	D 0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.0	305 ND r	a.005 ND
Cobalt	1.0	0.0010	0.0010 ND	ND 0.00	150 ND	0.0010 0.011	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.001	10 ND	0.0010 2	ND 0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	ND	0.0010 ND	0.0010	ND	0.0010 N	D 0.0010	0.0090	0.0010 ND	0.0010	0 ND	0.0010 N	0.0010	ND 0	0.0010 ND	0.0010 N	ND 0.0010	0 ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.001	ND 0.001	ND 0.001	ND	0.001 ND	0.001 NF	0.001 N	D 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.0	J01 ND /	0.001 ND
Copper	0.65	0.0020	ND 0.0020	ND 0.0	10 ND	0.0020 0.0025	0.0020	D 0.0020	ND	0.0020 ND	0.0020	ND 0.003	20 ND	0.0020 2	ND 0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	ND	0.0020 ND	0.0020	0.0047	0.0020 0.00	0.0020	0.096	0.0020 ND	0.0020	0 ND	0.0020 N	0.0020	ND 0	0.0020 ND	0.0020 N	ND 0.0020	0 ND 0.00	020 ND	0.0020 N	D^ 0.0020	ND 0.002	ND 0.002	ND 0.002	ND	0.002 ND	0.002 NF	0.002 N	D 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	302 ND /	0.002 ND
Cyanide	0.2	0.010	ND 0.010	ND 0.0	10 ND	0.010 ND	0.010 N	D 0.010	ND	0.010 ND	0.010	ND 0.01	10 ND	0.010	ND 0.010	ND 03	010 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND	0.010 N	D 0.010	ND	0.010 ND	0.010) ND	0.010 N	0.010	ND	0.010 ND	0.010 N	ND 0.010	ND 0.0	010 ND	0.010 N	D 0.010	ND 0.01	ND 0.01	ND 0.01	ND	0.01 ND	0.01 N ^r	0.01 N	D 0.01	ND 0.01	ND 0.005	ND 0.01	ND 0.4	005 ND /	0.005 ND
Fluoride	4.0	0.10	0.10	0.31 0.1	10 0.35	0.10 0.27	0.10 0.	35 0.10	0.31	0.10 0.31	0.10	0.32 0.10	0 0.31	0.10 0.	.30^ 0.10	0.38 0	10 0.37	0.10	0.32 0.10	0.31	0.10 0.3	2 0.10	0.35	0.10 0.3	36 0.10	0.30	0.10 0.33	2 0.10	0.35	0.10 0.3	2 0.10	0.33	0.10 0.35	0.10 0	0.10	0.31 0.1	.10 0.25	0.10 0.	28 0.10	0.28 0.1	0.29 0.1	0.26 0.1	0.26	0.1 0.3	0.1 0.7	4 0.1 0.	.26 0.1	0.3 0.1	0.33 0.1	0.29 0.1	0.28 0	A1 0.25	0.1 0.26
Iron	5.0	0.10	ND 0.10	ND 0.5	50 ND	0.10 3.8	0.10	D 0.10	ND	0.10 0.13	0.10	ND 0.10	0 ND	0.10 2	ND 0.10	0.41 0	10 ND	0.10	ND 0.10	ND	0.10 ND	0.10	ND	0.10 0.1	13 0.10	ND	0.10 ND	0.10	ND	0.10 N	0.10	0.85	0.50 ND	0.10 N	ND 0.10	0.25 0.1	.10 0.15	0.10 0.	40 0.10	0.63 0.1	ND 0.1	0.58 0.1	0.45	0.1 0.2	0.1 0.1	6 0.1 N	ID 0.1	0.13 0.1	ND 0.1	ND 0.1	ND 0	x.1 0.15	0.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	050 ND 0	0.00050 ND	0.00050 N	D 0.00050	ND	0.00050 ND	0.00050	ND 0.000	80 ND	0.00050	ND 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000) ND	0.00050 ND	0.00050	ND	0.00050 N	D 0.00050	0.0072	0.00050 ND	0.00050	0 ND	0.00050 N	0.00050	0.00057 0	1.00050 ND	0.00050 N	ND 0.00050	0 ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0005	ND 0.000	ND 0.000	5 0.0005 (0.0005 ND	0.0005 N ^r	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.005 ND r	30005 ND
Manganese	0.15	0.0025 0	0.0025	0.014 0.0	13 ND	0.0025 0.080	0.0025 0.0	073 0.0025	0.015	0.0025 0.06	9 0.0025 0	0.0041 0.003	25 0.0063	0.0025 0.0	0044 0.0025	0.012 0.0	0025 ND	0.0025	ND 0.002	ND	0.0025 ND	0.0025	0.0033	0.0025 0.00	0.0025	0.0048	0.0025 0.002	0.0025	5 ND	0.0025 0.00	41 0.0025	0.018 0	0.0025 0.010	0.0025 0.0	0.0025 0.0025	5 0.0093 0.00	025 0.0075	0.0025 0.0	011 0.0025	0.014 0.0025	0.0026 0.002	0.015 0.0024	5 0.017 (0.0025 0.0068	.8 0.0025 0.00	63 0.0025 N	D 0.0025	0.004 0.0025	ND 0.0025	0.0041 0.0025	5 ND 0.0	.025 0.0061 C	10025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	020 ND 0	0.00020 ND	0.00020 N	D 0.00020	ND	0.00020 ND	0.00020	ND 0.000	020 ND	0.00020 2	ND 0.00020	ND 0.0	0020 ND	0.00020	ND 0.0000) ND	0.00020 ND	0.00020	ND	0.00020 N	D 0.00020) ND	0.00020 ND	0.00020	0 ND *	0.00020 NI	0.00020	ND 0	1.00020 ND	0.00020 N	ND 0.00020	0 ND 0.00	0020 ND	0.00020 N	D 0.00020	ND 0.0002	ND 0.000	ND 0.000	2 ND (0.0002 ND	0.0002 N ^r	0.0002 N	D 0.0002	ND 0.0002	ND 0.0002	ND 0.0002	2 ND 0.0	.002 ND r	30002 ND
Nickel	0.1	0.0020 0.	0.0020	ND 0.0	10 ND	0.0020 0.014	0.0020 N	D 0.0020	ND	0.0020 0.003	2 0.0020	ND 0.000	20 0.0024	0.0020 0.0	0024 0.0020	0.0020 0.0	0020 ND	0.0020 (0.0021 0.002	ND	0.0020 ND	0.0020	0.0022	0.0020 0.00	0.0020	0.016	0.0020 0.003	4 0.0020	0 ND	0.0020 0.00	20 0.0020	0.0030 0	0.0020 0.0036	0.0020 N	ND 0.0020	0 0.0022 0.00	020 ND	0.0020 N	D 0.0020	0.0033 0.002	ND 0.002	0.0021 0.002	0.0022	0.002 0.0022	2 0.002 N	0.002 N	D 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	302 ND /	0.002 ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.2 0.1	10 0.76	0.10 0.27	0.10 0.	.60 0.10	ND	0.10 0.65	0.10	0.61 0.10	0 0.73	0.10	1.4 0.10	1.7 0	10 0.34	0.10	0.65 0.10	ND	0.10 1.3	0.10	0.46	0.10 0.1	56 0.10	0.19	0.10 1.1	0.10	0.37	0.10 0.5	0.10	1.7	0.10 1.4	0.10 0	0.10	0.33 0.1	.10 1.2	0.10 1	.0 0.10	7.3 0.1	0.29 0.1	0.29 0.1	0.85	0.1 1.6	0.1 0.2	3 0.1 0.	.68 0.1	0.88 0.1	1.4 0.1	0.54 0.1	0.93 0	×.1 1.1	0.1 1.6
Nitrogen/Nitrate, Nitri	NA	0.10	DA 0.10	1.2 0.1	10 0.76	0.10 0.27	0.10 0.	.60 0.10	ND	0.10 0.65	0.10	0.61 0.10	0 0.73	0.10	1.4 0.10	1.7 0	10 0.34	0.10	0.65 0.50	ND	0.10 1.3	0.10	0.46	0.10 0.4	56 0.10	0.33	0.10 1.1	0.10	0.37	0.10 0.5	0.10	1.7	0.10 1.4	0.10 0	0.10	0.33 0.1	.10 1.2	0.10 1	.0 0.50	7.3 0.1	0.29 0.1	0.29 0.1	0.85	0.1 1.6	0.1 0.7	3 0.1 0.	.68 0.1	0.88 0.1	1.4 0.1	0.54 0.1	0.93 0	AI 1.1	0.1 1.6
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.0	20 ND	0.020 ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.02	30 ND	0.020 2	ND 0.020	ND 03	020 ND	0.020	ND 0.02	ND	0.020 ND	0.020	ND	0.020 N	D 0.020	0.14	0.020 ND	0.020) ND	0.020 N	0.020	ND	0.020 ND	0.020 N	ND 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.02	ND 0.02	ND 0.02	ND	0.02 ND	0.02 NF	0.02 N	ID 0.02	ND 0.02	ND 0.02	ND 0.02	ND 0	.02 ND	0.02 ND
Perchlorate	0.0049	NR	NR NR	NR N	R NR	NR NR	NR N	IR NR	NR	NR NR	NR	NR 0.00	14 ND	0.0040 2	ND 0.0040	ND 0.0	0040 ND	0.0040	ND 0.004	ND	0.0040 ND	0.0040	ND	0.0040 N	D 0.0040	ND	0.0040 ND	0.0040	0 ND	0.0040 N	0.0040	ND (0.0040 ND	0.0040 N	ND 0.0040	0 ND 0.00	040 ND	0.0040 N	D^ 0.0040	ND 0.004	ND 0.004	ND 0.004	ND	0.004 ND	0.004 N7	0.004 N	D 0.004	ND 0.004	ND 0.004	ND 0.004	, ND 0.0	304 ND /	0.004 ND
Selenium	0.05	0.0025	ND 0.0025	ND 0.0	13 ND	0.0025 ND	0.0025 N	D 0.0025	ND	0.0025 ND	0.0025	ND 0.003	25 0.0031	0.0025 0.0	0041 0.0025	0.0026 0.0	0025 ND	0.0025	ND 0.002	ND	0.0025 0.002	0.0025	ND	0.0025 N	D 0.0025	ND	0.0025 ND	0.0025	5 ND	0.0025 N	0.0025	ND 0	0.0025 ND ^	0.0025 N	ND 0.0025	5 ND 0.00	025 ND	0.0025 N	D 0.0025	0.0031 0.0025	ND 0.002	ND 0.0024	5 ND (0.0025 0.0048	.8 0.0025 NF	0.0025 N	D 0.0025	ND 0.0025	0.0038 0.0025	ND 0.0025	5 0.0025 0.0	.025 ND (*	10025 ND
Silver	0.05	0.00050	ND 0.00050	ND 0.00	025 ND 0	0.00050 ND	0.00050 N	D 0.00050	ND	0.00050 ND	0.00050	ND 0.000	80 ND	0.00050 2	ND 0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND	0.00050 N	D 0.00050) ND	0.00050 ND	0.00050	0 ND	0.00050 N	0.00050	ND 0	1.00050 ND	0.00050 N	ND 0.00050	0 ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0005	ND 0.000	ND 0.0005	5 ND (0.0005 ND	0.0005 NI	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	j ND 0.0	.005 ND (10005 ND
Sulfate	400.0	50	250 50	120 2	5 85	25 110	50 1	60 50	140	50 190	50	130 25	90	25 1	150 50	150 2	25 74	50	190 25	170	20 110	25	82	25 12	10 50	260	25 80	25	99	50 11	50	140	50 180	25 1	75 25	100 2	3 85	25 1	4 50	280 20	64 20	90 20	87	20 97	20 4	8 20 8	33 20	96 20	140 25	85 15	97 2	25 130	25 120
Thallium	0.002	0.0020	ND 0.0020	ND 0.00	020 ND	0.0020 ND	0.0020 N	D 0.0020	ND	0.0020 ND	0.0020	ND 0.003	20 ND	0.0020 2	ND 0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	ND	0.0020 ND	0.0020	ND	0.0020 N	D 0.0020	ND	0.0020 ND	0.0020	0 ND	0.0020 N	0.0020	ND 0	0.0020 ND	0.0020 N	ND 0.0020	0 ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.002	ND 0.002	ND 0.002	ND	0.002 ND	0.002 NF	0.002 N	D 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	302 ND /	0.002 ND
Total Dissolved Solids	1,200	10 1	200 10	970 1	0 580	10 650	10 7	80 10	870	10 760	10	760 10	760	10 1	720 10	740	10 540	10	650 10	1200	10 860	10	570	10 52	10 10	1000	10 860	10	640	10 62	10	860	10 860	10 5	510 10	570 1	10 840	10 5	90 10	1300 10	580 10	680 10	670	10 1,300	J 10 59	0 10 5	40 10	710 10	750 30	630 30	680 J	10 1000	10 1300
Vanadium	0.049	NR	NR NR	NR N	R NR	NR NR	NR N	IR NR	NR	NR NR	NR	NR 0.005	50 0.0051	0.0050 2	ND 0.0050	0.0053 0.0	0050 ND	0.0050	ND 0.005	ND	0.0050 0.005	51 0.0050	ND	0.0050 N	D 0.0050	0.0052	0.0050 ND	0.0050	0 0.0051	0.0050 N	0.0050	0.0077 0	0.0050 ND	0.0050 N	ND 0.0050	0 0.0051 0.00	050 ND	0.0050 0.0	050 0.0050	0.0066 0.005	ND 0.00	ND* 0.005	ND	0.005 ND	0.005 N	0.005 N	D 0.005	ND 0.005	ND 0.005	ND 0.005	, ND 0.f	J05 ND /	0.005 ND
Zinc	5.0	0.020	ND 0.020	ND 0.1	10 ND	0.020 ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.02	30 ND	0.020 2	ND 0.020	ND 03	020 ND	0.020	ND 0.02	ND	0.020 ND	0.020	ND	0.020 N	D 0.020	0.036	0.020 ND	0.020) ND	0.020 N	0.020	ND	0.020 ND	0.020 N	ND 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.02	ND 0.02	ND 0.02	ND	0.02 ND	0.02 N ^r	0.02 N	D 0.02	ND 0.02	ND 0.02	ND 0.02	ND 0	.02 ND	0.02 ND
Benzene	0.005	NR	NR NR	NR NI	R NR	NR NR	NR N	R NR	NR	NR NR	NR	NR 0.000	05 ND	0.00050	ND 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000) ND	0.0005 ND	0.0005	ND	0.0005 N	D 0.0005	ND	0.0005 ND	0.0005	5 ND	0.0005 N	0.0005	ND 0	0.0005 ND	0.0005 N	ND 0.0005	5 0.0018 0.00	1005 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.000	5 ND 0.000	5 ND 0	0.0005 ND	0.0005 NF	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.005 ND f	3.0005 ND
BETX	11.705	NR	NR NR	NR N	R NR	NR NR	NR N	IR NR	NR	NR NR	NR	NR 0.002	25 NS	0.0025 2	ND 0.0025	ND 0.0	0025 ND	0.0025	ND 0.002	ND	0.002 ND	0.002	ND	0.002 N	D 0.002	ND	0.002 ND	0.002	ND ND	0.002 N	0.002	ND	0.002 0.0039	0.002 N	ND 0.002	0.0575 0.0	002 ND	0.002 N	D 0.0025	0.00097 0.0025	0.0018 0.002	5 ND 0.002	5 ND (0.0025 ND	0.0025 NF	0.0025 N	D 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	5 ND 0.0	.025 ND f	3.0025 ND
pH	6.5 - 9.0	NA 1	1.08 NA	7.50 N	A 7.61	NA 7.65	NA 7	.63 NA	7.53	NA 7.55	NA	7.45 NA	7.52	NA 7	199 NA	7.34 N	NA 7.42	NA	7.33 NA	9.34	NA 7.3	5 NA	6.99	NA 7.1	28 NA	7.52	NA 7.52	2 NA	7.75	NA 7.2	I NA	7.35	NA 7.27	NA 6	.96 NA	7.55 N	ia 7.31	NA 7.	70 NA	7.62 NA	7.47 NA	7.51 NA	7.48	NA 7.36	NA 7.3	1 NA 7.	.55 NA	7.27 NA	7.09 NA	7.23 NA	7.06 N	4A 7.25	NA 7.18
Temperature	NA	NA 9	.72 NA	13.58 N.	A 12.92	NA 12.50	NA 13	.07 NA	15.40	NA 16.3	3 NA 1	13.97 NA	12.88	NA 1	2.30 NA	14.15 N	ia 15.44	NA	13.06 NA	8.38	NA 11.4	5 NA	17.46	NA 16.	49 NA	10.95	NA 17.1	6 NA	21.99	NA 143	7 NA	5.97	NA 13.22	NA 18	8.40 NA	17.87 N	IA 12.53	NA 11	28 NA	7.25 NA	21.38 NA	12.69 NA	12.70	NA 12.10	J NA 12/	40 NA 13	.75 NA	12.80 NA	12.00 NA	13.10 NA	14.50 N	4A 12.00	NA 12.30
Conductivity	NA	NA 2	.12 NA	1.78 N	A 1.02	NA 0.78	NA 0	89 NA	1.18	NA 0.95	NA	1.00 NA	0.91	NA 0	1.99 NA	0.818 N	A 0.72	NA	0.89 NA	1.21	NA 1.3) NA	0.90	NA 0.5	91 NA	1.18	NA 1.30) NA	1.06	NA 1.0	4 NA	0.86	NA 1.12	NA 0	1.86 NA	0.78 N	(A 0.98	NA 0.	79 NA	0.929 NA	1.143 NA	0.784 NA	1.129	NA 2.720	J NA 1.0	20 NA 8.9	950 NA	1.052 NA	1.100 NA	1.327 NA	1.230 N	A 1.692	NA 2.101
Dissolved Oxygen	NA	NA 1	NM NA	7.02 N	A 8.10	NA 7.70	NA 6	.74 NA	7.23	NA 7.25	NA	7.16 NA	8.51	NA 8	1.38 NA	4.29 N	4A 3.52	NA	2.52 NA	6.39	NA 5.5	I NA	3.47	NA 3.3	32 NA	1.15	NA 4.83	2 NA	1.80	NA 3.7	4 NA	6.33	NA 5.75	NA 4	1.17 NA	4.97 N	iA 5.01	NA 6	40 NA	8.16 NA	3.97 NA	9.73 NA	2.96	NA 6.71	NA 27.	40 NA 5.	.54 NA	7.22 NA	6.48 NA	4.62 NA	3.98 N	4A 3.76	NA 4.93
ORP	NA	NA 1	NM NA	183.2 N	A 202.8	NA -82.0	NA 11	3.0 NA	175.0	NA 1483	0 NA 1	199.0 NA	152.0	NA I:	54.3 NA	17.0 N	A 23.7	NA	-81.7 NA	-99.0	NA 141.	5 NA	55.0	NA 61	.8 NA	78.4	NA 128.	5 NA	-41.0	NA 147	0 NA	129.1	NA 74.0	NA 10	02.1 NA	24.2 N	(A 153.9	NA -1	0.4 NA	48.5 NA	92.9 NA	6.0 NA	113.5	NA -281.3	3 NA 185	.6 NA -2	2.6 NA	158.8 NA	282.5 NA	187.6 NA	150.9 N	4A 8.2	NA 163.9
										-																· · · · ·																											

New Social-Advanced matrix C 10.8 Cheer Dar Olivarianti Section Olivarianti Researce Grandware, Generatione C, State Sta

Sample: MW-08	Date	12/6/2010	3/23/2	011 6	14/2011	9/14/2011	12/7/20	3/	15/2012	6/19/2012	9/19/20	012 12/2	20/2012	3/5/2013	5/23/	2013	7/22/2013	10/15/2	013 2	21/2014	5/1/201	1 8	8/18/2014	10/23/	2014	2/10/2015	5/27/	2015	8/4/2015	10/27/	2015	2/9/2016	5/11/20	16 8/	30/2016	11/1/2016	2/7/20	17 4/25/	017 2/2	0/2018	8/1/2018	10/16/2018	2/5/2019	5/6/20	/19 8/6/2	2019 11/7	2019 2/12/2	20 5/20/202	/20 7/3/	/0/2020 1/	10/22/2020	2/11/2021	5/17/2021
Parameter	Standards	DL Result	t DL	Result D	. Result	DL Resu	alt DL R	Result DL	Result	DL Result	DL	Result DL	Result	DL Res	ult DL	Result I	DL Result	DL I	Result DL	Result	DL B	esuk DL	L Result	DL	Result	DL Res	k DL	Result	DL Resu	h DL	Result D	L Result	DL	Result DL	Result	DL Rest	lt DL	Result DL	Result DL	Result I	E Result	DL Result	DL Result	: DL /	Result DL	Result DL	Result DL	esult DL R	tesult DL	Result I'	DL Result	DL Result	DL Result
Antimony	0.006	0.0030 ND	0.0030	ND 0.0	30 ND	0.0030 NE	0.0030	ND 0.003	10 ND	0.0030 ND	0.0030	ND 0.0030	ND	0.0030 NI	D 0.0030	ND 0.0	030 ND	0.0030	ND 0.003	0 ND	0.0030	ND 0.00	30 ND	0.0030	ND (1.0030 NE	0.0030	ND 0.	10030 ND	0.0030	ND 0.0	130 ND	0.0030	ND 0.003	0 ND 0	0.0030 ND	0.0030	ND 0.0030	ND 0.003	ND 0.	003 ND	0.003 ND	0.003 ND	0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.003	5 ND 0.5	.003 ND	0.003 ND	0.003 ND
Arsenic	0.010	0.0010 ND	0.0010	ND 0.0	50 ND	0.0010 NE	0.0010	ND 0.001	10 ND	0.0010 ND	0.0010	ND 0.0010	ND	0.0010 NI	D 0.0010	ND 0.0	010 ND	0.0010	ND 0.001	0 ND	0.0010	ND 0.00	10 ND	0.0010	ND ^A (0.00	9 0.0010	ND 0.	10010 ND	0.0010	ND 0.0	010 ND	0.0010	ND ^ 0.001	0 ND 0	0.0010 ND	0.0010	ND 0.0010	ND 0.001	ND 0.	001 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.5	.001 ND	0.001 ND	0.001 ND
Barium	2.0	0.0025 0.054	0.0025	0.055 0.0	25 0.026	0.0025 0.04	8 0.0025 0	0.057 0.002	15 0.049	0.0025 0.029	0.0025	0.059 0.0025	0.058	0.0025 0.0	69 0.0025	0.057 0.0	0.046	0.0025	0.045 0.002	5 0.066	0.0025	0.00	0.044	0.0025	0.051 0	10025 0.2	0.0025	0.057 0.	10025 0.04	4 0.0025	0.048 0.00	0.055	0.0025	0.059 0.002	5 0.044 0	0.0025 0.04	2 0.0025	0.069 0.0025	0.056 0.002	0.063 0.0	025 0.037	0.0025 0.044	0.0025 0.046	0.0025	0.031 0.0025	0.027 0.0025	0.034 0.0025	0.0025 0	3.041 0.0025	5 0.047 0.07	.0025 0.062	0.0025 0.081	0.0025 0.086
Beryllium	0.004	0.0010 ND	0.0010	ND 0.0	10 ND	0.0010 NE	0.0010	ND 0.001	0 ND	0.0010 ND	0.0010	ND 0.0010	ND	0.0010 NI	D 0.0010	ND 0.0	010 ND	0.0010	ND 0.001	0 ND ^	0.0010	ND 0.00	10 ND	0.0010	ND 0	10010 NE	0.0010	ND 0.	10010 ND	0.0010	ND 0.0	010 ND ^	0.0010	ND 0.001	0 ND^ (0.0010 ND	0.0010	ND ^ 0.0010	ND 0.001	ND 0.	01 ND	0.001 ND*	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001 N	ND ^ 0.001	, ND 0.5	.001 ND	0.001 ND	0.001 ND
Boron	2.0	0.050 0.29	0.050	0.16 0.0	0 0.12	0.050 0.20	0.050	0.16 0.050	0 0.13	0.050 0.20	0.050	0.46^ 0.050	0.33	0.050 0.2	5 0.050	0.16 0.1	0.50 0.18	0.050	0.19 0.05	0.16	0.050	0.05	50 0.19	0.050	0.16	0.050 0.6	0.050	0.11 0	0.050 0.15	0.050	0.15 0.0	50 0.11	0.050	0.12 0.050	0.18	0.050 0.13	0.050	0.12 0.050	0.10 0.050	0.15 0	05 0.15	0.05 0.15	0.05 0.089	0.05	0.09 0.05	0.12 0.05	0.14 0.05	0.11 0.05 0	0.14 0.05	0.11 0.	.105 0.18	0.05 0.16	0.05 0.091
Cadmium	0.005	0.00050 ND	0.00050	ND 0.0	25 ND	0.00050 NE	0.00050	ND 0.0005	50 ND	0.00050 ND	0.00050	ND 0.0005) ND (0.00050 NI	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	0 ND	0.00050 0	0019 0.000	050 ND	0.00050	ND 0	00050 0.000	53 0.00050	ND 0.0	.00050 ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.000	0 ND 0	0.00050 ND	0.00050	ND 0.00050	ND 0.000	0 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.0005 ND	0.0005 ND	0.0005 ND
Chloride	200.0	10 130	10	350 1	150	10 79	10	120 50	410	10 190	10	130 10	130	10 20	0 10	300	10 210	10	110 10	270	50	780 10	0 170	10	140	50 47	10	270	10 130	2.0	70 1	0 190	10	300 2.0	69	2.0 67	10	270 10	280 10	180	0 120	10 85	10 200	10	310 10	270 10	70 10	230 10 :	370 10	160 7	10 180	10 230	40 450
Chromium	0.1	0.0050 ND	0.0050	ND 0.0	5 ND	0.0050 NE	0.0050	ND 0.005	10 ND	0.0050 ND	0.0050	ND 0.0050	ND	0.0050 NI	D 0.0050	ND 0.0	050 ND	0.0050	ND 0.005	0 ND	0.0050	ND 0.00	50 ND	0.0050	ND 0	10050 NE	0.0050	ND 0.	10050 ND	0.0050	ND 0.0	150 ND	0.0050	ND 0.005	0 ND 0	0.0050 ND	0.0050	ND 0.0050	ND 0.005	ND 0.	05 ND	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.005	i ND 0.5	.005 ND	0.005 ND	0.005 ND
Cobalt	1.0	0.0010 ND	0.0010	ND 0.0	50 ND	0.0010 NE	0.0010	ND 0.001	10 ND	0.0010 ND	0.0010	ND 0.0010	ND	0.0010 NI	D 0.0010	ND 0.0	010 ND	0.0010	ND 0.001) ND	0.0010	ND 0.00	10 ND	0.0010	ND (1.0010 0.1	0.0010	0.0018 0.	10010 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.001	0 ND 0	0.0010 ND	0.0010	ND 0.0010	ND 0.001	ND 0.	001 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.001	, ND 0.5	.001 ND	0.001 ND	0.001 ND
Copper	0.65	0.0020 ND	0.0020	ND 0.0	0 ND	0.0020 NE	0.0020	ND 0.002	10 ND	0.0020 ND	0.0020	ND 0.0020	ND	0.0020 NI	D 0.0020	ND 0.0	020 ND	0.0020	ND 0.002	0 ND	0.0020 0	.012 0.00	20 ND	0.0020	ND (1.0020 0.00	0 0.0020	0.0039 0.	10020 ND	0.0020	ND 0.0	020 ND	0.0020	ND 0.002	0 ND 0	0.0020 ND	0.0020	ND 0.0020	ND ^ 0.002	ND 0.	02 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.002	: ND 0.f	.002 ND	0.002 ND	0.002 ND
Cyanide	0.2	0.010 ND	0.010	ND 0.0	0 ND	0.010 NE	0.010	ND 0.010	0 ND	0.010 ND	0.010	ND 0.010	ND	0.010 NI	D 0.010	ND 03	010 ND	0.010	ND 0.01	ND	0.010	ND 0.01	10 ND	0.010	ND	0.010 0.01	2 0.010	ND 0	0.010 ND	0.010	ND 0.0	10 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND 0.010	ND 0	01 ND	0.01 ND	0.01 ND	0.01	ND 0.01	ND 0.01	ND 0.01	ND 0.01	ND 0.005	i 0.0062 0/	.01 ND	0.005 ND	0.005 0.0072
Fluoride	4.0	0.10 0.51	0.10	0.36 0.	0 0.45	0.10 0.2	5 0.10	0.31 0.10	0.38	0.10 0.41	0.10	0.40 0.10	0.33	0.10 0.2	9^ 0.10	0.34 0	.10 0.34	0.10	0.36 0.10	0.29	0.10	0.34 0.1	0 0.36	0.10	0.36	0.10 0.5	0.10	0.44	0.10 0.39	0.10	0.32 0.1	10 0.36	0.10	0.42 0.10	0.33	0.10 0.33	0.10	0.30 0.10	0.31 0.10	0.31 0	.1 0.31	0.1 0.3	0.1 0.34	0.1	0.4 0.1	0.28 0.1	0.26 0.1	0.33 0.1 0	0.34 0.1	0.3 0	0.1 0.27	0.1 0.26	0.1 0.27
Iron	5.0	0.10 ND	0.10	ND 0.	0 ND	0.10 NE	0.10	ND 0.10) ND	0.10 ND	0.10	0.24 0.10	ND	0.10 NI	D 0.10	0.23 0	.10 ND	0.10	ND 0.10	0.11	0.10	ND 0.1	0 ND	0.10	ND	0.10 10	0.10	ND	0.10 ND	0.10	ND 0.1	10 ND	0.10	ND ^ 0.10	ND	0.10 ND	0.10	ND 0.10	ND 0.10	0.14 0	.1 ND	0.1 ND	0.1 ND	0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	ND 0.1	ND 0	0.1 ND	0.1 ND	0.1 ND
Lead	0.0075	0.00050 ND	0.00050	ND 0.00	150 ND	0.00050 NE	0.00050	ND 0.0005	50 ND	0.00050 ND	0.00050	ND 0.0005) ND (0.00050 NI	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	0 ND	0.00050 0	0036 0.000	050 ND	0.00050	ND 0	.00050 0.00	4 0.00050	ND 0.0	.00050 ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.0005	0 ND 0	0.00050 ND	0.00050	ND 0.00050	ND 0.000	0 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.0005 ND	0.0005 ND	0.0005 ND
Manganese	0.15	0.0025 0.005	1 0.0025	0.0026 0.0	3 0.017	0.0025 NE	0.0025	ND 0.002	15 0.0042	0.0025 0.016	0.0025	0.023 0.0025	0.0044	0.0025 NI	D 0.0025	0.0065 0.0	025 ND	0.0025	ND 0.002	5 0.0039	0.0025	ND 0.00	0.017	0.0025	0.0069 0	1.0025 1.1	0.0025	0.0044 0.	0.0025 0.002	9 0.0025	ND 0.0	0.0034	0.0025	0.023 0.002	5 0.0043 0	0.0025 ND	0.0025	ND 0.0025	ND 0.002	0.0039 0.0	025 ND	0.0025 0.0027	0.0025 ND	0.0025	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	5 ND 0.0	.0025 ND	0.0025 0.006	0.0025 ND
Mercury	0.002	0.00020 ND	0.00020	ND 0.00	120 ND	0.00020 ND	0.00020	ND 0.0002	20 ND	0.00020 ND	0.00020	ND 0.0002) ND (0.00020 NI	D 0.00020	ND 0.0	0020 ND	0.00020	ND 0.000	10 ND	0.00020	ND 0.000	020 ND	0.00020	ND 0	.00020 NE	0.00020	ND 0.	.00020 ND	0.00020	ND 0.00	020 ND	0.00020	ND 0.0002	0 ND 0	0.00020 ND	0.00020	ND 0.00020	ND 0.0002	0 ND 0.0	002 ND	0.0002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.0002	ND 0.0002	ND 0.0002	ND 0.0002	2 ND 0.0	.0002 ND	0.0002 ND	0.0002 ND
Nickel	0.1	0.0020 0.002	5 0.0020	ND 0.0	0 ND	0.0020 0.01	2 0.0020	ND 0.002	20 ND	0.0020 ND	0.0020	0.0021 0.0020	ND	0.0020 NI	D 0.0020	0.0034 0.0	020 0.0040	0.0020	ND 0.002) ND	0.0020 0	0020 0.00	20 0.0029	0.0020	0.0036 0	1.0020 0.1	0.0020	0.0033 0.	0.0020 0.002	0 0.0020	ND 0.0	120 ND	0.0020	0.002	0 ND 0	0.0020 ND	0.0020	0.0027 0.0020	0.0035 0.002	0.0054 0.	02 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002	.0055 0.002 0.	10024 0.002	2 ND 0.5	.002 0.002	0.002 0.0023	0.002 ND
Nitrogen/Nitrate	10.0	0.10 0.33	0.10	2.2 0.	0 1.9	0.10 0.95	5 0.10	0.86 0.10) ND	0.10 0.44	0.10	4.0 0.10	2.0	0.10 2.2	2 0.10	2.8 0	10 1.2	0.10	1.2 0.10	1.6	0.10	5.9 0.1	0 0.54	0.10	1.3	0.10 NE	0.10	1.7 (0.10 0.72	0.10	1.0 0.1	10 0.82	0.10	1.2 0.10	1.3	0.10 0.44	5 0.10	1.3 0.10	1.4 0.10	0.74 0	.1 0.49	0.1 0.63	0.1 0.89	0.1	2.3 0.1	0.76 0.1	0.94 0.1	1 0.1	3.6 0.1	1.4 0	0.1 1.4	0.1 1.5	0.1 1.3
Nitrogen/Nitrate, Nitri	NA	0.10 0.33	0.20	2.2 0.	0 1.9	0.10 0.95	5 0.10	0.86 0.10) ND	0.10 0.44	0.50	4.0 0.50	2.0	0.20 2.1	2 0.20	2.8 0	10 1.2	0.10	1.2 0.10	1.6	0.50	6.2 0.1	0 0.54	0.10	1.3	0.10 NE	0.10	1.7	0.10 0.72	0.10	1.0 0.1	10 0.82	0.10	1.2 0.10	1.3	0.10 0.44	5 0.10	1.3 0.10	1.4 0.10	0.74 0	1 0.49	0.1 0.63	0.1 0.89	0.1	2.3 0.1	0.76 0.1	0.94 0.1	1 0.1	3.6 0.1	1.4 0	0.1 1.4	0.1 1.5	0.1 1.3
Nitrogen/Nitrite	NA	0.020 ND	0.020	ND 0.0	0 ND	0.020 NE	0.020	ND 0.020	0 ND	0.020 ND	0.020	ND 0.020	ND	0.020 NI	D 0.020	ND 03	020 ND	0.020	ND 0.02	ND	0.040	0.02	20 ND	0.020	ND	0.020 NE	0.020	ND 0	0.020 ND	0.020	ND 0.0	20 ND	0.020	ND 0.020	ND ND	0.020 ND	0.020	ND 0.020	ND 0.02	ND 0	02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.02	ND 0.02	ND 0.02	ND 0.02	ND 0.	.102 ND	0.02 ND	0.02 ND
Perchlorate	0.0049	NR NR	NR	NR N	t NR	NR NR	NR NR	NR NR	NR	NR NR	NR	NR 0.004	ND	0.0040 NI	D 0.0040	ND 0.0	040 ND	0.0040	ND 0.004	0 ND	0.020	ND 0.00	40 ND	0.0040	ND	0.040 NE	0.0040	ND 0.	10040 ND	0.0040	ND 0.0	140 ND	0.0040	ND 0.004	0 ND 0	0.0040 ND	0.0040	ND 0.0040	ND 0.004	ND 0.	04 ND	0.004 ND	0.004 ND	0.004	ND 0.004	ND 0.004	ND 0.004	ND 0.004	ND 0.004	4 ND 0.6	.004 ND	0.004 ND	0.004 ND
Selenium	0.05	0.0025 ND	0.0025	ND 0.0	3 ND	0.0025 NE	0.0025	ND 0.002	15 ND	0.0025 ND	0.0025	0.0079 0.0025	ND	0.0025 NI	D 0.0025	ND 0.0	025 ND	0.0025	ND 0.002	5 ND	0.0025	ND 0.00	125 ND	0.0025	ND (1.0025 0.00	4 0.0025	ND 0.	10025 ND	0.0025	ND 0.0	125 ND	0.0025	ND ^ 0.002	5 ND (0.0025 ND	0.0025	ND 0.0025	ND 0.002	ND 0.0	025 ND	0.0025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025 0.	10043 0.0025	5 ND 0.0	.0025 ND	0.0025 ND	0.0025 ND
Silver	0.05	0.00050 ND	0.00050	ND 0.0	25 ND	0.00050 NE	0.00050	ND 0.0005	50 ND	0.00050 ND	0.00050	ND 0.0005) ND (0.00050 NI	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	0 ND	0.00050	ND 0.000	050 ND	0.00050	ND 0	.00050 NE	0.00050	ND^ 0.1	.00050 ND	0.00050	ND 0.00	050 ND	0.00050	ND 0.0005	0 ND 0	0.00050 ND	0.00050	ND 0.00050	ND 0.000	0 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.0005 ND	0.0005 ND	0.0005 ND
Sulfate	400.0	50 210	25	87 1	52	50 120	50	170 25	130	20 110	50	180 50	130	50 15	0 25	99	25 72	20	74 20	54	100	460 10) 59	20	73	100 60	5.0	25	10 31	10	41 1	0 48	20	70 10	23	10 50	10	43 20	57 20	110 :	10 43	20 31	20 26	20	39 20	16 20	29 20	63 20	89 25	83 1	15 140	100 260	25 190
Thallium	0.002	0.0020 ND	0.0020	ND 0.0	20 ND	0.0020 NE	0.0020	ND 0.002	20 ND	0.0020 ND	0.0020	ND 0.0020	ND	0.0020 NI	D 0.0020	ND 0.0	020 ND	0.0020	ND 0.002) ND	0.0020	ND 0.00	20 ND	0.0020	ND (10020 NE	0.0020	ND 0.	10020 ND	0.0020	ND 0.0	120 ND	0.0020	ND 0.002	0 ND 0	0.0020 ND	0.0020	ND 0.0020	ND 0.002	ND 0.	02 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.002	2 ND 0.5	.002 ND	0.002 ND	0.002 ND
Total Dissolved Solids	1,200	10 670	10	990 1	580	10 690	0 10	800 10	1000	10 740	10	710 10	730	10 83	0 10	860	10 740	10	560 10	740	13	100 10	0 610	10	560	10 200	10	760	10 540	10	470 1	0 740	10	810 10	450	10 450	10	810 10	800 10	780	0 520	10 480	10 560	10	930 10	420 10	470 10	750 10 1	1100 30	650 ?	30 800	10 990	10 1300
Vanadium	0.049	NR NR	NR	NR N	NR NR	NR NR	NR NR	NR NR	NR	NR NR	NR	NR 0.0050	ND	0.0050 NI	D 0.0050	ND 0.0	050 ND	0.0050	ND 0.005) ND	0.0050	ND 0.00	50 ND	0.0050	ND (10050 NE	0.0050	ND 0.	10050 ND	0.0050	ND 0.0	150 ND	0.0050	ND 0.005	0 ND 0	0.0050 ND	0.0050	ND 0.0050	ND 0.005	ND 0.	05 ND	0.005 ND*	0.005 ND	0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.005	i ND 0.5	.005 ND	0.005 ND	0.005 ND
Zinc	5.0	0.020 ND	0.020	ND 0.	0 ND	0.020 NE	0.020	ND 0.020	0 ND	0.020 ND	0.020	ND 0.020	ND	0.020 NI	D 0.020	ND 0.	020 ND	0.020	ND 0.02	ND	0.020 0	.080 0.02	20 ND	0.020	ND	0.020 0.02	5 0.020	ND 0	0.020 ND	0.020	ND 0.0	20 ND	0.020	ND 0.020) ND	0.020 ND	0.020	ND 0.020	ND 0.020	ND 0	02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.02	ND 0.02	ND 0.02	ND 0.02	. ND 0	3.02 ND	0.02 ND	0.02 ND
Benzene	0.005	NR NR	NR	NR N	t NR	NR NR	NR NR	NR NR	NR	NR NR	NR	NR 0.0005	ND 0	0.00050 NI	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	0 ND	0.0005	ND 0.00	05 ND	0.0005	ND (1.0005 0.00	2 0.0005	0.002 0.	10005 ND	0.0005	ND 0.0	05 ND	0.0005	ND 0.000	5 ND 0	0.0005 0.000	59 0.0005	ND 0.0005	ND 0.000	ND 0.0	005 0.0022	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND 0.0	.0005 ND	0.0005 ND	0.0005 ND
BETX	11.705	NR NR	NR	NR N	NR NR	NR NR	NR NR	NR NR	NR	NR NR	NR	NR 0.0025	NS	0.0025 NI	D 0.0025	ND 0.0	025 ND	0.0025	ND 0.002	5 ND	0.002	ND 0.00	02 ND	0.002	ND	0.002 0.00	2 0.002	0.002 0	0.002 ND	0.002	ND 0.0	02 ND	0.002	0.0016 0.002	ND ND	0.002 0.022	69 0.002	ND 0.002	ND 0.002	ND 0.0	025 0.0249	0.0025 0.0016	0.0025 ND	0.0025	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	5 ND 0.0	.0025 ND	0.0025 ND	0.0025 ND
pH	6.5 - 9.0	NA 7.75	NA	7.29 N	7.70	NA 7.3.	2 NA	7.38 NA	7.49	NA 7.64	NA	6.80 NA	7.40	NA 7.4	16 NA	7.17 5	IA 7.28	NA	7.22 NA	9.17	NA	1.17 NJ	A 7.28	NA	7.19	NA 7.5	NA	7.26	NA 7.47	NA	6.95 N	A 7.08	NA	7.05 NA	6.88	NA 7.04	i NA	6.95 NA	7.37 NA	7.56 N	A 7.41	NA 7.47	NA 7.45	NA	7.38 NA	7.41 NA	7.01 NA	7.25 NA 1	7.10 NA	. 6.97 N	NA 7.14	NA 7.10	NA 7.14
Temperature	NA	NA 12.70) NA	13.06 N	13.15	NA 12.2	0 NA 1	12.71 NA	14.64	NA 16.68	NA	15.09 NA	12.82	NA 11.	10 NA	11.95 N	IA 13.86	NA	13.43 NA	10.89	NA 1	1.71 NJ	A 20.49	NA	15.79	NA 9.4	NA	17.90	NA 22.15	9 NA	14.00 N	A 7.88	NA	14.82 NA	21.32	NA 19.4	7 NA	11.98 NA	17.31 NA	11.55 N	A 18.27	NA 14.62	NA 14.20	NA	13.80 NA	12.40 NA	11.31 NA	3.30 NA 1	12.80 NA	. 13.20 N	NA 12.90	NA 11.70	NA 12.90
Conductivity	NA	NA 1.17	NA	1.80 N	0.99	NA 0.80	0 NA	0.88 NA	1.40	NA 1.05	NA	0.95 NA	0.91	NA 1.0	15 NA	1.031 N	IA 0.97	NA	0.83 NA	0.91	NA	2.71 NJ	A 1.08	NA	1.01	NA 2.8	NA	1.57	NA 0.98	NA	0.86 N	A 0.81	NA	1.28 NA	1.16	NA 0.65) NA	0.98 NA	1.14 NA	0.804 5	A 0.854	NA 0.691	NA 1.062	NA	2.200 NA	0.850 NA	8.020 NA	.112 NA 1	1.860 NA	1.297 N	NA 1.880	NA 1.570	NA 2.151
Dissolved Oxygen	NA	NA NM	NA	7.82 N	8.00	NA 6.00	6 NA	6.57 NA	7.68	NA 7.22	NA	8.19 NA	9.83	NA 7.7	3 NA	5.33 N	IA 4.75	NA	3.69 NA	4.94	NA	1.72 NJ	A 5.91	NA	3.52	NA 1.0	NA	3.82	NA 3.84	NA	3.86 N	A 5.38	NA	5.09 NA	4.83	NA 3.68	8 NA	5.62 NA	7.88 NA	5.69 N	A 5.48	NA 5.97	NA 5.22	NA	6.50 NA	48.30 NA	6.97 NA	7.14 NA 9	9.68 NA	6.97 N	NA 3.88	NA 5.92	NA 7.60
ORP	NA	NA NM	NA	192.6 N	196.0	NA -47.	0 NA 1	119.0 NA	130.0	NA 132.0	NA	211.0 NA	101.0	NA 136	i.1 NA	6.2 N	IA 30.5	NA	-49.3 NA	-64.9	NA	15.2 NJ	A 76.5	NA	28.8	NA -114	1 NA	-9.9	NA -19.0) NA	146.3 N	A 41.1	NA	-15.4 NA	22.7	NA 65.0) NA	100.1 NA	9.2 NA	33.5 N	A 85.3	NA 83.5	NA 112.6	NA ·	-291.4 NA	190.0 NA	-24.4 NA	77.6 NA 1	139.8 NA	185.2 N	NA 189.0	NA 70.4	NA 186.3
										-																									· · · ·									· · · · · ·			· · · · · · · · · · · · · · · · · · ·						

New Souldware and Child Strategies and Strategies a

							-											-										-																									
Sample: MW-09	Date	12/6/201	0 3/23/	/2011 6	6/14/2011	9/14/2011	12/7/20	11 3/1	5/2012	6/19/2012	9/19/	2012	12/20/2012	3/5/201	13 5/23	3/2013	7/22/2013	10/15/2	013 2/	17/2014	5/1/2014	8/18	/2014	10/23/2014	2/10	0/2015	5/27/2015	8/4	/2015	10/27/2015	2/9/2	2016	5/11/2016	8/30/2016	11/1	/2016 2/8	2017	4/25/2017	2/20/2018	8/1/2018	10/16/2018	2/5/2019	/ 5/7/20	.019 8/7	//2019 1	1/7/2019	2/12/2020	5/20/2020	8/5/2020	10/22/202	20 3/2/202	21 5/17/	/2021
Parameter	Standards	DL Re	suk DL	Result DI	L Result	DL Resul	t DL R	esult DL	Result	DL Res	ult DL	Result I	DL Result	DL F	Result DL	Result	DL Resul	t DL	Result DL	Result	DL Resu	k DL	Result	DL Resu	ak DL	Result	DL Resu	h DL	Result	DL Resul	t DL	Result I	DL Result	DL Resu	ult DL	Result DL	Result	DL Result	DL Result	DL Result	DL Result	DL Rer	sult DL	Result DL	Result D	IL Result	DL Result	DL. Result	DL Resu	# DL Re	esult DL F	Result DL	Result
Antimony	0.006	0.0030 N	D 0.0030	ND 0.00	130 ND	0.0030 ND	0.0030	ND 0.0030) ND	0.0030 N	D 0.0030	ND 0.0	0030 ND	0.0030	ND 0.0030	ND 0.	.0030 ND	0.0030	ND 0.003	ND	0.0030 ND	0.0030	ND	0.0030 ND	0.0030	ND	0.0030 ND	0.0030	ND (0.0030 ND	0.0030	ND 0.0	0030 ND	0.0030 ND	D 0.0030	ND 0.0030	ND^ 0.	0030 ND	0.0030 ND	0.003 ND	0.003 ND	0.003 NF	D 0.003	ND 0.003	ND 0.0'	03 ND	0.003 ND	0.003 ND	0.003 ND	0.003 N	ND 0.003	ND 0.003	ND
Arsenic	0.010	0.0010 N	D 0.0010	ND 0.00	150 ND	0.0010 ND	0.0010	ND 0.0010) ND	0.0010 0.00	0100 0.0010	ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.	.0010 ND	0.0010	ND 0.001	ND	0.0010 ND	0.0010	ND	0.0010 ND	0.0010	ND	0.0010 ND	0.0010	ND (0.0010 ND	0.0010	0.0014 0.0	0050 ND ^	0.0010 0.002	21 0.0010	0.0013 0.0010	0.0011 F1 0.	0050 ND	0.0010 0.0025	0.001 0.0013	0.001 0.0013	0.001 0.00	.023 0.001	0.0042 0.001	0.0016 0.0	01 0.0047	0.001 0.0038	0.001 0.0062	0.001 0.00*	i 0.001 0.f	.034 0.001 0	.0043 0.001	0.0025
Barium	2.0	0.0025 0.	031 0.0025	0.029 0.00	0.032	0.0025 0.025	0.0025 0	0.002	5 0.021	0.0025 0.0	21 0.0025	0.022 0.0	0025 0.021	0.0025	0.016 0.0025	0.017 0.	.0025 0.017	0.0025	0.019 0.002	0.022	0.0025 0.02	0.0025	0.018	0.0025 0.01	7 0.0025	0.029	0.0025 0.018	8 0.0025	0.013 (0.0025 0.014	0.0025	0.013 0.0	0025 0.017	0.0025 0.015	15 0.0025	0.014 0.0025	0.012 0	013 0.014	0.0025 0.017	0.0025 0.0083	0.0025 0.011	0.0025 0.0	J11 0.0025	0.012 0.0025	i 0.0084 0.0 ^r	025 0.012	0.0025 0.01	0.0025 0.013	0.0025 0.01	0.0025 0.0	.086 0.0025 f	0.015 0.0025	0.012
Beryllium	0.004	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 ND	0.0010	ND 0.0010) ND	0.0010 N	D 0.0010	ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.	.0010 ND	0.0010	ND 0.001	ND ^	0.0010 ND	0.0010	ND	0.0010 ND	0.0010	ND	0.0010 ND	0.0010	ND (0.0010 ND	0.0010	ND ^ 0.0	0010 ND	0.0010 ND '	0.0010	ND 0.0010	ND ^ 0.	0010 ND	0.0010 ND	0.001 ND	0.001 ND*	0.001 N ⁷	D 0.001	ND 0.001	ND 0.0	01 ND	0.001 ND	0.001 ND ^	0.001 ND	0.001 N ²	D^ 0.001	ND 0.001	ND
Boron	2.0	0.050 0	.36 0.050	0.32 0.02	50 0.29	0.050 0.35	0.050	0.050	0.38	0.050 0.3	4 0.050	0.59^ 0.	050 0.44	0.050	0.36 0.050	0.30 0	0.29	0.050	0.29 0.050	0.30	0.050 0.27	0.050	0.29	0.050 0.24	4 0.050	0.30	0.050 0.37	0.050	0.38	0.050 0.33	0.050	0.36 0.1	.050 0.40	0.050 0.72	2 0.050	0.47 0.050	0.34 0	.050 0.30	0.050 0.65	0.05 0.29	0.05 0.27	0.05 0.7	.35 0.05	0.45 0.05	0.33 0/	05 0.73	0.05 0.33	0.05 0.3	0.05 0.29	0.05 0	J.37 0.05	0.47 0.05	0.29
Cadmium	0.005	0.00050 N	D 0.00050	ND 0.00	025 ND	0.00050 ND	0.00050	ND 0.0005	0 0.00059	0.00050 N	D 0.00050	0.00065 0.0	0050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND	0.00050 ND	0.00050	0.0019 0	0.00050 ND	0.00050	ND 0	1.00050 ND	0.00050	ND 0.0	0050 ND	0.00050 ND	D 0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 N ^r	D 0.0005	ND 0.0005	5 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 0.0	.0021 0.0005	ND 0.0005	ND
Chloride	200.0	10 1	40 10	230 10	0 290	10 190	10	190 10	170	10 25	0 10	160	10 150	10	190 10	290	10 280	10	280 10	270	10 340	10	270	10 230	0 50	390	10 340	10	230	10 220	10	170 2	2.0 23	2.0 19	9 10	110 10	150	10 180	2.0 16	10 210	10 210	10 14	40 10	57 10	180 I ^r	0 23	10 75	10 6.1 F1	10 140	- 10 ľ	190 2	7 10	180
Chromium	0.1	0.0050 N	D 0.0050	ND 0.03	25 ND	0.0050 ND	0.0050	ND 0.0050) ND	0.0050 N	D 0.0050	ND 0.0	0050 ND	0.0050	ND 0.0050	ND 0.	.0050 ND	0.0050	ND 0.005	ND	0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND (0.0050 ND	0.0050	ND 0.0	0050 ND	0.0050 ND	D 0.0050	ND 0.0050	ND 0.0	0050 ND	0.0050 ND	0.005 ND	0.005 ND	0.005 0.0	J05 0.005	ND 0.005	ND 0.0	05 ND	0.005 ND	0.005 ND	0.005 ND	0.005 0./	.028 0.005	ND 0.005	ND
Cobalt	1.0	0.0010 0.0	047 0.0010	0.0034 0.00	0.0062	0.0010 0.011	0.0010 0	0075 0.0010	0.0021	0.0010 0.00	0.0010	0.0022 0.0	0010 0.002	0.0010 0	0.0024 0.0010	0.0076 0.	.0010 0.006	3 0.0010	0.001	0.0044	0.0010 0.003	5 0.0010	0.0063	0.0010 0.004	45 0.0010	0.047	0.0010 0.01	7 0.0010	0.011	0.0010 0.016	0.0010	0.034 0.0	0010 0.050	0.0010 0.034	34 0.0010	0.016 0.0010	0.0089 0.	0010 0.023	0.0010 0.057	0.001 0.021	0.001 0.022	0.001 0.0	.033 0.001	0.059 0.001	0.031 0.0	01 0.065	0.001 0.032	0.001 0.04	0.001 0.01	6 0.001 0. ^r	.046 0.001 r	0.044 0.001	0.024
Copper	0.65	0.0020 N	D 0.0020	ND 0.0	10 ND	0.0020 0.002	5 0.0020	ND 0.0020) ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020	ND 0.0020	ND 0.	.0020 0.002	5 0.0020	ND 0.002	ND	0.0020 ND	0.0020	ND	0.0020 ND	0.0020	0.011	0.0020 0.002	3 0.0020	ND (0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020 ND	D 0.0020	ND 0.0020	ND ^ 0.	0020 ND ^	0.0020 ND	0.002 ND	0.002 ND	0.002 N ^r	D 0.002	ND 0.002	ND 0.0	02 ND	0.002 ND	0.002 ND	0.002 ND	0.002 0.	.041 0.002	ND 0.002	ND
Cyanide	0.2	0.010 N	D 0.010	ND 0.0	10 ND	0.010 ND	0.010	ND 0.010	ND	0.010 N	D 0.010	ND 0.	010 ND	0.010	ND 0.010	ND 0	0.010 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND	0.010 ND	0.010	ND	0.010 ND	0.010	ND	0.010 ND	0.010	ND 0.	.010 ND	0.010 ND	D 0.010	ND 0.010	ND 0	.010 ND	0.010 ND	0.01 ND	0.01 ND	0.01 N ⁰	D 0.01	ND 0.01	ND 0/	01 ND	0.01 ND	0.01 ND	0.005 0.007	3 0.01 1	ND 0.005	ND 0.005	ND
Fluoride	4.0	0.10 0	.61 0.10	0.52 0.1	10 0.47	0.10 0.39	0.10	0.10	0.45	0.10 0.4	8 0.10	0.48 0	.10 0.45	0.10	0.46^ 0.10	0.40 (0.10 0.47	0.10	0.53 0.10	0.56	0.10 0.50	0.10	0.56	0.10 0.55	5 0.10	0.51	0.10 0.44	0.10	0.27	0.10 0.35	0.10	0.45 0	0.10 0.31	0.10 0.26	6 0.10	0.30 0.10	0.36 0	0.10 0.31	0.10 0.54	0.1 0.38	0.1 0.43	0.1 0./	.46 0.1	0.57 0.1	0.41 0	.1 0.63	0.1 0.52	0.1 0.71	0.1 0.67	0.1 0	1.66 0.1	0.62 0.1	0.46
Iron	5.0	0.10 N	D 0.10	0.18 0.5	50 7.3	0.10 3.8	0.10	1.5 0.10	5.5	0.10 8.	0 0.10	4.7 0	10 13	0.10	15 0.10	160 (0.10 50	0.10	25 0.10	12	0.10 8.4	0.10	130	0.10 45	0.10	23	0.10 140	0.10	ND	0.10 170	0.10	ND 2	2.0 3400	0.10 ND	D 1.0	900 1.0	250 0	0.50 1000	2.0 3700	1 750	1 530	1 12	200 1	2,700 1	630 1	1 1800	1 960	1 1900	10 400	0.5 9	970 10 2	2000 ^ 10	620
Lead	0.0075	0.00050 N	D 0.00050	ND 0.00	050 ND	0.00050 ND	0.00050	ND 0.0005	0 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND	0.00050 ND	0.00050	0.0010 0	0.00050 ND	0.00050	ND 0	.00050 ND	0.00050	ND 0.0	0050 ND	0.00050 ND	D 0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	5 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 0.1	.036 0.0005	ND 0.0005	ND
Manganese	0.15	0.0025 1	.1 0.0025	1.6 0.0	13 0.95	0.0025 0.82	0.0025	0.002	5 1.3	0.0025 1.	2 0.0025	0.68 0.0	0025 0.44	0.0025	0.43 0.0025	1.6 0.	.0025 0.81	0.0025	0.52 0.002	0.34	0.0025 0.30	0.0025	0.72	0.0025 0.38	8 0.0025	0.54	0.0025 0.66	0.0025	1.4 (0.0025 0.79	0.0025	2.3 0.0	.050 6.0	0.0025 3.7	7 0.0025	1.6 0.0025	0.61 0.	0025 1.9	0.050 5.8	0.0025 1.3	0.0025 0.96	0.0025 2.	.1 0.0025	4.2 0.0025	s 1.4 0.0 ^r	025 4.4	0.0025 2.2	0.0025 3	0.0025 0.96	0.0025 2	2.3 0.0025	3.5 0.0025	1.4
Mercury	0.002	0.00020 N	D 0.00020	ND 0.00	020 ND	0.00020 ND	0.00020	ND 0.0002	0 ND	0.00020 N	D 0.00020	ND 0.0	0020 ND	0.00020	ND 0.00020	ND 0.0	00020 ND	0.00020	ND 0.0002	0 ND	0.00020 ND	0.00020	ND	0.00020 ND	0.00020	ND (0.00020 ND	0.00020	ND* 0	1.00020 ND	0.00020	ND 0.0	0020 0.00032	0.00020 0.0005	096 0.00020	ND 0.00020	ND 0.0	00020 ND	0.00020 0.0002	0.0002 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.0002	2 ND 0.0	002 ND	0.0002 ND	0.0002 ND	0.0002 ND	0.0002 Y	ND 0.0002	ND 0.0002	ND
Nickel	0.1	0.0020 0.0	0.0020	0.0072 0.0	10 0.013	0.0020 0.014	0.0020 (0.0020	0.0054	0.0020 0.00	0.0020	0.010 0.0	0.0059	0.0020 0	0.0065 0.0020	0.014 0.	.0020 0.012	2 0.0020	0.002	0.0057	0.0020 0.005	7 0.0020	0.013	0.0020 0.007	79 0.0020	0.039	0.0020 0.020	6 0.0020	0.021	0.0020 0.025	0.0020	0.071 0.0	0020 0.17	0.0020 0.14	4 0.0020	0.045 0.0020	0.015 0.	0020 0.060	0.0020 0.22	0.002 0.046	0.002 0.03	0.002 0.0	377 0.002	0.2 0.002	0.051 0.0	02 0.22	0.002 0.084	0.002 0.13	0.002 0.03	s 0.002 C	0.1 0.002	0.15 0.002	0.051
Nitrogen/Nitrate	10.0	0.10 N	D 0.10	ND 0.1	10 0.97	0.10 0.36	0.10	0.22 0.10	ND	0.10 N	D 0.10	0.22 0	.10 0.22	0.10	0.75 0.10	ND (0.10 0.24	0.10	0.11 0.10	0.34	0.10 0.12	0.10	0.11	0.10 ND	0.10	ND	0.10 ND	0.10	ND	0.10 ND	0.10	ND 0	10 ND	0.10 ND	D 0.10	ND 0.10	ND 0	0.10 ND	0.10 ND	0.1 ND	0.1 ND	0.1 N ⁷	D 0.1	ND 0.1	ND 0	.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 N	ND 0.1	ND 0.1	ND
Nitrogen/Nitrate, Nitri	NA	0.10 N	D ^A 0.10	ND 0.1	10 0.97	0.10 0.36	0.10	0.22 0.10	ND	0.10 N	D 0.10	0.22 0	.10 0.22	0.10	0.75 0.10	ND (0.10 0.24	0.10	0.11 0.10	0.34	0.10 0.12	0.10	0.11	0.10 ND	0.10	ND	0.10 ND	0.10	ND	0.10 ND	0.10	ND 0	10 ND	0.10 ND	D 0.10	ND 0.10	ND 0	0.10 ND	0.10 ND	0.1 ND	0.1 ND	0.1 N ^r	D 0.1	ND 0.1	ND 0	.1 ND	0.1 ND F1	0.1 ND	5 ND	0.1 N	ND 0.1	ND 0.1	ND
Nitrogen/Nitrite	NA	0.020 N	D 0.020	ND 0.03	20 ND	0.020 ND	0.020	ND 0.020	ND	0.020 N	D 0.020	ND 0.	020 ND	0.020	ND 0.020	ND 0	1.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND	0.020 ND	0.020	ND	0.020 ND	0.020	0.020	0.020 ND	0.020	ND 0.	020 ND	0.020 ND	D 0.020	ND 0.020	ND 0	.020 ND	0.020 ND	0.02 ND	0.02 ND	0.02 N ⁷	D 0.02	ND 0.02	ND 0/	02 ND	0.02 ND	0.02 ND	0.02 ND	0.02 N	ND 0.02	ND 0.02	ND
Perchlorate	0.0049	NR N	IR NR	NR NE	R NR	NR NR	NR	NR NR	NR	NR NI	R NR	NR 0.	004 ND	0.020	ND 0.0040	ND 0.	.0040 ND	0.0040	ND 0.004	ND	0.0040 ND	0.0040	ND	0.0040 ND	0.0040	ND	0.0040 ND	0.0040	ND (0.0040 ND	0.080	ND 0.	.040 ND	0.0040 ND F	F1 0.0040	ND 0.0040	ND 0.	0040 ND ^	0.020 ND	0.004 ND	0.004 ND	0.004 N ^r	D 0.004	ND 0.004	ND 0.0	04 ND	0.004 ND	0.004 ND	0.004 ND	0.004 Y	ND 0.02	ND 0.04	ND
Selenium	0.05	0.0025 N	D 0.0025	ND 0.0	13 ND	0.0025 ND	0.0025	ND 0.002	5 ND	0.0025 N	D 0.0025	ND 0.0	0025 ND	0.0025	ND 0.0025	ND 0.	.0025 ND	0.0025	ND 0.002	ND	0.0025 ND	0.0025	ND	0.0025 ND	0.0025	ND	0.0025 ND	0.0025	ND (0.0025 ND	0.0025	ND 0.0	0025 ND ^	0.0025 ND	D 0.0025	ND 0.0025	ND 0	.013 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 N ^r	D 0.0025	ND 0.0025	5 ND 0.0	025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 0.0	.0027 0.0025	ND 0.0025	ND
Silver	0.05	0.00050 N	D 0.00050	ND 0.00	125 ND	0.00050 ND	0.00050	ND 0.0005	0 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND	0.00050 ND	0.00050	ND (0.00050 ND*	0.00050	ND 0	1.00050 ND	0.00050	ND 0.0	0050 ND	0.00050 ND	D 0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 N ⁷	D 0.0005	ND 0.0005	5 ND 0.0'	005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 N	ND 0.0005	ND 0.0005	ND
Sulfate	400.0	250 10	900 250	1100 10	0 580	130 750	50	130 500	1600	500 150	00 250	1600 2	50 1100	250	700 500	1300	250 1000	130	680 100	560	130 560	250	880	250 960	0 250	820	500 1100	500	1900	500 1100	1000	3600 2	500 12000	2500 8100	00 500	3600 500	1200 1	000 4700	2500 16000	500 2500	500 1900	500 34	400 500	8900 500	2800 5/	00 7100	500 ND	500 6800	250 200	250 1	500 1000	7400 1000	3300
Thallium	0.002	0.0020 N	D 0.0020	ND 0.00	020 ND	0.0020 ND	0.0020	ND 0.0020) ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020	ND 0.0020	ND 0.	.0020 ND	0.0020	ND 0.002	ND	0.0020 ND	0.0020	ND	0.0020 ND	0.0020	ND	0.0020 ND	0.0020	ND (0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020 ND	D 0.0020	ND 0.0020	ND 0.	0020 ND	0.0020 ND	0.002 ND	0.002 ND	0.002 N ^r	D 0.002	ND 0.002	ND 0.0	02 ND	0.002 ND	0.002 ND	0.002 ND	0.002 N	ND 0.002	ND 0.002	ND
Total Dissolved Solids	1,200	10 20	900 10	2400 10	0 1500	10 1700	10 2	400 10	2600	10 28	00 10	2900	10 2000	10	1700 13	3000	10 2300	10	1700 10	1600	10 1700	10	2100	10 170	0 10	2400	17 3100	0 10	3900	10 2600	13	4700	50 19000	100 1500	00 17	6100 10	2800	25 6500	50 20000	13 4900	10 3700	10 59	300 10	15000 10	5000 F	0 11000	10 6600	10 11000	150 290	150 3	3000 50 7	12000 25	5600 H
Vanadium	0.049	NR N	IR NR	NR NE	R NR	NR NR	NR	NR NR	NR	NR NI	R NR	NR 0.0	0050 ND	0.0050	ND 0.0050	ND 0.	.0050 ND	0.0050	ND 0.005	ND	0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND (0.0050 ND	0.0050	ND 0.0	0050 ND	0.0050 ND	D 0.0050	ND 0.0050	ND 0.	0050 ND	0.0050 ND	0.005 ND	0.005 ND*	0.005 N	D 0.005	ND 0.005	ND 0.0	05 ND	0.005 ND	0.005 ND	0.005 ND	0.005 0.1	.026 0.005	ND 0.005	ND
Zinc	5.0	0.020 N	D 0.020	ND 0.1	10 ND	0.020 ND	0.020	ND 0.020	ND	0.020 N	D 0.020	ND 0.	020 ND	0.020	0.023 0.020	0.049 0	1.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	0.021	0.020 ND	0.020	0.072	0.020 0.025	8 0.020	0.17	0.020 0.050	0.020	0.70 0.	.020 2.3	0.020 1.8	8 0.020	0.45 0.020	0.092 0	0.10 0.73	0.020 3.0	0.02 0.56	0.02 0.3	0.02 0.7	.74 0.02	4.1 0.02	0.6 0.4	02 2.6	0.02 1	0.02 2.4	0.02 0.42	. 0.02 1	1.2 0.02	1.8 0.02	0.47
Benzene	0.005	NR N	IR NR	NR NE	R NR	NR NR	NR	NR NR	NR	NR NI	R NR	NR 0.0	0005 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050	ND 0.0005	0 ND	0.0005 ND	0.0005	ND	0.0005 ND	0.0005	ND	0.0005 ND	0.0005	ND (0.0005 ND	0.0005	ND 0.0	0005 ND	0.0005 ND	D 0.0005	ND 0.0005	ND 0.	0005 ND	0.0005 ND	0.0005 0.0039	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	5 ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 ¥	ND 0.0005	ND 0.0005	ND
BETX	11.705	NR N	IR NR	NR NE	R NR	NR NR	NR	NR NR	NR	NR NI	R NR	NR 0.0	0025 NS	0.0025	ND 0.0025	ND 0.	.0025 ND	0.0025	ND 0.002	ND	0.002 ND	0.002	ND	0.002 0.000	06 0.002	0.0006	0.002 0.000	6 0.002	ND	0.002 0.0009	3 0.002	ND 0.1	002 0.00062	0.002 ND	D 0.002	0.00823 0.002	ND 0	.002 ND	0.0025 0.0006	0.0025 0.0252	0.0025 0.0011	0.0025 N	D 0.0025	ND 0.0025	5 ND 0.0	025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 ¥	ND 0.0025	ND 0.0025	ND
pH	6.5 - 9.0	NA 7	.03 NA	7.19 NJ	A 7.01	NA 6.90	NA	7.19 NA	6.86	NA 6.8	15 NA	6.82	A 6.80	NA	7.05 NA	6.34	NA 6.6	NA	6.69 NA	8.83	NA 6.71	NA	6.62	NA 6.93	3 NA	6.92	NA 6.59	NA	6.52	NA 6.37	NA	6.03 N	NA 5.73	NA 3.36	6 NA	6.19 NA	5.74 1	NA 6.13	NA 6.19	NA 7.30	NA 6.47	NA 6.	.16 NA	5.70 NA	6.07 N	IA 5.53	NA 5.74	NA 5.41	NA 6.2/	5 NA 5	5.73 NA	5.92 NA	6.03
Temperature	NA	NA 11	.94 NA	12.78 NJ	A 15.68	NA 15.90	NA 1	1.94 NA	14.29	NA 15.	10 NA	16.23	A 15.41	NA	12.20 NA	12.19	NA 14.92	NA NA	15.21 NA	8.4	NA 9.84	NA	21.87	NA 15.3	5 NA	10.12	NA 19.34	4 NA	22.72	NA 13.47	NA	7.31 N	NA 13.73	NA 22.44	44 NA	18.36 NA	9.03	NA 15.44	NA 11.22	NA 22.20	NA 14.34	NA 12	260 NA	12.40 NA	13.10 N	A 12.17	NA 12.60	NA 12.10	NA 13.9	0 NA 1'	7.70 NA	12.50 NA	12.80
Conductivity	NA	NA 2	97 NA	3.30 N/	A 2.25	NA 1.88	NA	1.54 NA	2.31	NA 2.5	10 NA	2.56	A 1.93	NA	1.59 NA	2.522	NA 2.17	NA	1.81 NA	1.02	NA 1.89	NA	2.91	NA 2.51	1 NA	2.50	NA 3.51	NA	4.04	NA 3.53	NA	3.29 N	NA 9.49	NA 8.79	9 NA	4.93 NA	2.14	NA 4.95	NA 7.519	NA 3.619	NA 2.920	NA 4.9	982 NA	13.650 NA	4.050 N	A 7.426	NA 4.789	NA 7.209	NA 3.08	0 NA 4	.030 NA	8.104 NA	4.881
Dissolved Oxygen	NA	NA N	M NA	7.49 NJ	A 0.49	NA 0.33	NA	0.43 NA	2.22	NA 1.7	1 NA	6.15	A 4.26	NA	4.86 NA	0.40	NA 1.22	NA	1.81 NA	1.24	NA 1.49	NA	0.41	NA 0.76	6 NA	1.26	NA 0.81	NA	1.00	NA 0.95	NA	0.60 N	NA 1.90	NA 1.55	8 NA	0.52 NA	3.13	NA 4.22	NA 1.35	NA 1.32	NA 2.45	NA L	.58 NA	0.48 NA	0.36 N	A 1.18	NA 5.13	NA 1.17	NA NS	NA 0	3.47 NA	0.12 NA	0.09
ORP	NA	NA N	M NA	102.2 NJ	A -43.5	NA -114.0	NA -	40.0 NA	2.0	NA -32	.0 NA	-22.0	(A -39.0	NA	-30.3 NA	-85.9	NA -61.5	NA	-78.4 NA	-125.7	NA 25.7	NA	-108.7	NA -85.	1 NA	-82.0	NA -965	9 NA	-108.0	NA -24.9	NA	-19.6 N	NA -12.9	NA 332.9	.9 NA	-94.2 NA	34.9	NA -51.1	NA 50.1	NA 35.8	NA 39.2	NA 4	41.8 NA	-402.4 NA	-25.1 N	A 35.2	NA 24.8	NA 25.9	NA -44.	5 NA -4	91.4 NA	-28.2 NA	-34.6
																															· · · · ·																						·

Sample: MW-1	Date	12/6	/2010	3/23/2011	6/14/2011	9/14/20	11 12/7/2	011 3	3/15/2012	6/19/2012	2 9/19/2	2012 1	12/20/2012	3/5/2013	5/22/	2013 7/	23/2013	10/15/2013	2/17/.	2014	5/1/2014	8/18/20	014 10	/23/2014	2/11/2015	5 5/28	/2015	8/4/2015	10/28/	2015 2/	10/2016	5/12/2016	8/31/201	6 11/2	/2016	2/7/2017	4/26/2017	2/21/2018	8/1/2018	10/17/2018	2/5/2019	5/7/201	9 8/6/20	019 11/7/2	019 2/12/202	0 5/20/2020	J 7/30/2	2020 10/2	.2/2020 ?	3/2/2021	5/18/2021
Parameter	Standards	DL	Result I	DL Result	DL Result	t DL I	tesult DL	Result D	DL Result	DL Res	sult DL	Result I	DL Result	DL Re	sult DL	Result DL	. Result	DL Rest	it DL	Result I	DL Result	DL	Result DL	Result	DL Re	suit DL	Result	DL Resu	h DL	Result DL	Result	DL Rest	h DL R	esult DL	Result	DL Result	DL Result	DL Result	DL Result	DL Result	DL Result	DL Re	esult DL I	Result DL	Result DL Re	ault DL Res	sult DL	Result DL	Result D'	JL Result	JL Result
Antimony	0.006	0.0030	ND 0.0	030 ND	0.0030 ND	0.0030	ND 0.0030	ND 0.00	030 ND	0.0030 N	D 0.0030	ND 0.0	0030 ND	0.0030 N	D 0.0030	ND 0.00	30 ND	0.0030 NE	0.0030	ND 0.0	0030 ND	0.0030	ND 0.003	0 ND	0.0030 N	D 0.0030	ND	0.0030 ND	0.0030	ND 0.0030) ND	0.0030 ND	0.0030	ND 0.0030	ND 0.	0030 ND	0.0030 ND	0.0030 ND	0.003 ND	0.003 ND	0.003 ND	0.003 N	ND 0.003	ND 0.003	ND 0.003 N	D 0.003 N	D 0.003	ND 0.003	ND 0.0	303 ND 0	003 ND
Arsenic	0.010	0.0010	ND 0.0	010 ND	0.0050 ND	0.0010	ND 0.0010	0.0012 0.00	010 ND	0.0010 N	D 0.0010	0.0012 0.0	0.001 0.001	0.0010 0.0	012 0.0010	0.0011 0.00	10 ND	0.0010 NE	0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	0 ND^	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0010) ND	0.0050 ND	^ 0.0010	ND 0.0010	ND 0.	0010 ND	0.0010 ND	0.0010 ND	0.001 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001 N	D 0.001 N	D 0.001	ND 0.001	ND 0.0'	J01 ND 0	.001 ND
Barium	2.0	0.0025	0.050 0.0	025 0.051	0.0025 0.039	0.0025	0.0025	0.036 0.00	025 0.040	0.0025 0.0	43 0.0025	0.040 0.0	0025 0.041	0.0025 0.0	40 0.0025	0.041 0.00	25 0.042	0.0025 0.04	4 0.0025	0.047 0.0	0025 0.043	0.0025	0.038 0.002	5 0.044	0.0025 0.0	150 0.0025	0.046	0.0025 0.035	5 0.0025	0.041 0.002	6 0.042	0.0025 0.05	5 0.0025 0	0.0025	0.034 0.	0025 0.046	0.0025 0.038	0.0025 0.042	0.0025 0.042	0.0025 0.04	0.0025 0.044	0.0025 0	0.05 0.0025	0.037 0.0025	0.033 0.0025 0.0	44 0.0025 0.0	45 0.0025	0.036 0.0025	0.04 0.00	.025 0.053 0.4	J025 0.064
Beryllium	0.004	0.0010	ND 0.0	010 ND	0.0010 ND	0.0010	ND 0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.0	0010 ND	0.0010 N	D 0.0010	ND 0.00	10 ND	0.0010 NE	0.0010	ND ^ 0.0	0010 ND	0.0010	ND 0.001	0 ND	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0010) ND ^	0.0010 ND	0.0010 2	D^ 0.0010	ND 0.	0010 ND ^	0.0010 ND	0.0010 ND	0.001 ND	0.001 ND*	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001 N	D 0.001 NE	>^ 0.001	ND 0.001	ND 0.0	301 ND 0	.001 ND
Boron	2.0	0.050	0.50 0.5	050 0.54	0.050 0.54	0.050	0.41 0.050	0.52 0.2	25 0.52	0.050 0.5	53 0.050	0.43^ 0.0	050 0.49	0.050 0.	49 0.050	0.25 0.05	0 0.30	0.050 0.4	0.050	0.40 0.4	.050 0.39	0.050	0.48 0.05	0 0.56	0.050 0.	52 0.050	0.35	0.050 0.32	0.050	0.44 0.050	0.43	0.050 0.3	0.050	0.050	0.49 0	0.39	0.050 0.29	0.050 0.31	0.05 0.27	0.05 0.6	0.05 0.25	0.05 0	0.49 0.05	0.35 0.05	0.29 0.05 0	29 0.05 0.	.7 0.05	0.24 0.05	0.29 0.0	.05 0.36 f	.05 0.36
Cadmium	0.005	0.00050	ND 0.0	0050 ND	0.0025 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0	0050 ND	0.00050	ND 0.0005	50 ND	0.00050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	0 ND (0.00050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 5	ND 0.0005	ND 0.0005	ND 0.0005 N	D 0.0005 N	.D 0.0005	ND 0.0005	ND 0.00	.005 ND 0.	J005 ND
Chloride	200.0	10	200	10 300	2.0 7.1	10	170 10	180 1	10 180	10 25	90 10	230	10 200	10 2	10 10	240 10	210	10 220	10	240	10 300	10	200 10	170	10 2	10 10	320	10 180	10	210 10	200	10 290	10	150 10	120	10 200	10 210	10 170	10 240	10 170	10 210	10 4	410 10	200 10	130 10 1	0 10 25	.50 2	170 10	230 4'	40 290	40 350
Chromium	0.1	0.0050	ND 0.0	050 ND	0.025 ND	0.0050	ND 0.0050	ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.0	0050 ND	0.0050 N	D 0.0050	ND 0.00	50 ND	0.0050 NE	0.0050	ND 0.0	0050 ND	0.0050	ND 0.005	0 ND	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	ND 0.0050) ND	0.0050 ND	0.0050	ND 0.0050	ND 0.	0050 ND	0.0050 ND	0.0050 ND	0.005 ND	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.005	ND 0.005 N	D 0.005 N	D 0.005	ND 0.005	ND 0.0	305 ND 0	.005 ND
Cobalt	1.0	0.0010	ND 0.0	010 ND	0.0050 ND	0.0010	ND 0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.0	0010 ND	0.0010 N	D 0.0010	ND 0.00	10 ND	0.0010 NE	0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	0 ND	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0010) ND	0.0010 ND	0.0010	ND 0.0010	ND 0.	0010 ND	0.0010 ND	0.0010 ND	0.001 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.001	ND 0.001 N	D 0.001 N	.D 0.001	ND 0.001	ND 0.0	301 ND 0	.001 ND
Copper	0.65	0.0020	ND 0.0	020 ND	0.010 ND	0.0020	ND 0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020 N	D 0.0020	ND 0.00	20 ND	0.0020 NE	0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	10 ND	0.0020 N	D 0.0020	ND	0.0020 0.002	7 0.0020	ND 0.002) ND	0.0020 ND	0.0020	ND 0.0020	ND 0.	0020 ND	0.0020 ND ^	0.0020 ND	0.002 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.002	0.0029 0.002 N	D 0.002 N	.D 0.002	ND 0.002	ND 0.0	J02 ND 0	.002 ND
Cyanide	0.2	0.010	ND 0.0	010 ND	0.010 ND	0.010	ND 0.010	ND 0.0	010 ND	0.010 N	D 0.010	ND 0.0	010 ND	0.010 N	D 0.010	ND 0.01	0 ND	0.010 NE	0.010	ND 0.	010 ND	0.010	ND 0.010	0 ND	0.010 N	D 0.010	ND	0.010 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND 0	1010 ND	0.010 ND	0.010 ND	0.01 ND	0.01 ND	0.01 ND	0.01	ND 0.01	ND 0.01	ND 0.01 N	D 0.01 N	D 0.005	ND 0.01	ND 0.0	005 ND 0	.005 ND
Fluoride	4.0	0.10	0.43 0	.10 0.39	0.10 0.42	0.10	0.41 0.10	0.45 0.1	10 0.41	0.10 0.4	46 0.10	0.50 0.	1.10 0.47	0.10 0.4	0.10	0.50 0.1	0 0.48	0.10 0.5	0.10	0.47 0.	10 0.43	0.10	0.49 0.10	0.46	0.10 0.	41 0.10	0.43	0.10 0.46	0.10	0.41 0.10	0.45	0.10 0.44	0.10	0.44 0.10	0.43 (0.10 0.36	0.10 0.35	0.10 0.38	0.1 0.39	0.1 0.4	0.1 0.41	0.1 0	0.4 0.1	0.35 0.1	0.37 0.1 0	44 0.1 0.4	42 0.1	0.42 0.1	0.41 0	x1 0.41 ·	J.1 0.39
Iron	5.0	0.10	ND 0	10 ND	0.50 ND	0.10	ND 0.10	ND 0.1	10 ND	0.10 N	D 0.10	ND 0	10 ND	0.10 N	D 0.10	0.32 0.1	0 ND	0.10 NE	0.10	ND 0	10 ND	0.10	ND 0.10) ND	0.10 N	D 0.10	ND	0.10 ND	0.10	ND 0.10	0.13	0.10 ND	^ 0.10	ND 0.10	ND (0.10 ND	0.10 ND	0.10 0.24	0.1 ND	0.1 ND	0.1 ND	0.1 0	0.44 0.1	ND 0.1	0.25 0.1 N	D 0.1 1.	.8 0.1	ND 0.1	ND 0	.1 ND /	J.1 ND
Lead	0.0075	0.00050	ND 0.0	0050 ND	0.00050 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	0 ND (0.00050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 1	ND 0.0005	ND 0.0005	ND 0.0005 N	D 0.0005 N	D 0.0005	ND 0.0005	ND 0.0	.005 ND 0	J005 ND
Manganese	0.15	0.0025	0.12 0.0	025 0.0076	0.013 ND	0.0025	ND 0.0025	ND 0.00	025 ND	0.0025 N	D 0.0025	ND 0.0	0025 ND	0.0025 N	D 0.0025	0.010 0.00	25 ND	0.0025 NE	0.0025	ND 0.0	0025 ND	0.0025	ND 0.002	5 ND	0.0025 0.0	049 0.0025	ND	0.0025 ND	0.0025	ND 0.002	0.0037	0.0025 ND	0.0025	ND 0.0025	ND 0.	0025 ND	0.0025 ND	0.0025 0.0057	0.0025 ND	0.0025 0.0028	0.0025 ND	0.0025	ND 0.0025	ND 0.0025	0.0029 0.0025 N	D 0.0025 0.00	.034 0.0025	ND 0.0025	ND 0.00	.025 ND 0.	J025 ND
Mercury	0.002	0.00020	ND 0.0	0020 ND	0.00020 ND	0.00020	ND 0.00020	ND 0.00	0020 ND	0.00020 N	D 0.00020	ND 0.0	0020 ND	0.00020 N	D 0.00020	ND 0.000	20 ND	0.00020 NE	0.00020	ND 0.0	0020 ND	0.00020	ND 0.0002	20 ND	0.00020 N	D 0.00020	ND 0	0.00020 ND	0.00020	ND 0.0002	0 ND (0.00020 ND	0.00020	ND 0.00020	ND 0.0	00020 ND	0.00020 ND	0.00020 ND	0.0002 ND	0.0002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.0002	ND 0.0002 N	D 0.0002 N	D 0.0002	ND 0.0002	ND 0.0 ⁴	002 ND 0	J002 ND
Nickel	0.1	0.0020	0.0052 0.0	020 0.0029	0.010 ND	0.0020 (0.0087 0.0020	0.0024 0.00	020 ND	0.0020 N	D 0.0020	0.0021 0.0	0020 0.0024	0.0020 0.0	022 0.0020	ND 0.00	20 0.0027	0.0020 0.003	4 0.0020	0.0020 0.0	0020 0.0023	0.0020	ND 0.002	0 0.0020	0.0020 0.0	037 0.0020	0.0023	0.0020 ND	0.0020	ND 0.002) ND	0.0020 0.003	2 0.0020	ND 0.0020	ND 0.	0020 ND	0.0020 ND	0.0020 ND	0.002 ND	0.002 0.0021	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002 0.0	023 0.002 N	D 0.002	ND 0.002	ND 0.0	302 ND 0	.002 0.0027
Nitrogen/Nitrate	10.0	0.10	0.39 0	10 2.3	0.10 2.7	0.10	2.6 0.10	1.4 0.1	10 ND	0.10 1.	.8 0.10	1.5 0	1.10 1.5	0.10 1	.6 0.10	2.8 0.1	0 3.0	0.10 2.3	0.10	2.2 0	10 2.8	0.10	0.72 0.10	1.7	0.10 2	.4 0.10	2.9	0.10 1.5	0.10	2.4 0.10	2.2	0.10 2.6	0.10	1.4 0.10	2.3 (0.10 1.9	0.10 2.3	0.10 1.4	0.1 1.7	0.1 0.96	0.1 1.3	0.1 1	2.4 0.1	ND 0.1	1.8 0.1 1	7 0.1 1.	.4 0.1	2.8 0.1	3.8 0	A1 2.2 /	J.1 2.7
Nitrogen/Nitrate,	ini NA	0.10	0.39 0.	20 2.3	0.20 2.7	0.20	2.6 0.10	1.4 0.1	10 ND	0.10 1.	.8 0.10	1.5 0	1.10 1.5	0.10 1	.6 0.20	2.8 0.5	0 3.0	0.50 2.3	0.50	2.2 0	50 2.8	0.10	0.72 0.10	1.7	0.20 2	4 0.20	2.9	0.10 1.5	0.20	2.4 0.20	2.2	0.20 2.6	0.10	1.4 0.50	2.3 (0.10 1.9	0.20 2.3	0.10 1.4	0.1 1.7	0.1 0.96	0.1 1.3	0.1 1	2.4 0.1	2.3 0.1	1.8 0.1 1	7 0.1 1.	.4 0.5	2.8 0.5	3.8 0	1.5 2.2	0.5 2.7
Nitrogen/Nitrite	NA	0.020	ND 0.0	020 ND	0.020 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.02	10 ND	0.020 NE	0.020	ND 0.	.020 ND	0.020	ND 0.02	0 ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0	1020 ND	0.020 ND	0.020 ND	0.02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.02	ND 0.02 N	D 0.02 N	D 0.02	ND 0.02	ND 0.4	.02 ND (.02 ND
Perchlorate	0.0049	NR	NR N	R NR	NR NR	NR	NR NR	NR N	R NR	NR N	R NR	NR 0.	.004 ND	0.0040 N	D 0.0040	ND 0.00	40 ND	0.0040 NE	0.0040	ND 0.0	0040 ND	0.0040	ND 0.004	0 ND	0.0040 N	D 0.0040	ND	0.0040 ND	0.0040	ND 0.0040) ND	0.0040 ND	0.0040	ND 0.0040	ND 0.	0040 ND	0.0040 ND	0.0040 ND	0.004 ND	0.004 ND	0.004 ND	0.004	ND 0.004	ND 0.004	ND 0.004 N	D 0.004 N	4D 0.004	ND 0.004	ND 0.0	.004 ND (.004 ND
Selenium	0.05	0.0025	ND 0.0	025 ND	0.013 ND	0.0025	ND 0.0025	ND 0.00	025 ND	0.0025 N	D 0.0025	ND 0.0	0025 ND	0.0025 N	D 0.0025	ND 0.00	25 ND	0.0025 NE	0.0025	ND 0.0	0025 ND	0.0025	ND 0.002	5 0.0025	0.0025 N	D 0.0025	ND	0.0025 ND	0.0025	ND 0.002	ND	0.0025 ND	0.0025	ND 0.0025	ND 0.	0025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 ND	0.0025 0.0	0041 0.0025	ND 0.0025	ND 0.0025 N	D 0.0025 0.00	035 0.0025	ND 0.0025	ND 0.0	1025 ND 0	J025 ND
Silver	0.05	0.00050	ND 0.0	0050 ND	0.0025 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0	0050 ND	0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND^ 0	0.00050 ND	0.00050	ND 0.0005	0 ND (0.00050 ND	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 ND	0.00050 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 1	ND 0.0005	ND 0.0005	ND 0.0005 N	D 0.0005 N	D 0.0005	ND 0.0005	ND 0.0	.005 ND 0	J005 ND
Sulfate	400.0	50	130	90 130	25 89	25	100 50	190 5	90 250	50 17	70 50	110 2	25 120	25 8	4 25	120 50	130	50 140	25	55 2	20 120	20	73 50	110	25 9	6 20	50	25 97	25	86 25	110	25 12	25	80 20	92	25 88	25 89	50 100	25 110	25 120	25 85	25 1	100 25	95 25	ND 25 1	10 25 17	/0 25	88 15	94 2	25 150	25 210
Thallium	0.002	0.0020	ND 0.0	020 ND	0.0020 ND	0.0020	ND 0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020 N	D 0.0020	ND 0.00	20 ND	0.0020 NE	0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	9 ND	0.0020 N	D 0.0020	ND	0.0020 ND	0.0020	ND 0.002) ND	0.0020 ND	0.0020	ND 0.0020	ND 0.	0020 ND	0.0020 ND	0.0020 ND	0.002 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.002	ND 0.002 N	D 0.002 N	D 0.002	ND 0.002	ND 0.0	002 ND 0	.002 ND
Total Dissolved S	lids 1,200	10	860	10 1100	10 980	10	730 10	890 1	10 890	10 11	00 10	870	10 860	10 8	30 10	850 10	910	10 880	10	870	10 890	10	910 10	740	10 8	10 10	1100	10 710	10	810 10	800	10 920	10	670 10	690	10 810	10 750	10 820	10 1000	10 750	10 910	10 1	000 10	810 10	660 10 8	10 10 10	.00 30	720 30	850 F	10 1100	10 1100
Vanadium	0.049	NR	NR N	R NR	NR NR	NR	NR NR	NR N	IR NR	NR N	R NR	NR 0.0	0050 ND	0.0050 N	D 0.0050	ND 0.00	50 ND	0.0050 NE	0.0050	ND 0.0	0050 ND	0.0050	ND 0.005	0 ND	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	ND 0.0050) ND	0.0050 ND	0.0050	ND 0.0050	ND 0.	0050 ND	0.0050 ND	0.0050 ND	0.005 ND	0.005 ND*	0.005 ND	0.005 1	ND 0.005	ND 0.005	ND 0.005 N	D 0.005 N	D 0.005	ND 0.005	ND 0.0	005 ND 0	.005 ND
Zinc	5.0	0.020	ND 03	020 ND	0.10 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.	020 ND	0.020 N	D 0.020	ND 0.02	0 ND	0.020 NE	0.020	ND 0.	020 ND	0.020	ND 0.02	0 ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0	020 ND	0.020 ND	0.020 ND	0.02 ND	0.02 ND	0.02 ND	0.02 N	ND 0.02	ND 0.02	ND 0.02 N	D 0.02 N	4D 0.02	ND 0.02	ND 0./	.02 ND (.02 ND
Benzene	0.005	NR	NR N	R NR	NR NR	NR	NR NR	NR N	R NR	NR N	R NR	NR 0.0	0005 ND	0.00050 N	D 0.00050	ND 0.000	50 ND	0.00050 NE	0.00050	ND 0.0	0005 ND	0.0005	ND 0.000	6 ND	0.0005 N	D 0.0005	ND	0.0005 ND	0.0005	ND 0.000	ND	0.0005 ND	0.0005	ND 0.0005	0.00076 0.	0005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.0005 N	ND 0.0005	ND 0.0005	ND 0.0005 N	D 0.0005 N	D 0.0005	ND 0.0005	ND 0.0	,005 ND 0	0005 ND
BETX	11.705	NR	NR N	R NR	NR NR	NR	NR NR	NR N	R NR	NR N	R NR	NR 0.0	0025 NS	0.0025 N	D 0.0025	ND 0.00	25 ND	0.0025 NE	0.0025	ND 0.	.002 ND	0.002	ND 0.003	2 ND	0.002 N	D 0.002	ND	0.002 ND	0.002	0.00075 0.002	ND	0.002 0.000	99 0.002	ND 0.002	0.02226 0	1002 ND	0.002 ND	0.0025 0.0012	0.0025 0.0024	0.0025 ND	0.0025 ND	0.0025 N	ND 0.0025	ND 0.0025	ND 0.0025 N	D 0.0025 N	D 0.0025	ND 0.0025	ND 0.0	,025 ND 0	0025 ND
pH	6.5 - 9.0	NA	7.65 N	IA 7.20	NA 7.40	NA	7.34 NA	7.51 N.	IA 7.35	NA 7.3	20 NA	7.38 N	NA 7.38	NA 7.	55 NA	7.11 NA	7.26	NA 7.1	NA	4.39 N	NA 7.07	NA	6.74 NA	7.12	NA 7.	26 NA	7.27	NA 6.92	NA	7.04 NA	7.17	NA 7.00	NA	595 NA	6.99	NA 6.99	NA 7.27	NA 7.62	NA 7.35	NA 7.30	NA 7.31	NA 7	.17 NA	7.4 NA	7.4 NA 7	28 NA 6.	.9 NA	6.95 NA	7.11 N	A 7.19	NA 7.16
Temperature	NA	NA	9.26 N	IA 12.40	NA 12.05	NA	11.23 NA	11.26 N	IA 13.08	NA 14.	.44 NA	13.53 N	NA 12.60	NA 10	40 NA	12.70 NA	14.21	NA 13.0	4 NA	11.47 N	NA 11.23	NA	16.85 NA	13.74	NA 6.	83 NA	15.02	NA 17.43	2 NA	12.90 NA	7.17	NA 13.6	0 NA 1	9.33 NA	15.66	NA 11.40	NA 16.65	NA 8.03	NA 17.55	NA 14.62	NA 12.5	NA 1	1.8 NA	12.3 NA	11.89 NA 1	.9 NA 12	25 NA	12.3 NA	12.7 N	A 12.2	NA 14
Conductivity	NA	NA	1.51 N	IA 1.88	NA 1.58	NA	0.98 NA	0.99 N.	IA 1.04	NA L	35 NA	1.13 N	NA 1.07	NA 1.	04 NA	0.964 NA	1.1	NA 1.0	NA	0.84 N	NA 1.18	NA	1.14 NA	1.18	NA 0.	92 NA	1.37	NA 1.19	NA	1.40 NA	0.85	NA 1.2	NA	1.25 NA	0.95	NA 0.98	NA 1.09	NA 0.760	NA 1.147	NA 1.113	NA 1.39	NA 2	.74 NA	1.45 NA	1.085 NA 1.	33 NA 1.0	.61 NA	1.405 NA	1.51 N	A 1.747	NA 1.95
Dissolved Oxyger	NA	NA	NM N	IA 7.18	NA 8.70	NA	7.42 NA	7.12 N	IA 7.08	NA 7.1	13 NA	6.93 N	NA 8.74	NA 9.	16 NA	6.14 NA	4.59	NA 4.2	NA	4.82 N	NA 6.31	NA	6.99 NA	6.16	NA 6.	50 NA	7.41	NA 5.39	NA	6.49 NA	7,45	NA 6.7	NA	7.13 NA	5.97	NA 6.48	NA 8.46	NA 8.84	NA 7.00	NA 8.75	NA 5.60	NA 7	.18 NA	5.45 NA	9.30 NA 7	73 NA 8.0	.65 NA	7.68 NA	4.79 N	A 4.70	NA 6.87
ORP	NA	NA	NM N	IA 191.6	NA 210.0	NA	-37.0 NA	143.0 N.	IA 210.0	NA 14	7.0 NA	146.0 N	NA 112.0	NA 12	9.5 NA	35.6 NA	30.2	NA -48	9 NA	201.1 N	NA 109.8	NA	87.8 NA	77.3	NA 13	8.3 NA	134.8	NA 15.3	NA	113.8 NA	121.8	NA 54.3	NA	90.4 NA	86.8	NA 127.9	NA 28.7	NA 47.9	NA 89.1	NA 34.6	NA 127.7	NA -2	31.3 NA	167.5 NA	-12.2 NA 16	6.3 NA 133	.3.9 NA	138.6 NA	172.5 N	A 41.8	NA 147.7
																						I							_						L							- L L L									استعاده

-		-																																																
Sample: MW-11	Date	12/6/2	2010 3/	23/2011	6/14/2011	9/14/2011	12/7/20	11 3/1	5/2012	6/19/2012	9/19/201	2 12/20/2	2012 3/5	5/2013	5/23/2013	7/23/2013	10/15/20	3 2/21/	2014	5/1/2014	8/19/2014	10/2	3/2014	2/11/2015	5/28/201	15 8	4/2015	10/29/2015	2/11/2	016 5	5/11/2016	9/1/2016	11/2/2016	5 2/7/2017	4/26/20	17 2/2	1/2018 8/1/2	018 10/17	7/2018 2/5/	/2019	5/7/2019	8/6/2019	11/7/2019	2/13/202	20 5/20/202	20 7/30/2	2020 10/22/	2020 3/2/2	2021 5/15	.8/2021
Parameter	Standards	DL.	Result DL	Result I	DL Result	DL Res	it DL R	esult DL	Result	DL Result	DL R	sult DL	Result DL	Result	DL Result	DL. Resu	It DL R	sult DL.	Result D	L Result	DL R	sult DL	Result	DL Result	DL B	lesult DL	Result	DL Res	it DL	Result DL	L Result I	DL Result	DL Re	sult DL Re	sult DL	Result DL	Result DL	Result DL	Result DL	Result D	DL Result	DL Result	DL Result	a DL R	esult DL Rr	esult DL	Result DL	Result DL	Result DL	Result
Antimony	0.006	0.0030	ND 0.003	0 ND 0.	015 ND	0.0030 NE	0.0030	ND 0.0030) ND 0	0030 ND	0.0030	D 0.0030	ND 0.0030	ND 0.	0030 ND	0.0030 ND	0.0030 2	D 0.0030	ND 0.0	60 ND	0.0030 2	D 0.0030	ND	0.0030 ND	0.0030	ND 0.003	0 ND	0.0030 NI	0.0030	ND 0.003	60 ND 0.	0030 ND	0.0030 N	D 0.0030 N	D^ 0.0030	ND 0.003	ND 0.003	ND 0.003	ND 0.003	ND 0.0	003 ND	0.003 ND	0.003 ND	0.003 ?	ND 0.003 ?	ND 0.003	ND 0.003	ND 0.003	ND 0.003	, ND
Arsenic	0.010	0.0010	0.0013 0.001	0 0.0016 0.	0050 ND	0.0010 0.00	16 0.0010 0.	.0019 0.0010	0 0.0017 0	0.0010 0.0017	0.0010 0.0	018 0.0010	0.0018 0.0010	0.0018 0.	0010 0.0017	0.0010 0.001	4 0.0010 0.0	015 0.0010	ND 0.0	0.0017	0.0010 0.0	016 0.0010	0.0012	0.0010 ND	0.0010 0	.0015 0.001	0 0.0026	0.0010 NI	0.0010	0.0018 0.001	10 0.0015 0.0	0010 0.0017	0.0010 0.0	016 0.0010 0.0	0014 0.0010	0.0014 0.001	0.0020 0.001	0.0012 0.001	0.0015 0.001	0.0013 0.0	001 0.0019	0.001 0.0011	0.001 ND	0.001 0./	.0014 0.001 0.0	.0023 0.001	0.0011 0.001	ND 0.001	0.0013 0.001	ND
Barium	2.0	0.0025	0.064 0.002	5 0.076 0.	013 0.051	0.0025 0.05	4 0.0025 0	0.0025	0.067 0	0025 0.046	0.0025 0.	060 0.0025	0.063 0.0025	0.060 0.	0025 0.045	0.0025 0.04	0 0.0025 0.	060 0.0050	0.090 0.0	25 0.053	0.0025 0.	048 0.0025	0.059	0.0025 0.10	0.0025 0	1.059 0.002	5 0.062	0.0025 0.00	9 0.0025	0.074 0.003	25 0.066 0.0	0025 0.056	0.0025 0.0	062 0.0025 0.	078 0.0025	0.051 0.002	0.084 0.0025	0.046 0.0025	0.064 0.0025	0.063 0.0	0025 0.058	0.0025 0.051	0.0025 0.033	0.0025 0	:065 0.0025 0	.085 0.0025	0.051 0.0025	0.055 0.0025	0.089 0.0025	5 0.078
Beryllium	0.004	0.0010	ND 0.001	0 ND 0.	0010 ND	0.0010 NE	0.0010	ND 0.0010	0 ND 0	0010 ND	0.0010 ?	D 0.0010	ND 0.0010	ND 0:	010 ND	0.0010 ND	0.0010 2	D 0.0010	ND ^ 0.0	10 ND	0.0010 2	0.0010 D	ND	0.0010 ND	0.0010	ND 0.001	0 ND	0.0010 NI	0.0010	ND ^ 0.001	10 ND 0.	0010 ND ^	0.0010 N	D 0.0010 N	D^ 0.0010	ND 0.001	ND 0.001	ND 0.001	ND* 0.001	ND 0.0	001 ND	0.001 ND	0.001 ND	0.001 ?	ND 0.001 N	4D ^ 0.001	ND 0.001	ND 0.001	ND 0.001	ND
Boron	2.0	0.050	0.47 0.05	2.6 0.	050 2.2	0.050 1.1	0.050	1.2 0.25	1.4 (0.050 0.85	0.050 0.	s8^ 0.050	0.57 0.50	1.1 0	050 0.34	0.050 0.88	0.050 0	49 0.10	1.2 0.0	50 1.3	0.25	1.6 0.050	2.0	0.050 1.1	0.050	1.0 0.050	1.4	0.050 0.7	8 0.050	1.4 0.05	50 1.5 0	:050 1.6	0.050 1	.6 0.050 1	1.3 0.050	1.1 0.050	2.4 0.05	1.2 V 0.05	1.2 0.05	2.7 0.	0.98	0.05 1.1	0.05 0.29	0.05	1.4 0.05 0	1.51 0.05	0.86 0.05	0.44 0.05	1.2 0.05	0.67
Cadmium	0.005	0.00050	ND 0.000	50 ND 0.0	0025 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0.	00050 ND	0.00050 2	D 0.00050	ND 0.0005) ND 0.0	0050 ND	0.00050 ND	0.00050 2	D 0.00050	ND 0.00	150 ND	0.00050 2	D 0.00050	ND	100050 0.0077	7 0.00050	ND 0.0005	0 ND	0.00050 NI	0.00050	ND 0.000	150 ND 0.0	00050 ND	0.00050 N	D 0.00050 ?	D 0.00050	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005 ?	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND
Chloride	200.0	10	160 10	270	10 280	10 86	10	140 10	240	10 150	10 1	50 10	140 10	190	10 160	10 91	10 1	40 50	430 1	340	10 1	20 10	84	10 270	10	290 10	150	10 12	10	230 10	240	10 110	10 9	3 10 2	40 10	150 10	260 10	120 10	160 10	170 1	10 290	10 130	10 130	10 7	200 10 5	520 10	170 10	170 40	320 40	420
Chromium	0.1	0.0050	ND 0.005	0 ND 0.	025 ND	0.0050 NE	0.0050	ND 0.0050	0 ND 0	0050 ND	0.0050	D 0.0050	ND 0.0050	ND 03	0050 ND	0.0050 ND	0.0050 2	D 0.0050	ND 0.0	50 ND	0.0050 2	0.0050 G	ND	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 NI	0.0050	ND 0.002	50 ND 0.	0050 ND	0.0050 N	D 0.0050 3	D 0.0050	ND 0.005	ND 0.005	ND 0.005	ND 0.005	ND 0.0	005 ND	0.005 ND	0.005 ND	0.005 ?	ND 0.005 ?	ND 0.005	ND 0.005	ND 0.005	ND 0.005	, ND
Cobalt	1.0	0.0010	ND 0.001	0 ND 0.	0050 ND	0.0010 NE	0.0010	ND 0.0010) ND 0	0010 ND	0.0010	D 0.0010	ND 0.0010	ND 0.	0010 ND	0.0010 ND	0.0010 2	D 0.0010	ND 0.0	10 ND	0.0010 2	D 0.0010	ND	0.0010 0.033	0.0010 0	.0016 0.001	0 0.0015	0.0010 NI	0.0010	ND 0.001	10 ND 0.	0010 ND	0.0010 N	D 0.0010 ?	3D 0.0010	ND 0.001	ND 0.001	ND 0.001	ND 0.001	ND 0.0	001 ND	0.001 ND	0.001 ND	0.001	ND 0.001 ?	ND 0.001	ND 0.001	ND 0.001	ND 0.001	. ND
Copper	0.65	0.0020	ND 0.002	0 ND 0.	010 ND	0.0020 NE	0.0020	ND 0.0020) ND 0	0020 ND	0.0020 ?	D 0.0020	ND 0.0020	ND 0.	0020 ND	0.0020 0.01	7 0.0020 2	D 0.0020	ND 0.0	20 ND	0.0020 2	D 0.0020	ND	0.0020 0.16	0.0020 0	.0073 0.002	0 0.0022	0.0020 NI	0.0020	ND 0.002	20 ND 0.0	0020 ND	0.0020 N	D 0.0020 N	D^ 0.0020	ND ^ 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	002 ND	0.002 ND	0.002 0.0029	9 0.002 ?	ND 0.002 ?	ND 0.002	ND 0.002	ND 0.002	ND 0.002	. ND
Cyanide	0.2	0.010	ND 0.01) ND 0.	010 ND	0.010 NE	0.010	ND 0.010	ND 0	0.010 ND	0.010 ?	D 0.010	ND 0.010	ND 0	010 ND	0.010 ND	0.010 2	D 0.010	ND 0.0	10 ND	0.010	D 0.010	ND	0.010 ND	0.010	ND 0.010	ND ND	0.010 NI	0.010	ND 0.01	10 ND 0	.010 ND	0.010 N	D 0.010 N	D 0.010	ND 0.010	ND 0.01	ND 0.01	ND 0.01	ND 0.	101 ND	0.01 ND	0.01 ND	0.01 ?	ND 0.01 ?	ND 0.005	ND 0.01	ND 0.005	ND 0.005	, 0.0051
Fluoride	4.0	0.10	0.34 0.10	0.31 0	0.36	0.10 0.3	2 0.10 0	0.31 0.10	0.30	0.10 0.37	0.10 0	32 0.10	0.34 0.10	0.29^ (10 0.38	0.10 0.37	0.10 0	31 0.10	0.29 0.	0 0.32	0.10 0	37 0.10	0.38	0.10 0.33	0.10	0.35 0.10	0.38	0.10 0.3	0.10	0.34 0.10	0 0.39 0	0.10 0.34	0.10 0.	31 0.10 0	.30 0.10	0.28 0.10	0.29 0.1	0.29 0.1	0.27 0.1	0.27 0	0.1 0.34	0.1 0.24	0.1 0.37	0.1 (0.3 0.1 0	1.34 0.1	0.3 0.1	0.28 0.1	0.28 0.1	0.28
Iron	5.0	0.10	ND 0.10	ND 0	150 ND	0.10 NE	0.10	ND 0.10	ND	0.10 0.23	0.10 ?	D 0.10	0.42 0.10	0.15 (10 ND	0.10 ND	0.10 2	D 0.10	ND 0.	0 ND	0.10	D 0.10	ND	0.10 0.17	0.10	ND 0.10	ND	0.10 NI	0.10	0.12 0.10	0 ND 0	0.10 ND	0.10 N	D 0.10 ?	3D 0.10	ND 0.10	ND 0.1	ND 0.1	ND 0.1	ND 0).1 ND	0.1 ND	0.1 0.25	0.1 ?	ND 0.1 0	3.23 0.1	ND 0.1	ND 0.1	ND 0.1	ND
Lead	0.0075	0.00050	ND 0.000	50 ND 0.0	0050 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0:	00050 ND	0.00050	D 0.00050	0.0008 0.0005) ND 0.0	0050 ND	0.00050 ND	0.00050 2	D 0.00050	ND 0.00	150 ND	0.00050 2	D 0.00050	ND	0.023	0.00050	ND 0.0005	0 ND	0.00050 NI	0.00050	ND 0.000	150 ND 0.0	00050 ND	0.00050 N	D 0.00050 N	D 0.00050	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0	0005 ND	0.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005 ?	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND
Manganese	0.15	0.0025	0.052 0.002	5 0.0047 0.	013 ND	0.0025 0.00	3 0.0025 0.	.0047 0.0025	5 ND 0	0025 0.014	0.0025 ?	D 0.0025	0.042 0.0025	0.016 0.	0025 ND	0.0025 ND	0.0025 2	D 0.0025	ND 0.0	25 ND	0.0025 2	D 0.0025	ND	0.0025 0.27	0.0025	ND 0.002	5 0.49	0.0025 0.04	0 0.0025	0.0034 0.003	25 ND 0.0	0025 ND	0.0025 N	D 0.0025 3	3D 0.0025	ND 0.002	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0	0025 ND	0.0025 ND	0.0025 0.0029	9 0.0025 1	ND 0.0025 ?	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	5 ND
Mercury	0.002	0.00020	ND 0.000	20 ND 0.0	0020 ND	0.00020 NE	0.00020	ND 0.0002	0 ND 0:	00020 ND	0.00020	D 0.00020	ND 0.0002) ND 0.0	0020 ND	0.00020 ND	0.00020 2	D 0.00020	ND 0.00	120 ND	0.00020 2	(D 0.00020	ND	1.00020 ND	0.00020	ND 0.0002	0 ND *	0.00020 NI	0.00020	ND 0.000	120 ND 0.0	00020 ND	0.00020 N	D 0.00020 N	D 0.00020	ND 0.0002	ND 0.0002	ND 0.0002	ND 0.0002	ND 0.0	0002 ND	0.0002 ND	0.0002 ND	0.0002 7	ND 0.0002 7	ND 0.0002	ND 0.0002	ND 0.0002	ND 0.0002	2 ND
Nickel	0.1	0.0020	0.0022 0.002	0 ND 0.	010 ND	0.0020 NE	0.0020	ND 0.0020) ND 0	0020 ND	0.0020 ?	D 0.0020	0.0025 0.0020	0.0020 0.	0020 ND	0.0020 ND	0.0020 2	D 0.0020	ND 0.0	20 ND	0.0020 2	D 0.0020	0.0020	0.0020 0.16	0.0020 0	.0097 0.002	0 0.0099	0.0020 0.00	8 0.0020	0.0028 0.002	20 0.0031 0.0	0020 0.0020	0.0020 N	D 0.0020 N	D 0.0020	ND 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	002 ND	0.002 ND	0.002 ND	0.002 ?	ND 0.002 ?	ND 0.002	ND 0.002	ND 0.002	ND 0.002	. ND
Nitrogen/Nitrate	10.0	0.10	0.39 0.10	1.1 0	10 0.92	0.10 0.3	0.10	0.60 0.10	0.30	0.10 ND	0.10 0	36 0.10	0.46 0.10	1.1 (1.10 1.4	0.10 0.28	0.10 0	79 0.10	1.4 0.	0 1.3	0.10 0	25 0.10	0.59	0.10 ND	0.10	1.1 0.10	0.15	0.10 0.4	8 0.10	1.8 0.10	0 1.4 0	0.10 0.69	0.10 0.	58 0.10 1	1.2 0.10	1.1 0.10	1.5 0.1	0.41 0.1	0.66 0.1	0.92 0).1 1.4	0.1 0.34	0.1 1.8	0.1 0	3.79 0.1	2 0.1	0.85 0.1	0.59 0.1	1.1 0.1	1.4
Nitrogen/Nitrate, Nitr	NA	0.10	0.39 0.10	1.1 0	0.92	0.10 0.3	0.10	0.60 0.10	0.30	0.10 ND	0.10 0	36 0.10	0.46 0.10	1.1 (1.4	0.10 0.28	0.10 0	79 0.10	1.4 0.	0 1.3	0.10 0	25 0.10	0.59	0.10 ND	0.10	1.1 0.10	0.15	0.10 0.4	8 0.10	1.8 0.10	0 1.4 0	0.10 0.69	0.10 0.	58 0.10 1	1.2 0.10	1.1 0.10	1.5 0.1	0.41 0.1	0.66 0.1	0.92 0).1 1.4	0.1 0.34	0.1 1.8	0.1 0	J.79 0.1	2 0.1	0.85 0.1	0.59 0.1	1.1 0.1	1.4
Nitrogen/Nitrite	NA	0.020	ND 0.02) ND 0.	020 ND	0.020 NE	0.020	ND 0.020	ND 0	0.020 ND	0.020 ?	D 0.020	ND 0.020	ND 0	020 ND	0.020 ND	0.020 2	D 0.020	ND 0.0	20 ND	0.020 2	D 0.020	ND	0.020 ND	0.020	ND 0.020) ND	0.020 NI	0.020	ND 0.02	20 ND 0.	.020 ND	0.020 N	D 0.020 N	D 0.020	ND 0.020	ND 0.02	ND 0.02	ND 0.02	ND 0.	102 ND	0.02 ND F1	0.02 ND	0.02 ?	ND 0.02 ?	ND 0.02	ND 0.02	ND 0.02	ND 0.02	ND
Perchlorate	0.0049	NR	NR NR	NR	NR NR	NR NB	NR	NR NR	NR	NR NR	NR ?	R 0.004	ND 0.0040	ND 0.	0040 ND	0.0040 ND	0.0040 2	D 0.0040	ND 0.0	40 ND	0.0040 2	(D 0.0040	ND	0.0040 0.027	0.0040	ND 0.004	0 ND	0.0040 NI	0.0040	ND 0.004	40 ND 0	0.20 ND	0.0040 N	D 0.0040 N	D 0.0040	ND 0.004	ND 0.004	ND 0.004	ND 0.004	ND 0.0	004 ND	0.004 ND	0.004 ND	0.004 7	ND 0.004 7	ND 0.004	ND 0.004	ND 0.004	ND 0.004	, ND
Selenium	0.05	0.0025	ND 0.002	5 0.0054 0.	013 ND	0.0025 0.00	26 0.0025 0.	.0033 0.0025	0.0043 0	0025 0.0028	0.0025	D 0.0025	ND 0.0025	0.0043 0.	0025 0.0034	0.0025 ND	0.0025 1	D 0.0025	0.0041 0.0	25 0.0043	0.0025 0.0	0.0025	0.0040	0.0025 ND	0.0025 0	.0035 0.002	5 0.0050	0.0025 NI	0.0025	0.0040 0.002	25 0.0033 0.0	0025 0.0046	0.0025 N	D 0.0025 0.0	025 0.0025	0.0034 0.002	0.0077 0.0025	0032 F1 0.0025	0.0029 0.0025	0.0056 0.0	0.0056	0.0025 0.003	0.0025 ND	0.0025 0/	.0029 0.0025 0.f	.0039 0.0025	ND 0.0025	ND 0.0025	0.0035 0.0025	5 0.0025
Silver	0.05	0.00050	ND 0.000	50 ND 0.0	0025 ND	0.00050 NE	0.00050	ND 0.0005	0 ND 0.	00050 ND	0.00050 2	D 0.00050	ND 0.0005) ND 0.0	0050 ND	0.00050 ND	0.00050 2	D 0.00050	ND 0.00	150 ND	0.00050 2	D 0.00050	ND	100050 ND	0.00050	ND^ 0.0005	0 ND	0.00050 NI	0.00050	ND 0.000	150 ND 0.0	00050 ND	0.00050 N	D 0.00050 ?	3D 0.00050	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0	0005 ND	0.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005 ?	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	5 ND
Sulfate	400.0	50	140 50	150	25 110	25 110	50	160 25	140	50 150	50 1	00 50	150 50	110	25 100	25 100	25 1	10 25	130 2	5 100	25	91 50	120	100 290	25	84 50	110	50 17	50	140 50	150	50 120	25 1	30 25 9	90 25	100 50	190 25	84 50	93 50	91 5	50 81	50 78	50 ND	50 7	110 50	82 25	100 15	89 25	160 25	140
Thallium	0.002	0.0020	ND 0.002	0 ND 0.	0020 ND	0.0020 NE	0.0020	ND 0.0020	0 ND 0	0020 ND	0.0020 ?	D 0.0020	ND 0.0020	ND 03	0020 ND	0.0020 ND	0.0020 2	D 0.0020	ND 0.0	20 ND	0.0020 2	D 0.0020	ND	0.0020 ND	0.0020	ND 0.002	0 ND	0.0020 NI	0.0020	ND 0.002	20 ND 0.	0020 ND	0.0020 N	D 0.0020 3	3D 0.0020	ND 0.002	ND 0.002	ND 0.002	ND 0.002	ND 0.0	002 ND	0.002 ND	0.002 ND	0.002 ?	ND 0.002 ?	ND 0.002	ND 0.002	ND 0.002	ND 0.002	ND
Total Dissolved Solid	1,200	10	770 10	1000	10 710	10 590	10	790 10	850	10 760	10 7	40 10	730 10	770	10 670	10 570	10 6	90 10	1100 1	850	10 1	20 10	580	10 1300	10	860 10	700	10 74	10	880 10	920	10 660	10 6	40 10 8	30 10	620 10	1100 10	720 10	740 10	780 1	10 810	10 590	10 660	10 7	710 10 1	400 30	670 30	710 10	1000 10	1200
Vanadium	0.049	NR	NR NR	NR	NR NR	NR NB	NR	NR NR	NR	NR NR	NR ?	R 0.0050	0.0050 0.0050	ND 0.	0050 ND	0.0050 ND	0.0050 2	D 0.0050	ND 0.0	50 ND	0.0050 2	D 0.0050	ND	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 NI	0.0050	ND 0.002	50 ND 0.	0050 ND	0.0050 N	D 0.0050 ?	D 0.0050	ND 0.005	0.0053 0.005	ND 0.005	ND* 0.005	ND 0.0	005 ND	0.005 ND	0.005 ND	0.005 ?	ND 0.005 ?	ND 0.005	ND 0.005	ND 0.005	ND 0.005	, ND
Zinc	5.0	0.020	ND 0.02) ND 0	10 ND	0.020 NE	0.020	ND 0.020	ND 0	0.020 ND	0.020 ?	D 0.020	ND 0.020	ND 0	020 ND	0.020 ND	0.020 2	D 0.020	ND 0.0	20 ND	0.020 2	D 0.020	ND	0.020 0.056	0.020	ND 0.020	ND ND	0.020 NI	0.020	ND 0.02	20 ND 0.	.020 ND	0.020 N	D 0.020 N	D 0.020	ND 0.020	ND 0.02	ND 0.02	ND 0.02	ND 0.	02 ND	0.02 ND	0.02 ND	0.02 ?	ND 0.02 ?	ND 0.02	ND 0.02	ND 0.02	ND 0.02	ND
Benzene	0.005	NR	NR NR	NR	NR NR	NR NB	NR	NR NR	NR	NR NR	NR ?	R 0.0005	ND 0.0005) ND 0.0	0050 ND	0.00050 ND	0.00050 2	D 0.00050	ND 0.0	05 ND	0.0005	D 0.0005	ND	0.0005 ND	0.0005	ND 0.000	5 ND	0.0005 NI	0.0005	ND 0.000	05 ND 0.0	0005 ND	0.0005 0.0	016 0.0005 1	D 0.0005	ND 0.000	ND 0.0005	0.0029 0.0005	ND 0.0005	ND 0.0	0005 ND	0.0005 ND	0.0005 ND	0.0005 ?	ND 0.0005 ?	ND 0.0005	ND 0.0005	ND 0.0005	ND 0.0005	.5 ND
BETX	11.705	NR	NR NR	NR	NR NR	NR NB	NR	NR NR	NR	NR NR	NR ?	R 0.0025	NS 0.0025	ND 0:	0025 ND	0.0025 ND	0.0025 1	D 0.0025	ND 0.0	12 ND	0.002 2	4D 0.002	ND	0.002 ND	0.002	ND 0.003	ND ND	0.002 0.000	94 0.002	ND 0.00	02 0.0023 0	002 ND	0.002 0.0	394 0.002 N	D 0.002	ND 0.002	0.0018 0.0025	0.0106 0.0025	ND 0.0025	ND 0.0	0025 ND	0.0025 ND	0.0025 ND	0.0025 ?	ND 0.0025 ?	ND 0.0025	ND 0.0025	ND 0.0025	ND 0.0025	.5 ND
pH	6.5 - 9.0	NA	7.72 NA	7.23	NA 7.60	NA 7.3	8 NA	7.46 NA	7.38	NA 7.37	NA 7	36 NA	7.36 NA	7.60	NA 7.11	NA 7.33	NA 7	16 NA	9.25 N	A 7.17	NA 6	.78 NA	7.29	NA 7.16	NA	7.42 NA	7.40	NA 7.2	6 NA	7.15 NA	A 7.24 3	NA 7.20	NA 7.	18 NA 7	21 NA	7.47 NA	7.55 NA	7.39 NA	7.37 NA	7.33 N	NA 7.45	NA 7.42	NA 7.4	NA '	7.3 NA 7	7.12 NA	7.13 NA	7.11 NA	7.33 NA	7.22
Temperature	NA	NA	11.97 NA	13.49	NA 11.69	NA 12.1	8 NA 1	3.15 NA	14.22	NA 15.30	NA 1.	23 NA	12.83 NA	10.60	NA 12.10	NA 14.4	I NA I:	41 NA	10.38 N	A 10.97	NA I	5.58 NA	15.17	NA 8.04	NA 1	17.77 NA	17.05	NA 12.3	4 NA	6.49 NA	A 14.15 1	NA 18.10	NA 16	36 NA 11	2.91 NA	17.52 NA	9.05 NA	18.04 NA	14.41 NA	13.1 N	NA 10.9	NA 12.3	NA 11.89	/ NA J	13.7 NA 1	12.2 NA	12.1 NA	12.7 NA	12.5 NA	13.2
Conductivity	NA	NA	1.32 NA	1.69	NA 1.14	NA 0.7	NA (0.92 NA	1.12	NA 0.97	NA 0	97 NA	0.89 NA	0.96	NA 0.774	NA 0.68	NA 0	95 NA	1.20 N	A 1.25	NA 0	90 NA	0.95	NA 1.32	NA	1.45 NA	1.08	NA 1.1	NA NA	0.87 NA	A 1.19 1	NA 1.03	NA 0.	88 NA 1	.04 NA	0.98 NA	0.953 NA	0.965 NA	0.866 NA	1.212 N	NA 2.24	NA 1.05	NA 1.085	5 NA 1	.138 NA 2	.323 NA	1.332 NA	1.51 NA	1.702 NA	2.022
Dissolved Oxygen	NA	NA	NM NA	7.23	NA 8.65	NA 6.2	NA (6.74 NA	7.37	NA 7.09	NA 6	71 NA	8.66 NA	7.99	VA 5.38	NA 5.69	NA 3	26 NA	4.81 N	A 6.31	NA 5	.14 NA	3.80	NA 2.98	NA	5.44 NA	1.52	NA 8.4	5 NA	8.32 NA	A 8.21 1	NA 6.22	NA 4.	89 NA 4	91 NA	6.50 NA	7.72 NA	5.84 NA	8.17 NA	7.00 N	NA 10.94	NA 7.00	NA 9.30	NA 5	3.76 NA 1	1.05 NA	9.19 NA	4.79 NA	9.97 NA	10.34
ORP	NA	NA	NM NA	194.3	NA 200.8	NA -31.	0 NA 1	36.0 NA	208.0	NA 172.0	NA 1	2.0 NA	113.0 NA	167.1	NA 2.4	NA 26.5	NA -	8.4 NA	-51.0 N	A 106.7	NA 8	7.8 NA	69.4	NA 108.2	NA 1	121.5 NA	-25.7	NA 86.	NA	139.1 NA	A 48.6 3	NA 53.3	NA 7	3.7 NA 13	3.0 NA	25.2 NA	47.6 NA	88.9 NA	30.5 NA	122.0 N	NA -234.2	NA 163.4	NA -12.2	. NA 1'	.56.1 NA 1'	.39.8 NA	140.8 NA	172.5 NA	27.7 NA	152.2
														· · ·																																				

Attachment 9-4 – IL PE Stamp
CERTIFICATION 35 Ill. Adm. Code 845.630

In accordance with Section 35 III. Adm. Code 845.630(g), I hereby certify based on review of the information contained within the Initial Operating Permit Application for Joliet #29 Station dated October 29, 2021, the groundwater monitoring system has been designed and constructed to satisfy the requirements of 35 III. Adm. Code 845.630. For this site the minimum number of wells required is deemed sufficient based on the following: 1) The number of wells, placement and screened intervals are based on a hydrogeologic assessment performed for the site; 2) hydrogeologic considerations included aquifer characteristics affecting flow velocity and physical transport processes; 3) available historical groundwater flow data indicate consistent flow conditions over time; 4) Illinois Environmental Protection Agency (IEPA) approved the overall hydrogeologic assessment as part of a larger study.

Certified by: 10/29/21 Date:

Joshua Davenport, P.E. Professional Engineer Registration No.: 062-061945 KPRG and Associates, Inc.

Attachment 9-5 – CCR Compliance Statistical Approach

KPRG and Associates, Inc.

ILLINOIS STATE CCR RULE COMPLIANCE STATISTICAL APPROACH FOR GROUNDWATER DATA EVALUATION

Midwest Generation, LLC Joliet #29 Generating Station 1800 Channahon Road Joliet, Illinois

PREPARED BY:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

August 19, 2021

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

TABLE OF CONTENTS

SECTION/DESCRIPTION

PAGE

1.0	INTRODUCTION	1
2.0	STATISTICAL METHOD SELECTION and BACKGROUND DATA	
EVAI	LUATION	2
2.1	Outlier Testing	2
2.2	Spatial Variability	2
2.3	Temporal Variability	
2.4	Trend Testing	
2.5	Test of Normality	
2.6	Non-Detects	4
2.7	Prediction Limit Calculation for Normally Distributed Data	4
2.8	Prediction Limit Calculation for Non-Normally Distributed Data	5
3.0	GROUNDWATER MONITORING	6
4.0	CERTIFICATION	

FIGURE

Figure 1 – Monitoring Well Location Map

TABLE

Table 1 – Section 845.600 Parameters

1.0 INTRODUCTION

On April 21, 2021, the Illinois Pollution Control Board (IPCB) and Illinois Environmental Protection Agency (Illinois EPA) enacted a final rule regulating coal combustion residuals (CCR) as part of Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). The State CCR Rule specifically requires that the owner or operator of a CCR unit must develop an Operating Permit that will specify a sampling and analysis program that includes procedures and techniques for sample collection, sample preservation and shipment, analytical procedures, chain of custody (COC) control, and quality assurance and quality control. As a result, each regulated facility must develop a program that meets the State CCR Rule. At the Joliet #29 facility, Ash Pond 2 requires monitoring under the State CCR Rule. The monitoring well network around this pond consists of four monitoring wells (MW-3, MW-4, MW-5 and MW-10 [upgradient]) as shown on Figure 1.

Section 845.640(f) of the State CCR Rule requires the development of the statistical approach that will be used for assessing the data and determining whether a statistically significant increase over background concentrations in groundwater has occurred at identified downgradient monitoring points. Potential statistical methods that can be applied to the data are listed in Section 845.640(f) and performance standards are provided in 845.640(g).

This narrative of the statistical approach that will be used for the Joliet #29 facility's groundwater monitoring data is intended to fulfill certification requirements under Section 845.640(f)(2). The professional engineer's certification of this statistical approach is provided in Section 4.0 of this document.

2.0 STATISTICAL METHOD SELECTION and BACKGROUND DATA EVALUATION

Section 845.640(f)(1) identifies five statistical data evaluation methods that can be used for assessing site groundwater data. Relative to the subject site, the prediction interval procedure identified in 845.640(f)(1)(C) will be used. This approach is robust and conforms to varying data distributions and facilitates various non-detect frequencies. U.S. EPA identifies this method as preferred over establishment of tolerance intervals (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, March 2009 [Unified Guidance]).

Total recoverable metals groundwater data has been collected for this site since 2015 as part of Federal CCR Rule requirements. Under the Federal CCR Rule, the initial eight rounds of quarterly data generated were used to develop a representative background concentration with which to develop applicable prediction limits for subsequent statistical downgradient monitoring well data comparisons. Since additional data has been generated since the initial eight rounds of groundwater monitoring under the Federal CCR Rule, the full, currently available data set through the second quarter 2021 will be evaluated for potential use in developing a representative background dataset. If appending this additional data to the original eight rounds of background sampling is determined to be not statistically appropriate, then the background calculations. The established, representative background concentration for the upgradient well location (in this case well MW-10) will be used to develop prediction limits for the regulated unit for each constituent listed in Section 845.600(a) and (b) as provided in Table 1.

Statistical evaluations will be performed with the assistance of the SanitasTM software package.

2.1 Outlier Testing

The background dataset will be first checked for potential outliers for each constituent. Potential causes of outliers can be, but are not limited to:

- Changes in sampling technique;
- Changes in analytical methods;
- Data transcription errors;
- Unnatural localized event such as a spill; or
- Natural but extreme variations in constituent concentration.

The Unified Guidance does not recommend removing an outlier from the data set unless it can be shown that the outlier is not caused by extreme natural variation. If the outlier can be traced to other than natural causes, the data set will be adjusted appropriately.

2.2 Spatial Variability

If more than one background well is being used for the monitored unit, an evaluation of spatial variability will be performed to determine whether the mean concentration of a constituent varies statistically between the background points. This is generally accomplished by performing an Analysis of Variance (ANOVA). If statistically significant spatial variation is determined to be

present, the background points will not be combined between the wells. If the spatial variability is determined to be natural, an intrawell data evaluation approach may be considered for both upgradient and downgradient wells.

2.3 Temporal Variability

Temporal variability in groundwater data from a specific monitoring point occurs when a consistent fluctuation of constituent concentrations occurs over time. The most common example is seasonal variation. If such a variation is noted in the data, the dataset should be corrected to account for the trend; however, any such corrections must be applied judiciously and would be completed in accordance with the Unified Guidance recommended procedures.

2.4 Trend Testing

As discussed above, it is intended to expand the initial background dataset collected under the Federal CCR Rule which consisted of eight rounds of quarterly sampling, with any additional data collected for a specific well since that time to facilitate a larger background data set upon which to develop subsequent interwell, and if necessary intrawell, prediction limits. The expanded background dataset for each upgradient well, for each constituent listed in Table 1, will undergo trend analysis to determine if there may be a potential statistically significant trend in the data. Linear regression will be the primary trend analysis tool, however, other methods such Sen's Slope Estimator may also be used. If a statistically significant trend is identified in the larger combined background dataset, the new data cannot be added to the initial background dataset, and only the original eight rounds of data can be used for that well in background development and associated subsequent calculations.

2.5 Test of Normality

The main underlying assumption in parametric data evaluations, such as establishing prediction limits, is that the underlying data distribution is normal. A quick approximation can be made by calculating the Coefficient of Variance (CV) which is the quotient of the standard deviation divided by the sample mean. In general, if this quotient is greater than 1, the underlying data distribution is probably not normal. The new Unified Guidance is more conservative and suggests that if this quotient is greater than 0.5, the dataset may not be normal and a more robust distribution evaluation should be performed. Therefore, for any CV value greater than 0.5 for a specific dataset, normality will be evaluated using the Shapiro-Wilk Test with an alpha (α) value of 0.05 (or 95%).

If the dataset does not pass this initial test, the data will undergo a log transformation and the test will be repeated for the natural log values of the dataset. If it is determined that this dataset is log-normal, statistical evaluations will be completed on those values and the result converted back to the standard value. If the underlying distribution is also determined not to be log-normal, the Unified Guidance provides for a number of other data transformations that can be performed to evaluate whether those underlying distributions may be normal at which point the entire dataset would be transformed for subsequent calculations.

If a normal underlying distribution can not be determined, non-parametric statistical evaluations will need to be considered which do not rely on a specific underlying distribution.

2.6 Non-Detects

It is not uncommon in environmental datasets to have parameters being detected at low concentrations during one sampling event and being not detected in other sampling events. Having a consistent approach to the handling of non-detect values is an important part of the statistical evaluation process. The handling of non-detect values will be accomplished as follows:

- 100 Percent Non-Detects Assumed that the constituent is not present and no statistical evaluations will be performed. The upper prediction limit will be set at the Reporting Limit (RL) established by the analytical laboratory.
- 50 Percent or Greater Non-Detects A non-parametric evaluation will be performed where the confidence interval will be constructed using the highest detected concentration as the upper prediction limit.
- 15 to 50 Percent Non-Detects Aitchison's Adjustment will be used with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 0 to 15 Percent Non-Detects The non-detect values will be replaced with RL/2 and the dataset will be evaluated for distribution normality with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 2.7 Prediction Limit Calculation for Normally Distributed Data

For datasets where the distribution or underlying transformed distribution is normal, a parametric statistical approach will be used for establishing the prediction limit at the required 95% statistical confidence. In accordance with Unified Guidance, the following equation will be used:

95% Prediction Limit =
$$\bar{x} + t_{1-0.05/m,n-1}s \sqrt{1 + \frac{1}{n}}$$

Where:

\$\vec{x}\$ = the sample mean of the detected or adjusted results
 \$\vec{s}\$ = sample standard deviation of the detected or adjusted results
 \$t_{1-0.05/m,n-1}\$ = the students t-coefficient for degrees of freedom (n-1) and confidence level (1-0.05/m)
 \$n\$ = the number of samples
 \$m\$ = the number of future samples

The number of future sampling events (m) will be set at 2 which will account for one sampling event and a confirmation resampling. This will assist in limiting the potential number of false

positives. An acceptable site-wide false positive (SWFP) rate of 10% or less is acceptable under the Unified Guidance.

2.8 Prediction Limit Calculation for Non-Normally Distributed Data

If the dataset distribution or underlying distribution is determined not to be normal, a nonparametric approach will need to be used for the establishment of the prediction limit. The nonparametric evaluation will use the highest detected concentration as the upper prediction limit for the specific constituent.

3.0 GROUNDWATER MONITORING

The State CCR Rule does not distinguish between detection monitoring or assessment monitoring as was defined under the Federal CCR Rule. To meet the requirements set forth in Section 845.650(b), a minimum of eight rounds of groundwater data need to be collected for establishing background. As noted above, if more than eight rounds of data are available, then the larger dataset will be evaluated to determine whether the background dataset can be expanded to provide a more robust statistical assessment. At that point, statistical evaluation of the background dataset will be performed to establish the upper prediction limits for each Section 845.600(a) and (b) constituent. It is noted that in the case of pH, a lower prediction limit will also be established since this parameter has an established upper and lower value range for compliance.

Site specific Groundwater Protection Standards (GWPSs) will be developed in accordance with Section 845.600(a)(2) as follows:

- If the constituent has an established State standard listed in Section 845.600(a)(1) and the standard is greater than the calculated background upper prediction limit, then the standard will serve as the GWPS. If the background upper prediction limit is greater than the standard, the upper prediction limit will serve as the GWPS.
- If the constituent does not have an established standard (i.e., calcium and turbidity) then the calculated upper prediction limit will serve as the GWPS.

Once the proposed GWPSs are determined and approved by Illinois EPA, subsequent downgradient well concentrations will be compared against the upper prediction limit (and lower prediction limit in the case of pH), and the GWPSs. If an exceedance of the GWPS is identified during a quarterly sampling event, an immediate resampling of the specific well(s) will be completed for those specific parameters. If the exceedance is confirmed by the resampling, the Illinois EPA will be notified of the exceedance(s) and the notification will be placed in the facilities operating record in accordance with 845.800(d)(16). It is noted that there are some constituents that historically may have had no detections (i.e., 100% non-detects). In this case, in accordance with the Unified Guidance, if there is a detection of such a constituent, then the Double Quantification Rule will be applied. Under this rule, a confirmed exceedance is registered if any well-constituent pair in the 100% non-detect group exhibits quantified measurements (i.e., at or above the Reporting Limit in two consecutive sample and resample events.

If an exceedance of the GWPS is recorded and reported to Illinois EPA, an Alternate Source Demonstration (ASD) may be completed within 60-days of the confirmed exceedance in accordance with Section 845.650(e) and submitted to the Illinois EPA as well as placing the ASD on the facility's publically accessible CCR website. Illinois EPA will review and approve or disapprove the ASD.

If it is decided not to complete an ASD or if Illinois EPA does not concur with and approve the ASD, a characterization of the nature and extent of the potential release must be completed in

accordance with Section 845.650(d)(1) as well as meeting the requirements of Sections 845.660, 845.670 and 845.680.

4.0 CERTIFICATION

In accordance with Section 845.640(f)(2) of the State CCR Rule, I hereby certify based on a review of the information contained within this Illinois State CCR Rule Compliance Statistical Approach for Groundwater Data Evaluation dated August 19, 2021, the statistical procedures developed and selected for evaluation of groundwater data associated with the Midwest Generation Joliet #29 Station CCR Unit are adequate and appropriate for evaluating the groundwater data.

Certified by: _______ Date: _______________

Joshua Davenport, P.E.

Professional Engineer Registration No. <u>062-061945</u> KPRG and Associates, Inc.

FIGURE

MW-10

POND 2 MW-

MW-5

LEGEND

EXISTING CCR MONITORING WELL

MW-1

MW-3

	ENVIR	ОММЕМТА	C	MAP							
					0						
	K	Ρ	R G		KPRG and Associates, inc.	JOLIET #29 GENERATING STATION JOLIET, ILLINOIS					١
0 100'	A 414 Plaza Drive, Suite 106 Westmont, Illinois 60559 Telephone 630-325-1300 Facsimile 630-32				1300 Facsimile 630-325-1593	Scale:	1" = 1	00,	Date: D	ecember 2	7, 2017
APPROXIMATE SCALE	14665 West Li	sbon Road, Suite 2B Br	ookfield, Wisconsin 5	3005 Telephone 262-	-781-0475 Facsimile 262-781-0478	KPRG	Project 1	No. 1	2313.0	FIGURE 1	

TABLE

Parameter	Section 845.600 Standards
Antimony	0.006
Arsenic	0.01
Barium	2
Beryllium	0.004
Boron	2.0
Cadmium	0.005
Chloride	200
Chromium	0.1
Cobalt	0.006
Combined Radium 226 + 228 (pCi/L)	5.0
Fluoride	4.0
Lead	0.0075
Lithium	0.04
Mercury	0.002
Molybdenum	0.10
pH (standard units)	6.5-9.0
Selenium	0.05
Sulfate	400
Thallium	0.002
Total Dissolved Solids	1200
Calcium	NE
Turbidity	NE

Table 1. Section	845.600	Groundwater	Monitoring	Parameter	List
ruble r. beetion	015.000	Of Ound Water	monitoring	1 unumeter	LIDE

All vaues in mg/l unless otherwise specified. NE- Not Established <u>Attachment 9-6 – Statistical Evaluation Summary</u>

ATTACHMENT 9-6

BACKGROUND STATISTICAL EVALUATION SUMMARY STATE RULE CCR GROUNDWATER MONITORING JOLIET #29 GENERATING STATION

The newly enacted Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule) requires development of proposed Groundwater Protection Standards (GWPSs) for inclusion within the Operating Permit for the regulated surface impoundments at the facility. Upon Illinois Environmental Protection Agency (EPA) review, concurrence and approval of these site-specific proposed GWPSs, subsequent quarterly downgradient groundwater monitoring data will be compared against these standards to determine whether standard quarterly monitoring is to continue or whether additional evaluations need to occur to in accordance with Section 845.650(d), 845.650(e), 845.660 and 845.670. The overall statistical approach to be used for the development of the proposed GWPSs is provided in Attachment 9-5 of the Operating Permit.

The proposed site-specific GWPSs for the Joliet #29 Generating Station are summarized in Table 9-7 in Section 9 of this Operating Permit. The background Prediction Limit values presented in that table were developed, where possible, by combining or "pooling" as many background data points as possible. This includes evaluating whether the initial eight rounds of data generated as part of Federal CCR Rule compliance that was completed between 2015 and 2017 can be combined with subsequent available data from ongoing groundwater monitoring since that time at the upgradient monitoring well location (MW-10). If the combined dataset (original eight rounds of data generated since the initial background sampling) at a specific well location (intrawell evaluation) for a specific parameter does not show a statistically significant trend in the data is noted to exist, only the original eight rounds of background sampling can be used for subsequent calculations. Ten rounds of turbidity measurements were collected this calendar year (2021) since this was a new state requirement that was not part of the Federal CCR Rule.

Outlier Testing

Outlier tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. Well MW-10 is the upgradient well. Wells MW-03 through MW-05 are the downgradient monitoring wells. The following statistically significant outliers (dates in parentheses) were noted:

- Barium MW-03 (5/18/21) and MW-04 (5/18/21)
- Combined Radium MW-04 (10/28/2015 and 2/10/16)
- Lead MW-04 (11/2/16)
- Lithium MW-03 (11/2/16) and MW-10 (4/26/17)

- Molybdenum MW-04 (5/18/21)
- pH MW-04 (5/10/16)

Since the outliers cannot be attributed to either lab error, transcription error or field sampling error, the outlier values were not removed from the datasets at this time but may be considered during subsequent data evaluations.

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Seasonality/Temporal Variability Testing

Seasonality/temporal variability tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. No statistically significant seasonal/temporal variations were noted in any of the wells for any of the parameters. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion. The turbidity database to date is insufficient to evaluate potential seasonal/temporal variability at this time.

Trend Analysis

To determine whether data generated since the initial eight rounds of background groundwater sampling since the enactment of the Federal Rule can potentially be pooled at the upgradient monitoring well location (MW-10), trend analysis for each constituent at each upgradient well location was performed. The results are summarized as flows:

• MW-10 – Statistically significant trends were noted for calcium, chloride and total dissolved solids (TDS).

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

Spatial Variability Testing

Since only one upgradient monitoring well is being used for establishing a statistical background, spatial variability testing for the purposes of background calculations is not applicable at this time.

Test of Normality

The Shapiro-Wilk Normality Test with an alpha (α) value of 0.05 (or 95%) was used to evaluate the distribution of the full background dataset for each constituent, which includes all available data through the second quarter 2021, at upgradient well location MW-10. A Test of Ladders was also run to evaluate other potential underlying transformational distributions in the case that the non-transformed dataset was found not to be normally distributed. For all constituents the data distribution or underlying transformed data distribution, were found to be normal with the exception of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, mercury, selenium and thallium. The various distributions or underlying transformed distributions for these parameters were found not to be normal due to the large number of non-detect values and will need to be handled through non-parametric analysis methods. The statistical run summary is at the end of this discussion.

Prediction Limits

Based on the various statistical evaluations discussed above, the following background data sets were used for background prediction limit calculations:

- Upgradient well MW-10 all parameter values pooled for all constituents through the second quarter 2021 except calcium, chloride and TDS. These datasets did not show any statistically significant trends or temporal variation in the expanded datasets.
- Upgradient well MW-10 original eight background values were used for calcium, chloride and TDS since there were noted statistically significant trends in the expanded datasets.
- Upgradient well MW-10 all ten turbidity measurements were used since no statistically significant trend was noted in the data.

The calculated prediction limits (PLs) under the above background dataset selection scenarios are summarized in Table 9-7 in Section 9 of this permit application. A prediction limit statistical run summary which includes the specific statistical method used for each parameter is provided at the end of this discussion.

Outlier Analysis - Joliet #29 - All CCR Wells

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 8/8/2021, 9:59 AM

Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	Alpha	N	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Antimony (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-04	n/a	n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Arsenic (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	12	0.0016	0.0003015	normal	ShapiroWilk
Arsenic (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	12	0.001658	0.0003825	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.001608	0.0005869	normal	ShapiroWilk
Arsenic (mg/L)	MW-10 (bg)	Na	n/a	n/a	NP (nrm)	NaN	12	0.001175	0.0002598	unknown	ShapiroWilk
Barium (mg/L)	MW-03	Yes	0.14	5/18/2021	Dixon`s	0.05	12	0.09942	0.01466	normal	ShapiroWilk
Barium (mg/L)	MW-04	Yes	0.12	5/18/2021	Dixon`s	0.05	12	0.08867	0.01203	normai	ShapiroWilk
Barium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.06733	0.01459	normal	ShapiroWilk
Barium (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	12	0.04258	0.00709	normal	ShapiroWilk
Beryllium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-04	n/a	n/a	n/a	NP (nm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryitium (mg/L)	MW-10 (bg)	n/a	n/a	п/а	NP (nm)	NaN	12	0.001	0	unknown	ShapiroWilk
Boron (mg/L)	MW-03	No	n/a	п/а	EPA 1989	0.05	17	0.4006	0.08555	normal	ShapiroWilk
Boron (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	19	0.3926	0.1551	ln(x)	ShapiroWilk
Boron (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	17	0.4776	0.197	ln(x)	ShapiroWilk
Boron (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	19	0.4374	0.1443	ln(x)	ShapiroWilk
Cadmium (mg/L)	MW-03	n/a	n/a	n/a	NP (nm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Calcium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	17	101.7	10.75	unknown	ShapiroWilk
Calcium (mg/L)	MW-04	No	n/a	n/a	NP (nrm)	NaN	17	101.1	10.55	unknown	ShapiroWilk
Calcium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	18	114.8	27.05	normal	ShapiroWilk
Calcium (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	18	112.1	18.78	ln(x)	ShapiroWilk
Chtoride (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	17	213.5	42.56	normal	ShapiroWilk
Chloride (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	18	216.1	49.96	normal	ShapiroWilk
Chloride (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	19	221.5	113.2	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	19	227.9	86.77	ln(x)	ShapiroWilk
Chromium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.005008	0.0000	unknown	ShapiroWilk
Chromium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.007917	0.0101	unknown	ShapiroWilk
Chromium (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.005108	0.000345	unknown	Shapirovvak
Chromium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.005	0	unknown	Snapirovviik
Cobalt (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.001008	0.0000		Shapirowijk
Cobalt (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	12	0.0076	0.003815	normai	Shapirovviik
Cobalt (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.00105	0.0001168	unknown	Snapirovviik
Cobalt (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.001	0	unknown	ShapiroVVIIK
Combined Radium 226 + 228 (pCi/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	11	0.6191	0.4393	unknown	Shapirovviik
Combined Radium 226 + 228 (pCi/L)	MW-04	Yes	0.741,1.52	10/28/201	Dixon's	0.05	11	0.5169	0.3544	normal	Shapirovviik
Combined Radium 226 + 228 (pCi/L)	MW-05	No	n/a	n/a	EPA 1989	0,05	11	0.5354	0.2161	in(x)	Shapirovviik
Combined Radium 226 + 228 (pCl/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	11	0.4169	0.08566	normai	ShapiroVVIIK
Fluoride (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	17	0.4153	0.02348		Shapirowilk
Fluoride (mg/L)	MW-04	No	n/a	n/a	NP (nmm)	NaN	17	0.4359	0.03144	unknown	ShopiroWilk
Fluoride (mg/L)	MW-05	No	n/a	n/a	NP (nm)	NaN	17	0.3759	0.06727		ShapiroWilk
Fluoride (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.4047	0,03145	nomai	ShapiroWilk
Lead (mg/L)	MW-03	n/a	n/a	n/a	NP (nm)	NaN	12	0.0005	0 00000-		Shapirovviik Shapirolafili-
Lead (mg/L)	MW-04	Yes	0.0012	11/2/2016	NP (nrm)	NaN	12	0.000595	0.000207	unknown	Snapirowilk

.

Outlier Analysis - Joliet #29 - All CCR Wells

Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	N	Mean	<u>Std. Dev.</u>	Distribution	<u>Normality Test</u>
Lead (mg/L)	MW-05	No	n/a	n/a	NP (nrm)	NaN	12	0.00115	0.0007799	unknown	ShapiroWilk
Lead (mg/L)	MW-10 (bg)	No	п/а	n/a	NP (nrm)	NaN	12	0.000	0.0003144	unknown	ShapiroWilk
Lithium (mg/L)	MW-03	Yes	0.005	11/2/2016	Dixon's	0.05	12	0.01117	0.00225	normal	ShapiroWilk
Lithium (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	12	0.01258	0.001165	normal	ShapiroWilk
Lithium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.01408	0.005583	normal	ShapiroWilk
Lithium (mg/L)	MW-10 (bg)	Yes	0.005	4/26/2017	Dixon`s	0.05	12	0.0115	0.002505	normal	ShapiroWilk
Mercury (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	M₩-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	12	0.005733	0.002192	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-04	Yes	0.0025	5/18/2021	Dixon`s	0.05	12	0.007017	0.001743	normal	ShapiroWilk
Molybdenum (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.00605	0.002842	normal	ShapiroWilk
Molybdenum (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	12	0.006342	0.0008898	normal	ShapiroWilk
рН (п/а)	M₩-03	No	n/a	n/a	EPA 1989	0.05	17	7.243	0.1543	normal	ShapiroWilk
pH (n/a)	MW-04	Yes	6.71	5/10/2016	Dixon`s	0.05	17	7.223	0.1744	normal	ShapiroWilk
pH (n/a)	MW-05	No	n/a	n/a	EPA 1989	0.05	17	7.183	0.1793	normal	ShapiroWilk
pH (n/a)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	17	7.151	0.1617	normal	ShapiroWilk
Selenium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	12	0.00355	0.001102	unknown	ShapiroWilk
Selenium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002575	0.0001765	unknown	ShapiroWilk
Selenium (mg/L)	MW-05	No	n/a	n/a	NP (nm)	NaN	12	0.0064	0.006791	unknown	ShapiroWilk
Selenium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0025	0	unknown	ShapiroWilk
Sulfate (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	20	113.7	38.23	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	19	116.8	37.08	normal	ShapiroWilk
Sulfate (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	18	128.7	60.87	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	18	109.8	37.14	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-03	n/a	n/a	n/a	NP (nm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thailium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-03	Na	n/a	n/a	EPA 1989	0.05	19	879.5	153.5	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	20	866	138.9	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-05	No	n/a	n/a	NP (nrm)	NaN	20	875.5	207.8	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	20	856.5	160.7	unknown	ShapiroWilk

Sanitas" v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas14 v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Antimony Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 12

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level

Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal

Constituent: Antimony Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitos^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

0.003 0.0024 0.0018 0.0018 0.0012 0.0006

1/16/18

2/26/19

Constituent: Arsenic Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

4/7/20

5/18/21

EPA Screening (suspected outliers for Dixon's Test)

n = 12 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.001658, std. dov, 0.0003825, ontical Tn 2.285

Normality tost used; Shaptro WIK@utpha = 0,1 Calculated = 0.8891 Critical = 0.883 (after natural log transformation) The distribution was found to be tog-normal.

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Arsenic Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

12/6/16

Sanitas^{as} v.9,6.09 Soltware licensed to KPRG and Associates, Inc. UG

n = 12

No cuttiers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0,1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.002822, low cutoff = 0.0004592, based on IQR multiplier of 3.

Constituent: Arsenic Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

mg/L

Dixon's Outlier Test Dixon's Outlier Test MW-03 MW-04 0.2 0.2 n = 12 n = 12 Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 0.09942. Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 0.08867. 0.16 Std. Dev. = 0.01466. 0.14: c = 0.7692 0,16 Std. Dev. = 0.01203. 0.12: c = 0.5952 tabl = 0.546. tabl = 0.546. Alpha = 0.05. Alpha = 0,05. Normality test used: Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9358 Shapiro Wilk@alpha = 0.1 Calculated = 0.9563 0.12 0.12 Critical = 0.876 Critical = 0.876 The distribution, after The distribution, after removal of suspect valmg/L 0 removal of suspect val-ue, was found to be norue, was found to be nor-maily distributed. mally distributed. 0,08 0,08 0.04 0.04 0 0 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21 Constituent: Barium Analysis Run 8/8/2021 9:57 AM Constituent: Barium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sunitaa^m v.9.6.09 Software liconsod to KPRG and Associatos, Inc. UG

Constituent: Barium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Barium Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sunitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Beryllium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Beryllium

п = **12**

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were cube root transformed to achieve best W statistic (graph shown

in original units). The results were invalid-ated, because the lower and upper quartiles are equal.

Sanitas** v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

EPA Screening (suspected outliers for Dixon's Test)

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 19 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Man D.3928, std. dev. 0.1551, critical Tn 2.532

Normality lost used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9189 Critical = 0.917 (after natural log transformation) The distribution was found to be lose-normal.

Constituent: Boron Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sonitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Boron Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitos** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Cadmium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas^{III} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Analysis Run 8/8/2021 9:57 AM Constituent: Cadmium Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

No outliers found, Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph

shown in original units).

The results were invalid-ated, because the lower and upper quartiles are equal

Sanitas'" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Calcium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 17

No outliers found,

Tukey's method used in lieu of parametric test

normality test failed at the 0.1 alpha level.

because the Shapiro Wilk

Ladder of Powers trans-

formations did not im-

prove normality; analy-

High cutoff = 153.5. low

cutoff = 52, based on IQR multiplier of 3.

sis run on raw data.

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 112.1, std. dcv. 18.78, critical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculatod = 0.9362 Critical = 0.914 (after natural log transforma-tica) tion) The distribution was found

Constituent: Calcium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas'* v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Chloride Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 18 Dixon's will not be run. No suspect values identified or unable to astablish suspect values. Maan 216.1, std. dev. 49.98, oritical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9616 Crificia = 0.914 The distribution was found to be normally distributed.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Chloride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Chloride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.9.6.09 Software ficensed to KPRG and Associates, Inc. UG

Sanitas** v.9.6.09 Software ficensed to KPRG and Associates, Inc. UG

Constituent: Chromium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Chromium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9,6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Cobalt Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 12 No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk

normality test failed at the 0.1 alpha level

Data were cube root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Cobalt Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Statistical outliers are drawn as solid. Testing for 2 high outliers. Mean = 0.5169. Std. Dex. = 0.3544. 0.741: c = 0.6852 tabl = 0.576. Apha = 0.05. Normality test used:

Shapiro Wilk@alpha = 0.1 Calculated = 0.9376 Critical = 0.859 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^{es} v.9.6,09 Software licensed to KPRG and Associates, Inc. UG

Senites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Sanitas^m y.9.6.09 Software licensed to KPRG and Associates. Inc. UG

Constituent: Fluoride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

EPA Screening (suspected outliers for Dixon's Test) MW-10 (bg) 0.5 0.4 0.3 ղցո 0.2 0.1 n 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21

Constituent: Fluoride Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 17 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.4047, std. dev. 0.03145, critical Tn 2.475

Normality lest used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9672 Critical = 0.91 The distribution was found to be normally distrib-

Senites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas¹⁴ v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG

Constituent: Lead Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 12

No outliers found. Tukev's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level,

Data were natural log transformed to achieve best W statistic (graph

shown in original units). High cutoff = 0.00206, low cutoff = 0.0001729, based on IQR multiplier of 3.

Constituent: Lead Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁸ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Lithium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 12

Statistical outlier is drawn as solid. Testing for 1 low outlier, Mean = 0.0115. Std. Dev. = 0.002505. <0.01: c = 0.6667 tabl = 0.546. Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9246 Critical = 0.876 The distribution, after removal of suspect value, was found to be nor-mally distributed.

Constituent: Lithium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29
Senites" v.9.6.09 Softwure licensed to KPRG and Associates, Inc. UG

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Mercury Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas's v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Mercury Analysis Run 8/8/2021 9:58 AM

Joliet 9,29 Generating Station Client; NRG Data: Joliet 9 - Joliet 29

n = 12 No puttiers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk

normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph shown in original units)

The results were invalidated, because the lower and upper quartiles are equal.

Sanitas^M v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 12 Statistical outlier is drawn as solid. Testing for 1 low outlier. Mean = 0.007017. Std. Dev. = 0.0017143. <0.005: c = 0.6032 tabl = 0.546. Alpha = 0.05.

Normality test used; Shapiro Witk@alpha = 0.1 Calculated = 0.6992 Critical = 0.876 The distribution, after removal of suspect valte, was found to be normally distributed.

Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 12 Dixon's will not be run. No suspect values idonfilied or unable to establish suspect values. Mean 0.006342, eld. dev. 0.0008858, entical Tn 2.2865

Normality test used: Shapiro Wik@alpha = 0.1 Calculated = 0,9372 Critical = 0.883 The dislibution vas found to be normally distributed.

Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

MW-04

2/26/19

4/7/20

5/18/21

Statistical outlier is drawn as solid. Testing for 1 low outlier. Mean = 7,223. Std. Dev. = 0.1744. 6.71: c = 0.5143 tabl ≈ 0.49, Alpha = 0.05,

n = 17

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9505 Critical = 0.906 The distribution, after removal of suspect val-ue, was found to be nor-mally distributed.

Sanitas** v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG

Constituent: pH Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: pH Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6,09 Software licensed to KPRG and Associates, Inc. UG

Sanitas³⁸ v.9.6.03 Software licensed to KPRG and Associates, Inc. UG

Constituent: Selenium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Selenium Analysis Run 8/8/2021 9:58 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 12 No outliers found. Tukey's method used in fieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

MW-04 200 n = 19 160 120 uted. лgЛ 80 40 n 10/28/15 12/15/16 2/2/18 3/23/19 5/10/20 6/29/21

EPA Screening (suspected outliers for Dixon's Test)

n – 19 Dixon's will not be run. No suspect values identified or unable to establish suspect values, Mean 118.8, std. dev. 37.08, critical Tr. 2.532

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.947 Critical = 0.917 The distribution was found to be normally distrib-

Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.9,6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

n = 12

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph

The results were invalidated, because the lower and upper guartiles are

Constituent: Thallium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Solfware licensed to KPRG and Associates, Inc. UG

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^m v.9,6.09 Software licensed to KPRG and Associates, Inc. UG

EPA Screening (suspected outliers for Dixon's Test)

n = 20 Dixon's will not be run. No suspect values Identified or unable to ostablish suspect values. Mean 666, std. dov, 138.9, critical Tn 2.557

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9241 Critical = 0.92 (after natural log transformation)

tion) The distribution was found to be log-normal.

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Outlier Analysis - Joliet 29 - All Wells All Values

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:37 PM

<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Turbidity (NTU)	MW-03	No	n/a	n/a	EPA 1989	0.05	10	8.956	11.98	ln(x)	ShapiroWilk
Turbidity (NTU)	MW-04	No	n/a	n/a	NP (nrm)	NaN	10	17.11	26.77	unknown	ShapiroWilk
Turbidity (NTU)	MW-05	No	n/a	n/a	EPA 1989	0.05	10	9.131	7.729	ln(x)	ShapiroWilk
Turbidity (NTU)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	10	10.86	6.601	normal	ShapiroWilk

NTU

EPA Screening (suspected outliers for Dixon's Test) MW-03 40 90 n = 10 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 8.956, std. dev 32 11.98, critical Tn 2.176 72 Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9265 Critical = 0.869 (after natural log transformation) The distribution was found 24 54 to be log-normal. NTU 16 36 8 18 Ω Ω 3/2/21 4/12/21 5/24/21 7/5/21 8/16/21 9/27/21 6/29/01

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Tukey's Outlier Screening

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

NTU

EPA Screening (suspected outliers for Dixon's Test) MW-10 (bg) 24 18 12 6 0 3/2/21 3/2/21 4/12/21 5/24/21 7/5/21 8/16/21 9/27/21

n = 10 No outliers found. Tukey's method used in

lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 40144, low cutoff = 0.001949, based on IQR multiplier of 3.

n = 10

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 10.86, std. dev. 6.601, critical Tn 2.176

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.8725 Critical = 0.869 The distribution was found to be normally distributed.

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Seasonality - Joliet #29 - All CCR Wells

	Joliet 9,29 Generating Station	Client: NRG	Data: Jo	liet 9 - Joliet 29	Printed 8/8/2021, 10:19 AM			
Constituent	Well		<u>Sig.</u>	<u>KW.</u>	<u>Chi-Sq.</u>	df	N	<u>Alpha</u>
Boron (mg/L)	MW-03		No	0	0	0	17	0.05
Boron (mg/L)	MW-04		No	0	0	0	19	0.05
Boron (mg/L)	MW-05		No	· 0	0	0	17	0.05
Boron (mg/L)	MW-10 (bg)		No	2.541	7.815	3	19	0.05
Calcium (mg/L.)	MW-03		No	2.541	7.815	3	17	0.05
Calcium (mg/L)	MVV-04		No	2.541	7.815	3	17	0.05
Calcium (mg/L)	MW-05		No	1.353	7.815	3	18	0.05
Calcium (mg/L)	MW-10 (bg)		No	1.353	7.815	3	18	0.05
Chloride (mg/L)	MW-03		No	1.353	7,815	3	17	0.05
Chloride (mg/L)	MW-04		No	1.353	7.815	3	18	0.05
Chloride (mg/L)	MW-05		No	1.353	7.815	3	19	0.05
Chloride (mg/L)	MW-10 (bg)		No	1.353	7.815	3	19	0,05
Fluoride (mg/L)	MW-03		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MW-04		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MW-05		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MW-10 (bg)		No	1.353	7.815	3	17	0.05
pH (n/a)	MW-03		No	1.353	7.815	3	17	0.05
oH (n/a)	MW-04		No	1,353	7.815	3	17	0,05
oH (n/a)	MW-05		No	1.353	7.815	3	17	0.05
oH (n/a)	MW-10 (bg)		No	1,353	7.815	3	17	0.05
Sulfate (mg/L)	MW-03		No	1.353	7.815	3	20	0.05
Sulfate (mg/L)	MW-04		No	1,353	7.815	3	19	0.05
Sulfate (mg/L)	MW-05		No	1.353	7.815	3	18	0.05
Sulfate (mg/L)	MW-10 (bg)		No	1.353	7.815	3	18	0.05
Total Dissolved Solids (mg/L)	MW-03		No	1.353	7.815	3	19	0.05
rotal Dissolved Solids (mg/L)	MW-04		No	1.353	7.815	3	20	0.05
Total Dissolved Solids (mg/L)	MW-05		No	1.353	7.815	3	20	0.05
Fotal Dissolved Solids (mg/L)	MW-10 (bg)		No	1.353	7.815	3	20	0.05

Sanitas^{III} v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Seasonality: MW-03

Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG.

Seasonality: MW-10 (bg)

For the selected data, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 2.541 Tabulated Chruskal-Wallis statistic = 2.541 There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H) was utilized to determine if

the medians were equal.

Kruskal-Wallis statistic (H) = 2.534 Adjusted Kruskal-Wallis statistic (H) = 2.541

Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** y.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

For the selected data, the Kruskal-Wallis test indicates NO SEASONALITYAt the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 1,353

Tabulated Chi-Squared value = 7.815 with 3 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H) was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 1.321

Adjusted Kruskal-Wallis statistic (H') = 1.353

Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client; NRG Data: Joliet 9 - Joliet 29 Sanitus¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanitas" v.9.6.09 Software liconsed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanitas^a v.9.6.09 Softwara licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[®] v.9.6.09 Software licensed to KPRG and Associates, Inc. LIG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanitas^a v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{te} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanites^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Senites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Sulfate Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sonites" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Sulfate Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanilas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Trend Test Joliet #29 MW-10 UG

	Joliet 9,	29 Generating Sta	ation Client:	NRG Data:	Joliet 9 - Jol	iet 29	Printed 8/8/20	021, 10:15 AM			
Constituent	Well	Slope	<u>Calc.</u>	Critical	<u>Sig.</u>	N	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0,02	NP (NDs)
Arsenic (mg/L)	MW-10 (bg)	0.02072	0.5843	2.359	No	12	41.67	Yes	natura	0.02	Param.
Barium (mg/L)	MW-10 (bg)	0.002143	1.955	2,359	No	12	0	Yes	no	0.02	Param.
Beryllium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Boron (mg/L)	MW-10 (bg)	0.008327	0.4069	2.224	No	19	0	Yes	no	0.02	Param.
Cadmium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Calcium (mg/L)	MW-10 (bg)	6.638	3.416	2.235	Yes	18	0	Yes	no	0.02	Param.
Chloride (mg/L)	MW-10 (bg)	25.19	2.539	2.224	Yes	19	0	Yes	no	0.02	Param.
Chromium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	0.0149	0.8027	2.398	No	11	72.73	Yes	no	0.02	Param.
Fluoride (mg/L)	MW-10 (bg)	-0.00	-1,303	2.249	No	17	0	Yes	no	0.02	Param.
Lead (mg/L)	MW-10 (bg)	0	D	35	No	12	66.67	n/a	n/a	0.02	NP (Nor
Lithium (mg/L)	MW-10 (bg)	0.000	0.7936	2.359	No	12	8.333	Yes	no	0.02	Param.
Mercury (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Molybdenum (mg/L)	MW-10 (bg)	-0.00	-0.8336	2.359	No	12	0	Yes	no	0.02	Param.
pH (n/a)	MW-10 (bg)	0.01492	0.6175	2.249	No	17	0	Yes	no	0.02	Param.
Selenium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Sulfate (mg/L)	MW-10 (bg)	9.656	2.174	2.235	No	18	0	Yes	no	0.02	Param.
Thallium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Total Dissolved Solids (mg/L)	MW-10 (bg)	49.54	2.873	2.214	Yes	20	0	Yes	no	0.02	Param.

Sanitas^w v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG Hollow symbols indicate consored values.

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Arsenic Analysis Run 8/8/2021 10:14 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Hollow symbols indicate censored values.

n = 12 41.67% NDs Slope = 0.02072 natural log units/year.

alpha = 0.02 t = 0.5843 critical = 2.359

No significant trend.

Normality test on residuals; Shapiro Wilk @alpha = 0.01, calculated = 0.8359 after natural log transformation, critical = 0.805,

Constituent: Barium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Beryllium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{ter} v.9.6,09 Software licensed to KPRG and Associates, Inc. UG

Sanitas^{ar} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Calcium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Slope = 25,19 units/year,

Significant increasing trend,

Normality test on residuals: Shapiro Wilk @alpha = 0.01, calculated = 0.9496, critical = 0.863.

Constituent: Chloride Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG Hollow symbols indicate censored values.

n = 11 72.73% NDs

Slope = 0.0149 units/year.

alpha = 0.02 t = 0.8027 critical = 2.398

No significant trend.

= 0.8148, critical = 0.792.

Normality test on residuals: Shapiro Wilk @alpha = 0.01, calculated

Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Linear Regression MW-10 (bg) 0.7 0.56 0.42 • pCiVL ° ° 0.28 0.14 0 10/28/15 12/10/16 1/24/18 3/10/19 4/23/20 6/7/21

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Fluoride Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 12 8.333% NDs Slope = 0.0003505 units/year.

alpha = 0.02 t = 0.7936 critical = 2.359

No significant trend.

Normality test on residuals: Shapiro Wilk @atpha = 0.01, calculated = 0.8517, critical = 0.805,

Constituent: Lithium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.

Constituent: Mercury Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Constituent: Molybdenum Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9,6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas** v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Constituent: Sulfate Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Thailium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Trend Test Joliet #29 MW-10 Turbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:47 PM

Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Turbidity (NTU)	MW-10 (bg)	-3.217	-0.2499	2.449	No	10	0	Yes	no	0.02	Param.

Constituent: Turbidity Analysis Run 10/7/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Antimony Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^ 5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Arsenic Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05)			
	no	0.7417	0.859	No
	square root	0.7553	0.859	No
	square	0.709	0.859	No
	cube root	0.7594	0.859	No
	cube	0.6705	0.859	No
	natural log	0.7669	0.859	No
	x^4	0.6288	0.859	No
	x^5	0.5868	0.859	No
	x^6	0.5469	0.859	No

Constituent: Barium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05)			
	no	0.9036	0.859	Yes
	square root	0.9268	0.859	Yes
	square	0.8453	0.859	No
	cube root	0.9336	0.859	Yes
	cube	0.7769	0.859	No
	natural log	0.9454	0.859	Yes
	x^4	0.7058	0.859	No
	x^5	0.6383	0.859	No
	x^6	0.5782	0.859	No

Constituent: Beryllium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05			
	no	-1	0.859	No
	square root	-1	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Boron Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 19, alpha = 0.05			
	no	0.8874	0.901	No
	square root	0.9339	0.901	Yes
	square	0.7655	0.901	No
	cube root	0.9464	0.901	Yes
	cube	0.6355	0.901	No
	natural log	0.9662	0.901	Yes
	x^4	0.5242	0.901	NO
	x^5	0.4401	0.901	No
	x^6	0.3805	0.901	No

Constituent: Cadmium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12	2, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
x^5	x^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Calcium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 18,	alpha = 0.05)			
	по	0.9087	0.897	Yes
	square root	0.9244	0.897	Yes
	square	0.866	0.897	No
	cube root	0.9288	0.897	Yes
	cube	0.8107	0.897	No
	natural log	0.9362	0.897	Yes
	x^4	0.7474	0.897	No
	x^5	0.6816	0.897	No
	x^6	0.6183	0.897	No

Constituent: Chloride Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (r	n = 19, alpha = 0.05)			
	no	0.8777	0.901	No
	square root	0.9191	0.901	Yes
	square	0.7794	0.901	No
	cube root	0.9306	0.901	Yes
	cube	0.6854	0.901	No
	natural log	0.9492	0.901	Yes
	x^4	0.6097	0.901	No
	x^5	0.5532	0.901	No
	х^б	0.5122	0.901	No

Constituent: Chromium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No

Constituent: Cobalt Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 1	12, alpha = 0.05)			
	no	-1	0.859	No
	square root	-1	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No
Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well		Transformation	Calculated	Critical	Normal
$MW \sim 10$ (bg) (n = 1	y) (n = 11	, alpha = 0.05)			
		no	0.8951	0.85	Yes
		square root	0.928	0.85	Yes
		square	0.8127	0.85	No
		cube root	0.9372	0.85	Yes
		cube	0.7228	0.85	No
		natural log	0.9527	0.85	Yes
		x^4	0.6393	0.85	No
		x^5	0.5689	0.85	No
		х^б	0.513	0.85	No

Constituent: Fluoride Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 17,	alpha = 0.05)			
	no	0.9672	0.892	Yes
	square root	0.9655	0.892	Yes
	square	0.9683	0.892	Yes
	cube root	0.9648	0.892	Yes
	cube	0.9663	0.892	Yes
	natural log	0.963	0.892	Yes
	x^4	0.9612	0.892	Yes
	x^5	0.9531	0.892	Yes
	x^6	0.9424	0.892	Yes

Constituent: Lead Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) $(n = 12, al)$	pha = 0.05)			
1	no	0.6248	0.859	No
	square root	0.6354	0.859	No
:	square	0.598	0.859	No
	cube root	0.6385	0.859	No
	cube	0.5677	0.859	No
1	natural log	0.6439	0.859	No
;	x^4	0.5377	0.859	No
:	x^5	0.5103	0.859	No
;	x^6	0.4864	0.859	No

Constituent: Lithium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12,	alpha = 0.05)			
	по	0.8624	0.859	Yes
	square root	0.8009	0.859	No
	square	0.9403	0.859	Yes
	cube root	0,7781	0.859	No
	cube	0.9555	0.859	Yes
	natural log	0.7307	0.859	No
	x^4	0.9304	0.859	Yes
	x^5	0.8884	0.859	Yes
	х^б	0.8422	0.859	No

Constituent: Mercury Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12,	2, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Molybdenum Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n =	12, alpha = 0.05)			
	no	0.9372	0.859	Yes
	square root	0.9461	0.859	Yes
	square	0.916	0.859	Yes
	cube root	0.9488	0.859	Yes
	cube	0.8913	0.859	Yes
	natural log	0.9537	0.859	Yes
	x^4	0.8644	0.859	Yes
	x^5	0.8366	0.859	No
	x^6	0.8087	0.859	No

Constituent: pH Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 17, alpha = 0.05)			
	no	0.9714	0.892	Yes
	square root	0.9723	0.892	Yes
	square	0.9693	0.892	Yes
	cube root	0.9726	0.892	Yes
	cube	0.9671	0.892	Yes
	natural log	0.9732	0.892	Yes
	x^4	0.9645	0.892	Yes
	x ^5	0.9617	0.892	Yes
	х^ б	0.9587	0.892	Yes

Constituent: Selenium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) $(n = 12,$	= 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	-1	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Sulfate Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 18, alpha = 0.05)			
	no	0.8207	0.897	No
	square root	0.8813	0.897	No
	square	0.6916	0.897	No
	cube root	0.8989	0.897	Yes
	cube	0.5848	0.897	No
	natural log	0.9281	0.897	Yes
	x^4	0.5095	0.897	No
	x^5	0.4593	0.897	No
	x^6	0,4261	0.897	No

Constituent: Thallium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12,	= 12, alpha = 0.05			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	-1	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No

•

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 2	20, alpha = 0.05)			
	no	0.849	0.905	No
	square root	0.8818	0.905	No
	square	0.7774	0.905	No
	cube root	0.892	0.905	No
	cube	0.7043	0.905	No
	natural log	0.9111	0.905	Yes
	x^4	0.6359	0.905	No
	x^5	0.5759	0.905	No
	x^6	0.5252	0.905	No

Constituent: Turbidity Analysis Run 10/7/2021 2:42 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
square root 0.8252 0.842 square 0.5517 0.842 cube root 0.8704 0.842 cube 0.4778 0.842 natural log 0.9265 0.842 x^4 0.4348 0.842 x^5 0.4084 0.842 x^6 0.3921 0.842 MW-04 (n = 10, alpha = 0.05) no 0.6444 0.842 square root 0.7365 0.842 square 0.5248 0.842 cube root 0.7711 0.842 cube root 0.7711 0.842 cube root 0.7711 0.842 x^4 0.4208 0.842 x^5 0.3946 0.842 x^6 0.3846 0.842 x^6 0.3846 0.842 x^6 0.3846 0.842 x^6 0.3846 0.842 x6 0.9502 0.842 square root 0.977 0.842 cub	No
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	No
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	No
	Yes
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	No
$ \begin{array}{c} x^4 & 0.4348 & 0.842 \\ x^5 & 0.4084 & 0.842 \\ x^6 & 0.3921 & 0.842 \\ \\ \mbox{MW-04 (n = 10, alpha = 0.05)} & & & & \\ & no & 0.6444 & 0.842 \\ & square root & 0.7365 & 0.842 \\ & square & 0.5248 & 0.842 \\ & cube root & 0.7711 & 0.842 \\ & cube root & 0.7711 & 0.842 \\ & cube & 0.4592 & 0.842 \\ & natural log & 0.8401 & 0.842 \\ x^5 & 0.398 & 0.842 \\ x^6 & 0.3846 & 0.842 \\ & x^6 & 0.3846 & 0.842 \\ & & x^6 & 0.3846 & 0.842 \\ & square root & 0.9502 & 0.842 \\ & square root & 0.9502 & 0.842 \\ & square & 0.6485 & 0.842 \\ & square & 0$	Yes
$ \begin{array}{c} x^{5} & 0.4084 & 0.842 \\ x^{6} & 0.3921 & 0.842 \\ \end{array} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	No
	No
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No
no 0.6444 0.842 square root 0.7365 0.842 square 0.5248 0.842 cube root 0.7711 0.842 cube 0.4592 0.842 natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square cube root 0.97 0.842 x^4 0.4082 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 matural log 0.3887 0.842 x^6 0.3887 0.842 mol 0.8725 0.842 <	
square root 0.7365 0.842 square 0.5248 0.842 cube root 0.7711 0.842 cube 0.4592 0.842 natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square 0.6485 0.842 cube root 0.977 0.842 cube root 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 matural log 0.9831 0.842 x^6 0.3887 0.842 x^6 0.3887 0.842 x^6 0.3887 0.842	No
square 0.5248 0.842 cube root 0.7711 0.842 cube 0.4592 0.842 natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square code root 0.977 0.842 cube root 0.977 0.842 cube root 0.9831 0.842 x^4 0.4452 0.842 x^6 0.3887 0.842 matural log 0.9831 0.842 x^6 0.3887 0.842 x^6 0.3887 0.842 x^6 0.3887 0.842	No
cube root 0.7711 0.842 cube 0.4592 0.842 natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square root 0.97 0.842 cube root 0.97 0.842 cube root 0.9831 0.842 x^4 0.4452 0.842 x^6 0.3887 0.842 matural log 0.9831 0.842 x^6 0.3887 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725	No
cube 0.4592 0.842 natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square root 0.970 0.842 cube root 0.977 0.842 cube root 0.9831 0.842 x^4 0.4452 0.842 x^4 0.4452 0.842 x^6 0.3887 0.842	No
natural log 0.8401 0.842 x^4 0.4208 0.842 x^5 0.398 0.842 x^6 0.3846 0.842 MW-05 (n = 10, alpha = 0.05) no 0.8561 0.842 square root 0.9502 0.842 square root 0.970 0.842 cube root 0.979 0.842 cube root 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842	No
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No
no 0.8561 0.842 square root 0.9502 0.842 square 0.6485 0.842 cube root 0.97 0.842 cube 0.5159 0.842 natural log 0.9831 0.842 x^4 0.4452 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 no 0.8725 0.842	
square root 0.9502 0.842 square 0.6485 0.842 cube root 0.97 0.842 cube 0.5159 0.842 natural log 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 no 0.8725 0.842	Yes
square 0.6485 0.842 cube root 0.97 0.842 cube 0.5159 0.842 natural log 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842	Yes
cube root 0.97 0.842 cube 0.5159 0.842 natural log 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842 0.842	No
cube 0.5159 0.842 natural log 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 no 0.8725 0.842	Yes
natural log 0.9831 0.842 x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725	No
x^4 0.4452 0.842 x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842	Yes
x^5 0.4082 0.842 x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842	No
x^6 0.3887 0.842 MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842	No
MW-10 (bg) (n = 10, alpha = 0.05) no 0.8725 0.842	No
no 0.8725 0.842	
	Yes
square root 0.9473 0.842	Yes
square 0.6983 0.842	No
cube root 0.9654 0.842	Yes
cube 0.5657 0.842	No
natural log 0.9871 0.842	Yes
x^4 0.4837 0.842	No
x^5 0.4356 0.842	No
x^6 0.4075 0.842	No

Joliet #29 Interwell PL MW-10 All Values

		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet 9 - Joliet 29 Printed 8/8/2021, 11:41			2021, 11:41 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Ba N	%NDs	Transform	Aloha	Method	
Antimony (mg/L)	n/a	0.003	n/a	n/a	3 future	n/a	12	100	<u></u> ⊓/a	0.009156	NP (NDs) 1 of 2	
Arsenic (mg/L)	n/a	0.0018	n/a	n/a	3 future	n/a	12	41.67	л/а	0.000100	NP (normality) 1 of 2	
Barium (mg/L)	n/a	0.0628	n/a	n/a	3 future	n/a	12	0	No	0.000100	Param 1 of 2	
Beryllium (mg/L)	n/a	0.001	n/a	n/a	3 future	n/a	12	- 100	n/a	0.0000000 0.000156		
Boron (mg/L)	n/a	0.8306	n/a	n/a	3 future	n/a	19	0	sod/y)			
Cadmium (mg/L)	n/a	0.0005	n/a	n/a	3 future	n/a	12	~ 100	n/a	0.000399 Param 1 of 2		
Chromium (mg/L)	n/a	0.005	n/a	n/a	3 future	n/a	12	100	n/a	0.000156	NF (NDs) 1 of 2	
Cobalt (mg/L)	n/a	0.001	n/a	n/a	3 future	n/a	12	100	n/a	0.000156	NF (NDs) 1 of 2	
Combined Radium 226 + 228 (pCi/L)	n/a	0.626	n/a	n/a	3 future	n/a	11	72 73	n/a	0.01059	NP (NDs) 1 of 2	
Fluoride (mg/L)	n/a	0.486	n/a	n/a	3 future	n/a	17	0	No	0.000300	Ref (NDS) 1 012	
Lead (mg/L)	n/a	0.0014	n/a	n/a	3 future	п/а	12	66 67	n/a	0.000156	NR (NDo) 4 of 0	
Lithium (mg/L)	n/a	0.01864	n/a	n/a	3 future	n/a	12	8 333	No	0.009130	NF (NDS) 1012	
Mercury (mg/L)	n/a	0.0002	n/a	n/a	3 future	n/a	12	100	n/a	0.000399		
Molybdenum (mg/L)	n/a	0.008878	n/a	n/a	3 future	n/a	12	n	No	0.009100	NP (NDS) 1 012	
pH (n/a)	n/a	7.569	6.733	n/a	3 future	n/a	17	0	No	0.000399	Param 1 of 2	
Selenium (mg/L)	n/a	0.0025	n/a	n/a	3 future	n/a	12	100	nio	0.000		
Sulfate (mg/L)	n/a	214,7	n/a	n/a	3 future	n/a	18	0	JI/a	0.009155	NP (NDS) 1 of 2	
Thallium (mg/L)	n/a	0.002	n/a	n/a	3 future	n/a	10	100	x"(1/0)	0.000399	Param 1 of 2	
				124	o lucule	18.0	14	100	n/a	0.009156	NP (NUS) 1 of 2	

. .

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 12 background values. 41.67% NDs. Annual perconstituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Antimony Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Arsenic Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.04258, Std. Dev.=0.00709, n=12. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9036, critical = 0.859. Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Barium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Beryllium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit

٢

Background Data Summary (based on square root transformation): Mean=0.6538, Std. Dev.=0.1026, n=19. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9339, critical = 0.901. Kappa = 2.511 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Boron Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cadmium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanilas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chromium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Cobalt Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 72.73% NDs. Annual per-constituent alpha = 0.1199. Individual comparison alpha = 0.01058 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=0.4047, Std. Dev.=0.03145, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9672, critical = 0.892. Kappa = 2.586 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{ne} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=0.0115, Std. Dev.=0.002505, n=12, 8.333% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8624, critical = 0.859, Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Lead Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Lithium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

¢,

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.09156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

"Лg/Г

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=0.006342, Std. Dev.=0.0008898, n=12. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9372, critical = 0.859. Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Mercury Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit

Sonitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Background Data Summary: Mean=7.151, Std. Dev.=0.1617, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9714, critical = 0.892. Kappa = 2.586 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 3 future values.

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: pH Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Selenium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

. .

Sonitas* v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.09156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Background Data Summary (based on cube root transformation): Mean=4.739, Std. Dev.=0.4901, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8989, critical = 0.897. Kappa = 2.549 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Sulfate Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Thallium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Joliet #29 Interwell PL MW-10 Original 8

		Joliet 9,29 Generating Station		Client: NRG	Data: Joliet 9 - Joliet 29 Printed 8/8/2021, 11:34 AM						
Constituent	<u>Well</u>	Upper Lim.	<u>Lower Lim.</u>	<u>Date</u>	Observ.	Siq.	Ba N	%NDs	Transform	Alnha	Method
Calcium (mg/L)	n/a	143	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2
Chloride (mg/L)	n/a	368	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2
Total Dissolved Solids (mg/L)	n/a	1031	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2

Prediction Limit

Sanitas™ v.9.6.09 Software licensod to KPRG and Associatos, Inc. LIG

ng/L

Background Data Summary: Mean=195, Std. Dev.=49.86, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8907, critical = 0.818. Kappa = 3.469 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values,

Constituent: Calcium Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

(c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399.

Constituent: Chloride Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Assumes 3 future values.

Background Data Summary: Mean=785, Std. Dev.=70.91, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9512, critical = 0.818. Kappa = 3.469 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

> Constituent: Total Dissolved Solids Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Interwell Prediction Limit Joliet #29 MW-10 Turbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:48 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Turbidity (NTU)	n/a	31.22	n/a	n/a	3 future	n/a	10	0	No	0.000399	Param 1 of 2

Background Data Summary: Mean=10.86, Std. Dev.=6.601, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8725, critical = 0.842. Kappa = 3.084 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Turbidity Analysis Run 10/7/2021 2:47 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

ATTACHMENT 10 PE CERTIFICATION

Attachment 10 - No Attachment

<u>ATTACHMENT 11</u> OWNER CERTIFICATION

Attachment 11 - Owner Certification

I, <u>William Nag/OSFY</u> as an authorized representative of Midwest Generation, certify that the public notification and public meeting requirements were completed in accordance with 35 Ill. Adm. Code 845.240.

William Nagboly Plant Manager. Signature: Title:

Midwest Generation, LLC Joliet 29 Generating Station Ash Pond 2 Closure Alternatives Assessment Public Meeting General Summary

INTRODUCTION

In accordance with Title 35 of the Illinois Administrative Code ("35 IAC") Section 845.240, Midwest Generation, LLC (MWG) posted the public meeting notice on the Closure Plans for Joliet 29 Generating Station's Pond 2 on its publicly available website and provided a copy of such notice to the Illinois Environmental Protection Agency (Illinois EPA or Agency) to email to its listserv for this facility. The bilingual public meeting notice was also mailed to all residents within at least 1 mile of the facility on November 6, 2021, which totaled 4,401 residential mailing addresses. The notice was also posted in 35 public locations within 10 miles of the facility boundary.

The public meetings for Joliet 29 Generating Station's Pond 2 were held on December 8, 2021 from 10:00 a.m. to 12:00 p.m. and on December 9, 2021 from 6:00 p.m. to 8:00 p.m. The meetings were held virtually, and participants were invited to attend via Zoom or telephone. Twelve members of the public attended the December 8th meeting, and six members of the public attended the December 9th meeting (the remaining attendees were MWG affiliate employees and consultants). Attendees who wished to sign up for a copy of the meeting summary and/or be added to Illinois EPA's listserv for the facility were asked to sign up via a link to a Google form that was provided within the chat function of the Zoom meeting summary, three of whom requested transmittal of their email address to the Agency to be added to the Agency's listserv for the facility. It was also announced that the link would be available on MWG's public website for two weeks. After an introduction and approximate 30-minute presentation on the proposed closure construction plan, the public was given approximately 1 hour and 15 minutes during each meeting to ask questions and provide comments.

This document serves as a summary of the issues and questions raised during the meeting.

MWG proposes to close Pond 2 by removing and disposing of the remaining warning layer (limestone and sand), decontaminating the geomembrane liner, and repurposing the pond to treat station wastewaters.

SUMMARY OF ISSUES AND QUESTIONS RAISED DURING THE MEETING

Meeting – General

Several attendees commented on the virtual format of the meeting. MWG had initially intended and even made plans to hold the public meeting in-person. But as the date of the public meeting got closer, case rates in the region were troubling, so it was decided the safest and most prudent thing to do was to hold the meetings virtually.

Groundwater

Several attendees inquired about the groundwater monitoring network and the groundwater monitoring results. The groundwater monitoring network consists of four monitoring wells: one upgradient and three downgradient. By regulation, the upgradient well must accurately reflect background groundwater quality and not be affected by the CCR surface impoundment, and downgradient monitoring wells must be placed as close to the CCR surface impoundment as possible. The wells were sampled quarterly for CCR parameters for two years starting in 2015 under the Federal CCR Rule before switching to semi-annual sampling. Quarterly monitoring resumed in April 2021, when the Part 845 rule became effective. The proposed groundwater protection standards are based on a statistical evaluation of background groundwater quality.

In response to a specific question, the proposed groundwater protection standard for chloride is 368 parts per million (ppm). There were no exceedances of proposed groundwater protection standards for any constituent during the most recent round of sampling. Monitoring Well MW-9 is not included as part of the monitoring network for Pond 2 because it is not influenced by Pond 2. It is downgradient of Pond 3, neither up nor downgradient of Pond 2.

Groundwater monitoring after closure by removal is required for at least three years after completion of closure and the results meet the requirements specified under Section 845.740(b).

Closure Costs

Questions were asked about closure costs. Lincoln Stone Quarry was included in the cost analysis for closure by removal of Pond 2 as a potential final disposal location for the warning layer and geomembrane liner. Costs were not determinative in selecting closure by removal.

Poz-o-Pac

Several questions were posed about the Poz-o-Pac material located underneath Pond 2. This material is the pond's original liner when it was constructed in the late 1970s. Poz-o-Pac is a cementitious material and has been used as a supporting surface for things like roads, highways, and parking lots (in addition to similar pozzolan-stabilized base materials). Poz-o-Pac consists of a chemically stabilized mixture of lime, fly ash, and aggregate. Fly ash reacts with hydrate lime to create a cementitious paste that holds the aggregate together, ultimately forming a concrete-like material. Accordingly, the fly ash and aggregate were encapsulated and bound together to form Pond 2's Poz-o-Pac liner and, thus, would not leach out. The Poz-o-Pac liner remains in place under the geomembrane liner at Pond 2. Groundwater monitoring shows no impacts from CCR constituents.

According to the Federal Highway Administration, Poz-o-Pac was used at over 100 sites throughout Illinois between 1955 and 1985.

Rail System

Several questions were raised about using rail to transport ash and the rail and conveyor system located at Joliet 9. When the Joliet Stations burned coal, coal was delivered via rail to the Joliet 9 Station. It would be offloaded at Joliet 9 and then transported to Joliet 29 via a conveyor system on a suspension bridge over

the Des Plaines River. The system was designed to transfer coal in one direction. It was neither designed to transfer CCR (a different material than coal) nor to move material from Joliet 29 to Joliet 9. While the rail line at Joliet 9 is still in place and available for pass through operations, the dumping and conveyor systems are no longer operational. To use the rail system at Joliet 9, new loading and unloading equipment, as well as a new conveyor system, would need to be installed, requiring extensive environmental permitting. Necessary permits include NPDES, stormwater, and air construction permits. In contrast, MWG estimates the material in Pond 2 could be completely removed in less than two weeks with trucks.

Final Disposal

Attendees questioned the final disposal location of the warning layer, and geomembrane liner if necessary. No coal ash remains in Pond 2. The warning layer, which consists of limestone and sand, remains and this is what would need to be disposed at a landfill that is permitted to accept that waste stream. Disposing of the warning layer and the liner in the Lincoln Stone Quarry was in the closure analysis as an alternative but was ultimately excluded because the Lincoln Stone Quarry is not permitted to accept Pond 2's waste streams.

Onsite Landfill

An onsite landfill was considered and ultimately ruled out because of the lengthy process of siting a new landfill, lack of available space vertically and horizontally, and obtaining the approvals needed versus the limited quantity of warning layer needing to be disposed from Pond 2. The station operates in the middle of the oblong shaped property that is approximately 238 acres. At least half, if not more, of the property is used for station operations.

Liner

Decontamination of the liner system consists of excavating the warning layer, washing down the geomembrane liner, and then taking confirmatory wipe samples (or another method if required by IEPA) of the liner. Once decontaminated, Pond 2 would be repurposed for use of treatment of station wastewaters, like stormwater, plant drains, and water purification system and sand filter backwash (for pretreatment of boiler water). The wastewaters in Pond 2 would continue to be regulated by the Station's wastewater permit.

SUMMARY OF REVISIONS, CHANGES, AND CONSIDERATIONS

Public engagement is an important part of the permitting process. Midwest Generation valued the opportunity to hear and consider the comments of community members and others who participated in the public meetings. At this time, Midwest Generation is proceeding with the proposal for closing Pond 2 by removing and disposing of the remaining warning layer (limestone and sand), decontaminating the geomembrane liner, and repurposing the pond to treat station wastewaters as presented at the public meetings. Taking public comments into consideration, the full analysis continues to indicate that the proposed plan – which remains subject to regulatory review and approval – prioritizes the environment and community well-being.

Timestamp	Email Address	Name	The Illinois Environmental Protection Agency is creating a listserv for the facility. Would you like us to transmit your email address to the Agency to be added to the listserv?
12/8/2021 10:23:57	senatorconnor@gmail.com	John Connor	Yes
12/8/2021 11:54:40	kcourtney@elpc.org	Kiana Courtney	Yes
12/14/2021 13:43:57	jduffey@northstar.com	John Duffey	Yes