Fo CC	rm R 1	Illinois Envi	ronmental Protection Ager	псу			
		CCR Residual Surface Impoundment Permit Application					
CCR Form 1 – G			m 1 – General Provisions				
Bu	reau of	Water ID Number:	For IE	PA Use Only			
а							
CC	R Pern	nit Number:					
Fac	cility Na	ame: Joliet 29 Gener Station	rating				
	SE	CTION 1: FACILITY, OPERATOR, A	ND OWNER INFORMATION (35 IA	AC 845.210(b))			
	1.1	Facility Name					
		Jolie	t 29 Generating Station				
	1.2	Illinois EPA CCR Permit Number (if a	oplicable)				
			Initial Permit				
	1.3	Facility Contact Information					
uo		Name (first and last)	Title	Phone Number			
mati		DeAndre Cooley	Environmental Specialist	//9-2/9-2321			
Owner Information		Email address DeAndre.Cooley@NR(G.com				
wne	1.4	Facility Mailing Address					
p		Street or P.O. box 1800 Channahon Road	k				
rator		City or town	State	Zip Code			
Facility, Operator, ar		Joliet	Illinois	60436			
lity,	1.5	Facility Location					
Faci		Street, route number, or other specific identifier 1800 Channahon Road					
		County name Will	County code (if known)				
		City or town Joliet	_{State}	Zip Code 60436			
	1.6	Name of Owner/Operator					
		Mic	dwest Generation, LLC				

υfo	1.7	Owner/Operator Contact Information					
Facility, Operator, and Owner Info		Name (first and last) William Naglosky	^{Title} Plant Manag	er	Phone Number 815-207-5412		
or, and (Email address william.naglosky@nrg.com					
erato	1.8	Owner/Operator Mailing Address					
lity, Op		Street or P.O. box 804 Carnegie Center					
Faci		City or town Princeton	w Jersey	Zip Code 08540			
		SECTION 2: LEGAL D	ESCRIPTION (35 IA	C 845.210(c))			
tion	2.1	Legal Description of the facility bounda	ary				
Legal Description		ALL THT PRT OF THE SE1/4 OF SEC 19, T35N-R10E., LYING S'LY OF OF SD SEC 19; THC RUNNING E ON THE S LN OF SD SEC 1629 FT; 30° E, 545 FT TO A PT ON THE E LN OF SD SEC 19, WHICH IS 709, THE STATE OF ILLINOIS BY DOC# R68-013815) & (EX THEREFROM PT ON THE S LN OF SD SEC 19, BEING A CONCRETE MONUMENT SD MONUMENT BEING ON THE BOUNDARY LN PER THE BOUNDAR PUBLIC SERVICE CO. OF NORTHERN ILLINOIS; THC N 01 DEG 48'0 KNOWN AS CHANNAHON RD) AS HERETOFORE CONVEYED TO TH CURVATURE; THC ELY ALG THE ARC OF CURVE CONCAVE TO TH OF N 73 DEG 38'36" E, 196.99 FT FOR A POB; THC CONT ELY ALG 38,307 20 FT, HAVING A CHORD BEARING OF N 72 DEG 43'' A8" E, 11 FT; THC N 40 DEG 21' 51" W, 348.30 FT TO THE POB. NEW PARCEL	THC N 41 DEG 22" E, 249.3 FT; THC N 4 6 FT S OF THE CENTERLINE OF THE F THE FOLLOWING DESCRIBED PARCE 1963.03 FT (RECORD) EAST (AS MEAS) Y LN AGREEMENT RECORDED MARC 99" W ALG THE SD BOUNDARY LN 594. 16 STATE OF ILLINOIS PER QUIT CLAIN IE NORTH, BEING THE S ROW LN OF S THE ARC OF A CURVE CONCAVE TO T THE ARC OF A CURVE CONCAVE TO T THE ARC OF A CURVE CONCAVE TO T	7 DEG 46° E, 587.6 FT; THC N 4' 'UBLIC HIGHWAY KNOWN AS I TO WIT; THT PRT OF THE SE JRED ALG THE SOUTH LN OF H 21, 1951 AS DOC # 688037 E 54 FT; THC N 73 DEG 47° 26° E 1 AUGUST 19. 1968 AS DOC# F D RTE 6, HAVING A RADIUS O HE N, BEING THE SD S'LY RO	53 DEG 5' 30" E, 371.1 FT; THC N 64 DEG 28' CHANNAHON RD. (EX THT PRT TAKEN BY 114 OF SEC 19, T35N-R10E. DAF: COMM AT A SD SEC 19) OF THE SW COR OF SD SEC 19 JETWEEN CATERPILLAR TRACTOR CO. & ALG THE S ROW OF RTE 6 (FORMERLY 868-13815, A DIST OF 870.57 FT TO A PT OF F 38,307.20 FT, HAVING A CHORD BEARING W LN OF RTE 6, HAVING A RADIUS OF		
	OFOT						
	SECI	ION 3: PUBLICLY ACCESSIBLE IN	NIERNEI SIIE REG	JUIREMENTS	35 IAC 845.810)		
	3.1	Web Address(es) to publicly accessible			35 IAC 845.810)		
nternet Site			e internet site(s) (CCF	t website)			
Internet Site		Web Address(es) to publicly accessibl	e internet site(s) (CCF n/illinois-ccr-rule-co	t website) ompliance-data	-and-information/		
Internet Site	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF	e internet site(s) (CCF n/illinois-ccr-rule-co	t website) ompliance-data	-and-information/		
Internet Site	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da	t website) ompliance-data ta and Informatio	-and-information/		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF	e internet site(s) (CCF n/illinois-ccr-rule-co R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil	ta and Informatio	n-and-information/		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/ n" corresponding box to n description n description n description		
-	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/ n" corresponding box to n description n description n description n description		
Impoundment Identification	3.1	Web Address(es) to publicly accessible https://midwestgenerationIIc.com Is/are the website(s) titled "Illinois CCF Yes M SECTION 4: IMPO List all the Impoundment Identification indicate that you have attached a writte	e internet site(s) (CCF n/illinois-ccr-rule-cc R Rule Compliance Da No UNDMENT IDENTIF numbers for your facil en description for each	ta and Informatio	n-and-information/ n" corresponding box to n description n description n description n description n description		

Form CCR 2E

Illinois Environmental Protection Agency

CCR Residual Surface Impoundment Permit Application Form CCR 2E – Initial Operating Permit for Existing or Inactive CCR Surface Impoundments that have not completed an Agency approved closure before July 30, 2021

For IEPA Use Only

Bureau	of	Water	ID	Number:
--------	----	-------	----	---------

Joliet 29 Generating Station

CCR Permit Number:

Joliet 29 Generating Station

Facility Name:

Joliet 29 Generating Station

SECTION 1: CONSTRUCTION HISTORY (35 IAC 845.220 AND 35 IAC 845.230)

	1.1	CCR Surface Impoundment Name
		Pond 2
	1.2	Identification number of the CCR surface impoundment (if one has been assigned by the Agency)
		W1970450047-02
ĺ	1.3	Description of the boundaries of the CCR surface impoundment (35 IAC 845.210 (c))
n History		ALL THT PRT OF THE SE1/4 OF SEC 19, T35N-R10E., LYING S'LY OF THE CENTERLINE OF CHANNAHON RD; NW'LY OF A LINE DESCRIBED AS COMM AT THE SW COR OF THE SE1/4 OF SD SEC 19, THC RUNNING E ON THE S LN OF SD SEC 1629 FT; THC N 41 DEG 22' E, 249.3 FT; THC N 47 DEG 46' E, 587.6 FT; THC N 53 DEG 5' 30" E, 371.1 FT; THC N 64 DEG 28' 30" E, 545.9 FT TO N THE E LN OF SD SEC 19, WHICH IS 709.6 FT S OF THE CENTERLINE OF THE PUBLIC HIGHWAY KNOWN AS CHANNAHON RD. (JEX THT PRT T TAKEN BY THE STATE OF ILLINOIS BY DOZ# R68-013815) & (EX THEREFROM THE FOLIOWING DESCRIBED PARCEL TO WIT; THT PRT OF THE SE1/4 OF SC 19, STORD SP DOZ# R68-013815) & (EX THEREFROM THE FOLIOWING DESCRIBED PARCEL TO WIT; THT PRT OF THE SE1/4 OF SC 19, STORD SP DOZ# R68-013815) & (EX THEREFROM THE FOLIOWING DESCRIBED PARCEL TO WIT; THT PRT OF THE SE1/4 OF SC 19, STORD SP DOZ# R68-013815) & (EX THEREFROM THE FOLIOWING DESCRIBED PARCEL TO WIT; THT PRT OF THE SE1/4 OF SC 19, STORD SP DOZ# R68-013815) & (EX THEREFROM THE FOLIDWING NE CORED DARCH 21, 1951 AS DOZ# 688037 BETWEEN CATERPILLAR COF SD SEC 19 SD MONUMENT BEUNG ON THE BOUNDARY LN AGREEMENT RECORDE MARCH 21, 1951 AS DOZ# 688037 BETWEEN CATERPILLAR TRACTOR CO. & PUBLIC SERVICE CO. OF NORTHERN ILLINOIS; THC N 01 DEG 48' 09" W ALG THE SD BOUNDARY LN 594.54 FT; THC N 73 DEG 47' 26" E ALG THE S ROW OF RTE 6 (FORMERLY KNOWN AS CHANNAHON RD) AS HERTOFORE CONVEYED TO THE STATE OF ILLINOIS PER QUIT CLAIM AUGUST 19. 1986 AS DOZ# R68-13815, A DIST OF 870.57 FT TO A PT OF CURVATURE; THC E'LY ALG THE ARC OF CUCKYE CONCAVE TO THE NORTH, BEING THE S ROW LO F SD RTE 6, HAVING A RADIUS OF N 73 DEG 38' 36" E, 198.99 FT FOR A POB; THC CONT E'LY ALG THE ARC OF A CURVE CONCAVE TO THE N, BEING THES SOW LON OF RTE 6, HAVING A CHANNAHON RD AS HERTOFORE CONVEYED TO THE NE SOW LON OF SD RTE 6, HAVING A RADIUS OF N 73 DEG 38' 36" E, 198.99 FT FOR A POB; THC CONT E'LY ALG THE ARC OF A CURVE CONCAVE TO THE N, BEING THES SOW UN OF RTE 6, HAVING A RADIUS OF N 73 DEG 38' 36" E, 198.99 FT FOR A POB; THC CONT E'LY ALG THE S ROW LON OF SD
Construction History	1.4	State the purpose for which the CCR surface impoundment is being used.
		Ash Pond 2 is currently not in service and will not be used in the future for CCR storage.
	1.5	How long has the CCR surface impoundment been in operation?
		41 years
Ì	1.6	List the types of CCR that have been placed in the CCR surface impoundment.
		Bottom ash

	1.7	List name of the watershed within which the CCR surface impoundment is located.			
		Des Plaines watershed			
	1.8	Size in acres of the watershed within which the CCR surface impoundment is located.			
		28,808 acres			
	1.9	Check the corresponding box to indicate that you have attached the following:			
		Description of the physical and engineering properties of the foundation and abutment materials on which the CCR surface impoundment is constructed.			
		Description of the type, size, range, and physical and engineering properties of the materials used in constructing each zone or stage of the CCR surface impoundment.			
ued)		Describe the method of site preparation and construction of each zone of the CCR surface impoundment.			
Contin		A listing of the approximate dates of construction of each successive stage of construction of the CCR surface impoundment.			
ory (Drawing satisfying the requirements of 35 IAC 845.220(a)(1)(F).			
Hist		Description of the type, purpose, and location of existing instrumentation.			
tion		Area Capacity Curves for the CCR Impoundment.			
Construction History (Continued)		Description of each spillway and diversion design features and capacities and provide the calculations used in their determination.			
CC		Construction specifications and provisions for surveillance, maintenance, and repair of the CCR surface impoundment.			
	1.10.1	Is there record(s) or knowledge of structural instability of the CCR surface impoundment?			
		Yes 🖌 No			
	1.10.2	If you answered yes to Item 1.10.1, provide detailed explanation of the structural instability.			
		SECTION 2: ANALYSIS OF CHEMICAL CONSTITUENTS (35 IAC 845(d)(2))			
ts:	2.1	Check the corresponding boxes to indicate you have attached the following:			
Constituents		An analysis of the chemical constituents found within the CCR to be placed in the CCR surface impoundment.			
Con		An analysis of the chemical constituents of all waste streams, chemical additives and sorbent materials entering or contained in the CCR surface impoundment.			

		SECTIO	ON 3: DEMONSTRATIONS AND CEI	RTIFIC	ATIONS (35 IAC 8	845(d)(2	2)(D)	
	3.1	Indicate whether you have attached a demonstration that the CCR surface impoundment, as built, meets or an explanation of how the CCR surface impoundments fails to meet, the location standards in the following sections						
tions		Sectior Upperr		Explanation				
Section 845.300 (Placement Above the Uppermost Aquifer)Image: Comparison of the comparison							Explanation	
emoi		Sectior	n 845.320 (Fault Areas)	\checkmark	Demonstration		Explanation	
Ō		Sectior	n 845.330 (Seismic Impact Zones)	\checkmark	Demonstration		Explanation	
		Sectior Floodp	n 845.340 (Unstable Areas and lains)	\checkmark	Demonstration		Explanation	
			SECTION 4: ATTA	СНМЕ	NTS			
	4.1	Check	the corresponding boxes to indicate that	you ha∖	ve attached the follow	ving:		
		\checkmark	Evidence that the permanent markers re	equired	by Section 845.130	have be	en installed.	
	Documentation that the CCR surface impoundment, if not incised, will be operate maintained with one of the forms of slope protection specified in Section 845.430							
		\checkmark	Initial Emergency Action Plan and accompanying certification required by Section 845.520(e).					
ts		\checkmark	Fugitive Dust Control Plan and accompanying certification required by Section 845.500(b)(7).					
Imagine of the ground state of the groundwater protection of the groundwater. Imagine of the groundwater protection of the groundwater protection of the groundwater. Imagine of the groundwater protection of the groundwater. Imagine of the groundwater protection of the groundwater. Imagine of the groundwater.								
						d), if applicable.		
						ards in S	in Section 845.600, and	
		\checkmark	Safety and health plan, as required by Section 845.530.					
		For CCR surface impoundments required to close under 845.700, the proposed closure prio categorization required by Section 845.700(g).						
			SECTION 5: GROUNDWA	TER M	ONITORING			
toring	5.1	Check the corresponding boxes to Indicate you have attached the following groundwater monitoring information:						
Moni		\checkmark	A hydrogeologic site characterization m	eeting t	he requirements of S	Section 8	345.620	
water		\checkmark	Design and construction plans of a grou of Section 845.630	Indwate	r monitoring system	meeting	the requirements	
Groundwater Monitoring		\checkmark	A groundwater sampling and analysis p procedures to be used for evaluating gr 845.640					

		Proposed groundwater monitoring program that includes a minimum of eight independent samples for each background and downgradient well, required by Section 845.650(b)					
			SECTION 6: CERTIFICATIONS				
	6.1	Check	the corresponding boxes to indicate you have attached the following certifications:				
suc		\checkmark	A certification that the owner or operator meets the financial assurance requirements of Subpart I, as required by 845.230(d)(2)(N).				
Certifications		Hazard potential classification assessment and accompanying certifications required by Section 845.440(a)(2).					
Cer		\checkmark	Structural stability assessment and accompanying certification, required by Section 845.450(c).				
		\checkmark	Safety factor assessment and accompanying certification, as required by Section 845.460(b).				
		\checkmark	Inflow design flood control system plan and accompanying certification, as required by Section 845.510(c)(3).				

KPRG and Associates, Inc.

APPLICATION FOR INITIAL OPERATING PERMIT

JOLIET #29 GENERATING STATION MIDWEST GENERATION, LLC JOLIET, ILLINOIS

Illinois EPA Site No. W1970450047-02

October 29, 2021

Submitted To:

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62702

Prepared For:

Midwest Generation, LLC 1800 Channahon Rd. Joliet, IL 60436

Prepared By:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

Table of Contents

Introduction	
1.0 History of Construction, 845.230(d)(2)(A)	2
1.1 CCR Surface Impoundment Identifying Information	
1.2 Purpose of CCR Impoundment	2
1.3 CCR Impoundment Length of Operation	2
1.4 Type of CCR in Impoundment	2
1.5 Name and Size of the Watershed	2
1.6 Description of CCR Impoundment Foundation	2
1.6.1 Physical Properties of Foundation Materials	3
1.6.2 Engineering Properties of Foundation Materials	
1.7 Description of the Construction Materials, Methods, and Dates	3
1.7.1 Physical and Engineering Properties of Construction Materials	3
1.7.2 Construction Methods	4
1.7.3 Construction Dates	9
1.8 Detailed Dimensional Drawings	5
1.9 Instrumentation	5
1.10 Area-Capacity Curve	5
1.11 Spillway and Diversion Capacities and Calculations	5
1.12 Surveillance, Maintenance, and Repair Construction Specifications	
1.13 Record of Structural Instability	6
2.0 CCR Chemical Constituents Analysis	
3.0 Chemical Constituents Analysis of Other Waste Streams	
4.0 Location Standards Demonstration	7
4.1 Placement Above the Uppermost Aquifer	
4.2 Wetlands	7
4.3 Fault Areas	
4.4 Seismic Impact Zones	7
4.5 Unstable Areas	7
5.0 Permanent Markers	
6.0 Incised/Slope Protection Documentation	
7.0 Emergency Action Plan	
8.0 Fugitive Dust Control Plan	
9.0 Groundwater Monitoring Information	
9.1 Hydrogeologic Site Characterization	
9.1.1 Geology	
9.1.2 Hydrogeology	
9.2 Groundwater Monitoring System Design and Construction Plans	
9.3 Groundwater Sampling and Analysis Program	
9.3.1 Sample Frequency	
9.3.2 Sampling Preparation and Calibrations	
9.3.3 Groundwater Sample Collection	
9.3.4 Equipment Decontamination	
9.3.5 Sample Preservation, Chain-of-Custody and Shipment	
9.3.6 Analytical Methods	
9.3.7 Quality Assurance and Quality Control	
9.3.8 Statistical Methods	19

10.0 Written Closure Plan, 845.230(d)(2)(J) 20 11.0 Post-Closure Care Plan, 845.230(d)(2)(K) 21 12.0 Liner Certification, 845.230(d)(2)(L) 21 13.0 History of Known Exceedances 21 14.0 Financial Assurance, 845.230(d)(2)(N) 22 15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440 22 16.0 Structural Stability Assessment, 845.230(d)(2)(P) & 845.450 22
12.0 Liner Certification, 845.230(d)(2)(L) 21 13.0 History of Known Exceedances 21 14.0 Financial Assurance, 845.230(d)(2)(N) 22 15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440 22
13.0 History of Known Exceedances2114.0 Financial Assurance, 845.230(d)(2)(N)2215.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.44022
14.0 Financial Assurance, 845.230(d)(2)(N) 22 15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440 22
15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440
16.0 Structural Stability Assessment 845 230(d)(2)(P) & 845 450 22
10.0 bit detail bit
17.0 Safety Factor Assessment, 845.230(d)(2)(Q) & 845.460(b)
18.0 Inflow Design Flood Control System Plan, 845.230(d)(2)(R) & 845.510(c)(3)22
19.0 Safety and Health Plan, 845.230(d)(2)(S) & 845.530
20.0 Closure Priority Categorization, 845.230(d)(2)(T) & 845.700(g)

TABLES

Table 2 Pond 2 CCR Chemical Constituents Analytical Results

 Table 9-1 Summary of Local Precipitation Data

- Table 9-2 Groundwater Elevations
- Table 9-3 Hydraulic Gradient, Direction and Seepage Velocity
- Table 9-4 CCR Groundwater Data
- Table 9-5 Turbidity Measurements

Table 9-6 Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods

Table 9-7 Proposed Groundwater Protection Standards

FIGURES

Figure 1 Area-Capacity Curve

- Figure 9-1 Site Map
- Figure 9-2 Cross-Section A-A'
- Figure 9-3 Cross-Section A'-A"
- Figure 9-4 Cross-Section B-B'
- Figure 9-5 Hydrograph
- Figure 9-6 Groundwater Flow Map 3Q2020
- Figure 9-7 Groundwater Flow Map 4Q2020
- Figure 9-8 Groundwater Flow Map 1Q2021
- Figure 9-9 Groundwater Flow Map 2Q2021
- Figure 9-10 Groundwater Management Zone
- Figure 9-11 Potable Well Map

ATTACHMENTS

Attachment 1-1 – Construction Drawings

Attachment 1-2 – HDPE Liner Replacement Specifications

Attachment 1-3 - Pond 2 Liner Repair Specifications

Attachment 2 – Joliet 29 CCR Laboratory Data Package

Attachment 3 – Joliet 29 Flow Diagram

Attachment 4 – Locations Determinations

- Attachment 5 Signage Documentation
- Attachment 6 Slope Protection Documentation

Attachment 7 - Emergency Action Plan

Attachment 8 – Fugitive Dust Control Plan

- Attachment 9-1 Local Well Stratigraphy Information
- Attachment 9-2 Boring Logs
- Attachment 9-3 Historical Groundwater Data
- Attachment 9-4 IL PE Stamp
- Attachment 9-5 CCR Compliance Statistical Approach
- Attachment 9-6 Statistical Evaluation Summary
- Attachment 10 Closure Plan
- Attachment 11 Post-Closure Plan
- Attachment 12 Liner Certification Calculations
- Attachment 13 No Attachment
- Attachment 14 Financial Assurance Certification
- Attachment 15 Hazard Assessment Report
- Attachment 16 Structural Assessment Report
- Attachment 17 Safety Factor Assessment
- Attachment 18 Inflow Design Report
- Attachment 19 Safety and Health Plan
- Attachment 20 No Attachment

Introduction

Midwest Generation, LLC (Midwest Generation) currently operates the natural gas-fired generating station, referred to as Joliet #29 Generating Station, located in Joliet, Illinois ("site" or "generating station"). MWG converted the generating station from coal to natural gas in 2016. As part of the previous coal-fired operations, the station operated two ash ponds (Ponds 1 and 2) and a service water basin (Pond 3). MWG removed all of the coal combustion residuals ("CCR") from Pond 1 and decontaminated the liner before October 2015, and repurposed the pond as a low volume wastewater pond.¹ Pond 3 is a *de minimis* pond and is not a CCR surface impoundment. Pond 2 was used for CCR management/storage until 2019. In 2019, the CCR was removed and all other portions of the exposed liner have been decontaminated. Because Pond 2 was used as a CCR surface impoundment after October 2015, Pond 2 is regulated under the newly promulgated Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). Pond 2 is not currently in service, and no liquids or wastewater is directed into the pond.

The objective of this submittal is to apply for the initial operating permit for Pond 2 at the Joliet #29 Generating Station. Midwest Generation seeks to receive the operating permit to continue operating the Pond 2 in compliance with the State CCR Rule. The information required for an initial operating permit application for existing surface impoundments as specified under 35 Ill. Adm. Code 845.230(d) of the State CCR Rule is provided in the following sections.

The Permit is organized with supporting Tables and Figures that are referenced in the discussions being provided at the end of the full Permit text with the table numbers and figures tied to the Section number within which they are referenced with sequential numbering (e.g., Tables referenced in Section 9 are numbered 9-1, 9-2, etc. Figures referenced in Section 9 are numbered Figure 9-1, 9-2, etc.). Specific Attachments referenced within each Section are provided in a similar fashion (e.g., Attachment 1 information is tied to Section 1 of the Permit text, Attachment 2 information is tied to Section 2 of the Permit text, etc.). It should be noted that if Section does not reference an Attachment then that Attachment number is not included as part of the permit application. For example, Section 13 does not reference an Attachment; therefore, there is no Attachment 13 in this permit application.

¹ As a low volume wastewater pond, Pond 1 receives wastewater from other sources at the Station except CCR.

1.0 History of Construction, 845.230(d)(2)(A)

The history of construction of the CCR surface impoundment as specified in Section 845.220(a)(1) is presented below.

1.1 CCR Surface Impoundment Identifying Information

The identifying information associated with the CCR surface impoundments at the generating station are listed in the table below.

Name	Owner/Operator	Impoundment ID Number	
Ash Pond 2	Midwest Generation 804 Carnegie Center Princeton, NJ 08540	W1970450047	

1.2 Purpose of CCR Surface Impoundment

Pond 2 formerly served as a settling pond for sluiced CCR and other process water associated with the electrical power generating process occurring at the site. As stated in the Introduction, MWG converted the generating station to natural gas and it no longer burns coal for electrical power generation. All CCR has been removed from Pond 2 down to the warning layer and all exposed liner has been decontaminated. Pond 2 is not in service and will not be used in the future for CCR storage.

1.3 CCR Surface Impoundment Length of Operation

Pond 2 was constructed circa 1978 and operated as a CCR surface impoundment until 2019, thus operated for approximately 41 years. The Notice of Intent to Initiate Closure was submitted on April 11, 2021.

1.4 Type of CCR in Surface Impoundment

The type of CCR formerly stored in Pond 2 was bottom ash that was sluiced into the impoundment. The chemical constituents that make up the bottom ash is discussed in further detail in Section 2.0.

1.5 Name and Size of the Watershed

Pond 2 is located within the Des Plaines River watershed, which is approximately 28,808 acres in size.

1.6 Description of CCR Surface Impoundment Foundation

The Geosyntec October 2016 Federal CCR Rule History of Construction submittal summarized the foundation for Pond 2 as follows:

"Site observations and construction documents show Pond 2 is surrounded by embankments on the south, east, and west. There are no embankments on the north side of the pond where existing ground elevations generally increase to the north; however, Site investigations indicate that fill material may be present along the northern boundary. For engineering purposes, material located along the northern embankment is considered consistent with embankment fill. Native materials do not provide any lateral support for the embankments and therefore the pond does not contain abutments."

The following sections discuss the foundation materials' physical and engineering properties. KPRG reviewed the previously developed History of Construction for the East Ash Pond and the West Ash Pond, along with previously completed site investigations and concurred with Geosyntec's observations and conclusions.

1.6.1 Physical Properties of Foundation Materials

The physical properties of the foundation materials in which the pond is constructed ranges from clay to sand and gravel. Silurian Dolomite is noted at approximately 40 feet below the top of the pond embankments. This information was obtained from published geologic information and field investigations performed by KPRG (2005), Patrick Engineering, and Geosyntec (2015). No abutments are present.

1.6.2 Engineering Properties of Foundation Materials

The engineering properties for the foundation materials listed in the following table are from the periodic structural stability and safety factor assessments performed by Geosyntec for Pond 2. The properties were determined from the site investigation, published correlations, and laboratory testing of samples collected during the site investigations.

Material	Unit Weight	Drained friction	Effective cohesion
	(pcf)	angle	(psf)
		(degrees)	
Sand/Gravel	125	38	25

Based on Geosyntec's structural stability analysis, engineering properties were not determined for the dolomite because of its negligible contributions to the structural stability of the pond. KPRG agrees with this assessment.

1.7 Description of the Construction Materials, Methods, and Dates

The descriptions of the construction materials, methods, and dates are based on the construction drawings created by NUS in 1978 and 1979, the liner replacement drawings created by NRT in 2007 and 2008 and various site investigations referenced as appropriate. The drawings discussed in the following sections are located in Attachment 1.

1.7.1 Physical and Engineering Properties of Construction Materials

Pond 2 was constructed with embankments on the south, east, and west sides, so the physical properties of the construction materials for this section are the same as the physical properties of the foundation materials. As described in Section 1.6.1, the physical properties for the foundation

materials were described as clay to sand and gravel, so for this section, the physical properties for the construction materials will also be described as clay to sand and gravel. The pond inlet structure, outlet structure, and inlet apron are constructed of concrete. The liner was originally constructed as a 1-foot Poz-O-Pac liner system on the bottom and the side slopes with the addition of a bituminous curing coat applied on the Poz-O-Pac side slopes.

Engineering properties for the design and construction of the embankment materials were not available. Engineering properties were estimated by Geosyntec for use in the factor of safety assessment performed for the pond. Those engineering properties are listed in the following table:

Material	Unit Weight	Drained friction	Effective
	(pcf)	angle (degrees)	cohesion (psf)
Brown Clay	115	30	25
Silty Gravel	125	32	25

In 2008, MWG relined Pond 2 by removing the Poz-O-Pac liner system side slopes and covering the Poz-o-Pac liner bottom with the existing high-density polyethylene (HDPE) geomembrane liner system that is now present. In 2016, approximately 100 cubic yards of engineered fill was placed on the Pond 2 embankment crest in the southeast corner to provide additional freeboard for Pond 2.

1.7.2 Construction Methods

Based on construction drawings by NUS, 1978 (Attachment 1-1), Pond 2 was constructed by excavating down from the original ground surface to achieve the side slopes and elevations. Reviewing the drawings shows the original ground surface ranged from 526 ft above mean sea level (amsl) to 535 ft amsl. Section S on drawing 5079 C 5019 Sheet 2 shows the original ground surface was approximately 531 ft amsl in the north-south direction. Section V on drawing 5079 C 5019 Sheet 3 shows the original ground surface was approximately 526 ft amsl on the east side of Pond 2, and Section W on drawing 5079 C 5019 Sheet 3 shows the original ground surface was approximately 535 ft amsl on the west side of Pond 2. The embankment crest of Pond 2 was constructed at approximately 535 ft amsl and the bottom was constructed at approximately 516 ft amsl. The construction drawings for Pond 2 indicate that the pond was not constructed with multiple zones of different soil types, therefore discussing the size and range of each construction zone is not applicable.

The interior side slopes of Pond 2 were designed with 3H:1V (horizontal:vertical) slopes, except for the concrete inlet apron which was designed with slopes of 2H:1V. The exterior side slopes of Pond 2 along the south side were designed at 3H:1V based on the construction drawings. The interior side slopes and bottom of Pond 2 were originally designed with a 1-foot thick Poz-O-Pac liner system based on the 1978 NUS construction drawings; Pond 2's concrete inlet apron does not have the Poz-O-Pac liner. The side slopes also had a bituminous curing coat applied to the Poz-O-Pac liner system.

The west embankment for Pond 2 is topped by the access road that divides Pond 1 from Pond 2 and the west side of the embankment is the outlet side/outlet structure of Pond 1. The original ground surface of the west embankment was approximately 535 ft amsl and the as-built

embankment elevation was documented to be approximately 535 ft amsl. The east embankment of Pond 2 is the outlet side/outlet structure of the pond and abuts an access road from Channahon Road that enters the station. The original ground elevation of the east embankment ranged from approximately 530 ft amsl to 536 ft amsl. The as-built elevation of the access road was documented to range from approximately 539 ft amsl to 535 ft amsl, which is equal to or greater than the east embankment crest elevation of 535 ft amsl.

1.7.3 Construction Dates

Based upon the available construction drawings, Pond 2 was likely built in 1978. As stated above, the original Poz-O-Pac liner was overlain in 2008 with a HDPE geomembrane liner and the improvements to the southeast corner of the embankment occurred in 2016.

1.8 Detailed Dimensional Drawings

The detailed dimensional drawings associated with the construction work that has occurred on Pond 2 are located in Attachment 1. The list of the drawings in Attachment 1 are as follows:

- Construction drawings prepared by NUS, dated 1977 and 1978 (Attachment 1-1);
- Liner replacement construction and as-built drawings prepared by NRT, dated 2007 with revision notes dated 2008 (Attachment 1-1);
- The as-built survey prepared by Ruettiger, Tonelli & Associates, Inc, dated 2008 (Attachment 1-1);
- The construction drawings for the liner replacement of Pond 1, which relates to the western boundary of Ash Pond 2, prepared by NRT, dated 2008 (Attachment 1-1); and
- The construction drawing for the improvements to the embankment's southeast corner, prepared by Geosyntec, dated 2016 (Attachment 1-1).

1.9 Instrumentation

A staff gauge will be installed within Pond 2 to allow for the determination of Pond 2's water level. The staff gauge installation is intended to meet new requirements under Section 845.650(b)(3) to allow water level estimates to be made concurrent with monthly groundwater level measurements. Because Pond 2 is not in service, low volume wastewater is not directed to Pond 2 and the water in the pond is either rainfall or runoff. There is no other instrumentation present at Pond 2.

1.10 Area-Capacity Curve

An area-capacity curve created by Geosyntec is provided as Figure 1.

1.11 Spillway and Diversion Capacities and Calculations

The only spillway and/or diversion features at Pond 2 is the existing outlet structure. The outlet structure consists of a rectangular structure in which the water flows over a concrete weir into a trough that is connected to the discharge piping. The outlet structure is gravity drained. Details of the outlet structure are located on Drawing No. 5079 C5503 created by NUS Corporation in

Attachment 1-1. The calculations for the design of the outlet structure are not available. The drainage capacity for the outlet structure and discharge pipe for Pond 2 have adequately discharged water from Pond 2 without affecting the functionality of the pond.

1.12 Surveillance, Maintenance, and Repair Construction Specifications

Specifications for the original construction of Pond 2 were not available for this application. The specifications that were available are from the 2008 replacement of the original liner with a HDPE geomembrane liner. The specifications are included as part of this application in Attachment 1-2. The specifications indicated that a 60-mil HDPE geomembrane be used along with the associated installation and quality control requirements.

The CCR material was removed from Pond 2 in 2019 and the geomembrane liner was repaired as needed and decontaminated. The specifications for the geomembrane liner repair is included in Attachment 1-3.

1.13 Record of Structural Instability

There is no record or knowledge of structural instability associated with Pond 2.

2.0 CCR Chemical Constituents Analysis, 845.230(d)(2)(B)

The CCR in Pond 2 was removed in 2019 with the warning layer and the high-density polyethylene (HDPE) liner remaining. Prior to 2016 when the station was converted to natural gas, Pond 2 did occasionally receive bottom ash CCR when it could not be sluiced to Lincoln Stone Quarry. The bottom ash CCR that was sluiced to Lincoln Stone Quarry was sampled on August 31, 2021 and analyzed for the parameters listed in Section 845.600(a) except for total dissolved solids. The results of those analyses are presented in Table 2. The laboratory data package is included in Attachment 2.

3.0 Chemical Constituents Analysis of Other Waste Streams, 845.230(d)(2)(C)

The other waste streams that enter Pond 2 when it is in service are service water/low volume wastewater from the reverse osmosis (RO) sand filter backwash, the west area basin, the former coal pile runoff pump discharge, and the plant drains, including the Station floor drains, and roof drains and area drains (see Joliet 29 Flow Diagram in Attachment 3.) All of the water flow processes and stormwater flow contain total suspended solids (TSS) which can include sand sized and smaller sized particles. The RO sand filter backwash contains the suspended solids removed by the stations water treatment system. The Station floor drains, roof drains, and area drains, are likely to contain TSS from operations and runoff during storm events. Similarly, the runoff pumped from the coal pile area retention pond contains TSS.

4.0 Location Standards Demonstration, 845.230(d)(2)(D)

4.1 Placement Above the Uppermost Aquifer

According to the Location Restrictions Compliance Demonstration performed by Geosyntec in October of 2018 the base of Ash Pond 2 is separated from the upper limit of the uppermost aquifer by a minimum distance of five (5) feet. Therefore, the location of Pond 2 complies with Section 845.300. This determination by Geosyntec is included in Attachment 4. KPRG agrees with this determination.

4.2 Wetlands

According to the Location Restrictions Compliance Demonstration performed by Geosyntec in October of 2018, Ash Pond 2 is not located in mapped wetlands included in the National Wetlands Inventory-Version 2 presented by the U.S. Fish and Wildlife Service (USFW) [USFW, 2018]. Therefore, the location of Pond 2 complies with Section 845.310. This determination is included in Attachment 4. KPRG agrees with this determination.

4.3 Fault Areas

According to the Location Restrictions Compliance Demonstration performed by Geosyntec in October of 2018, Ash Pond 2 is not located within 200 feet (60 meters) of a mapped Holoceneaged fault, as mapped by the United States Geological Survey (USGS) Quaternary Fault Database [USGS, 2018]. Therefore, the location of Pond 2 complies with Section 845.320. This determination is included in Attachment 4. KPRG agrees with this determination.

4.4 Seismic Impact Zones

According to the Location Restrictions Compliance Demonstration performed by Geosyntec in October of 2018, Ash Pond 2 is not located within a seismic impact zone", as defined in Section 845.120, "and as mapped by the United States Geological Survey (USGS) [USGS, 2014]. Therefore, the location of Pond 2 complies with Section 845.330. This determination is included in Attachment 4. KPRG agrees with this determination.

4.5 Unstable Areas

According to the Location Restrictions Compliance Demonstration performed by Geosyntec in October of 2018, Ash Pond 2 is not located in an unstable area [Geosyntec, 2016]. Therefore, the location of Pond 2 complies with Section 845.340. This determination is included in Attachment 4. KPRG agrees with this determination.

4.6 Floodplains

Pond 2 is not located in a floodplain according to the National Flood Hazard Layer FIRMette Map No. 17197C0280G as mapped by the Federal Emergency Management Agency. Therefore, the

location of Pond 2 complies with Section 845.340. The relevant FIRMette is located in Attachment 4.

5.0 Permanent Markers, 845.230(d)(2)(E)

The permanent marker in accordance with 35 Ill. Adm Code 845.130 has been installed. Photographic documentation of this requirement is included in Attachment 5.

6.0 Incised/Slope Protection Documentation, 845.230(d)(2)(F)

Pond 2 was visually observed and determined to have embankments on the west, south, and east sides. The northern slope does not have an embankment because the elevations on the northern side of Pond 2 are higher than the north slope embankment crest and generally increase moving north. The interior slopes are lined with a 60-mil high-density polyethylene geomembrane, which protects the slopes from erosion, the effects of wave action, and mitigation effects of rapid drawdown. The western exterior slope of Pond 2 is the interior slope of Pond 1, which is lined with a geomembrane that provides erosion protection. Based on site observations from 2015, the eastern and southern downstream slope embankment surfaces consist of sandy gravel, gravelly sand, gravel, and some cobbles and include sparse vegetation. Based on site observations by KPRG in 2021, this existing surface condition provides adequate slope protection. Photo documentation is included in Attachment 6.

7.0 Emergency Action Plan

The Emergency Action Plan for Pond 2 was completed by Civil and Environmental Consultants, Inc. (CEC) to comply with Section 845.520. The EAP is included in Attachment 7.

8.0 Fugitive Dust Control Plan

The facility ceased burning coal on March 20, 2016, and converted to burning natural gas to generate electricity. As a result, the CCR from Pond 2 was cleaned out and closure procedures have been initiated. A fugitive dust plan was previously completed for the Joliet #29 station to comply with the Federal CCR Rule. KPRG reviewed the fugitive dust plan and updated it to comply with 35 Ill. Adm. Code 845.500(b) in relation to non-CCR fugitive dust. It is included in Attachment 8.

9.0 Groundwater Monitoring Information

9.1 Hydrogeologic Site Characterization

The following subsections provide information on the geology and hydrogeology of the site as required under Section 845.620(b). Site geology and hydrogeology are discussed separately below.

9.1.1 Geology

The physiography of Will County is made up of ground moraines, end moraines, outwash plains, stream terraces, flood plains and bogs. It is in the Till Plaines and Great Lakes Sections of the Central Lowland Province. Near surface soils in the vicinity of the subject impoundment have been grouped as Kankakee Fine Sandy Loam and Romeo Silt Loam. These soils are well to poorly drained, respectively. Organic content ranges from 2 to 5 percent and have a low to negligible accelerated erosion rate, a moderate to high corrosivity rate and a pH range from slightly acidic to slightly basic (5.6 to 8.4). Surface runoff class is low (Soil Survey of Will County Illinois). Based on the Surficial Geology Map of the Chicago Region (ISGS Circular No. 460, 1971) the surficial deposits in the vicinity of the subject surface impoundment are identified as part of the Henry Formation, which is generally described as sand and gravel with local beds of silt and/or exposed Silurian dolomite bedrock.

The general stratigraphy in the area consists of unconsolidated glacial deposits, which overlay Silurian dolomite. The Silurian dolomite is underlain by the Maguoketa Group, which includes the Scales Shale, which is considered a regional aquitard separating the overlying Silurian dolomite from the deeper Cambro-Ordovician sandstone and limestone aquifers. To evaluate local stratigraphy and as part of groundwater model development in support of the Construction Permit being submitted under separate cover, water and test well logs were obtained for wells in the general vicinity of the Joliet #29 Generation Station (it is noted that all of these wells are upgradient or side gradient of the Station and two wells on property [see Section 9.1.2]). The depths of these wells range from 43 feet to 605 feet. The stratigraphy data from these boring logs and the well locations are provided in Attachment 9-1. In addition, well logs from 11 monitoring wells that were installed in the vicinity of the subject surface impoundment (MW-1 through MW-11; see Figure 9-1) with those borings ranging in depth from 27.5 feet to 41 feet. This information is also included in the stratigraphy table in Attachment 9-1. Boring logs for these monitoring wells are included in Attachment 9-2. Based on an evaluation of this data, the following general site-specific stratigraphy is defined and geologic cross-sections are provided as Figures 9-2, 9-3, and 9-4 based on the 11 on-site monitoring well boring logs:

- Fill (approx. 0' to 8.5' thick) Consisting of a thin layer of top soil and/or coarse gravel fill.
- Silty clay to clay (approx. 0' 15' thick) Consisting of black/brown silty clay and clay with a trace of coarse gravel or sand. Not continuous across site along east-west transect.
- Sand and Gravel (approx. 14' to 40' thick) Consisting of black/brown fine to coarse sand and gravel with limestone fragments noted throughout. May locally include some lenses or interlayering of black silty clay and/or tan silty sand (wells MW-1 and MW-2).

- Sandy silt/silty clay (approx. 0' to 34' thick) Consisting of black/gray sandy silt grading downward to a gray silty clay with coarse sand. Not continuous across site.
- Bedrock Consisting of Silurian dolomite Top of unit encountered at approximately 38.5 feet below ground surface (bgs) at boring location MW-6. Borings noted with increased limestone fragment at base interpreted to be at or near top of weathered bedrock surface. Description of the dolomite discussed in detail below.

Although no specific borings were extended into the dolomite bedrock at this facility, extensive drilling and investigation of the bedrock was completed at the Joliet #9 Station, Lincoln Stone Quarry facility immediately to the south of the Des Plaines River from the subject site. The Silurian dolomite formation is generally consistent regionally, especially over fairly short distances. Based on that work, the following additional bedrock information is provided.

The Silurian dolomite is divided into four units identified as a weathered bedrock rind, Joliet Formation dolomite, Kankakee Formation dolomite and the Elwood/Wilhelmi dolomite. Beneath the Silurian dolomite is the Ordovician age Maquoketa Group consisting of the Brainerd Shale, Fort Atkinson dolomite and the Scales Shale. Although the Brainerd Shale was identified at the above referenced Lincoln Stone Quarry facility with a thickness of approximately 10 feet, this unit is not necessarily regionally continuous; therefore, it may or may not be present beneath the subject site. The Scales Shale unit, however, is extensive and is a recognized regional aquitard, which hydraulically isolates the deeper bedrock aquifers from the shallower Silurian dolomite. Based on the available information, the dolomite bedrock thickness to the top of the Scales Shale beneath the Joliet #29 site is estimated to be 95 to 115 feet.

Regional and local studies and investigations document fractures in the Silurian dolomite describing a primary joint set that is vertical and oriented about N52°E and N40°W. The N40°W joints are described as "more distinct". Natural spacing between the joint sets ranges from 3 to more than 10 feet, and joint apertures are described as less than 1/16th -inch. Bedding plane fractures are also described. Descriptions from various bedrock quarry walls and from cores obtained during drilling at the Lincoln Stone Quarry site show significant clay infilling of the vertical joints and bedding plane fractures. Evidence of water movement through fractures is interpreted from iron staining and mineralization (primarily calcite, with some pyrite and marcasite).

Silurian dolomite is a calcium-magnesium carbonate rock that includes horizons of cherty (silica) nodules and is documented both regionally and locally to include mineralization along fractures and within vugs. The mineralization includes, but is not limited to calcite (calcium carbonate) and various sulfide minerals such as pyrite, marcasite, etc. As such, the presence of these minerals and associated weathering products can also be expected within the overlying unconsolidated materials.

There are no underground mines beneath the subject CCR surface impoundment.

9.1.2 Hydrogeology

Based on information from the Soil Survey of Will County, the average annual precipitation is approximately 37 inches with about 63% of that total falling between April and October of any given year. The average seasonal snowfall is approximately just over 10 inches. More site-specific precipitation data from four water stations located in Joliet and Elgin, Illinois, is provided in Table 9-1.

The nearest surface water body is the facility intake channel and Des Plaines River located to the south of the subject CCR unit (see Figure 9-1). This reach of river is further identified as the Lower Des Plaines River, which starts upstream of the site at the confluence of the river with the Chicago Ship and Sanitary Canal (CSSC) at the E.J. & E railroad bridge (river mile 290.1). The CSSC is the main tributary to this segment of river contributing approximately 80% of the flow to the river. The segment of river adjacent to the subject site is part of the Dresden Island Pool, which starts at the Brandon Road Lock and Dam (river mile 286) which is immediately upstream of the subject CCR surface impoundment. The Dresden Island Pool is 14 miles in length, approximately 800 feet wide with depth varying between 2 to 15 feet (Lower Des Plaines River Use Attainability Analysis Final Report, IEPA, December 2003). There are no drinking water intakes within the Dresden Island Pool and for that matter on any portion of the Des Plaines River downstream of the site (Meet Your Water – An Introduction to Understanding Drinking Water in Northeastern Illinois, Metropolitan Planning Council, 2017).

Groundwater beneath the subject unit occurs under water table conditions. Saturated conditions are generally encountered between 25 and 35 feet bgs, depending on the well location, within the lower portion of the above-defined sand and gravel unit. Table 9-2 provides groundwater elevation measurements obtained for the 11 on-site monitoring wells in the vicinity of the subject CCR surface impoundment which includes data for the monitoring wells associated specifically with the subject surface impoundment (Pond 2; upgradient well MW-10 and downgradient wells MW-3 thru MW-5). A hydrograph of water levels is provided as Figure 9-5. A review of the hydrograph shows some potential temporal fluctuations with the highest water levels generally occurring within the second or third quarters of the year.

Groundwater flow maps for the four quarters from 3rd quarter 2020 through the 2nd quarter 2021 are provided as Figures 9-6 through 9-9. The maps include groundwater elevation data from all 11 wells in the area, including the specific CCR monitoring wells associated with the subject surface impoundment. Based on a review of the maps groundwater flow is in a southerly direction towards the associated facility water intake channel and the Des Plaines River. These maps are consistent with historical flow data for the site. The horizontal hydraulic gradient is fairly shallow. Table 9-3 provides a summary of the flow direction, gradient and an estimated rate of groundwater flow for each sampling event. The flow rate was calculated using the following equation:

$$V_{\rm s} = \frac{{\rm K}dh}{n_e dl}$$

Where:

V_s = seepage velocity (distance/time) K = hydraulic conductivity (distance/time) dh/dl = hydraulic gradient (unitless) n_e = effective porosity (unitless)

Hydraulic conductivity values were initially estimated for monitor wells MW-4, -6, -9, and -11 from slug tests completed by Patrick Engineering in 2010. The geometric mean of the test data for these wells was approximately 310 feet per day (ft/d; 3.59×10^{-3} ft/sec) for each well, as calculated by Patrick Engineering in the Hydrogeologic Assessment Report – Joliet #29 Generating Station, February 2011. The slug test data were reviewed as part of the modeling study being completed for the Construction Permit application and the data were reanalyzed using corrected input values for the well casing and borehole dimensions and effective porosity of the sand filter pack material. The revised geometric mean of the test data for these wells decreased to approximately 170 ft/d (1.97 x 10^{-3} ft/sec) for each well. This revised value was used in Table 9-3. The estimated effective porosity of the aquifer materials (0.35) was obtained from literature (Applied Hydrogeology, Fetter, 1980).

At this time, based on the geology discussion in Section 9.1.1 and the site-specific hydrogeology discussions above, the groundwater beneath the CCR surface impoundment is considered as Class I Potable Resource Groundwater in accordance with Section 620.210. It is noted, however, that a Groundwater Management Zone (GMZ) has been established in the vicinity of the subject CCR surface impoundment in accordance with Section 620.250 as part of a Compliance Commitment Agreement (CCA) between Midwest Generation and Illinois EPA. The extent of the established and approved GMZ is provided on Figure 9-10.

A survey of all potable water sources within a 2,500 feet radius of the Midwest Generation Joliet #29 Generating Station was completed by Natural Resources Technology (NRT) in 2009. The following databases and sources of information were utilized in order to determine community water source and water well locations and construction in the vicinity of the ash pond wastewater treatment systems:

- Illinois State Geological Survey (ISGS) -Water Well Database Query;
- Illinois State Water Survey (ISWS) Private Well Database and water well construction report request; and
- Illinois Division of Public Water Supply web-based Geographic System (GIS) files;

As part of this permit preparation, KPRG evaluated the NRT information and reviewed the new Illinois State Geological Survey database and interactive map references as "ILWATER". The survey results are provided on Figure 9-11. Fifteen potable/industrial use wells are within a 2,500-foot radius of the Station's subject CCR surface impoundment. There are no wells directly downgradient of the subject surface impoundment. Eight of the wells are located 1,500 to 2,500 feet north and northwest of the impoundment (upgradient). Two wells, both owned by Midwest Generation, which service the Station, are located to the west and southwest (sidegradient). Both of these wells are greater than 1500 feet deep and screened within the Cambro-Ordovician limestones/sandstones beneath the Maquoketa Shale. There are several wells south of the Des

Plaines River, a hydrogeologic discharge boundary, which service the Joliet #9 Generating Station all of which are also greater than 1,500 feet deep. The well that is located within the Des Plaines River (well 00563) is incorrectly located within the ILWATER database and is actually part of the Olin Chemical operations located approximately 0.3 miles to the south of the location shown on the figure.

A search of the Illinois Department of Natural Resources dedicated nature preserve database (<u>https://www2.illinois.gov/dnr/INPC/Pages/NaturePreserveDirectory.aspx</u>) was performed to determine whether there may be a dedicated nature preserve nearby. No dedicated nature preserves were identified in the vicinity of the subject CCR surface impoundment.

Based on the geology of the site presented in Section 9.1.1 and the above hydrogeology discussions, the primary contaminant migration pathway for a potential release from the subject CCR surface impoundment would be downward migration to groundwater within the unconsolidated sand and gravel aquifer. Due to its proximity to the facility intake channel and Des Plaines River, which is a hydrogeologic flow boundary, minimal to no downward vertical flow mixing would be anticipated within the aquifer. There are no other utility or man-made preferential pathway corridors that would act to potentially intercept the flow to move any contamination in a direction other than to the south. There are no potable water wells downgradient of the subject CCR surface impoundment screened within the aquifer of concern. Also, as previously discussed, there are no potable surface water intakes on the Des Plaines River either along or downstream of the subject site.

There is quarterly groundwater quality data associated with the subject CCR surface impoundment and the two other ponds in the area dating back to December 2011 associated with an Illinois EPA request for evaluation of potential ash pond groundwater impacts and subsequently the negotiated CCA. However, that Illinois EPA required parameter list was slightly different from that specified in Section 845.600 and included analysis of dissolved inorganic parameters rather than total inorganic parameters. That historical water quality data is provided in Attachment 9-3.

The Pond 2 is subject to the federal requirements under Federal Register, Environmental Protection Agency, 40 CFR Parts 257.94, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule dated April 17, 2015 (Federal CCR Rule). As required under the Federal CCR Rule, eight rounds of background sampling were completed for the monitoring wells within the monitoring network for the subject CCR surface impoundment (MW-3 through MW-5 and MW-10). This included the full list of Appendix III (detection monitoring) and IV (assessment monitoring) parameters. Subsequently, quarterly groundwater monitoring of these wells was continued for only Appendix III detection monitoring parameters since there were no detections of Appendix III parameters above the established statistical background for those wells. Since the effective date of the new State CCR Rule, quarterly groundwater monitoring for the full list of parameters specified in 845.600, which includes all parameters in the Federal CCR Rule Appendix III/IV, has continued. This data is provided in Table 9-4. In addition, it is noted that Illinois EPA added turbidity measurements to the list with a required eight rounds of background of that parameter for each well in the monitoring network for the subject CCR surface impoundment. The turbidity data is provided in Table 9-5.

9.2 Groundwater Monitoring System Design and Construction Plans

A comprehensive monitoring well network that includes other ponds in the vicinity of Pond 2 was established in response to a previous Illinois EPA request in 2010. The well spacing was developed as part of a previous hydrogeologic assessment completed by Patrick Engineering, Inc. The well depths were determined based on depth to groundwater and the base elevations of the ponds being monitored and were approved by Illinois EPA. Groundwater flow in the area is generally to the south towards the facility water intake channel and Des Plaines River. Monitoring well MW-10 (see Figure 9-1) is the established up-gradient water quality monitoring point for Pond 2. Groundwater data from this well will be evaluated to provide a statistically representative upgradient water quality prior to that water passing beneath the regulated unit. Wells MW-3, MW-4 and MW-5, which are located essentially at the pond boundary, will serve as down-gradient monitoring points for Pond 2. This proposed monitoring well network will be utilized for determining whether potential pond leakage may be causing or contributing to groundwater impacts in the vicinity of the units.

MW-3, MW-4, MW-5, and MW-10, installed in 2010, were drilled using 4.25-inch hollow stem augers. The wells were completed with standard 2-inch inner-diameter PVC casing with 10-feet of 0.010 slot PVC screen. Filter sand pack around each screen was extended to approximately 2-feet above the top of the well screen. The remainder of the annulus was backfilled with bentonite. Surface completions include stick-up (above grade two to three feet) locking protector casings set in concrete aprons. The wells are further protected by traffic bollards, as necessary. Boring logs and well construction summaries for these wells are provided in Attachment 9-2. Ground surface and top-of-casing elevations were surveyed by an Illinois licensed surveyor and are included in the previously referenced groundwater elevation table (Table 9-2).

MW-3, MW-4, MW-5, and MW-10 are outfitted with a dedicated sampling system. Specifically, each well has a QED Environmental Systems (QED) Well Wizard Model P1101M dedicated sampling pump with Model No. 37789 intake screens (0.010-inch slot). The screens are set within approximately one-foot of the base of the monitoring well.

In accordance with requirements under Section 845.630(g), Attachment 9-4 includes an Illinois licensed Professional Engineer certification of the above-defined monitoring system.

9.3 Groundwater Sampling and Analysis Program

9.3.1 Sample Frequency

Pond 2 is regulated under the Federal CCR Rule. As such, all of the above defined monitoring wells (upgradient and down-gradient) have been sampled on a quarterly basis starting the 4th quarter of 2015 for eight consecutive quarters for both Appendix III and Appendix IV parameters specified in the Federal CCR Rule, which is the same parameter listing as provided under the State CCR Rule Section 845.600(a) plus calcium. This dataset will facilitate the development of proper statistical evaluation procedures for the site and use in development of applicable site-specific Groundwater Protection Standards (GWPSs) for each constituent pursuant to Section 845.600(b) as presented in Section 9.4 below. Additional monitoring data collected since the initial eight rounds of background sampling will also be evaluated to determine whether an expanded dataset

can be used in developing an appropriate and representative background for the State CCR Rule compliance. Illinois EPA added turbidity as an additional parameter that will require development of a statistical background. Since this parameter was not included within the Federal CCR Rule, eight rounds of turbidity measurements were obtained within the 180-day period since the effective date of the State Rule. However, this restricted period of background data collection does not facilitate evaluation of potential seasonal variations during the development of statistical background for this parameter.

Currently, all wells within this CCR monitoring network are being sampled on a quarterly basis for all parameters specified in Section 845.600(a) plus calcium and turbidity. Between quarterly monitoring events, groundwater level measurements from all designated CCR monitoring wells will be also obtained and recorded on a monthly basis. During the initial rounds of monthly groundwater level measurements after the enactment of the State CCR Rule, surface impoundment measurements were not collected because the instrumentation for these measurements was not yet in-place and available for recording the data.

Quarterly groundwater monitoring will continue during the active life of the impoundment and the post-closure care period or, if closure is by removal, then in accordance with monitoring frequency requirements under Section 845.740(b). It is noted that if after 5 years of quarterly monitoring it can be demonstrated that the facility meets the requirements specified in Section 845.650(b)(4), the owner can petition the Illinois EPA to shift the monitoring frequency to semi-annual.

9.3.2 Sampling Preparation and Calibrations

Prior to any sampling event, the Station's designated Environmental Specialist shall be notified in advance of sampling crew arrival so that any arrangements can be made, including security clearance and training.

Prior to sampling activities, and at intervals recommended by the manufacturer, all non-dedicated equipment shall be cleaned and calibrated. Specifically, the field parameter water quality meter to be used for pH, specific conductance, turbidity and temperature will be calibrated using standard reference solutions. In addition, an operational check of the electronic water level probe will also be performed by placing the probe into a bucket of water and ensuring that the audio signal is triggered when the sensor meets the water interface. The associated tape measure of the probe will also be checked for wear.

The monitoring network consists of all dedicated sampling equipment (QED Well Wizard P1101M). The controller used to operate individual bladder pumps will be checked and maintained prior to arrival at the site based on manufacturer specifications.

All lab ware shall be obtained directly from an Illinois certified laboratory. Upon arrival to the site, the monitoring wells will be assessed for structural integrity. Each well cover (either stick-up or flush mount) will be inspected for proper labels, locks, any damage and be cleared of any flora or fauna that may be on the well or in the vicinity that would affect the sample or the sampling operation. In addition to any other notable observations, all of the above shall be entered on the sampling sheets. Once the well is uncovered and unlocked, and the well casing inspected, the well head shall be inspected for damage and cleanliness. At that point, the well will be considered ready for sampling per procedures described below.

9.3.3 Groundwater Sample Collection

Prior to initiating sampling, a round of groundwater levels will be collected from each monitoring well using an electronic water level probe. The timeframe over which these water levels are collected should be minimized and should not exceed 8 hours. The depth to water will be measured to the nearest one-hundredth of a foot from the top of casing using an electronic water level meter. The water level probe should be properly decontaminated between each reading using procedures specified in Section 9.3.4.

All of the monitoring wells at this Station are equipped with dedicated, down-hole, bladder pumps. At the top of casing for each well is a manifold with air and water quick connects and a port for a water level meter probe to fit so that an undisturbed water level can be obtained. Immediately prior to sampling, the depth to water will be measured again to the nearest one-hundredth of a foot from the top of casing using an electronic water level indicator and recorded onto the sampling sheets. Once recorded, an air compressor and flow controller will be attached to the air side quick connect and disposable tubing attached to the discharge connection. The discharge tubing will be run to a flow-through cell of the water quality meter. A discharge line from the flow-through cell will be placed into a vessel to allow for the measurement of the volume of groundwater removed. The water quality meter will be attached within the flow-through cell that allows for real time readings of pH, specific conductivity and temperature. It is noted that a calibration check of the water quality meter should be performed at the start and end of each day of sampling and recorded in the field notes. If the meter calibration-check shows drift outside of manufacturer specifications, the meter should be recalibrated in the field using standard solutions per manufacturer requirements.

The air controller will be set to the necessary pressure and to the slowest pumping interval, approximately 50 second refill and 10 second pump (flow rates at this setting tend to be less than 100 milliliters/minute), and the compressor will be started. The intent of the low flow pumping will be to minimize drawdown in the well with an ideal goal of keeping the drawdown to 0.30 feet or less. Once the water has filled the flow-through cell, a reading of the parameters will be recorded. Readings will continue to be recorded until such time as all parameters are deemed stable for three consecutive measurements at which point a sample will be collected from the tubing prior to the flow-through cell. An unfiltered groundwater sample shall be collected directly from the water tubing after it is disconnected from the flow-through cell. The laboratory provided bottles shall be properly filled. Once the sample is collected, the bottles shall be properly labeled and placed on ice as necessary.

If the well would pump dry prior to the field parameter readings stabilizing, the well will be allowed to recover for up to 24-hours at which point water sample collection will be initiated.

In the event that a dedicated bladder pump fails to work, the following procedures should be implemented:

• Pull the dedicated tubing and pump from the well and ensure that the tubing does not contact the ground.

- Visually inspect the intake of the pump for clogging from sedimentation. If clogging is noted, clean the intake with distilled water. If there is no clogging, dismantle the pump casing and inspect the bladder for any holes, cracks or tears.
- If the bladder is determined to be compromised (i.e., wear has resulted in cracking or tearing), remove the bladder and replace it with a new bladder. Properly clean all parts of the pump using procedures described in Section 9.3.4, reassemble the pump and slowly lower it back down hole. Continue sampling as described above.
- If the entire pump is determined to have failed, a new pump will need to be ordered for replacement and a modified sampling procedure will be implemented as described below.

In the case of bladder pump failure, at a specific well during a sampling event, the alternate sampling method will be the use of a portable peristaltic pump (the pump itself does not go downhole) assuming depth to water is less than 23 feet bgs. Clean disposable polyethylene tubing will be attached to the pump and the tubing will be slowly lowered down hole along with the water level probe. The pump will be operated at the lowest rate possible to achieve the same goals as for sampling described above (generally below 300 milliliters/minute, which is within the range of standard low flow protocols). Water will be collected in a clean glass jar for field parameter readings. Once stable field parameters are recorded, the sample will be collected directly onto laboratory prepared containers for analysis. Upon completion of sample collection, the water level meter and tubing should be removed from the well. The polyethylene tubing should be disconnected from the pump and discarded. The water level meter should be properly decontaminated as specified in Section 9.3.4. If depth to water is such that a peristaltic pump cannot be used, a submersible pump will need to be used. The submersible pump must be properly cleaned as specified in Section 9.3.4 prior to placement down the well. All subsequent procedures will be the same as above. The alternate sampling pump use will be recorded on the field data sheet for that well and noted in any subsequent reporting summary.

9.3.4 Equipment Decontamination

Any equipment that is used down-hole at more than one sampling location must be thoroughly decontaminated between uses. Based on procedures described above, only the water level meter is anticipated to be in this category, however, if a submersible pump needs to be used during a particular sampling event due to dedicated pump failure (see Section 9.3.3), these procedures will also apply. The water level meter probe and any measuring tape, or any other non-dedicated equipment that may need to be placed down the well that extended below the water surface, will need to be cleaned with an Alconox solution, or equivalent, wash followed by a double rinse with distilled water. Any pump tubing that is not dedicated should be discarded and only clean tubing should be used down-hole.

9.3.5 Sample Preservation, Chain-of-Custody and Shipment

Since measurement of total recoverable metals is required by the State CCR Rule, the samples will not be filtered prior to collection. This will facilitate the analysis to capture both the particulate fraction and dissolved fraction of metals in natural groundwater. Groundwater samples will be collected directly into Illinois certified laboratory provided containers. Those containers will be prepared by the laboratory to contain any necessary chemical preservation. The samples shall be stored at temperatures required by the lab following sample collection. Table 9-7 includes a summary of sample bottle requirements, preservatives and holding times

All groundwater samples collected shall be transferred to the laboratory under proper COC procedures. The laboratory provided COC, completed with all pertinent information, shall be maintained from sample collection through receipt by the laboratory. The information shall include, but is not limited to, the following:

• Project name and number, state samples collected in, sample name and type, time and date collected, analysis requested, and printed name and signatures of person(s) sampling.

The COC shall be completed and properly relinquished by the field sampler(s) with all samples clearly printed or typed.

All samples will be either delivered directly to the laboratory or be shipped using Federal Express or a similar overnight service. It should be noted that Total Dissolved Solids (TDS) analysis has a 7-day holding time. TDS samples should be shipped to the laboratory within 72 hours after collection. All other holding times for the specified parameters are long enough to facilitate one shipment after the full round of sampling is complete.

9.3.6 Analytical Methods

A list of the analytical methods to be used by the laboratory for each specified parameter is included in the above referenced Table 10-6. Individual detection limits for the parameters may change slightly from sample to sample depending on potential matrix interferences with a sample (e.g., amount of suspended solids/sediment) and/or the concentration of the constituent in the sample. However, the base detection limits will be set at or below the applicable standards as defined in Section 845.600(a)(1) for that compound, which are also provided in Table 9-6.

9.3.7 Quality Assurance and Quality Control Laboratory

Only an Illinois certified analytical laboratory will be used for sample analysis. The laboratory will be conducting their work under their specific approved Quality Assurance and Quality Control (QA/QC) program. A copy of their program can be available upon request. A standard Level II data documentation package will be included in all subsequent reporting, however, the lab will be requested to also provide a Level IV data documentation package (i.e., U.S. EPA Contract Laboratory Protocol equivalent) in the event more detailed data validation/evaluation is deemed necessary.

<u>Field</u>

The QA/QC program for fieldwork will include the collection of blind duplicates and the use of a laboratory supplied trip blank. The blind duplicate will be collected from a random well during every sampling event in which more than three (3) samples are collected. The duplicate will be blind in the manner that there will be no way for the laboratory to determine from which well or point the sample was collected.

Upon receipt of the analytical data, a determination will be made if the duplicate is consistent with the sample collected from the well/point. A generally acceptable range for groundwater samples is +/- 30 percent. If outside the acceptable range, a resample may be determined to be necessary and reanalyzed. The trip blank analytical data will be reviewed for any values other than non-detect. If there are any questions regarding the duplicate, trip blank, or other reported analytical QA/QC runs, the laboratory will be contacted to determine the effect on data quality, if any, and usability. If necessary, a specific well may need to be re-sampled.

9.3.8 Statistical Methods

A proposed statistical evaluation plan meeting the requirements specified in Section 845.640(f) is provided in Attachment 9-5 along with a certification of the plan by an Illinois licensed Professional Engineer.

9.4 Groundwater Monitoring Program

The groundwater sample and water level collection frequency is discussed in Section 9.3.1 above.

As previously noted, the monitoring well system for the subject unit consist of four monitoring wells as follows:

- MW-10 Upgradient
- MW-3 through MW-5 Downgradient

Eight rounds of background sampling for the purposes of statistical evaluation and background determination is available from the initial groundwater sampling which occurred starting in 2015 in compliance with the Federal CCR Rule requirements. Subsequent groundwater sampling has also occurred on a quarterly basis for the seven detection monitoring parameters listed under Appendix III of the Federal CCR Rule detection monitoring requirements. All available CCR monitoring data through the end of the second quarter 2021 is summarized in Table 9-5 and the eight rounds of turbidity data collected since the enactment of the State CCR Rule in April 2021 are provided in Table 9-6.

Using the currently available data for the subject CCR surface impoundment, site specific Groundwater Protection Standards (GWPSs) have been established in accordance with Section 845.600(b) and are summarized in Table 9-7. The background concentrations noted in Table 9-7 were calculated using the statistical evaluation approach noted in Section 9.3.8 and provided in Attachment 9-5. A presentation of the statistical evaluations, which resulted in the background concentration calculations is provided in Attachment 9-6.

Once the proposed GWPSs presented in this permit application are approved by Illinois EPA, these values will be used for all subsequent groundwater monitoring data comparisons. Monitoring will continue on a quarterly basis for all constituents specified in Section 845.600(a)(1) plus calcium and turbidity. In accordance with Section 845.610(b)(3)(D), a data summary report will be submitted to Illinois EPA within 60-days of receipt of all analytical data which will include a groundwater flow map for the quarterly sampling event, summary of water level elevations collected during the reporting period (monthly measurements), and a data summary including

summary data tables with a comparison against the established/approved GWPSs. This report will be placed the facility's operating record.

If during a monitoring event, a constituent(s) is/are detected above an established/approved GWPS, that well will be resampled for the specific constituent(s) in accordance with the statistical evaluation procedures outlined in Attachment 9-5. If the resample data confirms that the constituent(s) concentration(s) is/are above the GWPS then the following will occur:

- Characterize the nature and extent of the potential release and any relevant site conditions that may affect the remedy evaluation/selection. This characterization must meet the requirements set forth under Section 845.650(d)(1).
- If groundwater impacts extend off-site, provide off-site landowner/resident notifications as specified under Section 845.650(d)(2) and place the notifications into the facility's operating record. This must occur within no more than 30-days of determination that a GWPS has been exceeded.
- An Alternate Source Demonstration (ASD) may be initiated and completed for submittal to Illinois EPA review/approval as allowed under Section 845.650(e). Place the ASD into the facility's operating record.
- Within 90-days of determining that a constituent(s) was detected above an established/approved GWPS at a downgradient waste boundary monitoring point, initiate an assessment of corrective measures meeting the requirements specified under Section 845.660 unless an ASD is submitted in accordance with Section 845.650(d)(2) and subsequently approved by the Illinois EPA.

By no later January 31st of each year, an Annual Groundwater Monitoring and Corrective Action Report will be prepared for inclusion as part of an Annual Consolidated Report for the facility. The Annual Groundwater Monitoring and Corrective Action Report will meet the requirements set forth under Section 845.610(e)(1 through 4). The Annual Consolidated Report will be placed into the facility's operating record.

10.0 Written Closure Plan, 845.230(d)(2)(J)

According to the Closure Plan prepared by KPRG in October 2016, "the closure of Ash Pond 2 will be by removal of the CCR" as defined in Section 845.740(a). "Midwest Generation plans to keep the structure of the pond intact for use for non-CCR material". MWG has filed a Petition for an Adjusted Standard with the Illinois Pollution Control Board requesting that MWG may reuse the HDPE liner in Pond 2. *In the Matter of: Petition of Midwest Generation for an Adjusted Standard from 845.740(a) and Finding of Inapplicability of Part 845*, PCB AS21-02. The Closure Plan as written complies with Section 845.720(a). The Closure Plan is included as part of this application in Attachment 10.

11.0 Post-Closure Care Plan, 845.230(d)(2)(K)

The CCR was removed from Pond 2 but Illinois EPA has not issued a construction permit for closure by removal pursuant to Section 845.740. As a result, Pond 2 has not completed closure by removal as required in Section 845.740(a) and a post-closure plan has been prepared in accordance with 845.780(a). The post-closure plan is located in Attachment 11.

12.0 Liner Certification, 845.230(d)(2)(L)

The upper liner component for Pond 2 consists of white 60-mil high-density polyethylene (HDPE) topped with a sand cushion and then a limestone screenings warning layer. The lower liner component below the 60-mil HDPE liner is the original 12-inch thick Poz-O-Pac liner followed by five feet of brown and dark brown gravelly sand, some fine sand with traces of brown clay and gray lean clay. This composition of the liner components of Pond 2 were evaluated against the liner design criteria using the process outlined in Section 845.400(c) to determine if the pond is considered lined or unlined. The calculations showing the flow rate calculations and comparison are shown in Attachment 12. The calculations show that the liner components for Pond 2 do not comply with the requirements of Section 845.400 and the surface impoundment is considered unlined. As previously stated, all CCR material has already been removed from Pond 2 and since the station is no longer burning coal as a fuel source, there will be no future placement or storage of CCR within this impoundment.

13.0 History of Known Exceedances

As previously noted in the introduction, there is no Attachment with supporting documentation for this Section since the referenced data is provided in Attachment 9 documentation. In the fourth quarter 2010, Midwest Generation voluntarily initiated groundwater monitoring in the vicinity Pond 2. As discussed in Section 9 of this permit application, the CCR groundwater monitoring network in the vicinity of Pond 2 includes upgradient well MW-10 and downgradient wells MW-3 through MW-5.

The existing CCR data for Pond 2 was also presented and discussed in Section 9 of this permit application. Relative to the most recent round of CCR groundwater monitoring data referenced in that Section (second quarter 2021); the following are noted above the standards provided in Section 845.600(a):

- MW-10 (upgradient): Chloride and TDS
- MW-03 (downgradient): Chloride and TDS
- MW-04 (downgradient): Chloride
- MW-05 (downgradient): Chloride and TDS

These wells are within the existing GMZ. Channahon Road (Rte 6), located adjacent to and upgradient of Pond 2, is a major four-lane roadway. The use of salt on Channahon Road during the winter for road safety may be the likely source of the chloride and the associated TDS in the

monitoring wells. Proposed GWPSs developed in accordance with Section 845.600(b) are presented in Section 9.4 above. Once Illinois EPA reviews and approves those proposed GWPSs, those values will be used for subsequent groundwater monitoring data comparisons.

Pursuant to Part 257.95(g)(3) of the Federal CCR Rule, MWG conducted an Alternate Source Demonstration (ASD) for Pond 2. The ASD concluded that the potentially statistically significant increases in the subject Federal CCR Rule Appendix III parameters were not associated with a potential release from Pond 2 but rather an alternate transient source of impacts, potentially from upgradient and offsite. Because the GWPSs are under review, there are no approved GWPSs for the constituents in the groundwater and accordingly it cannot be determined if there is an exceedance of the groundwater protection standards in Section 845.600.

14.0 Financial Assurance, 845.230(d)(2)(N)

The financial assurance certification is included in Attachment 14.

15.0 Hazard Potential Classification Assessment, 845.230(d)(2)(O) & 845.440

The hazard potential classification has been completed by Sargent & Lundy, LLC and is included in Attachment 15.

16.0 Structural Stability Assessment, 845.230(d)(2)(P) & 845.450

The initial structural stability assessment was performed for Pond 2 in October of 2016 and has been reviewed and updated by Sargent & Lundy, LLC in accordance with Section 845.540. The structural stability assessment is included in Attachment 16.

17.0 Safety Factor Assessment, 845.230(d)(2)(Q) & 845.460(b)

The safety factor assessment has been completed by Sargent & Lundy, LLC in accordance with 845.460(b) and is included in Attachment 17.

18.0 Inflow Design Flood Control System Plan, 845.230(d)(2)(R) & 845.510(c)(3)

An Inflow Design Flood Control System Plan was previously completed for Pond 2 by Geosyntec in October 2016. This plan was completed in accordance with the federal CCR rule, 40 CFR Part 257.82(c). The plan demonstrates that the existing outlets structures, conveyance piping, and downstream hydraulic structures for Pond 2 adequately manage the inflow from the design event. The previously completed plan was updated by Sargent & Lundy, LLC and is included in Attachment 18.

19.0 Safety and Health Plan, 845.230(d)(2)(S) & 845.530

A Safety and Health Plan in accordance with Section 845.530 has been completed and included in Attachment 19.

20.0 Closure Priority Categorization, 845.230(d)(2)(T) & 845.700(g)

Based on Section 845.700(g), the category designation for Pond 2 is Category 3. The Category 3 designation for Pond 2 is based on the following:

- Pond 2 is an inactive surface impoundment;
- There are no potable wells or setbacks of existing water supply wells downgradient, and as such Midwest Generation, LLC ("MWG") is not aware of any imminent threat to human health or the environment;
- The Illinois EPA EJ Start tool found at <u>https://illinois-epa.maps.arcgis.com/apps/webappviewer/index.html?id=f154845da68a4a3f837cd3b880b</u> 0233c was used to determine that Pond 2 is located within one mile of an area of environmental justice concern.

A Notice of Intent to Initiate Closure for Pond 2 was submitted on April 11, 2021 by Midwest Generation.

OPERATING PERMIT TABLES

Table 2. Joliet 29 Generating StationPond 2 CCR Chemical Constituents Analytical Results

	Bottom Ash
Parameter Name	Sample
	8/31/2021
Antimony	<1.8 F1
Arsenic	1.5 F1
Barium	3,000
Beryllium	1.5 F1
Boron	130 F1 V
Cadmium	< 0.18
Calcium	100,000
Chloride	<20
Chromium	12 F1
Cobalt	15
Fluoride	<1.0
Lead	5.6
Lithium	20 V
Mercury	< 0.016
Molybdenum	1.1 F1
Selenium	<0.89 F1
Sulfate	560
Thallium	2.9
Radium 226	1.54
Radium 228	1.63
Radium 226 & 228	3.17

Notes:

All results are in milligrams per kilogram (mg/kg), except for radium, which pCi/L

F1 - MS and/or MSD recovery exceeds control limits

V - Serial Dilution exceeds the control limits

Joliet	#29 Station
Month	Average Monthly Precipitation* (inches)
January	1.09
February	1.27
March	2.01
April	3.66
May	3.9
June	4.65
July	4.41
August	4.08
September	3.02
October	3.09
November	2.4
December	1.81

Notes:

* - Historical precipitation data was obtained from the National Oceanic and Atmospheric Administration. Precipitation data was averaged from four stations located within Joliet and Elgin, Illinois. Dates of precipitation data range from 1894-2020.

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

Well ID		Top of Casing (TOC)	a 1		Sampling			Sampling	Depth to
Well ID						Bottom of		Death to	Bottom of
	Date	Elevation	Ground Elevation	Groundwater Elevation	Groundwater Elevation	Bottom of Well Elevation	Depth to Groundwater	Depth to Groundwater	Well
	Dute	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft below TOC)	(ft below TOC)	(ft below TOC)
	02/10/15	(11 above Mi3L) 534.76	(it above MiSE) 531.46	(IT above MSE)	(IT above MSE)	(IT above MISE) 504.88	NM	NM	29.88
	05/27/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	08/04/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	10/27/15	534.76	531.46	NM	NM	504.88	NM	NM	29.88
	02/09/16 05/10/16	534.03 534.03	531.56 531.56	NM 505.90	NM 506.18	505.50 505.50	NM 28.13	NM 27.85	28.53 28.53
	03/10/10	534.03	531.56	506.85	506.91	505.50	27.18	27.12	28.53
	11/01/16	534.03	531.56	505.89	505.53	505.50	28.14	28.50	28.53
	02/06/17	534.03	531.56	NM	NM	505.50	NM	NM	28.53
	04/25/17 08/01/17	534.03 534.03	531.56 531.56	NM 506.59	NM 506.53	505.50 505.50	NM 27.44	NM 27.50	28.53 28.53
	10/17/17	534.03	531.56	508.87	508.85	505.50	25.16	25.18	28.53
MW-01	02/21/18	534.03	531.56	506.37	509.54	505.50	27.66	24.49	28.53
	04/25/18	534.03	531.56	505.89	505.58	505.50	28.14	28.45	28.53
	07/31/18	534.03 534.03	531.56	505.75 506.22	505.50 505.93	505.50 505.50	28.28 27.81	28.53	28.53 28.53
	02/04/19	534.03	531.56	505.73	505.95 NM	505.50	28.30	28.10 NM	28.53
	05/06/19	534.03	531.56	509.00	509.00	505.50	25.03	25.03	28.53
	08/06/19	534.03	531.56	505.88	NM	505.50	28.15	NM	28.53
	11/06/19 02/12/20	534.03 534.03	531.56 531.56	507.38 505.69	NM	505.50	26.65	NM	28.53 28.53
	02/12/20 05/21/20	534.03	531.56	505.69	NM NM	505.50 505.50	28.34 22.43	NM NM	28.53
	07/30/20	534.03	531.56	505.74	NM	505.50	28.29	NM	28.53
	10/21/20	534.03	531.56	505.73	NM	505.50	28.30	NM	28.53
	02/11/21 05/17/21	534.03 534.03	531.56 531.56	505.73 505.76	NM NM	505.50 505.50	28.30	NM NM	28.53 28.53
	05/1//21 02/10/15	534.03	531.36	505.76	510.69	505.50	28.27	23.59	28.53
	05/27/15	534.28	531.19	505.34	505.32	504.05	28.94	28.96	30.23
	08/04/15	534.28	531.19	505.14	505.13	504.05	29.14	29.15	30.23
	10/27/15	534.28	531.19	504.89	505.09	504.05	29.39	29.19	30.23
	02/09/16 05/10/16	534.30 534.30	531.17 531.17	505.59 505.89	505.57 506.09	504.07 504.07	28.71 28.41	28.73 28.21	30.23 30.23
	08/30/16	534.30	531.17	506.83	506.97	504.07	27.47	27.33	30.23
	11/01/16	534.30	531.17	505.90	505.89	504.07	28.40	28.41	30.23
	02/06/17	534.30	531.17	505.46	505.74	504.07	28.84	28.56	30.23
	04/25/17 08/01/17	534.30 534.30	531.17 531.17	505.69 506.59	505.70 506.52	504.07 504.07	28.61	28.60	30.23 30.23
	10/17/17	534.30	531.17	508.82	508.82	504.07	25.48	25.48	30.23
MW-02	02/21/18	534.30	531.17	506.35	509.65	504.07	27.95	24.65	30.23
WIW-02	04/25/18	534.30	531.17	505.87	505.81	504.07	28.43	28.49	30.23
	08/01/18	534.30	531.17	505.22	505.14	504.07	29.08	29.16	30.23
	10/16/18 02/04/19	534.30 534.30	531.17 531.17	506.17 505.68	506.11 505.65	504.07 504.07	28.13 28.62	28.19 28.65	30.23 30.23
	05/06/19	534.30	531.17	508.95	508.29	504.07	25.35	26.01	30.23
	08/06/19	534.30	531.17	505.16	NM	504.07	29.14	NM	30.23
	11/06/19	534.30	531.17	507.27	NM	504.07	27.03	NM	30.23
	02/12/20 05/21/20	534.30 534.30	531.17 531.17	505.49 510.37	NM NM	504.07 504.07	28.81	NM 23.94	30.23 30.23
	07/30/20	534.30	531.17	504.98	NM	504.07	29.32	23.94 NM	30.23
	10/21/20	534.30	531.17	505.25	NM	504.07	29.05	NM	30.23
	02/11/21	534.30	531.17	505.15	NM	504.07	29.15	NM	30.23
	05/17/21 02/10/15	534.30	531.17	505.68	NM 505.20	504.07	28.62	NM 22.58	30.23
	02/10/15 05/27/15	538.78 538.78	535.54 535.54	505.19 505.36	505.20 505.35	494.68 494.68	33.59 33.42	33.58 33.43	44.10 44.10
	08/04/15	538.78	535.54	505.22	505.22	494.68	33.56	33.56	44.10
	10/27/15	538.78	535.54	504.91	505.04	494.68	33.87	33.74	44.10
	02/09/16 05/10/16	538.79 538.79	535.53	505.62 505.97	505.51 505.99	494.68 494.68	33.17	33.28	44.10 44.10
	05/10/16 08/30/16	538.79	535.53 535.53	505.97 506.91	505.99	494.68 494.68	32.82 31.88	32.80 31.57	44.10 44.10
	11/01/16	538.79	535.53	505.91	505.94	494.68	32.88	32.85	44.10
	02/06/17	538.79	535.53	505.54	505.54	494.68	33.25	33.25	44.10
	04/26/17 08/01/17	538.79	535.53	505.73	505.78	494.68	33.06	33.01	44.10
	10/18/17	538.79 538.79	535.53 535.53	506.43 508.76	506.44 508.54	494.68 494.68	32.36 30.03	32.35 30.25	44.10 44.10
MW-03	02/20/18	538.79	535.53	506.38	506.56	494.68	32.41	32.23	44.10
1111-05	04/24/18	538.79	535.53	505.96	505.96	494.68	32.83	32.83	44.10
	07/31/18 10/17/18	538.79 538.79	535.53 535.53	505.23	505.25	494.68	33.56 32.58	33.54 32.70	44.10 44.10
	02/04/19	538.79	535.53	506.21 505.74	506.09 505.81	494.68 494.68	32.58	32.70	44.10 44.10
	05/06/19	538.79	535.53	508.84	508.61	494.68	29.95	30.18	44.10
	08/06/19	538.79	535.53	505.26	505.29	494.68	33.53	33.50	44.10
	11/06/19	538.79	535.53	505.41	505.29	494.68	33.38	33.50	44.10
	02/12/20 05/20/20	538.79 538.79	535.53 535.53	505.61 511.66	505.29 511.66	494.68 494.68	33.18 27.13	33.50 27.13	44.10 44.10
-			535.53	505.06	505.04	494.68	33.73	33.75	44.10
	07/30/20	538.79							
	07/30/20 10/21/20 02/11/21	538.79 538.79 538.79	535.53 535.53	505.27 504.23	505.46 505.46	494.68 494.68	33.52 34.56	33.33 33.33	44.10 44.10

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

Well ID	Date	Top of Casing (TOC) Elevation	Ground Elevation	Groundwater Elevation	Sampling Groundwater Elevation	Bottom of Well Elevation	Depth to Groundwater	Sampling Depth to Groundwater	Depth to Bottom of Well
	02/10/15	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft below TOC)	(ft below TOC)	(ft below TOC
	02/10/15 05/27/15	539.03 539.03	535.80 535.80	505.19 505.39	505.18 505.37	496.13 496.13	33.84 33.64	33.85 33.66	42.90 42.90
	08/04/15	539.03	535.80	505.19	505.19	496.13	33.84	33.84	42.90
	10/27/15 02/09/16	539.03 539.01	535.80 535.83	504.98 505.59	505.00 505.44	496.13 496.11	34.05 33.42	34.03 33.57	42.90 42.90
	05/10/16	539.01	535.83	505.94	505.95	496.11	33.07	33.06	42.90
	08/30/16 11/01/16	539.01 539.01	535.83 535.83	506.93 505.85	507.19 505.87	496.11 496.11	32.08 33.16	31.82 33.14	42.90 42.90
	02/06/17	539.01	535.83	505.50	505.52	496.11	33.51	33.49	42.90
	04/26/17 08/01/17	539.01 539.01	535.83 535.83	505.72 506.92	505.74 506.39	496.11 496.11	33.29 32.09	33.27 32.62	42.90 42.90
	10/18/17	539.01	535.83	508.73	508.50	496.11	30.28	30.51	42.90
MW-04	02/20/18 04/24/18	539.01 539.01	535.83 535.83	505.37 505.91	506.69 505.92	496.11 496.11	33.64 33.10	32.32 33.09	42.90 42.90
	07/31/18	539.01	535.83	505.20	505.22	496.11	33.81	33.79	42.90
	10/17/18	539.01	535.83	506.16	506.03	496.11	32.85	32.98	42.90
	02/04/19 05/06/19	539.01 539.01	535.83 535.83	505.72 509.18	505.72 508.57	496.11 496.11	33.29 29.83	33.29 30.44	42.90 42.90
	08/06/19	539.01	535.83	505.22	505.21	496.11	33.79	33.80	42.90
	11/06/19 02/12/20	539.01 539.01	535.83 535.83	507.36 505.56	505.21 505.26	496.11 496.11	31.65 33.45	33.80 33.75	42.90 42.90
	05/20/20	539.01	535.83	511.61	511.61	496.11	27.40	27.40	42.90
	07/30/20	539.01	535.83	505.01	505.04	496.11	34.00	33.97	42.90
	10/21/20 02/11/21	539.01 539.01	535.83 535.83	505.53 505.16	505.46 505.46	496.11 496.11	33.48 33.85	33.55 33.55	42.90 42.90
	05/17/21	539.01	535.83	505.69	505.69	496.11	33.32	33.32	42.90
	02/11/15 05/27/15	539.69 539.69	536.43 536.43	505.12 505.26	505.12 505.25	494.64 494.64	34.57 34.43	34.57 34.44	45.05 45.05
	08/04/15	539.69	536.43	505.14	505.14	494.64	34.55	34.55	45.05
	10/27/15 02/09/16	539.69 539.64	536.43 536.36	504.78 505.46	504.95 505.33	494.64 494.59	34.91 34.18	34.74 34.31	45.05
	05/10/16	539.64	536.36	505.83	505.86	494.59	33.81	33.78	45.05
	08/30/16 11/01/16	539.64 539.64	536.36 536.36	506.82 505.74	507.09 505.74	494.59 494.59	32.82 33.90	32.55 33.90	45.05 45.05
	02/06/17	539.64	536.36	505.74 505.41	505.40	494.59 494.59	33.90	33.90	45.05
	04/26/17	539.64	536.36	505.60	505.66	494.59 494.59	34.04	33.98	45.05
	08/01/17 10/18/17	539.64 539.64	536.36 536.36	506.52 508.61	506.24 508.59	494.59 494.59	33.12 31.03	33.40 31.05	45.05
MW-05	02/20/18	539.64	536.36	506.35	506.74	494.59	33.29	32.90	45.05
	04/24/18 07/31/18	539.64 539.64	536.36 536.36	505.85 505.10	505.82 505.11	494.59 494.59	33.79 34.54	33.82 34.53	45.05 45.05
	10/17/18	539.64	536.36	506.03	505.91	494.59	33.61	33.73	45.05
	02/04/19 05/06/19	539.64 539.64	536.36 536.36	505.97 509.09	505.96 508.98	494.59 494.59	33.67 30.55	33.68 30.66	45.05 45.05
	08/06/19	539.64	536.36	505.09	505.09	494.59	34.55	34.55	45.05
	11/06/19	539.64	536.36	507.24	505.09	494.59	32.40	34.55	45.05
	02/12/20 05/20/20	539.64 539.64	536.36 536.36	505.48 511.48	504.59 511.48	494.59 494.59	34.16 28.16	35.05 28.16	45.05
	07/30/20	539.64	536.36	504.87	504.88	494.59	34.77	34.76	45.05
	10/21/20 02/11/21	539.64 539.64	536.36 536.36	505.12 505.04	506.09 506.09	494.59 494.59	34.52 34.60	33.55 33.55	45.05
	05/17/21	539.64	536.36	505.59	505.54	494.59	34.05	34.10	45.05
	02/10/15 05/28/15	539.06 539.06	535.86 535.86	505.23 505.46	505.23 505.45	496.86 496.86	33.83 33.60	33.83 33.61	42.20 42.20
	08/05/15	539.06	535.86	505.11	505.12	496.86	33.95	33.94	42.20
	10/27/15	539.06	535.86	504.88	504.93	496.86	34.18	34.13	42.20
	02/09/16 05/10/16	539.05 539.05	535.89 535.89	505.61 506.00	505.46 506.94	496.85 496.85	33.44 33.05	33.59 32.11	42.20 42.20
	08/30/16	539.05	535.89	506.96	507.36	496.85	32.09	31.69	42.20
	11/01/16 02/06/17	539.05 539.05	535.89 535.89	505.88 505.56	505.91 505.57	496.85 496.85	33.17 33.49	33.14 33.48	42.20 42.20
	04/27/17	539.05	535.89	505.74	505.77	496.85	33.31	33.28	42.20
	08/01/17 10/19/17	539.05 539.05	535.89 535.89	506.65 508.74	506.28 508.14	496.85 496.85	32.40 30.31	32.77 30.91	42.20 42.20
MW-06	02/21/18	539.05	535.89	506.57	509.45	496.85	32.48	29.60	42.20
	04/25/18 07/31/18	539.05 539.05	535.89 535.89	505.94 505.27	505.86 505.25	496.85 496.85	33.11 33.78	33.19 33.80	42.20 42.20
	10/18/18	539.05	535.89	505.27	505.25	496.85	32.89	33.05	42.20
	02/04/19 05/06/19	539.05	535.89	506.12	506.12	496.85	32.93	32.93	42.20
	05/06/19 08/06/19	539.05 539.05	535.89 535.89	509.19 505.26	508.22 505.33	496.85 496.85	29.86 33.79	30.83 33.72	42.20 42.20
	11/06/19	539.05	535.89	507.36	505.33	496.85	31.69	33.72	42.20
	02/12/20 05/21/20	539.05 539.05	535.89 535.89	505.63 511.51	505.60 511.45	496.85 496.85	33.42 27.54	33.45 27.60	42.20 42.20
	07/30/20	539.05	535.89	505.08	505.08	496.85	33.97	33.97	42.20
	10/21/20 02/11/21	539.05 539.05	535.89 535.89	505.30 505.22	505.37 505.37	496.85 496.85	33.75 33.83	33.68 33.68	42.20 42.20
	05/17/21	539.05	535.89	505.73	505.73	496.85	33.32	33.32	42.20
	02/10/15 05/28/15	539.35 539.35	535.86 535.86	505.24 505.50	505.24 505.50	496.12 496.12	34.11 33.85	34.11 33.85	43.23 43.23
	08/05/15	539.35	535.86	505.50	505.50	496.12	33.85 34.17	33.85 34.18	43.23
	10/27/15	539.35	535.86	504.93	505.00	496.12	34.42	34.35	43.23
	02/09/16 05/10/16	539.35 539.35	535.87 535.87	505.66 506.34	505.51 507.02	496.12 496.12	33.69 33.01	33.84 32.33	43.23 43.23
	08/30/16	539.35	535.87	507.04	507.41	496.12	32.31	31.94	43.23
	11/01/16 02/06/17	539.35 539.35	535.87 535.87	505.91 505.59	505.93 505.62	496.12 496.12	33.44 33.76	33.42 33.73	43.23 43.23
	04/27/17	539.35	535.87	505.77	505.82	496.12	33.58	33.53	43.23
	08/01/17 10/19/17	539.35 539.35	535.87 535.87	506.68 508.76	506.30 508.07	496.12 496.12	32.67 30.59	33.05 31.28	43.23 43.23
MW-07	02/21/18	539.35	535.87	508.76	508.07	496.12 496.12	30.59	29.71	43.23
1111-07	04/25/18	539.35	535.87	505.98	505.89	496.12	33.37	33.46	43.23
	08/01/18 10/18/18	539.35 539.35	535.87 535.87	505.30 506.17	505.31 506.03	496.12 496.12	34.05 33.18	34.04 33.32	43.23 43.23
	02/04/19	539.35	535.87	506.19	506.19	496.12	33.16	33.16	43.23
	05/06/19 08/06/19	539.35 539.35	535.87 535.87	509.22 505.33	508.51 505.33	496.12 496.12	30.13 34.02	30.84 34.02	43.23 43.23
	11/06/19	539.35	535.87	505.55	505.33	496.12 496.12	31.95	34.02	43.23
	02/12/20	539.35	535.87	505.65	505.65	496.12	33.70	33.70	43.23
	05/21/20 07/30/20	539.35 539.35	535.87 535.87	511.53 505.14	511.53 505.14	496.12 496.12	27.82 34.21	27.82 34.21	43.23 43.23
	10/21/20	539.35	535.87	505.32	505.65	496.12	34.03	33.70	43.23
	02/11/21	539.35	535.87	505.25	505.65	496.12	34.10	33.70	43.23

Table 9-2. Groundwater Elevations - Midwest Generation, LLC, Joliet Station #29, Joliet, IL.

Well ID	Date	Top of Casing (TOC) Elevation	Ground Elevation	Groundwater Elevation	Sampling Groundwater Elevation	Bottom of Well Elevation	Depth to Groundwater	Sampling Depth to Groundwater	Depth to Bottom of Well
	02/10/15	(ft above MSL) 536.87	(ft above MSL) 533.72	(ft above MSL) 505.18	(ft above MSL) 505.19	(ft above MSL) 498.81	(ft below TOC) 31.69	(ft below TOC) 31.68	(ft below TOO 38.06
	05/27/15	536.87	533.72	505.36	505.38	498.81	31.51	31.49	38.06
	08/04/15 10/27/15	536.87 536.87	533.72 533.72	505.19 504.93	505.20 504.98	498.81 498.81	31.68 31.94	31.67 31.89	38.06 38.06
	02/09/16	536.96	533.77	505.72	505.72	498.90	31.24	31.24	38.06
	05/10/16 08/30/16	536.96 536.96	533.77 533.77	498.00 507.05	498.24 507.09	498.90 498.90	38.96 29.91	38.72 29.87	38.06 38.06
	11/01/16	536.96	533.77	506.01	506.03	498.90	30.95	30.93	38.06
	02/06/17	536.96	533.77	505.58	505.62	498.90	31.38	31.34	38.06
	04/25/17 08/01/17	536.96 536.96	533.77 533.77	505.74 506.78	505.79 506.76	498.90 498.90	31.22 30.18	31.17 30.20	38.06 38.06
100	10/17/17	536.96	533.77	509.02	508.99	498.90	27.94	27.97	38.06
MW-08	02/20/18 08/01/18	536.96 536.96	533.77 533.77	506.00 505.23	506.55 505.26	498.90 498.90	30.96 31.73	30.41 31.70	38.06 38.06
	10/16/18	536.96	533.77	506.36	506.35	498.90	30.60	30.61	38.06
	02/04/19 05/06/19	536.96	533.77	506.04 509.22	506.04 509.13	498.90 498.90	30.92 27.74	30.92 27.83	38.06
	03/06/19	536.96 536.96	533.77 533.77	509.22	509.13	498.90 498.90	31.69	27.83 31.69	38.06 38.06
	11/06/19	536.96	533.77	507.54	507.16	498.90	29.42	29.80	38.06
	02/12/20 05/20/20	536.96 536.96	533.77 533.77	505.56 511.82	505.56 511.63	498.90 498.90	31.40 25.14	31.40 25.33	38.06 38.06
	07/30/20	536.96	533.77	505.13	505.12	498.90	31.83	31.84	38.06
	10/28/20 02/11/21	536.96 536.96	533.77 533.77	505.29 505.26	505.41 505.41	498.90 498.90	31.67 31.70	31.55 31.55	38.06 38.06
	02/11/21 05/17/21	536.96	533.77	505.26	505.41	498.90 498.90	31.70	31.55	38.06
	02/10/15	534.44	531.13	505.22	504.70	496.29	29.22	29.74	38.15
	05/27/15 08/04/15	534.44 534.44	531.13 531.13	505.37 505.22	504.98 504.91	496.29 496.29	29.07 29.22	29.46 29.53	38.15 38.15
	10/27/15	534.44	531.13	504.96	504.83	496.29	29.48	29.61	38.15
	02/09/16 05/10/16	534.41 534.41	531.08 531.08	505.64 505.90	505.49 506.39	496.26 496.26	28.77 28.51	28.92 28.02	38.15 38.15
	08/30/16	534.41	531.08	506.98	506.94	496.26	27.43	27.47	38.15
	11/01/16	534.41	531.08	505.89	505.32	496.26	28.52	29.09	38.15
	02/06/17 04/25/17	534.41 534.41	531.08 531.08	505.51 505.66	505.66 505.54	496.26 496.26	28.90 28.75	28.75 28.87	38.15 38.15
	08/01/17	534.41	531.08	506.64	506.27	496.26	27.77	28.14	38.15
	10/17/17 02/20/18	534.41 534.41	531.08 531.08	508.89 506.39	508.73 506.99	496.26 496.26	25.52 28.02	25.68 27.42	38.15 38.15
MW-09	04/26/18	534.41	531.08	505.89	505.58	496.26	28.52	28.83	38.15
	08/01/18 10/16/18	534.41 534.41	531.08 531.08	505.18	505.05	496.26	29.23 28.18	29.36 28.29	38.15
	02/04/19	534.41	531.08	506.23 506.02	506.12 505.99	496.26 496.26	28.39	28.29	38.15 38.15
	05/06/19	534.41	531.08	509.08	508.09	496.26	25.33	26.32	38.15
	08/06/19 11/06/19	534.41 534.41	531.08 531.08	505.23 507.42	504.61 504.61	496.26 496.26	29.18 26.99	29.80 29.80	38.15 38.15
	02/12/20	534.41	531.08	505.53	504.89	496.26	28.88	29.52	38.15
	05/20/20 07/30/20	534.41 534.41	531.08 531.08	511.06 505.02	510.76 505.05	496.26 496.26	23.35 29.39	23.65 29.36	38.15 38.15
	10/21/20	534.41	531.08	505.28	505.05	496.26	29.39	29.36	38.15
	02/11/21	534.41	531.08	505.21	505.05	496.26	29.20	29.36	38.15
	05/17/21 02/11/15	534.41 540.03	531.08 536.95	505.73 505.27	505.36 505.27	496.26 496.10	28.68 34.76	29.05 34.76	38.15 43.93
	05/28/15	540.03	536.95	505.48	505.48	496.10	34.55	34.55	43.93
	08/04/15 10/27/15	540.03 540.03	536.95 536.95	505.29 504.93	505.30 505.07	496.10 496.10	34.74 35.10	34.73 34.96	43.93 43.93
	02/09/16	540.02	536.98	505.70	505.61	496.09	34.32	34.41	43.93
	05/10/16 08/30/16	540.02 540.02	536.98 536.98	506.00 507.05	506.66 507.38	496.09 496.09	34.02 32.97	33.36 32.64	43.93 43.93
	11/01/16	540.02	536.98	505.98	505.97	496.09	34.04	34.05	43.93
	02/06/17	540.02	536.98	505.60	505.62	496.09	34.42	34.40	43.93
	04/26/17 08/01/17	540.02 540.02	536.98 536.98	505.80 506.84	505.84 506.50	496.09 496.09	34.22 33.18	34.18 33.52	43.93 43.93
	10/18/17	540.02	536.98	508.89	508.61	496.09	31.13	31.41	43.93
MW-10	02/21/18 04/24/18	540.02 540.02	536.98 536.98	506.19 506.05	509.42 506.02	496.09 496.09	33.83 33.97	30.60 34.00	43.93 43.93
	08/01/18	540.02	536.98	505.27	505.27	496.09	34.75	34.75	43.93
	10/17/18 02/04/19	540.02 540.02	536.98 536.98	506.29 506.11	506.14 506.10	496.09 496.09	33.73 33.91	33.88 33.92	43.93 43.93
	05/06/19	540.02	536.98	509.44	508.82	496.09	30.58	31.20	43.93
	08/06/19 11/06/19	540.02	536.98	505.32	505.32	496.09	34.70	34.70	43.93
	02/12/20	540.02 540.02	536.98 536.98	507.60 505.67	505.32 505.67	496.09 496.09	32.42 34.35	34.70 34.35	43.93 43.93
	05/20/20	540.02	536.98	511.83	511.86	496.09	28.19	28.16	43.93
	07/30/20 10/21/20	540.02 540.02	536.98 536.98	505.14 505.30	505.12 505.30	496.09 496.09	34.88 34.72	34.90 34.72	43.93 43.93
	02/11/21	540.02	536.98	505.25	505.30	496.09	34.77	34.72	43.93
	05/17/21 02/11/15	540.02 539.47	536.98 536.52	505.79 505.49	505.78 505.49	496.09 497.14	34.23 33.98	34.24 33.98	43.93 42.33
	05/28/15	539.47 539.47	536.52	505.49 505.96	505.49	497.14 497.14	33.98 33.51	33.98 33.50	42.33 42.33
	08/04/15	539.47	536.52	505.65	505.64	497.14	33.82	33.83	42.33
	10/27/15 02/09/16	539.47 539.41	536.52 536.62	505.16 506.10	505.32 505.88	497.14 497.08	34.31 33.31	34.15 33.53	42.33 42.33
	05/10/16	539.41	536.62	507.33	506.60	497.08	32.08	32.81	42.33
	08/30/16 11/01/16	539.41 539.41	536.62 536.62	508.27 506.32	508.85 506.28	497.08 497.08	31.14 33.09	30.56 33.13	42.33 42.33
	02/06/17	539.41	536.62	505.90	506.28	497.08	33.51	33.49	42.33
	04/26/17	539.41	536.62	506.17	506.17	497.08	33.24	33.24	42.33
	08/01/17 10/19/17	539.41 539.41	536.62 536.62	507.47 509.61	507.38 509.16	497.08 497.08	31.94 29.8	32.03 30.25	42.33 42.33
MW-11	02/21/18	539.41	536.62	506.45	509.85	497.08	32.96	29.56	42.33
	04/25/18 08/01/18	539.41 539.41	536.62 536.62	505.48 505.53	506.40 505.54	497.08 497.08	33.93 33.88	33.01 33.87	42.33 42.33
	10/17/18	539.41	536.62	506.63	505.54	497.08	32.78	32.90	42.33
	02/04/19	539.41	536.62	506.19	506.19	497.08	33.22	33.22	42.33
	05/06/19 08/06/19	539.41 539.41	536.62 536.62	510.58 505.66	509.98 505.66	497.08 497.08	28.83 33.75	29.43 33.75	42.33 42.33
	11/06/19	539.41	536.62	508.26	505.66	497.08	31.15	33.75	42.33
	02/12/20 05/20/20	539.41 539.41	536.62 536.62	505.88 512.83	505.81 512.81	497.08 497.08	33.53 26.58	33.60 26.60	42.33 42.33
	07/30/20	539.41	536.62	505.53	505.48	497.08	33.88	33.93	42.33
	10/21/20	539.41	536.62	505.39	505.39	497.08	34.02	34.02	42.33
	02/11/21	539.41	536.62	505.46	505.39	497.08 497.08	33.95	34.02 33.36	42.33

Note: Values for Depth to Bottom of Well are from prior to the installation of the dedicated pumps. NM - Not Measured

DATE	Groundwater Flow Direction	Kavg (ft/sec)*	Average Hydraulic Gradient (ft/ft)	Porosity (unitless)**	Estimated Seepage Velocity (ft/day)
10/28/2015	Southerly (SSW-SSE)	1.970E-03	0.0003	0.35	0.13
2/10/2016	Southerly (SSW-SSE)	1.970E-03	0.0007	0.35	0.32
5/12/2016	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.17
8/31/2016	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.17
11/2/2016	Southerly (SSW-SSE)	1.970E-03	0.0007	0.35	0.32
2/6/2017	Southerly (SSW-SSE)	1.970E-03	0.0005	0.35	0.22
4/26/2017	Southerly (SSW-SSE)	1.970E-03	0.0006	0.35	0.29
6/14/2017	Southerly (SSW-SSE)	1.970E-03	0.0006	0.35	0.29
8/2/2017	Southerly (SSW-SSE)	1.970E-03	0.0008	0.35	0.39
10/18/2017	Southerly (SSW-SSE)	1.970E-03	0.0004	0.35	0.19
4/24/2018	Southerly (SSW-SSE)	1.970E-03	0.0008	0.35	0.39
10/16/2018	Southerly (SSW)	1.970E-03	0.00053	0.35	0.26
5/6/2019	Southerly (SSW-SSE)	1.970E-03	0.0010	0.35	0.46
11/6/2019	Southerly (SSW-SSE)	1.970E-03	0.00200	0.35	0.97
5/20/2020	Southerly (SSW-SSE)	1.970E-03	0.0043	0.35	2.11
10/21/2020	Southerly (SSW-SSE)	1.970E-03	0.00080	0.35	0.39
5/17/2021	Southerly (SSW-SSE)	1.970E-03	0.00140	0.35	0.68

Table 9-3. Hydraulic Gradient, Direction and Seepage Velocity - Midwest Generation, LLC, Joliet #29 Generating Station, Joliet, IL.

* Kavg - See Section 9.1.2 discussion for average hydraulic conductivity (feet/second).

** - Porosity estimate from Applied Hydrogeology, Fetter, 1980.

SSW - South-southwest

SSE - South-southeast

Well	Date	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	Total Dissolved	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Radium 226 + 228	Selenium	Thallium
en	10/28/2015	0.47	100	200	0.41	7.04	84	Solids 790	< 0.003	< 0.001	0.041	^< 0.001		< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	-	0.2981	< 0.0025	< 0.002
	2/10/2016	0.41	100	210	0.44	7.17	120	820	< 0.003	0.001	0.041	< 0.001		< 0.005	< 0.001	0.41	< 0.0005	0.015	< 0.0002	0.0067	< 0.438	< 0.0025	< 0.002
	5/12/2016 8/31/2016	0.29 0.36	100 89	300 170	0.42	7.02 6.95	110 100	920 760	< 0.003 < 0.003	< 0.001 < 0.001	0.046 0.039	< 0.001 ^ < 0.001	< 0.0005 < 0.0005	< 0.005 < 0.005	< 0.001 < 0.001	0.42 0.46	< 0.0005 < 0.0005	0.012 0.010	< 0.0002 < 0.0002	0.0051 0.0077	< 0.414 < 0.394	< 0.0025 < 0.0025	< 0.002 < 0.002
	11/2/2016	0.30	100	130	0.46	6.99	95	720	< 0.003	0.001	0.039	< 0.001		< 0.005	< 0.001	0.46	0.0003	0.010	< 0.0002	0.0061	0.626	< 0.0025	< 0.002
	2/6/2017	0.44	120	190	0.36	6.99	88	820	< 0.003	0.0011	0.048	< 0.001		< 0.005	< 0.001	0.36	0.00086		< 0.0002	0.0056	< 0.389	< 0.0025	< 0.002
	4/26/2017 6/14/2017	0.35 0.29	120 91	200	0.35 0.43	7.27	87 75	760 690	< 0.003 < 0.003	0.0015 < 0.001	0.046	< 0.001 < 0.001		< 0.005 < 0.005	< 0.001 < 0.001	0.35	0.0012 < 0.0005	< 0.01 0.012	< 0.0002 < 0.0002	0.006	< 0.34 < 0.356	< 0.0025 < 0.0025	< 0.002 < 0.002
	8/2/2017	0.45	97	170	0.38	7.23	110	750	< 0.003	0.0011	0.036	< 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.011	< 0.0002	0.0079	0.429	< 0.0025	< 0.002
MW-10	10/18/2017 4/24/2018	0.61 0.4	120	140 260	0.41 0.39	7.11 7.28	130	820 910	< 0.003 NA	0.0012 NA	0.04 NA	^ < 0.001 NA	< 0.0005 NA	< 0.005 NA	< 0.001 NA	0.41 NA	0.00059 NA	0.013 NA	< 0.0002 NA	0.0066 NA	< 0.422 NA	< 0.0025 NA	^ < 0.002 NA
up-gradient	10/17/2018	0.63	120	180	0.42	7.30	110	810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/24/2018 R 5/7/2019	0.44 0.56	NA 130	NA 410	NA 0.39	NA 7.17	NA 95	NA 1,000	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	7/3/2019 R	NA	NA	230	NA NA	NA	NA	830	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/7/2019	0.35	90	130	0.36	7.40	59	650	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/20/2020 6/11/2020 R	0.85 0.26	120 NA	250 NA	0.41 NA	6.90 NA	100 NA	960 770	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	10/22/2020	0.34	110	230	0.41	7.11	93	850	< 0.003	0.001	0.043	< ^ 0.001	< 0.0005	< 0.005	< 0.001	0.41	< 0.0005	0.011	< 0.0002	0.0057	NA	< 0.0025	< 0.002
	5/18/2021 6/29/2021 R	0.33 NA	140	350 420	0.39 NA	7.16 NA	210 190	1,200	< 0.003 NA	0.0014 NA	0.06 NA	< 0.001 NA		< 0.005 NA	< 0.001 NA	0.39 NA	< 0.0005 NA	0.015 NA	< 0.0002 NA	0.0055 NA	< 0.4800 NA	< 0.0025 NA	< 0.002 NA
	10/28/2015	0.34	110	230	0.41	7.11	110	960	< 0.003	0.0015	0.100	^< 0.001		< 0.005	< 0.001	0.41	< 0.0005	0.013	< 0.0002	< 0.0050	0.41	< 0.0025	< 0.002
1	2/10/2016	0.49	100	220	0.44	7.31	130	790	< 0.003	0.0017	0.100	< 0.001		< 0.005	< 0.001	0.44	< 0.0005	0.011	< 0.0002	0.0060	< 1.68	0.0045	< 0.002
1	5/10/2016 8/31/2016	0.48 0.49	95 100	240 250	0.44 0.45	7.07 7.18	130 120	800 920	< 0.003 < 0.003	0.0011 0.0013	0.095	< 0.001 ^< 0.001		< 0.005 < 0.005	< 0.001 < 0.001	0.44 0.45	< 0.0005 < 0.0005	0.012	< 0.0002 < 0.0002	0.0062	< 0.326 < 0.373	0.0030 0.0051	< 0.002 < 0.002
1	11/2/2016	0.34	87	190	0.44	7.45	94	780	< 0.003	0.0019	0.082	< 0.001	< 0.0005	0.0051	< 0.001	0.44	< 0.0005	< 0.010	< 0.0002	0.0059	0.965	0.0032	< 0.002
1	2/6/2017 4/26/2017	0.40	97 100	140 210	0.39	7.35 7.03	77 120	720 820	< 0.003 < 0.003	0.0019 0.0017	0.093 0.11	< 0.001 < 0.001		< 0.005 < 0.005	< 0.001 < 0.001	0.39	< 0.0005 < 0.0005	0.012 0.010	< 0.0002 < 0.0002	0.0066	< 0.356 < 0.411	0.0028	< 0.002 < 0.002
1	6/14/2017	0.45	88	190	0.44	7.43	75	760	< 0.003	0.0014	0.09	< 0.001	< 0.0005	< 0.005	< 0.001	0.44	< 0.0005	0.012	< 0.0002	0.0072	< 0.358	0.0037	< 0.002
MW-03	8/2/2017 10/18/2017	0.41 0.35	99 93	200	0.40 0.42	7.34 7.11	110 100	850 850	< 0.003 < 0.003	0.0022 0.0015	0.10 0.088	< 0.001		< 0.005 < 0.005	< 0.001 < 0.001	0.40	< 0.0005 < 0.0005	0.011 0.012	< 0.0002 < 0.0002	0.0065	0.414 < 0.417	0.005	< 0.002 ^< 0.002
down-	4/24/2018	0.55	100	220	0.42	7.2	150	930	< 0.003 NA	0.0015 NA	0.088 NA		< 0.0005 NA	< 0.005 NA	< 0.001 NA	NA	< 0.0003 NA	NA	< 0.0002 NA	0.0033 NA	< 0.417 NA	0.0020 NA	NA NA
gradient	7/31/2018 R	NA	NA	NA	NA	NA	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/17/2018 5/7/2019	0.25 0.43	100	250 280	0.4	7.04 7.27	110	870 880	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	7/3/2019 R	NA	NA	NA	NA	NA	65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	11/7/2019 5/20/2020	0.34 0.38	100	150 230	0.4 0.42	7.32 7.56	65 78	660 960	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	6/11/2020 R	NA	NA	NA	NA	NA	NA	930	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/22/2020 5/18/2021	0.32	110	180 290	0.43	7.23 7.13	90 190	770 1,200	< 0.003 < 0.003	0.0014 0.0016	0.1 0.14	<^ 0.001		< 0.005 < 0.005	< 0.001 0.0011	0.43	< 0.0005 < 0.0005	0.01 0.014	< 0.0002 < 0.0002	< 0.005 < 0.0050	NA 1.1000	< 0.0025 < 0.0025	< 0.002 < 0.002
	6/29/2021 R	0.28 NA	130 NA	NA NA	NA	NA	210	1,200	NA NA	NA	NA NA	NA		NA NA	NA	NA NA	NA	NA NA	NA	0.0050 NA	NA	NA NA	NA NA
	10/28/2015 2/10/2016	0.34	94 97	F1 200 210	0.45	7.07 7.22	83 140	740 810	< 0.003 < 0.003	0.0013 0.0018	0.082 0.088	^ < 0.001 < 0.001		< 0.005 < 0.005	0.0063	0.45	< 0.0005 0.00062	0.013	< 0.0002 < 0.0002	0.0065	0.741 < 1.52	< 0.0025 < 0.0025	< 0.002
	5/10/2016	0.32	100	210	0.47	6.71	140	900	< 0.003	0.0018	0.088	< 0.001 < 0.001		< 0.005	0.0074	0.47	< 0.00082	0.011	< 0.0002 < 0.0002	0.0083	< 0.365	< 0.0025	< 0.002
	8/31/2016	0.42	100	210	0.45	7.07	120	890	< 0.003	0.0014	0.086	^ < 0.001		< 0.005	0.0035	0.45	< 0.0005	0.011	< 0.0002	0.0083	0.432	< 0.0025	< 0.002
	11/2/2016 2/6/2017	0.32 0.40	98 110	160 200	0.43 0.37	7.25 7.19	83 98	750 790	< 0.003 < 0.003	0.0025 0.0015	0.079 0.100	< 0.001 < 0.001		< 0.005 < 0.005	0.0100	0.43	0.0012 < 0.0005	0.012 0.013	< 0.0002 < 0.0002	0.007 0.0071	< 0.463 < 0.356	< 0.0025 < 0.0025	< 0.002 < 0.002
	4/26/2017	0.33	100	220	0.37	7.46	89	770	< 0.003	0.0021	0.095	< 0.001	< 0.0005	< 0.005	0.0078	0.37	0.00055	0.012	< 0.0002	0.0069	< 0.35	< 0.0025	< 0.002
	6/14/2017 8/2/2017	0.37 0.35	92 93	190 180	0.47	7.45	80	770 770	< 0.003 < 0.003	0.0013 0.0013	0.078	< 0.001 < 0.001	< 0.0005	< 0.005 0.04	0.0120 0.0031	0.47	< 0.0005 < 0.0005	0.013 0.012	< 0.0002 < 0.0002	0.0085 0.0091	< 0.309 < 0.282	< 0.0025 0.0029	< 0.002 < 0.002
MW-04	10/18/2017	0.54	93	140	0.45	7.2	120	790	< 0.003	0.0015	0.082	^ < 0.001	< 0.0005	< 0.005	0.0046	0.45	0.0005	0.012	< 0.0002	0.0071	0.423	0.0029	^< 0.002
down- gradient	4/24/2018 7/31/2018 R	0.4 NA	110 NA	240	0.43 NA	7.21 NA	160 120	940 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
gradient	10/17/2018 K	0.29	100	NA 230	0.45	7.2	120	840	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/7/2019	0.76	120	340	0.42	7.27	120	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	7/3/2019 R 11/6/2019	0.23 0.3	NA 77	250 140	NA 0.41	NA 7.33	NA 53	870 670	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	5/20/2020	0.79	110	250	0.45	7.3	110	1,100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	6/11/2020 R 10/22/2020	0.28 0.33	NA 100	NA 190	NA 0.48	NA 7.15	NA 83	850 770	NA < 0.003	NA 0.0015	NA 0.089	NA < ^ 0.001	< 0.0005	< 0.005	NA 0.0082	NA 0.48	NA < 0.0005	NA 0.013	< 0.0002	NA 0.0061	NA NA	NA < 0.0025	< 0.002
1	5/18/2021	0.22	120	280	0.42	7.3	190	1,100	< 0.003	0.0019	0.12	< 0.001		< 0.005	0.0037	0.42	< 0.0005	0.014	< 0.0002		< 0.4450	< 0.0025	< 0.002
<u> </u>	6/29/2021 R 10/28/2015	NA 0.64	NA 100	NA 160	NA 0.39	NA 7.12	190 120	1,200 790	NA < 0.003	NA 0.0011	NA 0.057	NA ^ < 0.001		< 0.005	NA 0.0013	NA 0.39	NA < 0.0005	NA 0.018	< 0.0002	NA 0.0088	NA 0.6231	NA 0.0031	< 0.002
1	2/10/2016	0.46	110	220	0.39	7.25	120	790	< 0.003	0.0028	0.071	< 0.001	< 0.0005	0.0062	0.0013	0.39	0.0022	< 0.02	< 0.0002	F1 0.0053	1.09	< 0.0025	< 0.002
1	5/10/2016 8/31/2016	0.8	150 140	220	0.46	6.88 6.81	290 260	950 820	< 0.003 < 0.003	0.0023 < 0.001	0.075	< 0.001 ^< 0.001		< 0.005 < 0.005		0.46	< 0.0022	< 0.014			< 0.40 < 0.42	0.019	< 0.002 < 0.002
1	8/31/2016 11/2/2016	0.41	98	130	0.36	7.26	100	700	< 0.003	< 0.001 0.0022	0.07	< 0.001		< 0.005		0.56	< 0.0005						< 0.002 < 0.002
1	2/6/2017	0.48	150	180	0.30	7.22	120	790	< 0.003	0.0016	0.082	< 0.001	< 0.0005	< 0.005		0.30	0.0016				0.564	0.0029 0.013	< 0.002
1	4/26/2017 6/14/2017	0.67	110 75	F1 190 150	0.37	7.28 7.47	170 110	770 670	< 0.003 < 0.003	0.0014 0.0012	0.063 0.044	< 0.001 < 0.001		< 0.005 < 0.005	< 0.001 < 0.001	0.37 0.46	0.0008 < 0.0005	< 0.01 0.013				0.013	< 0.002 < 0.002
1	8/2/2017	0.28	83	170	0.35	7.30	99	770	< 0.003	< 0.001	0.054	< 0.001	< 0.0005	< 0.005	< 0.001	0.35	< 0.0005	0.014	< 0.0002	0.0053	0.659	< 0.0025	< 0.002
MW-05 down-	10/18/2017 4/24/2018	0.42 0.31	110	110 300	0.38 0.34	7.16	95 130	720	< 0.003 NA	0.002 NA	0.067 NA	< ^ 0.001 NA		< 0.005 NA	< 0.001 NA	0.38 NA	0.0023 NA	0.018 NA	< 0.0002 NA	< 0.005 NA	< 0.371 NA	0.0029 NA	^ < 0.002 NA
gradient	7/31/2018 R	NA	NA	NA	NA	NA	NA	940	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	10/17/2018 5/6/2019	0.31 0.38	110	210 500	0.36	7.29 7.11	93 84	810	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA
1	5/6/2019 7/3/2019 R	NA	NA	150	NA	NA	NA	890	NA	NA	NA	NA		NA			NA					NA	NA
1	11/7/2019 12/4/2019 P	0.31	180	130	0.3	7.44	64 NA	590 NA	NA	NA	NA	NA		NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
1	12/4/2019 R 5/20/2020	NA 0.32	89 100	NA 270	NA 0.37	NA 7.03	NA 67	NA 890	NA NA	NA NA	NA NA	NA NA		NA	NA		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1	10/22/2020	0.52	92	180	0.38	7.16	85	720	< 0.003	0.0012	0.069	<^ 0.001	< 0.0005	< 0.005	< 0.001	0.38	< 0.0005	0.013	< 0.0002	0.0054	NA	0.003	< 0.002
1	5/18/2021 6/29/2021 R	0.37 NA	130 NA	410 430	0.3 NA	7.00 NA	160	1,300	< 0.003 NA	0.0015 NA	0.1 NA	< 0.001 NA		< 0.0050 NA	< 0.0010 NA		< 0.0005 NA					< 0.0025 NA	< 0.002 NA
L		INA	INA	430	INA	INA	150	1,500	11/1	11/1	11/1	117		110			11/1	1111	11/3	114	1 111	11/1	1 12 1

Notes: All units are in mg/l except pH is in standard units and radium is in pCi/L DNYA - Data not yet available. F1 - MS and/or MSD Recovery outside of limits. NA - Not analyzed. No confirmation resample required.

Table 9-5.Turbidity Measurement Data, Midwest Generation, LLC, Joliet #29 Generating Station

		Turbidity		
Well ID	Date	(NTU)		
	3/2/2021	0.45		
	4/10/2021	22.9		
	4/25/2021	2.40		
	5/18/2021	2.53		
MUV 02	6/11/2021	2.34		
MW-03	6/29/2021	2.86		
	7/19/2021	37.40		
	8/9/2021	2.71		
	8/30/2021	5.70		
	9/27/2021	10.27		
	3/2/2021	81.89		
	4/10/2021	5.96		
	4/25/2021	3.02		
	5/18/2021	2.52		
MW-04	6/11/2021	2.8		
IVI VV -04	6/29/201	3.34		
	7/19/2021	47.4		
	8/9/2021	4.13		
	8/30/2021	18.3		
	9/27/2021	1.76		
	2/25/2021	1.57		
	4/10/2021	8.36		
	4/25/2021	2.42		
	5/17/2021	5.2		
MW-05	6/11/2021	14.22		
101 00 -05	6/29/2021	5.33		
	7/19/2021	26.9		
	8/9/2021	3.69		
	8/27/2021	8.7		
	9/27/2021	14.92		
	3/2/2021	26.07		
	4/10/2021	7.31		
	4/25/2021	5.21		
	5/18/2021	3.73		
MW-10	6/11/2021	6.65		
	6/29/2021	9.49		
	7/19/2021	14.5		
	8/9/2021	10.08		
	8/30/2021	9.3		
	9/27/2021	16.3		

Table 9-6. Summary of Sample Bottles, Preservation Holding Time, and Analytical Methods. Midwest Generation, LLC, Joliet #29 Generating Station, Joliet, IL.

PARAMETER	ANALYTICAL METHOD	CONTAINER	PRESERVATION	HOLD TIME	METHOD DETECTION LIMIT (MG/L)	Section 845.600(a) Standards
Boron	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.0245	2
Calcium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.106	NS
Chloride	SM4500 CI-E	1 L plastic	None, < 6 °C	28 days	1.22	200
Fluoride	SM4500 F-C	1 L plastic	None, < 6 °C	28 days	0.019	4
рН	SM4500 H ⁺ -B	1 L plastic	None, < 6 °C	immediate *	Field Parameter	6.5 - 9.0 (secondary standard)
Sulfate	SM4500 SO ₄ -E	1 L plastic	None, < 6 °C	28 days	2	400
Total Dissolved Solids	SM2400 C	1 L plastic	None, < 6 °C	7 days	6.1	1200
Antimony	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00101	0.006
Arsenic	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000439	0.01
Barium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000841	2
Beryllium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000237	0.004
Cadmium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00019	0.005
Chromium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000608	0.1
Cobalt	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000189	0.006
Lead	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000141	0.0075
Lithium	6010 C	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00215	0.04
Mercury	7470 A	250 mL plastic	HNO ₃ , < 6 °C	28 days	0.0000611	0.002
Molybdenum	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.00162	0.1
Selenium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000834	0.05
Thallium	6020 A	250 mL plastic	HNO ₃ , < 6 °C	6 months	0.000591	0.002
Radium 226	903.0	1 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **
Radium 228	904.0	2 L plastic	HNO ₃	180 days	1 pCi/L	5 pCi/L **

Notes: It is noted that some parameters may be combined with others within the same container.

* - The result for pH is obtained in the field and is not submitted to the laboratory.

** - Combined Radium 226/228

mL - milliliters

L - liters

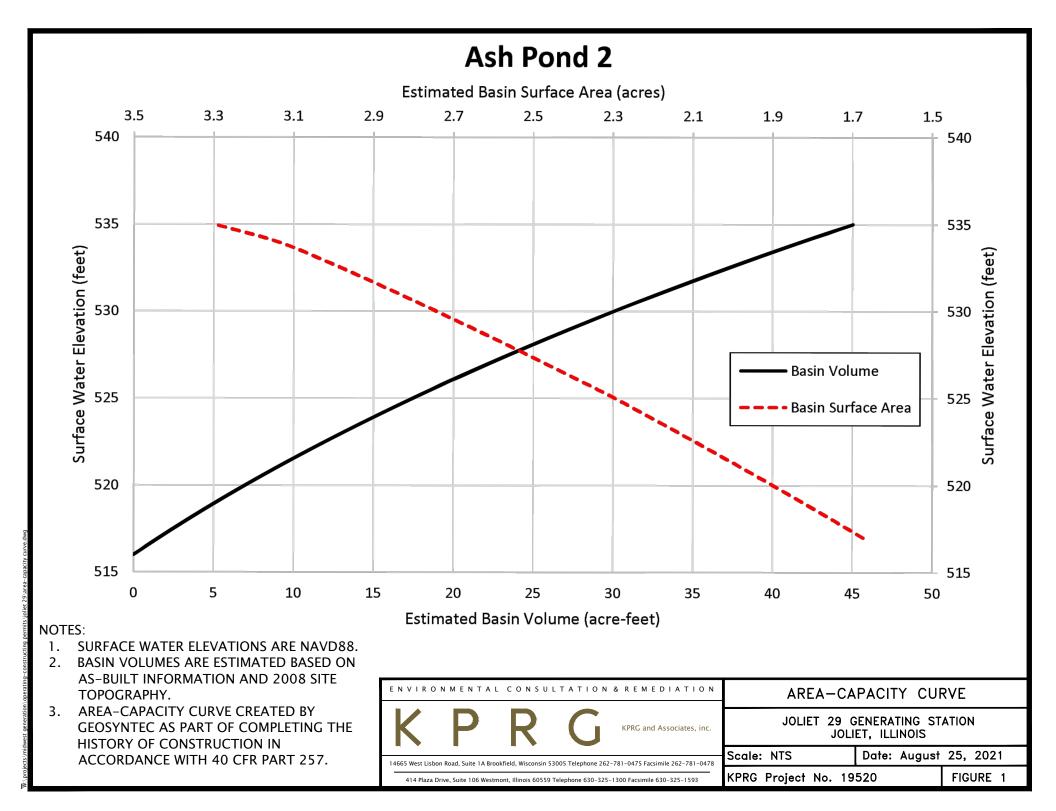
°C - degrees Celsius

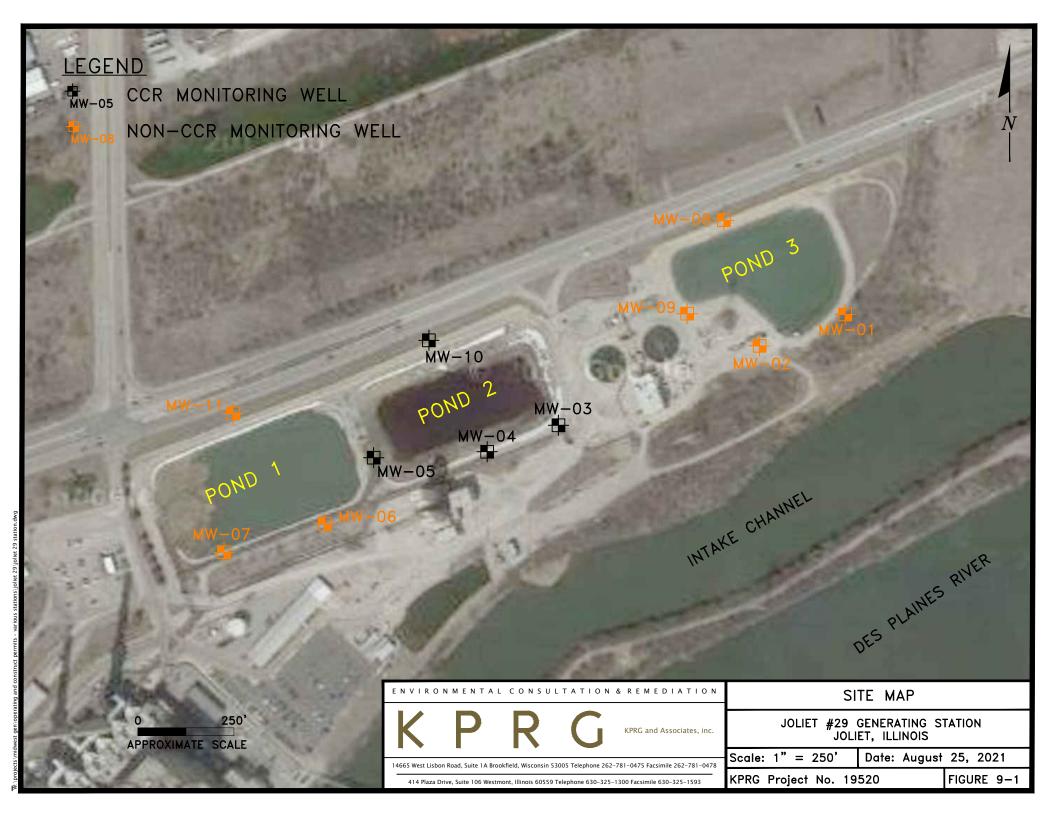
HNO₃ - Nitric Acid

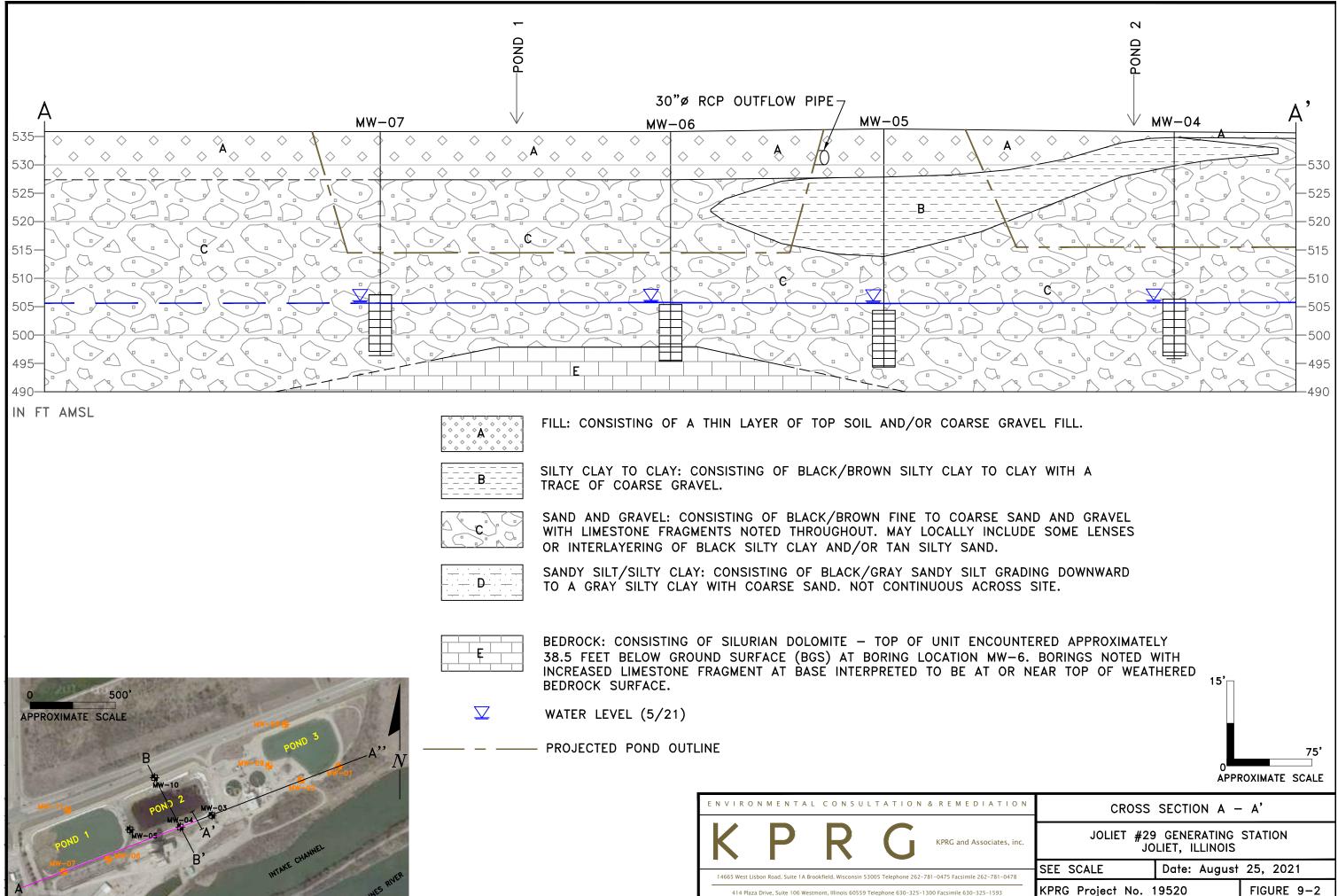
NS- No Standard

Table 9-7. Proposed Site-Specific Groundwater Protection Standards - Joliet #29

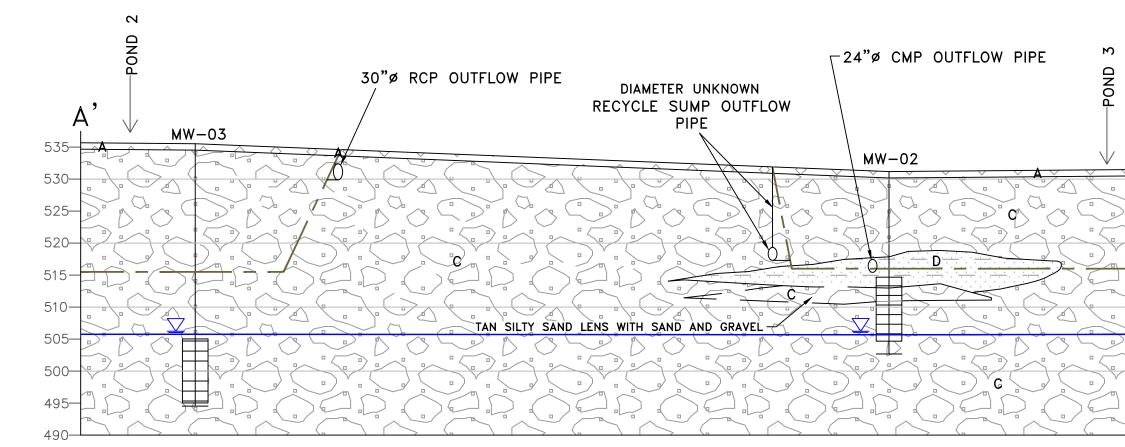
Upgradient Well(s)	Parameter	Section 845.600 Standards	Interwell Background Prediction Limit	Proposed GWPS
MW-10	Antimony	0.006	0.003	0.006
MW-10	Arsenic	0.01	0.002	0.01
MW-10	Barium	2.0	0.063	2.0
MW-10	Beryllium	0.004	0.001	0.004
MW-10	Boron	2.0	0.831	2.0
MW-10	Cadmium	0.005	0.005	0.005
MW-10*	Chloride*	200	368	368
MW-10	Chromium	0.1	0.005	0.1
MW-10	Cobalt	0.006	0.001	0.006
MW-10	Combined Radium 226 + 228 (pCi/L)	5.0	0.626	5.0
MW-10	Fluoride	4.0	0.486	4.0
MW-10	Lead	0.0075	0.0014	0.0075
MW-10	Lithium	0.04	0.019	0.040
MW-10	Mercury	0.002	0.0002	0.002
MW-10	Molybdenum	0.10	0.009	0.10
MW-10	pH (standard units)	6.5-9.0	6.733-7.569	6.5-9.0
MW-10	Selenium	0.05	0.003	0.050
MW-10	Sulfate	400	214.7	400
MW-10	Thallium	0.002	0.002	0.002
MW-10*	Total Dissolved Solids*	1200	1031	1200
MW-10*	Calcium*	NE	143.0	143.0
MW-10	Turbidity	NE	31.22	31.22

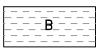

All values are in mg/L (ppm) unless otherwise noted.

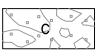

* - Limited to original 8 background samples.


NE - Not Established

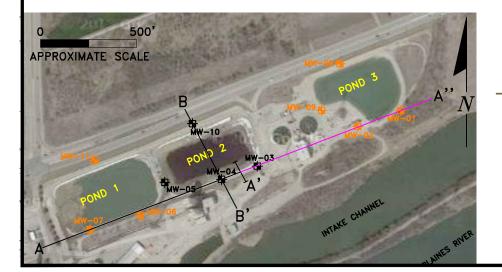
Bold - Proposed Site-specific Groundwater Protection Standard based on Section 845.600(a)(2)


OPERATING PERMIT FIGURES


414 Plaza Drive, Suite 106 V	Vestmont, Illinois 60559	Telephone 630-325-130	0 Facsimile 630–325–1593



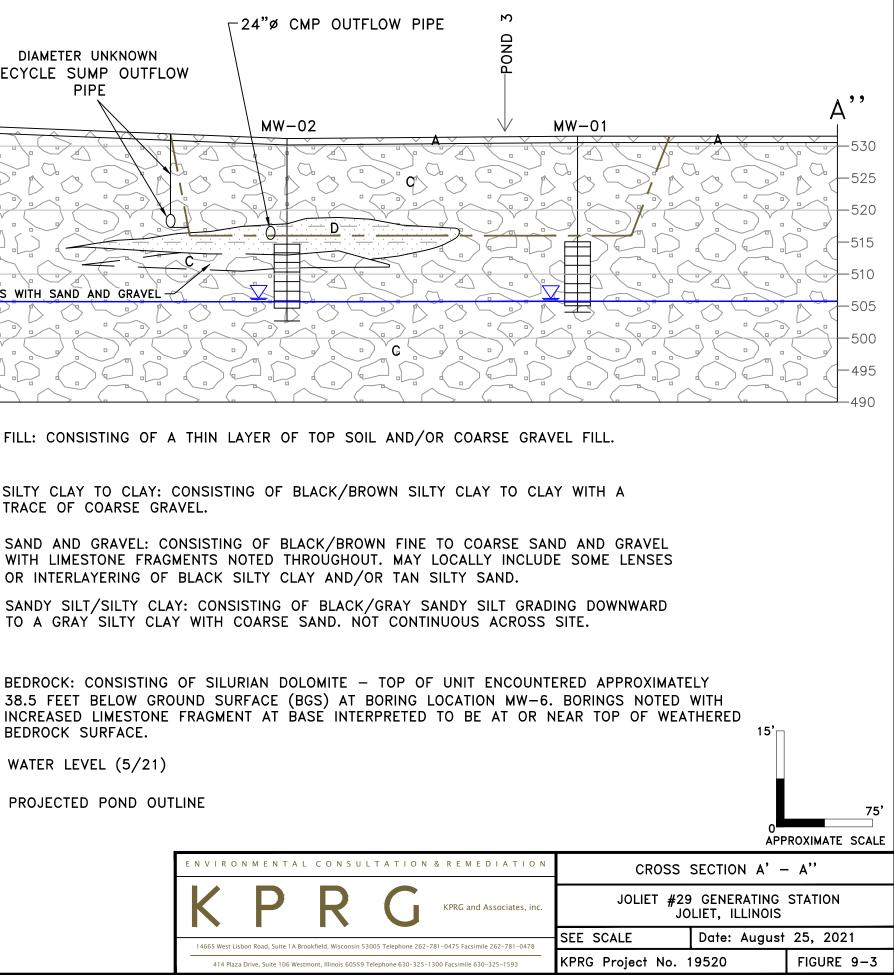
FILL: CONSISTING OF A THIN LAYER OF TOP SOIL AND/OR COARSE GRAVEL FILL.

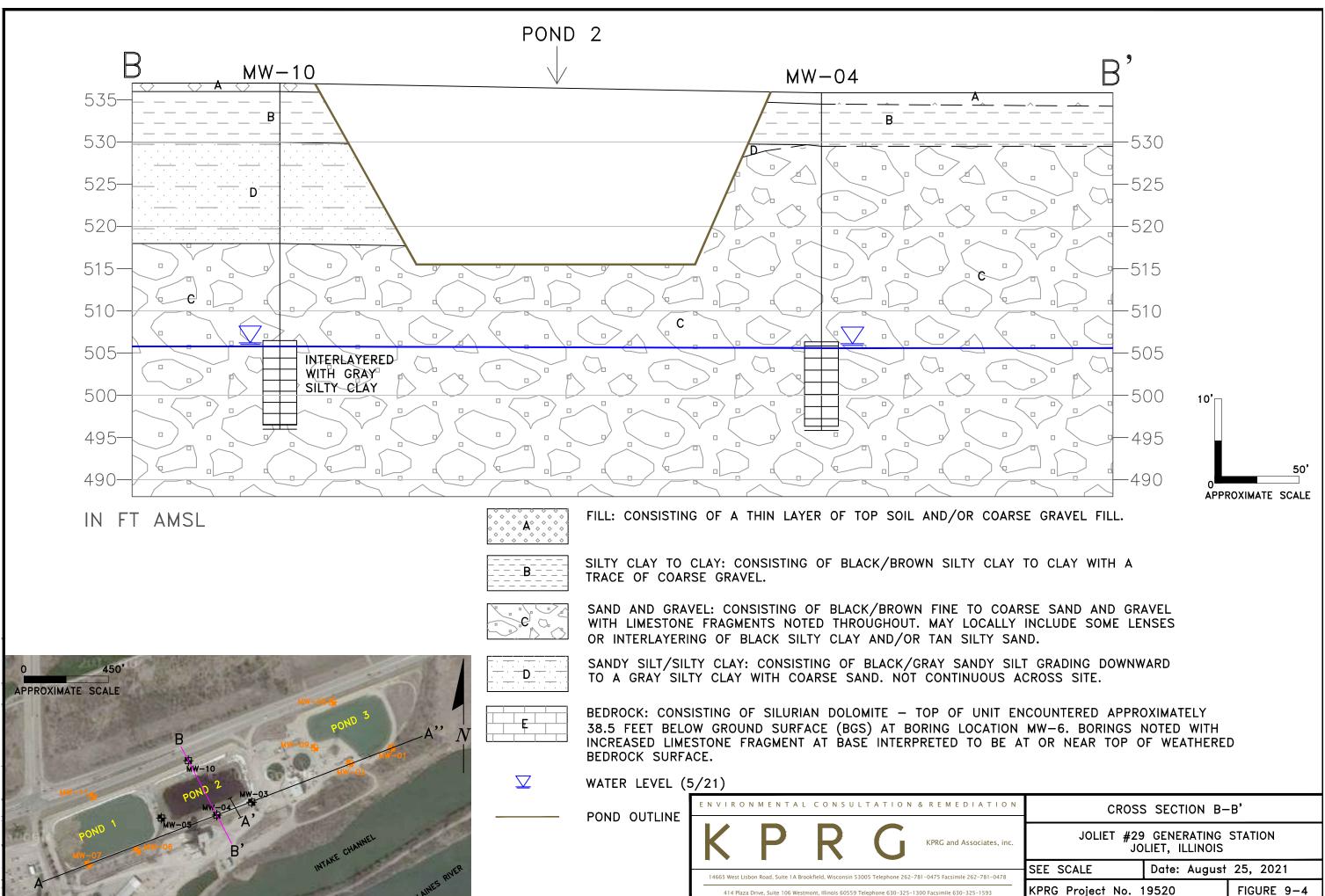

SILTY CLAY TO CLAY: CONSISTING OF BLACK/BROWN SILTY CLAY TO CLAY WITH A TRACE OF COARSE GRAVEL.

WITH LIMESTONE FRAGMENTS NOTED THROUGHOUT. MAY LOCALLY INCLUDE SOME LENSES OR INTERLAYERING OF BLACK SILTY CLAY AND/OR TAN SILTY SAND.

—D —

SANDY SILT/SILTY CLAY: CONSISTING OF BLACK/GRAY SANDY SILT GRADING DOWNWARD TO A GRAY SILTY CLAY WITH COARSE SAND. NOT CONTINUOUS ACROSS SITE.

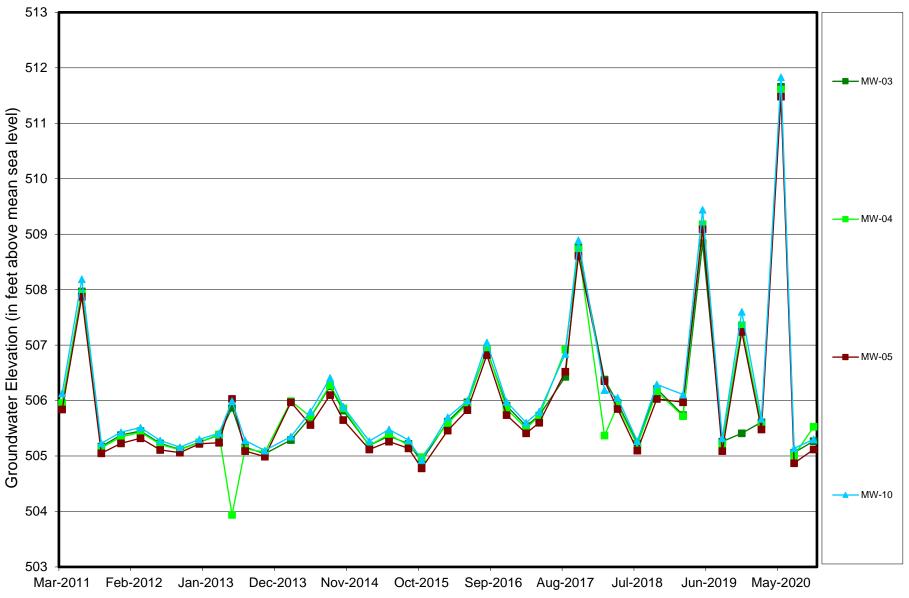

E


 $\mathbf{\nabla}$

BEDROCK SURFACE.

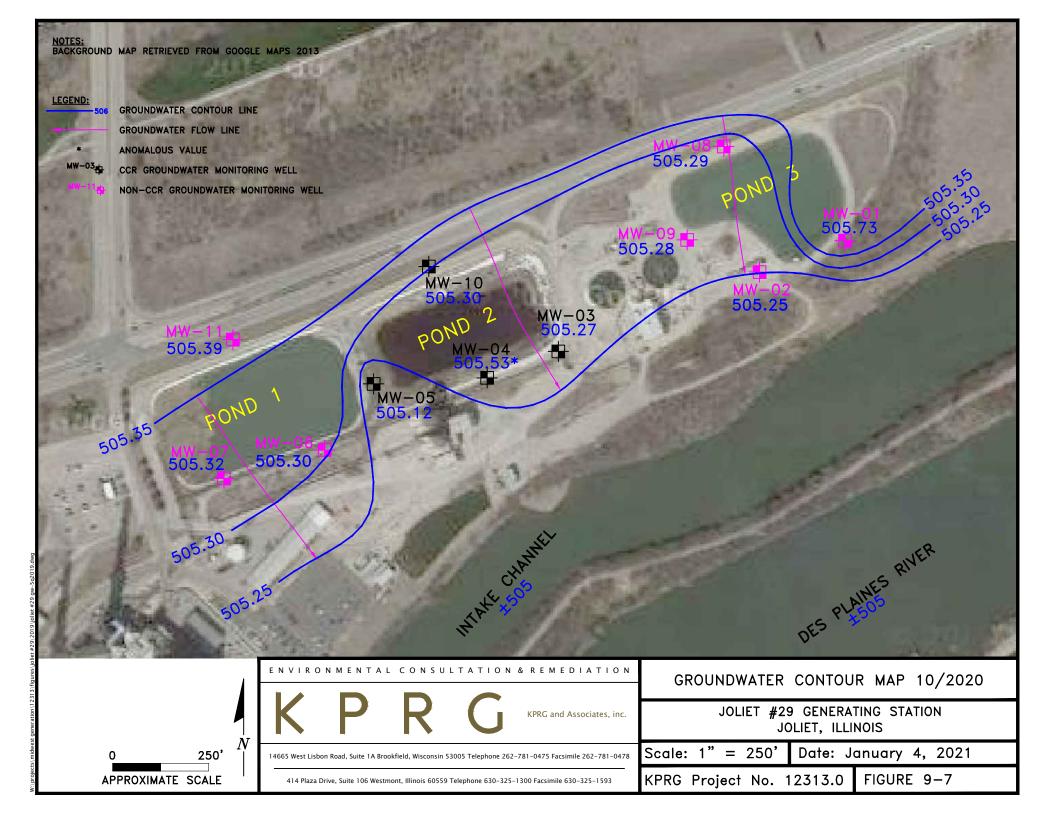
WATER LEVEL (5/21)

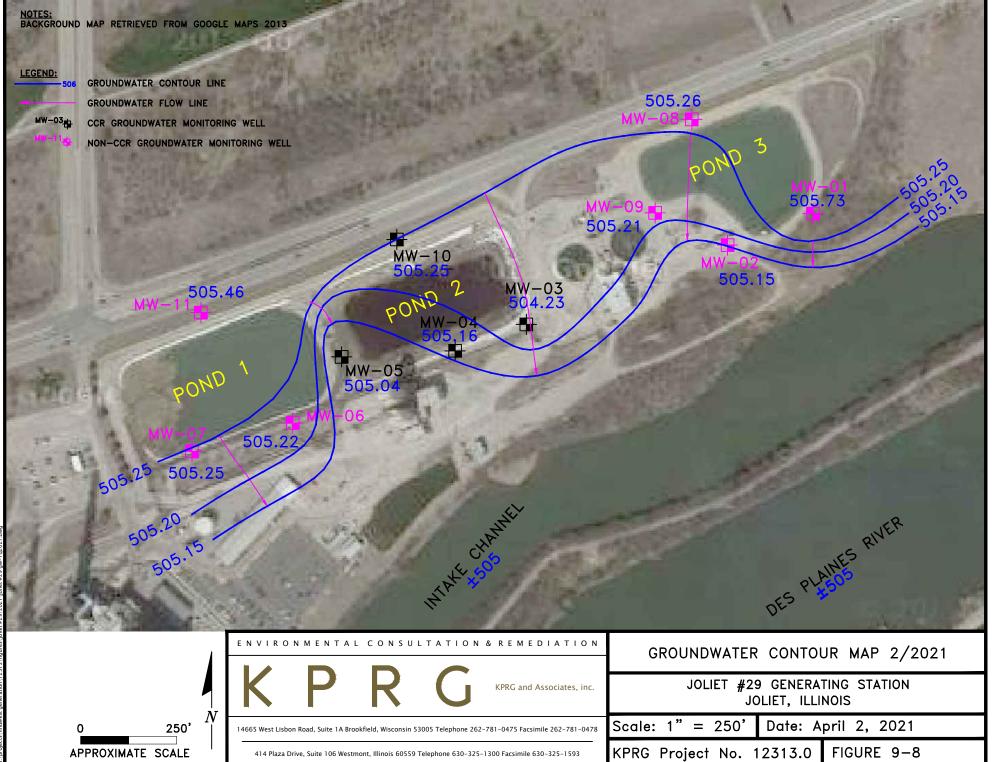
PROJECTED POND OUTLINE

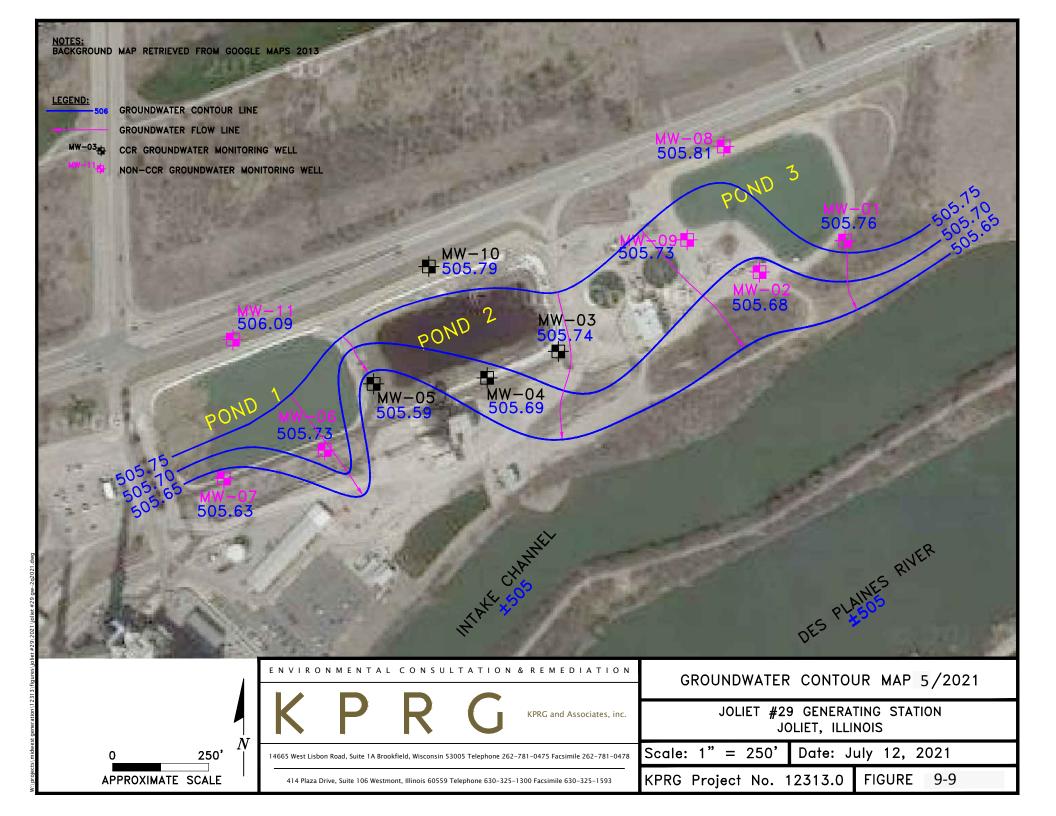


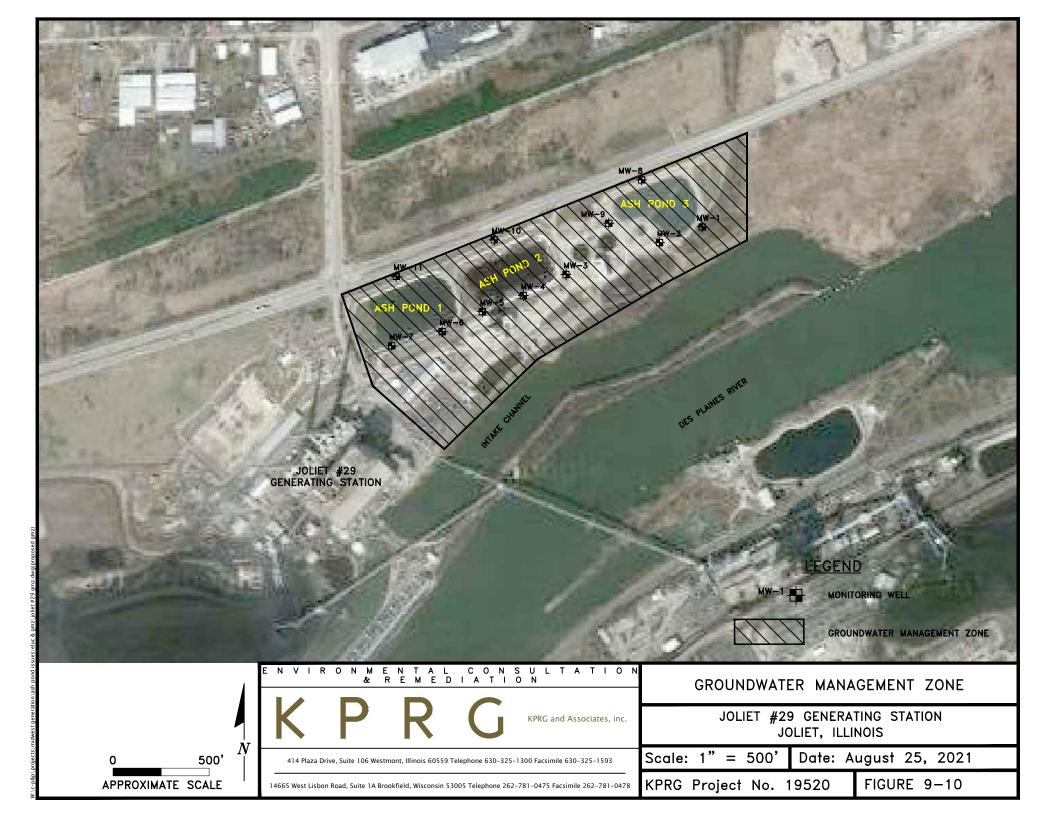
414 Plaza Drive, Suite 106 Westmont, Illinois 60559 Telephone 630-325-1300 Facsimile 630-325-1593

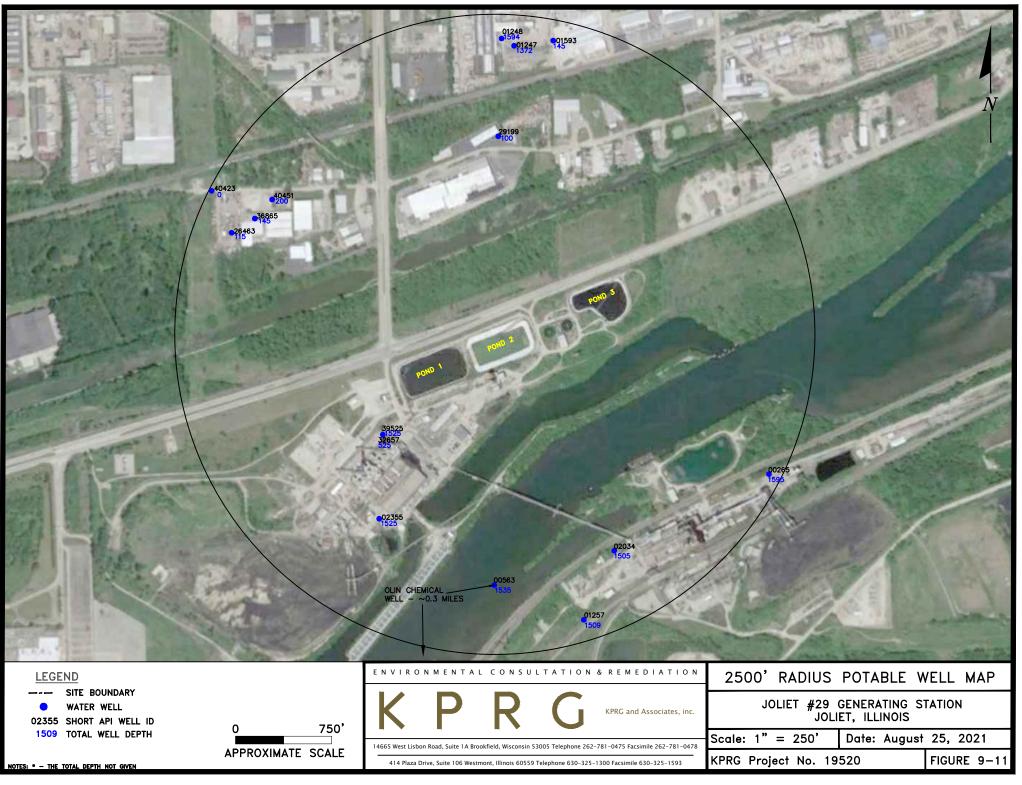
Midwest Generation Joliet Station #29, Joliet, IL


Groundwater Elevation vs Time

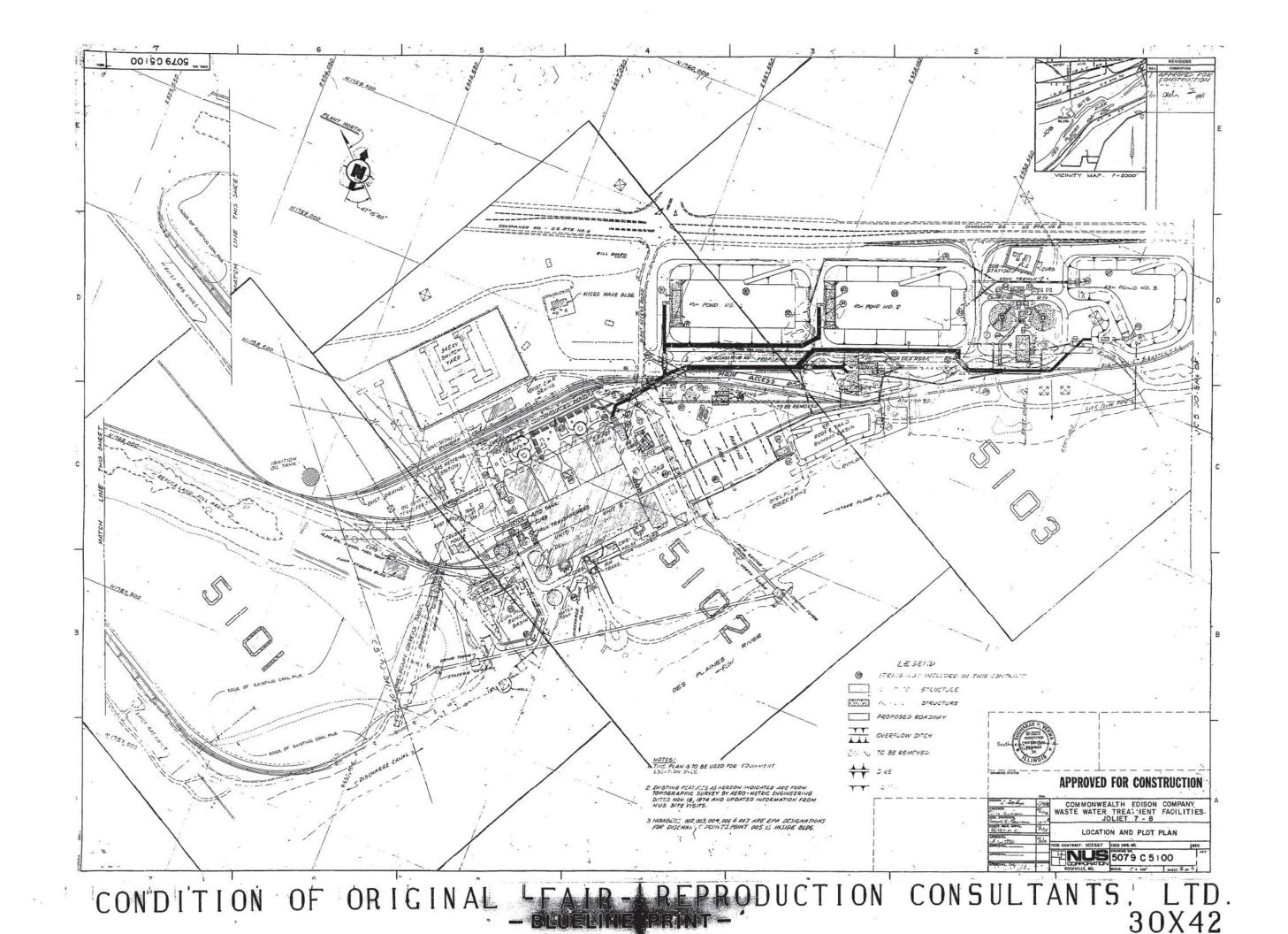


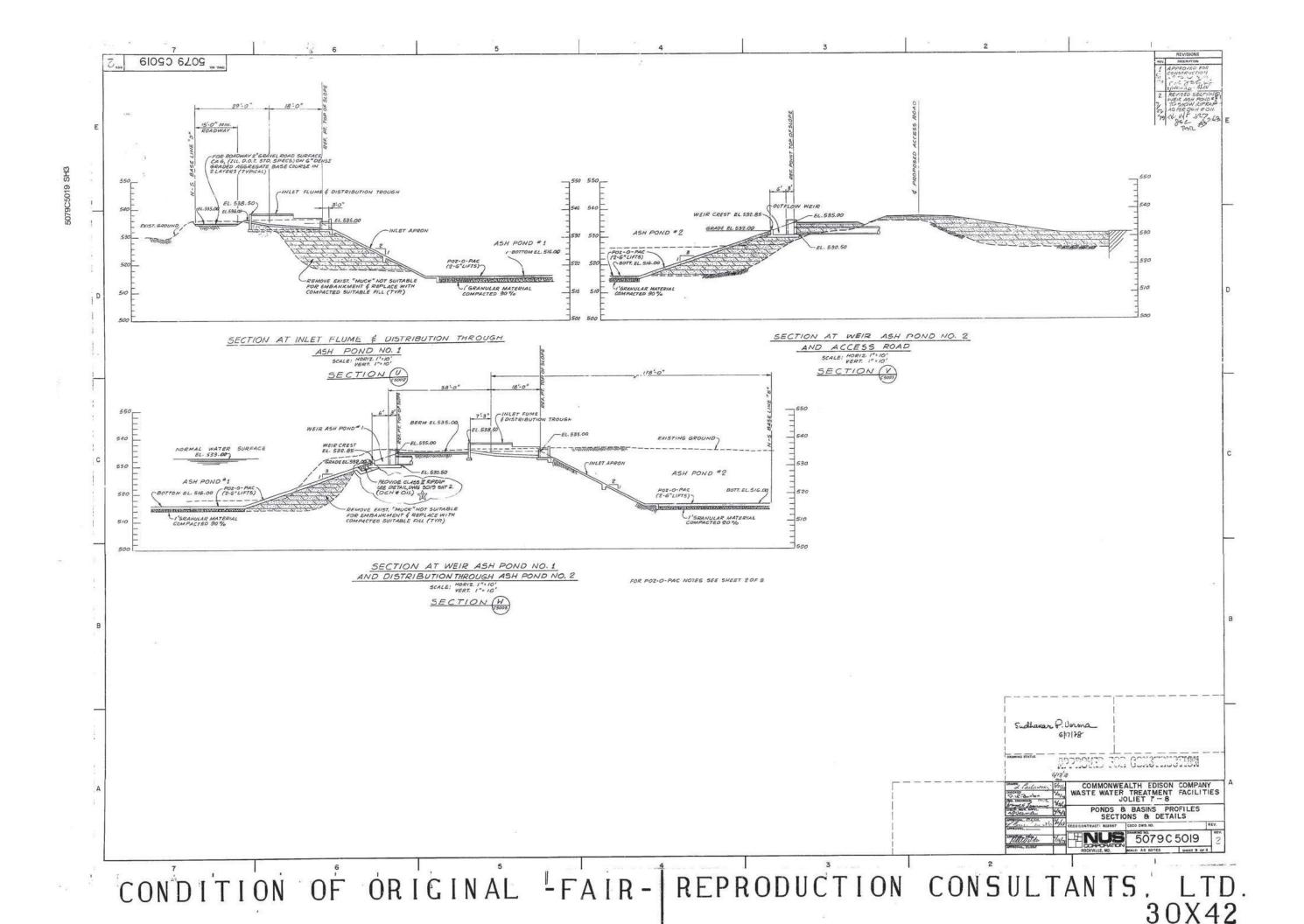

506 MW-03	GROUNDWATER CONTOUR LINE GROUNDWATER FLOW LINE CCR GROUNDWATER MONITORING WELL NON-CCR GROUNDWATER MONITORING WELL	Side and		MW-08 505.13		.5
		+	MW 50	POND 5.02	MW-01 505.74	505.5.0
	MW-11 505.53	MW-10 505.14 2	MW-03 505.06 4 -	MW- 504.9	07 98	
- Ano	POND 1	MW-04 505,0 4 MW-05 504.87				A.
505.5	110 1.		2		1	
1	505.0	INT AFE	CHANNEL CHANNEL		DES PLAINES	RIVER
12		HIA	Self Star		DES PLEO	(1. j. n. j. j.

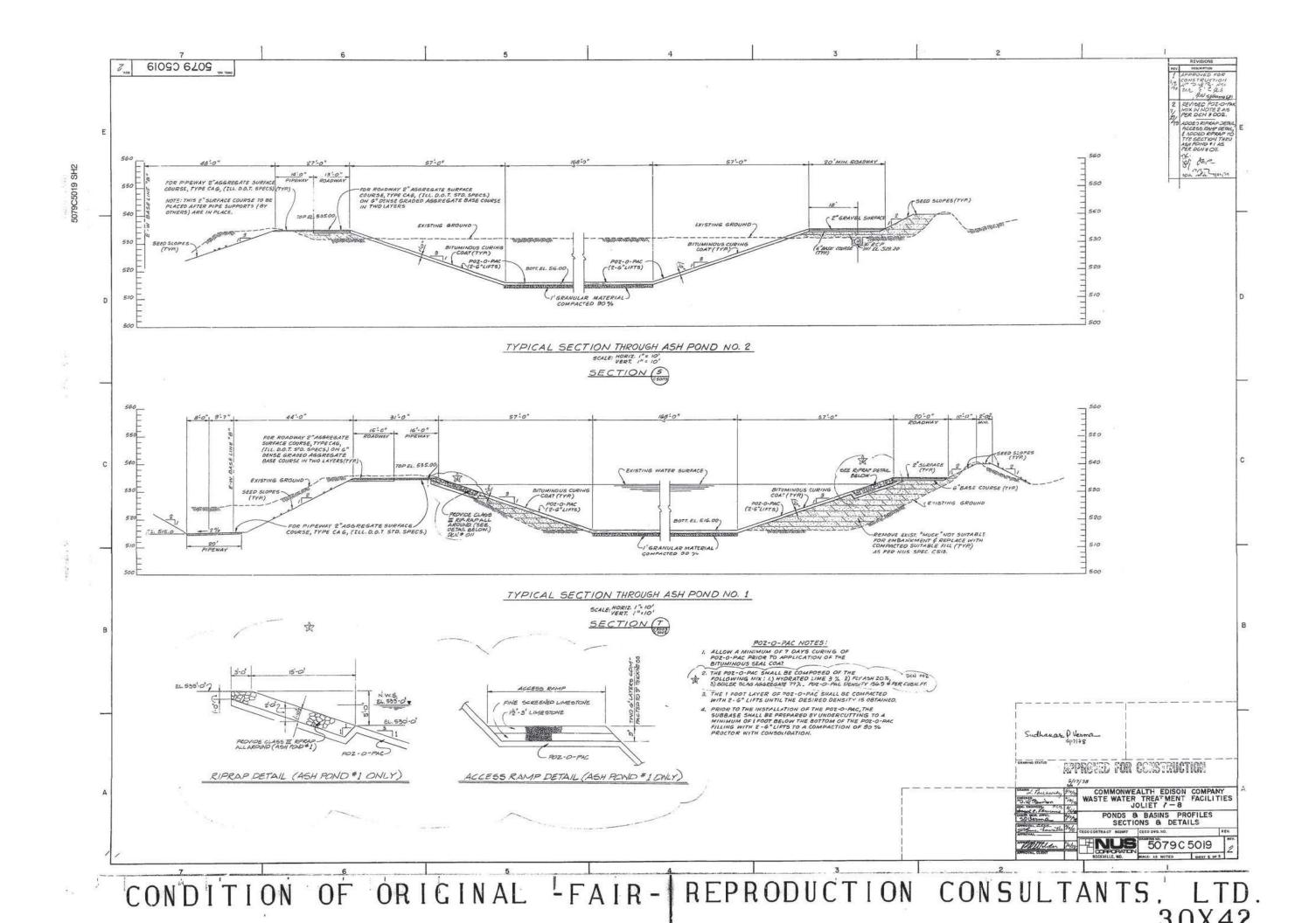

1	ENVIRO	ΝΜΕΝΤΑ	LCONSU	LTATION	& REMEDIATION	GR	OUNDWATER	CONTOU	R MAP 07/2020
	Κ	Ρ	R	G	KPRG and Associates, inc.		JOLIET #29		TING STATION
0 <u>25</u> 0' <i>N</i>	14665 West Lisbo	on Road, Suite 1A Br	ookfield, Wisconsin 5	53005 Telephone 262-	-781-0475 Facsimile 262-781-0478	⁸ Scale: 1" = 250' Date: September 04,			
APPROXIMATE SCALE	414 Plaza D	Drive, Suite 106 West	mont, Illinois 60559	Telephone 630-325-	1300 Facsimile 630-325-1593	KPRG I	Project No. 1	2313.0	FIGURE 9-6

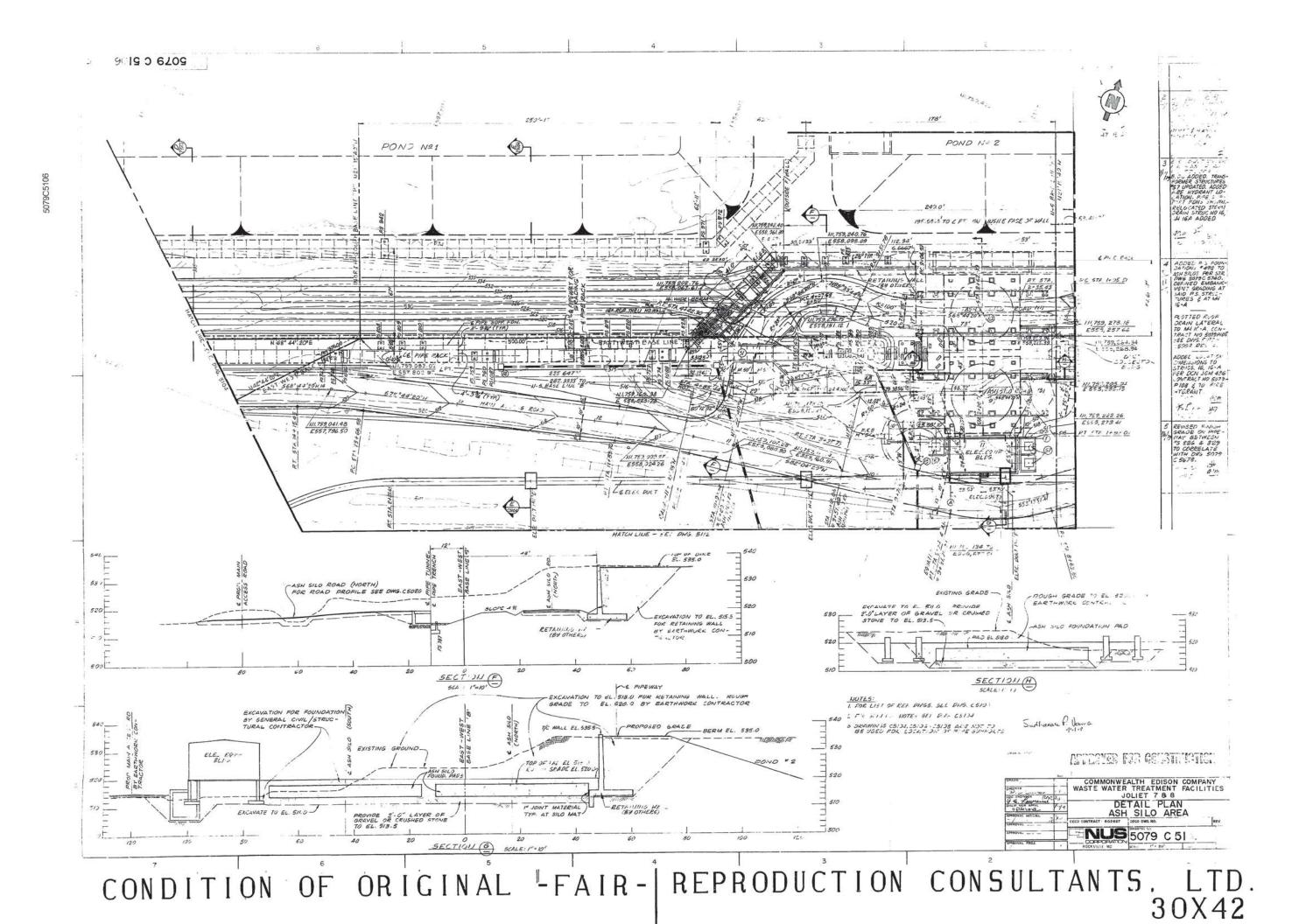


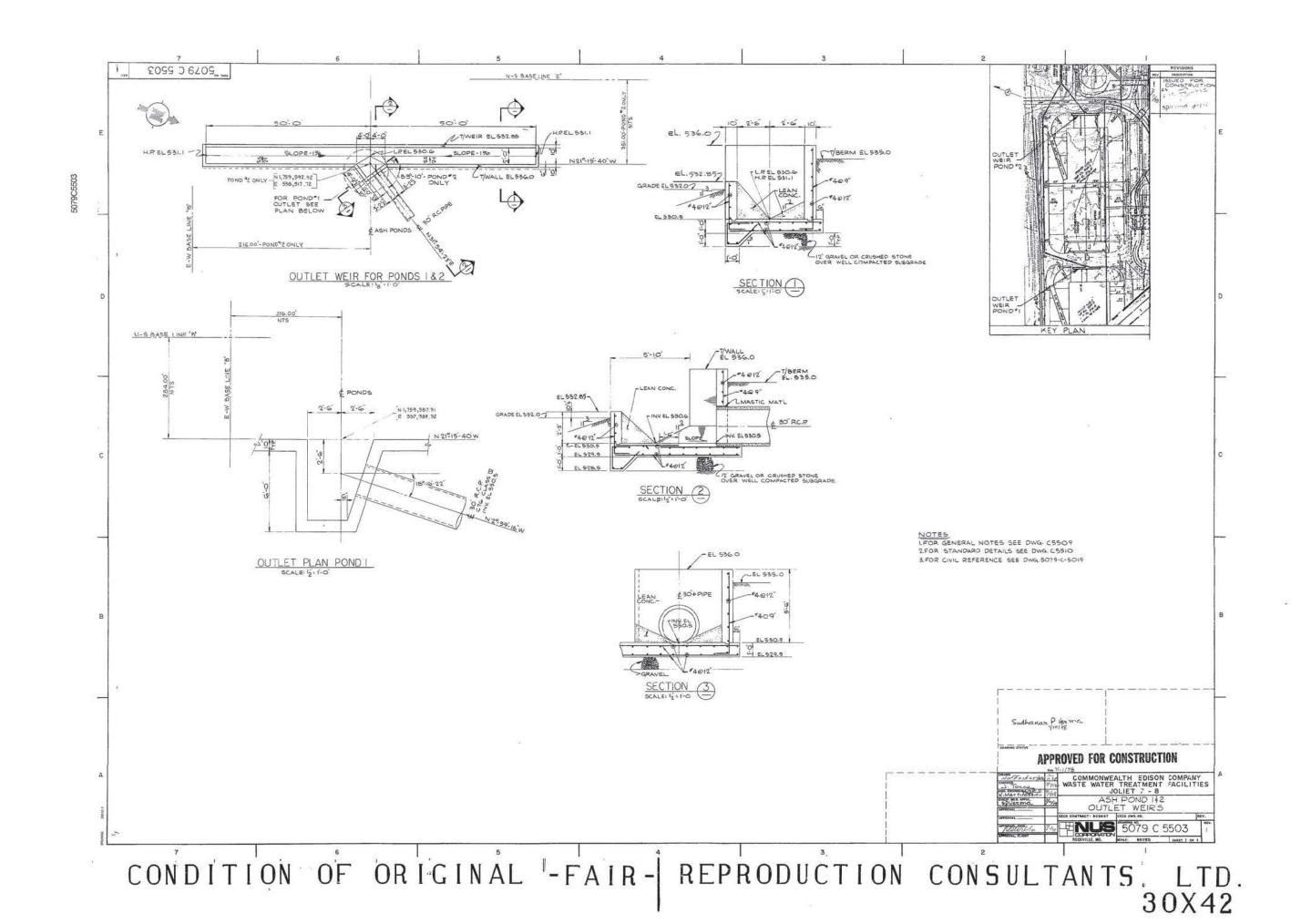
414 Plaza Drive, Suite 106 Westmont, Illinois 60559 Telephone 630-325-1300 Facsimile 630-325-1593

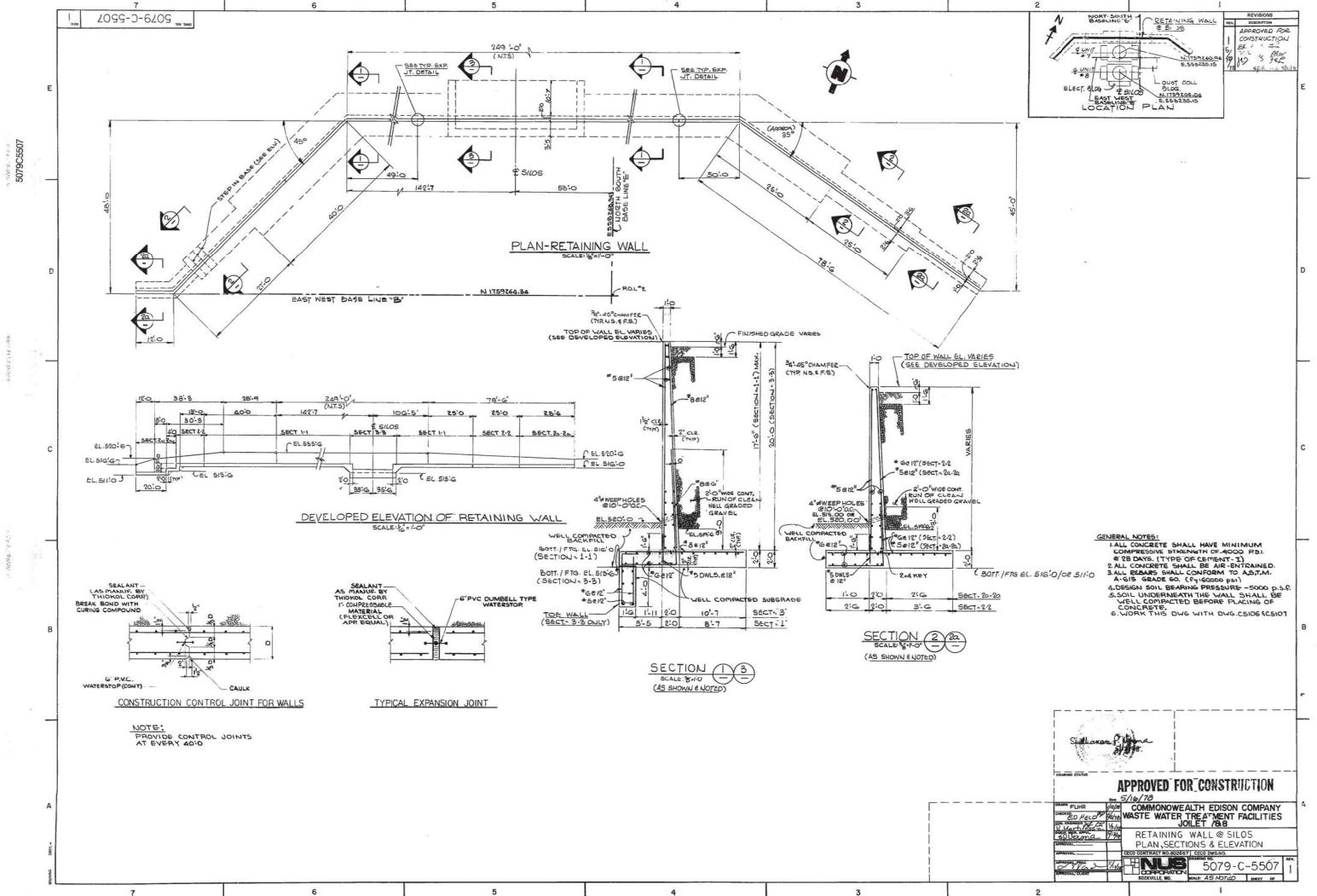


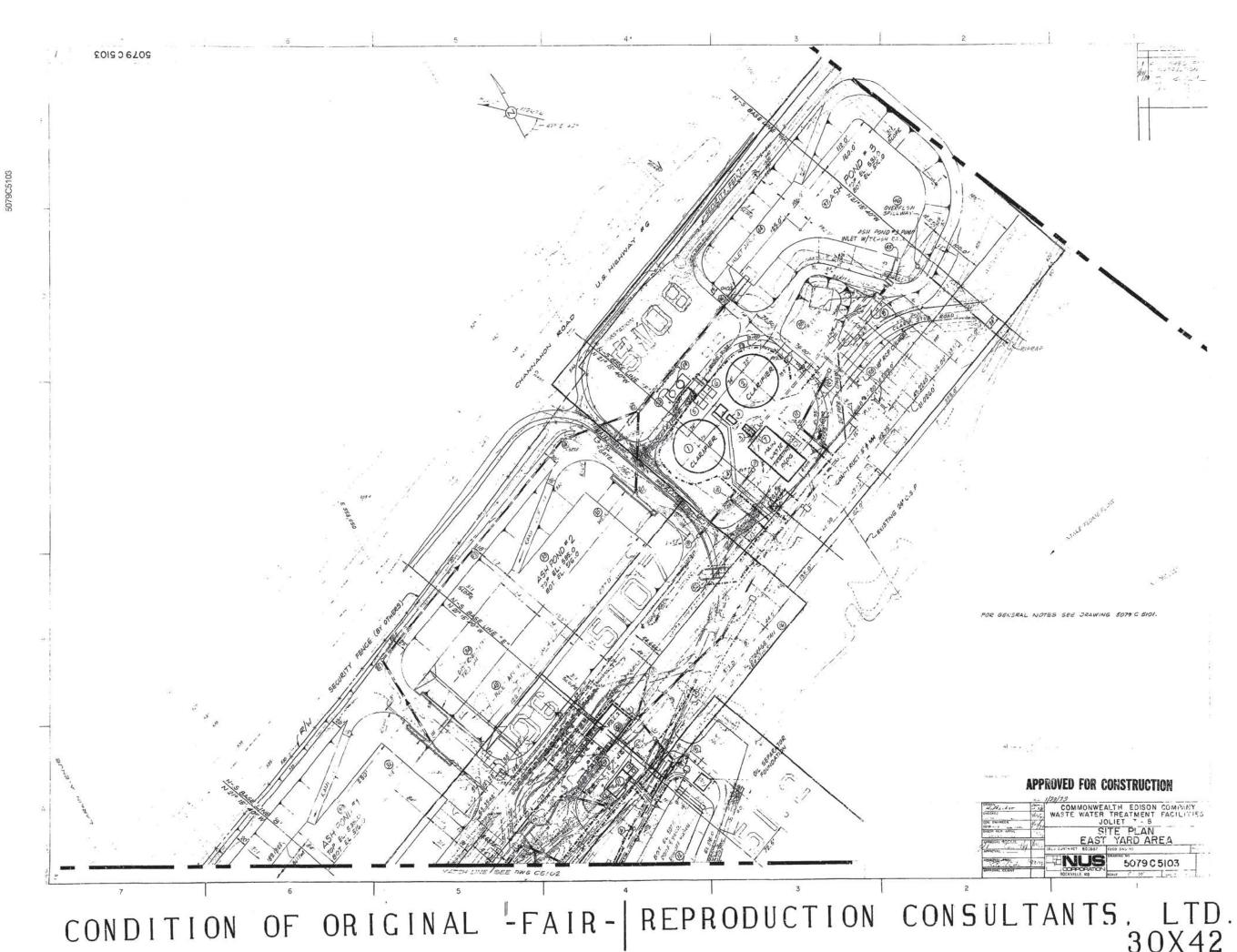


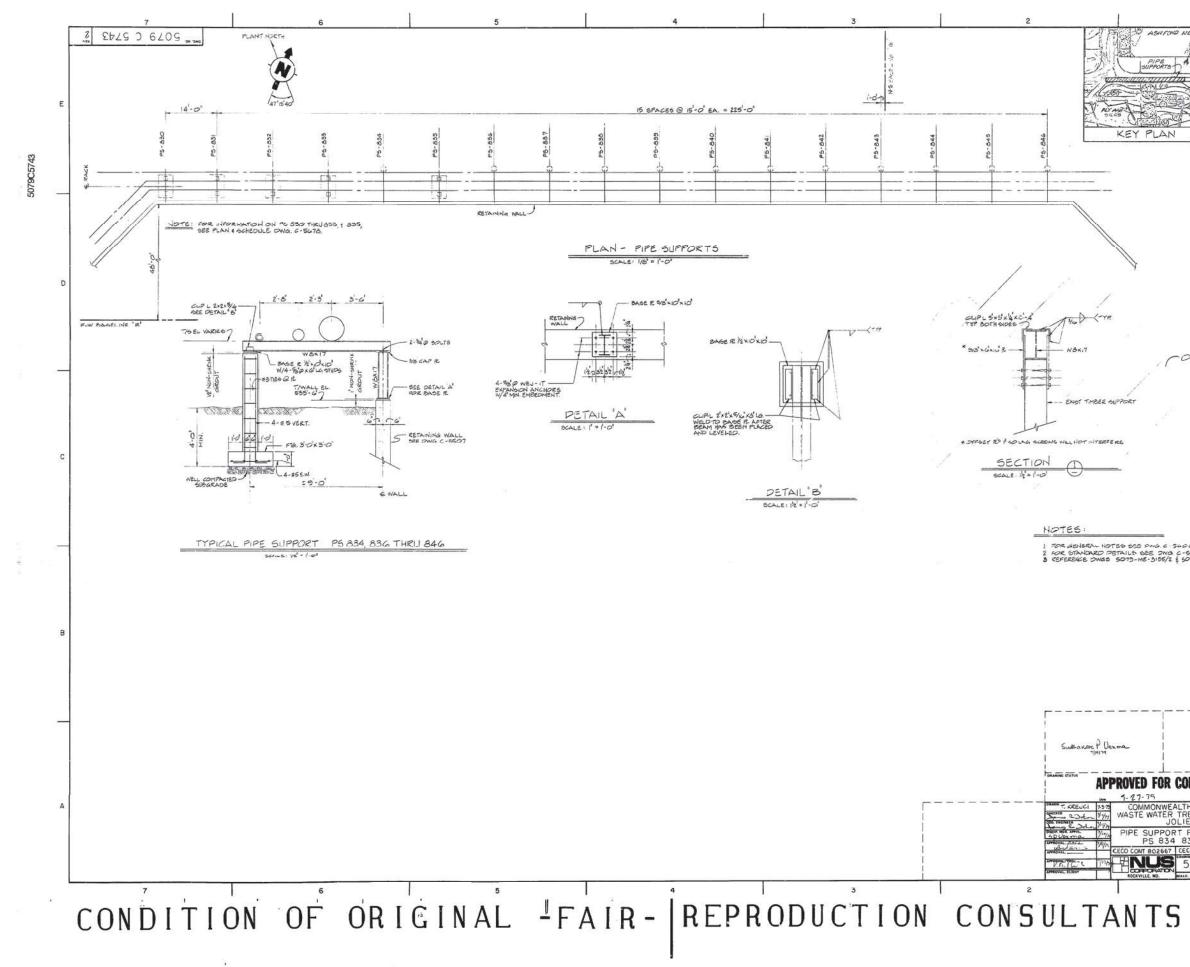

OPERATING PERMIT ATTACHMENTS

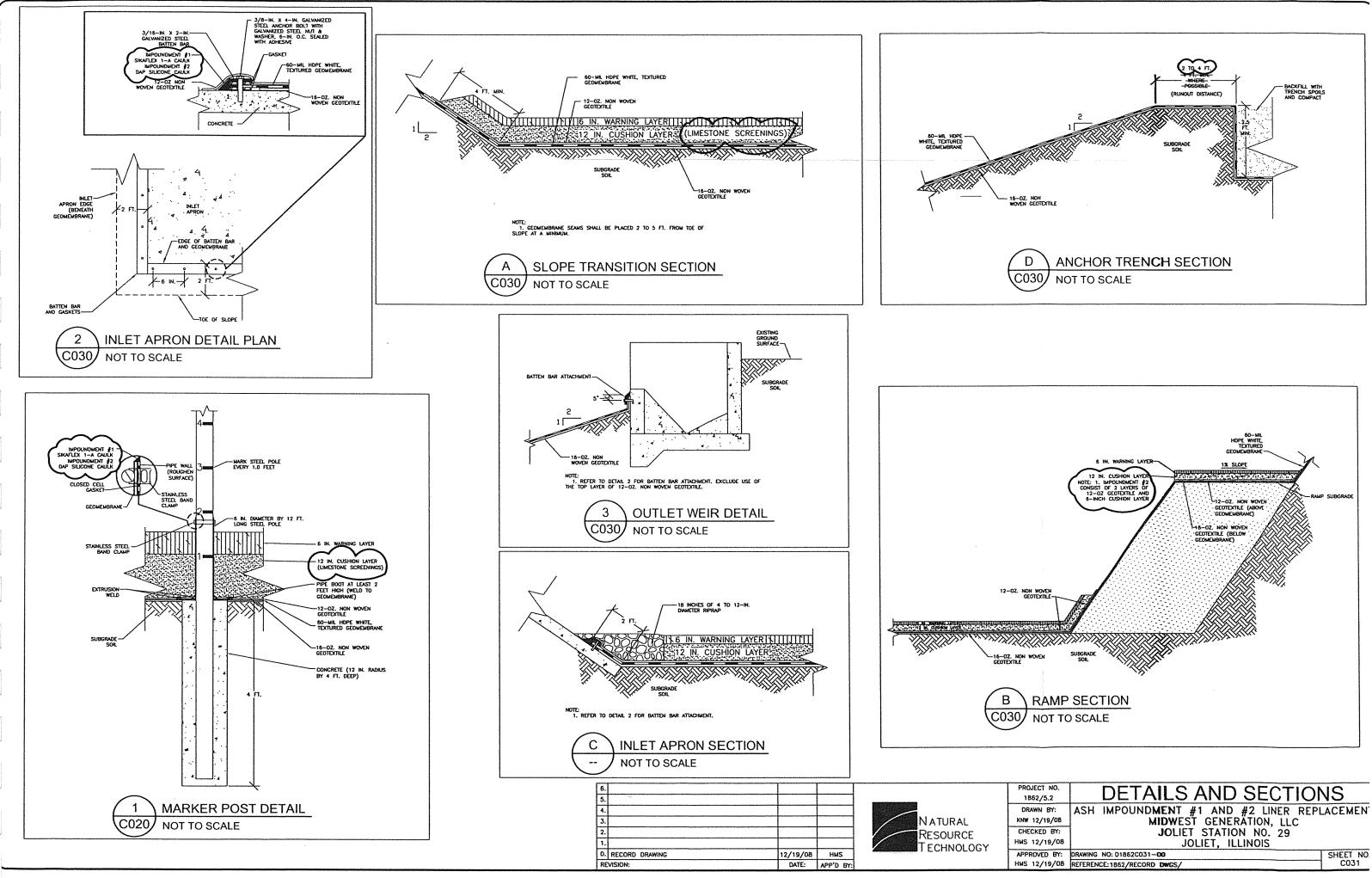

ATTACHMENT 1 HISTORY OF CONSTRUCTION


<u>Attachment 1-1 – Construction Drawings</u>

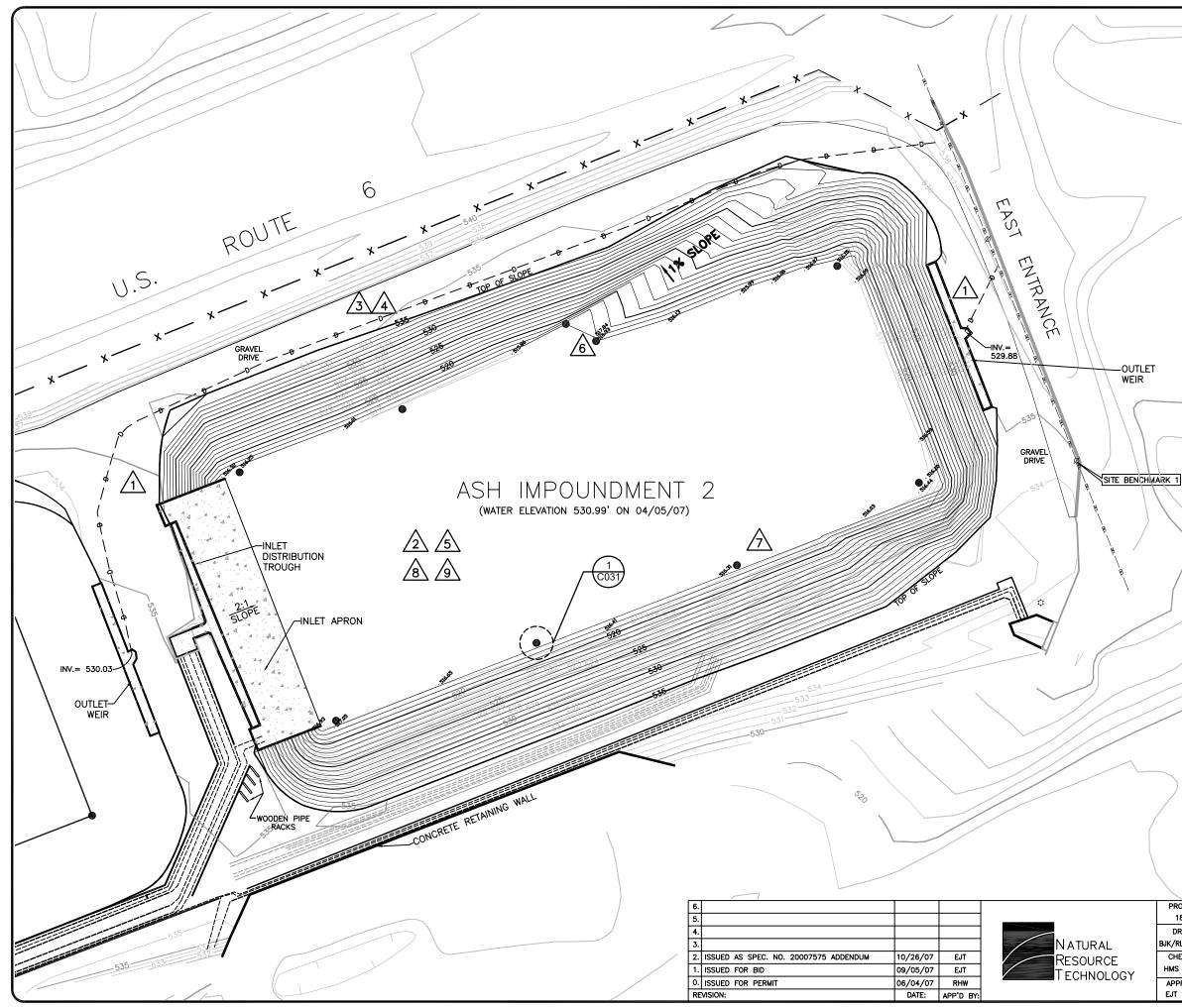




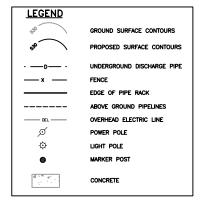




, LID. 30X42


Y.	
	D
1	
N days	
in D	
OMIT	
(CHII	_
2 / J	
and the second	
NOT TIMDER OUPPORT	
a a ²	
NOT INTERFERE	
	c
<u> </u>	
J	
- 199	
:5 :	
ienleran- Notes ese pwe c 5404 Manlarco Petaile 688 pwe c 5400 Elize Dwes 5073-me-3155/2 \$ 5079-me-3155/3.	
EKE DW66 5079-ME-3155/2 \$ 5079-ME-3155/3.	1
	a.
	в
	-
Haver P. Verma	1
APPROVED FOR CONSTRUCTION	j
1-27-75 COMMONWEALTH EDISON COMPANY	A
WASTE WATER TREATMENT FACILITIES	
PIPE SUPPORT PLAN AND DETAILS	1
РС 1/24 РС 24/л PS 834 836 THRU 846 СЕСО СОМТ 802667 СЕСО DWG ЯКУ.	-
5079 (5743	1
ROTE ROCKVILLE, NO. SALE AS NOTED DELT 1 001 2	
1	
.TANTS. LTE)

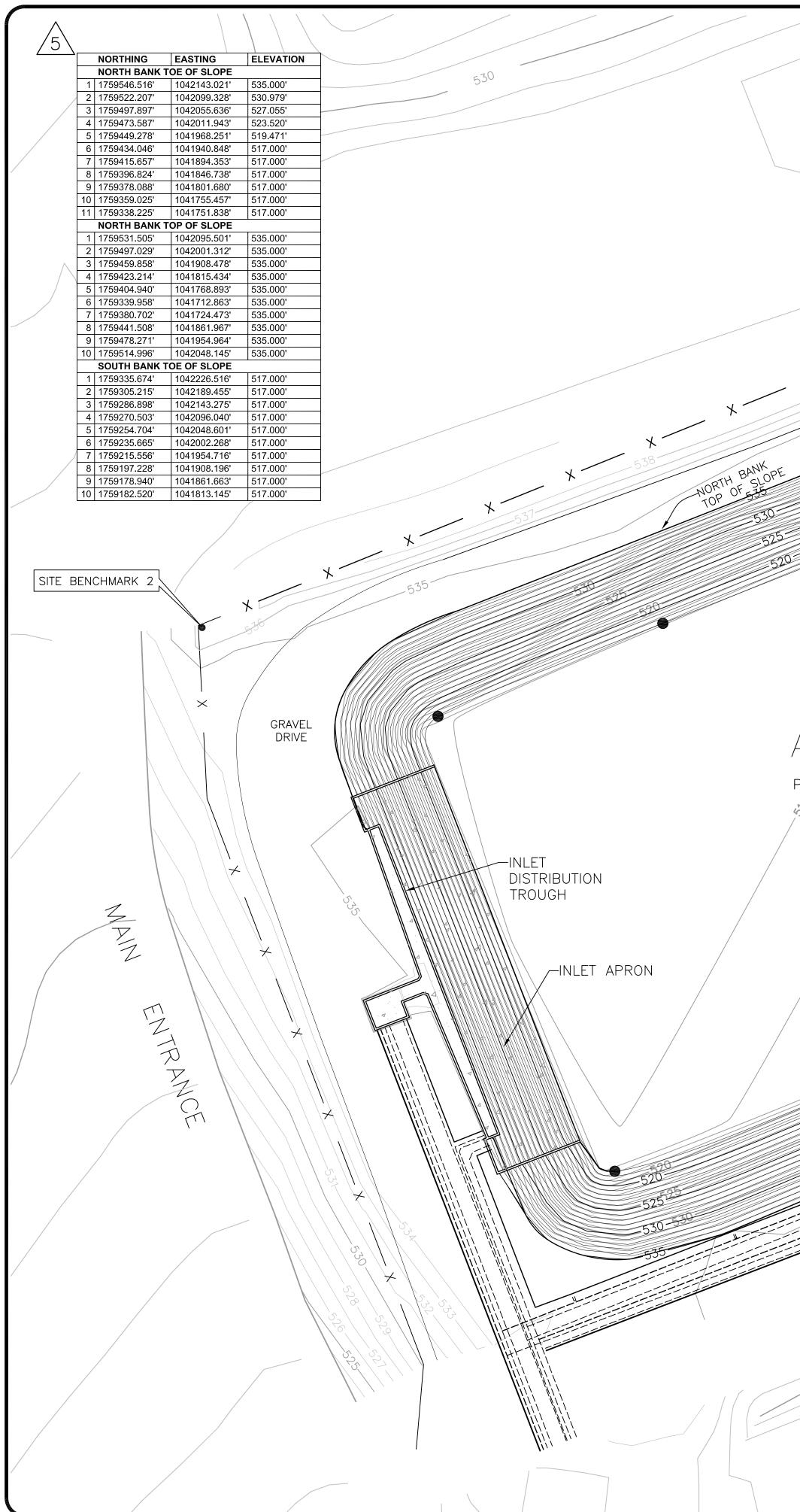
KEY PLAN


x K4 #

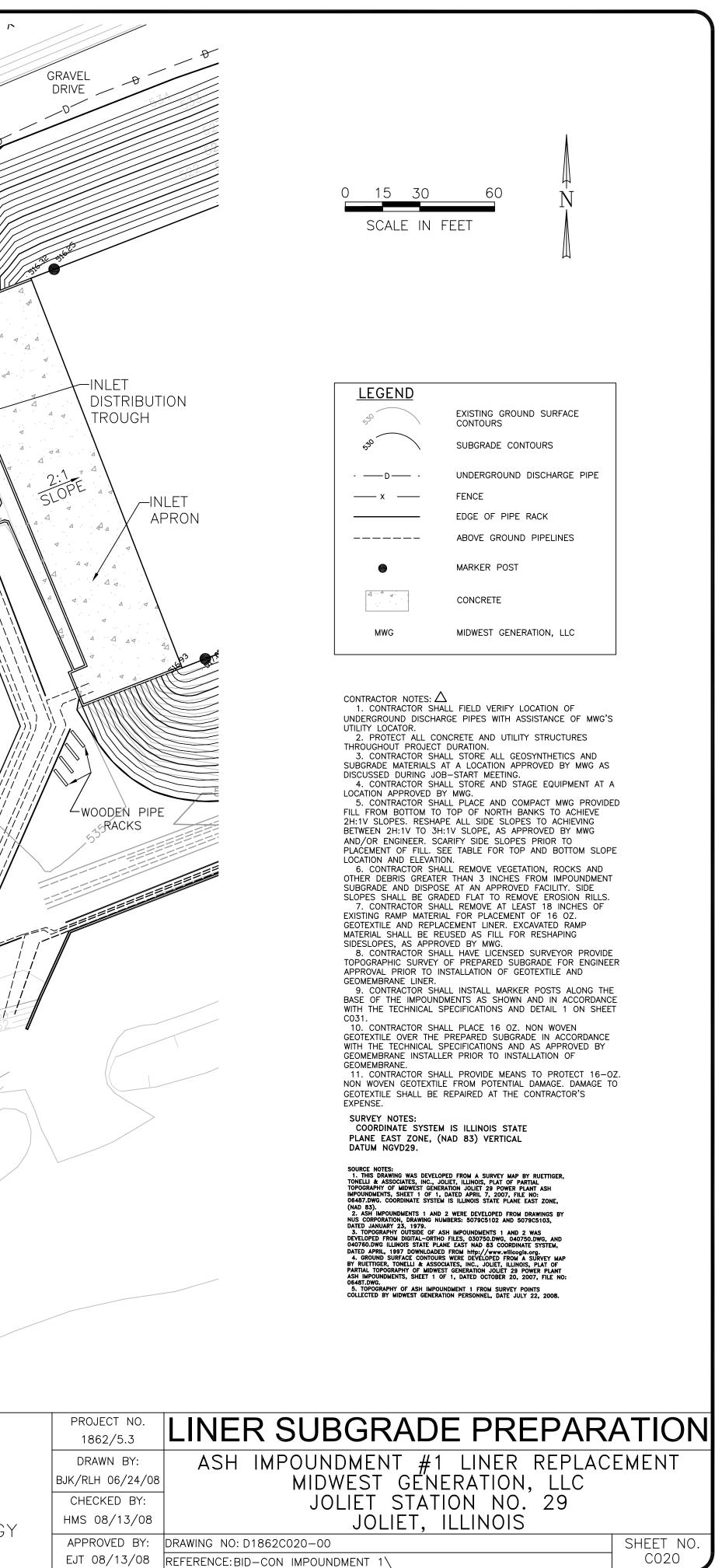
PROJECT NO. 1862/5.2	DETAILS AND SECTION	VS				
DRAWN BY: KNW 12/19/08	ASH IMPOUNDMENT #1 AND #2 LINER REPLACEMEN MIDWEST GENERATION, LLC					
CHECKED BY:	JOLIET STATION NO. 29					
HMS 12/19/08	JOLIET, ILLINOIS					
APPROVED BY:	DRAWING NO: D1862C031-00	SHEET NO.				
HMS 12/19/08	ENCE:1862/RECORD DWGS/ CO31					

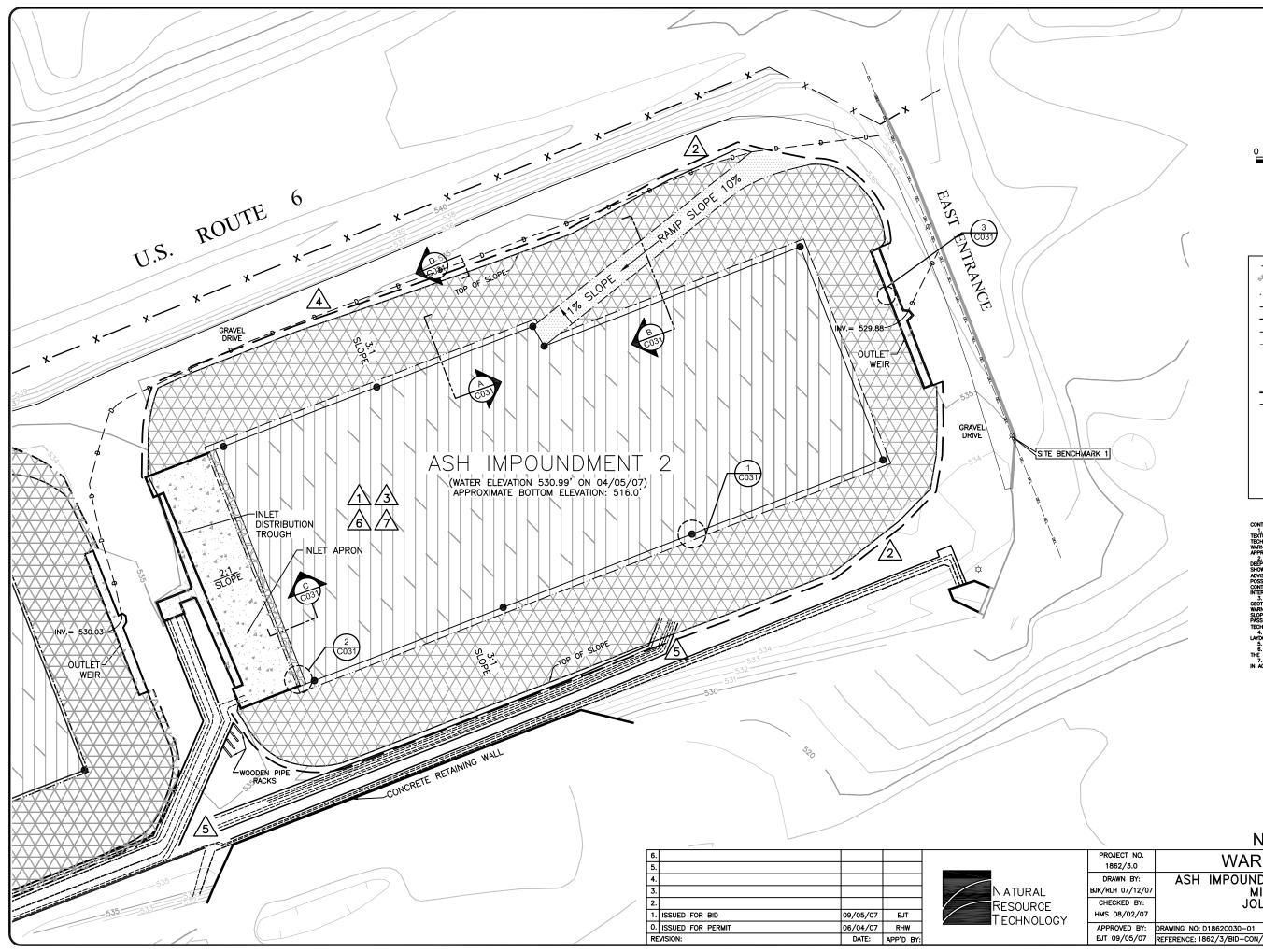
CONTRACTOR NOTES: 1. CONTRACTOR SHALL FIELD VERIFY LOCATION OF 1. CONTRACTOR SHALL FIELD VERIFY LOCATION OF 2. FS DITUTY LL CONTRECT PAIDS WITH ASSISTANCE OF 0.2 FS DITUTY LL CONTRECT PAID PLICTLY STRUCTURES THROUGHOUT PROJECT DURATION. 3. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND SUBGROVE MATERNALS AT A LOCATION APPROVED BY OWNER AS DISCUSSED DURING PRE-BID MEETING 5. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND SUBGROVE MATERNALS AT A LOCATION APPROVED BY OWNER AS DISCUSSED DURING PRE-BID MEETING 5. CONTRACTOR SHALL STORE ALL GEOSYNTHETICS AND 5. CONTRACTOR SHALL STORE AND STAGE EQUIPMENT AT A 1. CONTRACTOR SHALL STORE AND STAGE EQUIPMENT AT A 5. CONTRACTOR SHALL STORE AND STAGE FROM IMPOUNDHEAT SUBGROVE AND DISPOSE AT AN APPROVED FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPES SHALL BE GRADED FAAT TO REMOVE FACILITY. SIDE SLOPED SHALL BERG FOR FAMP. SUBGRADE SHALL BE SLOPED AS INDICATED ON THIS SHEET.

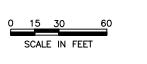
D) ONTHIS SHEET. ITRACTOR SHALL INSTALL MARKER POSTS ALONG THE THE IMPOUNDMENTS AS SHOWN AND IN ACCORDANCI TECHNICAL SPECIFICATIONS AND DETAIL 1 ON SHEE

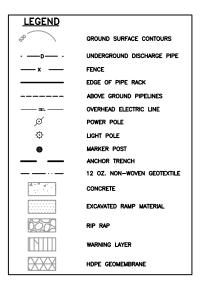

CUSI. 8. CONTRACTOR SHALL PLACE 16 OZ. NON WOVEN GEOTEXTLE OVER THE PREPARED SUBGRADE IN ACCOR WITH THE TECHNICAL SPECIFICATIONS AND AS APPROVE GEOWEMBRANE. GEOWEMBRANE.

9. CONTRACTOR SHALL PROVIDE MEANS TO PROTECT 16-OZ. NON WOVEN GEOTEXTILE FROM POTENTIAL DAMAGE DAMAGE TO GEOTEXTILE SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE.


I AND 2 WERE DEVELOPED FROM DRAWINGS HANNO HUMBERS SUFFICIENCE AND ROTACE (US, Distance of any approximations 1 and 2 was https://www.internet.org/approximations/ antial-official fields official and as occurrently and as state place East and as occurrently stated.


NOT FOR CONSTRUCTION PROJECT NO. LINER SUBGRADE PREPARATION 1862/3.0 ASH IMPOUNDMENT #2 LINER REPLACEMENT MIDWEST GENERATION JOLIET STATION NO. 29 JOLIET, ILLINOIS DRAWN BY: BJK/RLH 07/12/07 CHECKED BY: HMS 08/02/07 APPROVED BY: DRAWING NO: D1862C020-02 SHEET NO. C020


EJT 09/05/07 REFERENCE:1862/3/BID-CON/

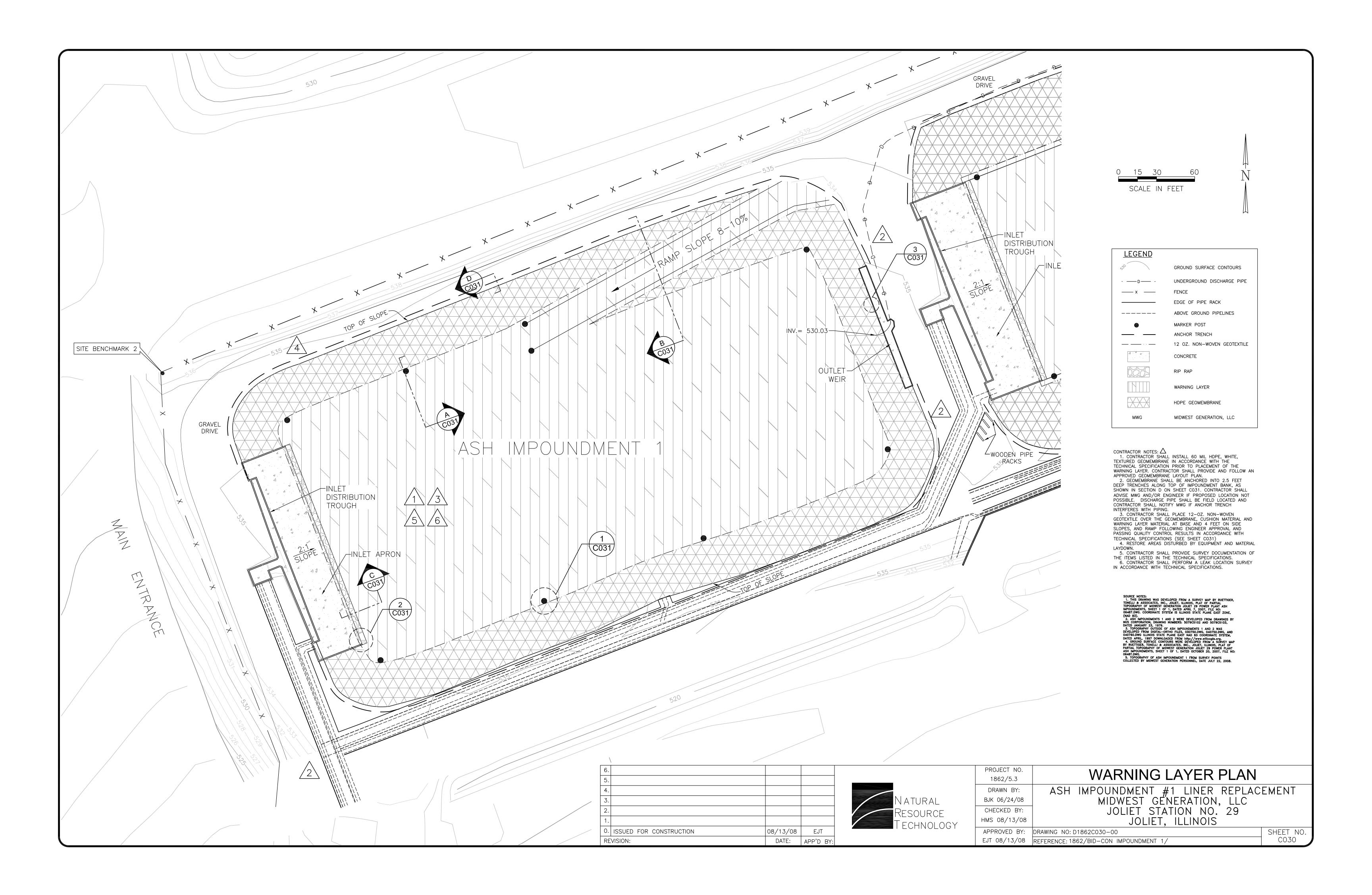


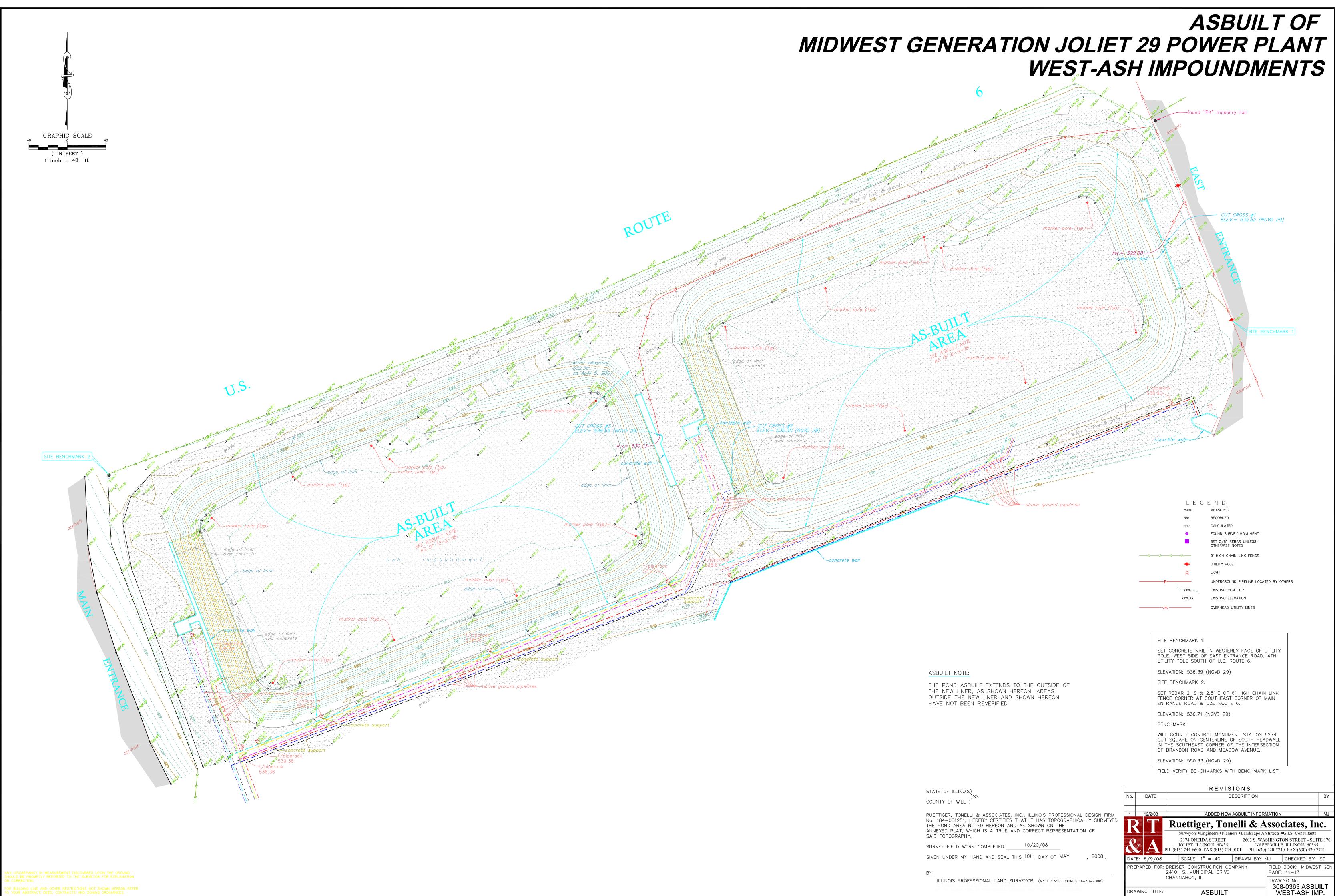
/	/				/ /	
				/		X
						· //
					X	////
						e
						1 P
				X		8
				539		
			X	537		
					SLOPE EDGES OF	V //////
			*	$K \land /$	RAMP CUT TO	
			538 536	(3) 4	PROVIDE SMOOTH	
		X -		5 ⁵⁰¹ '	TRANSITION FOR	
					GEOMEMBRANE	
		X			$\downarrow $ $\land $	
		1.			$\frac{1}{1}$	
	X			535		
				70-		
				-530	Ψ //////	4n -
			10%	525		
			8-1-			
*			OPE 8-10%	512 520-		
		C'	Or	Jan O		
		RAMP			111111111111111111111111111111111111111	
		RAN				
	125					
//////						5
	IIIX X			//		
1//////////////////////////////////////						
///////////////////////////////////////						
\wedge				INV.= 530.03		
/7						//////////////////////////////////////
			$\wedge \wedge$			
			2 6	OL		N Nù
/	/ /				WEIR	
			8 10 11			
			/8 / 10 / 11			
$\Delta \le H$	$\mathbb{N}/\mathbb{P}() \mathbb{N} $	DMENT 1				(
]
	ASE OF IMPOUNDME	ENT ELEVATION 517'				
576	/ /					
0						
/						
					520	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					55	
			$\wedge$			
				///////////////////////////////////////	530 530	
		$\setminus$ $\angle$	9		530	535
	218					
		(1)				
		031/	A			-535
			15			531
	210					53
			SOUTH SOUTH		535	533
/				BANK		
/			SOUTH	Slo		/
			TOP			//-
						///
			A CONTRACTOR OF			
//////			/	/		
						/
	111111					
			/	////		
		520				
		/				
		520				
		////				
	/			/		/
		////		/		
	////				/	/
	///					
		F	/			
///		6.			_	
///		5.				
		4.				
		3.				
1	/			<u> </u>		ATURAL
\		2.			RF	SOURCE CHNOLOG
\		1.				
\		0. ISSUED FOR CONSTRUC	CTION	08/13/08 EJT		LUHINULUG
$\rangle$	/ /					
	/ /	REVISION:		DATE: APP'D E	SY:	



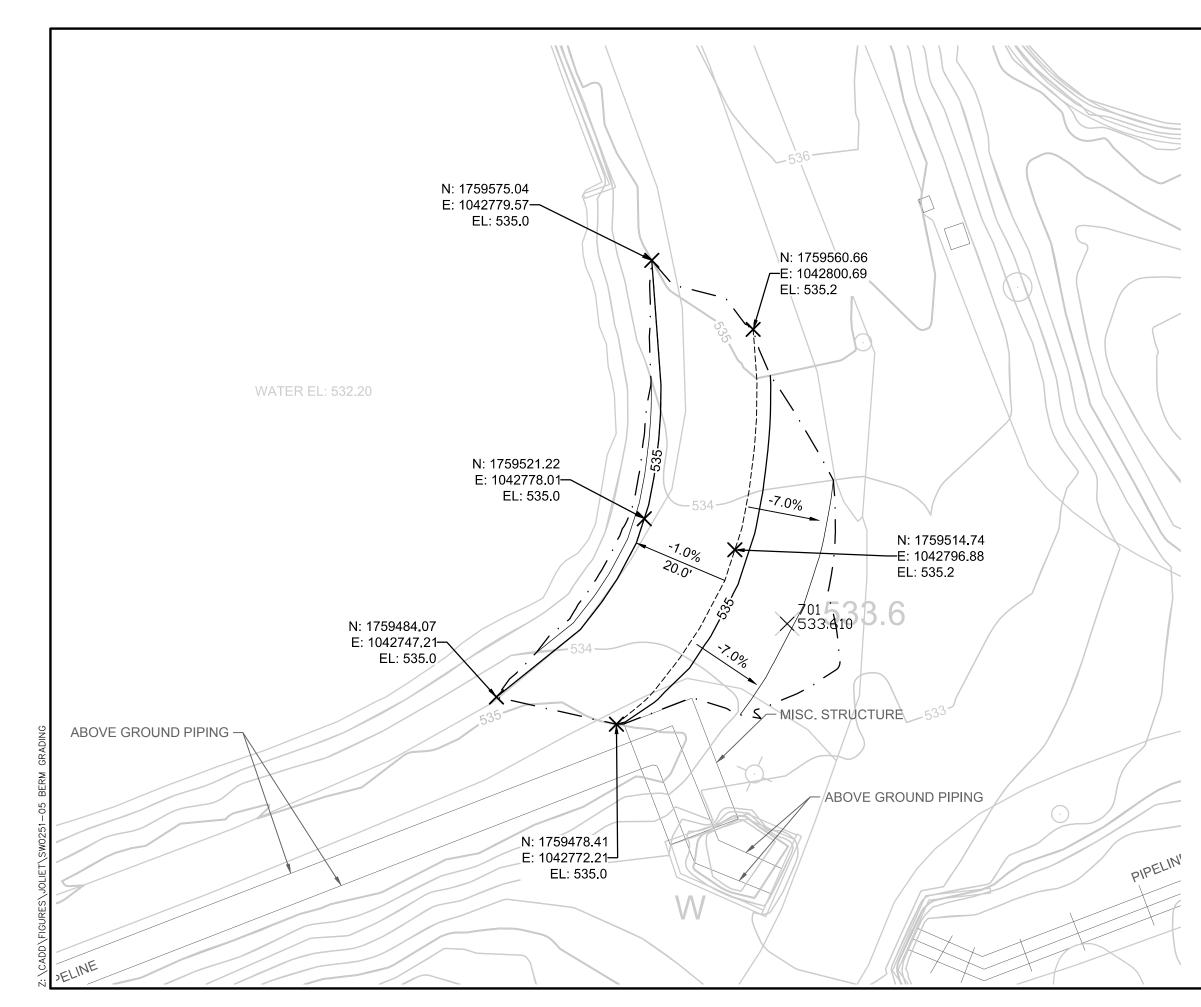








CONTRACTOR NOTES:  $\Delta$ 1. CONTRACTOR SHALL INSTALL 60 MIL HDPE, WHITE, TEXTURED GEOMEMBRANE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION PRIOR TO PLACEMENT OF THE WARNING LAYER. CONTRACTOR SHALL PROVIDE AND FOLLOW AN APPROVED GEOMEMBRANE SHALL BE ANCHORENDED TO THE WARNING LAYER. CONTRACTOR SHALL PROVIDE AND FOLLOW AND CONTRACTOR SHALL PLACE ANCHORENDED TO THE SHOWN IN SECTION D ON SHEET COSI . CONTRACTOR SHALL ADDRES UNKER ANL/OR ENDINER IF ANCHOR TRENCH INTERFERES WITH PIPING. 3. CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GOOLEBBRANE, SAND MATERIAL AND WARNING LAYER WARERIAL AT BASE AND A FEET ON SIDE SHOWN IN CAYER MATERIAL AT BASE AND A FEET ON SIDE SHORE CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GEOLEBBRANE, SAND MATERIAL AND WARNING LAYER WARERIAL AT BASE AND A FEET ON SIDE SUPERS OUTER CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GEOLEBBRANE, SAND MATERIAL AND WARRING LAYER WARERIAL AT BASE AND A FEET ON SIDE SUPERS OUTER CONTRACTOR SHALL PLACE 12-02. NON-WOVEN GEOTENTLE OVER THE GEOLEBBRANE, SAND MATERIAL AND WARRING LAYER WARERIAL AT BASE AND A FEET ON SIDE SUPERS OUTER CONTRACTOR SHALL PLACE 12-02. NON-WOVEN IN DESCRIPTION OF SHALL BASE AND A FEET ON SIDE SHORE TO DET CONTRACTOR SHALL AND MATERIAL AND WARRING LAYER WARERIAL AT BASE AND A FEET ON SIDE SHORE TO DET CONTRACTOR SHALL THE SHORE SAND MATERIAL AND WARRING LAYER WARERIAL AT BASE AND A FEET ON SIDE SHORE TO DET CONTRACTOR SHALL PLACE 12-02. NON-WOVEN IN DESCRIPTION ON DE SHORE TO DET ON THE SHALL BASE AND A FEET ON SIDE SHORE TO DET CONTRACTOR SHALL PLACE 12-02. NON-WOVEN IN DESCRIPTION ON DE SHORE TO DET ON DE SHORE TO DET ON DESCRIPTION ON DET DE STALL AND MATERIAL SHORE ARCAS DISTURBED BY EQUIPMENT AND MATERIAL SHORE ON DE SECOND PIPINE TO DE STALLED BY OTHERE

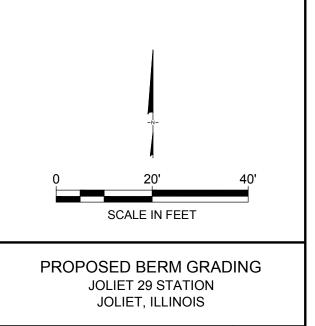
DOWN. 5. ABOVE GROUND PIPING TO BE INSTALLED BY OTHERS. 5. CONTRACTOR SHALL PROVIDE SURVEY DOCUMENTATION OF TEMS LISTED IN THE TECHNICAL SPECIFICATIONS. 7. CONTRACTOR SHALL PERFORM A LEAK LOCATION SURVEY ACCORDANCE WITH TECHNICAL SPECIFICATIONS.


2 WOR DEVELOPED FROM DEMONST CANDITS 1 AND 2 WAS

NOT FOR CONSTRUCTION WARNING LAYER PLAN ASH IMPOUNDMENT #2 LINER REPLACEMENT MIDWEST GENERATION JOLIET STATION NO. 29 JOLIET, ILLINOIS APPROVED BY: DRAWING NO: D1862C030-01 SHEET NO. C030






ASBUILT



LEGEND				
	EXISTING GROUND MAJOR CONTOUR (5')			
	EXISTING GROUND MINOR CONTOUR (1')			
	PROPOSED GRADING MAJOR CONTOUR (5')			
	PROPOSED GRADING MINOR CONTOUR (1')			
·	PROPOSED LIMIT OF GRADING			
	GRADE BREAK			

NOTES:

- 1. SOURCE AERIAL TOPOGRAPHY: AERO-METRIC, INC. DATE OF PHOTOGRAPHY: 6/17/2008.
- 2. EARTHWORK VOLUME = 100 CY
- FILL (CA-6 AGGREGATE) SHALL BE PLACED WITH A MAXIMUM LOOSE LIFT THICKNESS OF 10 INCHES WITH A MAXIMUM COMPACTED LIFT THICKNESS OF 6 INCHES. FILL SHALL BE COMPACTED BY A MINIMUM OF 3 PASSES WITH A CAT 34B OR EQUIVALENT SMOOTH DRUM ROLLER (MINIMUM OPERATING WEIGHT OF 8,000 lbs. AND MINIMUM CENTRIFUGAL FORCE PER DRUM OF 5,000 lbs.) AND SHALL BE FIRM AND UNYIELDING.



Geosynt		FIGURE
PROJECT NO: SW0251-05	AUGUST 2016	I

<u>Attachment 1-2 – HDPE Liner Replacement Specifications</u>

# SECTION 02600 HIGH DENSITY POLYETHYLENE (HDPE) GEOMEMBRANE

# PART 1 - GENERAL

## 1.01 WORK INCLUDES

A. Furnish all labor, materials, tools, supervision, transportation, and installation equipment necessary for installation of 60-mil High Density Polyethylene (HDPE) geomembrane, as specified herein, and as shown on Contract Drawings.

### 1.02 REFERENCE STANDARDS

- A. ASTM D1004 Test Method for Initial Tear Resistance of Plastic Film and Sheeting.
- B. ASTM D1238 Standard Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer.
- C. ASTM D1505 Test Method for Density of Plastics by the Density-Gradient Technique.
- D. ASTM D1603 Test Method for Carbon Black in Olefin Plastics.
- E. ASTM D4833 Standard Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products.
- F. ASTM D5199 Standard Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes.
- G. ASTM D5397 Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test.
- H. ASTM D5596 Test Method for Microscopic Evaluation of Dispersion of Carbon Black in Polyolefin Geosynthetics.
- I. ASTM D5994 Standard Test Method for Measuring Core Thickness of Textured Geomembranes.
- J. ASTM D6392 –Test Method for Determining the Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods.
- K. ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.
- L. GRI Test Method, GM 13 Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes
- M. GRI Test Method, GM 14 Selecting Variable Intervals for Taking Geomembrane Destructive Seam Samples Using the Method of Attributes.

N. GRI Test Method, GM 19 – Seam Strength and Related Properties of Thermally Bonded Polyolefin Geomembranes.

# 1.03 DEFINITIONS

- A. Geomembrane Installer: hired by Contractor or Owner responsible for field handling, transporting, storing, deploying, seaming and testing of the geomembrane seams.
- B. Geomembrane Manufacturer: hired by Geomembrane Installer to provide HDPE geomembrane.
- C. Geosynthetic Quality Assurance Consultant: Consultant, independent from the Owner, Manufacturer, and Installer, responsible for field oversight of geosynthetics installation, and related testing, usually under the direction of the Owner.
- D. Geosynthetic Quality Assurance Laboratory (Testing Laboratory): Party, independent from the Owner, Manufacturer and Installer, responsible for conducting laboratory tests on samples of geosynthetics obtained at the site or during manufacturing, usually under the direction of the Owner.
- D. Lot: A quantity of resin (usually the capacity of one rail car) used in the manufacture of geomembranes. Finished roll will be identified by a roll number traceable to the resin lot used.
- E. Resin Supplier: selected by Geomembrane Manufacturer to provide resin used in manufacturing geomembrane.
- F. Panel: Unit area of a geomembrane that will be seamed in the field that is larger than 100 ft².
- G. Patch: Unit area of a geomembrane that will be seamed in the field that is less than 100ft².
- H. Subgrade Surface (Bedding Layer): Soil Layer surface which immediately underlies the geosynthetic material(s).

# 1.04 QUALITY ASSURANCE

- A. Qualifications:
  - 1. Geomembrane Installer:
    - a. 5 years of continuous experience in installation of HDPE geomembrane.
    - b. Experience totaling a minimum of 5,000,000 square feet of installed HDPE geomembrane on some combination of at least 10 completed facilities.
    - c. Personnel performing seaming operations qualified by experience or by successfully passing seaming tests. Master seamer shall have experience

seaming a minimum of 3,000,000 square feet of geomembrane using same type of seaming apparatus to be used on this project.

- B. Quality Assurance Program:
  - 1. Geomembrane Manufacturer/Installer shall conform with requirements of these Technical Specifications.
  - 2. The Engineer will document geomembrane installation including panel placement, seaming, pre-qualification seam testing, non-destructive seam and repair testing, repair size and locations, weather conditions.
  - 3. The Owner will engage and pay for the services of a Geosynthetic Quality Assurance Consultant and Laboratory to monitor geomembrane installation.

# 1.05 SUBMITTALS

- A. Prior to project start, submit the following to Geosynthetic Quality Assurance Consultant in accordance with Section 01300, Submittals:
  - 1. Raw Materials:
    - a. Name of Resin Supplier, location of supplier's production plant(s), resin brand name and product number.
    - b. Source and nature of plasticizers, fillers, carbon black and any other additives along with their percent addition to geomembrane material.
    - c. Test results documenting conformance with the "index properties" of GRI Test Method, GM 13.
  - 2. Geomembrane Manufacturer's Certification:
    - a. Written certification that Geomembrane Manufacturer's Quality Control Plan was fully implemented during production of geomembrane material supplied for this project. (Submittal shall be made within 5 working days of delivery to site).
  - 3. Geomembrane Installer's Seaming Personnel
    - a. Corporate background information indicating compliance with qualification requirements.
    - b. Training completed by personnel.
    - c. Seaming experience for each personnel.
  - 4. Geomembrane Manufacturer Production Information:
    - a. Corporate background information indicating compliance with qualification requirements.

- b. Quality control plan for manufacturing.
- c. Copy of quality control certificates demonstrating compliance with the quality control plan for manufacturing and the test property requirements of GRI Test method, GM 13 (i.e. mill certificates).
- 5. Geomembrane Installer's Information:
  - a. Corporate background information indicating compliance with qualification requirements.
  - b. List of completed facilities, totaling 5,000,000 square feet minimum for which Geomembrane Installer has completed installation of a HDPE geomembrane. Include name and purpose of facility, location, date of installation, and quantity installed.
  - c. Resumes of personnel performing field seaming operation, along with pertinent experience information. Include documentation regarding which seamers are qualified to use thermal fusion welding apparatus.
  - d. Installation quality control plan.
- 6. Installation panel layout diagram identifying placement of geomembrane panels, seams, and any variance or additional details which deviate from Contract Drawings or Technical Specifications. Layout shall be drawn to scale and shall be adequate for use as a construction plan. Layout shall include dimensions and pertinent seam and anchorage details.
- 7. Installation Sequence and Schedule shall be included as part of Construction Progress Schedule.
- 8. Description of seaming apparatus to be used indicating compliance with specified requirements.
- B. During installation, submit the following to the Geosynthetic Quality Assurance Consultant:
  - 1. Daily records/logs prepared by Geomembrane Installer documenting work performed, personnel involved, general working conditions, and any problems encountered or anticipated on project. Submit on a weekly basis.
  - 2. Copy of subgrade acceptance signed by Geomembrane Installer for areas to be covered with geomembrane each day.
- C. Within 10 days of geomembrane installation completion, submit the following to Geosynthetic Quality Assurance Consultant:
  - 1. Geomembrane installation certification that Work was performed under Geomembrane Installer's approved quality control plan and in substantial compliance with Technical Specifications and Contract Drawings.

- 2. As-built panel diagram identifying placement of geomembrane panels, seams, repairs, and destructive seam sample locations.
- 3. Copy of warranty for material (including factory seams) and installation covering both for a period of 2 years from the date of substantial completion.
- D. The Geosynthetic Quality Assurance Consultant will review and inspect HDPE geomembrane installation upon completion of all Work specified in this Section. Deficiencies noted shall be corrected at no additional cost to the Owner.
- E. The Geosynthetic Quality Assurance Consultant will provide written final acceptance of the geomembrane installation after completion of material placement above geomembrane. Written conditional geomembrane installation acceptance can be provided to the Contractor prior to completion of material placement above geomembrane when the following conditions are satisfied, if necessary, and requested by the Contractor:
  - 1. The entire geomembrane installation is completed or any pre-determined subsection if the project is phased.
  - 2. All installation quality assurance/control documentation has been completed and submitted to the Geosynthetic Quality Assurance Consultant or Owner.
  - 3. Verification of the adequacy of all field seams, repairs and associated testing is complete.

# 1.06 DELIVERY, STORAGE, AND HANDLING

- A. Transportation:
  - 1. Geomembrane rolls shall be transported, unloaded and handled at the job site in accordance with manufacturer recommendations. Damaged material may be rejected by the Geosynthetic Quality Assurance Consultant. Manufacturer packaging shall be labeled in accordance with Section 02700, 2.02G.
- B. On-site Storage:
  - 1. Geomembrane rolls which have been delivered to job site shall be unloaded and stored in original, unopened packaging in a secure location, determined by Owner and/or Geosynthetic Quality Assurance Consultant.
  - 2. Store geomembrane rolls to ensure adequate protection against exposure to the following:
    - a. Equipment;
    - b. Strong oxidizing chemicals, acids, or bases;
    - c. Flames, including welding sparks;

- d. Temperatures in excess of 160 deg. F;
- e. Dust;
- f. Ultraviolet radiation (i.e. sunlight); and
- g. Inclement weather.
- 3. Whenever possible, provide a 6-inch minimum air space between rolls.
- 4. Containers/rolls shall not be stacked.
- C. On-Site Handling:
  - 1. Handle rolls per Geomembrane Manufacturer's recommendations and as necessary to prevent damage.

# PART 2 - PRODUCTS

# 2.01 MATERIALS

- A. High Density Polyethylene (HDPE) White Textured Geomembrane.
  - 1. HDPE geomembrane shall be white, textured, 60-mil product approved by the Engineer and/or Geosynthetic Quality Assurance Consultant.
  - 2. The Contractor shall submit, with the bid, written certification from the proposed Geomembrane Manufacturer that geomembrane products proposed in the bid satisfy the following requirements:
    - a. The proposed Geomembrane Manufacturer shall have a minimum of 5 years of continuous experience manufacturing HDPE geomembrane totaling 1,000,000 square feet.
    - b. The proposed HDPE compound shall be comprised entirely of virgin materials. Compliance with this specification shall be documented in accordance with Geomembrane Manufacturer's quality control program and submitted to the Geosynthetic Quality Assurance Consultant with the written conformance certification.
    - c. The proposed Geomembrane Manufacturer shall certify that any plasticizers, fillers and additives incorporated into the manufacturing process for the proposed HDPE geomembrane have demonstrated acceptable performance on past projects.
    - d. The proposed geomembrane shall meet the requirements of Geosynthetic Research Institute's test method GM 13.
    - e. The nominal thickness of proposed geomembrane shall be 60 mil., or as approved by the Engineer and/or Geosynthetic Quality Assurance Consultant.

- 3. Geomembrane sheets shall be visually consistent in appearance and shall contain no holes, blisters, undisbursed raw materials or other signs of contamination by foreign material. Geomembrane must have no striations, roughness or bubbles on the surface.
- B. Seaming Apparatus
  - 1. Thermal fusion welding machines used for joining geomembrane surfaces may be either extrusion or hot wedge. These machines shall include sufficient temperature and rate-of-travel monitoring devices to allow continuous monitoring of operating conditions.
  - 2. One spare, operable thermal fusion seaming device shall be maintained on site at all times.
- C. Field Test Equipment
  - 1. Field Tensiometer: the field tensiometer shall be calibrated within three months prior to project start date over the range of field test values.
  - 2. Air Channel Test Equipment: air channel test equipment shall consist of hoses, fittings, valves and pressure gauge(s) needed to deliver and monitor the pressure of compressed air through an approved pressure feed device.
  - 3. Air Compressor: the air compressor utilized for field testing shall be capable of producing and maintaining an operating pressure of at least 50 psi.
  - 4. Vacuum Box: the vacuum box shall consist of a vacuum gage, valve, and a gasket around the edge of the open bottom needed to apply vacuum to a surface.

# 2.02. CONFORMANCE TESTING REQUIREMENTS

- A. Geomembrane shipped to site shall undergo conformance testing. Manufacturer's roll certificates may be used for conformance evaluation at the option of the Geosynthetic Assurance Consultant. Nonconforming material shall either be retested at the direction of the Geosynthetic Quality Assurance Consultant or removed from site and replaced at Contractor's expense.
- B. Conformance Test Methods
  - 1. Samples will be located and collected by the Geosynthetic Quality Assurance Consultant at a rate of one sample per 100,000 square feet of geomembrane delivered to site.
  - 2. One sample will be obtained from each geomembrane production batch delivered to the site.

- 3 Samples shall be cut by Geomembrane Installer and be at least 45 square feet in size.
- 4. Samples shall be tested in accordance with Table 1 (Smooth) or Table 2 (Textured) specified in GRI Test Method GM13.
- 5. Geomembrane thickness shall be measured a minimum of three times per panel during deployment to verify conformance with GRI Test Method GM13.
- C. Role of Testing Laboratories
  - 1. The Geosynthetic Quality Assurance Consultant will be responsible for acquiring samples of the geomembrane for conformance testing. The Owner or Geosynthetic Quality Assurance Consultant will retain an independent, third party laboratory to perform conformance testing on samples of geomembrane.
  - 2. Retesting of geomembrane panels by the Geomembrane Installer because of failure to meet any of the conformance specifications can only be authorized by the Geosynthetic Quality Assurance Consultant. Non-conforming panels may be retested in accordance with Subsection 2.03(B) and 2.03(D) under authorization of the Geosynthetic Quality Assurance Consultant only.
  - 3. The Geomembrane Manufacturer and/or Geomembrane Installer may perform independent tests in accordance with methods and procedures specified in Subsection 2.03(B). Results shall not be substituted for quality assurance testing described herein.
- D. Procedures for Determining Conformance Test Failures
  - 1. If conformance test results fail to meet specifications, the roll and/or batch may be retested using specimens from either the original roll sample or from another sample collected by the Geosynthetic Quality Assurance Consultant. Two additional tests (retests) shall be performed for each failed test procedure. Each retest shall consist of multiple specimen tests if multiple specimens are specified in the test procedure. If the results of both retests meet specifications, the roll and batch will be considered to have passed conformance testing.
  - 2. Failure of any retest shall be cause for rejection of the entire roll or batch depending on the type of failing test. The Geosynthetic Quality Assurance Consultant reserves the right to collect samples from other roll of a particular batch for further conformance testing. The Geosynthetic Quality Assurance Consultant may choose to accept only a portion of the batch on the basis of the results of conformance testing of samples collected from other rolls.
  - 3. If retesting does not result in conformance with the specifications as defined in preceding paragraph, or if there are any other nonconformities with the material

specifications, the Contractor shall remove the rolls from use in project. The Contractor shall also be responsible for removal of rejected geomembrane from the site and replacement with acceptable geomembrane at no additional cost to the Owner.

# PART 3 - EXECUTION

# 3.01 PRE-CONSTRUCTION MEETING

- A. A Pre-Construction Meeting shall be held at the site in accordance with Section 01040, Project Administration, to discuss and plan the details of geomembrane installation. This meeting shall be attended by the Geomembrane Installer, Owner, Geosynthetic Quality Assurance Consultant and the General Contractor.
- B. The following topics relating to geomembrane installation shall be addressed:
  - 1. Responsibilities of each party.
  - 2. Lines of authority and communication.
  - 3. Methods for documenting, reporting and distributing documents and reports.
  - 4. Procedures for packaging and storing archive samples.
  - 5. Review of the schedule for all installation and quality assurance testing, including third-party testing turnaround times.
  - 6. Review of panel layout, access and numbering systems for panels and seams including details for marking on the HDPE geomembrane.
  - 7. Procedures and responsibilities for preparation and submittal of as-built drawings.
  - 8. Temperature and weather limitations, installation procedures for adverse weather conditions and defining acceptable subgrade or ambient moisture and temperature conditions for working during liner installation.
  - 9. Subgrade conditions, dewatering responsibilities and subgrade maintenance plan.
  - 10. Deployment techniques including allowable subgrade for geomembrane.
  - 11. Procedures for covering of the geomembrane to prevent damage.
  - 12. Plan for minimizing wrinkles in the geomembrane.
  - 13. Measurement and payment schedules.
  - 14. Site health and safety procedures/protocols.

# 3.02 SUBGRADE PREPARATION

- A. Contractor shall prepare a subgrade surface in accordance with Section 02243, Subgrade Layer Preparation, and excavate and backfill in accordance with Section 02222, Anchor Trenching, Backfilling and Compaction.
- B. The Contractor shall not excavate more than the amount of anchor trench required for one day of geosynthetics deployment, unless otherwise specified by the Geosynthetic Quality Assurance Consultant. Rounded corners shall be provided in the trenches where the geosynthetics enter the trench to allow them to be uniformly supported by the subgrade and to avoid sharp bends. The geosynthetics shall not be supported by loose soils in anchor trenches.
- C. The Geomembrane Installer shall visually inspect the subgrade immediately prior to geomembrane deployment. Inspection shall verify that there are no potentially harmful foreign objects present, such as sharp rocks and other deleterious debris. Any foreign objects encountered shall be removed by Geomembrane Installer or Contractor. All subgrade damaged by construction equipment and deemed unsuitable for geomembrane deployment shall be repaired prior to geomembrane deployment. All repairs shall be approved by the Geosynthetic Quality Assurance Consultant and Geomembrane Installer. The responsibility for preparation, repairs, and maintenance of the subgrade shall be defined in the preconstruction meeting. The Geomembrane Installer shall provide the Geosynthetic Quality Assurance Consultant with written acceptance of subgrade surface over which geomembrane is deployed (Part 1.05B) for each day of deployment.

# 3.03 GEOMEMBRANE DEPLOYMENT

- A. Geomembrane shall not be deployed until all applicable certifications/quality control certificates listed in subsection 1.05 of this section and conformance testing listed in subsection 2.03 of this section are submitted and approved by the Geosynthetic Quality Assurance Consultant. Any geomembrane deployed prior to approval by the Geosynthetic Quality Assurance Consultant shall be at the sole risk of the Geomembrane Installer and/or Contractor. If material installed prior to approval by the Geosynthetic Quality Assurance Consultant does not meet the requirements of this specification, it shall be removed from the site at no additional cost to the Owner.
- B. Geomembrane will be deployed according to submitted panel layout drawing as approved by the Geosynthetic Quality Assurance Consultant. The Geosynthetic Quality Assurance Consultant is to be notified of and approve any revisions or modifications to the approved panel layout drawing prior to deploying geomembrane in the area of review.
- C. Adequate temporary anchoring (sand bags, tires, etc.) that will not damage the geomembrane shall be placed on a deployed panel to prevent uplift by wind.
- D. Geomembrane shall not be deployed if:
  - 1. Ambient temperatures are below 41 degrees F (5 degrees C) or above 104 degrees F (40 degrees C) measured six inches above geomembrane surface unless approved by the Geosynthetic Quality Assurance Consultant.
  - 2. Precipitation is expected or in the presence of excessive moisture or ponded water on the subgrade surface.

- 3. Winds are excessive as determined by Geomembrane Installer in agreement with the Geosynthetic Quality Assurance Consultant.
- 4. The Geosynthetic Quality Assurance Consultant will have the authority to suspend work during such conditions.
- E. The Geomembrane Installer shall be responsible for conformance with the following requirements:
  - 1. Equipment utilized for installation/quality assurance testing does not damage geomembrane. Such equipment shall have rubber tires and a ground pressure not exceeding 5 psi or total weight exceeding 750 lbs. Only equipment necessary for installation and quality assurance testing is allowed on the deployed geomembrane.
  - 2. Personnel working on geomembrane do not damage geomembrane (activities such as smoking or wearing damaging clothing shall not be allowed).
  - 3. Method of deployment does not damage geomembrane.
  - 4. Method of deployment minimizes wrinkles.
  - 5. Temporary loading or anchoring does not damage geomembrane.
  - 6. Direct contact with geomembrane is minimized.
- F. No vehicles shall be allowed on deployed geomembrane under any circumstances.

# 3.04 FIELD SEAMS

- A. Seam Layout
  - 1. In general, seams shall be oriented parallel to the line of the maximum slope. In corners and at other odd-shaped geometric intersections, number of seams should be minimized. If at all possible, seams shall not be located at low points in the subgrade unless geometry requires seaming to be done at these locations.
  - 2. A seam numbering system compatible with the panel numbering system shall be agreed upon at the Pre-Construction Meeting.
- B. Seaming Processes/Equipment
  - 1. Approved processes for field seaming (panel to panel) are extrusion or hot wedge fusion-type seam methods. No other processes can be used without prior written authorization from the Geosynthetic Quality Assurance Consultant. Only equipment which has been specifically approved by make and model shall be used, if applicable.
  - 2. The Geomembrane Installer will meet following requirements regarding use, availability, and cleaning of welding equipment at job site:

- a. Intersecting hot wedge seams shall be patched using extrusion welding process.
- b. Electric generator for equipment shall be placed on a smooth base such that no damage occurs to geomembrane. A smooth insulating plate or fabric shall be placed beneath hot equipment after usage.
- 3. The Geomembrane Installer shall keep records for performance and testing of all seams.
- C. Seaming Requirements/Procedures
  - 1. Weather Conditions Range of weather conditions under which geomembrane seaming can be performed are as follows:
    - a. Unless otherwise authorized in writing by Geosynthetic Quality Assurance Consultant, no seaming shall be attempted or performed at an ambient temperature below 41 degrees F (5 degrees C) or above 104 degrees F (40 degrees C).
    - b. Between ambient temperatures of 32 degrees F (0 degrees C) and 41 degrees F (5 degrees C), seaming shall be performed only if geomembrane is preheated by either sun or a hot air device, provided there is no excessive ambient cooling resulting from high winds. Prequalification seams shall be produced under identical conditions.
    - c. Above 41 degrees F (5 degrees C), no preheating of geomembrane will be required.
    - d. Geomembrane shall be dry and protected from wind.
    - e. Seaming shall not be performed during any precipitation event.
    - f. Seaming shall not be performed in areas where ponded water has collected below surface of geomembrane.
  - 2. If the Geomembrane Installer chooses to use methods which may allow seaming at ambient temperatures below 41 degrees F or above 104 degrees F, the Geomembrane Installer shall demonstrate and submit certification to Geosynthetic Quality Assurance Consultant that methods and techniques used to perform seaming produce seams that are equivalent to seams produced at temperatures above 41 degrees F and below 104 degrees F. The Geosynthetic Quality Assurance Consultant may deny approval for use of the proposed technique regardless of demonstration results.
  - 3. Overlapping Geomembrane panels shall have finished overlap as follows:
    - a. Minimum of 6 inches for thermal fusion welding.
    - b. Insufficient overlap will be considered a failed seam.

- 4. Pre-qualification tests for geomembrane fusion welding shall be conducted by a minimum of 2 pre-qualification seams conducted per day per welding machine by each seaming technician performing welding with that machine. At least one test shall be performed at the start of each work day, with tests at intervals of no greater than 5 hours and additional pre-qualification tests following work interruptions, weather changes, changes to machine settings, or as directed by the Geosynthetic Quality Assurance Consultant. Pre-qualification seams shall be made under the same conditions as the actual seams.
  - a. Pre-qualification seam samples shall be 5 feet long by 1-foot wide (minimum) after seaming, with seam centered along its length. Each pre-qualification seam shall be labeled with the date, geomembrane temperature, seaming unit identifier, seam number or test location, technician performing the test seam and description of testing results.
  - b. Seam overlap shall be in accordance with subsection 3.04(C)(3).
  - c. Pre-qualification seams shall be inspected for proper squeeze-out, footprint pressure, and general appearance.
  - d. Four specimens, each 1-inch in length, shall be cut from opposite ends of the pre-qualification seam sample by the Geomembrane Installer. The remainder of pre-qualification seam shall be retained by the Geosynthetic Quality Assurance Consultant and may be submitted for laboratory testing.
  - e. The Geomembrane Installer shall complete two shear tests and two peel tests.
  - f. Pre-qualification seams failed by inspection or testing may be retested at request of the Geomembrane Installer. If the second pre-qualification seam fails, then the seaming apparatus or seaming technique shall be disqualified from use until two consecutive, satisfactory pre-qualification seams are obtained.
- 5. Seam Preparation
  - a. Prior to seaming, seam area shall be clean and free of moisture, dust, dirt, debris of any kind, and foreign material.
  - b. Seams shall be aligned so as to minimize number of wrinkles and fishmouths.
- 6. General Seaming Procedures
  - a. Fishmouths or wrinkles at seam overlaps shall be cut along ridge of the wrinkle to achieve a flat overlap. Cut fishmouths or wrinkles shall be repaired, and/or patched in accordance with Part 3.07.
  - b. Seaming shall extend to the outside edge of geomembrane panels including material placed in anchor trenches.

c. For cross seams, the intersecting thermal fusion seams shall be patched using the extrusion welding process.

# 3.05 NON-DESTRUCTIVE TESTING

- A. Each field seam shall be non-destructively tested over its entire length by the Installer. Testing shall be conducted as field seaming progresses, not at completion of all seams, unless specifically agreed to by the Geosynthetic Quality Assurance Consultant in writing.
- B. Vacuum Testing shall be performed in accordance with ASTM D5641, Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber.
- C. Air Pressure Testing shall be performed in accordance with ASTM D5820, Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes, and GRI GM 6, Pressurized Air Channel Test for Dual Seamed Geomembranes.
- D. Each seam tested non-destructively shall be marked with the date of the test, name of the testing technician, length of the seam, test method and results. The same shall also be recorded by the Geosynthetic Quality Assurance Consultant on the appropriate CQA documentation.
- E. Non-Destructive Seam Test Failures
  - 1. Seams failing non-destructive testing shall be repaired by the Geomembrane Installer according to Part 3.07. Seams shall be non-destructively retested. If the seam defect cannot be located, the entire section of seams affected shall be repaired and retested.

## 3.06 DESTRUCTIVE TESTING

- A. The Owner shall have the option to conduct destructive testing of geomembrane panel seams completed in the field. Destructive seam sampling and testing shall be performed by the Geomembrane Installer under the observation of the Geosynthetic Quality Assurance Consultant.
- B. Sampling Procedure
  - 1. For each sample location, the Geosynthetic Quality Assurance Consultant will:
    - a. Assign a sample number and mark the sample accordingly.
    - b. Record the sample location on the as-built layout drawing.
    - c. By sample number, record reason for collecting sample (e.g., as part of statistical testing program, suspicious seam, retest, etc.).

- d. Record pertinent information, including date, time, seam number, number of seaming unit, and name of seamer, on both the seam sample and CQA documentation.
- 2. Each destructive sample shall be at least 12 inches wide (at least 6 inches on each side of seam) by 54 inches long. Samples will be cut by the Geomembrane Installer into three parts and distributed as follows:
  - a. A 12-inch by 12-inch portion shall be cut and tested in accordance with subsection 3.06(C) by the Geomembrane Installer.
  - b. A 12-inch by 12-inch portion shall be cut and retained by the Geomembrane Installer. The Geomembrane Installer may elect to omit this requirement.
  - c. A 12-inch by 12-inch portion shall be cut and retained by the Geosynthetic Quality Assurance Consultant as an archive sample.
  - A 12-inch by 18-inch portion shall be submitted by the Geosynthetic Quality Assurance Consultant for laboratory testing as described in Part 3.06(D).
- 3. Ten specimens, each 1 inch wide by 12 inches long with seam centered perpendicular to width, shall be collected and field tested by the Geomembrane Installer prior to shipping the sample to the laboratory. If all samples pass field tensiometer test described in Part 3.06(C), then the laboratory sample shall be collected according to procedure described in Part 3.06(B)(2)(d).
- 4. Holes cut into geomembrane resulting from destructive seam sampling shall be immediately repaired by Geomembrane Installer in accordance with repair procedures described in Part 3.07.
- C. Field Test Methods
  - 1. Ten 1-inch-wide samples described above under Part 3.06(B)(3) shall be field tested for peel (5 samples) and shear (5 samples).
  - 2. One end of seam sample shall be field tested for peel and shear at end of each continuous field seam 100 feet long or greater.
  - 3. Testing shall be performed in accordance to with ASTM D6392 using a field tensiometer or equivalent device to qualitatively and quantitatively determine mode of failure.
  - 4. Seam shall be considered passing if failure in both peel and shear meet criteria listed in GRI GM 19, Table 2.

- 5. The procedures specified in Subsection 3.06(D) shall be implemented when sample passes field tensiometer test.
- D. Laboratory Test Methods
  - 1. Laboratory testing of seam samples shall be conducted by the Geosynthetic Quality Asssurance Laboratory under contract with the Geosynthetic Quality Assurance Consultant or Owner. Five specimens shall be tested in shear and five in peel.
  - 2. Laboratory testing shall be conducted in accordance with ASTM D6392.
  - 3. For both seam shear and peel tension tests, an indication will be given for each specimen tested which defines locus of failure.
  - 4. For shear tests, the following values, along with the mean and standard deviation where appropriate, will be reported for each specimen tested:
    - a. Maximum tension in pounds per square inch.
    - b. Elongation at break (up to a tested maximum of 100 percent).
    - c. Locus of failure using ASTM designations.
  - 5. For peel tests, the following values, along with the mean and standard deviation where appropriate, will be reported for each specimen tested:
    - a. Maximum tension in pounds per square inch.
    - b. Seam separation (expressed as percent of original seam area).
    - c. Locus of failure.
  - 4. Retesting of seams due to nonconformance with specifications may be performed at the discretion of the Geosynthetic Quality Assurance Consultant.
- E. Destructive Seam Test Failure
  - 1. Shear and peel test results derived from testing described in Parts 3.06(C) and 3.06(D) shall comply with GRI GM 19, Table 2 for seam to be considered acceptable.
  - 2. The Geomembrane Installer has two options in determining the repair boundary whenever a seam has failed destructive testing:

- a. The seam can be reconstructed between the two previously tested and passed destructive sample locations; or,
- b. The Geomembrane Installer can trace the welding path to an intermediate location at least ten feet from point of failed test in each direction and obtain destructive test samples collected from these locations. If destructive tests on these samples are acceptable, then the seam shall be reconstructed between the intermediate locations. If either sample fails, the process may be repeated until an acceptable seam test has been performed on both sides of the original failed sample. If a passing sample is not realized on one (or both) side of the original failed sample, then seam repair must extend to the end(s) of the seam. Retesting of seams according to this procedure shall utilize the sampling methodology described in Part 3.06(B). The Owner reserves the right to terminate this process, at the discretion of the Geosynthetic Quality Assurance Consultant, after the second retesting. An additional sample taken from the reconstructed zone must pass destructive seam testing, if destructive sample failure(s) causes reconstruction.
- 3. The Geosynthetic Quality Assurance Consultant shall be responsible for documenting all actions taken in repairing seams. The Geomembrane Installer will be responsible for keeping the Geosynthetic Quality Assurance Consultant informed of seaming progress.
- 3. Additional fees for destructive seam test failures shall be assessed to the Contractor and deducted from payment. This fee shall be assessed only if the failing sample is a laboratory sample.

# 3.07 DEFECTS AND REPAIRS

- A. The geomembrane shall be examined by the Geomembrane Installer and the Engineer for defects, holes, blisters, undispersed raw materials, and any signs of contamination by foreign matter. The geomembrane surface shall be swept and/or washed by the Geomembrane Installer if the amount of dust or mud inhibits examination. The Contractor shall provide a water truck, an operator, clean water and hoses as reasonably necessary to assist the Geomembrane Installer in this activity.
- B. Portions of geomembrane exhibiting flaws, or failing a non-destructive or destructive (if conducted) test, shall be repaired or replaced by the Geomembrane Installer. Repair procedures available include:
  - 1. Patching used to repair large holes, tears, undispersed raw materials, contamination by foreign matter, holes resulting from destructive sampling (if conducted), and locations where seam overlap is insufficient;
  - 2. Capping used to repair large lengths of failed seams; and

- 3. Additional Procedures used upon recommendation of the Geomembrane Installer if agreed to by the Engineer.
- C. Patches or caps.
  - 1. Extend patch or cap 6 inches (minimum) beyond the edge of the defect.
  - 2. Round corners of patch and/or cap (suggest 3-inch radius).
  - 3. Repair procedures, equipment, materials, and techniques will be approved by the Geosynthetic Quality Assurance Consultant prior to repair.
  - 4. Geomembrane below large caps shall be appropriately cut to avoid water or gas collection between two sheets.
- D. The Geomembrane Installer shall mark on the geomembrane (using a non-puncturing writing utensil), repair date, time, and personnel involved.
- E. Each repair shall be non-destructively tested in accordance with Part 3.05. Large caps may require destructive test sampling at the discretion of the Geosynthetic Quality Assurance Consultant (in accordance with Part 3.06).
- F. Repairs which fail testing shall be redone and retested until a passing result is obtained. The Geomembrane Installer will perform non-destructive testing or repairs and will document retesting of repairs.
- G. The Geosynthetic Quality Assurance Consultant will document repairs, repair testing, and retesting results.
- H. The Geomembrane Installer shall cut and seam wrinkles which may adversely affect long-term integrity of the geomembrane, hinder subsequent construction of overlying layers, or impede drainage off of the geomembrane after it is covered by soil. Seaming shall be done in accordance with procedures described in Parts 3.04(B) and 3.04(C), and it shall be subject to test provisions of Parts 3.05 (non-destructive testing) and 3.06 (destructive testing if conducted).

# 3.08 PROTRUSIONS AND CONNECTIONS TO GEOMEMBRANE

- A. If required, the Geomembrane Installer shall install geomembrane around utility poles, guy wires, and other structures according to the Contract Drawings and the following requirements:
  - 1. Use minimum 1-ft long membrane pipe boots and steel straps to seal the geomembrane around pole or structure.
  - 2. Use standard welding procedures to seam the membrane boot to the geomembrane.
  - 3. Seaming performed on and around penetrations, and other appurtenances shall be non-destructively tested using the vacuum testing method.

# 3.09 SURVEY DOCUMENTATION

A. The Geomembrane Installer shall survey the completed geomembrane prior to covering and provide the Geosynthetic Quality Assurance Consultant with 24-hour notification of survey. The Contractor shall document the location of all seams (panel corners acceptable), destructive test samples (if conducted) and repairs. The Contractor shall provide survey data to the Geosynthetic Quality Assurance Consultant within one working day of survey completion and in accordance with Section 01050.

# 3.10 DAILY FIELD INSTALLATION REPORTS

- A. At the beginning of each day, the Geomembrane Installer shall provide the Geosynthetic Quality Assurance Consultant with a report for all work completed the previous day.
- B. The Daily Field Installation Report shall include the following:
  - 1. The total amount and location of geomembrane placed.
  - 2. The total length and location of seams completed, technician name and welding unit numbers.
  - 3. A drawing or sketch depicting the geomembrane installed the previous day including the panel number, seam number and locations of non-destructive and destructive testing (if conducted).
  - 4. Results of pre-qualification test seams, if available.
  - 5. Results of non-destructive testing.
- C. Destructive test results (if conducted) shall be reported within 48 hours or prior to covering the geomembrane, whichever is practical.

### 3.10 MATERIAL ABOVE GEOMEMBRANE

- A. The Geosynthetic Quality Assurance Consultant and Geomembrane Installer shall verify the area of geomembrane completion prior to placement of material over the geomembrane.
- B. Soils Requirements for placement of general fill are described in Sections 02221 and 02222. Apply following general criteria for covering of the geomembrane:
  - 1. Do not place soils on the geomembrane at an ambient temperature below 32 degrees F, (0 degrees C) nor above 104 degrees F (40 degrees C), unless otherwise specified.
  - 2. Do not drive equipment used for placing soil directly on the geomembrane.
  - 3. A minimum thickness of 1 foot of soil is specified between a low ground pressure dozer (maximum contact pressure of 5 lb/sq. inch) and the geomembrane.

- 4. A minimum thickness of 2 feet of soil is required between rubber-tired vehicles and the geomembrane.
- 5. Do not compact soils placed directly on geomembrane.
- 6. Damage to the geomembrane resulting from placement of cover soils shall be repaired in accordance with Part 3.07 by the Geomembrane Installer at the Contractor's expense.
- 7. Do not push soil downslope. Soil shall be placed over the geomembrane starting from base of the slope, up to top of the slope.

# **END OF SECTION**

Attachment 1-3 – Pond 2 Liner Repair Specifications

# Final Cleaning of Joliet Pond 2 (CCR Clean Closure of Pond 2) PHASE 2 Scope-of-Work Performance Testing Requirements Attachment 1

The performance tests for the repairs of the liner in Pond 2 shall be conducted in accordance with Section 3.05 Field Quality Control located in the Guidelines for Installation of HDPE Geomembrane Installation created by the International Association of Geosynthetic Installers, revised November 1, 2015. The pertinent sections from that document for performance testing are provided below and shall be followed to verify the repair installations.

- A. Field Seam Non-destructive Testing
- 1. All field seams shall be non-destructively tested by the Geomembrane Installer over the full seam length before the seams are covered. Each seam shall be numbered or otherwise designated. The location, date, test unit, name of tester and outcome of all non-destructive testing shall be recorded and submitted to the Owner's Representative.
- 2. Testing should be done as the seaming work progresses, not at the completion of all field seaming, unless agreed to in advance by the Owner's Representative. All defects found during testing shall be numbered and marked immediately after detection. All defects found should be repaired, retested and remarked to indicate acceptable completion of the repair.
- 3. Non-destructive testing shall be performed using vacuum box, air pressure or spark testing equipment.
- 4. Non-destructive tests shall be performed by experienced technicians familiar with the specified test methods. The Geomembrane Installer shall demonstrate to the Owner's Representative all test methods to verify the test procedures are valid.
- 5. Extrusion seams shall be vacuum box tested by the Geomembrane Installer in accordance with ASTM D 4437 and ASTM D 5641 with the following equipment and procedures:
  - a. Equipment for testing extrusion seams shall be comprised of but not limited to: a vacuum box assembly consisting of a rigid housing, a transparent viewing window, a soft rubber gasket attached to the base, port hole or valve assembly and a vacuum gauge; a vacuum pump assembly equipped with a pressure controller and pipe connections; a rubber pressure/vacuum hose with fittings and connections; a plastic bucket; wide paint brush or mop; and a soapy solution.
  - b. The vacuum pump shall be charged and the tank pressure adjusted to approximately 35 kPa (5 psig). c. The Geomembrane Installer shall create a leak tight seal between the gasket and geomembrane interface by wetting a strip of geomembrane approximately 0.3m (12 in) by 1.2m (48 in) (length and width of box) with a soapy solution, placing the box over the wetted area, and then compressing the box against the geomembrane. The Geomembrane Installer shall then close the bleed valve, open the vacuum valve, maintain initial pressure of approximately 35 kPa (5 psig) for approximately five (5) seconds. The geomembrane should be continuously examined through the viewing window for the presence of soap bubbles, indicating a leak. If no bubbles appear after five (5) seconds, the area shall be considered leak free. The box shall be depressurized and moved over the next adjoining area with an appropriate overlap and the process repeated.
  - d. All areas where soap bubbles appear shall be marked, repaired and then retested.
  - e. At locations where seams cannot be nondestructively tested, such as pipe penetrations, alternate nondestructive spark testing (as outlined in section B below) or equivalent should be substituted.

# Final Cleaning of Joliet Pond 2 (CCR Clean Closure of Pond 2) PHASE 2 Scope-of-Work Performance Testing Requirements Attachment 1

- f. All seams that are vacuum tested shall be marked with the date tested, the name of the technician performing the test and the results of the test
- 6. Double Fusion seams with an enclosed channel shall be air pressure tested by the Geomembrane Installer in accordance with ASTM D 5820 and ASTM D 4437 and the following equipment and procedures:
  - a. Equipment for testing double fusion seams shall be comprised of but not limited to: an air pump equipped with a pressure gauge capable of generating and sustaining a pressure of 210 kPa (30 psig), mounted on a cushion to protect the geomembrane; and a manometer equipped with a sharp hollow needle or other approved pressure feed device.
  - b. The testing activities shall be performed by the Geomembrane Installer. Both ends of the seam to be tested shall be sealed and a needle or other approved pressure feed device inserted into the tunnel created by the double wedge fusion weld. The air pump shall be adjusted to a pressure of 210 kPa (30 psig), and the valve closed. Allow two (2) minutes for the injected air to come to equilibrium in the channel, and sustain pressure for five (5) minutes. If pressure loss does not exceed 28 kPa (4 psig) after this five minute period the seam shall be considered leak tight. Release pressure from the opposite end verifying pressure drop on needle to ensure testing of the entire seam. The needle or other approved pressure feed device shall be removed and the feed hole sealed.
  - c. If loss of pressure exceeds 28 kPa (4 psig) during the testing period or pressure does not stabilize, the faulty area shall be located, repaired and retested by the Geomembrane Installer.
  - d. Results of the pressure testing shall be recorded on the liner at the seam tested and on a pressure testing record.
- B. Spark testing should be done in areas where both air pressure testing and vacuum testing are not possible.
  - 1. Equipment for spark testing shall be comprised of but not limited to a hand held holiday spark tester and conductive wand that generates a high voltage.
  - 2. The testing activities shall be performed by the Geomembrane Installer by placing an electrically conductive tape or wire beneath the seam prior to welding. A trial seam containing a non-welded segment shall be subject to a calibration test to ensure that such a defect (nonwelded segment) will be identified under the planned machine settings and procedures. Upon completion of the weld, enable the spark tester and hold approximately 25mm (1 in) above the weld moving slowly over the entire length of the weld in accordance with ASTM 6365. If there is no spark the weld is considered to be leak free.
  - 3. A spark indicates a hole in the seam. The faulty area shall be located, repaired and retested by the Geomembrane Installer.
  - 4. Care should be taken if flammable gases are present in the area to be tested.

# ATTACHMENT 2 CCR CHEMICAL CONSTITUENTS ANALYSIS

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

# Laboratory Job ID: 500-204544-1

Client Project/Site: Joliet #29 Ash

# For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 9/15/2021 5:41:59 PM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	7
QC Association	8
QC Sample Results	10
Chain of Custody	14
Receipt Checklists	15
Certification Summary	16

# Job ID: 500-204544-1

### Laboratory: Eurofins TestAmerica, Chicago

#### Narrative

Job Narrative 500-204544-1

**Case Narrative** 

### Comments

No additional comments.

### Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **General Chemistry**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

# **Method Summary**

### Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-1

lethod	Method Description	Protocol	Laboratory
010B	Metals (ICP)	SW846	TAL CHI
471A	Mercury (CVAA)	SW846	TAL CHI
056A	Anions, Ion Chromatography	SW846	TAL CHI
loisture	Percent Moisture	EPA	TAL CHI
M 4500 CI- E	Chloride, Total	SM	TAL CHI
M 4500 F C	Fluoride	SM	TAL CHI
0_Prep	Anions, Ion Chromatography, 10% Wt/Vol	MCAWW	TAL CHI
050B	Preparation, Metals	SW846	TAL CHI
471A	Preparation, Mercury	SW846	TAL CHI

### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

# Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash Job ID: 500-204544-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

# Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

Job	ID:	500-204544-1
000	ıю.	000 204044 1

# Lab Sample ID: 500-204544-1 Matrix: Solid

Solid

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<1.8	F1	1.8		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Arsenic	1.5	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Barium	3000		4.4		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Beryllium	1.5	F1	0.35		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Boron	130	F1 V	4.4		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cadmium	<0.18		0.18		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Calcium	100000		89		mg/Kg		09/10/21 08:41	09/13/21 21:10	5
Chromium	12	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Cobalt	15		11		mg/Kg		09/10/21 08:41	09/14/21 10:57	25
Lead	5.6		0.44		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Lithium	20	V	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Molybdenum	1.1	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Selenium	<0.89	F1	0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Thallium	2.9		0.89		mg/Kg		09/10/21 08:41	09/12/21 15:18	1
Method: 7471A - Mercury (CVAA	)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.016		0.016		mg/Kg		09/09/21 13:15	09/10/21 09:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	560		19		mg/Kg		09/14/21 11:45	09/14/21 17:58	10
Chloride	<20		20		mg/Kg		09/15/21 09:49	09/15/21 15:04	1
Fluoride	<1.0		1.0		mg/Kg		09/15/21 09:49	09/15/21 12:47	1

# 1 2 3 4 5 6 7 8 9 10 11 12

# Qualifiers

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is < the upper reporting limits for both.
V	Serial Dilution exceeds the control limits

# Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 500-204544-1

### Metals

#### Prep Batch: 617888

Lab Sample ID	Client Sample ID	Prep Type Matrix	Method	Prep Batch	
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	
Prep Batch: 618052					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	3050B	
MB 500-618052/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	3050B	
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	3050B	
Analysis Batch: 6180	070				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	7471A	617888
MB 500-617888/12-A	Method Blank	Total/NA	Solid	7471A	617888
LCS 500-617888/13-A	Lab Control Sample	Total/NA	Solid	7471A	617888
Analysis Batch: 6182	247				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
MB 500-618052/1-A	Method Blank	Total/NA	Solid	6010B	618052
LCS 500-618052/2-A	Lab Control Sample	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 6184	479				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
Analysis Batch: 618	576				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MS	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 MSD	Jolet #29 Ash	Total/NA	Solid	6010B	618052
500-204544-1 DU	Jolet #29 Ash	Total/NA	Solid	6010B	618052
General Chemist	ry				
Analysis Batch: 6173	356				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	Moisture	
Prep Batch: 618524					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
		гіер іуре	Watin	Method	i iep Dateii

Eurofins TestAmerica, Chicago

#### **General Chemistry (Continued)**

#### Prep Batch: 618524 (Continued)

LCS 500-618692/2-A

Lab Control Sample

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch		
MB 500-618524/1-A	Method Blank	Total/NA	Solid	300_Prep			
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	300_Prep			
Analysis Batch: 618	534						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
500-204544-1	Jolet #29 Ash	Total/NA	Solid	9056A	618524		
MB 500-618524/1-A	Method Blank	Total/NA	Solid	9056A	618524		
LCS 500-618524/2-A	Lab Control Sample	Total/NA	Solid	9056A	618524		
Prep Batch: 618692							
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
500-204544-1	Jolet #29 Ash	Total/NA	Solid	300_Prep			
MB 500-618692/1-A	Method Blank	Total/NA	Solid	300_Prep			
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	300_Prep			
Analysis Batch: 618	739						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 F C	618692		
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 F C	618692		
LCS 500-618692/2-A	Lab Control Sample	Total/NA	Solid	SM 4500 F C	618692		
Analysis Batch: 618	775						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
500-204544-1	Jolet #29 Ash	Total/NA	Solid	SM 4500 CI- E	618692		
MB 500-618692/1-A	Method Blank	Total/NA	Solid	SM 4500 CI- E	618692		

Total/NA

Solid

SM 4500 CI- E

**QC Association Summary** 

618692

#### Method: 6010B - Metals (ICP)

#### Lab Sample ID: MB 500-618052/1-A Matrix: Solid Analysis Batch: 618247

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	<2.0		2.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Arsenic	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Barium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Beryllium	<0.40		0.40		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Boron	<5.0		5.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Cadmium	<0.20		0.20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Calcium	<20		20		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Chromium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Cobalt	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Lead	<0.50		0.50		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Lithium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Molybdenum	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Selenium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	
Thallium	<1.0		1.0		mg/Kg		09/10/21 08:41	09/12/21 15:12	1	

#### Lab Sample ID: LCS 500-618052/2-A Matrix: Solid Analysis Batch: 618247

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	49.5		mg/Kg		99	80 - 120
Arsenic	10.0	9.09		mg/Kg		91	80 - 120
Barium	200	196		mg/Kg		98	80 - 120
Beryllium	5.00	4.54		mg/Kg		91	80 - 120
Boron	100	83.6		mg/Kg		84	80 - 120
Cadmium	5.00	4.69		mg/Kg		94	80 - 120
Calcium	1000	912		mg/Kg		91	80 - 120
Chromium	20.0	18.3		mg/Kg		91	80 - 120
Cobalt	50.0	46.6		mg/Kg		93	80 - 120
Lead	10.0	9.03		mg/Kg		90	80 - 120
Lithium	50.0	53.2		mg/Kg		106	80 - 120
Molybdenum	100	99.6		mg/Kg		100	80 - 120
Selenium	10.0	8.61		mg/Kg		86	80 - 120
Thallium	10.0	8.77		mg/Kg		88	80 - 120

#### Lab Sample ID: 500-204544-1 MS Matrix: Solid Analysis Batch: 618247

Client Sample	ID: J	Jolet #	<b>29 Ash</b>
Pr	ep Ty	ype: T	otal/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 618052

Analysis Batch: 618247									Prep Batch: 618052
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<1.8	F1	49.6	6.04	F1	mg/Kg		12	75 - 125
Arsenic	1.5	F1	9.92	9.59		mg/Kg		81	75 - 125
Beryllium	1.5	F1	4.96	5.09	F1	mg/Kg		72	75 - 125
Boron	130	F1 V	99.2	178	F1	mg/Kg		50	75 - 125
Cadmium	<0.18		4.96	3.82		mg/Kg		75	75 - 125
Chromium	12	F1	19.8	24.8	F1	mg/Kg		67	75 - 125
Lead	5.6		9.92	16.2		mg/Kg		107	75 - 125
Lithium	20	V	49.6	62.1		mg/Kg		85	75 - 125
Molybdenum	1.1	F1	99.2	68.4	F1	mg/Kg		68	75 - 125

Eurofins TestAmerica, Chicago

### Job ID: 500-204544-1

Prep Type: Total/NA

Prep Batch: 618052

**Client Sample ID: Method Blank** 

#### Page 10 of 16

Lab Sample ID: 500-204544-1 MS

Analysis Batch: 618247

Matrix: Solid

Analyte

Cobalt

Boron

Lead

Selenium

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

<0.89 F1

**Result Qualifier** 

Spike

Added

9.92

MS MS

6.39 F1

**Result Qualifier** 

Unit

mg/Kg

D

%Rec

64

Prep Type: Total/NA

**Prep Batch: 618052** 

Client Sample ID: Jolet #29 Ash

%Rec.

Limits

75 - 125

5

Thallium 2.9 9.92 10.9 mg/Kg 80 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Analysis Batch: 618479 Prep Batch: 618052 Sample Sample Spike MS MS %Rec. **Result Qualifier** Added **Result Qualifier** Limits Analyte Unit D %Rec Barium 3000 198 2980 4 11 75 - 125 mg/Kg 100000 992 97600 4 Calcium mg/Kg -533 75 - 125 Lab Sample ID: 500-204544-1 MS Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618576 Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits 75 - 125 15 49.6 67.5 mg/Kg 105 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid **Prep Type: Total/NA** Prep Batch: 618052 Analysis Batch: 618247 MSD MSD Sample Sample Spike %Rec. RPD **Result Qualifier** Added **Result Qualifier** Unit %Rec Limits RPD Limit Analyte D Antimony <1.8 F1 45.0 4.97 F1 11 75 - 125 19 20 mg/Kg 9.01 74 75 - 125 20 Arsenic 1.5 F1 821 F1 mg/Kg 16 Beryllium 1.5 F1 4.50 4.74 F1 mg/Kg 72 75 - 125 7 20 130 F1 V 90.1 183 F1 mg/Kg 61 75 - 125 3 20 77 Cadmium <0.18 4.50 3.56 mg/Kg 75 - 125 7 20 Chromium 12 F1 18.0 23.7 F1 67 75 - 125 20 mg/Kg 4 5.6 9.01 14.4 mg/Kg 98 75 - 125 12 20 Lithium 20 V 45.0 57.0 mg/Kg 82 75 - 125 9 20 mg/Kg 65 1.1 F1 90.1 59.6 F1 75 - 125 14 20 Molybdenum 9.01 Selenium <0.89 F1 5.78 F1 mg/Kg 64 75 - 125 10 20 Thallium 9.01 10.6 85 75 - 125 20 2.9 mg/Kg 3 Lab Sample ID: 500-204544-1 MSD Client Sample ID: Jolet #29 Ash Matrix: Solid Prep Type: Total/NA Prep Batch: 618052 Analysis Batch: 618479 Sample Sample Spike MSD MSD %Rec. RPD **Result Qualifier** Added **Result Qualifier** %Rec Limits RPD Limit Analyte Unit D 3000 180 3090 4 Barium mg/Kg 74 75 - 125 4 20 Calcium 100000 901 104000 4 mg/Kg 99 75 - 125 6 20

ſ	Lab Sample ID: 500-204544	-1 MSD						Clie	ent San	n <mark>ple ID:</mark> Jo	olet #29	) Ash
	Matrix: Solid									Prep Ty	pe: Tot	al/NA
	Analysis Batch: 618576									Prep Ba	atch: 61	8052
	-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Cobalt	15		45.0	58.0		mg/Kg		95	75 - 125	15	20

### Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	9 Asl
Matrix: Solid							Prep Type: Tot	tal/N/
Analysis Batch: 618247							Prep Batch: 6	
	Sample	Sample	DU	DU				RPI
Analyte	•	Qualifier	Result	Qualifier	Unit	D	RPD	Lim
Antimony	<1.8	F1	<1.8		mg/Kg		NC	2
Arsenic	1.5	F1	2.20	F5	mg/Kg		36	2
Beryllium	1.5	F1	1.48		mg/Kg		2	2
Boron	130	F1 V	118		mg/Kg		9	2
Cadmium	<0.18		0.195		mg/Kg		NC	2
Chromium	12	F1	11.3		mg/Kg		2	2
Lead	5.6		5.71		mg/Kg		2	2
Lithium	20	V	19.9		mg/Kg		0	2
Molybdenum	1.1		1.20		mg/Kg		8	2
Selenium	<0.89		<0.90		mg/Kg		NC	2
Thallium	2.9		1.94	F3	mg/Kg		41	2
Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	9 As
Matrix: Solid							Prep Type: Tot	
Analysis Batch: 618479							Prep Batch: 6	
Analysis Baten. 010470	Sample	Sample	ווס	DU			Thep Bateri. U	RP
Analyte	•	Qualifier		Qualifier	Unit	D	RPD	Lim
Barium	3000		2840	duamer	mg/Kg		<u> </u>	2
Calcium	100000		104000		mg/Kg		1	2
Lab Sample ID: 500-204544	-1 DU					Client Sam	ole ID: Jolet #2	۹ ۵۹
Matrix: Solid	-100					onent oann	Prep Type: Tot	
Analysis Batch: 618576							Prep Batch: 6	
Analysis Datch. 010570	Samplo	Sample	ווס	DU			Fiep Datch. 0	RP
Analyte	•	Qualifier		Qualifier	Unit	D	RPD	Lim
Cobalt	15		13.9	Quaimer	mg/Kg		10 <b>KFD</b>	2
lethod: 7471A - Mercur		)						
		/				01111110		
Lab Sample ID: MB 500-617	888/12-A						ole ID: Method	
Matrix: Solid							Prep Type: Tot	
Analysis Batch: 618070							Prep Batch: 6	1788
		MB MB						
Analyte		sult Qualifier		MDL Unit				Dil Fa
Mercury	<0	.017	0.017	mg/K	g	09/09/21 13:15	09/10/21 08:27	
Lab Sample ID: LCS 500-61	7888/13-A				Clier	nt Sample ID:	Lab Control Sa	
Matrix: Solid							Prep Type: Tot	tal/N
Analysis Batch: 618070							Prep Batch: 6	

Analysis Batch: 618070								tch: 61788
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.167	0.179		mg/Kg		107	80 - 120	

_ ____

Eurofins TestAmerica, Chicago

Job ID: 500-204544-1

#### Method: 9056A - Anions, Ion Chromatography Lab Sample ID: MB 500-618524/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618534 Prep Batch: 618524 MB MB **Result Qualifier** RL MDL Unit Analyzed Dil Fac Analyte D Prepared 2.0 09/14/21 11:45 09/14/21 12:53 Sulfate <2.0 mg/Kg Lab Sample ID: LCS 500-618524/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Prep Batch: 618524 Analysis Batch: 618534 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Sulfate 50.0 53.9 80 - 120 mg/Kg 108 Method: SM 4500 CI- E - Chloride, Total Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618775 Prep Batch: 618692 MB MB Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared 09/15/21 09:49 09/15/21 15:03 Chloride <20 20 mg/Kg 1 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618775 **Prep Batch: 618692** Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits Chloride 200 202 mg/Kg 101 85 - 115 Method: SM 4500 F C - Fluoride Lab Sample ID: MB 500-618692/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Fluoride <1.0 1.0 mg/Kg 09/15/21 09:49 09/15/21 12:27 Lab Sample ID: LCS 500-618692/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 618739 **Prep Batch: 618692** Spike LCS LCS %Rec.

#### Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

**Client Information** Clent Contact Richard Gnat

$\mathbf{H}$	N	$\forall$	1	Ą	SA4-
`J	$\ \mathbf{N}\ $	$\nabla$		 V	V V V

Carrier Track ng No(s)

State of Origin

COC № 500-94568-41920 1

Page

Page 1 of 1

10

Company		8.7 <u>7.594</u> 11111111111	PWSID	100 cmm, 100 cmm, 100 cmm, 110 cmm, 11	Т						-		- 4				الاليبية معتمد		Job # ton 1	04544
KPRG and Associates Inc			L							Anal	iysis	Req	uest	ed						
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ea				I I													Preservation Cod	
	TAT Requested (d	avs)			1														A HCL B NaOH	M Hexane N None
City Brookfield		• •				11								ь.		I			C Zn Acetate	O AsNaO2
State Zip	1								ш П		ĺ			B					D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3
WI 53005	Compliance Project	ct 🛆 Yes	∆ No	· · · · · · · · · · · · · · · · · · ·				5122	8					10					F MeOH	R Na2S2O3
Phone	PO# 4502042860				6		l	od 226	SM4500_CI				l						G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydrate
Email richardg@kprginc.com	WO #				or N	ş			9056A S			I	500	-2048	544 C	-		ø	I Ice J DI Water	U Acetone V MCAA
Project Name	Project #				(Yes	5	1	nbic				1						containers	K EDTA L EDA	W pH 4-5 Z other (specify)
Joliet #9 Ash	50011504					8		Š	41						ł	1		12		Z other (specify)
Site	SSOW#				Sampl			υ	6010B, 7471A										Other [.]	
Illinois					8	IS I		GFPC	B									ō		
			Sample	Matrix	Leo	WSN	0	ສ່	5									ĝ		
	ļ		Туре	(W=water	litte	Ξ	904.0	Ra226Ra228	0									Total Number		
		Sample	(C=Comp,	S=solid, O=waste/oil,	ЫF	ē.	0	26F	4500_F_C									a l		
Sample Identification	Sample Date	Time	G=grab)	BT-Tissue, A-Air	Field	Perform	903.0	Raž	450						1			ē	Special Ins	structions/Note
	$\sim$	$\sim$	Preserva	ation Code	X			NI	N									X		
EL LHGAL	mlac	0.0	$\overline{\mathbf{C}}$	Solid	P	۲Ť,		1	1		+					-		$\sim$		
Jolice HIAsh		9:30				$\vdash$	<u>X</u> Į,	$X_{\ell}$	싞								+			
Joliet #9 Ash Joliek #29 Ash	8/31	(0',00	C	Solid			겍	X	8									ļ		
				Solid																
					$\uparrow$		1							1	+					
	· · · · · · · · · · · · · · · · · · ·		1		$\uparrow$		$\uparrow$	-							$\top$					
									-+					+	+	+			<u></u>	
					+	┨╌┼╴	-+		-+		+		-+-	-+-	-+-	+	┼╌┼			••••••••••••••••••••••••••••••••••••••
					+	┟┼	-+	-+		-+-	+						+			
			<u> </u>	<u> </u>	+	$\vdash$	-+	-+			+-			+	+	+	┥┥	1		
Possible Hazard Identification	]		l			Sam	ole l	Disp	osal	( A fee	may	be as	sess	ed if	sami	oles a	re ret	aine	d longer than 1	month)
Non-Hazard Flammable Skin Irritant Pois	on B Unkno		Radiological	1				turn			[		sposa		-				e For	Months
Deliverable Requested 1 II III IV Other (specify)						Spec	cial Ir	nstru	ction	s/QC R	Require	ement	s							
Empty Kit Relinquished by	1	Date	<u>,</u>		Tir	me							М	ethod		pment				
Relinquished by Michael Ress	Date/Time/31	13:	30	Company KPRC		R	Receiv	ved by	han	nel	tem	10m	d	M	Da	te/Time	813	112	1 1300	ETA-CH
Rel nquished by	Date/Time			Company		R	Receiv	ved by	/					Ũ	Da	te/Time			<u></u>	Company
Reinquished by	Date/Time			Company		R	Receiv	ved by	1	·					Da	te/Time				Company
Custody Seals Intact Custody Seal No				1		С	Cooler	r Temp	peratu	re(s) °C	and Oth	her Rer	narks							1
A Yes A No										• •				- 72	24	t				

**Chain of Custody Record** 

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sample Michael Ress

Phone

630-203-7240

Client: KPRG and Associates, Inc.

#### Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-204544-1

List Source: Eurofins TestAmerica, Chicago

5 6 7

12

#### Laboratory: Eurofins TestAmerica, Chicago Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number** Expiration Date Illinois NELAP IL00035 04-29-22 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 7471A 7471A Solid Mercury Percent Moisture Moisture Solid Moisture Solid Percent Solids

Eurofins TestAmerica, Chicago

# 🛟 eurofins

## Environment Testing America

## **ANALYTICAL REPORT**

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

### Laboratory Job ID: 500-204544-2

Client Project/Site: Joliet #29 Ash

### For:

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

Attn: Richard Gnat

Jeana Mockler

Authorized for release by: 10/26/2021 8:28:20 AM

Diana Mockler, Project Manager I (219)252-7570 Diana.Mockler@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env

..... Links

Review your project results through

**Total** Access

Have a Question?

## **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	
Definitions	7
QC Association	8
QC Sample Results	9
Chain of Custody	10
Receipt Checklists	12
Certification Summary	14
Tracer Carrier Summary	15

#### Job ID: 500-204544-2

#### Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-204544-2

**Case Narrative** 

#### Comments

No additional comments.

#### Receipt

The sample was received on 8/31/2021 1:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 22.4° C.

#### RAD

Methods 903.0, 9315: Radium 226 prep batch 160-527617

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Jolet #29 Ash (500-204544-1), (LCS 160-527617/2-A), (MB 160-527617/1-A), (500-204327-A-20-D) and (500-204327-A-20-E DU)

Method 904.0: Radium-228 prep batch 160-528400:

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. Jolet #29 Ash (500-204544-1), (LCS 160-528400/2-A), (MB 160-528400/1-A), (500-204543-A-1-C) and (500-204543-A-1-D DU)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

Methods 6010B, NONE: The following sample was diluted to bring the concentration of target analytes within the calibration range: Jolet #29 Ash (500-204544-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### **Method Summary**

#### Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
DPS-0	Preparation, Digestion/ Precipitate	None	TAL SL
DPS-21	Preparation, Digestion/Precipitate Separation (21-Day In-Growth)	None	TAL SL

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

#### Laboratory References:

TAL SL = Eurofins TestAmerica, St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

### Sample Summary

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-204544-1	Jolet #29 Ash	Solid	08/31/21 10:00	08/31/21 13:00

_

#### Job ID: 500-204544-2

Lab Sample ID: 500-204544-1 Matrix: Solid

5

6

#### Client Sample ID: Jolet #29 Ash Date Collected: 08/31/21 10:00 Date Received: 08/31/21 13:00

Method: 903.0 -	Radium-226	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.54		0.311	0.341	1.00	0.252	pCi/g	09/19/21 19:06	10/15/21 17:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Bo Corrier			40 - 110					09/19/21 19:06	10/15/21 17:11	1
Ba Carrier Method: 904.0 -		(GFPC)	40 - 110					09/19/21 19:00	10/13/21 11.11	I
-		(GFPC)	Count	Total				09/19/21 19:00	10/10/21 11.11	1
		(GFPC)		Total Uncert.				09/19/21 19:00	10/10/21 11.11	1
Method: 904.0 -	Radium-228	(GFPC) Qualifier	Count		RL	MDC	Unit	Prepared	Analyzed	, Dil Fac
Method: 904.0 -	Radium-228		Count Uncert.	Uncert.	<b>RL</b> 1.00	<b>MDC</b> 0.443				Dil Fac
Method: 904.0 -	Radium-228	Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)				Prepared	Analyzed	Dil Fac 1 Dil Fac
Method: 904.0 - Analyte Radium-228	Radium-228	Qualifier	Count Uncert. (2σ+/-) 0.377	Uncert. (2σ+/-)				Prepared 09/22/21 16:04	Analyzed 10/06/21 12:36	1

#### Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 <b>σ+/-</b> )	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.17		0.489	0.530	5.00	0.443	pCi/g		10/25/21 17:38	1

Eurofins TestAmerica, Chicago

**Qualifier Description** 

### Qualifiers

Rad	

C	Qual	ifier

U	Result is less than the sample detection limit.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ο
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Method Blank

Lab Control Sample

### **QC Association Summary**

Job ID: 500-204544-2

### Rad

#### Prep Batch: 527617

MB 160-528400/1-A

LCS 160-528400/2-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	DPS-21	
MB 160-527617/1-A	Method Blank	Total/NA	Solid	DPS-21	
LCS 160-527617/2-A	Lab Control Sample	Total/NA	Solid	DPS-21	
Prep Batch: 528400					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-204544-1	Jolet #29 Ash	Total/NA	Solid	DPS-0	

Total/NA

Total/NA

Solid

Solid

DPS-0

DPS-0

### **QC Sample Results**

Job ID: 500-204544-2

### Method: 903.0 - Radium-226 (GFPC)

Lab Sample Matrix: Solid		00-52/6	1771 <b>-A</b>						CIIE		le ID: Methoo Prep Type: T	
Analysis Ba		22									Prep Batch:	
	ICH. 5513			Count	Total						Thep Daten.	52701
		МВ	MB	Uncert.	Uncert.							
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	р.	repared	Analyzed	Dil Fa
Radium-226		0.1252		0.144	0.144	1.00	0.234			9/21 19:06	10/15/21 17:14	
Raulum-220		0.1252	0	0.144	0.144	1.00	0.234	pci/g	09/1	9/21 19.00	10/15/21 17.14	
		MB	MB									
Carrier		%Yield	Qualifier	Limits					Pi	repared	Analyzed	Dil Fa
Ba Carrier		80.9		40 - 110					09/1	9/21 19:06	10/15/21 17:14	
Lab Sample Matrix: Solid		160-527	617/2-A					Clie	ent Sar		Lab Control S Prep Type: T	
Analysis Ba		22									Prep Batch:	
niaiysis Da						Total					i iep batell.	52101
			Spike	1.05	LCS	Uncert.					%Rec.	
Analyte			Added	Result		(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226			11.3	12.04		1.37	1.00	0.272		106	75 - 125	
			11.0	12.04		1.07	1.00	0.272	polig	100	10-120	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits	_								
			40 - 110									
lethod: 90 Lab Sample	ID: MB 1		228 (GFPC	<b>;</b> )					Clie		ole ID: Methoo Prep Type: T	
lethod: 90 Lab Sample Matrix: Solic	4.0 - Ra ID: MB 1	60-5284	228 (GFPC		T-44				Clie		ole ID: Method Prep Type: T Prep Batch:	otal/N/
lethod: 90 Lab Sample Matrix: Solic	4.0 - Ra ID: MB 1	60-5284 53	228 (GFPC 00/1-A	Count	Total				Clie		Prep Type: To	otal/N/
lethod: 90 Lab Sample Matrix: Solic Analysis Ba	4.0 - Ra ID: MB 1	60-5284 53 МВ	228 (GFPC 00/1-A MB	Count Uncert.	Uncert.		MDC	Unit			Prep Type: T Prep Batch:	otal/N/ 52840
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte	4.0 - Ra ID: MB 1	60-5284 53 MB Result	228 (GFPC 00/1-A MB Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)		MDC		Pi	repared	Prep Type: To Prep Batch: 	otal/N/ 52840 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697	228 (GFPC 00/1-A MB Qualifier U	Count Uncert.	Uncert.	<b>RL</b> 1.00		Unit pCi/g	Pi		Prep Type: To Prep Batch: 	otal/N/ 52840 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i>	MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277	Uncert. (2σ+/-)				<b>Pr</b> 09/23	<b>repared</b> 2/21 16:04	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35	otal/N/ 528400 Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield	228 (GFPC 00/1-A MB Qualifier U	Count Uncert. (2σ+/-) 0.277 Limits	Uncert. (2σ+/-)				Pr 09/23	repared 2/21 16:04 repared	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35 Analyzed	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5	MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)					repared 2/21 16:04 repared 2/21 16:04	Analyzed           10/06/21 12:35           Analyzed           10/06/21 12:35	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier	4.0 - Ra ID: MB 1	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield	MB Qualifier U MB	Count Uncert. (2σ+/-) 0.277 Limits	Uncert. (2σ+/-)					repared 2/21 16:04 repared 2/21 16:04	Prep Type: To Prep Batch: Analyzed 10/06/21 12:35 Analyzed	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04	Analyzed           10/06/21 12:35           Analyzed           10/06/21 12:35	Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 <i>MB</i> %Yield 87.5 80.0	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Analyzed           10/06/21 12:35           Analyzed           10/06/21 12:35           10/06/21 12:35	otal/N/ 52840 Dil Fa Dil Fa
Iethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control \$	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110	Uncert. (2σ+/-)			pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-)	1.00		pCi/g	Pr 09/23 Pr 09/2 09/2	repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Y Carrier Lab Sample Matrix: Solid Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00		pCi/g		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 2/21 16:04 mple ID:	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: Tr Prep Batch:	Dil Fa
lethod: 90 Lab Sample Matrix: Solid Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solid Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110	Uncert. (2σ+/-) 0.278	1.00     Total     Uncert.	0.467	pCi/g		repared 2/21 16:04 repared 2/21 16:04 2/21 16:04 mple ID:	Prep Type: Tr Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: Tr Prep Batch: %Rec.	otal/N. 52840 Dil Fa Dil Fa Dil Fa
lethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba	4.0 - Ra ID: MB 1 d tch: 5304 	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa
Iethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228	4.0 - Ra ID: MB 1 d tch: 5304 ID: LCS d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528 53	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa
Ba Carrier Iethod: 90 Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Solic Analysis Ba Analyte Radium-228 Carrier Ba Carrier Ba Carrier Ba Carrier Ba Carrier	4.0 - Ra ID: MB 1 d tch: 5304 ID: LCS d tch: 5304	60-5284 53 MB Result 0.1697 MB %Yield 87.5 80.0 160-528	228 (GFPC 00/1-A MB Qualifier U MB Qualifier 400/2-A Spike Added 9.27	Count Uncert. (2σ+/-) 0.277 Limits 40 - 110 40 - 110 40 - 110 LCS Result 10.17	Uncert. (2σ+/-) 0.278	1.00 Total Uncert. (2σ+/-)	0.467 RL	pCi/g Clie		repared 2/21 16:04 2/21 16:04 2/21 16:04 2/21 16:04 mple ID: %Rec	Prep Type: To Prep Batch: <u>Analyzed</u> 10/06/21 12:35 <u>Analyzed</u> 10/06/21 12:35 10/06/21 12:35 Lab Control S Prep Type: To Prep Batch: %Rec. Limits	Dil Fa

#### Eurofins TestAmerica, Chicago

2417 Bond Street University Park IL 60484 Phone 708 534-5200 Fax 708 534-5211

**Client Information** Clent Contact Richard Gnat

A	TNA	S44- 1
	Carrier Track ng No(s)	COC № 500-94568-41920 1

State of Origin

Page

Page 1 of 1

	5
	D)

Company KPRG and Associates Inc			PWSID		Γ				Ana	lysis Re	equested				Jo	»»# 501-7	104544	
Address 14665 West Lisbon Road Suite 1A	Due Date Request	ed	L		T					T	T			T	- 1	reservation Co		
City Brookfield	TAT Requested (d	ays)			]							 *****			E C	NaOH Zn Acetate	N None O AsNaO2	
State Zip WI 53005	Compliance Project	ct 🛆 Yes	A No		┥╽		128	SM4500_CI_E			1 [				Ε	Nitric Acid NaHSO4	P Na2O4S Q Na2SO3	
Phone	PO#				11		226/2	1500				K-	£			MeOH Amchlor	R Na2\$2O3 S H2SO4	
- Email	4502042860 WO#				le Se		Rad	SM					× ,		۲	Ascorbic Acid	T TSP Dode U Acetone	cahydrate
richardg@kprginc com					s or	2	ined	9056A			500-20	)4544	coc		<b>g</b> J	DI Water EDTA	V MCAA W pH 4-5	
Project Name Joliet #9 Ash	Project # 50011504				ele (Ye	(es or	Combined Rad 226/228	7471A 90					COC Providence Containers			L EDA Z other (spec		cify)
Site Illinois	SSOW#				Samp	SDC	GFPC	B, 74					d     5			ther [.]		
Sample Identification	Sample Date	Sample Time		Matrix (W=water S=solid, O=waste/oil, BT~Tissue, A-Air)	Field Filtered S	Perform MS/M 903.0 904.0	Ra226Ra228								Total Number	Special I	nstructions/N	lote
- Litali	~/2C	$\overline{a}$	Preserva	tion Code Solid	f¥	XN	N	N		╇╋	╉╍╂╍┙	┝─┼			4-			
Jolick #9 Ash Jolick #29 Ash	8/31	9:30	$\frac{1}{2}$	Solid	$\left  \cdot \right $	-K		1x										
Jolith #24 185h	8/3(	(0',00		Solid	$\left  \cdot \right $	+	× >			+	++-	┝─┼		-	-	·····		
					┟┼		+	+			+-+	┼─┼		-				
					$\uparrow \uparrow$		+	+			+ +	┟──┼						
					Ħ		-							f				
Possible Hazard Identification		adiological		5				<b>I ( A fe</b> Client	e may be	<b>assessed</b> Disposal B	i <b>f san</b> ly Lab	ples are	e reta □_ _{Arc}	<b>ained</b> chive	longer than For	<b>1 month)</b> Months		
Deliverable Requested   II III IV Other (specify)					S					Requirem								
Empty Kit Relinquished by Date					Time Method of Shi													
Relinquished by Mitcheel Ress	Date/Time/3/	13:0	30	Company KPRC		Stuphance Hemomdes				mderx	M Date/Time			121	1300	ETA-(	HH I	
Rel nquished by	Date/Time			Company		Re	ceived	by				Date/Time				Company		
Relinquished by	Date/Time			Company		Received by					C	Date/Time C			Company			
Custody Seals Intact Custody Seal No						Co	oler Te	mperal	ture(s) °C	and Other i	Remarks	22						
					- 1 4												Ver 06/08/2	22/100/0

**Chain of Custody Record** 

Lab PM

E-Mal

Mockler Diana J

Diana Mockler@Eurofinset.com

Sampler Michael Ress

Phone

630-203-7240

Eurofins TestAmerica, Chicago 2417 Bond Street University Park. JL 60484 Phone: 708-534-5200 Fax: 708-534-5211		Chain of Custody Record	ecord			🔅 eurofins	Environment Testing America
Client Information (Sub Contract Lab)	Sampler:	Lab PM Mockle	Lab PM: Mockler, Diana J		Carrier Tracking No(s):	COC No: FOD_1F20E6 1	
client contact. Shipping/Receiving	Phone:	E-Mait: Diana	E-Mail: Diana Mockler@Furofinset.com	set com	State of Origin:		
company: TestAmerica Laboratories, Inc.			Accreditations Required (See note)	d (See note):	SIOTHIN	Job #:	
Address: 13715 Rider Trail North,	Due Date Requested: 10/3/2021					500-204544-2 Preservation Codes:	
City: Farth City	TAT Requested (days):						M - Hexane
State, Zp: MO, 63045			8			B - NaOH C - Zh Acetate D - Nitric Acid	N - None 0 - AsNaO2 P - Na204S
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO#:						2 - Na2SO3 R - Na2S2O3 S - H2SO4
Email:	# OM		(0)			σ	T - TSP Dodecahydrate U - Acetone
Project Name: Joliet #29 Ash	Project #: 50005078		58 556 18 OL N			J - DI Water K - EDTA L - EDA	V - MCAA W - pH 4-5 Z - other (snecify)
Sile:	SSOW#:		Mulbe Mulbe			Other:	
Sample Identification - Client ID (Lab ID)			ield Filtered S erform MS/MS 13.0/DPS_0 Rad 14.0/DPS_0 Rad			tal Number of	
		Preservation Code	ж об с				Special Instructions/Note:
Jolet #29 Ash (500-204544-1)	1	Solid.	, , ,			X	
	Central		<			2	
Note: Since laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/isets/matrix being analyzed, the samples shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brough to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date. return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	LAmerica places the ownership of method, analyt s/matrix being analyzed, the samples must be ship srent to date, return the signed Chain of Custody.	<ul> <li>&amp; accreditation compli- ped back to the Eurofin attesting to said complic.</li> </ul>	ance upon out subcontris s TestAmerica laborator ance to Eurofins TestArr	act laboratories. This y or other instruction herica.	sample shipment is forwarded ur will be provided. Any changes to	der chain-of-custody. If the labo b accreditation status should be t	ratory does not currently prought to Eurofins
Possible Hazard Identification			Sample Dispose	II ( A fee may be	Sample Disposal ( A fee may be assessed if samples are retained lonner than 1 month	retained lonner than 1 m	onth)
Uncontirmed Deliverable Requested: I II III N. Other (snarify)			Return To Client	Client	Disposal By Lab	Archive For	Months
	rumary Deliverable Kank: 2		Special Instructions/QC Requirements	ns/QC Requirem	ents:		
Emply for relinquished by:	Date:		Time:		Method of Shipment:		
Reinquished by AUN LAND	Date Times A 1 1 44 6		H M U	re Bur	hin	oft: 80 10	S & D
Relinquished by:	Date/Time:	Company	Received by:		0	S	Company
Gustody Seals Intact: Custody Seal No			Keceived by:		Date/Time:	<u>ů</u>	Company
			Cooler Temperat	Cooler Temperature(s) [°] C and Other Remarks:	Remarks:		

Ver: 06/08/2021

10

Client: KPRG and Associates, Inc.

#### Login Number: 204544 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	22.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Chicago

Client: KPRG and Associates, Inc.

#### Login Number: 204544 List Number: 2 Creator: Korrinhizer, Micha L

Question Answer Comm
Radioactivity wasn't checked or is = background as measured by a survey True meter.</td
The cooler's custody seal, if present, is intact.
Sample custody seals, if present, are intact. True
The cooler or samples do not appear to have been compromised or True tampered with.
Samples were received on ice. N/A
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible. True
COC is filled out with all pertinent information. True
Is the Field Sampler's name present on COC? True
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking. True
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
Containers requiring zero headspace have no headspace or bubble is True <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing. True
Residual Chlorine Checked. N/A

Job Number: 500-204544-2

List Creation: 09/01/21 05:40 PM

List Source: Eurofins TestAmerica, St. Louis

Client: KPRG and Associates, Inc. Project/Site: Joliet #29 Ash

Job ID: 500-204544-2

12

ry: Eurofins TestAmerica, St. Louis
-------------------------------------

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-22
ANAB	Dept. of Defense ELAP	L2305	04-06-22
ANAB	Dept. of Energy	L2305.01	04-06-22
ANAB	ISO/IEC 17025	L2305	04-06-22
Arizona	State	AZ0813	12-08-21
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	06-30-21 *
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	004553	11-30-21
Iowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-21
Kentucky (DW)	State	KY90125	01-01-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-21
Louisiana	NELAP	04080	06-30-22
Louisiana (DW)	State	LA011	12-31-21
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-22
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	State	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	03-01-22
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

### Method: 903.0 - Radium-226 (GFPC)

#### **Matrix: Solid**

_		Percent Yield (Acceptance Limits)			
		Ва			
Lab Sample ID	Client Sample ID	(40-110)			
500-204544-1	Jolet #29 Ash	104			
LCS 160-527617/2-A	Lab Control Sample	82.8			
MB 160-527617/1-A	Method Blank	80.9			
Tracer/Carrier Legen	d				

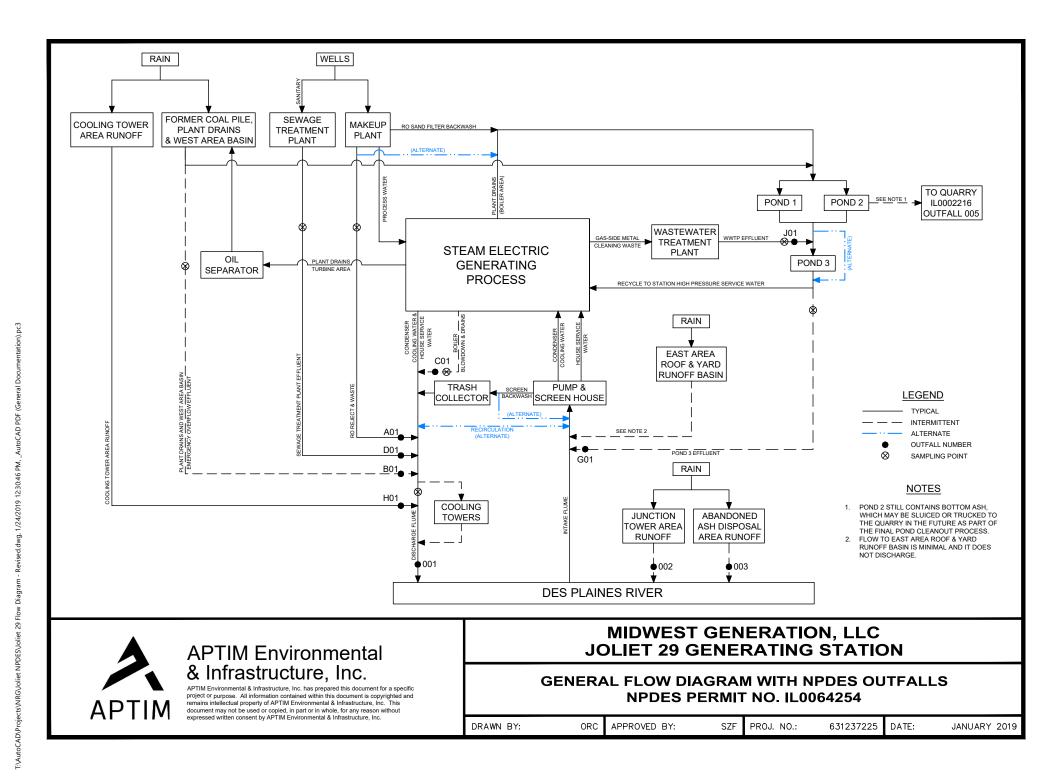
Ba = Ba Carrier

### Method: 904.0 - Radium-228 (GFPC)

#### Matrix: Solid

#### Percent Yield (Acceptance Limits) Ва Υ (40-110) (40-110) Lab Sample ID **Client Sample ID** 500-204544-1 Jolet #29 Ash 78.1 91.3 LCS 160-528400/2-A Lab Control Sample 78.9 77.4 MB 160-528400/1-A Method Blank 87.5 80.0 Tracer/Carrier Legend

Ba = Ba Carrier Y = Y Carrier


Job ID: 500-204544-2

Prep Type: Total/NA

Prep Type: Total/NA

5 13

## ATTACHMENT 3 CHEMICAL CONSTITUENTS ANALYSIS OF OTHER WASTE STREAMS



## ATTACHMENT 4 LOCATION STANDARDS DEMONSTRATION



### PLACEMENT ABOVE THE UPPERMOST AQUIFER LOCATION RESTRICTIONS ASH POND 2 JOLIET 29 GENERTING STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.60, Geosyntec Consultants (Geosyntec) prepared this report to document compliance with location restrictions related to placement above the uppermost aquifer for the existing Ash Pond 2 (the Ash Pond) at the Joliet 29 Generating Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Mr. Jesse Varsho, P.G., P.E., of Geosyntec. Ms. Jane Soule, P.E., reviewed this report in accordance with Geosyntec's senior review policy.

### 1. Placement Above the Uppermost Aquifer Restriction Determination

The base of Ash Pond 2 is separated from the upper limit of the uppermost aquifer by a minimum distance of five (5) feet (1.52 meters). Therefore, the location of the Ash Pond is in compliance with the requirements outlined in §257.60.

#### 2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.



Jesse Varsho, P.E. Illinois Professional Engineer No. 062.067766 License Expires: 11/30/19



### WETLANDS LOCATION RESTRICTIONS ASH POND 2 JOLIET 29 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.61, Geosyntec Consultants (Geosyntec) prepared this report to document compliance with location restrictions related to wetlands for the existing Ash Pond 2 at the Joliet 29 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Mr. Jesse Varsho, P.G., P.E., of Geosyntec in accordance with §257.61. Ms. Jane Soule, P.E., reviewed this report in accordance with Geosyntec's senior review policy.

#### 1. Wetlands Location Restriction Determination

Ash Pond 2 is not located in mapped wetlands included in the National Wetlands Inventory – Version 2 presented by the U.S. Fish and Wildlife Service (USFW) [USFW, 2018]. Therefore, the locations of the Basins are in compliance with the requirements outlined in §257.61(a).

#### 2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.



1 Un

Jesse Varsho, P.E. Illinois Professional Engineer No. 062.067766 License Expires: 11/30/19

Wetlands Location Restrictions Ash Pond 2, Joliet 29 Station October 2018

#### 3. References

USFS, 2018. "National Wetlands Inventory, Version 2," <u>https://www.fws.gov/wetlands/data/</u> <u>Mapper.html</u>, updated 1 May 2018, accessed 28 August 2018.



### FAULT AREAS LOCATION RESTRICTIONS ASH POND 2 JOLIET 29 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.62, Geosyntec Consultants (Geosyntec) prepared this report to document compliance with location restrictions related to fault areas for the existing Ash Pond 2 at the Joliet 29 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Mr. Jesse Varsho, P.G., P.E., of Geosyntec in accordance with §257.62. Ms. Jane Soule, P.E., reviewed this report in accordance with Geosyntec's senior review policy.

#### 1. Fault Areas Location Restriction Determination

Ash Pond 2 is not located within 200 feet (60 meters) of a mapped Holocene-aged fault, as mapped by the United States Geological Survey (USGS) Quaternary Fault Database [USGS, 2018]. Therefore, the location of Ash Pond 2 in compliance with the requirements outlined in §257.62(a).

#### 2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.



h Und

Jesse Varsho, P.E. Illinois Professional Engineer No. 062.067766 License Expires: 11/30/19

Fault Areas Location Restrictions Ash Pond 2, Joliet 29 Station October 2018

### 3. References

USGS, 2018. "Quaternary Fault and Fold Database," <u>https://earthquake.usgs.gov/hazards/qfaults/</u>, accessed 28 August 2018.



### SEISMIC IMPACT ZONES LOCATION RESTRICTIONS ASH POND 2 JOLIET 29 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.63, Geosyntec Consultants (Geosyntec) prepared this report to document compliance with location restrictions related to seismic impact areas for the existing Ash Pond 2 at the Joliet 29 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Mr. Jesse Varsho, P.G., P.E., of Geosyntec in accordance with §257.63. Ms. Jane Soule, P.E., reviewed this report in accordance with Geosyntec's senior review policy.

#### 1. Seismic Impact Zones Restriction Determination

Ash Pond 2 is not located within a seismic impact zone as defined in §257.53 and as mapped by the United States Geological Survey (USGS) [USGS, 2014]. Therefore, the location of Ash Pond 2 is in compliance with the requirements outlined in §257.63(a).

#### 2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.



Jesse Varsho, P.E. Illinois Professional Engineer No. 062.067766 License Expires: 11/30/19

Seismic Impact Zones Location Restrictions Ash Pond 2, Joliet 29 Station October 2018

#### 3. References

USGS, 2014. "2014 U.S. Geological Survey National Seismic Hazard Maps, PGA 2% in 50 Years," <u>https://earthquake.usgs.gov/hazards/hazmaps/conterminous/index.php#2014</u>, accessed 28 August 2018.



### UNSTABLE AREAS LOCATION RESTRICTIONS ASH POND 2 JOLIET 29 STATION OCTOBER 2018

Pursuant to Code of Federal Regulations Title 40, Part 257, Subpart D (40 CFR), Section 257.64, Geosyntec Consultants (Geosyntec) prepared this report to document compliance with location restrictions related to unstable areas for the existing Ash Pond 2 at the Joliet 29 Station (Site) in Joliet, Illinois.

The work presented in this report was performed under the direction of Mr. Jesse Varsho, P.G., P.E., of Geosyntec in accordance with §257.64. Ms. Jane Soule, P.E., reviewed this report in accordance with Geosyntec's senior review policy.

#### 1. Unstable Areas Restriction Determination

Ash Pond 2 is not located in an unstable area [Geosyntec, 2016]. Therefore, the location of Ash Pond 2 is in compliance with the requirements outlined in §257.64(a).

#### 2. Limitations and Certification

This report was prepared in accordance with current practices and the standard of care exercised by scientists and engineers performing similar tasks in the field of civil engineering. The contents of this report are based solely on the observations of the conditions observed by Geosyntec personnel and information provided to Geosyntec by Midwest Generation. Consistent with applicable professional standards of care, our opinions and recommendations were based in part on data furnished by others, which was consistent with other information that we developed in the course of our performance of the scope of services. The information contained in this report is intended for use solely by Midwest Generation and their subconsultants.



Jesse Varsho, P.E. Illinois Professional Engineer No. 062.067766 License Expires: 11/30/19

Unstable Areas Location Restrictions Ash Pond 2, Joliet 29 Station October 2018

### 3. References

Geosyntec, 2016. Structural Stability and Factor of Safety Assessment, Ash Pond 2, Joliet 29 Station, October.

# **ATTACHMENT 5 PERMANENT MARKERS**



# ATTACHMENT 6 INCISED/SLOPE PROTECTION DOCUMENTATION



1. East slope looking north.



2. East slope looking west.



3. East side of south slope, looking north.



4. Center of south slope, looking north.



5. Looking north at south slope retaining wall.



6. Looking north at south slope retaining wall.

# **ATTACHMENT 7 EMERGENCY ACTION PLAN**

## EMERGENCY ACTION PLAN ASH POND 2 JOLIET 29 STATION OCTOBER 2021

This Emergency Action Plan (EAP) has been prepared pursuant to both Title 35 of the Illinois Administrative Code (35 IAC) Part 845, Subpart E, Section 845.520 and Title 40 of the Code of Federal Regulations (40 CFR) Part 257, Subpart D, Section 257.73(a)(3) for Ash Pond 2 at Midwest Generation, LLC (MWG) Joliet 29 Station (Station) in Joliet, Illinois. Previous assessments performed in accordance with §257.73(a)(2) identified Ash Pond 2 as significant hazard potential coal combustion residual (CCR) surface impoundments, and as a result, this written EAP has been prepared to address potential failures of Ash Pond 2. The EAP is presented as follows:

**Section 1.0:** Definition of the events or circumstances involving the CCR surface impoundment(s) that represent a safety emergency, along with a description of the procedures that will be followed to detect a safety emergency in a timely manner;

**Section 2.0:** Definition of the responsible persons, their respective responsibilities, and notification procedures in the event of a safety emergency involving the CCR surface impoundment(s); and contact information of emergency responders;

**Section 3.0:** Site maps which delineate the downstream areas that would be affected in the event of an Ash Pond 2 failure and a physical description of the CCR surface impoundments;

**Section 4.0:** Provisions for an annual face-to-face meeting or exercise between representatives of the Joliet 29 Station and local emergency responders; and

**Section 5.0:** Certification from a qualified professional engineer stating that the written EAP, and any subsequent amendment of the EAP, meets the requirements of 35 IAC 845.520 and Part 257 Section 257.73(a)(3).



# **1.0 DEFINITION OF THE EVENTS THAT REPRESENT A SAFETY EMERGENCY**

The following tables define the events and/or circumstances involving Ash Pond 2 that represent a safety emergency, along with a description of the procedures that will be followed to detect a safety emergency in a timely manner.

The information provided in Tables 1 through 4 provides a list of potential problems that may occur at Ash Pond 2, how to make a rapid evaluation of the problem, and what action should be taken in response to the problem. These tables present only generalized information to aid in first response to a given problem. Suspected problems should be reported as soon as possible, as discussed in Section 2.0, and assistance from a qualified engineer should be obtained if necessary.

The problems outlined in this section are related to above grade, earthen-type embankment dams similar in construction to Ash Pond 2. The problems discussed herein include:

- Table 1: Seepage;
- Table 2: Sliding;
- Table 3: Cracking; and
- Table 4: Animal Burrows and Holes.

For each problem, the indicators are discussed followed by evaluation techniques and then by action items for each problem.

Civil & Environmental Consultants, Inc.

Definition	Evaluation	Action
1A: Wet area on downstream embankment slope or other area downstream of the embankment, with very little or no surface water or very minor seeps.	1B: Condition may be caused by infiltration of rainwater, which is not serious; or may be the start of a serious seepage problem, which would be indicated by a quick change to one of the conditions below.	•
2A: Same wet area as above, with moderate seeps of clear or relatively clear water and the rate of flow not increasing.		2C: No immediate action required. Note the location, flow rate, and clarity for future comparison. During reservoir flood stages, the seepage area should be watched for changes.
3A: Same wet area as above, with moderate seeps of clear or relatively clear water and rate of flow increasing.	3B: Measure the flow periodically and note changes in clarity. Inspect downstream area for new seeps.	3C: Contact a qualified engineer for immediate inspection (see Table 5). Observe the condition constantly for further changes in flow rate or clarity, unless notified otherwise by the engineer.
4A: Piping (seepage with the removal of materials from the foundation or embankment), moderate to active flows of cloudy to muddy water.	4B: If the water is cloudy to muddy, and the rate of flow is increasing, this condition could lead to failure of the dam. If, along the piping, there is an upstream swirl (whirlpool) caused by water entering through the abutments of embankment, failure is imminent.	4C: Immediate action is necessary. Notify the appropriate agencies (see Table 5).
5A: Boils (soil particles deposited around a water exit forming a cone, varying from a few inches in diameter spaced 2 to 3 feet apart to isolated locations several feet in diameter in the floodplain downstream of the dam) may show the types of flow as noted above.	5B: Evaluation of the problem is the same as noted above for the various flow conditions, i.e., clear and constant, clear and increasing, and cloudy or muddy and increasing.	5C: Actions to be taken are essentially the same as those noted above.

# Table 1: Ash Pond 2 Event Definition, Evaluation, and Action: Seepage

Indicator	Evaluation	Action
1A: Movement of a portion of the embankment, either the upstream or downstream slope, toward the toe of the dam.	1B: Various degrees of severity of a slide require different responses. The first condition is that the slide does not pass through the crest and does not extend into the embankment for more than 5 feet, measured perpendicular to the slope.	1C: For this condition, a qualified engineer, see Table 5, should be consulted before repairs are initiated to determine the cause of the slide and to recommend modifications to prevent future slides. The downstream side of the dam should be watched for the emergence of water, either through the slide or opposite the slide. If water is noted discharging, the area should be treated as a seepage location and monitored as noted above.
2A: Slide passes is the second condition.	2B: In this condition, the slide passes through the crest and that the reservoir elevation is more than 10 feet below the lowered crest.	2C: Use the same actions as noted above and notify the appropriate MWG personnel (see Table 5) of the situation so they may be prepared to act if the condition worsens.
3A: Slide passes is also the third condition.	3B: In this condition, the slide passes through the crest and that the reservoir elevation is less than 10 ft. below the lowered crest.	3C: This condition is critical, and failure of the dam should be considered imminent. Notify the appropriate agencies (see Table 5).

## Table 2: Ash Pond 2 Event Definition, Evaluation, and Action: Sliding

# Table 3: Ash Pond 2 Event Definition, Evaluation, and Action: Cracking

Indicator	Evaluation	Action
	1B: Some cracking of the surface soils may occur when they become dry. This cracking is to be expected, and no further action is required.	1C: No further action is required.
0 0	2B: Monitor the crack for future changes and contact a qualified engineer for assistance in the evaluation of the crack and recommended repairs.	1 0
settlement or the loss of support below the crack.	3B: Monitor the crack for future changes and contact a qualified engineer for assistance in the evaluation of the crack and recommended repairs.	1 0

## Table 4: Ash Pond 2 Event Definition, Evaluation, and Action: <u>Animal Burrows and Holes</u>

Indicator	Evaluation	Action
	1	material. If rodents become a nuisance, an effective rodent control program, as approved by the Illinois Department of Natural Resources District Wildlife Biologist, should be

# 2.0 RESPONSIBLE PERSONS, RESPECTIVE RESPONSIBILITIES, AND NOTIFICATION PROCEDURES

The EAP must be implemented once events or circumstances involving the CCR unit that represent a safety emergency are detected, including conditions identified during periodic structural stability assessments, annual inspections, and inspections by a qualified person. The following sections define responsible persons, their respective responsibilities, and notification procedures in the event of a safety emergency involving Ash Pond 2. Contact information is provided in Table 5, attached.

# 2.1 <u>Responsible Persons and Responsibilities</u>

Appropriate parties will be notified based on the nature and severity of the incident as determined by the Station environmental specialist, chemical specialist, or designated alternate. If failure is imminent or has occurred, notification and mitigation procedures are a top priority, particularly for a potentially hazardous situation. The Station environmental specialist or chemical specialist, in conjunction with the plant manager, is responsible for this determination.

## 2.2 <u>Notification Sequence</u>

The following notification procedures shall be used by employees in the event of a safety emergency with Ash Pond 2:

- (1) Notify the shift supervisor and environmental specialist or chemical specialist.
- (2) If unsafe conditions exist, the employee should evacuate the area.
- (3) Only the environmental specialist or chemical specialist shall have any official communication with non-employees or regulatory agencies, and only the communications director shall have any contact, and/or the media.

The environmental specialist, chemical specialist, or designated alternate should follow these procedures in the event of a safety emergency involving Ash Pond 2:

- (1) Organize appropriately trained Station personnel and/or other employees or contractors as necessary to assist with the safety emergency.
- (2) After consultation with appropriately trained Station personnel, contact the proper civil authorities (e.g., fire, police, etc.) if necessary. Notify the appropriate agencies where there has been a reportable release of material(s) into the environment. See Table 5, attached, for contact information. Notify MWG Corporate via the Intelex online notification system within twenty-four hours in the event of a reportable release. A reportable release is a Material Release defined as a spill or leak that materialized in the waterway. A Non-Material Release is a spill or leak that did not come into contact with the waterway.
- (3) Be prepared to evacuate the potential inundation areas at any time during the safety emergency response.
- (4) If the emergency is beyond the Station's response capabilities, contact one or more emergency response contractors as necessary.
- (5) Corrective actions should only be performed by properly trained individuals.

Civil & Environmental Consultants, Inc.

# 2.3 <u>Emergency Responders Contact Information</u>

Table 5, attached, provides contact information of emergency responders. The Station environmental specialist, chemical specialist, or alternate will determine whom to notify, including any affected residents and/or businesses, in the case of an imminent or actual CCR surface impoundment dam failure. The Station environmental specialist, chemical specialist, or alternate will ensure proper notifications are made.

Appropriate contractors will be utilized to assist the Station environmental specialist, chemical specialist, or alternate with mitigated actions being undertaken in order to minimize the impact of an event that has occurred. Contact information for contractors and consultants are provided in Table 5, attached.

# 3.0 SITE MAP AND A SITE MAP DELINEATING THE DOWNSTREAM AREA

In accordance with \$257.73(a)(3)(i)(D), the following section provides a physical description of Ash Pond 2. A site vicinity map is provided as Figure 1, and a site plan is provided as Figure 2, attached. Drawings depicting the locations of, and the downstream areas affected by, a potential failure of Ash Pond 2 were prepared by Geosyntec in October 16, 2016 and are provided in Appendix A.

# 3.1 <u>Pond Location and Description</u>

The physical address for Joliet Station 29 is Illinois & Michigan Canal State Trail, 1800 Channahon Road (U.S. Route 6) in Joliet, Illinois. As shown in Figure 1, the Station is bound by Channahon Road on the north and the Des Plaines River on the south. Ash Pond 2 is situated east of the Station Entrance/Guard House and Pond 1, and west of the Wastewater Treatment Plant immediately adjacent to U.S. Route 6 (see Figure 2). Ash Pond 2 is situated northeast of the Main Power Block Building.

From our observations and review of construction and engineering documentation provided by MWG, the pond was constructed with elevated earthen embankment on one side. The south side of the pond is an earthen berm. Run-on is limited to precipitation contained within the earthen berm. Physical characteristics of the Ash Pond 2 are provided in Table 6, below.

	Ash Pond 2
Estimated Storage Capacity (acre-feet)	45.0
Estimated Maximum Basin Depth (ft)	19
Elevation - Maximum Crest (ft msl)	535

# **Table 6: Pond Characteristics**

# 3.2 Delineation of Downstream Areas

The potential impacts from failure of Ash Pond 2 were evaluated and reported by Geosyntec in the Hazard Potential Classification Assessment (HPCA), dated October 2016. A copy of the HPCA

Civil & Environmental Consultants, Inc.

is contained on the CCR Rule Compliance Data and Information web site (http://www.nrg.com/legal/coal-combustion-residuals).

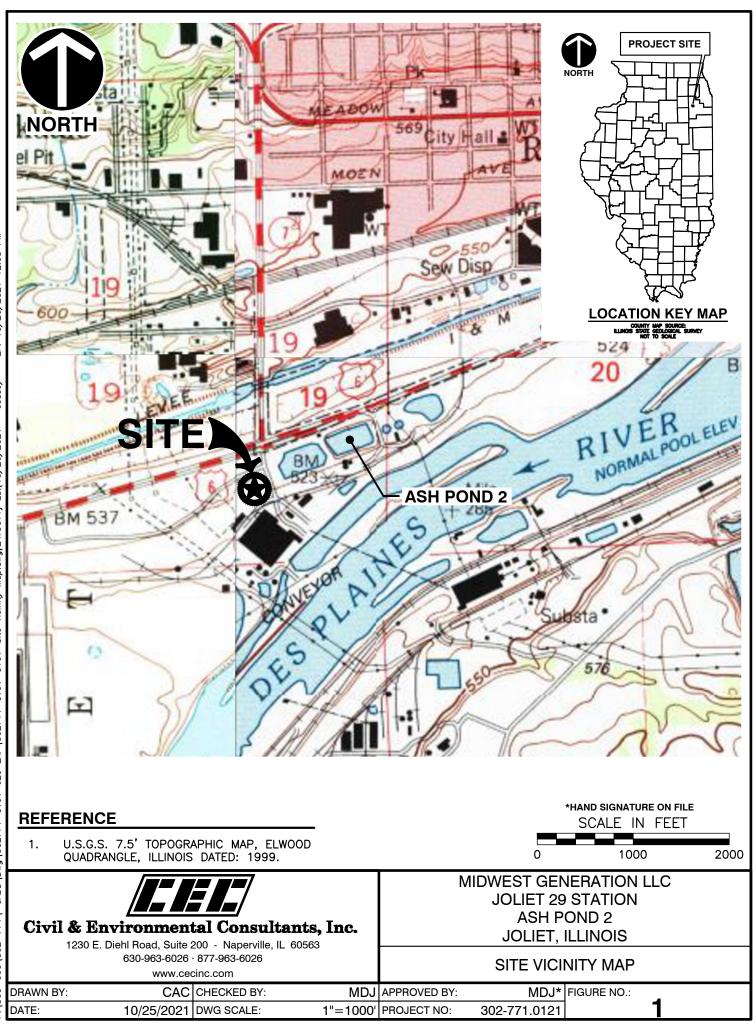
Results of the HPCA indicate that Ash Pond 2 is classified as significant hazard potential CCR surface impoundments. The evaluation reports no loss of life resulting from failure of Ash Pond 2 is probable because no occupied buildings are located within the anticipated inundation areas. However, potential failure during flood conditions could results in offsite economic or environmental impacts. Inundation Maps are provided in Appendix A.

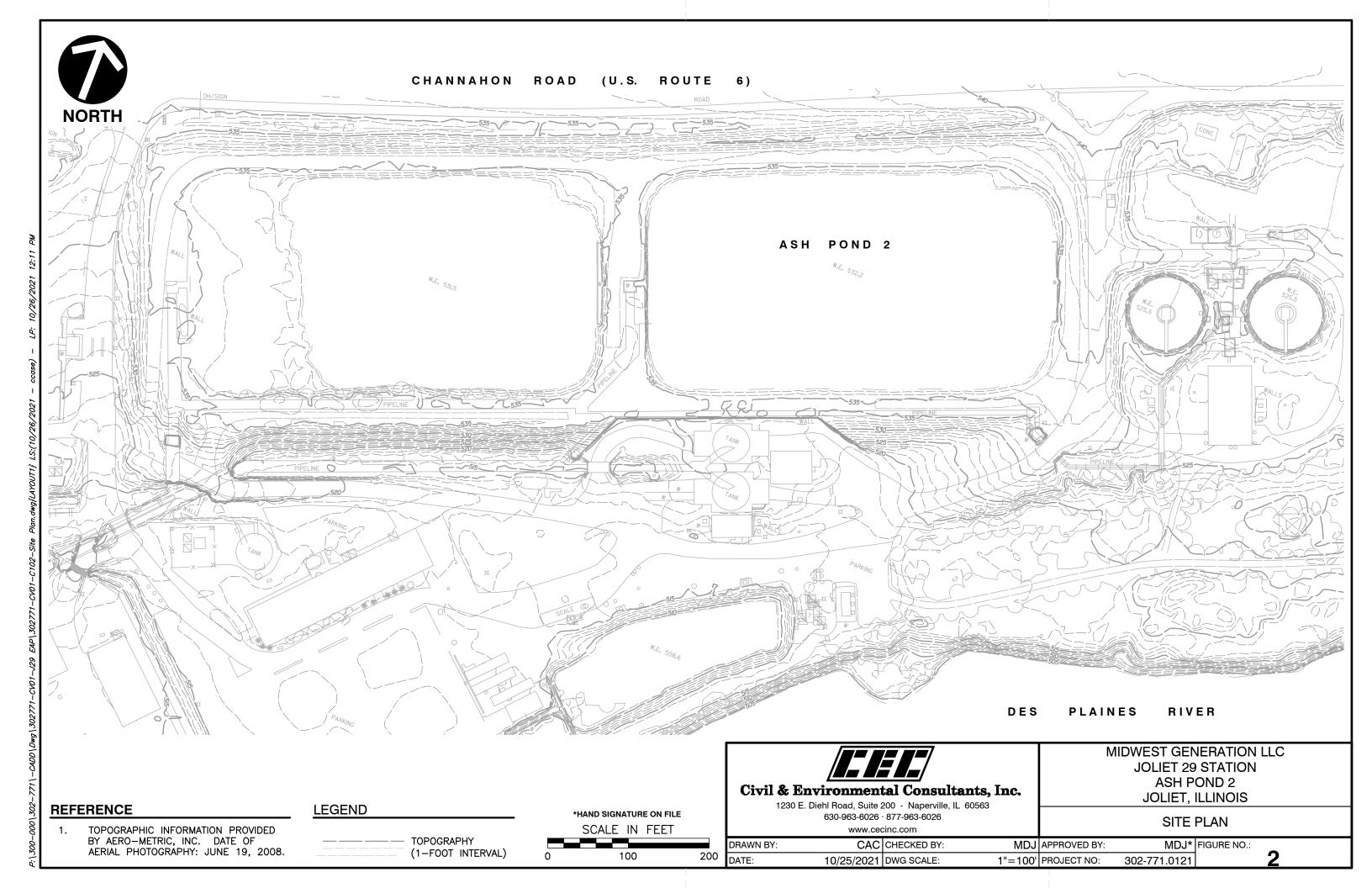
# 4.0 ANNUAL FACE-TO-FACE MEETING

A face-to-face meeting or an exercise between representatives of the Station and the local emergency responders shall be offered and, if acceptable, be held on an annual basis. The purpose of the annual meeting is to review the EAP to assure that contacts, addresses, telephone numbers, etc. are current. The annual meeting will be offered whether or not an incident occurred in the previous year. In the event an incident occurs, the annual meeting date may be moved up in order to discuss an incident closer to the date of occurrence. If no incidents have occurred, the annual meeting will be held to inform local emergency responders on the contents of the EAP and changes from the previous year. Documentation of the annual face-to-face meeting will be recorded and placed in the operating record for the Station.

The EAP requires modification whenever there is a change in conditions that would substantially affect the EAP in effect. Changes to the plan shall be made as appropriate, and a copy of the changes will be kept at the station, with the revised EAP placed in the Station's operating record. The written EAP must be evaluated, at a minimum, every five years to ensure the information required is accurate.

# 5.0 LIMITATIONS AND CERTIFICATION


This emergency action plan was prepared to meet the requirements of 35 IAC 845.520 and 40 CFR 257.73(a)(3) and was prepared under the direction of Mr. M. Dean Jones, P.E.


By affixing my seal to this, I do hereby certify to the best of my knowledge, information, and belief that the information contained in this report is true and correct. I further certify I am licensed to practice in the State of Illinois and that it is within my professional expertise to verify the correctness of the information. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment.

Seal:	$\frown$
	GEANJON
1 al	CREEP DE ANY
MAU VAU	REGISTERED IL
1	PACHEER
N	LLINOIS
- 1.	Contraction of the Contraction o

Signature: tean foren
Name: M. Dean Jones, P.E.
Date of Certification: <u>October 26, 2021</u>
Illinois Professional Engineer No.: <u>062-051317</u>
Expiration Date: <u>November 30, 2021</u>

# **FIGURES**





# TABLE 5

# EAP NOTIFICATION LIST

#### Table 5: Midwest Generation Joliet 29 Station CCR Surface Impoundment EAP Notification List

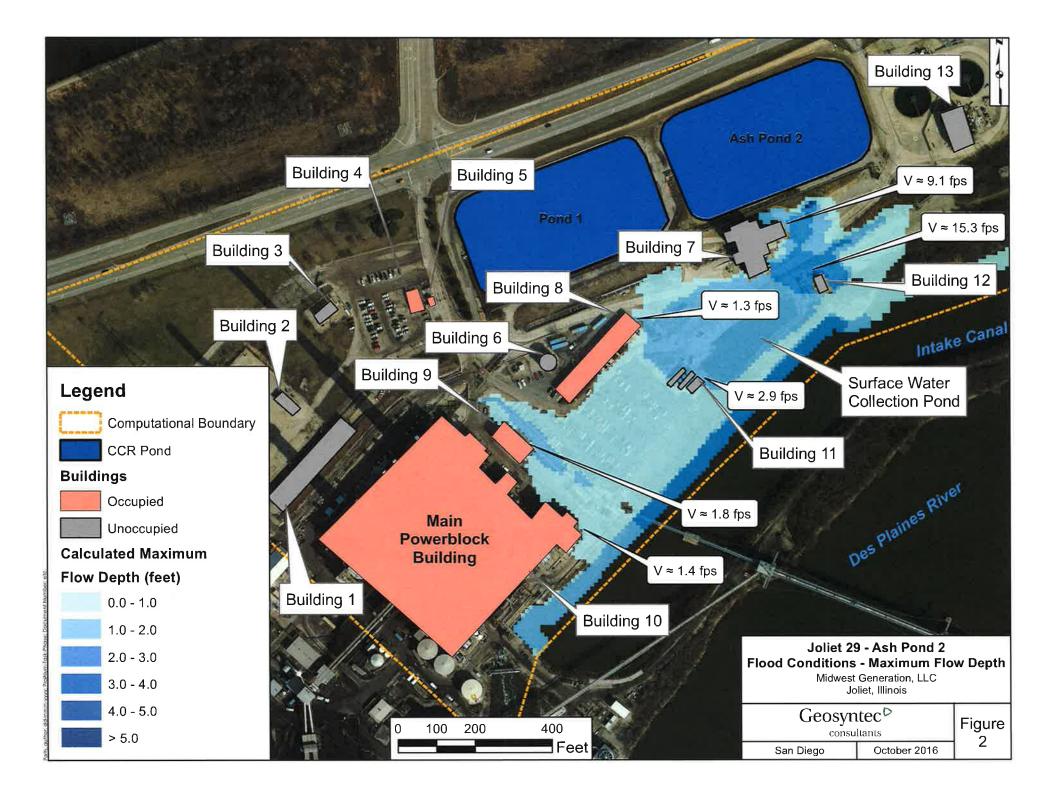
Plant Contacts:

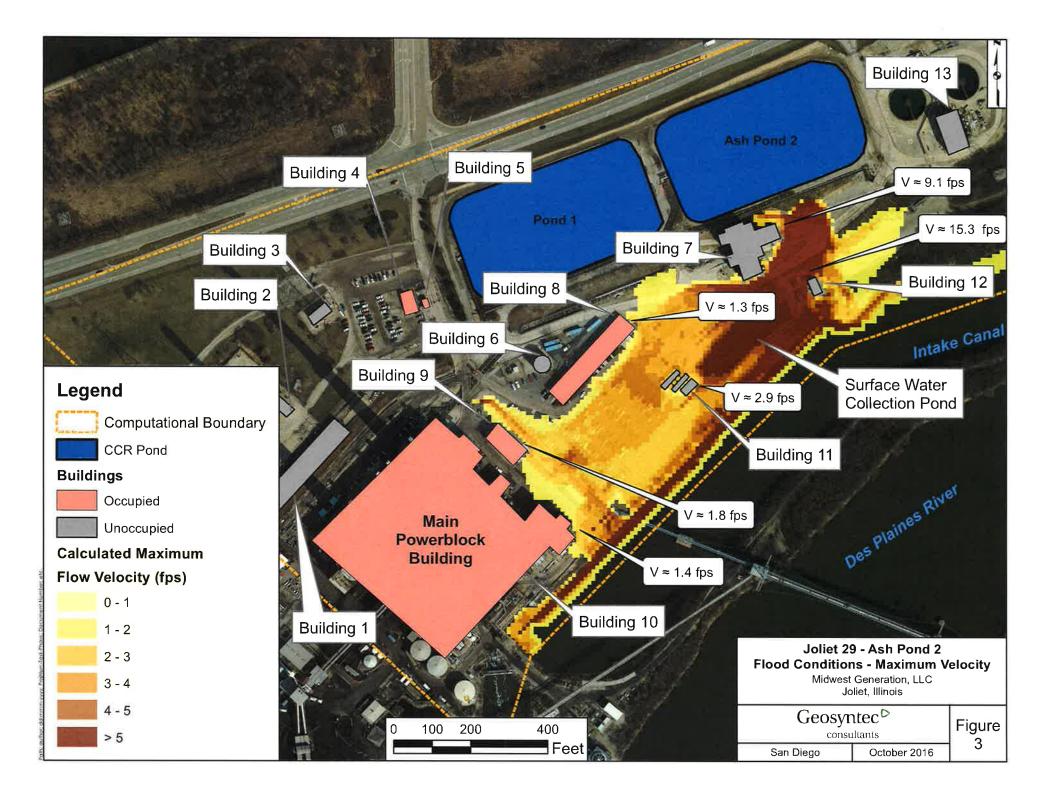
Name	Title	Contact Info
Ma DeArdre Ceeleu	Environmental Cresialist	(O) 815-207-5489
Mr. DeAndre Cooley	Environmental Specialist	(C) 779-279-2321
Mr. Harrison Estann	Chemical Specialist	(O) 815-207-5416
Mr. Harrison Estepp	Class K WWT Operator	(C) 773-617-7515
Mr. William Naglosky	Station Director	(0) 815-207-5412
		(C) 312-636-1539
Mr. Michael Korolenko	Operations Manager	(0) 815-207-5415
		(C) 815-409-6426
Mr. John Shields	Maintenance Planner	(O) 815-207-4926
		(C) 815-713-8697

#### **Corporate Support:**

Name	Title	Contact Info
Sharene Shealey	Director, Environmental	(C) 724-255-3220
Jill Buckley	Environmental Manager	(C) 724-448-9732
Tony Shea	Director - Environmental Compliance	(O) 609-524-4923 (C) 609-651-6478
David Schrader	Stations Communications Director (point of public contact)	(O) 267-295-5768 (C) 267-294-2860

#### **Emergency Response Agencies:**


Agency	Address	Contact Info
National Response Center (NRC) - US Army Corp of Engineers	Brandon Road Lock and Dam Joliet, Illinois Illinois River; Des Plaines River 286.0 RDB	Phone: 800-424-8802 Emergency: 815-744-1714
Illinois Department of Natural Resources, Office of Water Resources	One Natural Resources Way, 2nd Floor Springfield, Illinois 62702-1271	8:30 a.m5:00 p.m. 217-785-3334
Illinois Emergency Management Agency (IEMA)	110 East Adams Springfield, Illinois 62701	800-782-7860
Illinois Environmental Protection Agency (IEPA)	Bureau of Water 1021 North Grand Avenue East Springfield, Illinois 62794	217-782-3637
Will County Emergency Management Agency Operations Center	302 North Chicago Street Joliet, Illinois 60432	Phone: 815-740-8351 24-hour: 815-740-0911
Will County ETSB: Dispatches to Fire, Police and Emergency Medical services	302 North Chicago Street Joliet, Illinois 60432	Emergency: 9-1-1 Non-Emergency: 815-740-8376
Rockdale Police Department	79 Moen Avenue Rockdale, Illinois 60436	Emergency: 9-1-1 Non-Emergency: 815-725-2171 Front Desk: 815-725-0360
Rockdale Fire Department	603 Otis Avenue Rockdale, Illinois 60436	Emergency: 9-1-1 Non-Emergency: 815-725-6928


#### **Environmental Response Contractors/Consultants:**

Contractor/Consultant	Address	Contact Info
Civil & Environmental Consultants,	1230 East Diehl Road, Suite 200	630-963-6026
Inc.	Naperville, Illinois 60563	030-903-0020
Bluff City Materials	2252 Southwind Boulevard	630-497-8700
(Earthwork Contractor)	Bartlett, Illinois 60103	630-497-8700
SET Environmental	450 Sumac Road	847-850-1056
(Spill Response)	Wheeling, Illinois 60090	877-437-7455 (24-hour)

# APPENDIX A

# **GEOSYNTEC HPCA INUNDATION MAPS**





# **ATTACHMENT 8 FUGITIVE DUST CONTROL PLAN**

# CCR COMPLIANCE FUGITIVE DUST CONTROL PLAN

Midwest Generation, LLC Joliet #29 Generating Station 1800 Channahon Road Joliet, Illinois

**PREPARED BY:** 

KPRG and Associates, Inc. 14665 W. Lisbon Road, Suite 1A Brookfield, Wisconsin 53005

August 24, 2021

# **TABLE OF CONTENTS**

## **SECTION/DESCRIPTION**

## PAGE

1.0	INTRODUCTION	1
2.0	SITE INFORMATION	2
2.1	Owner/Operator and Address:	2
2.2	Owner Representative/Responsible Person Contact Information:	2
2.3	Location and Description of Facility Operations	2
3.0	POTENTIAL NON-CCR FUGITIVE DUST SOURCES	3
3.1	Pond 2	3
3.2	Facility Roadways	3
4.0	DESCRIPTION OF CONTROL MEASURES	
4.1	Purpose	4
4.2	Pond 2	4
4.3		4
5.0	PLAN ASSESSMENTS/AMENDMENTS	5
5.1	Non-CCR Fugitive Dust Assessments	5
5.2		5
5.3	Citizen Complaints	5
6.0	CCR FUGITIVE DUST PLAN REPORTING/RECORDKEEPING	
	REQUIREMENTS	7
7.0	PROFESSIONAL ENGINEER CERTIFICATION	8

# APPENDICES

- Appendix A Site Diagram/Potential Non-CCR Fugitive Dust Sources
- Appendix B Assessment Record
- Appendix C Plan Review and Amendment Record
- Appendix D Citizen Complaint Log

## **1.0 INTRODUCTION**

On April 15, 2021, the Illinois Pollution Control Board adopted a new Part 845 of its waste disposal regulations creating state-wide standards for the disposal of coal combustion residuals (CCR) in surface impoundments, created by the generation of electricity by coal-fired power plants. Part 845 specifically requires that "the owner or operator of a CCR surface impoundment, or any lateral expansion of a CCR surface impoundment, or any lateral expansion of a CCR surface impoundment, must adopt measures that will effectively minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR surface impoundments, roads, and other CCR management and material handling activities". As a result, each regulated facility must develop a CCR fugitive dust control plan that complies with 35 Ill. Adm. Code 845.500(b).

This site specific CCR Fugitive Dust Control Plan (Plan) has been developed to comply with the requirements specified in Section 845.500. In general, the Plan identifies the potential CCR fugitive dust sources and describes the control measures that will be implemented to minimize CCR fugitive dust emissions. The Plan also includes a procedure for the periodic assessment of the Plan's effectiveness, documentation of any Plan amendments deemed necessary to assure continued compliance, a record of any citizen complaints received pertaining to CCR fugitive dust emissions, and an outline of the required reporting and recordkeeping requirements in 35 Ill. Adm. Code 845.500.

This Plan has been revised from the Plan dated June 3, 2016 that was created to comply with the federal CCR Rule Part 257. The revisions reflect the change that the CCR in Pond 2 has been removed and the operational change to a natural gas-fired electrical generating power plant from coal-fired.

## 2.0 SITE INFORMATION

2.1 Owner/Operator and Address:

Midwest Generation, LLC Joliet #29 Generating Station 1800 Channahon Road Joliet, Illinois

2.2 Owner Representative/Responsible Person Contact Information:

Mr. William Naglosky Station Manager 815-207-5412

2.3 Location and Description of Facility Operations

The Midwest Generation Joliet #29 Generating Station is located at 1800 Channahon Road, Joliet, Will County, Illinois. The facility is a natural gas-fired electric power generating station (formerly coal-fired) situated on approximately 297 acres located on the north side of the Des Plaines River. There are currently two operating units, identified as Units 7 and 8, on the property. Electrical power is transmitted from the site to the area grid through overhead transmission power lines.

The general vicinity includes other commercial and industrial facilities, limited residential development and agricultural areas.

## 3.0 POTENTIAL NON-CCR FUGITIVE DUST SOURCES

As a result of the recent fuel conversion, the correlated fact that all coal combustion ceased at the facility as of March 20, 2016, and Pond 2 was cleaned out during the summer of 2019, the remaining potential CCR fugitive dust sources have been removed from the facility. It is unlikely that CCR Fugitive dust could potentially be generated from the facility as a result of equipment malfunctions, wind erosion, housekeeping issues and/or the nature of the operation. The facility has the potential to generate non-CCR fugitive dust and those sources were further evaluated to determine the probability of non-CCR fugitive dust being generated and to determine the level of emission controls that are warranted to mitigate non-CCR fugitive dust emissions. The findings of the evaluation are individually discussed in the following sections.

#### 3.1 Pond 2

Now that the facility is not burning coal, Pond 2 will no longer be used to store bottom ash and slag and Pond 2 has been cleaned and continued to be used for non-CCR wastewaters. Prior to the conversion, when the facility burned coal, Pond 2 was occasionally used to store bottom ash and slag when certain operational circumstances required it. In 2019, the cleaning of Pond 2 occurred in accordance with Section 257.102 of the Federal CCR Rule. The cleaning of Pond 2 required dredging to remove the prior deposited bottom ash and slag from the pond. When the cleaning occurred, Pond 2 was dewatered and the dredged material allowed to dry within the pond. When the material was suitable for transport, it was loaded into open top trucks, covered and sent off site to Lincoln Stone Quarry for disposal. The potential for CCR fugitive dust emissions were kept to a minimum during the cleaning event. Now that the cleaning of Pond 2 is complete, the potential for CCR fugitive dust will no longer be present.

Gravel roads are present around the perimeter of Pond 2 and have the potential to generate non-CCR fugitive dust during dry weather conditions.

3.2 Facility Roadways

Both gravel covered and asphalt paved roads within the facility are used by trucks hauling equipment and vehicles transporting plant personnel. Non-CCR fugitive dust emissions could occur during transit if accumulated dust is present on the roadways during dry weather conditions.

These potential non-CCR fugitive dust sources are identified on the Site Diagram included in Appendix A.

#### 4.0 DESCRIPTION OF CONTROL MEASURES

#### 4.1 Purpose

The purpose of developing appropriate control measures is to minimize and reduce the emissions of non-CCR fugitive dust from the identified potential emission sources. The control measures and work practices implemented at the facility are described in the following sections.

4.2 Pond 2

During the cleaning activities, Pond 2 was dewatered and the sediment removed to Lincoln Stone Quarry. Therefore, the potential for CCR fugitive dust emissions is no longer applicable. Periodically, Pond 2 is inspected by plant personnel to ensure its functional operation. During these inspections, the plant personnel may drive around the pond on the adjacent gravel roads and the potential for non-CCR fugitive dust emissions may occur during excessively dry and windy conditions. If excessive non-CCR fugitive dust emissions are observed, the speed of the vehicle will be minimized and a water truck may be used if needed.

4.3 Ash Transport Roadways

Truck drivers are instructed on the proper procedure for cleaning trucks and a vehicle speed limit is enforced at the facility. To minimize non-CCR fugitive dust emissions, these roads will be assessed during station activities and any observed accumulated non-CCR material will be promptly cleaned up and collected for proper disposal.

## 5.0 PLAN ASSESSMENTS/AMENDMENTS

To assure that the work practices being implemented during Pond 2 operations adequately control the dust from the identified potential non-CCR fugitive dust emission sources at the facility, routine assessments and record keeping will be performed. These procedures include the following:

5.1 Non-CCR Fugitive Dust Assessments

Pursuant to 35 Ill. Adm. Code 845.500(b)(3), assessments of the potential non-CCR fugitive dust emission sources identified within this Plan will be conducted to assess the effectiveness of this Plan. The assessment will include observation of site activities that involve significant vehicular traffic at the facility to confirm the adequacy of the control measures. The assessments will be conducted during excessive dry weather conditions by an individual designated by the contact identified in Section 2.2 of this Plan. Observations made during each assessment will be recorded on a form similar to the one included in Appendix B.

If the results of the assessment determine that the control measures are not adequate, the necessary response measures will be implemented. If the assessment finds that this Plan does not effectively minimize the non-CCR from becoming airborne, this Plan will be amended to include additional control measures.

5.2 Plan Amendments

This non-CCR Fugitive Dust Plan will be reviewed whenever there is a change in conditions that would substantially affect the written Plan currently in place. A record of the reviews and any modifications or amendments made to the Plan currently in place will be kept on a form similar to the one included in Appendix C. The amended Plan will be reviewed by a Registered Professional Engineer and, if deemed acceptable, will be recertified.

5.3 Citizen Complaints

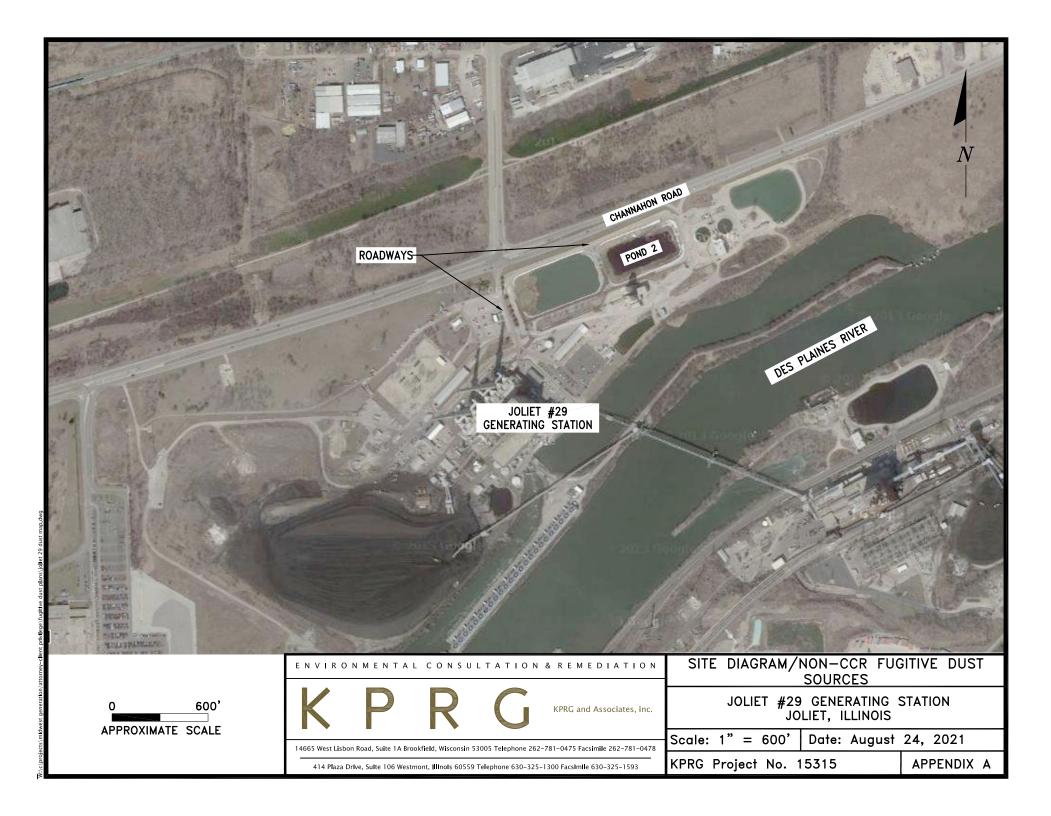
Any written or verbal complaints received from a citizen involving alleged non-CCR fugitive dust emission events at the facility will be recorded by an individual designated by the contact identified in Section 2.2 of this Plan. The complaints will be recorded on a form similar to the one included in Appendix D. Upon receipt of the complaint, an investigation of the alleged source of the non-CCR fugitive dust emissions will be performed and the results of that investigation recorded on the form. If the non-CCR fugitive dust emission event is confirmed, any necessary repairs or changes in operation required to mitigate the non-CCR fugitive dust emissions will be implemented as soon as practicable. Quarterly reports will be submitted to the IEPA no later than 14 days from the end of the quarter of all complaints received during that quarter, including the information required by 845.500(b)(2)(A).

## 6.0 CCR FUGITIVE DUST PLAN REPORTING/RECORDKEEPING REQUIREMENTS

This section outlines the Plan reports that must be prepared and records that must be maintained to meet the requirements specified in Section 845.500(b). These requirements include the following:

- Place the Plan in the facility's operating record and publicly accessible internet site. If the Plan is amended, replace the initial Plan with the amended Plan. Only the most recent amended Plan will be maintained in the facility's operating record and internet site.
- Prepare an annual CCR Fugitive Dust Control Report and submit as part of the annual consolidated report required by Section 845.550. The annual report will include:
  - A description of the actions taken to control CCR fugitive dust,
  - A record of all citizen complaints, and
  - A summary of any corrective measures taken.
  - Placement of the report in the operating record and publicly accessible internet site.
- Provide notification to the IEPA and, if applicable, the Tribal authority when the Plan and reports are placed in the facility's operating record and publicly accessible internet site.

#### 7.0 **PROFESSIONAL ENGINEER CERTIFICATION**


The undersigned Registered Professional Engineer is familiar with the requirements of 35 Ill. Adm. Code 845.500 and has visited and examined the facility or has supervised examination of the facility by appropriately qualified personnel. The undersigned Registered Professional Engineer attests that this non-CCR Fugitive Dust Control Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and meets the requirements of Section 845.500, and that this Plan is adequate for the facility. This certification was prepared as required by Section 845.500(b)(7).

OF ILL

Engineer:	Joshua D. Dav	venport	
Signature:	Jol	QJ-	-
Date:	8/24/21		
Company:	KPRG and As	sociates, Inc.	
Registration S	tate:	Illinois	
Registration N	lumber:	062.061945	
License Expir	ation Date:	November 30,	2021
Professional E	Engineer Stamp	Annum Internet	062-061945 LICENSED PROFESSIONAL ENGINEER

# **APPENDIX** A

# SITE DIAGRAM POTENTIAL NON-CCR FUGITIVE DUST SOURCES



# **APPENDIX B**

# **EXAMPLE ASSESSMENT RECORD**

### **APPENDIX B**

### **JOLIET #29 STATION**

# **EXAMPLE ASSESSMENT RECORD**

Date	Inspector	Unit Inspected (See Key Below)	Maintenance/Cleanup Required (yes/no)	Response Action Performed (completion date)	Inspector Signature

### **APPENDIX C**

# EXAMPLE PLAN REVIEW AND AMENDMENT RECORD

#### **APPENDIX C**

#### **JOLIET #29 STATION**

### **EXAMPLE CCR PLAN REVIEW/AMENDMENT RECORD**

Date of Review	Reason for Review	Section Amended	P.E. Certification (Name/Date)

### **APPENDIX D**

# **EXAMPLE CITIZEN COMPLAINT LOG**

#### APPENDIX D

#### **JOLIET #29 STATION**

### **EXAMPLE CITIZEN COMPLAINT LOG**

		Citizen Information			
Date	Time	(Name, Address, Phone No., Email)	Summary of Complaint	Action Taken	Recorded By

### ATTACHMENT 9 GROUNDWATER MONITORING INFORMATION

<u>Attachment 9-1 – Local Well Stratigraphy Information</u>

ID	Mall Count		From	Та	Original Lagrand Description
ID 1	Well_Count	Well_ID 121973265800	From 0	То 15	Original Logged Description
-					gravel
2	1	121973265800	15	185	limestone
3		121973265800	185	267	shale
4		121973265800	267	605	limestone
5		121973842900	0	8	fill
6	2	121973842900	8	170	lime
7		121973842900	170	220	shale
8		121973842900	220	575	lime
9		121973842800	0	10	black dirt and rocks
10	3	121973842800	10	135	yellow limestone
11	U U	121973842800	135	150	shale
12		121973842800	150	175	limestone
13		121974206700	0	7	clay
14		121974206700	7	8	broken rock
15		121974206700	8	50	lime
16	4	121974206700	50	200	white & gray lime
17		121974206700	200	215	shale streaks lime
18		121974206700	215	225	shale
19		121974045100	0	20	sand & gravel
20	5	121974045100	20	140	brown limestone
20	-	121974045100	140	200	gray limestone
22		121972880200	0	25	clay
22		121972880200	25	40	clay & boulders
23		121972880200	40	50	lime
			40 50	85	
25	C	121972880200			porous lime
26	6	121972880200	85	140	white lime
27		121972880200	140	205	grey lime
28		121972880200	205	235	white porous lime
29		121972880200	235	250	grey lime w/sh strks
30		121972880200	250	255	shale
31	7	121972738300	0	60	clay
32	-	121972738300	60	185	limestone
33		121974359800	0	11	Clay Fill
34		121974359800	11	24	sand & gravel
35	8	121974359800	24	30.5	Fill
36		121974359800	30.5	33	Organic Clay
37		121974359800	33	43	loam
38	9	121972919900	0	8	clay
39	9	121972919900	8	100	limestone
40		121973006000	0	60	clay
41		121973006000	60	69	sand & gravel
42	10	121973006000	69	91	limestone
43		121973006000	91	135	shale
44		121973006000	135	185	limestone
45		121972758800	0	3	top soil
45		121972758800	3	90	rock
40	11	121972758800	90	108	shale
47	11	121972758800	108	108	rock
49		121972758800	138	200	rock & shale
50		121972760100	0	65	clay
51	12	121972760100	65	70	sand
52		121972760100	70	90	gravel
53		121972760100	90	205	limestone
54	13	121972773600	0	90	clay & gravel
55	-	121972773600	90	185	limestone
56		121973178000	0	10	brown clay
57	14	121973178000	10	73	shale
58		121973178000	73	205	limestone
59		121973179200	0	1	top soil
60	15	121973179200	1	75	clay
61	15	121973179200	75	90	clay/sand/gravel
62		121973179200	90	200	limestone
		•	•	•	·

66         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th="">         12         12         12<!--</th--><th>62</th><th></th><th>424072470400</th><th>0</th><th>2</th><th></th></th12<>	62		424072470400	0	2	
6814121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212121212 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
666         1293/12/400         18         189         Immetation           67         1293/12/400         188         200         challe           78         1293/12/400         188         200         challe           70         1         1293/12/500         100         20         investore           71         1293/12/500         100         100         investore           72         1293/12/500         100         100         investore           73         73         1293/12/500         100         200         investore           74         1293/12/500         0         0         40         dy & gravel           75         73         1293/12/500         0         10         10           75         1293/12/500         0         10         10         gravel           76         1293/12/500         0         10         10         gravel           78         1293/12/500         0         6         6         10           79         1293/12/500         0         6         6         10           79         1293/12/500         0         5         gravel         1293/12/500		16				
of control         image is a second sec		16	-			
68         70         26         gravel           77         12         1293375900         120         140           77         1293375900         120         140         shale           78         1293375900         120         120         linestone           78         1293375900         120         120         linestone           78         12937375900         10         040         day & gravel           78         12937375900         0         0         40         day & gravel           78         12937379700         0         10         day         gravel           78         12937379700         0         10         day         gravel           78         12937379700         10         44         gravel         gravel           78         12937378700         10         10         gravel         gravel           78         12937378700         10         20         gravel         gravel           78         12937362000         0         5         gravel         gravel           79         12937562000         5         10         dofamite         gravel           79						
60         14         1203 1379500         120         120           71         1219 1379500         120         130         140         140           72         1219 1379500         100         150         Imestone           73         1219 1379500         100         205         Imestone           73         1219 1379500         10         400         dyk gravel           73         1219 1379700         10         400         dyk gravel           73         1219 1379700         10         40         dyk gravel           73         1219 1379700         10         10         dy           1219 131400         0         10         dy         dy           1219 131400         10         10         dy         dy           1219 131400         10         10         dy         gy           1219 131400         5         10         dy         gy           12						
70         71         21293235900         120         140         shule           72         21293335900         120         120         shule           73         21293335900         100         400         day gavel           74         12193137900         0         400         day gavel           75         12193137900         0         400         day gavel           76         12193137900         0         10         day gavel           77         121         12193137900         10         84         gavel           78         12193137900         10         84         gavel           79         1219333000         10         10         gavel           78         1219333000         10         10         10           1219333000         0         6         10         10           1219333000         0         5         greet         100           1219333000         0         5         greet         121933300           121933000         0         5         greet         121933000           121933000         0         5         grea         121933000						-
72         73         74         73         74         74           74         1297375500         100         205         Imestone           76         1297375500         100         205         Imestone           76         1297375700         0         0         dy gravel           77         19         1297375700         0         0         dy gravel           77         19         1297375700         0         0         dy gravel           78         1297375700         0         0         dy gravel           78         1297375700         0         0         dy gravel           79         19         1219736400         0         10         dy gravel           1219736400         10         10         gravel         11973770         10         20           1219736400         0         5         gravel         11973770         10         20           1219736400         0         5         gravel         11973770         10         20           1219736400         0         5         gravel         11973770         10         100           1219736400         0         5	69		121973179500		120	limestone
72         2493119500         140         150         Imestore           73         2193119500         150         170         40         148         2193119500         100         44         92           75         18         2193119500         10         44         gravel           75         19         2193119700         10         43         gravel           77         19         21931379700         10         44         gravel           777         19         21931379700         10         43         gravel           780         21931379700         10         43         igravel           781         21931379700         10         10         day         imestore           783         21931379700         10         10         day         imestore           783         2193136800         10         6         fili         imestore           783         2193136800         6         6         fili         imestore           783         2193136800         0         5         fili         imestore           783         2193136800         0         5         fili         imestore	70	17	121973179500	120	140	shale
74         75         12073379500         205         Immestance           75         1293379500         40         40         4k gravel           75         1293379500         0         10         10/4           76         1293379700         40         10/4         gravel           77         19         1293379700         40         205         investone           78         1293379700         40         205         investone           78         1293782700         0         10         day           78         12937828000         10         20         gravel           80         21         12973628000         10         20         gravel           81         21         1297362800         0         6         ful           82         21         1297362800         0         6         ful           83         21         1297362800         0         8         day gravel           84         21217362600         0         5         ful         ful           90         21217362600         0         5         ful         ful           12173782600         102 <td< td=""><td>71</td><td>17</td><td>121973179500</td><td>140</td><td>150</td><td>limestone</td></td<>	71	17	121973179500	140	150	limestone
75         18         21293378900         0         40         day gravel           76         19         21293319700         0         10         clay           77         19         21293319700         0         10         clay           78         2129313700         0         44         prawel           78         211736400         0         10         clay           78         211736400         0         10         clay           117364000         10         10         clay         markine           2117364000         10         10         black hard shale         11736400           117364000         10         10         black hard shale         11736400         10           1173764200         0         5         gravel         11736400         10         100           1173764200         0         5         gravel         1173764200         10         100           12197354200         0         8         10         flagstone         1219736200         100         111           1219705200         0         5         112         dolomite         1219716200         102         1100 <td< td=""><td>72</td><td></td><td>121973179500</td><td>150</td><td>170</td><td>shale</td></td<>	72		121973179500	150	170	shale
75         18         12933379600         40         115         Imestone           76         1293737700         0         10         1297           77         19         1293737700         0         84         gravel           77         19         12197364000         10         10         cdy           78         12197364000         10         10         gravel           80         20         12197364000         10         10         gravel           12197364000         10         10         gravel         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         11111         11111         1111 </td <td>73</td> <td></td> <td>121973179500</td> <td>170</td> <td>205</td> <td>limestone</td>	73		121973179500	170	205	limestone
75         12193179600         40         115         Imestone           76         12193179700         0         10         day           77         19         12193179700         0         84         gravel           78         12193179700         0         84         gravel           78         12193379700         0         10         day           78         1219378200         0         100         day           78         121937824000         100         day         Imestone           121937824000         100         6         III         Imestone           12193782600         0         6         III         Imestone           12193782600         0         5         700         dohomite           121937826500         0         8         200         Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	74	10	121973179600	0	40	clay & gravel
77         19         1219717700         90         84         gravel           1219719700         40         205         Imestone           79         121971624000         10         20         gravel           80         121971624000         10         20         gravel           81         121971624000         10         20         gravel           82         121973624000         10         60         fill           83         21         121973624000         10         60         fill           84         1         121973624000         0         6         fill           85         21         12197362400         0         5         gravel           86         21219736500         0         5         gravel         1219736500         102         116         gravel           88         21219716500         0         5         Fill         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116 </td <td>75</td> <td>18</td> <td>121973179600</td> <td>40</td> <td>115</td> <td>limestone</td>	75	18	121973179600	40	115	limestone
77         19         2197137900         10         84         gravel           12197137900         64         205         imestone           79         121973624000         10         120         gravel           80         121973624000         10         10         gravel           81         121973624000         10         6         fill         imestone           82         121973624000         10         6         fill         imestone           83         21         121973624000         6         6         fill         imestone           84         121973624000         0         5         gravel         imestone         imestone           85         1219736500         0         5         gravel         imestone         imestone           91         2147365600         0         5         fill angtone         imestone         imestone           91         2147         1219716200         5         fill angtone         imestone           92         12197136200         102         210         Maquoketa         imestone           93         12197136200         5         112         Maquoketa         imestone<	76		121973179700	0	10	clay
78         12197137000         84         205         Imestone           79         121973624000         10         20         gravel           80         121973624000         10         20         gravel           81         121973624000         10         10         20         gravel           82         121973624000         10         10         10         gravel           83         21         121973624000         10         10         black hard shale           84         21         12197362400         5         fravel         fravel           85         22         12197352400         5         200         limestone           86         12197352400         0         5         fravel         fravel           87         1219736500         0         8         Contestone         fravel           91         24         1219716200         5         fild         foldonite           12197388700         102         100         Maquaketa         faldostol           92         12197388700         5         35         clay, yellow           12197388700         102         10         Maquaketa <td< td=""><td>77</td><td>19</td><td></td><td>10</td><td>84</td><td>· · ·</td></td<>	77	19		10	84	· · ·
79         20         212973624000         0         10         2ay           81         121973624000         100         20         gravel           82         121973624000         100         100         back hard shale           83         21         121973624000         100         100         back hard shale           84         1         121973624000         6         70         dointe           84         1         12197362400         0         6         full           84         1         12197362400         0         5         gravel           85         12197362400         5         200         linestone         100           86         12197362600         8         64 & gravel         100         1100           91         24         12197016200         5         112         dojomite           91         12197136200         102         210         Maguoketa           121971388700         102         210         Maguoketa           121971388700         102         110         fer cock           12197388700         102         110         fer cock           12197388700 <td< td=""><td></td><td></td><td></td><td>84</td><td></td><td>-</td></td<>				84		-
80 81         20         12973624000         10         20         ravel           81         21         12973624000         20         130         150         black hard shale           83         21         121973624000         0         6         fill           84         121973624000         0         5         fill           85         22         12973524600         5         gravel           86         121973524600         0         5         gravel           87         121973524600         0         8         clay & gravel           88         22         12197368500         8         20         flagstone           90         12197368500         20         143         gravel         2197368700           91         24         121970126200         5         110         dolomite           121973188700         5         35         clay, yellow         2197388700         121           12197388700         5         68         day, bue         219738870         121           12197388700         112         170         red rock         prave           12197388700         121         15						
81         21973624000         20         130         Imestone           82         21973624000         130         150         black hard shale           83         21         21973624000         6         fill           84         21         2197362400         6         70         dalomite           84         21         2197362400         5         gravel           85         22         12197362500         8         6         70         dalomite           86         21         2197366500         8         20         flagstone           87         2197366500         8         20         flagstone           99         2197366500         0         5         flul           91         24         12197012600         0         5         flul           91         21         12197012600         0         5         flul and black sol           92         25         12197338700         5         68         24         yass700         130         yass700           93         94         92         12197338700         132         day, yellow           12197388700         122         120						
82         121973624000         130         150         black hard shale           83         21         12197362800         0         6         fill           84         21         12197362800         0         6         fill           85         22         121973524600         0         5         gravel           86         21         12197362800         0         8         clay & gravel           87         21         12197362800         0         8         clay & gravel           88         21         12197368500         20         lagstone           90         24         12197012600         5         11L           12197012600         5         102         dolomite           121970388700         5         35         clay wiles         102           93         24973388700         5         35         clay wile         121973388700         120         120           100         12197388700         121         170         181         line, dat gray         1219738870         121         1219738870           101         12197388700         121         170         181         line, dat gray         1219738870 </td <td></td> <td>20</td> <td>-</td> <td></td> <td></td> <td>-</td>		20	-			-
83         21         2197362800         0         6         fil           84         22         12197362800         6         70         dolomite           85         22         12197362800         6         70         dolomite           86         22         12197364600         0         5         gravel           87         2197366500         8         20         flagstone           93         12197366500         0         1436         gravel           90         243         flagstone         flagstone           91         24         flagstone         flagstone           12197368500         0         5         flL           92         12197388700         0         5         fll and black soil           93         12197388700         132         dlay, yelkow         fll and black soil           12197388700         82         112         rock, hard, white         fll and black soil           12197388700         120         120         rock hard, white         fll and black soil           12197388900         121         120         rock hard, white         fll and black soil           12197388900         121			-			
84         21         121973628800         6         70         dolomite           85         22         121973524600         0         5         gravel           86         121973524600         0         8         clay & gravel           87         12197366500         0         8         clay & gravel           88         23         12197366500         20         145         gravel           90         12197016200         0         15         FIL         11           91         124         12197016200         0         5         FIL           92         12197016200         0         5         FIL         11           93         12197338700         5         35         clay, blue         12197338700         16         clay, blue           12197338700         5         82         sand & clay         110         12197338700         112         rock, hard, white           12197338700         112         170         red rock         red rock         red rock           100         12197388900         12         15         Sand and Gravel         12197388900         12         15         Sand and Gravel         12197388900						
85         22         121973524600         0         5         gravel           86         23         121973524600         0         8         200         limestone           87         121973686500         0         8         20         flagstone           89         121973686500         0         148         gravel         1111           91         24         12197016200         0         5         Flut           92         12197016200         0         5         Flut         1111           93         12197388700         0         5         flit and black soil           12197388700         102         210         Maguoketa         11111           121973388700         103         5         68         day, velicow           121973388700         112         rock, hard, white         121973388700         112           121973388700         112         rock         12197388900         112         rock           12197388900         112         rock         12197388900         112         rock           12197388900         15         20         Clay         rock         rock           12197388900         15		21				
86         24         121973524600         5         200         Immestone           87         23         121973685500         0         8         clay & gravel           88         121973685500         20         14 grav limestone         12197310200         5         Fill           90         121970126200         0         5         Fill         121970126200         5         Fill           91         24         121970126200         0         5         Fill         121970126200         5         Fill           92         121973388700         0         5         fill and black soil         1112         102         121973388700         5         68         clay, wellow           93         121973388700         5         68         clay, dlay         121973388700         112         rock, hard, white           121973388700         112         170         red rock         121973388700         112         Inc         Inc         12197338700         112         Inc         110         12197338700         112         Inc         Inc, drk gray         1111         111173388900         112         Inc         Inc, drk gray         1111         1111373889900         112         Inc						
87         23         12197368500         0         8         clay, gravel           89         12197368500         20         flagstone           90         12197368500         20         145         grav limestone           91         24         12197368500         0         5         FILL           91         24         121970126200         0         5         FILL           92         121970126200         102         210         Maguokta           93         12197388700         5         5         clay, vellow           121973388700         5         68         clay, blue         12197338700           96         121973388700         82         112         rock, hard, white           121973388700         82         112         rock, hard, white           121973388700         112         170         red rock           121973388700         12         12         Sand and Gravel           100         12197388900         15         20         Clay           12197388900         15         20         Clay         1219738990           101         12197388900         35         37         broken rock		22	-			•
88         23         121973685500         8         20         flagstone           90         121970125200         0         5         FiLL           91         24         121970125200         5         102         dolomite           92         121970125200         5         102         dolomite           93         121970125200         5         fill and black soll           94         121973388700         0         5         fill and black soll           95         121973388700         5         68         clay, wilce           96         121973388700         68         82         sand & clay           121973388700         112         rock, hard, white         121973388700         12           121973388700         112         rock, hard, white         121973388700         12           121973388700         112         rock, hard, gray         121973388700         12         15           100         121973388700         12         15         Sand and Gravel         121973388700         12         15           101         12197388900         15         20         Clay         121973388700         15         16           102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
89         121973686500         20         145         gray limestone           90         24         121970126200         0         5         FIL           92         121970126200         102         210         Maguoketa           93         121970388700         0         5         fill and black soll           94         121973388700         5         35         clay, blue           96         25         121973388700         68         clay, blue           97         121973388700         68         clay, blue           98         121973388700         68         clay, blue           100         121973388700         112         170         red rock           111         12197388700         112         170         red rock           12197388700         112         170         red rock         12197388700           101         12197388700         12         128         sand a clay           112         12197388900         12         128         sand and Gravel           1102         121973889900         15         20         clay         15           1103         121973889900         37         95         <						
90         24         121970126200         0         5         FILL           91         24         121970126200         5         102         dolomite           93         121970126200         0         5         102         dolomite           93         121970126200         0         5         fill and black soil           94         121973388700         5         35         clay, yellow           95         121973388700         5         68         clay, soil and & clay           97         121973388700         68         82         sand & clay           100         12197388700         112         rock, hard, white         rock, hard, white           101         12197388700         112         rock, hard, white         rock, hard, white           102         12197388700         112         rock, hard, white         rock, hard, white           102         12197388700         112         rock, hard, white         rock, hard, white           101         12197388900         15         20         Clay         rock, hard, white           102         12197388900         37         P5         Line         rock, hard, white           105         12197		23				
91         24         121970126200         5         102         dolomite           92         121970126200         102         210         Maquoketa           93         121973388700         5         5         fill and black soil           94         121973388700         5         5         68         clay, yellow           95         121973388700         68         82         sand & clay           97         121973388700         68         82         sand & clay           98         121973388700         82         112         rock, hard, white           121973388700         112         170         red rock           12197388900         12         170         red rock           100         12197388900         12         170         red rock           12197388900         12         15         Sand and Gravel           121973889900         15         20         Clay           121973889900         37         95         Lime           121973889900         105         140         Lime and Shale Streaks           106         121973889900         105         140         Lime and Shale Streaks           107	89		121973686500	20	145	gray limestone
92         121970126200         102         210         Maquoketa           93         121973388700         0         5         fill and black soil           95         121973388700         5         35         clay, yellow           96         121973388700         68         82         sand & clay           97         121973388700         68         82         sand & clay           98         121973388700         82         112         rock, hard, white           100         121973388700         82         112         rock, hard, white           101         12197388700         0         12         lag roke rade           102         12197388900         0         12         lag roke rade           101         12197388900         12         15         Sand and large Gravel           102         12197388900         20         25         Sand and large Gravel           103         12197388900         35         37         broken rock           1197388900         95         105         Shallow and Lime           12197388900         95         105         Shallow and Lime           121973889900         105         140         Lime an	90		121970126200		5	FILL
93         121973388700         0         5         fill and black soil           94         121973388700         5         35         clay, yellow           95         121973388700         35         68         clay, yellow           96         121973388700         82         121         rock, hard, white           97         121973388700         82         112         rock, hard, white           199         121973388700         112         170         ref rock           100         121973388700         112         170         ref rock           101         12197388900         112         170         ref rock           102         12197388900         12         115         Sand and Gravel           1101         121973889900         12         15         Sand and Gravel           121973889900         35         37         broken rock         12197389900           105         121973889900         35         140         Lime and Shale Streaks           106         121973889900         105         140         Lime and Shale Streaks           1110         27         121973265900         7         17         broken limestone <t< td=""><td>91</td><td>24</td><td>121970126200</td><td>5</td><td>102</td><td>dolomite</td></t<>	91	24	121970126200	5	102	dolomite
94         121973388700         5         35         clay, yellow           95         121973388700         35         68         clay, blue           97         121973388700         68         82         sand & clay           98         121973388700         82         112         rock, hard, white           12973388700         112         170         red rock           100         121973388700         12         15         Sand and Gravel           101         12197388900         12         15         Sand and Gravel           102         12197388900         12         15         Sand and Gravel           103         12197388900         15         20         Clay           113         12197388900         35         37         broken rock           12197388900         35         37         broken rock           12197388900         37         95         Lime           12197388900         150         140         Lime and Shale Streaks           12197388900         160         1218         Shale           12197388900         0         7         17         broken limestone           12197388900         0	92		121970126200	102	210	Maquoketa
95         25         121973388700         35         68         clay, blue           97         121973388700         82         sand & clay         sand & clay           98         121973388700         82         sand & clay         sand & clay           99         121973388700         112         170         red rock           100         121973388700         0         12         large River Rock           101         12197388900         15         20         Clay           102         12197388900         15         20         Clay           103         12197388900         15         20         Clay           110         12197388900         37         95         lime           12197388900         37         95         lime         12197388900           106         12197388900         140         Line and Shale Streaks         12197388900           107         12197388900         140         218         Shale           110         121973265900         7         black soil           111         121973265900         7         103         limestone           1111         12197027700         0         10	93		121973388700	0	5	fill and black soil
96         25         121973388700         68         82         sand & clay           97         121973388700         82         112         rock, hard, white           98         121973388700         112         rock, hard, white           99         121973388700         112         170         ref rock           100         12197388700         0         12         Large River Rock           101         12197388900         15         20         Clay           102         12197388900         15         20         Clay           103         12197388900         35         37         broken rock           104         26         12197388900         35         37         broken rock           105         12197388900         35         37         broken rock         12197389900         15         140           106         12197389900         105         Shallow and Line         12197389900         15         140         Line and Shale Streaks           107         12197388900         105         I40         Line streaks         12197389900         12197389900         12197389900         12197389900         121973265900         17         103         Iimesto	94		121973388700	5	35	clay, yellow
96         25         121973388700         68         82         sand & clay           97         121973388700         82         112         rock, hard, white           98         121973388700         112         rock, hard, white           99         121973388700         112         170         ref rock           100         12197388700         0         12         Large River Rock           101         12197388900         15         20         Clay           102         12197388900         15         20         Clay           103         12197388900         35         37         broken rock           104         26         12197388900         35         37         broken rock           105         12197388900         35         37         broken rock         12197389900         15         140           106         12197389900         105         Shallow and Line         12197389900         15         140         Line and Shale Streaks           107         12197388900         105         I40         Line streaks         12197389900         12197389900         12197389900         12197389900         121973265900         17         103         Iimesto	95		121973388700	35	68	clay, blue
98         121973388700         112         170         red rock           99         121973388700         170         181         lime, dark gray           100         12197388900         0         12         Large River Rock           101         121973889900         12         15         Sand and Gravel           102         121973889900         12         15         Sand and Gravel           104         26         121973889900         35         37         broken rock           106         12197388900         35         37         broken rock         12197388900           106         12197388900         95         105         Shallow and Lime         12197388900         105         140           107         12197388900         95         105         Shallow and Lime         12197388900         105         140         Lime and Shale Streaks           108         12197388900         105         140         Lime and Shale Streaks         1219738590         105         112           110         27         12197385900         7         17         broken limestone         121973265900         7         17         broken rock           1111         12197027700 <td>96</td> <td>25</td> <td>121973388700</td> <td>68</td> <td>82</td> <td>sand &amp; clay</td>	96	25	121973388700	68	82	sand & clay
98         121973388700         112         170         red rock           99         121973388700         170         181         lime, dark gray           100         12197388900         0         12         large River Rock           101         12197388900         12         15         Sand and Gravel           102         12197388900         12         15         Sand and Gravel           103         12197388900         12         15         Sand and Large Gravel           104         12197388900         35         37         broken rock           105         12197388900         35         37         broken rock           106         12197388900         35         105         Shallow and Lime           107         12197388900         105         140         Lime and Shale Streaks           108         12197388900         105         140         Lime and Shale Streaks           109         12197388900         105         140         Lime and Shale Streaks           110         27         121973265900         7         17         Broken limestone           111         12197027700         0         10         boulders         1219702770	97		121973388700	82	112	rock, hard, white
99         121973388700         170         181         lime, dark gray           100         1219733889900         0         12         Large River Rock           101         121973889900         12         15         Sand and Gravel           102         121973889900         12         15         Sand and Gravel           103         121973889900         12         0         35         Sand and Large Gravel           104         26         121973889900         35         37         broken rock           105         121973889900         35         37         broken rock           106         121973889900         35         105         Shallow and Lime           110         121973889900         105         IA0         Lime and Shale Streaks           108         121973889900         105         IA0         Lime and Shale Streaks           109         27         121973265900         7         17         black soil           111         121973255900         17         103         limestone           112         12197027700         0         10         boulders           1213         121970027700         10         20         gravel boulde	98			112	170	
100         121973889900         0         12         Large River Rock           101         121973889900         12         15         Sand and Gravel           103         121973889900         12         15         Sand and Large Gravel           104         26         121973889900         20         35         Sand and Large Gravel           105         121973889900         35         37         broken rock           105         121973889900         35         37         broken rock           106         121973889900         35         37         broken rock           107         121973889900         35         105         Shallow and Lime           108         121973889900         105         140         Lime and Shale Streaks           109         121973265900         0         7         broken limestone           111         121973265900         17         103         limestone           1111         121973265900         17         103         limestone           1111         121970027700         10         20         gravel boulders and sand           112         121970027700         23         33         dark gray lime			-			
101         121973889900         12         15         Sand and Gravel           102         121973889900         15         20         Clay           103         121973889900         35         Sand and Large Gravel           104         121973889900         35         37         broken rock           105         121973889900         35         37         broken rock           106         121973889900         35         105         Shallow and Lime           107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         140         218         Shale           109         27         121973265900         0         7         black soil           111         121973265900         17         103         limestone           111         12197027700         0         10         boulders           112         12197027700         10         20         gravel boulders and sand           111         121970027700         20         23         ygllowish lime           1116         121970027700         20         23         ygllowish lime           116         121970027700	-					
102         121973889900         15         20         Clay           103         121973889900         35         37         broken rock           105         121973889900         35         37         broken rock           106         121973889900         35         137         broken rock           107         121973889900         35         105         Shallow and Lime           107         121973889900         95         105         Shallow and Lime           108         121973889900         105         140         Lime and Shale Streaks           109         121973889900         105         140         Lime and Shale Streaks           110         121973265900         7         17         black soil           111         121973265900         7         17         broken limestone           111         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         121970027700         23         33         dark gray lime           116         121970027700         23         33         dark gray lime           117         12197002						
103         121973889900         20         35         Sand and Large Gravel           104         104         121973889900         35         37         broken rock           105         121973889900         35         37         broken rock           106         121973889900         35         105         Shallow and Lime           107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         105         140         Lime and Shale Streaks           109         12197385900         105         140         Lime and Shale Streaks           110         27         121973265900         7         17         broken limestone           111         121973265900         17         103         limestone           111         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         28         121970027700         23         33         dark gray lime           115         121970027700         33         73         gray lime           116         121970159300         1         133 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
104         26         121973889900         35         37         broken rock           105         121973889900         37         95         Lime           106         121973889900         95         105         Shallow and Lime           107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         140         218         Shale           109         121973265900         0         7         black soil           110         27         121973265900         7         17         broken limestone           111         121973265900         7         17         broken limestone           111         12197027700         0         10         boulders           113         12197027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         23         33         dark gray lime           116         121970027700         73         135         white lime           117         121970159300         1         133         Silurian dolomite           119 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td>						,
105         121973889900         37         95         Lime           106         121973889900         95         105         Shallow and Lime           107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         105         140         Lime and Shale Streaks           109         12197385900         10         218         Shale           109         121973265900         7         10         broken limestone           111         121973265900         7         17         broken limestone           111         121973265900         17         103         limestone           111         12197027700         0         10         boulders           113         114         12197027700         10         20         gravel boulders and sand           114         12197027700         23         33         dark gray lime           115         12197027700         23         33         dark gray lime           116         12197027700         73         135         white lime           118         121970159300         1         133         Silurian dolomite           1219	-	20				
106         121973889900         95         105         Shallow and Lime           107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         140         218         Shale           109         121973265900         0         7         black soil           110         27         121973265900         7         17         broken limestone           111         121973265900         7         17         broken limestone           111         121973265900         7         17         broken limestone           111         121973265900         7         103         limestone           111         12197027700         0         10         boulders           112         12197027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         23         33         dark gray lime           116         121970027700         73         135         white lime           118         121970159300         1         133         Silurian dolomite           1219		20	-			
107         121973889900         105         140         Lime and Shale Streaks           108         121973889900         140         218         Shale           109         121973265900         0         7         black soil           110         27         121973265900         7         17         broken limestone           111         121973265900         17         103         limestone           111         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           111         121970027700         10         20         gravel boulders and sand           113         121970027700         23         33         dark gray lime           116         121970027700         23         33         dark gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         dark gray lime           119         29         121970159300         1         133         Siluria dolomite           1219         121970159300         1         133         Siluria dolomite withe shale						
108         121973889900         140         218         Shale           109         11         121973265900         0         7         black soil           110         27         121973265900         7         17         broken limestone           111         121973265900         17         103         limestone           111         121973265900         17         103         limestone           111         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         23         33         dark gray lime           116         121970027700         23         33         dark gray lime           117         121970027700         33         73         gray lime           118         121970159300         1         135         white lime           119         29         121970159300         1         133         Silurian dolomite           121         121970159300         1         133         Silurian dolomite	-		-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
110         27         121973265900         7         17         broken limestone           111         121973265900         17         103         limestone           112         121973265900         17         103         limestone           111         28         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         20         23         yellowish lime           116         121970027700         23         33         dark gray lime           117         121970027700         33         73         gray lime           118         121970027700         73         135         white lime           119         29         121970159300         0         1         drift           120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         30         121970350100         2         top soil           123 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
111         121973265900         17         103         limestone           112         112         12197027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         20         23         yellowish lime           116         121970027700         23         33         dark gray lime           117         121970027700         33         73         gray lime           118         121970027700         73         135         white lime           119         29         121970159300         0         1         drift           120         29         121970159300         1         133         Silurian dolomite           120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         30         121970350100         2         55         clay           124         30         121970350100         2         55         clay						
112         121970027700         0         10         boulders           113         121970027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         20         23         yellowish lime           116         121970027700         23         33         dark gray lime           116         121970027700         33         73         gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         143         145         shale           122         121970159300         0         2         top soil           123         30         121970350100         2         55         clay           124         30         121970350100         2         55         clay           124         3	110	27	121973265900		17	broken limestone
113         121970027700         10         20         gravel boulders and sand           114         121970027700         20         23         yellowish lime           115         121970027700         23         33         dark gray lime           116         121970027700         23         33         dark gray lime           117         121970027700         33         73         gray lime           118         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         143         145         shale           122         121970159300         143         145         shale           123         30         121970350100         2         55         clay           124         30         121970350100         2         55         clay           124         30         121970350100         55         83         sand	111		121973265900	17	103	limestone
114         28         121970027700         20         23         yellowish lime           115         121970027700         23         33         dark gray lime           116         121970027700         23         33         dark gray lime           117         121970027700         33         73         gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         143         145         shale           122         121970159300         0         2         top soil           123         30         121970350100         0         2         top soil           124         30         121970350100         2         55         clay           124         30         121970350100         55         83         sand	112		121970027700	0	10	boulders
115         128         121970027700         23         33         dark gray lime           116         121970027700         33         73         gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         1         133         Silurian dolomite           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55           124         30         121970350100         55         83	113		121970027700	10	20	gravel boulders and sand
115         121970027700         23         33         dark gray lime           116         121970027700         33         73         gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         30         121970350100         55         83         sand	114	no	121970027700	20	23	yellowish lime
116         121970027700         33         73         gray lime           117         121970027700         73         135         white lime           118         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         1         133         Silurian dolomite           121         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         30         121970350100         55         83         sand	115	28	121970027700	23	33	dark gray lime
117         121970027700         73         135         white lime           118         119         29         121970159300         0         1         drift           119         29         121970159300         1         133         Silurian dolomite           120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         30         121970350100         55         83         sand					73	
118         121970159300         0         1         drift           119         129         121970159300         1         133         Silurian dolomite           120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         121970350100         55         83         sand						
119         29         121970159300         1         133         Silurian dolomite           120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         121970350100         55         83         sand						
120         121970159300         133         143         dolomite withe shale           121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         121970350100         55         83         sand			-			
121         121970159300         143         145         shale           122         121970350100         0         2         top soil           123         30         121970350100         2         55         clay           124         121970350100         55         83         sand		29				
122         121970350100         0         2         top soil           123         121970350100         2         55         clay           124         121970350100         55         83         sand			-			
123         30         121970350100         2         55         clay           124         121970350100         55         83         sand						
124 121970350100 55 83 sand						
	-	30				
125   1219/0350100   83   225  Imestone						
	125		1219/0350100	83	225	limestone

120		121070110800	0	2	D-:#
126 127	31	121970119800	0	3 65	Drift
	51	121970119800			Limestone
128		121970119800	65	201	Maquoketa
129	32	121970356800	0	1	topsoil
130	32	121970356800	1	58	clay & gravel
131		121970356800	58	180	limestone
132	22	121970356900	0	1	top soil
133	33	121970356900	1	76	clay & gravel
134		121970356900	76	185	limestone
135		121970124700	0	12	surface
136		121970124700	12	135	limestone, hard
137	34	121970124700	135	140	shale
138	51	121970124700	140	165	limestone, hard
139		121970124700	165	175	streaks of limestone, shale
140		121970124700	175	245	Maquoketa
141	35	121970124800	0	125	Dolomite
142	55	121970124800	125	240	Maquoketa
143	26	121970125000	10	148	Dolomite
144	36	121970125000	148	256	Maquoketa
145	27	121970296100	0	42	clay & gravel
146	37	121970296100	42	160	limestone
147		121972646300	0	40	clay & gravel
148	38	121972646300	40	115	limestone
149		121973925800	0	6	drift
145		121973925800	6	33	limestone
150	39	121973925800	33	37	shale
151		121973925800	33	100	
152			0	98	limestone Dolomite
	40	121970126100			
154		121970126100	98	210	Maquoketa
155		121973265600	0	4	black soil
156		121973265600	4	10	yellow clay and boulders
157	41	121973265600	10	35	yellow clay
158		121973265600	35	55	blue clay
159		121973265600	55	62	sand and gravel
160		121973265600	62	200	limestone
161		121973265700	0	14	boulders
162		121973265700	14	17	rock and gravel
163	42	121973265700	17	94	lime
164	12	121973265700	94	103	shale and lime
165		121973265700	103	137	shale
166		121973265700	137	147	lime
167		MW-01	0	1	FILL: Topsoil with fine to coarse gravel
168		MW-01	1	6	FILL: 1' to 2' rounded coarse gravel at surface
169		MW-01	6	9	FILL: Fine to coarse sand and gravel, limestone fragments
170	43	MW-01	9	11	FILL: Limestone fragments
171		MW-01	11	19	Fine to coarse sand and gravel, some black clay, limestone fragments
172		MW-01	19	20	Limestone fragments
173		MW-01	20	27.5	Fine to coarse sand and gravel, with limestone fragments, weathered
174		MW-02	0	1	Fine to coarse grave (CA-6)
175		MW-02	1	4	Brown fine to coarse sand and gravel
175		MW-02	4	6	1" limestone fragments
170		MW-02	6	8	Brown fine to coarse sand and gravel
177		MW-02	8	12.5	1" limestone fragments
178	44	MW-02	12.5	12.5	Little Silty clay
		MW-02			Coarse gravel with black silty clay, trace roots, trace coarse sand
180		MW-02	13.5	16	Brown silty fine to coarse sand, trace fine gravel
181		MW-02	18.5	21	
182		-	21	24	Limestone fragments, trace light brown silty clay
183		MW-02	24	28.5	Limestone fragments
184		MW-03	0	4	Coarse gravel (CA-6)
	45	1 414 02			
185 186	45	MW-03 MW-03	4 18.5	18.5 41	Fine to coarse sand and gravel Tan fine to coarse sand, with coarse gravel

187		MW-04	0	1	Coarse gravel (CA-6)
188		MW-04	1	6	Brown silty clay, trace coarse sand, stiff
189		MW-04	6	17	Brown fine to coarse sand and gravel, trace limestone fragments
190	46	MW-04	17	20	Limestone fragments
191	46	MW-04	20	23	Brown fien to coarse sand and gravel, trace limestone fragments
192		MW-04	23	33	Fine to coarse sand and gravel
193		MW-04	33	35.5	Fine to coarse sand
194		MW-04	35.5	40	Fine to coarse sand and gravel, with limestone fragments
195		MW-05	0	8.5	Fine to coarse gravel, topsoil
196		MW-05	8.5	19	Black silty clay, coarse sand
197	47	MW-05	19	23.5	Coarse gravel fragments
198	47	MW-05	23.5	31	Tan to light brown fine to coarse sand, little coarse gravel
199		MW-05	31	41	Fine to coarse sand and gravel
200		MW-05	41	42	Tan to light brown fine to coarse sand, little coarse gravel
201		MW-06	0	8.5	Gravel (CA-6) topsoil
202	48	MW-06	8.5	31	Brown to tan fine to coarse sand and gravel, trace limestone, gravel seams
203	40	MW-06	31	38.5	Fine to coarse sand and gravel
204		MW-06	38.5	40.5	Limestone Bedrock
205	49	MW-07	0	8.5	Gravel (CA-6) topsoil
206	45	MW-07	8.5	39.5	Tan to brown fine to coarse sand and gravel
207		MW-08	0	1	Fine to coarse gravel fill
208		MW-08	1	3.5	Dark brown silty clay, some fine to coarse sand, stiff
209	50	MW-08	3.5	6	Black/brown fine to coarse sand and gravel
210		MW-08	6	20	Limestone fragments
211		MW-08	20	35.5	Black/brown fine to coarse sand and gravel
212		MW-09	0	1	Coarse sand and gravel (CA-6)
213		MW-09	1	3.5	Coarse gravel, with black silty clay, trace root seams
214		MW-09	3.5	11	Coarse gravel fragments, with fine to coarse sand
215	51	MW-09	11	18.5	Limestone fragments, with light brown silty fine to coarse sand
216		MW-09	18.5	23.5	Limestone fragments, with light brown to dark orange fine to coarse sand
217		MW-09	23.5	28.5	Light brown/orange fine to coarse sand, with coarse gravel
218		MW-09	28.5	35	Light brown coarse sand, some fine to coarse gravel, little fine sand
219		MW-10	0	3	Coarse gravel
220	52	MW-10	3	7	Brown clay
221	52	MW-10	7	19	Black/gray sandy silt
222		MW-10	19	41	Gray silty clay, trace coarse sand, soft
223		MW-11	0	9	Fine to coarse sand and gravel, fill
224	53	MW-11	9	14	Grades to dark gray clayey silt
225		MW-11	14	24	Dark gray clayey silt, soft
226		MW-11	24	39.5	Light brown fine to coarse silt and gravel

#### Attachment 9-1. Local Well Stratigraphy Information. Midwest Generation, LLC, Joliet #29 Generating Station, Joliet, IL.

Attachment 9-2 – Boring Logs

			ENGINEERING INC.	CLIENT		Midw	B-MW-1 est Generation	SHEET	1 OF 2
	41 K		LINGINEERING INC.				3.070 et No. 29		
LOGG			AFG Ation 531.5	200/11					
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL Water C PL 0 20 Unconfined C Strengtr 1 2	) LL 30 40 50	NOTES & TEST RESULTS
531.5	0.0		Topsoil with fine to coarse gravel, m	oist					
			1' to 2' rounded coarse gravel at sur	face	SS-1 1.0-2.5 8"R	8 10 5		3	Bentonite seal 2.0'-14.0'. Stickup
					SS-2 3.5-5.0 10"R	12 32 14			protective cover installed.
			Fine to coarse sand and gravel, lime fragments	estone	SS-3 6.0-7.5 10"R	12 12 7			
			Limestone fragments, wet		SS-4 8.5-10.0 0.5"	844			
520.5	11.0		Fine to coarse sand and gravel, son clay, limestone fragments, wet	ne black	SS-5 11.0-12.5 8"R	5 5 5			
					SS-6 13.5-15.0 6"R	45 6 10			Sand pack 14.0'-26.25'
514.5	17.0		∑ Saturated		SS-7 16.0-17.5 10"R	868			Set screen (slot 0.010) 16.25'-26.25'
511.5	20.0		Limestone fragments, saturated		SS-8 18.5-20.0 6"R	14 10 11			
DRILL	.ING N .ING E	METH EQUIF	RACTOR <b>Groff Testing</b> OD <b>4.25" I.D. HSA</b> PMENT <b>CME</b> TED <b>10/27/10</b> ENDED <b>10/27/1</b> 0	insta mon	IARKS alled 2" diam itoring well.	eter F			

P	ATR	ICK	ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW-1 est Gener 3.070 et No. 29	ation	SHE	OF	2		
LOGG	ED B	Y	AFG										
GROU	ND E	LEV	ATION 531.5										
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS	PL 10 Unconf	ater Cont 		LL 50 5		NOTE & F RES	S
511.5	20.0	×.	Fine to coarse sand and gravel, with limestone fragments, weathered, sat		SS-9 21.0-22.5 8"R	22 25 13							

							SS-9 21.0-22.5 8"R	22 25 13						
			Wet to satu	rated			SS-10 23.5-25.0 8"R	15 11 10						
504.0	27.5		Saturated				SS-11 26.0-27.5 10"R	12 16 18						
				End of Boring at 27.5'										
												12619		
										-				
DRILLING METHOD 4.25" I.D. HSA Inst							ARKS Iled 2" diam itoring well.	eter F	PVC	\⊈ '	LEVE	<u>L (ft.)</u>	-1	

				BORING	<b>NUMBER</b>	I	B-MW	-2		SF	IEET	1	OF	2
D/		ICK	ENGINEERING INC.	CLIENT		Midw	est G	enera	tion					
<b>F</b> #		ICN	ENGINEERING INC.	PROJEC	CT & NO.	2105	3.070							
				LOCATI	ON	Joli	et No.	29						
OGGI	ED B	Y	AFG											
ROU	ND E	LEVA	TION 531.2											
z	Ē						PL r	Wa	ter Con	itent				
	Ë	$\triangleleft$	SOIL/ROCK		SAMPLE TYPE & NO.	S	PL [   1	 02			LL 0 50		NOTE	S
₹ I	H	MI	DESCRIPTION		DEPTH (FT)	l≥Ž	U	nconfin	ed Con	npressiv	/e		&	
ELEVATION	ОЕРТН (FT)	STRATA			RECOVERY(IN)	BLOW		Stre	ength (T	ſŚF) > X	€	TES	r res	SULT
531.2	0.0	0 0	Fine to coarse gravel (CA-6)	· · ·						ĬĬ		1" - 6'	copple	es at
530.2	1.0		,									surfac		50 at
000.2	1.0		Brown fine to coarse sand and gravel	, moist	SS-1	5								
					1.0-2.5	7								
					6"R	5						Bento	nite se	al
						1							4.0'. Sti	
	·	• • •											tive co	ver
		• • • •			SS-2	8						install	ea.	
	ŀ		1" limestone fragments		3.5-5.0	12								
					0.5"R	6								
	-					1								
525.2	6.0													
	0.0	· · · ·	Brown fine to coarse sand and gravel,	, moist	SS-3	5								
					6.0-7.5	9								
		· · ·			3"R	6								

	1" limestone fragments	SS-4 8.5-10.0 9"R	11 8 10		
	Little silty clay, moist to wet	SS-5 11.0-12.5 3"R	6 37 11		
517.7	13.5 Coarse gravel with black silty clay, trace Coarse coarse sand, moist	e SS-6 13.5-15.0 4"R	- 15 4 3		Sand pack 14.0'-26.5'
515.2	16.0 Black silty clay, with fine to coarse sand gravel, moist	l and SS-7 16.0-17.5 8"R	12 6 12		Set screen 16.5'-26.5'
512.7	19.5 Brown silty fine to coarse sand, trace fin gravel, saturated	ne SS-8 18.5-20.0 6"R	3 4 3		
DRILL	ING CONTRACTOR <b>Groff Testing</b> ING METHOD <b>4.25" I.D. HSA</b> ING EQUIPMENT <b>CME</b> ING STARTED <b>10/29/10</b> ENDED <b>10/29/10</b>	REMARKS Installed 2" dian monitoring well		<u>WATER LEVEL (ft.</u> ♀ 18.5 ♀ 21.5' ▼	)

P	ATR	ICK	ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW-2 rest Generation 3.070 iet No. 29	SHEET	2 OF 2
LOGG GROU			AFG ATION 531.2						
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL Water Con 10 20 Unconfined Con Strength ( 1 2	LL. 30 40 50 1 mpressive	& TEST RESULTS
511.2 510.2	20.0 21.0		Limestone fragments, trace light bro clay, moist	own silty	SS-9 21.0-22.5 8"R	13 16 13			
			Limestone fragments, saturated		SS-10 23.5-25.0 4"R	14 13 13			
502.7			End of Boring at 28.5'	v					
								÷.	
DRILLI DRILLI	ING M	IETH QUIF		Insta mon	ARKS Illed 2'' diame itoring well.	eter P		LEVEL (ft.)	

P	ATR	ICK	ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW-3 est Generat 3.070 et No. 29		SHEET	1 OF 2
LOGG			AFG	200711		001				
	DEPTH (FT)	STRATA	ATION 535.5 SOIL/ROCK DESCRIPTION	·	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN		PL 10 2 Unconfine	ter Content	LL 40 50 55ive # 4 5	& TEST RESULTS
535.5			Coarse gravel (CA-6)							
					SS-1 1.0-2.5	_				Bentonite seal 2.0'-30.5'. Stickup
			Fine to coarse sand and gravel, dry		SS-2 3.5-5.0	8 10 12				protective cover installed.
					SS-3 6.0-7.5	-				
		0 0 0 0 0 0 0 0 0 0 0 0		*	SS-4 8.5-10.0	12 11 10				
		0 0 0 0 0 0 0 0			SS-5 11.0-12.5					
		0 0 0 0 0 0 0 0 0 0			SS-6 13.5-15.0	9 12 13				
	1	0 0 0 0 0 0 0			SS-7 16.0-17.5					2.
517.0		0 0 0 0 0 0	Tan fine to coarse sand, with coarse dry	gravel,	SS-8 18.5-20.0	12 17 23				
DRILL	.ING ( .ING N .ING E	/IETH	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME TED 11/1/10 ENDED 11/1/10	Insta	ARKS Illed 2'' diam itoring well.	eter P		<u>TER LEV</u> 31.0	/ <u>EL (ft.)</u>	

P/	ATRI	СК	ENGIN	EERING INC.	CLIENT		Midw		3 neration	SHEE	ET 2 OF 2
						CT & NO. ON		3.070 et No.	29		
LOGG GROU			AFG ATION 5	35.5							
ELEVATION	DEPTH (FT)	STRATA		SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS		Water Col 	L 30 40 L	L 50 NOTES & TEST RESULTS
514.5	21.0 ° ° ° ° ° ° °		Tan fine to	o coarse sand, with coarse	e gravel,	SS-9 21.0-22.5 SS-10 23.5-25.0 SS-11 26.0-27.5	14 32 36				Sand pack
504.5	31.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		∑ Saturated			SS-12 28.5-30.0 SS-13 31.0-32.5 SS-14 33.5-35.0 S-15 36.0-37.5	21 16 15 15 11 12				Set screen (slat 0.010) 30.5'-40.5'
494.5	。 。 。 41.0 。			End of Boring at 41.0'		SS-16 38.5-40.0	50/0.5				
DRILL DRILL	ING MI ING EC	ETH( QUIP	DD 4	Groff Testing 4.25" I.D. HSA CME ENDED 11/1/10	Insta	ARKS Illed 2" diamo itoring well.	eter P	vc	<u>WATER</u> ⊈ 31.0 <u>▼</u> <u>▼</u>	LEVEL (f	<u>t.)</u>

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-4 Midwest Generation 21053.070 Joliet No. 29	SHEET	1	OF	2
LOGGED BY AFG						
GROUND ELEVATION 535.8						

Solution     Solution     Sample Description     Sample Type & Anone Betting the standard of the s			<u>г</u>		1			141 -				
335.8       0.0       0       Coarse gravel (CA-6), dry       534.8         534.8       1.0       0       0       0         534.8       1.0       0       0       0         534.8       1.0       0       0       0         Brown silty day, trace coarse sand, attff, dry       1.0.2.5       6       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         7       0       0       0       0       0         7       0       0       0       0       0         8       0       0       0       0       0         8       0       0       0       0       0	N N	Ē			SAMPLE		PL r	vvate			LL	NOTES
335.8       0.0       0       Coarse gravel (CA-6), dry       534.8         534.8       1.0       0       0       0         534.8       1.0       0       0       0         534.8       1.0       0       0       0         Brown silty day, trace coarse sand, attff, dry       1.0.2.5       6       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         7       0       0       0       0       0         7       0       0       0       0       0         8       0       0       0       0       0         8       0       0       0       0       0	ATI	ЭH	I ₹	SOIL/ROCK	TYPE & NO.	TS	10	20	30	4	0 50	
335.8       0.0       0       Coarse gravel (CA-6), dry       534.8         534.8       1.0       0       0       0         534.8       1.0       0       0       0         534.8       1.0       0       0       0         Brown silty day, trace coarse sand, attff, dry       1.0.2.5       6       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         528.8       6.0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         6       0       0       0       0         6       0       0       0       0         7       0       0       0       0         7       0       0       0       0       0         7       0       0       0       0       0         8       0       0       0       0       0         8       0       0       0       0       0		ЪТ	Å	DESCRIPTION		<u>N</u>	Ur	Stren	d Com	pressi	ve ⊭	
535.8       0.0       Coarse gravel (CA-6), dry         534.8       1.0       Prown silty day, trace coarse sand, stiff, dry       SS-1       6       6         534.8       1.0       Prown silty day, trace coarse sand, stiff, dry       SS-1       6       6         523.8       6.0       Brown fine to coarse sand and gravel, trace       SS-2       4       7         523.8       6.0       Brown fine to coarse sand and gravel, trace       SS-3       20       22         523.8       6.0       Brown fine to coarse sand and gravel, trace       SS-3       20       22         60       Brown fine to coarse sand and gravel, trace       SS-3       20       22       12         7       Brown fine to coarse sand and gravel, trace       SS-3       20       22       12         8       SS-4       10       SS-4       12       12       14         9       SS-6       10       12       16       16       16         9       SS-7       10.0-17.5       21       23       23       14       14         9       SS-7       10.0-17.5       31       27       24       24       24       24         9       SS-8       18.5-20.0		Ы	ST		RECOVERY(IN)	L H S	1	2 g	gui(ia 3	51°) 7		
534.8       1.0       0       0       Brown silly day, trace coarse sand, stiff, dry       55-1       6       7         523.8       6.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>535.8</td><td>0.0</td><td><u>o a</u></td><td>Coarse gravel (CA-6), dry</td><td>-</td><td></td><td></td><td></td><td>-  </td><td></td><td></td><td></td></t<>	535.8	0.0	<u>o a</u>	Coarse gravel (CA-6), dry	-				-			
528.8         8.0         Brown silty clay, trace coarse sand, stiff, dry         10.2.5         6         7           528.8         8.0         Brown fine to coarse sand and gravel, trace         35.5         7         7           528.8         8.0         Brown fine to coarse sand and gravel, trace         55.3         20         10           6         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	534.8	10	-									
522.8       6.0       6.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	004.0	1.0	[]]]	Brown silty clay, trace coarse sand, stiff, dry	SS-1	6						
529.6       6.0       8.0       Brown fine to coarse sand and gravel, trace       55.2       4         529.6       6.0       0       0       0       0       0         6       0       0       0       0       0       0         6       0       0       0       0       0       0         7       0       0       0       0       0       0         8       0       0       0       0       0       0         8       0       0       0       0       0       0         8       0       0       0       0       0       0         9       0       0       0       0       0       0         9       0       0       0       0       0       0         9       0       0       0       0       0       0         9       0       0       0       0       0       0       0         9       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0												
529.8       6.0       Brown fine to coarse sand and gravel, trace       SS-2 3.5-5.0       4 7       7         529.8       6.0       Brown fine to coarse sand and gravel, trace       SS-3 6.0-7.5       20         6       0       0       0       0         6       0       0       0       0         7       9       11       12         8       10       12       0         9       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0 <td></td> <td></td> <td>$\square$</td> <td></td> <td>6"R</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Bentonite seal</td>			$\square$		6"R	7						Bentonite seal
529.8       6.0       Brown fire to coarse sand and gravel, trace       55.3       20       20       10 mestore fragments       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20 <td></td>												
528.8       6.0       Brown fine to coarse sand and gravel, trace       3.5.5.0       7         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0												
529.8       6.0       Brown fine to coarse sand and gravel, trace       SS-3       20         6       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0			$\langle \rangle \rangle$			4						installed.
528.8       8.0       Brown fine to coarse send and gravel, trace       SS-3       20         6       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0												
DRILLING CONTRACTOR     Groff Testing 0     REMARKS 0     SS-4 0.7.5 0     22 0.7.5 0     11 10 0       DRILLING CONTRACTOR     Groff Testing 0     REMARKS 10.42.5     MATER LEVEL (ft.) 7     31.5 7			$\square$		10"R	9						
DRILLING CONTRACTOR     Groff Testing 0     REMARKS 0     SS-4 0.7.5 0     22 0.7.5 0     11 10 0       DRILLING CONTRACTOR     Groff Testing 0     REMARKS 10.42.5     MATER LEVEL (ft.) 7     31.5 7												
DRILLING CONTRACTOR     Groff Testing 0     REMARKS 0     SS-4 0.7.5 0     22 0.7.5 0     11 10 0       DRILLING CONTRACTOR     Groff Testing 0     REMARKS 10.42.5     MATER LEVEL (ft.) 7     31.5 7	529.8	6.0										
DRILLING CONTRACTOR         Groff Testing 0         Configurents         Configurent         Configurents         Conf			<u> </u>									
DRILLING CONTRACTOR         Groff Testing 0         REMARKS 18.5-20.0 0         REMARKS 18.5-20.0 0         WATER LEVEL (ft.) V           DRILLING METHOD         4.25" I.D. HSA DRILLING EQUIPMENT         REMARKS CME         WATER LEVEL (ft.) V         V			I	limestone fragments								
DRILLING CONTRACTOR         Groff Testing 0         REMARKS 18.5-20.0 0         VATER LEVEL (ft.) 2           DRILLING CENTRACTOR         Groff Testing 4.25" I.D. HSA DRILLING EQUIPMENT         REMARKS Installed 2" diameter PVC monitoring well.         WATER LEVEL (ft.) 2					OK	12						
DRILLING CONTRACTOR         Groff Testing 0         REMARKS 185-200 0         24 185-200 13.5-15.0 11.0-12.5 20 8"R         11 12 10.0-12.5 20 8"R         VATER LEVEL (ft.) 2           DRILLING METHOD         4.25" I.D. HSA DRILLING EQUIPMENT         REMARKS CME         WATER LEVEL (ft.) 2         VATER LEVEL (ft.) 2			້៰									
SS-4       10         SS-5       11         SS-6       11         SS-6       11         SS-6       11         SS-6       11         SS-6       11         SS-6       11         SS-7       31         Imestone fragments, dry       SS-7         SS-6       9         SS-7       31         Imestone fragments, dry       SS-7         SS-8       18.5-20.0         4       18.5-20.0         SS-8       18.5-20.0         SS-8       18.5-20.0         SS-8       11.5         ZrR       Z4         Matter Level. (ft.)       Xatter Level. (ft.)         Value       Xatter PVC         Matter Level. (ft.)       Xatter Level. (ft.)         Value       Xatter PVC         Matter Level. (ft.)       Xatter Value         Value       Xatter PVC         Matter Level. (ft.)       Xatter Value         Value       Xatter PVC         Matter Level. (ft.)       Xatter Value         Value       Xatter PVC         Matter Level. (ft.)       Xatter PVC         Value       Xatter PVC												
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0												
DRILLING CONTRACTOR         Groff Testing 0         REMARKS 18:5-20.0 0         24 4'R         WATER LEVEL (ft.) 7           DRILLING METHOD         4.25" I.D. HSA DRILLING EQUIPMENT         REMARKS Installed 2" diameter PVC monitoring well.         WATER LEVEL (ft.) 7         7												
DRILLING CONTRACTOR         Groff Testing DRILLING METHOD         A.25" I.D. HSA DRILLING EQUIPMENT         REMARKS Installed 2" diameter PVC monitoring well.         WATER LEVEL (ft.) Y			1		ÖK	10						
DRILLING CONTRACTOR         Groff Testing 0         REMARKS 18.5-20.0 0         24 18.5-20.0 0         WATER LEVEL (ft.) 2           DRILLING CONTRACTOR         Groff Testing 0         REMARKS Installed 2" diameter PVC monitoring well.         WATER LEVEL (ft.) 2												- 
0       0       0       0       11.0-12.5       20       23         8'R       23       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1			o d									
Brilling Contractor Groff Testing         DRILLING CONTRACTOR Groff Testing         DRILLING EQUIPMENT         Contractor         Contre         Contractor			。 。									
DRILLING CONTRACTOR       Groff Testing         DRILLING CONTRACTOR       Groff Testing         DRILLING EQUIPMENT       4.25" I.D. HSA         DRILLING EQUIPMENT       CME			້៰									
DRILLING CONTRACTOR       Groff Testing         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       CME			- 1		011	20						
DRILLING CONTRACTOR       Groff Testing         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       CME			o d									
DRILLING CONTRACTOR Groff Testing         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       ME			。									
Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry       Image: Constraint of the store fragments, dry         Image: Constraint of the store fragment of the store		ĺ	•									
DRILLING CONTRACTOR       Groff Testing         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       CME												
DRILLING CONTRACTOR Groff Testing       REMARKS         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       CME			• •									
DRILLING CONTRACTOR       Groff Testing         DRILLING METHOD       4.25" I.D. HSA         DRILLING EQUIPMENT       CME			-									
Image: Signal system       Image: Signal system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i.</td></td<>												i.
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0				Limestone fragments, dry								
Image: second						0.						
Image: Signal system       Image: Signal system <td< td=""><td>   </td><td></td><td>1</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			1	12								
DRILLING CONTRACTOR     Groff Testing       DRILLING METHOD     4.25" I.D. HSA       DRILLING EQUIPMENT     CME			0									
Image: Solution of the state of the stat			I		<u> </u>	24						
Image: Solution of the state of the stat												
DRILLING METHOD       4.25" I.D. HSA       Installed 2" diameter PVC       ☑ 31.5         DRILLING EQUIPMENT       CME       ☑												65
DRILLING METHOD       4.25" I.D. HSA       Installed 2" diameter PVC       ☑ 31.5         DRILLING EQUIPMENT       CME       ☑												
DRILLING METHOD       4.25" I.D. HSA       Installed 2" diameter PVC       ☑ 31.5         DRILLING EQUIPMENT       CME       ☑					ARKS			\\\/AT	ED I		1 (#1)	J
DRILLING EQUIPMENT CME monitoring well.				-		tor D		1			<u>– (n.)</u>	
							VC	-	1.0			
DRILLING STARTED 11/1/10         ENDED 11/1/10         ¥								F				

					NUMBER		3-MW-4		SHEET	2 OF 2
P/	ATR	ICK	ENGINEERING INC.	CLIENT			est Gen	eration		
							3.070			
LOGG		v	AFG	LOCATI		JOII	et No. 2	9		
			AFG ATION 535.8							
	1					T		Water Cor	ntent	
DI I	E E	A	SOIL/ROCK		SAMPLE TYPE & NO.	S			LL 30 40 5	I MOTEO
ELEVATION	DЕРТН (FT)	STRATA	DESCRIPTION		DEPTH (FT)	N ^T	Unco	nfined Cor	npressive	-  &  TEST RESULTS
	E	STF	2		RECOVERY(IN)	BLOW	1	Strength (1		5
515.8	20.0	0 0 0	Brown fine to coarse sand and grave limestone fragments	el, trace		Ì				
		0 0 0				60/6"				
		o o o			21.0-22.5	00/0				
		o o	Fine to coarse sand and gravel, dry		4"R					
		0 0 0				1				
		0 0 0								~
		。 。 。			SS-10 23.5-25.0	35 36				
		。 。			6"R					
		0 0 0								
		0								
		0 0 0			SS-11 26.0-27.5	28 21				
		0 0 0			10"R	10				
		0 0 0								Sand pack
		0 0 0								27.5'-39.5'
		o o			SS-12 28.5-30.0	12 8				
		0 0 0			6"R	8				Set screen (slot
		。 。 。								0.010) 29.5'-39.5'
		0 0 0								
504.3	31.5	。 。	¥		SS-13 31.0-32.5	13 17				
		0	Saturated		8"R	13				
502.8		0 0 0	Gaturated		[					
002.0	00.0	8 8 0	Fine to coarse sand, saturated				;			
		0 0 0			SS-14 33.5-35.0	13 24				
		o o			18"R	24				
		0 0	Fine to coarse sand and gravel, with							
		。° 。	limestone fragments							
		。			SS-15					
		。 。			36.0-37.5					
		0								
		•								
		° °			SS-16	21				
		0 0 0	End of Boring of 40 M		38.5-40.0 10"R	50/3"				
495.8	40.0	o	End of Boring at 40.0'	$\overline{}$						
	ING C	ONT	RACTOR Groff Testing	REM	ARKS			WATER	LEVEL (ft.	<u>)</u>
		1ETH	OD 4.25" I.D. HSA		lled 2" diame	eter P		⊈ <b>31.5</b>		
{			PMENT CME	mon	itoring well.			Ā		
	ING S	TAR	TED 11/1/10 ENDED 11/1/10					<u>Y</u>		

	BORING NUMBER	B-MW-5	SHEET	1	OF	2
PATRICK ENGINEERING INC.	CLIENT	Midwest Generation				
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
		Joliet No. 29				
LOGGED BY AFG						
GROUND ELEVATION 536.4						

	1			· · · · · · · · · · · · · · · · · · ·			147 *			I
ELEVATION	DЕРТН (FT)			SAMPLE		PL r	water (	Content	∧ LL	NOTEO
I I	Ξ	₹	SOIL/ROCK	TYPE & NO.	IS		0 20	30	40 50	NOTES
	Ы	STRATA	DESCRIPTION	DEPTH (FT)	₹Ś	U	nconfined ( Strengt	Compress	sive ¥	& TEST RESULTS
	8	ST		RECOVERY(IN)	BLOW COUNTS		2	3 3	木 4 5	
536.4	0.0	<u>34. 5</u>	Fine to coarse gravel, topsoil, dry						+	
		<u>1/ 1/</u>		. E						
		70.7		SS-1						
		2.54		1.0-2.5						
		<u> 14</u> 1								Bentonite seal 2.0'-32.0'. Stickup
		$\frac{1}{2}$								protective cover
		<u> .                                   </u>		SS-2						installed.
		<u>12 - 14</u>		3.5-5.0						
		<u> </u>								
		4 54								
		1.16.1		SS-3						
		<u>k</u> . <u></u>		6.0-7.5						
		<u>17</u> 4								
		<u>4 - 4</u>		+						
527.9	8.5	711 1								
		//	Black silty clay, coarse sand, moist to we		2					
				8.5-10.0 1"R	4 2					
					2					
		$\square$								
		$\square$								
		$\langle \rangle \rangle$			•					
		$\langle \rangle \rangle$		SS-5 13.5-15.0	2 4					
		//		8"R	3					
		$\langle \rangle \rangle$								
		IA		SS-6		ľ				
		[]])		16.0-17.5						
			Coarse gravel fragments	SS-7	4					
		IA		18.5-20.0	3					
		1D		0.5"R	3					
		$\square$		SS-8 21.0-22.5						
		$\langle \rangle \rangle$		21.0-22.0						
								<u> </u>	1	
DRILI	ING C	ONT	RACTOR Groff Testing	REMARKS			WATE	<u>R LEVE</u>	=L (ff \	J
DRILL			-	Installed 2" diame	tor ¤	VC	⊻ 31.0		<u> </u>	
			MENT CME	monitoring well.		*•	-			
		J J			Ā					
DRILLING STARTED 11/2/10 ENDED 11/2/10							Ţ			)

P	ATR	ICK	ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW- est Ge 3.070 et No.	eneration		HEET	2 OF 2
LOGG			<b>AFG</b> Ation <b>536.4</b>								
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN		PL 10		1	LL 40 50 ive # 4 5	& TEST RESULTS
513:4	31.0		Tan to light brown fine to coarse sar coarse gravel, dry		SS-9 23.5-25.0 12"R SS-10 26.0-27.5 SS-11 28.5-30.0 8"R SS-12 31.0-32.5 4"R SS-13 33.5-35.0 SS-14 36.0-37.5 SS-15 38.5-40.0	27 35 38 42 49 7 8 9 7 10 27 7 10 27 29 18					Sand pack 30.0'-42.0' Set screen (slot 0.010") 32.0'-42.0'
494.4			Tan to light brown fine to coarse san coarse gravel, dry End of Boring at 42.0'	d, little							
DRILL	ING N ING E	1eth Quif	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME TED 11/2/10 ENDED 11/2/10	Insta	ARKS Iled 2" diam itoring well.	eter P	vVC	<u>WATE</u> ⊈ 31.0 <u>▼</u> <u>▼</u>	<u>R LEVE</u>	<u>L (ft.)</u>	

				1	G NUMBER		B-MW-6		SHE	ET	1 OF 2
P/	ATR	ICK	<b>ENGINEERING INC.</b>				est General	tion			
							i3.070 iet No. 29				
LOGG	FD B	Y	AFG	LOCAT		JUI	iel 140. 29				
			ATION 535.9								
					SAMPLE	[	PL PL	er Cont	ent	LL	
ATIC	H (F	Z	SOIL/ROCK		TYPE & NO.	ဂ		O 0 30		50	
ELEVATION	DЕРТН (FT)	STRATA	DESCRIPTION		DEPTH (FT)	BLOW COUNTS	Unconfin	ed Com	pressive SF) 米		& TEST RESULTS
					RECOVERY(IN)	<u> </u>	1 2	2 3	4	5	
535.9	0.0	<u>, 1,</u> <u>, 1</u> 1, , 1,	Gravel (CA-6), topsoil, dry								
		10.1			SS-1						
		12 5 17			1.0-2.5						
		<u> 14</u> . S									Bentonite seal 2.0'-30.5'. Stickup
		<u>2</u>									protective cover
		5 31			SS-2						installed.
		<u>. 17</u> . 1			3.5-5.0						
		4 24									
		14 X 17 X 17									
		<u></u>			SS-3 6.0-7.5						
		<u>1/ 3.1/</u>			0.0 1.0						
		<u></u>									
527.4	8.5	<u>v vv</u>	Brown to tan fine to coarse sand and		SS-4	12					
		。 。	trace limestone, gravel seams, dry	i glavel,	8.5-10.0	12					
		。 。			12"R	12					
		ိဳ									
		° °			SS-5						
		° °			11.0-12.5						
		° °									
		° °									
		• •			SS-6	23					
		0 0			13.5-15.0 14"R	30 27					
		o 0									
	1	° 0									
	1	° 0			SS-7						
		0 0			16.0-17.5						
	ļ	0 0									
		0 0 0									
		0			SS-8 18.5-20.0	18 28			}		
					12"R	24					
	ĺ	•									
	1	0 0							_		
	ING C	ONTI	RACTOR Groff Testing		IARKS		WA	TER L	EVEL	(ft.)	
DRILL			•	Inst	alled 2" diame	ter P					
			PMENT CME		itoring well.		T I				
DRILL	ING S	TART	TED 11/3/10 ENDED 11/3/10				Ţ				]

				NEERING INC.	C F	CLIENT	CT & NO.	Midw 2105	B-MW est G 3.070 iet No.	enera	tion	Sł	IEET	2 OF 2
LOGG GROL			AFG ATION	535.9			, · · ·	- <b>,</b>	1		_			
ELEVATION	<b>DEPTH (FT)</b>	STRATA		SOIL/ROCK DESCRIPTION			SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW	i	nconfin Stre	ed Con		0 50 ve	& TEST RESULTS
514.9			, trace lin	o tan fine to coarse sand a nestone, gravel seams, dr	у		SS-9 21.0-22.5 SS-10 23.5-25.0 14"R SS-11 26.0-27.5 SS-12 28.5-30.0 12"R SS-13 31.0-32.5 12"R SS-14 33.5-35.0 SS-15 36.0-37.5	23 34 18/3" 33 21 27						Sand pack 28.0'-40.5' Set screen (slot 0.010) 30.5'-40.5'
497.4			Limesto	ne bedrock			SS-16 38.5-40.0 0.5"R	50/0.5	3			ſ		
495.4	40.5			End of Boring at 40.5'	<u></u>									
DRILL	ING N	/ETH		Groff Testing 4.25" I.D. HSA CME		Insta	ARKS Iled 2'' diam itoring well.	eter P	vvc	WA Ţ		LEVE	<u>L (ft.)</u>	

Ţ

DRILLING STARTED 11/3/10

ENDED 11/3/10

P	ATR	RICK	ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW-7 rest Generation 3.070 iet No. 29	SHEET	1 OF 2
LOGG			AFG						
	T		ATION <b>535.9</b>		1		Water Conte	nt	
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS		→ LL 40 50 ressive	& TEST RESULTS
535.9	0.0		Gravel (CA-6), topsoil, dry		SS-1 1.0-2.5				Bentonite seal 2.0'-28.75'. Stickup protective cover
					SS-2 3.5-5.0	-			installed.
					SS-3 6.0-7.5				
527.4	8.5		Tan to brown fine to coarse sand and dry	l gravel,	SS-4 8.5-10.0 8"R	32 16 17			
					SS-5 11.0-12.5				~
-					SS-6 13.5-15.0	13 21			
					SS-7 16.0-17.5				
		0 0 0 0 0 0 0 0		8	SS-8 18.5-20.0	28 17			

 DRILLING CONTRACTOR
 Groff Testing

 DRILLING METHOD
 4.25" I.D. HSA

 DRILLING EQUIPMENT
 CME

 DRILLING STARTED 11/3/10
 ENDED 11/3/10

		B-MW-7	SHEET	2	OF	2
PATRICK ENGINEERING INC.	CLIENT	Midwest Generation				
PATRICK ENGINEERING INC.	PROJECT & NO.	21053.070				
	LOCATION	Joliet No. 29				
LOGGED BY AFG						

GROUND ELEVATION 535.9

GROU	IND E	LEV	ATION 535.9								
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT)	BLOW COUNTS		Water Cor 		ŭ .	NOTES & TEST RESULTS
법 515.9	법 20.0	0 C 0	Tan to brown fine to coarse sand and dry	d gravel,	RECOVERY(IN)	С В С В С	1	2	3 4	5	
-					SS-9 21.0-22.5						r
		0 0 0 0 0 0 0 0 0 0 0			SS-10 23.5-25.0 8"R	21 28 1					
		0 0 0 0 0 0 0 0 0 0 0 0			SS-11 26.0-27.5						Sand pack 26.5'-38.75'
		0 0 0 0 0 0 0 0 0 0 0			SS-12 28.5-30.0 12"R	22 31 37					Set screen (slot 0.010) 28.75'-38.75'
504.9	31.0		∑ Saturated		SS-13 31.0-32.5 10"R	12 8 5					
496.4			End of Boring at 39.5'								
DRILL	ING N ING E	/IETH	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME TED 11/3/10 ENDED 11/3/10	Insta	ARKS Iled 2" diame itoring well.	ter P	VC	<u>WATER</u> ⊈ 31.0 ⊈	LEVE	<u>L (ft.)</u>	

BORING NUMBER B-MW-8									SHE	ET 1 OF 2
P/	ATR	ICK	<b>ENGINEERING INC.</b>	CLIENT			est Gene	ration		
				1	CT & NO.		3.070			
LOGG		v	AFG	LOCATI	ON	Joli	et No. 29			
GROU										
			333.7					Nater Cor	ntent	
0 L	E F	.∢	SOIL/ROCK		SAMPLE TYPE & NO.	s	PL		∆ L 30 40	
ELEVATION	<b>DEPTH</b> (FT)	STRATA	DESCRIPTION		DEPTH (FT)	BLOW COUNTS	Uncor	fined Cor Strength (	npressive	TEST RESULTS
. – .					RECOVERY(IN)	<b>A</b> S	1	2	3 4	5
533.7			Fine to coarse gravel fill, dry							
532.7	1.0	****	Dark brown silty clay, some fine to c	oarse	SS-1	2				
		0 0 0	sand, stiff, moist		1.0-2.5	5				
		0 0 0			6"R	9				Bentonite seal
		0 0								2.0'-25.5'. Stickup protective cover
530.2	3.5	o d	Black/brown fine to coarse sand and	gravel,	SS-2	5				installed.
		0 0	moist		3.5-5.0 6"R	5 10				
		° °								
		0 0 0								
		0 0 0	Limestone fragments, dry		SS-3	13				
		0 0 0			6.0-7.5 8"R	16 14				
		•								
		0								
		, o			SS-4	7				
		0 0			8.5-10.0 8"R	15 22				
		0 0 0								
		° °								
		0 0 0			SS-5	15				
		0 0 0			11.0-12.5 8"R	13 13				
		0 0 0								
		o o o								
		0 0 0			SS-6 13.5-15.0	17				
		0 0 0			8"R	14				
		៓៰								
	:	o 0								
		0 0			SS-7 16.0-17.5	5 12				
		。 。 。			8"R	8				
		0 0 0								
		0 0 0								
		0 0 0			SS-8 18.5-20.0	12 9				
		。 。 。		i	3"R	9				
				$\neg$		L			<u>l</u>	
			RACTOR Groff Testing						LEVEL (I	<u>ft.)</u>
DRILL					lled 2" diame toring well.	eter P	1 ~	2 <b>7.0</b>		
							Ī			
DRILLING STARTED 10/27/10 ENDED 10/27/10										

PATRICK	ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-8 Midwest Generation 21053.070 Joliet No. 29	SHEET	2	OF	2
LOGGED BY	AFG						

GROUND ELEVATION 533.7

GROU		LEV	ATION 533.7						
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL 10 Unc	Water Cor 	∧ LL 30 40 50	& TEST RESULTS
513.7	20.0	0	Black/brown fine to coarse sand and gravel, moist						
				SS-9 21.0-22.5 4"R	5 4 5				
			Moist to wet	SS-10	6				Sand pack
				23.5-25.0 6"R	9 18				23.0'-35.5'
		0 0 0 0 0		SS-11	6 9				Screen set (slot 0.010) 25.5'-35.5'
506.7	27.0		∑ Saturated	26.0-27.5 8"R	9 8				
		0 0 0 0 0 0		SS-12 28.5-30.0	4 8				
		0 0 0 0 0 0		6"R	8				
		0 0 0 0 0 0							
		0 0 0 0 0 0							
		0 0 0 0 0 0		SS-13 33.5-35.0 2"R	50/1"				
498.2		00	End of Boring at 35.5'						
			OD 4.25" I.D. HSA ins	MARKS	ter P	VC	<u>WATER</u> ⊈ <b>27.0</b>	LEVEL (ft.)	
			PMENT CME TED 10/27/10 ENDED 10/27/10	onitoring well.			Y Y		

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-9 Midwest Generation 21053.070 Joliet No. 29	SHEET	1	OF	2
LOGGED BY AFG						

GROU	JND E	ELEV	ATION 531.1	_					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [ 10 Un	) 20 Iconfined C	∆ LL 30 40 5 ompressive (TSF) ₩	₀ NOTES & TEST RESULTS
531.1	0.0	0	Coarse sand and gravel (CA-6), dry						
530.1	1.0		Coarse gravel, with black silty clay, trace root seams, moist	SS-1 1.0-2.5 6"R	15 14 13				Bentonite seal 2.0'-34.75'. Stickup protective cover
527.6			Coarse gravel fragments, with fine to coarse sand, dry	SS-2 3.5-5.0 2"R	4 5 6				installed.
				SS-3 6.0-7.5					
				SS-4 8.5-10.0					
520.1			Limestone fragments, with light brown silty fine to coarse sand, dry	SS-5 11.0-12.5 8"R	34 37				
		0 0 0 0 0 0 0 0 0 0		SS-6 13.5-15.0 10"R	20 16 16				
				SS-7 16.0-17.5 6"R	10 15 23				
512.6	18.5		Limestone fragments, with light brown to dark orange fine to coarse sand, moist	SS-8 18.5-20.0 10"R	15 24 28				
DRILL DRILL	ING M ING E	/IETH	IOD 4.25" I.D. HSA Inst	IARKS alled 2" diame itoring well.	eter P	VC	<u>WATE</u> <b>▽ 26.0</b> <b>▼</b> <b>▼</b>	R LEVEL (ft.	

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-9 Midwest Generation 21053.070 Joliet No. 29	SHEET	2	OF	2
LOGGED BY AFG						
GROUND ELEVATION 531.1						
O (L	SAMPLE		ent			

ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL [ 10 Un	 20 confine	er Con -O 3 d Con Igth (T	^ 0 4	0 50 Ve	NOTES & TEST RESULTS
511.1	20.0		Limestone fragments, with light brown to dark orange fine to coarse sand, moist	SS-9 21.0-22.5							
507.6	23.5		Light brown/orange fine to coarse sand, with coarse gravel, moist	SS-10 23.5-25.0 12"R	15 29 36				Ĭ		Sand pack 22.5'-34.75'
505.1	26.0		Ϋ́	SS-11 26.0-27.5 1"R	16 10 8						Screen set (slot 0.010) 24.75'-34.75'
502.6	28.5	0 0 0	Light brown coarse sand, some fine to coarse gravel, little fine sand, saturated	SS-12 28.5-30.0 10"R	6 10 13						
				SS-13 31.0-32.5							
496.1	35.0		End of Boring at 35.0'	SS-14 33.5-35.0 6"R	18 50/4"						
					3						
DRILL	.ING N .ING E	AETH QUIF	OD 4.25" I.D. HSA Insta	ARKS Iled 2" diame itoring well.	ter P	VC	<u>₩AT</u> 및 20 및 및		<u>EVE</u>	<u>∟ (ft.)</u>	

PATRICK ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	B-MW-10 Midwest Generation 21053.070 Joliet No. 29	SHEET	1	OF	2
LOGGED BY AFG						

GROUND ELEVATION 536.9

GROU		LEV	ATION 536.9	0.117		Wa	ater Content		
ELEVATION	<b>DEPTH (FT)</b>	4	SOIL/ROCK	SAMPLE TYPE & NO.	s			- <u></u> LL 40 50	NOTES
	Ē	<b>ZAT</b>	DESCRIPTION	DEPTH (FT)	NT TNT	Unconfi	ned Compres	sive	
	DEI	STRATA		RECOVERY(IN)	BLOW COUNTS	1	ength (TSF)	* 4 5	TEST RESULTS
536.9	0.0		Coarse gravel, dry				1		
		0 0							
		。 。		SS-1 1.0-2.5	5 4				
		。 。		10"R	5				Bentonite seal
		0							2.0'-28.0'. Stickup
		0 0 0	Brown clay						protective cover installed.
		0 0 0		SS-2 3.5-5.0	3 2				instancu.
		• •		10"R	2				
		• •							
		。 ° o							
		。 。 。		SS-3 6.0-7.5	2				
529.9	7.0	<u> </u>	Black/gray sandy silt, moist	16"R	1 1				
			Diaongray sandy sin, moist						
				SS-4	1				
				8.5-10.0 12"R	3				
		· · · ·		С.					
				SS-5	1				
				11.0-12.5 18"R	1				
	ŀ				•				
		· · · ·		SS-6	1				
	ŀ			13.5-15.0	2				
	ŀ	: · : ·		18"R	2				
				SS-7	1				
		: · : ·		16.0-17.5	3				
				18"R	2				
		· : · :							
547.0	40.0			SS-8	2				
517.9	19.0		Gray silty clay, trace coarse sand, soft, wet	18.5-20.0	3				
				18"R	4				
		ONT	RACTOR Groff Testing	REMARKS		1//	ATER LEV	/FI (ft )	
DRILLI				Installed 2" diame	ter P		<b>31.0</b>		
				monitoring well.		Ϋ́ Ϋ́	• 1.v		
			TED 11/2/10 ENDED 11/2/10	_		\ <u>₹</u>			
						<u>+</u>			

			ENGINEERING INC.	CLIENT	CT & NO.	Midw 2105	B-MW-10 vest Generatio 3.070 iet No. 29	SHE	ET 2 OF 2
LOGG GROU			AFG Ation 536.9			· · · ·		_	
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN	BLOW COUNTS	PL 10 _ 20	r Content 	LL NOTES K TEST RESULTS
515.9	21.0		Gray silty clay, trace coarse sand, s	soft, wet	SS-9 21.0-22.5 8"R	12 28 31			2
					SS-10 23.5-25.0 10"R	11 24 21			
					SS-11 26.0-27.5 12"R	6 13 17			
					SS-12 28.5-30.0 18"R	13 19 24			Sand pack 28.0'-40.5'
505.9	31.0		Σ		SS-13 31.0-32.5 10"R	28 24 14			Screen set (slot 0.010) 30.5'-40.5'
					SS-14 33.5-35.0 18"R	16 63 12			
					SS-15 36.0-37.5				
					SS-16 38.5-40.0 18"R	9 14			
495.9	41.0		End of Boring at 41.0'						
DRILL DRILL	ING M ING E	IETH QUIF	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME FED 11/2/10 ENDED 11/2/10	Insta	ARKS Illed 2" diamo itoring well.	eter P		ER LEVEL ()	<u>ft.)</u>

			ENGINEERING INC.	BORING NUMBER CLIENT PROJECT & NO. LOCATION	Midw 2105	B-MW-11 vest Generation 53.070 iet No. 29	SHEET	1 OF 2
LOGG GROU			AFG ATION 536.5					
ELEVATION	DEPTH (FT)	STRATA	SOIL/ROCK DESCRIPTION	SAMPLE TYPE & NO DEPTH (FT RECOVERY(I	)   ≥Ę		∆ LL 30 40 50 mpressive (TSF) Ж	NOTES & TEST RESULTS
536.5	0.0		Fine to coarse sand and gravel, fill, Grades to dark gray clayey silt	dry SS-1 1.0-2.5 SS-2 3.5-5.0 SS-3 6.0-7.5 SS-4 8.5-10.0 SS-5 11.0-12.5 SS-6 13.5-15.0 SS-6 13.5-15.0 SS-7 16.0-17.5 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 18.5-20.0 SS-8 SS-8 18.5-20.0 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 SS-8 S				Bentonite seal 2.0'-27.0'. Stickup protective cover installed.
DRILL DRILL	ING M ING E		RACTOR Groff Testing OD 4.25" I.D. HSA MENT CME TED 11/4/10 ENDED 11/4/10	REMARKS Installed 2" dian monitoring well			LEVEL (ft.)	

P	ATR	ICK	<b>ENGINEERING INC.</b>	CLIENT	CT & NO.	Midw 2105	B-MW-11 rest Generation 3.070 ret No. 29	SHEET	2 OF 2
LOGG GROU			AFG ATION 536.5				<u>a</u>		
ELEVATION	<b>DEPTH (FT)</b>	STRATA	SOIL/ROCK DESCRIPTION		SAMPLE TYPE & NO. DEPTH (FT) RECOVERY(IN)	BLOW COUNTS	PL Water Cor 10 20 3 Unconfined Cor Strength (1 1 2	∧LL 30 40 50  npressive	& TEST RESULTS
516.5	20.0	× × × × × ×	Dark gray clayey silt, soft, moist						
		× × × × × × × × × × × × × × × × × × ×			SS-9 21.0-22.5				
		× × × × × × × × × × × × × × × × × × ×	Light brown fine to coarse silt and moist	gravel,	SS-10 23.5-25.0	9 11 12			
		× × × × × × × × × × × × × × × × × × ×		(2) I	SS-11 26.0-27.5				Sand pack 27.0'-39.5'
		× × × × × × × × × × × × × × × × × × ×			SS-12 28.5-30.0	1 3 13			Screen set (slot 0.010) 29.5'-39.5'
505.5	31.0	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Ā		SS-13 31.0-32.5	8 7 8			
1		× × × × × × × × × × × × × × × × × × ×			SS-14 33.5-35.0				
		× × × × × × × × × × × × × × × × × × ×			SS-15 36.0-37.5				
497.0	39.5		End of Boring at 39.5'		SS-16 38.5-40.0	36 50/2"			
DRILL DRILL	ING N ING E	IETH QUIF	RACTOR Groff Testing OD 4.25" I.D. HSA PMENT CME TED 11/4/10 ENDED 11/4/10	Inst mor	MARKS alled 2" diame hitoring well.	eter P		LEVEL (ft.)	

Attachment 9-3 – Historical CCA Groundwater Data

#### Attachment 9-3. CCA Groundwater Analytical Results - Midwest Generation LLC, Joliet Station #29, Joliet IL

					_																																																																	
Sample: MW-01	Date	12/6/2	010 3	/23/2011	6/14/20	11	9/14/2011	12/7	7/2011	3/15/2	2012	6/19/2	2012	9/19/20	12 1	12/20/201	12 '	3/5/2013	5/	23/2013	7/22/	2013	10/15/20	013	2/21/2014	5	1/2014	8/1	8/2014	10	/23/2014	2/	10/2015	5/27	7/2015	8/4/	/2015	10/28	2015	2/9/20	2016	5/11/20	016	8/30/2016	11	/3/2016	2/6/2	2017	4/25/201	7 2	21/2018	8/1/20	18 10	0/17/2018	2/4/20	019	5/7/2019	8/6/20	019	1/7/2019	2/13	/2020	5/21/20	020 7	/30/2020	10/22	/2020	3/2/2	2021	5/18/2021
Parameter	Standards	DL	Result D	L Result	DL	Result I	NL Resu	lt DL	Result	DL	Result	DL	Result	DL R	lesult D	DL Re	esult D	DL Res	sult DL	Result	DL	Result	DL F	Result I	IL Res	ilt DL	Result	DL	Result	DL	Resul	t DL	Result	DL	Result	DL	Result	DL	Result	DL	Result	DL I	Result	DL Rest	ult DL	Result	DL	Result	DL R	esult		DL F	Result Di	L Result	DL	Result	DL Result	DL	Result I	IL Resu	t DL	Result	DL R	Result D	L Result	DL	Result	DL	Result	DL Result
Antimony	0.006	0.0030	0.0043 N	S NS	0.0030	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0030	ND N	NS N	NS N	is N	IS 0.003	0 0.0052	NS	NS	NS	NS 1	IS NS	NS	NS	0.0030	ND	0.003	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0030	ND 0	0.0030 NE	D 0.0030	0 ND	NS	NS	NS 1	NS 0.00	30 ND	NS	NS 0.0	03 ND	0.003	NS	.003 ND	0.003	NS 03	003 ND	NS	NS	0.003 0	0.0066 N	S NS	NS	NS	NS	NS	NS NS
Arsenic	0.010	0.0010	0.0011 N	S NS	0.0010	10014	IS NS	NS	NS	NS	NS	NS	NS	0.0010 0	.0012 N	NS N	NS N	S N	IS 0.001	0 0.0011	NS	NS	NS	NS 1	IS NS	NS	NS	0.0010	ND	0.001	0 ND^	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0010	ND^ (	0.0010 NE	D 0.0010	0 ND	NS	NS	NS 1	NS 0.00	10 ND	NS	NS 0.0	01 ND	0.001	NS	.001 ND	0.001	NS 0.	001 ND	NS	NS	0.001 0	0.0012 N	S NS	NS	NS	NS	NS	NS NS
Barium	2.0	0.0025	0.13 N	S NS	0.0025	0.14 ?	IS NS	NS	NS	NS	NS	NS	NS	0.0025	0.16 N	NS N	NS N	S N	IS 0.002	5 0.15	NS	NS	NS	NS 1	IS NS	NS	NS	0.0025	0.15	0.002	5 0.17	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0025	0.15 0	0.0025 0.07	71 0.0025	5 0.12	NS	NS	NS 1	NS 0.00	25 0.079	NS	NS 0.00	025 0.12	0.0025	NS 0	0025 0.054	0.0025	NS 0.0	025 0.05	NS	NS	0.0025 0	0.076 N	S NS	NS	NS	NS	NS	NS NS
Beryllium	0.004	0.0010	ND N	S NS	0.0010	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0010	ND N	NS N	NS N	is N	IS 0.001	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0010	ND	0.001	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0010	ND 0	0.0010 ND	A 0.0010	0 ND	NS	NS	NS 1	NS 0.00	10 ND	NS	NS 0.0	01 ND*	0.001	NS	.001 ND ^	0.001	NS 0.	001 ND	NS	NS	0.001	ND ^ N	S NS	NS	NS	NS	NS	NS NS
Boron	2.0	0.050	0.31 N	S NS	0.050	0.29 ?	IS NS	NS	NS	NS	NS	NS	NS	0.050 0	1.38 ⁿ N	NS N	NS N	S N	IS 0.05	0.33	NS	NS	NS	NS 1	IS NS	NS	NS	0.050	0.22	0.050	0 0.21	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.050	0.18	0.050 0.2	4 0.050	0.25	NS	NS	NS 1	NS 0.02	50 0.19	NS	NS 0.0	0.23	0.05	NS	0.05 0.22	0.05	NS 0	05 0.22	NS	NS	0.05	0.35 N	S NS	NS	NS	NS	NS	NS NS
Cadmium	0.005	0.00050	ND N	S NS	0.00050	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.00050	ND N	NS N	NS N	is N	IS 0.000	90 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.00050	ND	0.0005	50 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00050	ND 0	1.00050 NE	D 0.0005	0 ND	NS	NS	NS 1	NS 0.00	150 ND	NS	NS 0.00	005 ND	0.0005	NS (	0005 ND	0.0005	NS 0.0	005 ND	NS	NS	0.0005	ND N	S NS	NS	NS	NS	NS	NS NS
Chloride	200.0	10	140 N	S NS	10	170 ?	IS NS	NS	NS	NS	NS	NS	NS	10	120 N	NS N	NS N	S N	4S 10	210	NS	NS	NS	NS 1	IS NS	NS	NS	10	120	10	79	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	50	400	10 93	3 10	73	NS	NS	NS 1	NS 10	280	NS	NS 10	0 130	10	NS	10 280	10	NS I	0 60	NS	NS	10	140 N	S NS	NS	NS	NS	NS	NS NS
Chromium	0.1	0.0050	ND N	S NS	0.0050	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0050	ND N	AS N	NS NS	4S N	IS 0.005	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0050	ND	0.005	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0050	ND 0	0.0050 NE	D 0.0050	0 ND	NS	NS	NS 1	NS 0.00	50 ND	NS	NS 0.0	05 ND	0.005	NS	.005 ND	0.005	NS 0.	005 ND	NS	NS	0.005	ND N	S NS	NS	NS	NS	NS	NS NS
Cobalt	1.0	0.0010	ND N	S NS	0.0010	10010	IS NS	NS	NS	NS	NS	NS	NS	0.0010	ND N	NS N	NS N	S N	IS 0.001	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0010	ND	0.001	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0010	ND 0	0.0010 NE	D 0.0010	0 ND	NS	NS	NS 1	NS 0.00	10 ND	NS	NS 0.0	01 ND	0.001	NS	.001 ND	0.001	NS 0.	001 ND	NS	NS	0.001 0	0.0011 N	S NS	NS	NS	NS	NS	NS NS
Copper	0.65	0.0020	0.0032 N	S NS	0.0020	10025 ?	IS NS	NS	NS	NS	NS	NS	NS	0.0020 0	.0021 N	AS N	AS N	4S N	IS 0.002	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0020	ND	0.002	9 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0020	ND 0	0.0020 NE	D 0.0020	0 ND	NS	NS	NS 1	NS 0.00	20 ND	NS	NS 0.0	02 ND	0.002	NS	.002 ND	0.002	NS 0.	002 ND	NS	NS	0.002	ND N	S NS	NS	NS	NS	NS	NS NS
Cyanide	0.2	0.010	ND N	S NS	0.010	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.010	ND N	NS N	NS N	is N	IS 0.01	) ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.010	ND	0.010	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.010	ND	0.010 NE	D 0.010	ND	NS	NS	NS 1	NS 0.03	10 ND	NS	NS 0.0	01 ND	0.01	NS	0.01 ND	0.01	NS 0	01 ND	NS	NS	0.01	ND N	S NS	NS	NS	NS	NS	NS NS
Fluoride	4.0	0.10	0.45 N	S NS	0.10	0.43	IS NS	NS	NS	NS	NS	NS	NS	0.10	0.59 N	NS N	NS N	S N	AS 0.10	0.42	NS	NS	NS	NS 1	IS NS	NS	NS	0.10	0.47	0.10	0.39	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.10	0.42	0.10 0.3	7 0.10	0.35	NS	NS	NS 1	NS 0.1	0 0.43	NS	NS 0.	1 0.36	0.1	NS	0.1 0.42	0.1	NS 0	.1 0.34	NS	NS	0.1	0.4 N	S NS	NS	NS	NS	NS	NS NS
Iron	5.0	0.10	ND N	S NS	0.10	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.10	ND N	AS N	AS N	4S N	4S 0.10	ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.10	ND	0.10	) ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.10	ND ^	0.10 NE	D 0.10	ND	NS	NS	NS 1	NS 0.1	0 0.17	NS	NS 0.	1 ND	0.1	NS	0.1 0.1	0.1	NS 0	.1 ND	NS	NS	0.1	ND N	S NS	NS	NS	NS	NS	NS NS
Lead	0.0075	0.00050	ND N	S NS	0.00050	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.00050	ND N	NS N	NS N	S N	S 0.000	90 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.00050	ND	0.0005	50 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00050	ND 0	100050 NE	D 0.0005	0 ND	NS	NS	NS 1	NS 0.000	150 ND	NS	NS 0.00	005 ND	0.0005	NS 0	0005 ND	0.0005	NS 0.0	005 ND	NS	NS	0.0005	ND N	S NS	NS	NS	NS	NS	NS NS
Manganese	0.15	0.0025	ND N	S NS	0.0025	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0025	ND N	AS N	AS N	4S N	IS 0.002	5 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0025	0.012	0.002	5 0.015	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0025 0	0.0065 0	0.0025 NE	D 0.0025	5 0.0032	NS	NS	NS 1	NS 0.00	25 ND	NS	NS 0.00	025 ND	0.0025	NS 0	0025 ND	0.0025	NS 0.0	025 ND	NS	NS	0.0025	ND N	S NS	NS	NS	NS	NS	NS NS
Mercury	0.002	0.00020	ND N	S NS	0.00020	ND^ ?	IS NS	NS	NS	NS	NS	NS	NS	0.00020	ND N	NS N	NS N	S N	IS 0.000	20 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.00020	ND	0.0002	20 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00020	ND 0	100020 NE	D 0.0002	10 ND	NS	NS	NS 1	NS 0.000	120 ND	NS	NS 0.00	002 ND	0.0002	NS (	0002 ND	0.0002	NS 0.0	002 ND	NS	NS	0.0002	ND N	S NS	NS	NS	NS	NS	NS NS
Nickel	0.1	0.0020	0.0034 N	S NS	0.0020	10029 ?	IS NS	NS	NS	NS	NS	NS	NS	0.0020 0	.0029 N	AS N	AS N	4S N	IS 0.002	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0020	0.0024	0.002	0 0.002	0 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0020 0	0.0041 0	0.0020 0.00	22 0.0020	0 0.0022	NS	NS	NS 1	NS 0.00	20 ND	NS	NS 0.0	02 ND	0.002	NS	.002 ND	0.002	NS 0.	002 ND	NS	NS	0.002 0	0.0023 N	S NS	NS	NS	NS	NS	NS NS
Nitrogen/Nitrate	10.0	0.10	1.9 N	S NS	0.10	2.9 ?	IS NS	NS	NS	NS	NS	NS	NS	0.10	4.2 N	AS N	AS N	4S N	4S 0.10	3.7	NS	NS	NS	NS 1	IS NS	NS	NS	0.10	0.44	0.10	0.71	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.10	1.2	0.10 1.5	9 0.10	1.0	NS	NS	NS 1	NS 0.1	0 2.6	NS	NS 0.	1 1.8	0.1	NS	0.1 2.9	0.1	NS 0	.1 1.6	NS	NS	0.1	2.1 N	S NS	NS	NS	NS	NS	NS NS
Nitrogen/Nitrate, Nitri	NA	0.20	1.9 N	S NS	0.20	2.9 ?	IS NS	NS	NS	NS	NS	NS	NS	0.50	4.2 N	AS N	AS N	4S N	IS 0.50	3.7	NS	NS	NS	NS 1	IS NS	NS	NS	0.10	0.44	0.10	0.71	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.10	1.2	0.10 1.5	9 0.10	1.0	NS	NS	NS 1	NS 0.2	0 2.6	NS	NS 0.	1 1.8	0.1	NS	0.1 2.9	0.1	NS (	.1 1.6	NS	NS	0.1	2.1 N	S NS	NS	NS	NS	NS	NS NS
Nitrogen/Nitrite	NA	0.020	ND N	S NS	0.020	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.020	ND N	NS N	SS N	is n	iS 0.02	) ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.020	ND	0.020	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.020	ND	0.020 NE	D 0.020	ND	NS	NS	NS 1	NS 0.03	20 0.029	NS	NS 0.0	)2 ND	0.02	NS	0.02 ND	0.02	NS 0	02 ND	NS	NS	0.02	ND N	S NS	NS	NS	NS	NS	NS NS
Perchlorate	0.0049	NR	NR N	R NR	NR	NR ?	IS NS	NS	NS	NS	NS	NS	NS	NR	NR N	NS N	NS N	S N	IS 0.004	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0040	ND	0.004	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0040	ND 0	0.0040 NE	D 0.0040	0 ND	NS	NS	NS 1	NS 0.00	40 ND	NS	NS 0.0	04 ND	0.004	NS	.004 ND	0.004	NS 0.	004 ND	NS	NS	0.004	ND N	S NS	NS	NS	NS	NS	NS NS
Selenium	0.05	0.0025	ND N	S NS	0.0025	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0025	ND N	AS N	AS N	4S N	IS 0.002	5 0.0040	NS	NS	NS	NS 1	IS NS	NS	NS	0.0025	ND	0.002	5 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.013 0	0.021 ^ 0	0.0025 0.00	72 0.0025	5 0.0037	NS	NS	NS 1	NS 0.00	25 0.0071	NS	NS 0.00	0.0071	0.0025	NS 0	0025 0.016	0.0025	NS 0.0	025 ND	NS	NS	0.0025 0	0.0075 N	S NS	NS	NS	NS	NS	NS NS
Silver	0.05	0.00050	ND N	S NS	0.00050	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.00050	ND N	NS N	NS NS	is n	iS 0.000	50 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.00050	ND	0.0005	50 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.00050	ND 0	100050 NE	D 0.0005	0 ND	NS	NS	NS 1	NS 0.000	150 ND	NS	NS 0.00	005 ND	0.0005	NS (	0005 ND	0.0005	NS 0.0	005 ND	NS	NS	0.0005	ND N	S NS	NS	NS	NS	NS	NS NS
Sulfate	400.0	50	180 N	S NS	25	81 ?	IS NS	NS	NS	NS	NS	NS	NS	50	240 N	NS N	NS NS	S N	iS 25	140	NS	NS	NS	NS 1	IS NS	NS	NS	20	59	20	65	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	50	170	25 74	4 20	62	NS	NS	NS 1	NS 50	230 F1	NS	NS 20	0 56	20	NS	20 84	20	NS 2	0 42	NS	NS	20	120 N	S NS	NS	NS	NS	NS	NS NS
Thallium	0.002	0.0020	ND N	S NS	0.0020	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.0020	ND N	AS N	NS NS	4S N	IS 0.002	0 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0020	ND	0.002	9 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0020	ND 0	0.0020 NE	D 0.0020	0 ND	NS	NS	NS 1	NS 0.00	20 ND	NS	NS 0.0	02 ND	0.002	NS	.002 ND	0.002	NS 0.	002 ND	NS	NS	0.002	ND N	S NS	NS	NS	NS	NS	NS NS
Total Dissolved Solids	1,200	10	590 N	S NS	10	670	IS NS	NS	NS	NS	NS	NS	NS	10	630 N	NS N	NS NS	S N	iS 10	700	NS	NS	NS	NS 1	IS NS	NS	NS	10	550	10	570	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	10	1100	10 67	0 10	600	NS	NS	NS 1	NS 10	990	NS	NS 10	0 720	10	NS	10 940	10	NS	0 510	NS	NS	10	730 N	S NS	NS	NS	NS	NS	NS NS
Vanadium	0.049	NR	NR N	R NR	NR	NR ?	IS NS	NS	NS	NS	NS	NS	NS	NR	NR N	AS N	AS N	4S N	IS 0.005	0 0.0081	NS	NS	NS	NS 1	IS NS	NS	NS	0.0050	0.0066	0.005	0 0.006	8 NS	NS	NS	NS	NS	NS	NS	NS	NS				0.0050 NE					NS 1	NS 0.00	50 ND	NS	NS 0.0	05 ND^	0.005	NS	.005 ND	0.005	NS 0.	005 ND	NS	NS	0.005 0	0.005 N	S NS	NS	NS	NS	NS	NS NS
Zinc	5.0	0.020	ND N	S NS	0.020	ND ?	IS NS	NS	NS	NS	NS	NS	NS	0.020	ND N	NS N	NS N	is N	IS 0.02	) ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.020	ND	0.020	0 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.020	ND	0.020 NE	D 0.020	ND	NS	NS	NS 1	NS 0.03	20 ND	NS	NS 0.0	02 ND	0.02	NS	0.02 ND ^	0.02	NS 0	02 ND	NS	NS	0.02	ND N	S NS	NS	NS	NS	NS	NS NS
Benzene	0.005	NR	NR N	R NR	NR	NR ?	IS NS	NS	NS	NS	NS	NS	NS	NR	NR N	NS N	NS N	S N	S 0.000	90 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.0005	ND	0.000	6 ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0005	ND 0	0.0005 NE	D 0.0005	5 ND	NS	NS	NS 1	NS 0.00	05 ND	NS	NS 0.00	005 ND	0.0005	NS 0	0005 ND	0.0005	NS 0.0	005 ND	NS	NS	0.0005	ND N	S NS	NS	NS	NS	NS	NS NS
BETX	11.705	NR	NR N	R NR	NR	NR ?	IS NS	NS	NS	NS	NS	NS	NS	NR	NR N	AS N	AS N	4S N	IS 0.002	5 ND	NS	NS	NS	NS 1	IS NS	NS	NS	0.002	ND	0.002	2 0.0005	6 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.002 0	0.0024	0.002 NE	D 0.002	0.00743	NS	NS	NS 1	NS 0.00	25 ND	NS	NS 0.00	025 ND	0.0025	NS 0	0025 ND	0.0025	NS 0.0	025 ND	NS	NS	0.0025	ND N	S NS	NS	NS	NS	NS	NS NS
pH	6.5 - 9.0	NA	7.82 N	S NS	NA	7.25	IS NS	NS	NS	NS	NS	NS	NS	NA	7.46 N	NS N	NS NS	4S N	IS NM	NM	NS	NS	NS	NS 1	IS NS	NS	NS	NA	6.54	NA	7.08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	7.02	NA 6.5	0 NA	7.08	NS	NS	NS 1	NS NJ	A 7.00	NS	NS N	A 7.20	NA	NS	NA 7.42	NA	NS N	IA 7.9	NS	NS	NA	7.01 N	S NS	NS	NS	NS	NS	NS NS
Temperature	NA	NA	7.52 N	A NS	NA	13.92 1	IS NS	NS	NS	NS	NS	NS	NS	NA 2	2.01 N	NS N	AS N	S N	IS NA	NM	NS	NS	NS	NS 1	IS NS	NS	NS	NA	14.06	NA	12.25	5 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	14.78	NA 17.2	29 NA	14.78	NS	NS	NS 1	NS NJ	A 9.08	NS	NS N	A 13.12	NA	NS	NA 14.8	NA	NS N	A 11.2	5 NS	NS	NA	12.7 N	S NS	NS	NS	NS	NS	NS NS
Conductivity	NA	NA	1.04 N	A NS	NA	1.28	IS NS	NS	NS	NS	NS	NS	NS	NA	0.97 N	NS N	NS NS	4S N	IS NA	NM	NS	NS	NS	NS 1	IS NS	NS	NS	NA	0.857	NA	0.90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	1.83	NA 1.0	6 NA	0.91	NS	NS	NS 1	NS NJ	A 0.91	NS	NS NA	A 0.91	NA	NS	NA 2.25	NA	NS N	IA 90.6	NS	NS	NA 1	1.226 N	S NS	NS	NS	NS	NS	NS NS
Dissolved Oxygen	NA	NA	NM N	A NS	NA	4.19	IS NS	NS	NS	NS	NS	NS	NS	NA	7.68 N	NS N	.SS N	4S N	IS NA	NM	NS	NS	NS	NS 1	IS NS	NS	NS	NA	3.38	NA	1.36	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	2.64	NA 5.4	0 NA	3.90	NS	NS	NS 1	NS NJ	A 8.08	NS	NS NA	A 9.88	NA	NS	NA 8.62	NA	NS N	IA 12.5	I NS	NS	NA	8.61 N	S NS	NS	NS	NS	NS	NS NS
ORP	NA	NA	NM N	A NS		210.6	IS NS	NS	NS	NS	NS	NS	NS	NA 1	55.0 N	SS N	AS N	4S N	IS NA	NM	NS	NS	NS	NS 1	IS NS	NS	NS	NA	150.8	NA	66.2	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	26.4	NA -62	.3 NA	-25.4	NS	NS	NS 1	NS NJ	-13.2	NS	NS NA	A 30.4	NA	NS	NA -246.5	NA	NS N	IA -29.4	NS	NS	NA	87.6 N	S NS	NS	NS	NS	NS	NS NS
Notes:	andards obtained from action (20.410 - Groun	n IAC, Title 35,	Chapter I, Part 62	l, Subpart D,	DL- De	action limit		R - Not Require IS - Not Samples						°C degr	ees Celcius																																																							

 New South-shouth Smith, The OS, Dayor, Dan CM, Sangara C, Sangara

											_																																										
Sample: MW-02	Date	12/6/2	010 3/2	23/2011	6/14/2011	9/14/201	1 12/7/2	011 3/1	5/2012	6/19/2012	9/19/2	012 12	2/20/2012	3/5/2013	5/23/	2013 7	7/22/2013	10/15/201	3 2/2	1/2014	5/2/2014	8/18	2014	10/23/2014	2/10	2015	5/27/2015	8/4/2	015	10/28/2015	2/9/2016	5/11/201	16 8/3	31/2016	11/1/2016	2/8/20	17 4/2	5/2017	2/21/2018	8/1/2018	10/16/201	8 2/4/20	019 5/	7/2019	8/6/2019	11/7/2019	2/13/202	20 5/21/	/2020 7/3	30/2020 1	0/22/2020	3/2/2021	5/18/2021
Parameter	Standards	DL	Result DL	Result	DL Result	DL R	esult DL	Result DL	Result	DL Result	it DL	Result DL	L Result	DL Re	sult DL	Result D	DL Result	DL Re	sult DL	Result I	DL Resul	DL	Result	DL Res	it DL	Result	DL Result	t DL	Result I	L Result	DL Re	suit DL B	tesult DL	Result	DL Result	DL	Result DL	Result I	DL Result	DL Result	DL Re	ult DL	Result DL	Result	DL Result	DL Res	alt DL R	esult DL	Result DL	Result 7	JL Result	DL Resu	ult DL Result
Antimony	0.006	0.0030	0.012 NS	NS	0.0030 0.0042	0.0030 0.	0032 0.0030	ND 0.0030	) ND	NS NS	0.0030	ND 0.00	030 ND	0.0030 N	D 0.0030	ND 0.00	030 ND	0.0030 N	D 0.0030	ND 0.0	0030 ND	0.0030	ND	0.0030 NE	0.0030	ND	0.0030 ND	0.0030	ND 0.0	030 ND	0.0030 N	D 0.0030	ND 0.0030	0 ND 0	0.0030 ND	0.0030	ND ^ 0.0030	ND 0.0	030 ND	0.003 ND	0.003 N	D 0.003	ND 0.00	3 ND	0.003 NS	0.003 N	0.003	NS 0.003	ND NS	NS /	AS NS	NS NS	NS NS
Arsenic	0.010	0.0010	ND NS	NS	0.0050 ND	0.0010	ND 0.0010	ND 0.0010	) ND	NS NS	0.0010	0.0015 0.00	010 ND	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.0	0010 ND	0.0010	ND	0.0010 ND	^ 0.0010	ND	0.0010 ND	0.0010	ND 0.0	010 ND	0.0010 N	D 0.0010	ND ^ 0.0010	0 ND 0	0.0010 ND	0.0010	ND 0.0010	ND 0.0	010 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	1 ND	0.001 NS	0.001 N	0.001	NS 0.001	ND NS	NS 7	AS NS	NS NS	NS NS
Barium	2.0	0.0025	0.082 NS	NS	0.0025 0.081	0.0025 0	0.10 0.0025	0.12 0.0025	5 0.12	NS NS	0.0025	0.12 0.00	025 0.13	0.0025 0.3	12 0.0025	0.11 0.00	025 0.12	0.0025 0.0	0.0025	0.13 0.0	0025 0.11	0.0025	0.087	0.0025 0.08	9 0.0025	0.088	0.0025 0.092	0.0025	0.090 0.0	025 0.084	0.0025 0.0	098 0.0025	0.11 0.002	5 0.087 0	0.0025 0.071	0.0025	0.085 0.0025	0.10 0.0	025 0.12	0.0025 0.071	0.0025 0.0	63 0.0025	0.071 0.002	5 0.11	0.0025 NS	0.0025 0.0	15 0.0025	NS 0.0025	0.089 NS	NS ?	AS NS	NS NS	i NS NS
Beryllium	0.004	0.0010	ND NS	NS	0.0010 ND	0.0010	ND 0.0010	ND 0.0010	) ND	NS NS	0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND ^ 0.0	0010 ND	0.0010	ND	0.0010 NE	0.0010	ND	0.0010 ND	0.0010	ND 0.0	010 ND	0.0010 N	D 0.0010	ND 0.0010	0 ND^ (	0.0010 ND	0.0010	ND ^ 0.0010	ND 0.0	010 ND	0.001 ND	0.001 N	0.001	ND 0.00	1 ND	0.001 NS	0.001 N	0.001	NS 0.001	ND ^ NS	NS 7	AS NS	NS NS	i NS NS
Boron	2.0	0.050	0.31 NS	NS	0.050 0.35	0.050 0	0.44 0.050	0.74 0.050	0.22	NS NS	0.050	0.35^ 0.05	050 0.42	0.050 0.4	41 0.050	0.35 0.0	0.50 0.29	0.050 0.	41 0.050	0.34 0.	050 0.25	0.050	0.22	0.050 0.2	2 0.050	0.23	0.050 0.35	0.050	0.25 0	150 0.21	0.050 0.	20 0.050	0.18 0.050	0 0.18	0.050 0.18	0.050	0.17 0.050	0.15 0.	050 0.19	0.05 0.14	0.05 0.	15 0.05	0.14 0.05	0.15	0.05 NS	0.05 0.1	8 0.05	NS 0.05	0.24 NS	NS ?	4S NS	NS NS	, NS NS
Cadmium	0.005	0.00050	ND NS	NS	0.0025 ND	0.00050	ND 0.00050	ND 0.0005	0 ND	NS NS	0.00050	ND 0.000	0050 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.0005	ND 0.0	0050 0.0005	0.00050	ND	100050 NE	0.00050	ND	0.00050 0.0006	9 0.00050	ND 0.0	0050 ND	0.00050 N	D 0.00050	ND 0.0005	50 ND 0	1.00050 ND	0.00050	ND 0.0005	ND 0.0	0050 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.000	6 ND	0.0005 NS	0.0005 N	0.0005	NS 0.0005	ND NS	NS ?	AS NS	NS NS	i NS NS
Chloride	200.0	10	140 NS	NS	10 230	10	140 10	140 2.0	280	NS NS	10	120 10	0 150	10 26	60 10	250 1	10 310	10 1	80 10	240	50 350	10	280	10 24	0 10	190	50 410	10	290	0 130	10 1	80 10	340 10	170	10 97	10	140 10	330	10 240	10 200	10 11	10 10	150 10	500	10 NS	10 10	0 10 1	NS 10	260 NS	NS ?	4S NS	NS NS	, NS NS
Chromium	0.1	0.0050	ND NS	NS	0.025 ND	0.0050	ND 0.0050	ND 0.0050	) ND	NS NS	0.0050	ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.0	0050 ND	0.0050	ND	1.0050 NE	0.0050	ND	0.0050 ND	0.0050	ND 0.0	050 ND	0.0050 N	dD 0.0050	ND 0.0050	0 ND 0	0.0050 ND	0.0050	ND 0.0050	ND 0.0	050 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	5 ND	0.005 NS	0.005 N	0.005	NS 0.005	ND NS	NS ?	4S NS	NS NS	NS NS
Cobalt	1.0	0.0010	ND NS	NS	0.0050 ND	0.0010	ND 0.0010	ND 0.0010	) ND	NS NS	0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.0	010 ND	0.0010	ND	0.0010 NI	0.0010	0.0017	0.0010 0.010	0.0010	0.0027 0.0	010 0.0017	0.0010 0.0	011 0.0010	ND 0.0010	0 ND 0	0.0010 ND	0.0010	ND 0.0010	ND 0.0	010 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	1 ND	0.001 NS	0.001 N	0.001	NS 0.001	ND NS	NS ?	4S NS	NS NS	, NS NS
Copper	0.65	0.0020	0.0032 NS	NS	0.010 ND	0.0020	ND 0.0020	ND 0.0020	) ND	NS NS	0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020	ND	0.0020 NE	0.0020	ND	0.0020 0.0055	0.0020	ND 0.0	020 ND	0.0020 N	4D 0.0020	ND 0.0020	0 ND 0	0.0020 ND	0.0020	ND ^ 0.0020	ND ^ 0.0	020 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	2 ND	0.002 NS	0.002 N	0.002	NS 0.002	ND NS	NS ?	4S NS	NS NS	NS NS
Cyanide	0.2	0.010	ND NS	NS	0.010 ND	0.010	ND 0.010	ND 0.010	ND	NS NS	0.010	ND 0.01	010 ND	0.010 N	D 0.010	ND 0.0	010 ND	0.010 N	D 0.010	ND 0.	010 ND	0.010	ND	0.010 NI	0.010	ND	0.010 ND	0.010	ND 0:	010 ND	0.010 N	4D 0.010	ND 0.010	) ND	0.010 ND	0.010	D F1,2 0.010	ND 0.	010 ND	0.01 ND	0.01 N	D 0.01	ND 0.01	ND	0.01 NS	0.01 N	0.01	NS 0.01	ND NS	NS 7	4S NS	NS NS	NS NS
Fluoride	4.0	0.10	0.62 NS	NS	0.10 0.58	0.10 0	0.54 0.10	0.51 0.10	0.53	NS NS	0.10	0.64 0.1	10 0.59	0.10 0.5	59^ 0.10	0.54 0.1	10 0.51	0.10 0.	56 0.10	0.46 0	.10 0.40	0.10	0.49	0.10 0.4	5 0.10	0.40	0.10 0.40	0.10	0.41 0	10 0.39	0.10 0.	.38 0.10	0.40 0.10	0.44	0.10 0.40	0.10	0.35 0.10	0.32 0	.10 0.35	0.1 0.4	0.1 0.4	13 0.1	0.39 0.1	0.41	0.1 NS	0.1 0.3	8 0.1	NS 0.1	0.41 NS	NS F	4S NS	NS NS	NS NS
Iron	5.0	0.10	ND NS	NS	0.50 ND	0.10	ND 0.10	ND 0.10	ND	NS NS	0.10	ND 0.1	10 ND	0.10 N	D 0.10	ND 0.1	10 ND	0.10 N	D 0.10	ND 0	.10 ND	0.10	ND	0.10 NE	0.10	ND	0.10 ND	0.10	ND 0	10 ND	0.10 N	4D 0.10 2	ND ^ 0.10	ND	0.10 ND	0.10	ND 0.10	ND 0	.10 ND	0.1 ND	0.1 N	D 0.1	ND 0.1	ND	0.1 NS	0.1 N	0.1	NS 0.1	ND NS	NS N	4S NS	NS NS	NS NS
Lead	0.0075	0.00050	ND NS	NS	0.00050 ND	0.00050	ND 0.00050	ND 0.0005	0 ND	NS NS	0.00050	ND 0.000	0050 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.0005	ND 0.0	0050 ND	0.00050	ND	L00050 NE	0.00050	ND	0.00050 ND	0.00050	ND 0.0	050 ND	0.00050 N	D 0.00050	ND 0.0005	50 ND 0	1.00050 ND	0.00050	ND 0.0005	ND 0.0	0050 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.000	15 ND	0.0005 NS	0.0005 N	0.0005	NS 0.0005	ND NS	NS F	4S NS	NS NS	NS NS
Manganese	0.15	0.0025	ND NS	NS	0.013 ND	0.0025 0.	0025 0.0025	ND 0.0025	5 ND^	NS NS	0.0025	ND 0.00	025 ND	0.0025 N	D 0.0025		0.0036	0.0025 N	D 0.0025	ND 0.0	025 ND	0.0025	ND	0.0025 NE	0.0025	ND	0.0025 0.0031	0.0025	ND 0.0	025 ND	0.0025 N	3D 0.0025	ND 0.002	5 ND (	0.0025 ND	0.0025	ND 0.0025	ND 0.0	025 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.002	5 ND	0.0025 NS	0.0025 N	0.0025	NS 0.0025	ND NS	NS N	4S NS	NS NS	NS NS
Mercury	0.002	0100040	ND NS	NS	0.00020 ND^	0.00020	ND 0.00020	ND 0.0002	0 ND	NS NS	0.00020	ND 0.000	020 ND	0.00020 N	D 0.00020	ND 0.00	0020 ND	0.00000		ND 0.0		0.00020	ND	100020 NE	0.00020	ND	0.00020 ND	0.00020	ND * 0.0	020 ND	0.00020 N	4D 0.00020	ND 0.0002	20 ND 0	1.00020 ND	0.00020	ND 0.0002	ND 0.0	0020 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.000	12 ND	0.0002 NS	0.0002 N	0.0002	NS 0.0002	ND NS	NS F	4S NS	NS NS	NS NS
Nickel	0.1	0.0020	0.0033 NS	NS	0.010 ND	0.0020 0.	0027 0.0020	0.0023 0.0020	) ND	NS NS	0.0020	0.0024 0.000	020 0.0029	0.0020 0.0	027 0.0020	0.0022 0.00	020 0.0061	0.0020 0.0	039 0.0020	ND 0.0	020 0.002	0.0020	0.0049	0.0020 0.00	99 0.0020	0.0053	0.0020 0.013	0.0020	0.0073 0.0	020 0.0031	0.0020 0.0	039 0.0020 0	0.0020	0 0.0062 0	0.0020 0.0044	0.0020	0.0030 0.0020	0.0050 0.0	020 0.0054	0.002 0.003	0.002 N	D 0.002 (	0.0027 0.00	2 0.0034	0.002 NS	0.002 0.00	21 0.002	NS 0.002	0.0046 NS	NS N	4S NS	NS NS	S NS NS
Nitrogen/Nitrate	10.0	0.10	3.1 NS	NS	0.10 1.8	0.10	2.2 0.10	2.9 0.10	6.4	NS NS	0.10	4.7 0.1	10 7.5	0.10 4.	.4 0.10	3.7 0.1	10 1.8		_	3.4 0		0.10	1.1	0.10 1.3	0.10	1.3	0.10 0.43	0.10	1.2 0	10 1.0	0.10 1	.5 0.10	1.4 0.10	1.5	0.10 0.79	0.10	1.0 0.10	1.8 0	.10 1.6	0.1 0.81	0.1 0.1	\$8 0.1	1.0 0.1	1.8	0.1 NS	0.1 1.	2 0.1	NS 0.1	2.9 NS	NS N	4S NS	NS NS	NS NS
Nitrogen/Nitrate, Nitr	NA	0.20	3.1 NS	NS	0.10 1.8	0.20	2.2 0.10	2.9 0.50	6.4	NS NS	0.50	4.7 0.5	50 7.5	0.50 4.	4 0.50	3.7 0.1	10 1.8	0.10 1	.6 0.50	3.4 0	50 2.9	0.10	1.1	0.10 1.3	0.10	1.3	0.10 0.43	0.10	1.2 0	10 1.0	0.10 1	.5 0.10	1.4 0.10	1.5	0.10 0.79	0.10	1.0 0.10	1.8 0	.10 1.6	0.1 0.81	0.1 0.	88 0.1	1.0 0.1	1.8	0.1 NS	0.1 1.	2 0.1	NS 0.1	2.9 NS	NS N	4S NS	NS NS	NS NS
Nitrogen/Nitrite	NA	0.020	ND NS	NS	0.020 ND	0.020	ND 0.020	ND 0.020	ND	NS NS	0.020	ND 0.02	020 ND	0.020 N	D 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.	020 ND	0.020	ND	0.020 NE	0.020	ND	0.020 ND	0.020	ND 0:	120 ND	0.020 N	4D 0.020	ND 0.020	) ND	0.020 ND	0.020	ND 0.020	ND 0.	020 ND	0.02 ND	0.02 N	D 0.02	ND 0.02	ND	0.02 NS	0.02 N	0.02	NS 0.02	ND NS	NS N	-S NS	NS NS	NS NS
Perchlorate	0.0049	NR	NR NR	NR	NR NR	NR I	NR NR	NR NR	NR	NS NS	NR	NR 0.00	004 ND	0.0040 N	D 0.0040	ND 0.00	040 ND	0.0040 N	D 0.0040	ND 0.0	0040 ND	0.00010		0.0040 NE	0.0040	ND	0.0040 ND	0.0040	ND 0.0	040 ND	0.0040 N	3D 0.0040	ND 0.0040	0 ND 0	0.0040 ND	0.0040	ND 0.0040	ND 0.0	040 ND	0.004 ND	0.004 N	D 0.004	ND 0.00	4 ND	0.004 NS	0.004 N	0.004	NS 0.004	ND NS	NS N	4S NS	NS NS	NS NS
Selenium	0.05	0.0025	ND NS	NS	0.013 ND	0.0025 0.	0038 0.0025	0.0055 0.0025	5 0.0048	NS NS	0.0025	ND 0.003	025 ND	0.0025 0.0	034 0.0025	0.0027 0.00	025 ND	0.0025 N	D 0.0025	0.0077 0.0	0025 ND	0.0025		0.0025 NI	0.0025	ND	0.0025 ND	0.0025	ND 0.0	025 ND	0.0025 NI	DF1 0.0025 1	ND ^ 0.0024	5 ND (	0.0025 ND	0.0025	ND 0.0025	ND 0.0	025 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.002	5 ND	0.0025 NS	0.0025 N	0.0025	NS 0.0025	0.0045 NS	NS N	-S NS	NS NS	NS NS
Silver	0.05	0.00050	ND NS	NS	0.0025 ND	0.00050	ND 0.00050	ND 0.0005	0 ND	NS NS	0.00050	ND 0.000	0050 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.0005	ND 0.0	0050 ND	0.00050	ND	100050 NE	0.00050	ND	0.00050 ND	0.00050	ND 0.0	0050 ND	0.00050 N	aD 0.00050	ND 0.0005	50 ND 0	0.00050 ND	0.00050	ND 0.0005	ND 0.0	0050 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.000	15 ND	0.0005 NS	0.0005 N	0.0005	NS 0.0005	ND NS	NS N	IS NS	NS NS	NS NS
Sulfate	400.0	50	190 NS	NS	25 67	25	110 50	150 50	110	NS NS	50	190 50	0 140	50 13	30 25	150 5	90 140	25 1	30 25	61	25 68	25	85	25 92	20	67	25 100	25	85 3	10 60	20 8	88 25	100 25	62	10 41	20	50 25	140	50 160	20 76	20 4	5 20	71 20	73	20 NS	20 3	20	NS 20	160 NS	NS N	.S NS	NS NS	NS NS
Thallium	0.002			NS	0.0020 ND	0.0020	ND 0.0020	ND 0.0020	) ND	NS NS	0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.0	0020 ND	0.0020				ND	0.0020 ND	0.0020	ND 0.0	020 ND	0.0020 N	dD 0.0020	ND 0.0020	0 ND 0	0.0020 ND	0.0020	ND 0.0020	ND 0.0	020 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	2 ND	0.002 NS	0.002 N	0.002	NS 0.002	ND NS	NS N	IS NS	NS NS	NS NS
Total Dissolved Solid	1,200		600 NS	NS	10 720	10 0	590 10	750 10	800	NS NS	10	580 10	0 720	10 84	40 10	860 1	10 980	10 6	60 10	830	10 1100	10	850	10 81	0 10	730	10 1200	10	890	0 610	10 7	50 10	960 10	700	10 570	10	630 10	890	10 970	10 760	10 53	0 10	690 10	1,100	10 NS	10 58	0 10 1	NS 10	910 NS	NS N	.S NS	NS NS	NS NS
Vanadium	0.049	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NR	NR	NS NS	NR	NR 0.00	050 ND	0.0050 N	D 0.0050	ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.0	0050 ND	0.0050	ND	0.0050 NE	0.0050	ND	0.0050 ND	0.0050	ND 0.0	050 ND	0.0050 N	aD 0.0050	ND 0.0050	0 ND 0	0.0050 ND	0.0050	ND 0.0050	ND 0.0	050 ND	0.005 ND	0.005 N	> 0.005	ND 0.00	5 ND	0.005 NS	0.005 N	0.005	NS 0.005	ND NS	NS N	IS NS	NS NS	NS NS
Zinc	5.0	0.020	ND NS	NS	0.10 ND	0.020	ND 0.020	ND 0.020	ND	NS NS	0.020	ND 0.02	020 ND	0.020 N	D 0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.	020 ND	0.020	ND	0.020 NE	0.020	ND	0.020 ND	0.020	ND 0	120 ND	0.020 N	4D 0.020	ND 0.020	) ND	0.020 ND	0.020	ND 0.020	ND 0.	020 ND	0.02 ND	0.02 N	D 0.02	ND 0.02	ND	0.02 NS	0.02 N	0.02	NS 0.02	ND NS	NS N	IS NS	NS NS	NS NS
Benzene	0.005	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NR	NR	NS NS	NR	NR 0.00	005 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 N	D 0.0005	ND 0.0	005 ND	0.0005	ND	0.0005 NE	0.0005	ND	0.0005 ND	0.0005	ND 0.0	005 ND	0.0005 N	aD 0.0005	ND 0.0005	6 ND (	0.0005 ND	0.0005	ND 0.0005	ND 0.0	005 ND	0.0005 0.001	0.0005 N	D 0.0005	ND 0.000	15 ND	0.0005 NS	0.0005 N	0.0005	NS 0.0005	ND NS	NS N	IS NS	NS NS	NS NS
BETX	11.705	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NR	NR	NS NS	NR	NR 0.003	025 ND	0.0025 N	D 0.0025	ND 0.00	025 ND	0.0025 N	D 0.0025	ND 0.	002 ND	0.002	ND	0.002 0.000	76 0.002	0.00076	0.002 0.0007	6 0.002	ND 0:	02 ND	0.002 N	3D 0.002 0	0.002 0.002	2 ND	0.002 0.0068	0.002	ND 0.002	ND 0.0	025 0.00052	0.0025 0.0142	2 0.0025 N	D 0.0025	ND 0.002	5 ND	0.0025 NS	0.0025 N	0.0025	NS 0.0025	ND NS	NS N	.S NS	NS NS	NS NS
pH	6.5 - 9.0	NA	7.85 NS	NS	NA 7.30	NA 1	1.37 NA	7.37 NA	NM	NS NS	NA	7.39 NA	A 7.39	NA 7.	52 NA	7.44 N	IA 7.08	NA 7.	20 NA	9.24	A 7.22	NA	7.07	NA 7.3	I NA	7.46	NA 6.83	NA	7.61	IA 7.05	NA 7.	.12 NA	7.13 NA	6.70	NA 7.26	NA	6.97 NA	7.15 N	IA 7.28	NA 7.36	NA 7.	10 NA	7.32 NA	7.3	NA NS	NA 7.1	6 NA 1	NS NA	6.99 NS	NS N	.S NS	NS NS	NS NS
Temperature	NA	NA	9.3 NA	NS	NA 15.57	NA I	8.72 NA	13.04 NA	NM	NS NS	NA	22.02 NA	A 14.4	NA 9.	5 NA	12.82 N	IA 16.25	NA 15	.37 NA	11.97 2	(A 11.55	NA	16.92	NA 14.	3 NA	9.28	NA 14.63	NA	16.75 3	IA 15.07	NA 11	L10 NA 1	13.52 NA	18.75	NA 17.85	NA	11.92 NA	14.74 N	IA 7.75	NA 17.40	NA 14	68 NA	13.4 NA	19.3	NA NS	NA 12.	51 NA 1	NS NA	14.5 NS	NS N	.S NS	NS NS	NS NS
Conductivity	NA	NA	1.1 NA	NS	NA 1.30	NA (	1.98 NA	0.90 NA	NM	NS NS	NA	0.90 NA	A 0.91	NA 1.0	02 NA	1.008 N	IA 1.785	NA 1.	02 NA	1.00	(A 1.35	NA	1.299	NA 1.3	) NA	0.94	NA 1.75	NA	1.38 1	IA 1.10	NA 0.	92 NA	1.38 NA	1.11	NA 0.84	NA	0.78 NA	1.22 1	A 0.916	NA 0.961	NA 0.7	35 NA	1.1 NA	3.0	NA NS	NA 9.0	7 NA 1	NS NA	1.577 NS	NS N	.S NS	NS NS	NS NS
Dissolved Oxygen	NA	NA	NM NA	NS	NA 6.45	NA 5	.21 NA	5.91 NA	NM	NS NS	NA	6.02 NA	A 9.91	NA 7.	79 NA	7.65 N	IA 14.83	NA 5.	81 NA	6.17 2	(A 8.48	NA	5.14	NA 4.0	7 NA	5.58	NA 1.96	NA	3.66	IA 4.47	NA 5.	38 NA	4.25 NA	4.84	NA 3.87	NA	4.90 NA	6.60	IA 5.82	NA 5.36	NA 6.	5 NA	6.20 NA	6.98	NA NS	NA 9.	NA I	NS NA	7.77 NS	NS N	S NS	NS NS	NS NS
ORP	NA	NA	NM NA	NS	NA 227.3	NA -	36.0 NA	81.0 NA	NM	NS NS	NA	158.0 NA	A 41.0	NA 58	ki NA	178.0 N	IA 138.5	NA 4	0.3 NA	-66.1 2	(A 152.4	NA	115.8	NA 57.	I NA	73.2	NA 33.9	NA	-51.3 1	IA 110.4	NA 8	0.7 NA	38.4 NA	47.8	NA 91.2	NA	15.3 NA	10.1	IA 13.1	NA 85.9	NA 36	.6 NA	125.6 NA	NA	NA NS	NA -10	5 NA 1	NS NA	82.1 NS	NS N	.S NS	NS NS	S NS NS
Notes	Standards obtaine	ed from IAC, Title 35,	Chapter I, Part 620, 5	iabpart D,	DL- Detection li	mit	NR - Not Required			Temperatu	are 'C da	egrees Celcius																																									

Sample: MW-03	Date	12/7/201	10 3/23/	2011 6	6/14/2011	9/14/2011	12/7/201	1 3/15	5/2012	6/19/2012	9/19/2	2012 1	12/20/2012	3/5/201	3 5/	22/2013	7/22/201	3 10/15	5/2013	2/17/2014	5/2/2014	1 8	8/18/2014	10/23	8/2014	2/10/2015	5/27/	2015	8/4/2015	10/28/2	015 2/	10/2016	5/10/2016	8/31/201	6 11	1/2/2016	2/6/2017	4/26/2	017 2/20	0/2018 7/	31/2018	10/17/2018	2/4/2019	5/7/2	2019 8/	/7/2019	11/7/2019	2/17/2020	5/20/2020	7/30/2	020 10/22	/2020 7	3/2/2021	5/18/2021
Parameter	Standards	DL R	tesuk DL	Result D	DL Result	DL Resu	lt DL Re	sult DL	Result	DL. Result	it DL	Result D	DL. Result	DL B	tesult DL	. Result	DL Ra	sult DL	Result	DL Result	DL R	suit Di	L Result	t DL	Result	DL Res	uit DL	Result	DL Result	t DL	Result DL	Result	DL Rest	h DL Re	esult DL	Result	DL Resul	t DL	Result DL	Result DL	. Result	DL Result	DL Resu	it DL	Result DL	. Result	DL Result	DL Result	DL Resu	alt DL	Result DL	Result DI	DL Result	DL Result
Antimony	0.006	0.0030 0.	.0040 0.0030	ND 0.0	0030 ND	0.0030 0.006	5 0.0030 0.0	016 0.0030	0.013	0.0030 ND	0.0030	ND 0.00	0030 ND	0.0030	ND 0.003	30 ND	0.0030	D 0.0030	ND	.0030 ND	0.0030 2	D 0.00	130 ND	0.0030	ND (	0.0030 N	D 0.0030	ND (	0.0030 ND	0.0030	ND 0.003	0 ND	0.0030 ND	0.0030	ND 0.0030	0 ND 0	1.0030 ND	0.0030	ND 0.0030	ND 0.00	13 ND	0.003 ND	0.003 ND	0.003	ND 0.00*	3 ND	0.003 ND	0.003 ND	0.003 ND	0.003	ND 0.003	ND 0.f	.003 ND f	.003 ND
Arsenic	0.010	0.0010	ND 0.0010	0.0011 0.0	0050 ND	0.0010 0.001	2 0.0010 0.0	0.0010	0.0014	0.0010 0.0011	1 0.0010	0.0012 0.00	0010 0.0012	0.0010 0	0014 0.001	10 0.0013	0.0010 0.0	0012 0.0010	0.0014	.0010 0.0014	0.0010 0.0	015 0.00	10 ND	0.0010	ND ^A	0.0010 0.00	0.0010	0.0015 (	0.0010 0.001	5 0.0010	ND 0.001	0 0.0015	0.0010 ND	0.0010 0.0	0011 0.0010	0 0.0013 0	0.0010 0.001	3 0.0010	0.0011 0.0010	0.0012 0.00	01 0.0012	0.001 0.001	0.001 0.001	11 0.001	0.001 0.00'	1 ND	0.001 0.0012	0.001 0.0015	0.001 0.001	15 0.001	0.001 0.001	ND 0.0	.001 0.001 r	.001 ND
Barium	2.0	0.0025 0	0.089 0.0025	0.085 0.0	0025 0.092	0.0025 0.081	1 0.0025 0.0	0.0025	5 0.081	0.0025 0.088	8 0.0025	0.097 0.00	0025 0.09	0.0025 (	0.002	25 0.13	0.0025 0	.10 0.0025	0.099	.0025 0.098	0.0025 0	.10 0.00	0.075	0.0025	0.089 (	0.0025 0.0	93 0.0025	0.094 (	0.0025 0.092	0.0025	0.10 0.002	5 0.098	0.0025 0.09	3 0.0025 0.	0.002	5 0.089 0	0.0025 0.096	0.0025	0.096 0.0025	0.094 0.00	25 0.099 (	0.0025 0.1	0.0025 0.08	9 0.0025	0.11 0.002	25 0.088 (	.0025 0.081 (	0.0025 0.09	0.0025 0.11	1 0.0025	0.093 0.0025	0.1 0.0'	J025 0.11 0	J025 0.14
Beryllium	0.004	0.0010	ND 0.0010	ND 0.0	0010 ND	0.0010 ND	0.0010 N	D 0.0010	) ND	0.0010 ND	0.0010	ND 0.00	0010 ND	0.0010	ND 0.001	10 ND	0.0010	(D 0.0010	ND	.0010 ND ^	0.0010 2	D 0.00	10 ND	0.0010	ND (	0.0010 N	D 0.0010	ND (	0.0010 ND	0.0010	ND 0.001	0 ND ^	0.0010 ND	0.0010 N	D ^ 0.0010	0 ND 0	0.0010 ND /	0.0010	ND 0.0010	ND 0.00	01 ND	0.001 ND*	0.001 ND	0.001	ND 0.00'	1 ND	0.001 ND	0.001 ND	0.001 ND	^ 0.001	ND 0.001	ND 0.0	.001 ND f	.001 ND
Boron	2.0	0.050	0.24 0.050	0.36 0.0	0.46	0.050 0.24	0.050 0.	23 0.050	0.26	0.050 0.31	0.050	0.22^ 0.0	050 0.28	0.050	0.29 0.05	0 0.74 V	0.050 0	.67 0.050	0.27	1.050 0.45	0.050 0	27 0.0	50 0.37	0.050	0.45	0.050 0.5	52 0.050	0.54	0.050 0.48	0.050	0.29 0.050	0 0.49	0.050 0.4	0.050 0	0.050	0 0.38 0	0.050 0.39	0.050	0.45 0.050	0.51 0.0	5 0.33	0.05 0.22	0.05 0.36	5 0.05	0.41 0.05	5 0.36	0.05 0.32	0.05 0.33	0.05 0.36	6 0.05	0.28 0.05	0.29 0.4	0.05 0.35 0	.05 0.25
Cadmium	0.005	0.00050	ND 0.00050	ND 0.0	0025 ND	0.00050 ND	0.00050 N	D 0.00050	0 0.00074 0	0.00050 ND	0.00050	ND 0.00	00050 ND	0.00050	ND 0.000	50 ND	0.00050	D 0.00050	ND (	00050 ND	0.00050 2	D 0.00	050 ND	0.00050	ND 0	100050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	50 ND	0.00050 ND	0.00050 2	ND 0.0005	50 ND 0.	100050 ND	0.00050	ND 0.00050	ND 0.00	05 ND (	.0005 ND	0.0005 ND	0.0005	ND 0.000	15 ND (	.0005 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0 ⁴	J005 ND 0	J005 ND
Chloride	200.0	10	260 10	240 1	10 300	50 160	10 20	20 20	250	10 260	10	330 1	10 290	10	260 50	380	10 2	10 10	250	10 200	10 3	00 10	0 220	10	180	10 16	0 10	220	10 230	10	230 10	200	10 240	10 2	240 10	170	10 140	10	210 10	170 F1 10	260	10 250	10 160	10	270 F1 10	220	10 150	10 130	10 230	0 10	170 10	180 1	10 200	40 290
Chromium	0.1	0.0050	ND 0.0050	ND 0.0	1025 ND	0.0050 ND	0.0050 N	D 0.0050	) ND	0.0050 ND	0.0050	ND 0.00	0050 ND	0.0050	ND 0.005	50 ND	0.0050	(D 0.0050	ND	.0050 ND	0.0050 2	D 0.00	50 ND	0.0050	ND (	0.0050 N	D 0.0050	ND (	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 NE	0.0050	ND 0.0050	0 ND 0	0.0050 ND	0.0050	ND 0.0050	ND 0.00	15 ND	0.005 ND	0.005 ND	0.005	ND 0.005	5 ND	0.005 ND	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.0	005 ND (	005 ND
Cobalt	1.0	0.0010 0.	0.0013 0.0010	0.0013 0.0	0050 ND	0.0010 ND	0.0010 N	D 0.0010	) ND	0.0010 ND	0.0010	ND 0.00	0010 ND	0.0010	ND 0.001	10 ND	0.0010	0.0010 D	ND	.0010 ND	0.0010 2	4D 0.00	10 ND	0.0010	ND (	0.0010 N	D 0.0010	ND (	0.0010 ND	0.0010	ND 0.001	0 ND	0.0010 NE	0.0010	ND 0.0010	0 ND 0	0.0010 ND	0.0010	ND 0.0010	ND 0.00	01 ND	0.001 ND	0.001 ND	0.001	ND 0.001	1 ND	0.001 ND	0.001 ND	0.001 ND	0.001	ND 0.001	ND 0.0	.001 ND (	001 0.001
Copper	0.65	0.0020	ND 0.0020	ND 0.0	1010 ND	0.0020 ND	0.0020 N	D 0.0020	) ND	0.0020 ND	0.0020	ND 0.00	0020 ND	0.0020	ND 0.002	20 ND	0.0020	D 0.0020	ND	.0020 ND	0.0020 2	iD 0.00	20 ND	0.0020	ND (	0.0020 N	D 0.0020	ND (	0.0020 0.0021	1 0.0020	ND 0.002	0 ND	0.0020 ND	0.0020 2	ND 0.0020	0 ND 0	1.0020 ND	0.0020	ND ^ 0.0020	ND 0.00	02 ND	0.002 ND	0.002 ND	0.002	ND 0.002	2 ND	0.002 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.0'	J02 ND (*	.002 ND
Cyanide	0.2	0.010	ND 0.010	ND* 0.0	1010 ND	0.010 ND	0.010 N	0.010 D	ND	0.010 ND	0.010	ND 0.0	.010 ND	0.010	ND 0.01	0 ND	0.010	D 0.010	ND	1.010 ND	0.010 2	(D 0.0)	10 ND	0.010	ND	0.010 N	D 0.010	ND	0.010 ND	0.010	ND 0.010	0 ND	0.010 NE	0.010	ND 0.010	) ND (	0.010 ND	0.010	ND 0.010	ND 0.0	1 ND	0.01 ND	0.01 ND	0.01	ND 0.01	ND	0.01 ND	0.01 ND	0.01 ND	0.005	0.0062 0.01	ND 0.0'	J05 ND (	005 ND
Fluoride	4.0	0.10	0.43 0.10	0.40 0.	0.10 0.41	0.10 0.31	0.10 0.	.40 0.10	0.39	0.10 0.43	0.10	0.43 0.1	0.10 0.38	0.10 0	0.42^ 0.10	0 0.44	0.10 0	.45 0.10	0.47	0.10 0.51	0.10 0	.40 0.1	0 0.52	0.10	0.49	0.10 0.4	46 0.10	0.43	0.10 0.47	0.10	0.41 0.10	0.48	0.10 0.48	0.10 0	1.45 0.10	0.57	0.10 0.39	0.10	0.35 0.10	0.42 0.1	0.42	0.1 0.4	0.1 0.43	3 0.1	0.41 0.1	0.39	0.1 0.41	0.1 0.46	0.1 0.42	2 0.1	0.45 0.1	0.44 0.	1.1 0.44	1.1 0.4
Iron	5.0	0.10	ND 0.10	ND 0.	0.50 ND	0.10 ND	0.10 N	D 0.10	ND	0.10 ND	0.10	ND 0.1	0.10 ND	0.10	ND 0.10	0 ND	0.10	D 0.10	ND	0.10 ND	0.10 ?	4D 0.1	0 ND	0.10	ND	0.10 N	D 0.10	ND	0.10 ND	0.10	ND 0.10	0.22	0.10 ND	^ 0.10 ?	ND 0.10	ND	0.10 ND	0.10	0.10 0.10	0.10 0.1	I ND	0.1 ND	0.1 ND	0.1	ND 0.1	ND	0.1 ND	0.1 ND	0.1 ND	0.1	ND 0.1	ND 0.	1.1 ND	1.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	00050 ND	0.00050 ND	0.00050 N	D 0.00050	0 ND 0	0.00050 ND	0.00050	ND 0.00	00050 ND	0.00050	ND 0.000	50 ND	0.00050	D 0.00050	ND (	00050 ND	0.00050 2	D 0.00	050 ND	0.00050	ND 0	100050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	50 ND	0.00050 NE	0.00050	ND 0.0005	50 ND 0.	100050 ND	0.00050	ND 0.00050	ND 0.00	05 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.000	15 ND (	.0005 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	4005 ND 0	1005 ND
Manganese	0.15	0.0025 0	0.10 0.0025	0.048 0.0	1013 ND	0.0025 0.007	6 0.0025 0.0	0.0025	5 0.0095^	0.0025 0.014	4 0.0025	0.011 0.00	0025 0.0076	0.0025 0	0.0058 0.005	25 ND	0.0025	D 0.0025		.0025 ND		_	_	0.0025		0.0025 N	D 0.0025	ND (			ND 0.002	5 0.0040	0.0025 ND	0.0025 2	ND 0.0025	5 ND 0	0.0025 ND	0.0025	ND 0.0025	0.0028 0.00	25 ND (	0.0025 ND	0.0025 ND	0.0025	ND 0.002	25 ND (	.0025 0.0035 (	).0025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.00	.025 ND 0	/025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	00020 ND^	0.00020 ND	0.00020 N	D 0.00020	0 ND 0	0.00020 ND	0.00020	ND 0.00	00020 ND	0.00020	ND 0.000	20 ND	0.00020	D 0.00020	ND	00020 ND	0.00020 ?	D 0.000	020 ND	0.00020	ND 0	1.00020 N	D 0.00020	ND 0	0.00020 ND *	0.00020	ND 0.0002	20 ND	0.00020 ND	0.00020 2	ND 0.0002	20 ND 0.	100020 ND	0.00020	ND 0.00020	ND 0.00	02 ND (	0.0002 ND	0.0002 ND	0.0002	ND 0.000'	)2 ND (	.0002 ND (	0.0002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.00	.002 ND 0	.002 ND
Nickel	0.1	0.0020 0	0.011 0.0020	0.0065 0.0	1010 ND	0.0020 0.004	1 0.0020 0.0	0.0020	0.0046	0.0020 0.004	4 0.0020	0.0059 0.00	0020 0.0063	0.0020 0	0.0051 0.002	20 0.0042	0.0020 0.0	0.0020	0.0046	.0020 0.0033	0.0020 0.0	040 0.00	20 0.0021	0.0020	0.0023 (	0.0020 N	D 0.0020	0.0026 (	0.0020 ND	0.0020	0.0023 0.002	0 0.0025	0.0020 ND	0.0020 0.0	0020 0.0020	0 ND 0	0.0020 0.002	5 0.0020	ND 0.0020	0.0024 0.00	0.0025	0.002 0.0049	0.002 0.003	33 0.002	0.0035 0.002	2 ND	0.002 0.0028	0.002 ND	0.002 ND	0.002	ND 0.002	0.0031 0.04	J02 0.0048 (*	J02 0.0072
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.0 0.	0.10 2.1	0.10 1.1	0.10 0.1	.79 0.10	ND	0.10 1.3	0.10	0.88 0.1	0.10 0.77		0.86 0.10					0.10 1.5		1.3 0.1	0 1.9	0.10			5 0.10	2.1	0.10 1.9	0.10	1.6 0.10	1.9	0.10 1.5	0.10	3.4 0.10	1.9	0.10 1.4	0.10	2.6 0.10	1.7 0.1	1.4	0.1 0.94	0.1 1.0	0.1	2.1 0.1	2.7	0.1 1.8	0.1 1.7	0.1 2.1	0.1	3 0.1	2.8 0.	1.1 2.8	1.1 1.9
Nitrogen/Nitrate, Nitr	NA	0.10	ND 0.10	1.0 0.	0.20 2.1	0.10 1.1	0.10 0.1	.79 0.10	ND	0.10 1.3	0.10	0.88 0.1	0.10 0.77	0.10	0.86 0.50	0 3.6	0.50			0.10 1.5	0.50	1.3 0.1	0 1.9	0.10	1.8	0.20 2.	5 0.20	2.1	0.10 1.9	0.10	1.6 0.10	1.9	0.20 1.5	0.50	3.4 0.10	1.9	0.10 1.4	0.20	2.6 0.10	1.7 0.1	1.4	0.1 0.94	0.1 1.0	0.1	2.1 0.1	2.7	0.1 1.8	0.1 1.7	0.1 2.1	0.5	3 0.5	2.8 0.	1.5 2.8	15 1.9
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.0	1020 ND	0.020 ND	0.020 N	ND 0.020	ND	0.020 ND	0.020	ND 0.0	.020 ND	0.020	ND 0.02	10 ND	0.020	D 0.020	ND	1.020 ND	0.020 2	3D 0.03	20 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.020	0 ND	0.020 NE	0.020	ND 0.020	) ND (	0.020 ND	0.020	ND 0.020	ND 0.0	2 ND	0.02 ND	0.02 ND	0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.0	.02 ND (	.02 ND
Perchlorate	0.0049	NR	NR NR	NR N	NR NR	NR NR	NR N	KR NR	NR	NR NR	NR	NR 0.0	004 ND	0.0040	ND 0.004	40 ND	0.0040	D 0.0040	ND	.0040 ND	0.0040 ?	4D 0.00	40 ND	0.0040	ND (	0.0040 N	D 0.0040	ND (	0.0040 ND	0.0040	ND 0.004	0 ND	0.0040 NE	0.0040 2	ND 0.0040	0 ND 0	0.0040 ND	0.0040	ND 0.0040	ND 0.00	14 ND	0.004 ND	0.004 ND	0.004	ND 0.004	4 ND	0.004 ND	0.004 ND	0.004 ND	0.004	ND 0.004	ND 0.0 ⁴	J04 ND (	J04 ND
Selenium	0.05	0.0025	ND 0.0025	0.0050 0.0	1013 ND	0.0025 ND	0.0025 N	ND 0.0025	5 ND	0.0025 0.0043	3 0.0025	ND 0.00	0025 ND	0.0025 0	0031 0.002		0.0025 0.	012 0.0025	ND	.0025 0.0051	0.0025 2	D 0.00	0.0025	9 0.0025	0.0036 (	0.0025 0.00	154 0.0025	0.0063 0	0.0025 0.0066	6 0.0025	ND 0.002	5 0.0048	0.013 ND	^ 0.0025 0.0	0032 0.0025	5 0.0031 0	0.0025 0.003	3 0.0025	0.0050 0.0025	ND 0.00	25 0.0038 (	0.0025 ND	0.0025 0.003	32 0.0025	0.0056 0.002*	25 0.0037 (	.0025 0.0025 (	0.0025 0.0025	0.0025 0.003	39 0.0025	0.0028 0.0025	ND 0.00	.025 0.0047 0.	,025 ND
Silver	0.05	0.00050	ND 0.00050	ND 0.0	0025 ND	0.00050 ND	0.00050 0.00	0091 0.00050	0 ND 0	0.00050 ND	0.00050	ND 0.00	00050 ND	0.00050	ND 0.000	50 ND	0.00050	D 0.00050	ND (	00050 ND	0.00050 2	D 0.000	050 ND	0.00050	ND 0	100050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	50 ND	0.00050 NE	0.00050	ND 0.0005	50 ND 0.	100050 ND	0.00050	ND 0.00050	ND 0.00	05 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.000*	05 ND (	.0005 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	.005 ND 0.	.005 ND
Sulfate	400.0	50	120 50	160 5	50 120	25 120	50 10	60 50	190	25 160	50	150 5	50 110	50	140 50	250	50 2	190 50	210	25 89	25 1	10 40	) 84	50	130	25 5	8 25	84	25 91	40	180 50	150	25 130	25	96 20	87	25 75	25	110 50	110 25	110	25 84	25 100	25	160 25	71	25 73	25 65	25 100	0 25	77 15	91 24	.5 140	:5 190
Thallium	0.002	0.0020	ND 0.0020	ND 0.0	0020 ND	0.0020 ND	0.0020 N	*D 0.0020	) ND	0.0020 ND	0.0020	ND 0.00	0020 ND	0.0020	ND 0.002	20 ND	0.0020 ?	D 0.0020	ND	.0020 ND	0.0020 2	3D 0.00	20 ND	0.0020	ND (	0.0020 N	D 0.0020	ND (	0.0020 ND	0.0020	ND 0.002	0 ND	0.0020 ND	0.0020	ND 0.0020	0 ND 0	0.0020 ND	0.0020	ND 0.0020	ND 0.00	02 ND	0.002 ND	0.002 ND	0.002	ND 0.002	2 ND	0.002 ND	0.002 ND	0.002 ND	0.002	ND 0.002	ND 0.04	.J02 ND 0	J02 ND
Total Dissolved Solid	1,200	10	930 10	1100 1	10 1000	10 930	10 11	100 10	1000	10 1100	0 10	1000 1	10 1100	10	950 10	1300	10 1	000 10	910	10 890	10 1	100 10	0 810	10	760	10 70	0 10	830	10 860	10	820 10	780	10 850	10 5	920 10	800	10 740	10	890 10	840 10	920	10 860	10 770	10	900 10	760	10 740	10 610	10 910	0 30	680 30	760 10	.0 900	.0 1100
Vanadium	0.049	NR		NR N	NR NR	NR NR	NR N	KR NR	NR	NR NR	NR	NR 0.00	0050 ND	0.0050	ND 0.005	50 ND	0.0050	D 0.0050	ND	.0050 ND	0.0050 2	D 0.00	50 ND	0.0050	ND (	0.0050 N	D 0.0050	ND (	0.0050 ND	0.0050	ND 0.005	0 ND	0.0050 ND	0.0050	ND 0.0050	0 ND 0				ND 0.00	15 ND	0.005 ND ^A	0.005 ND	0.005	ND 0.005	5 ND	0.005 ND	0.005 ND	0.005 ND	0.005	ND 0.005	ND 0.04	.05 ND 0	J05 ND
Zinc	5.0	0.020	ND 0.020	ND 0.	0.10 ND	0.020 ND	0.020 N	ND 0.020	ND	0.020 ND	0.020	ND 0.0	.020 ND	0.020	ND 0.02	10 ND	0.020	D 0.020	ND	1.020 ND	0.020 2	3D 0.03	20 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.020	0 ND	0.020 NE	0.020	ND 0.020	) ND (	0.020 ND	0.020	ND 0.020	ND 0.0	2 ND	0.02 ND	0.02 ND	0.02	ND 0.02	2 ND	0.02 ND	0.02 ND	0.02 ND	0.02	ND 0.02	ND 0.0	.02 ND 0	.02 ND
Benzene	0.005	NR	NR NR	NR N	NR NR	NR NR	NR N	KR NR	NR	NR NR	NR	NR 0.00	0005 ND	0.00050	ND 0.000	50 ND	0.00050 2	D 0.00050	ND (	00050 ND	0.0005 2	3D 0.00	05 ND	0.0005	ND (	0.0005 N	D 0.0005	ND (	0.0005 ND	0.0005	ND 0.000	6 ND	0.0005 ND	0.0005 2	ND 0.0005	5 0.00094 0	1.0005 ND	0.0005	ND 0.0005	ND 0.00	05 ND (	0.0005 ND	0.0005 ND	0.0005	ND 0.000*	05 ND	.0005 ND 0	0.0005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	.005 ND 0	.005 ND
BETX	11.705	NR	NR NR	NR N	NR NR	NR NR	NR N	KR NR	NR	NR NR	NR	NR 0.00	0025 NS	0.0025	ND 0.002	25 ND	0.0025	(D 0.0025	ND	.0025 ND	0.002 2	(D 0.0	02 ND	0.002	ND	0.002 N	D 0.002	0.0015	0.002 ND	0.002	0.0065 0.002	2 ND	0.002 0.000	7 0.002 2	ND 0.002	2 0.02984 0	0.002 ND	0.002	ND 0.0025	0.0015 0.00	25 0.001 0	0.0025 ND	0.0025 ND	0.0025	ND 0.002'	25 ND	.0025 ND (	0.0025 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.00	025 ND 0.	.025 ND
pH	6.5 - 9.0	NA	7.84 NA	7.26 N	NA 7.41	NA 7.37	NA 7.	.48 NA	7.34	NA 7.21	NA	7.40 N.	NA 7.42	NA	7.66 NA	7.00	NA 7	26 NA	7.22	NA 8.57	NA 7	.09 N/	A 6.70	NA	7.16	NA 7.5	55 NA	7.37	NA 7.29	NA	7.11 NA	7.31	NA 7.0	NA 7	7.18 NA	7.45	NA 7.35	NA	7.03 NA	7.11 NA	7.22	NA 7.04	NA 7.44	4 NA	7.27 NA	7.34	NA 7.32	NA 7.31	NA 7.56	6 NA	7.1 NA	7.23 N/	A 7.27	iA 7.13
Temperature	NA	NA 1	10.91 NA	12.73 N	NA 13.04	NA 11.90	5 101 10.	0.94 NA	13.73	NA 14.01	I NA	13.35 N.	NA 12.40	NA 1	11.20 NA	13.45	NA 1	1.29 NA	13.91	NA 9.27	NA 1	.38 N/	A 18.40	NA	13.97	NA 9.0	02 NA	16.14	NA 17.45	NA	13.85 NA	6.78	NA 13.7	7 NA 11	8.94 NA	16.53	NA 12.81	NA	15.34 NA	13.37 NA	20.13	NA 11.69	NA 11.0	0 NA	12.00 NA	13.00	NA 11.86	NA 12.00	NA 11.5	50 NA	12.50 NA	12.60 N/	A 12.40	iA 12.80
Conductivity	NA	NA	1.83 NA	1.76 N	NA 1.74	NA 1.15		.19 NA	1.21	NA 1.33	NA	1.41 N.	NA 1.28	NA	1.18 NA	1.55	NA 1	.33 NA	0.99	NA 0.75	NA 1	31 N/	A 1.22	NA	1.22	NA 0.5	90 NA	1.23	NA 1.26	NA	1.50 NA	0.86	NA 1.18	NA 1	1.35 NA	1.14	NA 0.95	NA	1.05 NA	0.925 NA	1.206	NA 1.070	NA 123.7	00 NA	2.35 NA	1.37	NA 11.87	NA 9.37	NA 9.92	2 NA	1.36 NA	1.35 N/	A 1.561	iA 1.802
Dissolved Oxygen	NA		NM NA			NA 6.03			6.07		NA	6.35 N.	NA 6.30	NA	7.03 NA	5.31	NA 3	.47 NA	2.78	NA 3.32	NA 5	23 NJ	A 6.68	NA	5.41	NA 4.8	54 NA	5.49	NA 6.03	NA	5.48 NA	5.93	NA 5.6	NA 6	5.91 NA	5.30	NA 5.69	NA	7.22 NA	5.84 NA	6.75	NA 9.38	NA 7.10	) NA	6.48 NA	6.09	NA 8.23	NA 5.7	NA 3.98	8 NA	7.65 NA	4.22 N/	A 4.96	iA 5.34
ORP	NA	NA	NM NA	179.1 N	NA 223.5	NA -51.0	) NA 14	15.0 NA	193.0	NA 114.0	0 NA	134.0 N.	NA 130.0	NA	196.6 NA	-20.4	NA 3	2.2 NA	-79.8	NA -7.3	NA 1-	1.8 N/	A 94.8	NA	69.5	NA 71	9 NA	64.1	NA 7.6	NA	106.6 NA	94.8	NA 933	NA 6	96.4 NA	66.0	NA 5.1	NA	59.8 NA	111.7 NA	142.0	NA 101.7	NA 194.	7 NA	-237.9 NA	157.7	NA -9.8	NA 154.4	NA 160.	.7 NA	157.4 NA	180.0 N/	.A 20.0	.A 88.3
Notes	Construction and a standard	d from IAC. Title 35. C			DL- Detection limit	N	R - Not Required			Terrorda	are 'C de	lane Calvin																																										

 Net:
 Stadauk distant fines/CL Tub S, Chaper J, Jac CA, Salegard L.
 Tompstant
 N.
 Stadagard fines/CL Tub S, Chaper J, Jac CA, Salegard L.
 Tompstant
 C
 Agence Case

 Researce Construet.
 Annual S, Salegard L.
 No.
 No.

Sample: MW-04	Date	12/7/2	010 3/2	3/2011	6/14/2011	9/14/201	1 12/7/20	011 3	3/15/2012	6/19/201	12 9/19	19/2012	12/20/201	2 3/5	5/2013	5/22/2013	7/22	/2013	10/16/2013	2/21/2	014 5	1/2014	8/18/2	014	10/23/2014	2/10	/2015	5/27/2015	8/4	/4/2015	10/28/201	2/10	0/2016	5/10/2016	8/31/2010	6 11	2/2016	2/6/2017	4/26/	2017 2	/20/2018	7/31/2018	10/17/20	18 2/4	4/2019	5/7/2019	8/6/20	19 11/	5/2019 2	/17/2020	5/20/2020	7/31/20	20 10/22	/2020 '	3/2/2021	5/18/2021
Parameter	Standards	i DL	Result DL	Result	DL Result	DL R	esult DL	Result D	DL Result	DL Ro	esult DL	Result	DL Res	sult DL	Result	DL Res	alt DL	Result	DL Resul	DL	Result DL	Result	DL	Result	DL Resu	t DL	Result	DL Res	ik DL	Result	DL Re	ult DL	Result	DL Result	DL Re	sult DL	Result	DL Resu	h DL	Result Di	L Result	DL Resu	t DL R	esult DL	Result	DL Res	ult DL I	Result DL	Result D	L Result	DL Result	DL I	Result DL	Result [	DL Result	DL Result
Antimony	0.006	0.0030	ND 0.0030	ND	0.0030 ND	0.0030	ND 0.0030	0.0067 0.00	030 0.0057	0.0030	ND 0.0030	0 ND	0.0030 N	D 0.0030	ND	0.0030 0.01	2 0.0030	ND	0.0030 ND	0.0030	ND 0.003	) ND	0.0030	ND (	.0030 ND	0.0030	ND	0.0030 NE	0.0030	0 ND	0.0030 N	0.0030	ND 0.	0030 ND	0.0030 N	D 0.0030	ND 0.	.0030 ND	0.0030	ND 0.00	030 ND	0.003 ND	0.003	ND 0.003	ND	0.003 N	0.003	ND 0.003	ND 0.0	03 ND	0.003 ND	0.003	ND 0.003	ND 0.4	.003 ND	0.003 ND
Arsenic	0.010	0.0010	ND 0.0010	ND	0.0050 ND	0.0010	ND 0.0010	0.0011 0.00	010 ND	0.0010	ND 0.0010	0 ND	0.0010 N	D 0.0010	0.0013	0.0010 0.00	14 0.0010	0.0013	0.0010 0.001	0.0010	0.0013 0.001	) ND	0.0010	0.0012 0	.0010 ND	0.0010	ND	0.0010 0.00	13 0.0010	0 0.0015	0.0010 N	0.0010	0.0013 0.0	0010 ND ^	0.0010 0.0	0.0013 0.0010	0.0012 0.	.0010 0.001	3 0.0010	0.0011 0.00	0.0015	0.001 0.001	1 0.001 0	.001 0.001	0.0012	0.001 0.0	0.001	ND 0.001	0.001 0.0	01 0.0014	0.001 0.0014	0.001	ND 0.001	ND 0.0	.001 0.0012	.001 ND
Barium	2.0	0.0025	0.065 0.0025	0.067	0.0025 0.059	0.0025 0	.060 0.0025	0.069 0.00	025 0.070	0.0025 0.	0.0025	5 0.092	0.0025 0.8	87 0.0025	0.080	0.0025 0.08	4 0.0025	0.078	0.0025 0.089	0.0025	0.088 0.002	5 0.072	0.0025	0.071 0	.0025 0.07	8 0.0025	0.079	0.0025 0.05	0 0.0025	5 0.067	0.0025 0.0	83 0.0025	0.085 0.0	0025 0.10	0.0025 0.0	089 0.0025	0.079 0.	.0025 0.10	0.0025	0.084 0.00	0.083	0.0025 0.089	0.0025 0	.093 0.0025	0.085	0.0025 0.0	0.0025	0.08 0.0025	0.082 0.00	0.085	0.0025 0.085	0.0025	0.082 0.0025	0.09 0.0	.0025 0.099 (	.0025 0.12
Beryllium	0.004	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.0010	ND 0.00	010 ND	0.0010	ND 0.0010	0 ND	0.0010 N	D 0.0010	ND	0.0010 NE	0.0010	ND	0.0010 ND	0.0010	ND ^ 0.001	) ND	0.0010	ND (	.0010 ND	0.0010	ND	0.0010 NE	0.0010	0 ND	0.0010 N	0.0010	ND ^ 0.0	0010 ND ^	0.0010 N	D^ 0.0010	ND 0.	.0010 ND	0.0010	ND 0.00	010 ND	0.001 ND	0.001 ?	D^ 0.001	ND	0.001 NI	0.001	ND 0.001	ND 0.0	01 ND	0.001 ND	0.001	ND 0.001	ND 0.0	.001 ND	4.001 ND
Boron	2.0	0.050	0.46 0.050	0.37	0.050 0.38	0.050 0	0.25 0.050	0.34 0.0	050 0.29	0.050 0	0.48 0.050	0.34^	0.050 0.3	38 0.050	0.40	0.050 0.4	0.050	0.50	0.050 0.45	0.050	0.35 0.05	0.32	0.050	0.35	0.050 0.41	0.050	0.44	0.050 0.3	6 0.050	0.33	0.050 0.	0 0.050	0.35 0	.050 0.51	0.050 0	43 0.050	0.32 0	0.050 0.38	0.050	0.29 0.0	50 0.46	0.05 0.35	0.05 (	0.05	0.44	0.05 0.1	7 0.05	0.26 0.05	0.28 0.0	0.25	0.05 0.25	0.05	0.23 0.05	0.29 0	105 0.33	0.05 0.2
Cadmium	0.005	0.00050	ND 0.00050	) ND	0.0025 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	0 ND	0.00050 N	D 0.00050	) ND	0.00050 NE	0.00050	ND (	00050 ND	0.00050	ND 0.000	0 ND	0.00050	ND 0	00050 ND	0.00050	ND	0.00050 NE	0.00050	0 ND	0.00050 N	0.00050	ND 0.0	00050 ND	0.00050 N	D 0.0005	) ND 0.0	00050 ND	0.00050	ND 0.00	050 ND	0.0005 ND	0.0005	ND 0.0005	ND	0.0005 NI	0.0005	ND 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0	.0005 ND (	.0005 ND
Chloride	200.0	10	270 10	270	10 250	10	150 10	200 2.	2.0 210	10 2	270 10	260	10 25	50 10	230	10 270	0 10	200	10 210	10	220 10	270	10	210	10 160	10	180	10 290	10	200	10 2	0 10	200	10 260	10 2	100 10	140	10 200	10	220 10	0 150	10 250	10	210 10	190	10 31	0 10	220 10	140 1	0 160	10 160	10	170 10	190 1	10 230	40 290
Chromium	0.1	0.0050	ND 0.0050	ND	0.025 ND	0.0050	ND 0.0050	ND 0.00	050 ND	0.0050	ND 0.0050	0 ND	0.0050 N	D 0.0050	ND	0.0050 NE	0.0050	ND	0.0050 ND	0.0050	ND 0.005	) ND	0.0050	ND (	.0050 ND	0.0050	ND	0.0050 NE	0.0050	0 ND	0.0050 N	0.0050	ND 0.	0050 ND	0.0050 N	D 0.0050	ND 0.	.0050 ND	0.0050	ND 0.00	150 ND	0.005 ND	0.005	ND 0.005	ND	0.005 N	0.005	ND 0.005	ND 0.0	05 ND	0.005 ND	0.005	ND 0.005	ND 0.f	.005 ND /	.005 ND
Cobalt	1.0	0.0010	ND 0.0010	ND	0.0050 ND	0.0010 0.	0018 0.0010	0.0028 0.00	0010 0.0026	0.0010 0.0	0042 0.0010	0.0059	0.0010 0.00	049 0.0010	0.0057	0.0010 0.00	12 0.0010	0.014	0.0010 0.004	0.0010	0.0022 0.001	) ND	0.0010	0.0060 0	.0010 0.01	0.0010	0.0076	0.0010 0.00	52 0.0010	0 0.0047	0.0010 0.0	41 0.0010	0.0075 0.0	0010 0.0046	0.0010 0.0	0.0010	0.0029 0.	.0010 0.008	2 0.0010	0.0052 0.00	0.0083	0.001 0.008	0.001	ND 0.001	0.0046	0.001 N	0.001	0.0057 0.001	0.0016 0.0	01 0.0071	0.001 0.0071	0.001 0	0.001 0.001	0.0041 0.f	.001 0.0059	.001 0.0025
Copper	0.65	0.0020	ND 0.0020	ND	0.010 ND	0.0020	ND 0.0020	ND 0.00	0020 ND	0.0020	ND 0.0020	0 ND	0.0020 N	D 0.0020	ND	0.0020 NE	0.0020	0.0041	0.0020 ND	0.0020	ND 0.002	) ND	0.0020	ND 0	.0020 ND	0.0020	ND	0.0020 NE	0.0020	0 0.0072	0.0020 N	0.0020	ND 0.	0020 ND	0.0020 N	ND 0.0020	ND 0.	.0020 ND	0.0020	ND ^ 0.00	020 ND	0.002 ND	0.002	ND 0.002	ND	0.002 NI	0.002	ND 0.002	ND 0.0	02 ND	0.002 ND	0.002	ND 0.002	ND 0.f	.002 ND	.002 ND
Cyanide	0.2	0.010	ND 0.010	ND*	0.010 ND	0.010	ND 0.010	ND 0.0	010 ND	0.010	ND 0.010	ND	0.010 N	D 0.010	ND	0.010 NE	0.010	ND	0.010 ND	0.010	ND 0.01	ND	0.010	ND	0.010 ND	0.010	ND	0.010 NE	0.010	ND	0.010 N	0.010	ND 0	.010 ND	0.010 N	4D 0.010	ND 0	0.010 ND	0.010	ND 0.0	10 ND	0.01 ND	0.01	ND 0.01	ND	0.01 NI	0.01	ND 0.01	ND 0.0	01 ND	0.01 ND	0.005 0	0.01 0.01	ND 0.0	.005 ND /	.005 ND
Fluoride	4.0	0.10	0.49 0.10	0.38	0.10 0.44	0.10 0	0.37 0.10	0.44 0.1	.10 0.41	0.10 0	0.46 0.10	0.47	0.10 0.4	41 0.10	0.47^	0.10 0.4	9 0.10	0.50	0.10 0.53	0.10	0.45 0.10	0.44	0.10	0.51	0.10 0.45	0.10	0.44	0.10 0.4	6 0.10	0.49	0.10 0.	5 0.10	0.51 0	0.10 0.50	0.10 0	.44 0.10	0.46 0	0.10 0.38	0.10	0.37 0.1	10 0.46	0.1 0.43	0.1 0	0.46 0.1	0.46	0.1 0.4	3 0.1	0.39 0.1	0.42 0.	1 0.46	0.1 0.46	0.1	0.47 0.1	0.49 0	.).1 0.46	0.1 0.42
Iron	5.0	0.10	ND 0.10	ND	0.50 ND	0.10 0	0.22 0.10	ND 0.1	.10 ND	0.10	ND 0.10	ND	0.10 N	D 0.10	0.46	0.10 0.1	7 0.10	ND	0.10 ND	0.10	ND 0.10	0.18	0.10	ND	0.10 ND	0.10	0.14	0.10 NE	0.10	ND	0.10 N	0.10	0.31 0	0.10 ND ^	0.10 N	ND 0.10	ND (	0.10 ND	0.10	ND 0.1	10 0.16	0.1 ND	0.1	ND 0.1	ND	0.1 NI	0.1	ND 0.1	ND 0.	1 ND	0.1 ND	0.1	ND 0.1	ND 0	.).1 0.14	0.1 ND
Lead	0.0075	0.00050	ND 0.00050	) ND	0.00050 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	0 ND	0.00050 N	D 0.00050	0.00077	0.00050 NE	0.00050	ND (	.00050 ND	0.00050	ND 0.000	0 ND	0.00050	ND 0	00050 ND	0.00050	ND	0.00050 NI	0.00050	0 ND	0.00050 N	0.00050	ND 0.0	00050 ND	0.00050 N	D 0.0005	) ND 0.1	00050 ND	0.00050	ND 0.00	050 ND	0.0005 ND	0.0005	ND 0.0005	ND	0.0005 NI	0.0005	ND 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0	.3005 ND f	.0005 ND
Manganese	0.15	0.0025	0.33 0.0025	0.048	0.013 0.018	0.0025 0	.066 0.0025	0.029 0.00	0.038^	0.0025 0.	0.0025	5 0.043	0.0025 0.0	0.0025	0.067	0.0025 0.00	81 0.0025	ND	0.0025 ND	0.0025	ND 0.002	5 ND	0.0025	ND (	.0025 ND	0.0025	0.0044	0.0025 NE	0.0025	5 ND	0.0025 N	0.0025	0.0054 0.	0025 ND	0.0025 N	iD 0.0025	ND 0.	.0025 ND	0.0025	ND 0.00	0.0026	0.0025 ND	0.0025	ND 0.0025	ND	0.0025 NI	0.0025	ND 0.0025	ND 0.00	125 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0	J025 0.0033 f	.0025 ND
Mercury	0.002	0.00020	ND 0.00020	) ND	0.00020 ND	0.00020	ND 0.00020	ND 0.00	0020 ND	0.00020	ND 0.00020	0 ND	0.00020 N	D 0.00020	) ND	0.00020 NE	0.00020	ND (	.00020 ND	0.00020	ND 0.000	0 ND	0.00020	ND 0	00020 ND	0.00020	ND	0.00020 NE	0.00020	10 ND *	0.00020 N	0.00020	ND 0.0	0020 ND	0.00020 N	iD 0.0002	) ND 0.1	00020 ND	0.00020	ND 0.00	020 ND	0.0002 ND	0.0002	ND 0.0002	ND	0.0002 NI	0.0002	ND 0.0002	ND 0.00	02 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.0'	.3002 ND f	.0002 ND
Nickel	0.1	0.0020	0.0067 0.0020	0.0037	0.010 ND	0.0020 0.	0029 0.0020	0.0038 0.00	020 0.0037	0.0020 0.0	0036 0.0020	0 0.0043	0.0020 0.00	042 0.0020	0.0051	0.0020 0.00	34 0.0020	0.0037	0.0020 0.003	0.0020	0.0022 0.002	0.0022	0.0020	ND (	.0020 ND	0.0020	ND	0.0020 0.00	23 0.0020	0 ND	0.0020 N	0.0020	0.0021 0.	0020 0.0021	0.0020 0.0	0.0020 0.0020	ND 0.	.0020 ND	0.0020	ND 0.00	0.0020	0.002 ND	0.002 0.	0.0021 0.002	0.0022	0.002 N	0.002	ND 0.002	ND 0.0	02 ND	0.002 ND	0.002	ND 0.002	ND 0.0	.002 ND /	.002 0.003
Nitrogen/Nitrate	10.0	0.10	0.81 0.10	1.6	0.10 2.7	0.10	1.6 0.10	1.4 0.1	.10 0.62	0.10 1	1.4 0.10	1.3	0.10 0.5	91 0.10	1.3	0.10 2.5	0.10	2.4	0.10 2.5	0.10	2.0 0.10	2.0	0.10	1.9	0.10 1.6	0.10	2.2	0.10 2.5	0.10	1.3	0.10 1	7 0.10	1.8 0	0.10 2.1	0.10 1	1.8 0.10	1.9 (	0.10 1.8	0.10	2.4 0.1	10 1.5	0.1 1.7	0.1	1.4 0.1	1.4	0.1 2.	5 0.1	2.5 0.1	1.8 0.	1 1.6	0.1 1.6	0.1	2.7 0.1	3.4 0	).1 1.5	0.1 2.4
Nitrogen/Nitrate, Nitri	NA	0.10	0.81 0.10	1.6	0.20 2.7	0.10	1.6 0.10	1.4 0.1	.10 0.62	0.10 1	1.4 0.10	1.3	0.10 0.5	91 0.10	1.3	0.20 2.5	0.50	2.4	0.20 2.5	0.10	2.0 0.50	2.0	0.10	1.9	0.10 1.6	0.20	2.2	0.20 2.5	0.10	1.3	0.10 1	7 0.10	1.8 0	0.20 2.1	0.10 1	1.8 0.10	1.9 (	0.10 1.8	0.20	2.4 0.1	10 1.5	0.1 1.7	0.1	1.4 0.1	1.4	0.1 2.	5 0.1	2.5 0.1	1.8 0.	1 1.6	0.1 1.6	0.5	2.7 0.5	3.4 0	J.1 1.5	0.5 ND F1
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020	ND 0.020	ND	0.020 N	D 0.020	ND	0.020 NE	0.020	ND	0.020 ND	0.020	ND 0.02	ND	0.020	ND	1.020 ND	0.020	ND	0.020 NE	0.020	ND	0.020 N	0.020	ND 0	.020 ND	0.020 N	ND 0.020	ND 0	0.020 ND	0.020	ND 0.0	20 ND	0.02 ND	0.02	ND 0.02	ND	0.02 N	0.02	ND 0.02	ND 0.0	12 ND	0.02 ND	0.02	ND 0.02	ND 0.4	.02 ND	3.02 0.02
Perchlorate	0.0049	NR	NR NR	NR	NR NR	NR I	NR NR	NR N	KR NR	NR N	NR NR	NR	0.004 N	D 0.0040	ND	0.0040 NE	0.0040	ND	0.0040 ND	0.0040	ND 0.004	) ND	0.0040	ND (	.0040 ND	0.0040	ND	0.0040 NE	0.0040	0 ND	0.0040 N	0.0040	ND 0.	0040 ND	0.0040 N	ND 0.0040	ND 0.	.0040 ND	0.0040	ND 0.00	140 ND	0.004 ND	0:004	ND 0.004	ND	0.004 N	0.004	ND 0.004	ND 0.0	04 ND	0.004 ND	0.004	ND 0.004	ND 0.0	.004 ND /	.004 ND
Selenium	0.05	0.0025	0.0025 0.0025	ND	0.013 ND	0.0025	ND 0.0025	ND 0.00	025 ND	0.0025 N	ND 0.0025	5 0.0047	0.0025 0.00	033 0.0025	ND	0.0025 0.00	25 0.0025	ND	0.0025 0.003	0.0025	ND 0.002	5 ND	0.0025	ND (	.0025 ND	0.0025	ND	0.0025 NE	0.0025	5 ND	0.0025 N	0.0025	ND 0.	0025 ND ^	0.0025 N	ND 0.0025	ND 0.	.0025 ND	0.0025	ND 0.00	125 ND	0.0025 ND	0.0025	ND 0.0025	ND	0.0025 0.00	76 0.0025	ND 0.0025	ND 0.00	125 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0'	J025 0.003 f	0025 ND
Silver	0.05	0.00050	ND 0.00050	) ND	0.0025 ND	0.00050	ND 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	0 ND	0.00050 N	D 0.00050	) ND	0.00050 NE	0.00050	ND (	.00050 ND	0.00050	ND 0.000	0 ND	0.00050	ND 0	00050 ND	0.00050	ND	0.00050 NE	0.00050	0 ND	0.00050 N	0.00050	ND 0.0	0050 ND	0.00050 N	3D 0.0005	) ND 0.0	00050 ND	0.00050	ND 0.00	050 ND	0.0005 ND	0.0005	ND 0.0005	ND	0.0005 NI	0.0005	ND 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0	,005 ND 0	0005 ND
Sulfate	400.0	50	300 25	140	25 84	25	74 50	170 5	50 210	25 1	110 50	180	50 13	30 50	110	25 12	) 50	170	50 230	25	110 20	140	25	89	50 160	25	65	20 88	25	92	20 1	0 25	100	50 130	50 1	00 25	67	25 76	25	80 51	0 110	50 110	25	91 25	130	25 15	0 25	74 25	53 2	5 94	25 94	25	75 15	82 2	25 150	25 190
Thallium	0.002	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.0020	ND 0.00	020 ND	0.0020	ND 0.0020	0 ND	0.0020 N	D 0.0020	ND	0.0020 NE	0.0020	ND	0.0020 ND	0.0020	ND 0.002	) ND	0.0020	ND (	.0020 ND	0.0020	ND	0.0020 NE	0.0020	0 ND	0.0020 N	0.0020	ND 0.	0020 ND	0.0020 N	3D 0.0020	ND 0.	.0020 ND	0.0020	ND 0.00	120 ND	0.002 ND	0.002	ND 0.002	ND	0.002 NI	0.002	ND 0.002	ND 0.0	02 ND	0.002 ND	0.002	ND 0.002	ND 0.0	002 ND /	.002 ND
Total Dissolved Solid:	1,200	10	1100 10	1000	10 890	10	770 10	970 1	10 930	10 1	100 10	980	10 10	00 10	880	10 900	0 10	840	10 860	10	870 10	860	10	760	10 720	10	730	10 98	10	770	10 7	0 10	760	10 850	10 8	100 10	700	10 870	10	750 10	0 800	10 1000	10	790 10	840	10 98	0 10	770 10	690 1	0 710	10 710	30	700 30	760 1	10 920	10 950
Vanadium	0.049	NR	NR NR	NR	NR NR	NR I	NR NR	NR N	R NR	NR N	NR NR	NR	0.0050 N	D 0.0050	ND	0.0050 NE	0.0050	ND	0.0050 ND	0.0050	ND 0.005	) ND	0.0050	ND 0	.0050 ND	0.0050	ND	0.0050 NE	0.0050	0 ND	0.0050 N	0.0050	ND 0.0	0050 ND	0.0050 N	D 0.0050	ND 0.	.0050 ND	0.0050	ND 0.00	150 ND	0.005 ND	0.005 ?	D^ 0.005	ND	0.005 N	0.005	ND 0.005	ND 0.0	05 ND	0.005 ND	0.005	ND 0.005	ND 0.0	.005 ND /	.005 ND
Zinc	5.0	0.020	ND 0.020	ND	0.10 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020	ND 0.020	ND	0.020 N	D 0.020	ND	0.020 NE	0.020	ND	0.020 ND	0.020	ND 0.02	ND	0.020	ND	0.020 ND	0.020	ND	0.020 NE	0.020	ND	0.020 N	0.020	ND 0	.020 ND	0.020 N	4D 0.020	ND 0	0.020 ND	0.020	ND 0.0	20 ND	0.02 ND	0.02	ND 0.02	ND	0.02 N	0.02	ND 0.02	ND 0.0	12 ND	0.02 ND	0.02	ND 0.02	ND 0.4	.02 ND	3.02 ND
Benzene	0.005		NR NR	NR	NR NR	NR I	NR NR	NR N	R NR	NR N	NR NR	NR	0.0005 N	D 0.00050	) ND	0.00050 NE	0.00050	ND (	00050 ND	0.00050	ND 0.000	5 ND	0.0005	ND 0	.0005 ND	0.0005	ND	0.0005 NE	0.0005	5 ND	0.0005 N	0.0005	ND 0.0	0005 ND	0.0005 N	4D 0.0005	0.0010 0.	.0005 ND	0.0005	ND 0.00	05 ND	0.0005 0.002	4 0.0005	ND 0.0005	ND	0.0005 NI	0.0005	ND 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0	,005 ND (	0005 ND
BETX	11.705		NR NR	NR	NR NR	NR 1	NR NR	NR N	KR NR	NR N	NR NR	NR	0.0025 N	IS 0.0025	ND	0.0025 NE	0.0025	ND	0.0025 ND	0.0025	ND 0.00	ND	0.002	ND	1.002 ND	0.002	ND	0.002 NE	0.002	P. ND	0.002 N	D 0.002	ND 0	.002 0.0017	0.002 N	ND 0.002	0.01675 0	0.002 ND	0.002	ND 0.00	125 ND	0.0025 0.008	2 0.0025	ND 0.0025	ND	0.0025 NI	0.0025	ND 0.0025	ND 0.00	125 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0	1025 ND 0	0025 ND
pH	6.5 - 9.0	NA	7.71 NA	7.15	NA 7.48	NA 1	1.42 NA	7.56 N.	A 7.40	NA 7	7.31 NA	7.37	NA 7.3	38 NA	7.44	NA 7.1	8 NA	7.25	NA 7.24	NA	9.11 NA	7.15	NA	6.89	NA 7.11	NA	7.53	NA 7.3	I NA	6.80	NA 7.	17 NA	7.22	NA 6.71	NA 7	.07 NA	7.25	NA 7.15	NA	7.46 N	A 7.46	NA 7.58	NA	1.20 NA	7.41	NA 7.1	7 NA	7.31 NA	7.33 N.	A 7.26	NA 7.26	NA	7.23 NA	7.15 N	4A 7.36	NA 7.30
Temperature	NA	NA	10.69 NA	12.13	NA 12.59	NA 1	1.78 NA	9.67 N.	A 12.52	NA 13	3.59 NA	14.52	NA 12	.98 NA	9.90	NA 14.2	5 NA	14.76	NA 13.91	NA	9.25 NA	10.92	NA	18.13	NA 14.5		8.49	104 104	9 NA	18.49	NA 13	44 NA	4.24	NA 12.83	NA 15	9.61 NA	15.48	NA 11.9	5 NA	15.52 N	A 12.63	NA 16.54	NA 1	2.53 NA	11.30	NA 11.	50 NA	12.70 NA	11.72 N	A 11.20	NA 11.20	NA	14.20 NA	14.40 N	(A 11.30	AA 17.50
Conductivity	NA	NA	1.84 NA	1.76	NA 1.50	NA (	1.94 NA	1.04 N.	-	NA 1	1.28 NA	1.33	NA 1.2	24 NA	1.05	NA 1.10	6 NA	1.07	NA 1.19	NA	0.93 NA	1.13	NA	1.18	NA 1.18	NA	0.90		i NA	1.20	NA 1.	4 NA	0.80	NA 1.21	NA 1	.33 NA	1.10	NA 1.01	NA	1.08 N	A 0.858	NA 1.12	NA 1	.086 NA	1.336	NA 2.5	20 NA	1.440 NA	1.080 N.	A 1.016	NA 1.016	NA	1.428 NA	0.292 N	4A 1.605	NA 1.739
Dissolved Oxygen	NA				NA 8.20			6.95 N.	0.00		5.51 NA		NA 8.1	19 NA	7.6	NA 6.4	7 NA	4.4	NA 3.13	NA	5.94 NA	4.23	NA	5.82	NA 5.54	NA	4.57	NA 6.5	i NA	5.60	NA 5.	6 NA	6.44	NA 7.00	NA 7	.06 NA	3.56	NA 5.00	NA	8.90 N	A 7.19	NA 7.54	NA 1	1.36 NA	6.32	NA 7.1	0 NA	52.40 NA	6.65 N.	A 6.23	NA 6.23	NA	7.32 NA	5.33 N	4A 6.65	NA 7.47
ORP	NA	NA	NM NA	196.1	NA 217.5	NA -	43.0 NA	135.0 N.	A 177.0	NA 8	86.0 NA	155.0	NA 133	2.0 NA	140.9	NA -6	4 NA	27.6	NA -80.9	NA	-34.2 NA	101.1	NA	77.4	NA 57.6	NA	41.7	NA 36.	7 NA	25.8	NA 10	2 NA	99.2	NA 150.9	NA 7	2.1 NA	71.2	NA -14.	NA NA	-15.3 N	A 70.7	NA 96.5	NA	8.0 NA	163.9	NA -23	.6 NA	182.3 NA	192.0 N	A 167.2	NA 167.2	NA	128.4 NA	178.4 N	(A -5.8	AA 121.7
Notes:	Sumbark dation	-1 (com 14C - 750 - 16	Charles I. Base 420. St.	terrer D	DL- Detection li		NR - Not Required			Term	verature 'C	damar Oshir																																												

 Net:
 Stadauk distant fines/CL Tub M, Chaper I, Jac Ch, Shipper D, Li D, Dawina Intri
 Nh. Shipperd
 Timperature
 c.
 degrave Chain

 Net:
 Stadauk distant fines/CL Tub M, Dawing Fallack do Chai Tubak
 Nh.
 Nh.
 Shipperd
 Timperature
 c.
 degrave Chain

 Note:
 Stadburget
 Nh.
 Nh.

											_																																											
Sample: MW-05	Date	12/7/20	10 3/23/2	2011 6	6/14/2011	9/14/2011	12/7/201	1 3/15	5/2012	6/19/2012	9/19/2	2012 12	2/20/2012	3/5/2013	6/5/2	013 7	7/23/2013	10/15/20	13 2	21/2014	5/1/2014	8/19	/2014	10/23/2014	4 2/1	1/2015	5/27/2015	8/4/2	/2015	10/28/2015	2/10/2	2016 5	/10/2016	8/31/2016	11/2/20	16 2/6	/2017	4/26/2017	2/20/2018	7/31/201	8 10/17/2	018 2/5/2	2019	5/6/2019	8/6/2019	11/7/20	19 2/13/2	020 5/	/20/2020	7/31/2020	10/22/20	020 2/2	5/2021 5/	17/2021
Parameter	Standards	DL R	tesuk DL	Result D	DL Result	DL Resu	h DL R	esult DL	Result	DL Result	it DL	Result DI	L Result	DL Re	sult DL	Result D	E. Result	DL R	esult DL	Result	DL Rest	t DL	Result	DL Re	sult DL	Result	DL Rest	ik DL	Result	DL Result	DL	Result DL	. Result	DL Result	DL B	Result DL	Result D	L Result	DL Rest	it DL Re	sult DL I	esult DL	Result	DL Result	DL Resu	it DL I	esult DL	Result DL	. Result	DL Result	DL R	esult DL	Result DL	Result
Antimony	0.006	0.0030	ND 0.0030	ND 0.00	0030 ND	0.0030 ND	0.0030 0.	0.0030	0.0035	0.0030 ND	0.0030	ND 0.00	030 ND	0.0030 N	D 0.0030	ND 0.00	030 ND	0.0030 2	ND 0.003	) ND 0	0030 ND	0.0030	ND	0.0030 N	D 0.0030	ND	0.0030 ND	0.0030	ND	0.0030 ND	0.0030	ND 0.00	30 ND	0.0030 ND	0.0030	ND 0.0030	ND 0.0	130 ND	0.0030 ND	0.003 N	D 0.003	ND 0.003	ND 0.	003 ND	0.003 ND	0.003	ND 0.003	ND 0.00	13 ND (	1003 ND	0.003	ND 0.003	ND 0.00	5 ND
Arsenic	0.010	0.0010	ND 0.0010	ND 0.00	0050 ND	0.0010 0.001	1 0.0010 0.0	0.0010 0.0010	ND	0.0010 ND	0.0010	0.0011 0.00	010 ND	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 0.0	0.001 0.001	) ND 0	0010 ND	0.0010	ND	0.0010 NI	D^ 0.0010	ND	0.0010 NE	0.0010	ND	0.0010 ND	0.0010	0.0011 0.00	10 ND ^	0.0010 ND	0.0010	ND 0.0010	ND 0.0	010 ND	0.0010 0.003	12 0.001 N	D 0.001	ND 0.001	ND 0.	001 ND	0.001 ND	0.001	0033 0.001	ND 0.00	0.0011 (	L001 ND	0.001	ND 0.001	ND 0.00	1 ND
Barium	2.0	0.0025 (	0.061 0.0025	0.092 0.00	0025 0.053	0.0025 0.05	3 0.0025 0	0.0025	0.069	0.0025 0.056	6 0.0025	0.071 0.00	025 0.078	0.0025 0.0	076 0.0025	0.060 0.00	025 0.050	0.0025 0.	056 0.002	5 0.091 0	0025 0.07	0.0025	0.054	0.0025 0.0	157 0.0025	0.078	0.0025 0.05	3 0.0025	0.060	0.0025 0.057	0.0025	0.063 0.00	25 0.065	0.0025 0.066	0.0025	0.054 0.0025	0.077 0.0	0.059	0.0025 0.09	8 0.0025 0.0	61 0.0025	.067 0.0025	0.076 0.1	0.094	0.0025 0.06*	2 0.0025	0.062 0.0025	0.072 0.002	25 0.074 0	0025 0.054	0.0025 0	0.07 0.0025	5 0.091 0.003	.5 0.098
Beryllium	0.004	0.0010	ND 0.0010	ND 0.00	0010 ND	0.0010 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.00	010 ND	0.0010 N	D 0.0010	ND 0.00	010 ND	0.0010 2	ND 0.001	) ND^ 0	0010 ND	0.0010	ND	0.0010 N	D 0.0010	ND	0.0010 NE	0.0010	ND	0.0010 ND	0.0010	ND ^ 0.00	10 ND ^	0.0010 ND ^	0.0010	ND 0.0010	ND ^ 0.0	010 ND	0.0010 ND	0.001 N	D 0.001	D^ 0.001	ND 0.	001 ND	0.001 ND	0.001	ND 0.001	ND 0.00	)1 ND ^ (	1001 ND	0.001	ND 0.001	ND ^ 0.00	1 ND
Boron	2.0	0.050	0.42 0.050	0.52 0.0	050 0.47	0.050 0.57	0.050 0	1.49 0.050	0.54	0.050 0.44	0.050	0.55^ 0.0	050 0.65	0.050 0.5	59 0.050	0.69 0.0	0.81	0.050 0	1.55 0.05	0.34 0	.050 0.30	0.050	0.95	0.050 0.5	57 0.050	0.69	0.050 1.0	0.050	1.1	0.050 0.57	0.050	0.45 0.05	60 0.69	0.050 0.98	0.050	0.40 0.050	0.47 0.0	50 0.62	0.050 0.2	5 0.05 0.	58 0.05	0.31 0.05	0.28 0	.05 0.34	0.05 0.5	0.05	0.32 0.05	0.43 0.05	5 0.29	0.05 0.47	0.05 0	0.47 0.05	0.29 0.05	0.32
Cadmium	0.005	0.00050	ND 0.00050	ND 0.00	0025 ND	0.00050 ND	0.00050	ND 0.00050		0.00050 ND		0.00091 0.00	0.00076	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 2	ND 0.000	0 ND 0.	00050 ND	0.00050	0.00060	0.00050 N	D 0.00050	ND	0.00050 ND	0.00050	0.0014 0	0.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050	ND 0.00050	ND 0.00	050 ND	0.00050 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.1	1005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.000	05 ND 0	.0005 ND	0.0005	ND 0.0005	5 ND 0.000	.5 ND
Chloride	200.0	10	150 10	240 1	10 220	10 120	10	190 2.0	210	10 220	10	240 10	0 210	10 23	30 10	180 1	0 110	10 1	140 10	240	10 370	10	120	10 12	20 10	220	10 250	0 10	180	10 170	10	210 10	230	10 92	10	120 10	180 1	0 190	10 180	10 1	20 10	200 10	180	10 470	10 120	10	130 10	170 10	280	10 180	10	180 10	220 40	410
Chromium	0.1	0.0050	ND 0.0050	ND 0.0	025 ND	0.0050 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050	ND 0.00	050 ND	0.0050 N	D 0.0050	ND 0.00	050 ND	0.0050 2	ND 0.005	) ND 0	0050 ND	0.0050	ND	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND 0.00	50 ND	0.0050 ND	0.0050	ND 0.0050	ND 0.0	150 ND	0.0050 ND	0.005 N	D 0.005	ND 0.005	ND 0.	005 ND	0.005 ND	0.005	.0053 0.005	ND 0.00	15 ND (	L005 ND	0.005	ND 0.005	ND 0.00	; ND
Cobalt	1.0	0.0010	ND 0.0010	ND 0.00	0050 ND	0.0010 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	0.0040 0.00	010 0.006	0.0010 0.00	019 0.0010	ND 0.00	010 ND	0.0010 0.0	0.001 0.001	) ND 0	0010 ND	0.0010	ND	0.0010 N	D 0.0010	0.0035	0.0010 ND	0.0010	0.0052	0.0010 0.0014	0.0010	ND 0.00	10 ND	0.0010 ND	0.0010	ND 0.0010	ND 0.0	010 ND	0.0010 ND	0.001 N	D 0.001	ND 0.001	ND 0.	001 ND	0.001 ND	0.001	.0015 0.001	ND 0.00	)1 ND (	L001 ND	0.001	ND 0.001	ND 0.00	, ND
Copper	0.65	0.0020	ND 0.0020	ND 0.0	010 ND	0.0020 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	0.019 0.00	020 0.017	0.0020 0.00	065 0.0020	ND 0.00	020 0.0020	0.0020 2	ND 0.002	) ND 0	0020 0.005	7 0.0020	ND	0.0020 N	D 0.0020	0.013	0.0020 0.002	26 0.0020	0.015	0.0020 0.0032	0.0020	ND 0.00	20 ND	0.0020 ND	0.0020	ND 0.0020	ND 0.0	120 ND ^	0.0020 ND	0.002 N	D 0.002	ND 0.002	ND 0.	002 ND	0.002 ND	0.002	.0063 0.002	ND 0.000	)2 ND (	1002 ND	0.002	ND 0.002	ND 0.00	: ND
Cyanide	0.2	0.010	ND 0.010	ND* 0.0	010 ND	0.010 ND	0.010	0.010	ND	0.010 ND	0.010	ND 0.0	010 ND	0.010 N	D 0.010	ND 0.0	010 ND	0.010 2	ND 0.01	ND (	.010 ND	0.010	ND	0.010 N	D 0.010	ND	0.010 ND	0.010	ND	0.010 ND	0.010	ND 0.01	10 ND	0.010 ND	0.010	ND 0.010	ND 0.0	10 ND	0.010 NE	0.01 N	D 0.01	ND 0.01	ND 0	.01 ND	0.01 ND	0.01	ND 0.01	ND 0.01	1 ND (	L005 ND	0.01	ND 0.005	ND 0.00	; ND
Fluoride	4.0	0.10	0.40 0.10	0.34 0.1	0.10 0.39	0.10 0.28	0.10	1.34 0.10	0.32	0.10 0.38	0.10	0.39 0.1	10 0.35	0.10 0.3	35^ 0.10	0.39 0.1	10 0.38	0.10 0	141 0.10	0.34	0.10 0.3	0.10	0.42	0.10 0.4	44 0.10	0.42	0.10 0.5	4 0.10	0.52	0.10 0.38	0.10	0.42 0.1	0 0.51	0.10 0.56	0.10	0.36 0.10	0.29 0.	10 0.38	0.10 0.3	8 0.1 0.	38 0.1	0.33 0.1	0.33 (	0.1 0.31	0.1 0.31	0.1	0.31 0.1	0.36 0.1	0.37	0.1 0.38	0.1 0	0.38 0.1	0.34 0.1	0.31
Iron	5.0	0.10	ND 0.10	ND 0.5	0.50 ND	0.10 ND	0.10	ND 0.10	ND	0.10 ND	0.10	ND 0.1	10 ND	0.10 N	D 0.10	ND 0.1	10 ND	0.10 2	ND 0.10	ND	0.10 ND	0.10	ND	0.10 N	D 0.10	ND	0.10 ND	0.10	ND	0.10 ND	0.10	0.28 0.1	0 ND ^	0.10 ND	0.10	ND 0.10	ND 0.	10 ND	0.10 0.1	5 0.1 N	D 0.1	ND 0.1	ND (	0.1 ND	0.1 ND	0.1	4.1 0.1	ND 0.1	0.11	0.1 ND	0.1	ND 0.1	ND 0.1	ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.00	00050 ND	0.00050 ND	0.00050	ND 0.00050	ND (	0.00050 ND	0.00050	0.00062 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 2	ND 0.000	0 ND 0.	00050 ND	0.00050	ND	0.00050 N	D 0.00050	ND	0.00050 ND	0.00050	0.00074 0	0.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050	ND 0.00050	ND 0.00	050 ND	0.00050 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.1	1005 ND	0.0005 ND	0.0005 (	0.0003 0.0005	ND 0.000	05 ND 0	.0005 ND	0.0005	ND 0.0005	5 ND 0.000	5 ND
Manganese	0.15	0.0025 0	.0065 0.0025	ND 0.0	.013 ND	0.0025 ND	0.0025	ND 0.0025	ND	0.0025 0.0040	0 0.0025	0.081 0.00	025 ND	0.0025 0.0	037 0.0025	ND 0.00	025 ND	0.0025 2	ND 0.002	5 ND 0	0025 0.03	0.0025	0.0062	0.0025 N	D 0.0025	0.0076	0.0025 ND	0.0025	0.012	0.0025 0.0046	0.0025	0.0050 0.00	25 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.0	125 ND	0.0025 0.000	52 0.0025 N	D 0.0025	ND 0.0025	ND 0.1	1025 ND	0.0025 ND	0.0025	0.14 0.0025	ND 0.002	25 0.0025 0	.0025 ND	0.0025	ND 0.0025	5 ND 0.003	5 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.00	00020 ND	0.00020 ND	0.00020	ND 0.00020	ND (	0.00020 ND	0.00020	ND 0.00	020 ND	0.00020 N	D 0.00020	ND 0.00	0020 ND	0.00020 2	ND 0.000	0 ND 0.	00020 ND	0.00020	ND	0.00020 N	D 0.00020	ND	0.00020 ND	0.00020	ND * (	0.00020 ND	0.00020	ND 0.000	120 ND	0.00020 ND	0.00020	ND 0.00020	ND 0.00	020 ND	0.00020 ND	0.0002 N	D 0.0002	ND 0.0002	ND 0.1	1002 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.000	02 ND 0	.0002 ND	0.0002	ND 0.0002	2 ND 0.000	2 ND
Nickel	0.1	0.0020	ND 0.0020	ND 0.0	.010 ND	0.0020 0.002	1 0.0020 1	ND 0.0020	ND	0.0020 0.002	5 0.0020	0.0080 0.00	020 0.02	0.0020 0.0	072 0.0020	0.0029 0.00	020 0.0058	0.0020 0.0	0.002	) ND 0	0020 0.003	3 0.0020	0.0078	0.0020 0.0	035 0.0020	0.0092	0.0020 0.002	55 0.0020	0.011	0.0020 0.003	0.0020	0.0027 0.00	20 0.0033	0.0020 0.0044	0.0020	ND 0.0020	0.0022 0.0	120 0.0025	0.0020 0.002	0.002 0.0	034 0.002	ND 0.002	ND 0.	002 ND	0.002 0.002/	0.002 0	.0072 0.002	ND 0.00	)2 ND (	L002 ND	0.002	ND 0.002	ND 0.00	. ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.2 0.1	0.10 1.3	0.10 1.1	0.10	1.5 0.10	0.33	0.10 1.0	0.10	ND 0.1	10 0.21	0.10 0.1	16 0.10	1.7 0.1	10 1.0	0.10	1.0 0.10	1.2	0.10 1.6	0.10	0.53	0.10 1.	.2 0.10	1.7	0.10 1.5	0.10	0.18	0.10 1.0	0.10	1.1 0.1	0 1.7	0.10 0.85	0.10	1.1 0.10	1.3 0.	10 1.6	0.10 2.7	0.1 1	.7 0.1	1.3 0.1	0.92 (	1.1 1.8	0.1 1.3	0.1	1.2 0.1	1.2 0.1	1.4	0.1 1.3	0.1 0	0.99 0.1	0.99 0.1	1.7
Nitrogen/Nitrate, Nitr	NA	0.10	ND 0.10	1.2 0.1	0.10 1.3	0.10 1.1	0.10	1.5 0.10	0.33	0.10 1.0	0.10	ND 0.1	10 0.21	0.10 0.1	16 0.10	1.7 0.1	10 1.0	0.10	1.0 0.10	1.2	0.10 1.7	0.10	0.53	0.10 1.	.2 0.10	1.7	0.10 1.5	0.10	0.18	0.10 1.0	0.10	1.1 0.1	0 1.7	0.10 0.85	0.10	1.1 0.10	1.3 0.	10 1.6	0.20 2.7	0.1 1	.7 0.1	1.3 0.1	0.92 (	1.1 1.8	0.1 1.3	0.1	1.2 0.1	1.2 0.1	1.4	0.1 1.3	0.1 0	0.99 0.1	0.99 0.1	1.7
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.0	.020 ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.0	020 ND	0.020 2	ND 0.02	ND (	.020 0.05	6 0.020	ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND	0.020 ND	0.020	ND 0.02	20 ND	0.020 ND	0.020	ND 0.020	ND 0.0	20 ND	0.020 NE	0.02 N	D 0.02	ND 0.02	ND 0	.02 ND	0.02 ND	0.02	ND 0.02	ND 0.02	2 ND	0.02 ND	0.02	ND 0.02	ND 0.03	ND
Perchlorate	0.0049	NR	NR NR	NR N	NR NR	NR NR	NR I	NR NR	NR	NR NR	NR	NR 0.0	004 ND	0.0040 N	D 0.0040	ND 0.00	040 ND	0.0040 2	ND 0.004	) ND 0	0040 NE	0.0040	ND	0.0040 N	D 0.0040	ND	0.0040 ND	0.0040	ND	0.0040 ND	0.0040	ND 0.00	40 ND	0.0040 ND	0.0040	ND 0.0040	ND 0.0	140 ND	0.0040 NE	0.004 N	D 0.004	ND 0.004	ND 0.	004 ND	0.004 ND	0.004	ND 0.004	ND 0.00	14 ND (	L004 ND	0.004	ND 0.004	ND 0.00	, ND
Selenium	0.05	0.0025	ND 0.0025	0.0072 0.0	.013 ND	0.0025 ND	0.0025 0.	0.0025	ND	0.0025 0.005	7 0.0025	ND 0.00	025 0.0034	0.0025 N	D 0.0025	0.025 0.00	025 0.016	0.0025 0.0	0.0026 0.002	5 0.0030 0	0025 ND	0.0025	0.017	0.0025 0.0	097 0.0025	0.014	0.0025 0.02	5 0.0025	0.013	0.0025 0.0030	0.0025	ND 0.01	13 0.018 ^	0.0025 0.019	0.0025	ND 0.0025	ND 0.0	025 0.014	0.0025 ND	0.0025 0.0	0.0025 0	0028 0.0025	ND 0.1	1025 ND	0.0025 0.011	1 0.0025	ND 0.0025	0.0025 0.002	25 0.0048 0	0.0025 0.0029	0.0025 0.0	.0032 0.0025	5 ND 0.003	5 ND
Silver	0.05	0.00050	ND 0.00050	ND 0.00	0025 ND	0.00050 ND	0.00050	ND 0.00050	ND (	0.00050 ND	0.00050	ND 0.00	0050 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 2	ND 0.000	0 ND 0.	00050 ND	0.00050	ND	0.00050 N	D 0.00050	ND	0.00050 NE	0.00050	ND (	0.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050	ND 0.00050	ND 0.00	050 ND	0.00050 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.1	1005 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.000	05 ND 0	.0005 ND	0.0005	ND 0.0005	5 ND 0.000	5 ND
Sulfate	400.0	25	110 50	160 2	25 100	50 140	50	140 50	190	25 130	50	210 50	0 210	50 15	50 50	200 5	0 290	50 1	180 25	130	25 160	100	360	50 24	40 50	230	50 290	50	260	50 140	25	110 50	270	50 270	25	95 50	130 5	0 170	50 150	50 1	90 25	110 25	110	25 90	25 180	25	68 25	ND 25	190	25 79	15	84 25	140 25	160
Thallium	0.002	0.0020		ND 0.00		0.0020 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.00	020 ND	0.0020 N	D 0.0020	ND 0.00	020 ND	0.0020 2	ND 0.002					0.0020 N			0.0020 ND	0.0020	ND		0.0020	ND 0.00	20 ND	0.0020 ND	0.0020	ND 0.0020	ND 0.0	120 ND	0.0020 ND	0.002 N	D 0.002	ND 0.002	ND 0.	002 ND	0.002 ND	0.002	ND 0.002	ND 0.00	)2 ND (	L002 ND	0.002	ND 0.002	ND 0.00	. ND
Total Dissolved Solid	1,200		750 10	990 1	10 850	10 800	10 9	900 10	930	10 1000	0 10	990 10	0 1000	10 96	60 10	1,100 1	0 910	10 6	\$80 10	840	10 110	10	1000	10 73		1000	10 100	0 10	930	10 760	10	770 10	910	10 850	10	630 10	840 1	0 760	10 860	10 10	00 10	800 10	720	10 1,400	10 770	10	630 10	700 10	920	30 680	30 0	690 10	880 10	1200
Vanadium	0.049	NR	NR NR	NR N	NR NR	NR NR	NR	NR NR	NR	NR NR	NR	NR 0.00	050 ND	0.0050 N	D 0.0050	ND 0.00	050 ND	0.0050	ND 0.005	) ND 0	0050 ND	0.0050	ND	0.0050 N	D 0.0050		0.0050 ND	0.0050	ND	0.0050 ND	0.0050	ND 0.00	50 ND	0.0050 0.011	0.0050	ND 0.0050	ND 0.0	150 0.0087	0.0050 ND	0.005 0.0	077 0.005	VD^ 0.005	ND 0.	005 ND	0.005 ND	0.005	0.012 0.005	ND 0.00	15 ND (	L005 ND	0.005	ND 0.005	ND 0.00	. ND
Zinc	5.0	0.020	ND 0.020	ND 0.1	0.10 ND	0.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.0	020 ND	0.020 N	D 0.020	ND 0.0	020 ND	0.020 2	ND 0.02	ND (	.020 ND	0.020	ND	0.020 N	D 0.020	ND	0.020 ND	0.020	ND	0.020 ND	0.020	ND 0.02	20 ND	0.020 ND	0.020	ND 0.020	ND 0.0	20 ND	0.020 ND	0.02 N	D 0.02	ND 0.02	ND 0	.02 ND	0.02 ND	0.02	0.027 0.02	ND 0.02	2 ND	0.02 ND	0.02	ND 0.02	ND 0.03	ND
Benzene	0.005	NR	NR NR	NR N	NR NR	NR NR	NR	NR NR	NR	NR NR	NR	NR 0.00	005 ND	0.00050 N	D 0.00050	ND 0.00	0050 ND	0.00050 2	ND 0.000	0 ND 0	0005 ND	0.0005	ND	0.0005 N	D 0.0005	ND	0.0005 ND	0.0005	ND	0.0005 0.0008	0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.0	05 ND	0.0005 ND	0.0005 0.00	0.0005	ND 0.0005	ND 0.	0.0005 0.0007	0.0005 ND	0.0005	ND 0.0005	ND 0.000	05 ND 0	.0005 ND	0.0005	ND 0.0005	5 ND 0.00	5 ND
BETX	11.705	NR	NR NR	NR N	NR NR	NR NR	NR	NR NR	NR	NR NR	NR	NR 0.00	025 NS	0.0025 N	D 0.0025	ND 0.00	025 ND	0.0025 2	ND 0.002	5 ND 0	.002 ND	0.002			_	ND	0.002 ND	0.002	ND	0.002 0.0031	0.002	ND 0.00	0.0009	0.002 ND		ND 0.002	ND 0.0	02 ND	0.0025 0.003	12 0.0025 0.00	1396 0.0025	ND 0.0025	ND 0.	0025 0.0007	0.0025 ND	0.0025	ND 0.0025	ND 0.002	25 ND (	.0025 ND	0.0025	ND 0.0025	5 ND 0.00	5 ND
pH	6.5 - 9.0	_	7.82 NA	7.19 N	NA 7.44	NA 7.25	NA 7	.44 NA	7.30	NA 7.18	I NA	7.32 NJ	A 7.36	NA 7.	34 NA	6.92 N	A 6.71	NA 7	.21 NA	9.09	NA 7.0	NA	6.40	NA 6.		7.49	NA 7.2	5 NA	7.31	NA 7.12	NA	7.25 NA	6.88	NA 6.81		7.26 NA	7.22 N	A 7.28	NA 7.5	NA 7.	61 NA	7.29 NA	7.40	NA 7.11	NA 7.03	8 NA	7.44 NA	7.02 NA	A 7.03	NA 7.28	NA 7	7.16 NA	7.31 NJ	7
Temperature	NA	NA	8.86 NA	13.41 N.		NA 12.1	5 NA 1	1.23 NA	13.52	NA 16.19	9 NA	14.23 NJ	A 13.64		190 NA	14.95 N	IA 14.65	NA 1	4.16 NA	11.17	NA 11.8	NA	16.11	NA 16.	169 NA	8.18			21.19		NA	8.60 NA	A 14.22	NA 21.67		17.16 NA	12.75 N	A 17.02	NA 13.3	5 NA 18	49 NA	4.72 NA	10.70	NA 13	NA 14.2	2 NA	0.34 NA	13.2 NA	A 12.8	NA 13.7	NA 1	14.5 NA	12.1 NJ	13.2
Conductivity	NA	NA	1.36 NA	1.65 N.	NA 1.38	NA 0.92	NA 1	.02 NA	1.19	NA 1.56	i NA	1.29 N.	A 1.25	NA 1.1	08 NA	1.067 N	A 1.01	NA 0	.93 NA	0.96	NA 1.40	NA	1.18	NA 1.	17 NA	1.15		9 NA	1.47	NA 1.31	NA	0.84 NA	1.24	NA 1.27		0.99 NA	0.93 N	A 1.06	NA 0.83	5 NA 1.	22 NA	.050 NA	1.116	NA 2.95	NA 1.28	8 NA	0.56 NA	1.058 NA	A 1.534	NA 1.381	NA 0.	0.278 NA	1.505 NJ	2.084
Dissolved Oxygen	NA		NM NA									3.68 NJ	A 4.27	NA 4.	49 NA	4.01 N	A 3.5			4.61		NA			70 NA					NA 2.29	NA	4.11 NA	5.76	NA 4.62		4.45 NA		A 6.18		1 NA 5.	67 NA	7.68 NA	5.97 1	A 4.48	NA 3.53	8 NA			A 6.85		NA 4	4.34 NA	4.63 N#	3.93
ORP	NA	NA	NM NA	197.8 N.	NA 210.0	NA -26.0	) NA 1	25.0 NA	228.0	NA 176.0	0 NA	155.0 Na	A 112.0	NA 16	0.5 NA	-1.7 N	A 82.5	NA -	8.4 NA	-54.7	NA 91.1	NA	88.6	NA 62	2.0 NA	85.8	NA 92.1	2 NA	-27.6	NA 107.2	NA	123.3 NA	78.3	NA 61.6	NA	73.3 NA	11.9 N	A 34.0	NA 59.1	NA 7	.8 NA	42.1 NA	150.3	A -281.1	NA 170.6	6 NA	11.9 NA	136.4 NA	A 142.8	NA 119.9	NA 1	61.3 NA	11.4 NJ	161.6
Notes	Standards obtained	d from LAC Title 35 C	hapter I. Part 620. Subru	= D	DL - Detection limit	N	R - Not Required			Tennerate	are 'C da	lorrora Celcina																																										

Sample: MW-06	Date	12/7/20	10 3/23	/2011	6/14/2011	9/14/2011	12/7/201	1 3/15	5/2012	6/19/2012	9/19/20	012 12	2/20/2012	3/5/2013	3 5/22	2/2013	7/23/2013	10/16/2	013 1	21/2014	5/2/2014	8/1	9/2014	10/23/20	14 2/	10/2015	5/28/2015	5 8	/5/2015	10/27/2015	5 2/11	/2016	5/12/2016	9/1/2016	11/3	3/2016	2/7/2017	4/27/20	17 2/21	/2018 7/.	31/2018	10/18/2018	2/5/2019	5/6	2019 8	3/7/2019	11/7/2019	2/13/2020	5/21/20	020 7/31	/2020 10	/22/2020	2/25/2021	5/17/2021
Parameter	Standards	DL R	tesuk DL	Result I	DL Result	DL Res	It DL Res	sult DL	Result	DL Result	t DL I	Result DL	DL Result	DL Ra	sult DL	Result	DL Resu	it DL	Result D	Result	DL Res	it DL	Result	DL F	tesult DL	Result	DL Re	sult DL	Result	DL Res	alt DL	Result	DL Result	DL Res	ult DL	Result Di	DL Result	DL I	Result DL	Result DL	Result	DL Result	DL Re	sult DL	Result DI	L Result	DL Result	DL Rest	alt DL F	Result DL	Result DL	Result	DL Resub	t DL Result
Antimony	0.006	0.0030	ND 0.0030	ND 0.0	.0030 ND		0.0030 N																				0.0030 N	D 0.003	0 ND	0.0030 N	D 0.0030	ND 0.	.0030 ND	0.0030 NI	D 0.0030	ND 0.00	030 ND	0.0030	ND 0.0030	ND 0.00	13 ND	0.003 ND	0.003 N	D 0.003	ND 0.00	03 ND	0.003 ND	0.003 NE	0.003	ND 0.003	ND 0.00	.3 ND	0.003 ND	0.003 ND
Arsenic	0.010	0.0010	ND 0.0010	0.0015 0.0	.0050 ND	0.0010 NE	0.0010 0.0	018 0.0010	0.0016	0.0010 0.0014	0.0010	0.0015 0.00	010 0.0014	0.0010 0.0	0.0010 0.0010	0.0018	.0010 0.001	17 0.0010	0.0016 0.00	0 0.0015 0	1.0010 0.00	9 0.0010	0.0013	0.0010 0	.0010 0.001	0 0.0016	0.0010 0.0	017 0.001	0 0.0016	0.0010 N	D 0.0010	0.0016 0.	.0050 ND ^	0.0010 0.00	012 0.0010	0.0012 0.00	010 0.0014	0.0010 0	0.0012 0.0010	0.0012 0.00	0.0012	0.001 0.001	0.001 0.00	011 0.001	0.0014 0.00	01 ND	0.001 0.0011	0.001 0.00	14 0.001 0	0.0017 0.001	0.001 0.00	/1 ND	0.001 0.001	0.001 ND
Barium	2.0	0.0025 0	0.0025	0.12 0.0	.0025 0.082	0.0025 0.05	4 0.0025 0.	.11 0.0025	0.13	0.0025 0.11	0.0025	0.14 0.000	025 0.12	0.0025 0	12 0.0025	0.097 0	.0025 0.09	6 0.0025	0.11 0.00	5 0.17 0	1.0025 0.1	0.0025	0.098	0.0025	0.12 0.002	5 0.14	0.0025 0.	.14 0.002	5 0.11	0.0025 0.1	2 0.0025	0.14 0.	0025 0.14	0.0025 0.09	96 0.0025	0.12 0.00	025 0.16	0.0025	0.10 0.0025	0.16 0.002	25 0.1 (	0.0025 0.13	0.0025 0.1	12 0.0025	0.15 0.00	0.11	0.0025 0.13	0.0025 0.1	4 0.0025	0.14 0.0025	0.13 0.002	25 0.13	0.0025 0.16	0.0025 0.2
Beryllium	0.004	0.0010	ND 0.0010	ND 0.0	.0010 ND	0.0010 NE	0.0010 N	D 0.0010	ND	0.0010 ND	0.0010	ND 0.00	010 ND	0.0010	D 0.0010	ND (	.0010 ND	0.0010	ND 0.00	0 ND^ (	10010 NI	0.0010	ND	0.0010	ND 0.001	0 ND	0.0010 N	D 0.001	0 ND	0.0010 N	D 0.0010	ND ^ 0.	.0010 ND	0.0010 ND	0.0010	ND 0.00	010 ND ^	0.0010	ND 0.0010	ND 0.00	11 ND	0.001 ND ^A	0.001 N	D 0.001	ND 0.00	01 ND	0.001 ND	0.001 NE	0.001	ND ^ 0.001	ND 0.00	A ND	0.001 ND ^	0.001 ND
Boron	2.0	0.050	0.32 0.050	0.44 0.	0.050 0.32	0.050 0.2	0.050 0.	30 0.050	0.25	0.050 0.26	0.050	0.25^ 0.05	050 0.31	0.050 0	.33 0.050	0.23	0.050 0.23	0.050	0.22 0.0	0 0.26	0.050 0.1	0.050	0.26	0.050	0.19 0.050	0 0.22	0.050 0.	.19 0.050	0 0.21	0.050 0.1	22 0.050	0.17 0	1.050 0.19	0.050 0.2	28 0.050	0.25 0.0	050 0.22	0:050	0.15 0.050	0.20 0.05	5 0.21	0.05 0.22	0.05 0.1	24 0.05	0.3 0.0	B 0.21	0.05 0.24	0.05 0.2	0.05	0.49 0.05	0.18 0.05	j 0.23	0.05 0.26	0.05 0.17
Cadmium	0.005	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 NE	0.00050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	D 0.00050	ND 0	00050 ND	0.00050	ND 0.00	50 ND 0	.00050 NI	0.00050	ND	0.00050	ND 0.0005	10 ND	0.00050 N	D 0.0005	50 ND	0.00050 N	D 0.00050	ND 0.0	00050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.000	05 ND (	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005 NE	0.0005	ND 0.0005	ND 0.000	.15 ND	0.0005 ND	0.0005 ND
Chloride	200.0	10	130 10	270	10 140	10 14	10 1	30 2.0	240	10 210	10	190 10	10 150	10 1	60 10	170	10 120	10	120 1	370	50 34	10	120	10	100 10	150	10 2	70 10	140	10 13	0 10	230	10 250	10 75	9 10	85 1	10 200	10	150 50	500 10	140	10 150	10 170	)F1 10	420 10	) 130	10 99	10 150	0 10	180 10	160 10	160	10 240	40 410
Chromium	0.1	0.0050	ND 0.0050	ND 0.	0.025 ND	0.0050 NE	0.0050 N	D 0.0050	ND	0.0050 ND	0.0050	ND 0.00	050 ND	0.0050	D 0.0050	ND (	.0050 ND	0.0050	ND 0.00	0 ND 0	10050 NI	0.0050	ND	0.0050	ND 0.005	0 ND	0.0050 N	D 0.005	0 ND	0.0050 N	D 0.0050	ND 0.	.0050 ND	0.0050 NI	D 0.0050	ND 0.00	050 ND	0.0050	ND 0.0050	ND 0.00	5 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	05 ND	0.005 ND	0.005 NE	0.005	ND 0.005	ND 0.00	5 ND	0.005 ND	0.005 ND
Cobalt	1.0	0.0010	ND 0.0010	0.0019 0.0	.0050 ND	0.0010 NE	0.0010 N			0.0010 ND		ND 0.00	010 ND	0.0010	D 0.0010	ND (	.0010 ND	0.0010	ND 0.00	0 ND 0	1.0010 NI	0.0010	0.0017	0.0010	ND 0.001	0 0.0010	0.0010 0.0	015 0.0010	0 0.0011	0.0010 N	D 0.0010	ND 0.	.0010 ND	0.0010 NI	D 0.0010	ND 0.00	010 ND	0.0010	ND 0.0010	ND 0.00	11 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	01 ND	0.001 ND	0.001 NE	0.001	ND 0.001	ND 0.00	1 ND	0.001 ND	0.001 ND
Copper	0.65	0.0020	ND 0.0020	ND 0.	0.010 ND	0.0020 NE	0.0020 N	iD 0.0020	ND	0.0020 ND	0.0020	ND 0.003	020 ND	0.0020	D 0.0020	ND (	.0020 ND	0.0020	1.0025 0.00	10 ND (	10020 NI	0.0020	0.0056	0.0020 0	0021 0.002	0 ND	0.0020 N	D 0.002	10 ND	0.0020 N	D 0.0020	ND 0.	.0020 ND	0.0020 NI	D 0.0020	ND 0.00	020 ND	0.0020	ND ^ 0.0020	ND 0.00	12 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	02 ND	0.002 ND	0.002 NE	0.002	ND 0.002	ND 0.00	2 ND	0.002 ND	0.002 ND
Cyanide	0.2	0.010	ND 0.010	ND 0.	0.010 ND	0.010 NE	0.010 N	D 0.010	ND	0.010 ND	0.010	ND 0.01	010 ND	0.010	4D 0.010	ND	0.010 ND	0.010	ND 0.0	0 ND	0.010 NI	0.010	ND	0.010	ND 0.010	) ND	0.010 0.0	054 0.010	0 ND	0.010 N	D 0.010	ND 0	1.010 ND	0.010 NI	D 0.010	ND 0.0	010 ND	0.010	ND 0.010	ND 0.01	1 ND	0.01 ND	0.01 N	D 0.01	ND 0.0	11 ND	0.01 ND	0.01 NE	0.01	ND 0.005	0.0051 0.01	, ND	0.005 ND	0.005 ND
Fluoride	4.0	0.10	0.40 0.10	0.36 0	0.10 0.44	0.10 0.2	0.10 0.	.44 0.10	0.36	0.10 0.36	0.10	0.36 0.1	.10 0.38	0.10 0.	40^ 0.10	0.43	0.10 0.37	7 0.10	0.35 0.1	0.34	0.10 0.3	0.10	0.38	0.10	0.34 0.10	0.36	0.10 0.	.35 0.10	0.39	0.10 0.3	32 0.10	0.34 0	0.10 0.38	0.10 0.3	34 0.10	0.32 0.1	.10 0.27	0.10	0.28 0.10	0.32 0.1	0.31	0.1 0.34	0.1 0.1	33 0.1	0.34 0.1	1 0.26	0.1 0.3	0.1 0.3	7 0.1	0.37 0.1	0.32 0.1	0.31	0.1 0.36	0.1 0.3
Iron	5.0	0.10	ND 0.10	ND 0	0.50 ND	0.10 NE	0.10 N	D 0.10	ND	0.10 ND	0.10	ND 0.1	10 ND	0.10	4D 0.10	ND	0.10 ND	0.10	ND 0.1	ND	0.10 NI	0.10	ND	0.10	ND 0.10	ND	0.10 N	iD 0.10	ND	0.10 N	D 0.10	ND (	0.50 ND	0.10 NI	D 0.10	ND 0.1	.10 0.15	0.10	ND 0.10	0.27 0.1	ND	0.1 ND	0.1 N	D 0.1	0.26 0.1	1 ND	0.1 ND	0.1 NE	0.1	ND 0.1	ND 0.1	ND	0.1 ND	0.1 ND
Lead	0.0075	0.00050	ND 0.00050	ND 0.0	00050 ND	0.00050 NE	0.00050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	D 0.00050	ND 0	00050 ND	0.00050	ND 0.00	50 ND 0	.00050 NI	0.00050	ND	0.00050	ND 0.0005	80 ND	0.00050 N	D 0.0005	50 ND	0.00050 N	D 0.00050	ND 0.0	00050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.000	05 ND (	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005 NE	0.0005	ND 0.0005	ND 0.000	./5 ND	0.0005 ND	0.0005 ND
Manganese	0.15	0.0025		0.033 0.	0.013 ND	0.0025 0.03	5 0.0025 0.0	0.0025	0.015	0.0025 0.0080	0.0025 (	0.0087 0.003	025 0.0076	0.0025 0.0	0.0025	ND (	.0025 ND	0.0025	ND 0.00	5 ND 0	10025 NI	0.0025	ND	0.0025	ND 0.002	5 ND	0.0025 N	D 0.002	5 ND	0.0025 N	D 0.0025	ND 0.	.0025 ND	0.0025 NI	D 0.0025	ND 0.00	0.0068	0.0025	ND 0.0025	0.0048 0.002	25 ND (	0.0025 ND	0.0025 N	D 0.0025	0.017 0.00	125 ND	0.0025 ND	0.0025 NE	0.0025	ND 0.0025	ND 0.002	:5 ND	0.0025 ND	0.0025 ND
Mercury	0.002	0.00020	ND 0.00020	ND 0.0	00020 ND	0.00020 NE	0.00020 N	D 0.00020	ND 0	0.00020 ND	0.00020	ND 0.000	0020 ND	0.00020	D 0.00020	ND 0	00020 ND	0.00020	ND 0.00	20 ND 0	.00020 NI	0.00020	ND	0.00020	ND 0.0002	30 ND	0.00020 N	D 0.0002	20 ND *	0.00020 N	D 0.00020	ND 0.0	00020 ND	0.00020 NI	D 0.00020	ND 0.00	0020 ND	0.00020	ND 0.00020	ND 0.000	02 ND (	0.0002 ND	0.0002 N	D 0.0002	ND 0.00	02 ND	0.0002 ND	0.0002 NE	0.0002	ND 0.0002	ND 0.000	,2 ND	0.0002 ND	0.0002 ND
Nickel	0.1	0.0020 0	.0056 0.0020	0.0025 0.	0.010 ND	0.0020 NE	0.0020 N	D 0.0020	ND	0.0020 ND	0.0020	ND 0.000	020 ND	0.0020	D 0.0020	ND (	.0020 0.002	1 0.0020	ND 0.00	10 ND (	1.0020 NI	0.0020	0.0021	0.0020 0	0022 0.002	0 0.0027	0.0020 0.0	034 0.002	0 0.0023	0.0020 0.00	126 0.0020	ND 0.	0020 0.0032	0.0020 0.00	127 0.0020	ND 0.00	020 ND	0.0020	ND 0.0020	0.0020 0.00	12 ND	0.002 ND	0.002 N	D 0.002	0.0024 0.00	02 ND	0.002 ND	0.002 NE	0.002	ND 0.002	ND 0.00	2 ND	0.002 ND	0.002 ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.3 0	0.10 0.91	0.10 0.3	0.10 0.1	36 0.10	ND	0.10 0.65	0.10	0.55 0.1	10 0.47	0.10	1.0 0.10	1.7	0.10 0.46	5 0.10	0.49 0.1	1.7	0.10 1.3	0.10	0.51	0.10	0.64 0.10	1.3	0.10 1	.2 0.10	0.35	0.10 0.4	17 0.10	1.6 (	0.10 1.5	0.10 0.4	43 0.10	0.31 0.1	.10 0.99	0.10	1.1 0.10	7.2 0.1	0.43	0.1 0.34	0.1 2	.2 0.1	1.7 0.1	1 0.47	0.1 0.61	0.1 0.7:	5 0.1	1.9 0.1	0.66 0.1	0.56	0.1 1.5	0.1 1.7
Nitrogen/Nitrate, Nitri	NA	0.10	ND* 0.10	1.3 0	0.10 0.91	0.10 0.3	0.10 0.1	36 0.10	ND	0.10 0.65	0.10	0.55 0.1	.10 0.47	0.10	1.0 0.10	1.7	0.10 0.46	5 0.10	0.49 0.1	1.7	0.10 1.3	0.10	0.51	0.10	0.64 0.10	1.3	0.10 1	.2 0.10	0.35	0.10 0.4	7 0.10	1.6 (	0.10 1.5	0.10 0.4	43 0.10	0.31 0.1	.10 0.99	0.10	1.1 0.50	7.2 0.1	0.43	0.1 0.34	0.1 2	.2 0.1	1.7 0.1	1 0.47	0.1 0.61	0.1 0.7:	5 0.1	1.9 0.1	0.66 0.1	0.56	0.1 1.5	0.1 1.7
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND 0.	0.020 ND	0.020 NE	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.02	020 ND	0.020 2	D 0.020	ND	0.020 ND	0.020	ND 0.0	0 ND	0.020 NI	0.020	ND	0.020	ND 0.020	) ND	0.020 N	D 0.020	0 ND	0.020 N	D 0.020	ND 0	1.020 ND	0.020 NI	D 0.020	ND 0.0	020 ND	0.020	ND 0.020	ND 0.02	2 ND	0.02 ND	0.02 N	D 0.02	ND 0.0	12 ND	0.02 ND	0.02 NE	0.02	ND 0.02	ND 0.02	2 ND	0.02 ND	0.02 ND
Perchlorate	0.0049	NR	NR NR	NR 1	NR NR	NR NB	NR N	R NR	NR	NR NR	NR	NR 0.00	004 ND	0.0040	D 0.0040	ND (	.0040 ND	0.0040	ND 0.00	0 ND 0	10040 NI	0.0040	ND	0.0040	ND 0.004	0 ND	0.0040 N	D 0.004	0 ND	0.0040 N	D 0.0040	ND 0.	.0040 ND	0.0040 NI	D 0.0040	ND 0.00	040 ND	0.0040	ND 0.0040	ND 0.00	4 ND	0.004 ND	0.004 N	D 0.004	ND 0.00	04 ND	0.004 ND	0.004 NE	0.004	ND 0.004	ND 0.00	4 ND	0.004 ND	0.004 ND
Selenium	0.05	0.0025 0	0.0029 0.0025	0.0034 0.	0.013 ND	0.0025 NE	0.0025 0.0	054 0.0025	0.0051	0.0025 0.0069	0.0025	0.0073 0.000	025 0.0059	0.0025 0:	013 0.0025	0.0032	.0025 0.002	7 0.0025	0.0035 0.00	5 0.0034 0	1.0025 0.00	4 0.0025	0.0031	0.0025 0	.0039 0.002	5 0.0045	0.0025 0.0	036 0.002	5 ND	0.0025 0.00	135 0.0025	0.0027 0.	.0025 0.0030 *	0.0025 0.00	137 0.0025	ND 0.00	025 0.0042	0.0025 0	0.0026 0.0025	ND 0.002	25 ND (	0.0025 0.0034	0.0025 0.00	026 0.0025	0.026 0.00	125 ND	0.0025 ND	0.0025 NE	0.0025	0.053 0.0025	ND 0.002	:5 ND	0.0025 0.0025	5 0.0025 0.0036
Silver	0.05	0.00050	ND 0.00050	0.00077 0.0	00050 ND	0.00050 NE	0.00050 N	D 0.00050	ND 0	0.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	4D 0.00050	ND 0	00050 ND	0.00050	ND 0.00	50 ND 0	.00050 NI	0.00050	ND	0.00050	ND 0.0005	80 ND	0.00050 N	D 0.0005	50 ND	0.00050 ND	F1 0.00050	ND 0.0	00050 ND	0.00050 NI	D 0.00050	ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.000	05 ND (	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005 ND I	F1 0.0005	ND 0.0005	ND 0.000	.6 ND	0.0005 ND	0.0005 ND
Sulfate	400.0	50	140 50	140	25 87	25 100	50 1	30 50	110	25 91	25	85 25	120	25 1	20 25	96	25 110	25	150 2	100	20 12	25	91	25	140 50	140	25 9	94 50	110	25 12	0 50	140	50 160	50 91	7 25	97 5	50 130	25	83 50	160 25	76	20 89	20 13	30 20	110 20	) 7.8	20 78	20 130	0 20	160 25	110 15	83	25 160	25 130
Thallium	0.002	0.0020	ND 0.0020	ND 0.0	.0020 ND	0.0020 NE	0.0020 N	iD 0.0020	ND	0.0020 ND	0.0020	ND 0.003	020 ND	0.0020	D 0.0020	ND (	.0020 ND	0.0020	ND 0.00	10 ND (	10020 NI	0.0020	ND	0.0020	ND 0.002	0 ND	0.0020 N	D 0.002	10 ND	0.0020 N	D 0.0020	ND 0.	.0020 ND	0.0020 NI	D 0.0020	ND 0.00	020 ND	0.0020	ND 0.0020	ND 0.00	12 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	02 ND	0.002 ND	0.002 NE	0.002	ND 0.002	ND 0.00	2 ND	0.002 ND	0.002 ND
Total Dissolved Solids	1,200	10	650 10	1000	10 650	10 620	10 71	10 10	800	10 860	10	760 10	10 710	10 6	90 10	690	10 350	10	570 1	930	10 99	10	600	10	530 10	710	10 8	70 10	680	10 65	0 10	820	10 880	10 53	0 10	590 1	10 840	10	590 10	1400 10	620	10 640	10 72	20 10	1,200 10	) 620	10 620	10 710	0 10	830 30	650 30	640	10 930	10 1200
Vanadium	0.049	NR	NR NR	NR 1	NR NR	NR NB	NR N	IR NR	NR	NR NR	NR	NR 0.002	050 0.0052	0.0050 0.0	0.0050 0.0050	0.0056	.0050 ND	0.0050	ND 0.00	0 ND 0	1.0050 0.00	9 0.0050	ND	0.0050 0	.0057 0.005	0 0.0063	0.0050 0.0	060 0.005	0 0.0063	0.0050 N	D 0.0050	0.0065 0.	.0050 ND	0.0050 0.00	154 0.0050	0.0056 0.00	0.0050 0.0050	0.0050 0	0.0054 0.0050	ND 0.00	5 ND	0.005 ND ^A	0.005 N	D 0.005	ND 0.00	05 ND	0.005 ND	0.005 NE	0.005 0	0.0056 0.005	ND 0.00	5 ND	0.005 ND	0.005 ND
Zinc	5.0	0.020	ND 0.020	ND 0	0.10 ND	0.020 NE	0.020 N	D 0.020	ND	0.020 ND	0.020	ND 0.02	020 ND	0.020	D 0.020	ND	0.020 ND	0.020	ND 0.0	0 ND	0.020 NI	0.020	ND	0.020	ND 0.020	) ND	0.020 N	D 0.020	0 ND	0.020 N	D 0.020	ND 0	.020 ND	0.020 NI	D 0.020	ND 0.0	020 ND	0.020	ND 0.020	ND 0.02	2 ND	0.02 ND	0.02 N	D 0.02	ND 0.0	12 ND	0.02 ND	0.02 NE	0.02	ND 0.02	ND 0.02	2 ND	0.02 ND	0.02 ND
Benzene	0.005	NR	NR NR	NR 1	NR NR	NR NB	NR N	R NR	NR	NR NR	NR	NR 0.00	005 ND	0.00050	D 0.00050	ND 0	00050 ND	0.00050	ND 0.00	50 ND 0	10005 NI	0.0005	ND	0.0005	ND 0.000	5 ND	0.0005 N	D 0.000	6 ND	0.0005 N	D 0.0005	ND 0.	.0005 ND	0.0005 NI	D 0.0005	ND 0.00	005 ND	0.0005	ND 0.0005	ND 0.000	15 ND (	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	005 ND	0.0005 ND	0.0005 NE	0.0005	ND 0.0005	ND 0.000	.J5 ND	0.0005 ND	0.0005 ND
BETX	11.705	NR	NR NR	NR 1	NR NR	NR NB	NR N	R NR	NR	NR NR	NR	NR 0.003	025 NS	0.0025 1	D 0.0025	ND (	.0025 ND	0.0025	ND 0.00	5 ND	0.002 NI	0.002	ND	0.002	ND 0.002	2 ND	0.002 0.00	0073 0.002	2 ND	0.002 N	D 0.002	ND 0	.002 0.0029	0.002 NI	D 0.002	0.0027 0.0	002 ND	0.002	ND 0.0025	0.0015 0.002	25 0.0023	0.0025 ND	0.0025 N	D 0.0025	ND 0.00	025 ND	0.0025 ND	0.0025 NE	0.0025	ND 0.0025	ND 0.003	25 ND	0.0025 ND	0.0025 ND
pH	6.5 - 9.0	NA	8.04 NA	7.51	NA 7.71	NA 7.5	NA 7.	.71 NA	7.57	NA 7.42	NA	7.46 NA	IA 7.66	NA 8	.05 NA	7.35	NA 7.42	2 NA	7.31 N	9.52	NA 7.4	NA NA	7.29	NA	7.29 NA	7.78	NA 7.	.60 NA	7.79	NA 7.0	12 NA	7.30	NA 7.31	NA 7.3	66 NA	7.36 N	iA 6.84	NA	7.65 NA	7.65 NA	7.54	NA 7.63	NA 7.	62 NA	7.42 NJ	A 7.39	NA 7.27	NA 7.4	2 NA	7.06 NA	7.44 NA	6.95	NA 7.52	NA 7.35
Temperature	NA	NA	8.53 NA	12.90	NA 14.26	NA 12.7	3 NA 13.	.70 NA	14.45	NA 19.31	NA	14.51 NA	IA 13.45	NA L	1.20 NA	14.48	NA 15.2	2 NA	13.50 N	7.33	NA 11.	2 NA	18.67	NA	13.92 NA	9.51	NA 16	i30 NA	18.55	NA 14.	11 NA	9.02	NA 13.65	NA 18.4	41 NA	15.80 N	ia 11.16	NA	11.48 NA	7.63 NA	19.68	NA 12.51	NA 13	8.1 NA	11.7 N/	A 12.8	NA 13.84	NA 13.	2 NA	12.5 NA	13.2 NA	. 17.1	NA 12.7	NA 12.2
Conductivity	NA	NA	1.20 NA	1.65	NA 1.05	NA 0.7	NA 0.	87 NA	1.06	NA 1.23	NA	1.02 NA	IA 0.93	NA 0	94 NA	0.855	NA 0.76	6 NA	0.80 N	0.96	NA 1.3	NA	0.94	NA	0.88 NA	0.86	NA 1.	.19 NA	1.11	NA 1.1	12 NA	0.89	NA 1.16	NA 0.9	4 NA	0.78 N	IA 0.92	NA	0.83 NA	0.891 NA	1.265	NA 0.825	NA 11	59 NA	2.83 NJ	A 1.06	NA 9.34	NA 0.98	3 NA	1.141 NA	1.306 NA	s 1.2	NA 1.539	NA 2.003
Dissolved Oxygen	NA	NA	NM NA	7.44	NA 6.82	NA 6.7	NA 7.	05 NA	7.47	NA 7.21	NA	6.27 NA	IA 7.20	NA 8	.70 NA	4.77	NA 2.44	I NA	3.73 N	4.78	NA 6.8	NA NA	3.99	NA	4.44 NA	7.08	NA 6.	.80 NA	5.23	NA 5.4	12 NA	6.28	NA 5.88	NA 5.3	85 NA	4.09 N	iA 6.71	NA	8.59 NA	8.85 NA	7.19	NA 10.56	NA 55	93 NA	5.82 NJ	A 51.00	NA 9.01	NA 7.7	1 NA	7.98 NA	7.06 NA	3.67	NA 6.47	NA 6.93
ORP	NA	NA	NM NA	183.7	NA 203.8	NA -65.	) NA 11	3.0 NA	210.0	NA 153.0	NA	162.0 NA	IA 125.0	NA 18	6.4 NA	18.1	NA 22.7	NA	-86.3 N	-81.0	NA 137	8 NA	60.1	NA	60.8 NA	88.5	NA 12	0.7 NA	-16.5	NA 164	1.8 NA	114.3	NA 50.1	NA 53.	A NA	22.7 N	iA 201.6	NA	-16.1 NA	38.6 NA	71.6	NA 2.2	NA 112	2.0 NA	-265.1 N/	A 187.4	NA -11.6	NA 157.	2 NA :	224.6 NA	152.0 NA	157.4	NA 3.0	NA 161.0
Notes			Service I. Base 470. Sub-		DL- Detection limit		R - Not Required			Temperatur	re 'C dej	- Colving																																										

Sample: MW-07	Date	12/7/20	010 3/2	3/2011	6/14/2011	9/14/20	11 12/	7/2011	3/15/2012	6/19/2	2012 9/1	19/2012	12/20/20	012 3/5	5/2013	5/22/2013	7/23/	2013	10/16/2013	2/21/2	014	/2/2014	8/19/2	2014	10/23/2014	2/10/	2015	5/28/2015	8/5/	2015	10/27/2015	2/11/2	2016	5/12/2016	9/1/2016	11	/3/2016	2/7/2017	4/27/2	017 2/2	1/2018	8/1/2018	10/18/2018	2/5/2019	5/6	/2019 8	3/6/2019	11/7/2019	2/13/202	0 5/21/	/2020 7/	31/2020	10/22/2020	2/25/200	21 5/17/2021
Parameter	Standards	DL	Result DL	Result	DL Result	DL	tesult DL	Result D	DL Result	t DL	Result DL	. Result	DL R	Result DL	Result	DL Resu	k DL	Result	DL Result	DL	Result DI	Result	DL	Result	DL Result	DL	Result	DL Result	t DL	Result	DL Resu	t DL	Result D	L Result	DL Res	sult DL	Result D	DL Resul	t DL	Result DL	Result D	L Result	DL Result	DL Resu	ult DL	Result Di	4. Result	DL Result	DL Re	suit DL	Result DI	Result	DL Resul	t DL R	Result DL Result
Antimony	0.006	0.0030	ND 0.0030	ND	0.0030 ND															0.0030	ND 0.00	0 ND	0.0030	ND 0.	0030 ND	0.0030	ND	0.0030 ND	0.0030	ND 0	10030 ND	0.0030	ND 0.0	030 ND	0.0030 NI	D 0.0030	) ND 0.0	0030 ND	0.0030	ND 0.003	ND 0.0	003 ND	0.003 ND	0.003 ND	D 0.003	ND 0.00	.03 ND	0.003 ND	0.003 N	D 0.003	ND 0.00	ND 0	0.003 ND	0.003	ND 0.003 ND
Arsenic	0.010	0.0010	0.0010 0.0010	ND	0.0050 ND	0.0010	ND 0.0010	0.0014 0.0	0.0010	0.0010	ND 0.001	10 0.0013	0.0010	ND 0.0010	0.0011	0.0010 0.001	5 0.0010	0.0011 0	.0010 0.0013	0.0010	ND 0.00	0 0.0014	0.0010	ND 0.	0010 ND^	0.0010	ND	0.0010 0.0013	0.0010	0.0013 0	10010 ND	0.0010	0.0017 0.0	050 ND ^	0.0010 NI	D 0.0010	0.0011 0.0	0010 0.001	0.0010	ND 0.0010	0.0014 0.0	001 ND	0.001 ND	0.001 ND	D 0.001	ND 0.00	.01 ND	0.001 ND	0.001 0.0	011 0.001	ND 0.00	ND 0	0.001 ND	0.001	ND 0.001 ND
Barium	2.0	0.0025	0.13 0.0025	0.11	0.0025 0.072	0.0025	0.092 0.0025	0.11 0.0	0025 0.13	0.0025	0.092 0.002	25 0.12	0.0025 0	0.11 0.0025	5 0.12	0.0025 0.11	0.0025	0.082 0	0025 0.13	0.0025	0.15 0.00	5 0.12	0.0025	0.091 0.	0025 0.11	0.0025	0.18	0.0025 0.12	0.0025	0.10 0	.0025 0.11	0.0025	0.15 0.0	025 0.12	0.0025 0.08	0.0025	5 0.11 0.0	0025 0.15	0.0025	0.096 0.002	0.17 0.0	025 0.093	0.0025 0.12	0.0025 0.13	3 0.0025	0.1 0.00	.025 0.11	0.0025 0.11	0.0025 0.	14 0.0025	0.095 0.00	5 0.11 0.	J-0025 0.13	0.0025 0	J.17 0.0025 0.17
Beryllium	0.004	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.0010	ND 0.0	010 ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.0010	) ND	0.0010 ND	0.0010	ND 0	.0010 ND	0.0010	ND ^ 0.00	0 ND	0.0010	ND 0.	0010 ND	0.0010	ND	0.0010 ND	0.0010	ND 0	10010 ND	0.0010	ND ^ 0.0	010 ND	0.0010 ND	D^ 0.0010	) ND 0.0	0010 ND '	0.0010	ND 0.0010	ND 0.0	001 ND	0.001 ND*	0.001 ND	D 0.001	ND 0.00	.01 ND	0.001 ND	0.001 N	D 0.001	ND ^ 0.00	ND 0	0.001 ND	0.001 N	(D^ 0.001 ND
Boron	2.0	0.050	0.51 0.050	0.39	0.050 0.25	0.050	0.29 0.050	0.35 0.0	050 0.30	0.050	0.25 0.050	0 0.31^	0.050 (	0.41 0.050	0.39	0.050 0.21	0.050	0.21 (	1050 0.24	0.050	0.30 0.0	0.15	0.050	0.22 0	050 0.17	0.050	0.21	0.050 0.16	0.050	0.20 0	0.050 0.19	0.050	0.16 0.0	050 0.20	0.050 0.2	23 0.050	0.23 0.0	.050 0.19	0.050	0.13 0.050	0.24 0.	05 0.18	0.05 0.25	0.05 0.15	9 0.05	0.24 0.0	.05 0.23	0.05 0.19	0.05 0.	23 0.05	0.38 0.0	0.19 (	0.05 0.34	0.05 (	J.22 0.05 0.16
Cadmium	0.005	0.00050	ND 0.00050	) ND	0.0025 ND	0.00050	ND 0.0005	ND 0.00	0050 ND	0.00050	ND 0.0005	50 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.000	10 ND	0.00050	ND 0.0	0050 ND	0.00050	0.0041	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.00	0050 ND	0.00050 NI	D 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.0005	) ND 0.0	005 ND	0.0005 ND	0.0005 ND	D 0.0005	ND 0.00	J05 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	5 ND 0.	10005 ND	0.0005	ND 0.0005 ND
Chloride	200.0	50	430 10	320	10 140	10	99 10	140 2	2.0 300	10	170 10	170	10	140 10	190	10 170	10	95	10 130	50	470 10	350	10	110	10 98	10	210	10 260	10	130	10 110	10	240 1	10 240	10 77	7 10	84 1	10 240	10	160 10	350 1	0 130	10 140	10 180	0 10	400 F1 10	.0 130	10 87	10 1	90 10	190 10	210	10 150	40 3	310 40 440
Chromium	0.1	0.0050	ND 0.0050	ND	0.025 ND	0.0050	ND 0.0050	ND 0.0	050 ND	0.0050	ND 0.005	50 ND	0.0050	ND 0.0050	) ND	0.0050 ND	0.0050	ND 0	.0050 ND	0.0050	ND 0.00	0 ND	0.0050	ND 0.	0050 ND	0.0050	ND	0.0050 ND	0.0050	ND 0	10050 ND	0.0050	ND 0.0	050 ND	0.0050 NI	D 0.0050	) ND 0.0	0050 ND	0.0050	ND 0.0050	ND 0.0	05 ND	0.005 ND	0.005 ND	D 0.005	ND 0.00	.05 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	ND 0	0.005 ND	0.005	ND 0.005 ND
Cobalt	1.0	0.0010	ND 0.0010	ND	0.0050 ND	0.0010	0.0010 0.0010	ND 0.0	0010 ND	0.0010	ND 0.001	10 ND	0.0010	ND 0.0010	) ND	0.0010 ND	0.0010	ND 0	.0010 ND	0.0010	ND 0.00	0 ND	0.0010	ND 0.	0010 ND	0.0010	0.0090	0.0010 ND	0.0010	ND 0	10010 ND	0.0010	ND 0.0	010 ND	0.0010 NI	D 0.0010	) ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.0	001 ND	0.001 ND	0.001 ND	D 0.001	ND 0.00	.01 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	ND 0	0.001 ND	0.001	ND 0.001 ND
Copper	0.65	0.0020	ND 0.0020	ND	0.010 ND	0.0020	.0025 0.0020	ND 0.0	020 ND	0.0020	ND 0.002	20 ND	0.0020	ND 0.0020	) ND	0.0020 ND	0.0020	ND 0	.0020 ND	0.0020	ND 0.00	0 ND	0.0020	0.0047 0.	0.0020	0.0020	0.096	0.0020 ND	0.0020	ND 0	10020 ND	0.0020	ND 0.0	020 ND	0.0020 NI	D 0.0020	) ND 0.0	0020 ND	0.0020	ND ^ 0.002	ND 0.0	02 ND	0.002 ND	0.002 ND	D 0.002	ND 0.00	.02 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	ND 0	0.002 ND	0.002	ND 0.002 ND
Cyanide	0.2	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND 0.0	010 ND	0.010	ND 0.010	0 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND (	1010 ND	0.010	ND 0.01	) ND	0.010	ND 0	010 ND	0.010	ND	0.010 ND	0.010	ND (	0.010 ND	0.010	ND 0.0	010 ND	0.010 NI	D 0.010	ND 0.0	.010 ND	0.010	ND 0.010	ND 0.	01 ND	0.01 ND	0.01 ND	D 0.01	ND 0.0	J1 ND	0.01 ND	0.01 N	D 0.01	ND 0.00	ND (	0.01 ND	0.005	ND 0.005 ND
Fluoride	4.0	0.10	0.36 0.10	0.31	0.10 0.35	0.10	0.27 0.10	0.35 0.	.10 0.31	0.10	0.37 0.10	0 0.32	0.10 0	0.31 0.10	0.30^	0.10 0.38	0.10	0.37	0.10 0.32	0.10	0.31 0.1	0.32	0.10	0.35	10 0.36	0.10	0.30	0.10 0.32	0.10	0.35	0.10 0.32	0.10	0.33 0.	.10 0.35	0.10 0.3	32 0.10	0.31 0.	0.10 0.25	0.10	0.28 0.10	0.28 0	.1 0.29	0.1 0.26	0.1 0.26	6 0.1	0.3 0.1	.1 0.24	0.1 0.26	0.1 0	3 0.1	0.33 0.1	0.29	0.1 0.28	0.1 0	J.25 0.1 0.26
Iron	5.0	0.10	ND 0.10	ND	0.50 ND	0.10	3.8 0.10	ND 0.	.10 ND	0.10	0.13 0.10	0 ND	0.10	ND 0.10	ND	0.10 0.41	0.10	ND	0.10 ND	0.10	ND 0.1	ND	0.10	ND (	10 0.13	0.10	ND	0.10 ND	0.10	ND	0.10 ND	0.10	0.85 0.	50 ND	0.10 NI	D 0.10	0.25 0.	0.10 0.15	0.10	0.40 0.10	0.63 0	.1 ND	0.1 0.58	0.1 0.45	15 0.1	0.2 0.1	.1 0.16	0.1 ND	0.1 0.	13 0.1	ND 0.1	ND	0.1 ND	0.1 0	1.15 0.1 ND
Lead	0.0075	0.00050	ND 0.00050	) ND	0.00050 ND	0.00050	ND 0.0005	ND 0.00	0050 ND	0.00050	ND 0.0005	50 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.000	10 ND	0.00050	ND 0.1	0050 ND	0.00050	0.0072	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	0.00057 0.00	0050 ND	0.00050 NI	D 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.0005	) ND 0.0	005 ND	0.0005 ND	0.0005 0.000	0.0005	ND 0.00	J05 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	5 ND 0.	10005 ND	0.0005	ND 0.0005 ND
Manganese	0.15	0.0025	0.29 0.0025	0.014	0.013 ND	0.0025	0.080 0.0025	0.0073 0.0	0.015	0.0025	0.069 0.002	25 0.0041	0.0025 0.	0.0063 0.0025	5 0.0044	0.0025 0.01	2 0.0025	ND 0	.0025 ND	0.0025	ND 0.00	5 ND	0.0025	0.0033 0.	0.0091	0.0025	0.0048	0.0025 0.0026	5 0.0025	ND 0	0.0025 0.004	0.0025	0.018 0.0	025 0.010	0.0025 0.00	025 0.0025	5 0.0093 0.0	0025 0.007	5 0.0025	0.011 0.002	0.014 0.0	025 0.0026	0.0025 0.015	0.0025 0.01	17 0.0025	0.0068 0.00	.125 0.0063	0.0025 ND	0.0025 0.0	004 0.0025	ND 0.00	5 0.0041 0.	.10025 ND	0.0025 0.	0061 0.0025 ND
Mercury	0.002	0.00020	ND 0.00020	) ND	0.00020 ND	0.00020	ND 0.0002	) ND 0.00	0020 ND	0.00020	ND 0.0002	20 ND	0.00020	ND 0.0002	0 ND	0.00020 ND	0.00020	ND 0.	00020 ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.1	0020 ND	0.00020	ND	0.00020 ND	0.00020	ND * 0:	00020 ND	0.00020	ND 0.00	0020 ND	0.00020 NI	D 0.0002	0 ND 0.00	0020 ND	0.00020	ND 0.0002	) ND 0.0	002 ND	0.0002 ND	0.0002 ND	D 0.0002	ND 0.00	302 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.00	2 ND 0.	.10002 ND	0.0002	ND 0.0002 ND
Nickel	0.1	0.0020	0.0045 0.0020	ND	0.010 ND	0.0020	0.014 0.0020	ND 0.0	0020 ND	0.0020	0.0032 0.002	20 ND	0.0020 0.	0.0024 0.0020	0.0024	0.0020 0.002	0 0.0020	ND 0	0020 0.0021	0.0020	ND 0.00	0 ND	0.0020	0.0022 0.	0.002	0.0020	0.016	0.0020 0.0034	0.0020	ND 0	0.0020 0.002	0.0020	0.0030 0.0	020 0.0036	0.0020 NI	D 0.0020	0.0022 0.0	0020 ND	0.0020	ND 0.002	0.0033 0.0	002 ND	0.002 0.0021	0.002 0.002	0.002	0.0022 0.00	.02 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	ND 0	0.002 ND	0.002	ND 0.002 ND
Nitrogen/Nitrate	10.0	0.10	ND 0.10	1.2	0.10 0.76	0.10	0.27 0.10	0.60 0.	.10 ND	0.10	0.65 0.10	0 0.61	0.10 0	0.73 0.10	1.4	0.10 1.7	0.10	0.34	0.10 0.65	0.10	ND 0.1	1.3	0.10	0.46	10 0.56	0.10	0.19	0.10 1.1	0.10	0.37	0.10 0.51	0.10	1.7 0.	.10 1.4	0.10 0.3	36 0.10	0.33 0.	1.10 1.2	0.10	1.0 0.10	7.3 0	.1 0.29	0.1 0.29	0.1 0.85	15 0.1	1.6 0.1	.1 0.23	0.1 0.68	0.1 0.	88 0.1	1.4 0.1	0.54	0.1 0.93	0.1	1.1 0.1 1.6
Nitrogen/Nitrate, Nitri	NA	0.10	ND* 0.10	1.2	0.10 0.76	0.10	0.27 0.10	0.60 0.	.10 ND	0.10	0.65 0.10	0 0.61	0.10 0	0.73 0.10	1.4	0.10 1.7	0.10	0.34	0.10 0.65	0.50	ND 0.1	1.3	0.10	0.46	10 0.56	0.10	0.33	0.10 1.1	0.10	0.37	0.10 0.51	0.10	1.7 0.	.10 1.4	0.10 0.3	36 0.10	0.33 0.	0.10 1.2	0.10	1.0 0.50	7.3 0	.1 0.29	0.1 0.29	0.1 0.8	15 0.1	1.6 0.1	.1 0.23	0.1 0.68	0.1 0.	88 0.1	1.4 0.1	0.54	0.1 0.93	0.1	1.1 0.1 1.6
Nitrogen/Nitrite	NA	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020	ND 0.020	0 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND (	1020 ND	0.020	ND 0.03	) ND	0.020	ND 0	020 ND	0.020	0.14	0.020 ND	0.020	ND (	1.020 ND	0.020	ND 0.0	020 ND	0.020 NI	D 0.020	ND 0.0	.020 ND	0.020	ND 0.020	ND 0.	02 ND	0.02 ND	0.02 ND	D 0.02	ND 0.0	.12 ND	0.02 ND	0.02 N	D 0.02	ND 0.0	ND (	0.02 ND	0.02	ND 0.02 ND
Perchlorate	0.0049	NR	NR NR	NR	NR NR	NR	NR NR	NR N	R NR	NR	NR NR	NR NR	0.004	ND 0.0040	) ND	0.0040 ND	0.0040	ND 0	.0040 ND	0.0040	ND 0.00	0 ND	0.0040	ND 0.	040 ND	0.0040	ND	0.0040 ND	0.0040	ND 0	10040 ND	0.0040	ND 0.0	040 ND	0.0040 NI	D 0.0040	) ND 0.0	0040 ND	0.0040	ND ^ 0.004	ND 0.0	04 ND	0.004 ND	0.004 ND	D 0.004	ND 0.00	.04 ND	0.004 ND	0.004 N	D 0.004	ND 0.00	ND 0	0.004 ND	0.004	ND 0.004 ND
Selenium	0.05	0.0025	ND 0.0025	ND	0.013 ND	0.0025	ND 0.0025	ND 0.0	025 ND	0.0025	ND 0.002	25 ND	0.0025 0.	0.0031 0.0025	5 0.0041	0.0025 0.002	6 0.0025	ND 0	.0025 ND	0.0025	ND 0.00	5 0.0026	0.0025	ND 0.	1025 ND	0.0025	ND	0.0025 ND	0.0025	ND 0	10025 ND	0.0025	ND 0.0	025 ND ^	0.0025 NI	D 0.0025	5 ND 0.0	0025 ND	0.0025	ND 0.002	0.0031 0.0	025 ND	0.0025 ND	0.0025 ND	D 0.0025	0.0048 0.00	.125 ND	0.0025 ND	0.0025 N	D 0.0025	0.0038 0.00	5 ND 0.	.10025 0.0025	5 0.0025 1	ND 0.0025 ND
Silver	0.05	0.00050	ND 0.00050	) ND	0.0025 ND	0.00050	ND 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.0005	50 ND	0.00050	ND 0.0005	0 ND	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.000	10 ND	0.00050	ND 0.0	0050 ND	0.00050	ND	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.00	0050 ND	0.00050 NI	D 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.0005	) ND 0.0	005 ND	0.0005 ND	0.0005 ND	D 0.0005	ND 0.00	.05 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	5 ND 0.	10005 ND	0.0005	AD 0.0005 ND
Sulfate	400.0	50	250 50	120	25 85	25	110 50	160 5	50 140	50	190 50	130	25	90 25	150	50 150	25	74	50 190	25	170 20	110	25	82	25 120	50	260	25 80	25	99	50 110	50	140 5	50 180	25 75	5 25	100 2	25 85	25	74 50	280 2	10 64	20 90	20 87	7 20	97 20	.) 48	20 83	20 5	6 20	140 25	85	15 97	25	130 25 120
Thallium	0.002	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.0020	ND 0.0	0020 ND	0.0020	ND 0.002	20 ND	0.0020	ND 0.0020	) ND	0.0020 ND	0.0020	ND 0	.0020 ND	0.0020	ND 0.00	0 ND	0.0020	ND 0.	020 ND	0.0020	ND	0.0020 ND	0.0020	ND 0	.0020 ND	0.0020	ND 0.0	020 ND	0.0020 NI	D 0.0020	) ND 0.0	0020 ND	0.0020	ND 0.002	ND 0.0	002 ND	0.002 ND	0.002 ND	D 0.002	ND 0.00	.02 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	ND 0	3.002 ND	0.002	AD 0.002 ND
Total Dissolved Solids	1,200	10	1200 10	970	10 580	10	650 10	780 1	10 870	10	760 10	760	10	760 10	720	10 740	10	540	10 650	10	1200 10	860	10	570	10 520	10	1000	10 860	10	640	10 620	10	850 1	10 860	10 51	10 10	570 1	10 840	10	590 10	1300 1	0 580	10 680	10 670	0 10	1,300 10	.) 590	10 540	10 7	10 10	750 30	630	30 680	10 1	.000 10 1300
Vanadium	0.049	NR	NR NR	NR	NR NR	NR	NR NR	NR N	R NR	NR	NR NR	I NR	0.0050 0.	0.0051 0.0050	) ND	0.0050 0.005	3 0.0050	ND 0	.0050 ND	0.0050	ND 0.00	0 0.0051	0.0050	ND 0.	0050 ND	0.0050	0.0052	0.0050 ND	0.0050	0.0051 0	10050 ND	0.0050	0.0077 0.0	050 ND	0.0050 NI	D 0.0050	0.0051 0.0	0050 ND	0.0050	0.0050 0.0050	0.0066 0.0	005 ND	0.005 ND*	0.005 ND	D 0.005	ND 0.00	.05 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	ND 0	0.005 ND	0.005	ND 0.005 ND
Zinc	5.0	0.020	ND 0.020	ND	0.10 ND	0.020	ND 0.020	ND 0.0	020 ND	0.020	ND 0.020	10 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND (	1020 ND	0.020	ND 0.02	) ND	0.020	ND 0	020 ND	0.020	0.036	0.020 ND	0.020	ND 0	1.020 ND	0.020	ND 0.0	020 ND	0.020 NI	D 0.020	ND 0.0	.020 ND	0.020	ND 0.020	ND 0.	02 ND	0.02 ND	0.02 ND	D 0.02	ND 0.0	.12 ND	0.02 ND	0.02 N	D 0.02	ND 0.0	ND 0	0.02 ND	0.02	ND 0.02 ND
Benzene	0.005	NR	NR NR	NR	NR NR	NR	NR NR	NR N	R NR	NR	NR NR	I NR	0.0005	ND 0.0005	0 ND	0.00050 ND	0.00050	ND 0.	00050 ND	0.00050	ND 0.00	5 ND	0.0005	ND 0.	1005 ND	0.0005	ND	0.0005 ND	0.0005	ND 0	10005 ND	0.0005	ND 0.0	005 ND	0.0005 NI	D 0.0005	5 0.0018 0.0	0005 ND	0.0005	ND 0.000	ND 0.0	005 ND	0.0005 ND	0.0005 ND	0.0005	ND 0.00	305 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	5 ND 0.	±0005 ND	0.0005	ND 0.0005 ND
BETX	11.705	NR	NR NR	NR	NR NR	NR	NR NR	NR N	R NR	NR	NR NR	I NR	0.0025	NS 0.0025	5 ND	0.0025 ND	0.0025	ND 0	.0025 ND	0.0025	ND 0.00	2 ND	0.002	ND 0	002 ND	0.002	ND	0.002 ND	0.002	ND (	0.002 ND	0.002	ND 0.0	002 0.0039	0.002 NI	D 0.002	0.0575 0.0	.002 ND	0.002	ND 0.002	0.00097 0.0	025 0.0018	0.0025 ND	0.0025 ND	0.0025	ND 0.00	025 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.00	5 ND 0.	30025 ND	0.0025	ND 0.0025 ND
pH	6.5 - 9.0	NA	8.08 NA	7.50	NA 7.61	NA	7.65 NA	7.63 N	iA 7.53	NA	7.59 NA	7.45	NA	7.52 NA	7.99	NA 7.34	NA	7.42	NA 7.33	NA	9.34 N/	7.35	NA	6.99	4A 7.28	NA	7.52	NA 7.52	NA	7.75	NA 7.21	NA	7.35 N	IA 7.27	NA 6.9	96 NA	7.55 N	NA 7.31	NA	7.70 NA	7.62 N	IA 7.47	NA 7.51	NA 7.48	18 NA	7.36 N	A 7.31	NA 7.55	NA 7.	27 NA	7.09 NJ	7.23	NA 7.06	NA 1	/.25 NA 7.18
Temperature	NA	NA	9.72 NA	13.58	NA 12.92	NA	12.50 NA	13.07 N	A 15.40	NA	16.33 NA	13.97	NA 1	12.88 NA	12.30	NA 14.1	5 NA	15.44	NA 13.06	NA	8.38 N/	11.45	NA	17.46	NA 16.49	NA	10.95	NA 17.16	NA	21.99	NA 14.8	NA	5.97 N	IA 13.22	NA 18.4	.40 NA	17.87 N	NA 12.53	NA	11.28 NA	7.25 N	A 21.38	NA 12.69	NA 12.7	70 NA	12.10 N	A 12.40	NA 13.75	NA 12	.80 NA	12.00 NJ	13.10	NA 14.50	NA I	2.00 NA 12.30
Conductivity	NA	NA	2.12 NA	1.78	NA 1.02	NA	0.78 NA	0.89 N	A 1.18	NA	0.99 NA	1.00	NA (	0.91 NA	0.99	NA 0.81	8 NA	0.72	NA 0.89	NA	1.21 N/	1.30	NA	0.90	A 0.91	NA	1.18	NA 1.30	NA	1.06	NA 1.04	NA	0.86 N	IA 1.12	NA 0.8	86 NA	0.78 N	NA 0.98	NA	0.79 NA	0.929 N	IA 1.143	NA 0.784	NA 1.12	29 NA	2.720 N	A 1.020	NA 8.950	NA 1.0	152 NA	1.100 NJ	1.327	NA 1.230	NA 1	692 NA 2.101
Dissolved Oxygen	NA	NA	NM NA	7.02	NA 8.10	NA	7.70 NA	6.74 N	A 7.23	NA	7.29 NA	7.16	NA 8	8.51 NA	8.38	NA 4.25	NA	3.52	NA 2.52	NA	6.39 N/	5.51	NA	3.47	4A 3.32	NA	1.15	NA 4.82	NA	1.80	NA 3.74	NA	6.33 N	IA 5.75	NA 4.1	17 NA	4.97 N	NA 5.01	NA	6.40 NA	8.16 N	IA 3.97	NA 9.73	NA 2.90	16 NA	6.71 N	IA 27.40	NA 5.54	NA 7.	22 NA	6.48 NJ	4.62	NA 3.98	NA 3	3.76 NA 4.93
ORP	NA	NA	NM NA	183.2	NA 202.8	NA	-82.0 NA	113.0 N	A 175.0	NA	148.0 NA	L 199.0	NA 1	152.0 NA	154.3	NA 17.0	NA	23.7	NA -81.7	NA	-99.0 N/	141.5	NA	55.0	VA 61.8	NA	78.4	NA 128.5	NA	-41.0	NA 1473	NA	129.1 N	IA 74.0	NA 102	2.1 NA	24.2 N	NA 153.5	NA	-10.4 NA	48.5 N	IA 92.9	NA 6.0	NA 113.	1.5 NA	-281.3 N	IA 189.6	NA -22.6	NA 15	8.8 NA	282.5 NJ	187.6	NA 150.9	NA	8.2 NA 163.9
Notes		110 10 10	a . 10.000		DL- Detection I		NR - Not Regain			T	Compensate C																																												

New Social-Advanced matrix C 10.8 Cheer Dar Olivarianti Section Olivarianti Researce Grandware, Generatione C, Stranger D, Str

Sample: MW-08	Date	12/6/2010	3/23/2	011	6/14/2011	9/14/201	12/7/	2011 3/	15/2012	6/19/201	12 9/19	9/2012	12/20/2012	2 3/5/2	013 5	23/2013	7/22/201	13 10/	15/2013	2/21/2014	5/1/2	014	8/18/2014	10/2	3/2014	2/10/2015	5/27/	2015	8/4/2015	10/27/	2015 2	2/9/2016	5/11/2016	8/30/201	6 11	1/1/2016	2/7/2017	4/25/201	7 2/20/2	018 8/1/20	018 10/	16/2018	2/5/2019	5/6/201	19 8/	6/2019	11/7/2019	2/12/202	0 5/20/	2020 7/	30/2020	10/22/2020	2/11/20	/21 5/17/2021
Parameter	Standards	DL Res	uk DL	Result	DL Result	DL Re	ult DL	Result DL	. Result	DL R	tesult DL	Result	DL Resul	alt DL	Result DL	. Result	DL R	esult DL	Result	DL Res	it DL	Result	DL Res	ult DL	Result	DL Re	uit DL	Result	DL Resu	it DL	Result DL	. Result	DL Result	DL Re	lesult DL	Result D	L Result	DL Re	esuit DL	Result DL	Result DL	Result	DL Result	DL B	Result DL	Result	DL Result	DL Re	uk DL	Result DI	Result	DL Resu	ilt DL I	Result DL Result
Antimony	0.006	0.0030 N	D 0.0030	ND 0.	.0030 ND	0.0030 N	D 0.0030	ND 0.003	30 ND	0.0030	ND 0.0030	ND 0	0.0030 ND	0.0030	ND 0.00	30 ND	0.0030	ND 0.0030	) ND	:0030 NE	0.0030	ND 0	0030 NI	0.0030	ND	0.0030 N	D 0.0030	ND 0	0.0030 ND	0.0030	ND 0.003	30 ND	0.0030 ND	0.0030 N	ND 0.0030	0 ND 0.00	130 ND	0.0030	ND 0.0030	ND 0.003	ND 0.003	ND 0	1.003 ND	0.003 N	ND 0.00?	3 ND	0.003 ND	0.003 N	D 0.003	ND 0.00	6 ND	0.003 ND	0.003	ND 0.003 ND
Arsenic	0.010	0.0010 N	D 0.0010	ND 0.	.0050 ND	0.0010 N	D 0.0010	ND 0.001	10 ND	0.0010	ND 0.0010	ND 0	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	) ND	:0010 NE	0.0010	ND 0	0010 NI	0.0010	ND^	0.0010 0.0	0.0010	ND 0	0.0010 ND	0.0010	ND 0.001	10 ND	0.0010 ND ^	0.0010 N	ND 0.0010	0 ND 0.00	010 ND	0.0010	ND 0.0010	ND 0.001	ND 0.001	ND 0	0.001 ND	0.001	ND 0.003	1 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	1 ND	0.001 ND	0.001	ND 0.001 ND
Barium	2.0	0.0025 0.0	54 0.0025	0.055 0.	.0025 0.026	0.0025 0.0	48 0.0025	0.057 0.002	25 0.049	0.0025 0	0.029 0.0025	0.059 0	0.0025 0.058	8 0.0025	0.069 0.00	25 0.057	0.0025 0	0.002	5 0.045	.0025 0.06	6 0.0025	0.12 0	0025 0.0	44 0.0025	0.051	0.0025 0.	22 0.0025	0.057 0	0.0025 0.044	4 0.0025	0.048 0.002	25 0.055	0.0025 0.059	0.0025 0.	0.002	5 0.042 0.00	0.069	0.0025 0.	056 0.0025	0.063 0.0025	0.037 0.002	0.044 0	.0025 0.046	0.0025 0	0.031 0.002	5 0.027	0.0025 0.034	0.0025 0.0	64 0.0025	0.041 0.00	25 0.047	0.0025 0.063	2 0.0025	0.081 0.0025 0.08f
Beryllium	0.004	0.0010 N	D 0.0010	ND 0.	.0010 ND	0.0010 N	D 0.0010	ND 0.001	10 ND	0.0010	ND 0.0010	ND 0	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	) ND	.0010 ND	^ 0.0010	ND 0	0010 NI	0.0010	ND	0.0010 N	D 0.0010	ND 0	0.0010 ND	0.0010	ND 0.001	10 ND ^	0.0010 ND	0.0010 N	D ^ 0.0010	0 ND 0.00	010 ND ^	0.0010	ND 0.0010	ND 0.001	ND 0.001	ND ^A (	0.001 ND	0.001	ND 0.001	1 ND	0.001 ND	0.001 N	D 0.001	ND ^ 0.00	1 ND	0.001 ND	0.001	ND 0.001 ND
Boron	2.0	0.050 0.1	89 0.050	0.16 0	0.050 0.12	0.050 0.	0.050	0.16 0.05	0.13	0.050 0	0.20 0.050	0.46^ (	0.050 0.33	3 0.050	0.25 0.05	0 0.16	0.050 0	0.18 0.050	0.19	0.050 0.1	6 0.050	0.15 0	.050 0.1	9 0.050	0.16	0.050 0.	64 0.050	0.11 (	0.050 0.15	0.050	0.15 0.05	50 0.11	0.050 0.12	0.050 0	0.18 0.050	0 0.13 0.0	50 0.12	0.050 0	.10 0.050	0.15 0.05	0.15 0.05	0.15	0.05 0.089	0.05 f	0.09 0.05	0.12	0.05 0.14	0.05 0.	11 0.05	0.14 0.0	5 0.11	0.05 0.18	8 0.05	0.16 0.05 0.091
Cadmium	0.005	0.00050 N	D 0.00050	ND 0.	.0025 ND	0.00050 N	D 0.00050	ND 0.000	150 ND	0.00050	ND 0.00050		0.00050 ND		ND 0.000	50 ND	0.00050	ND 0.0005	0 ND (	00050 NE	0.00050	0.0019 0.	00050 NI	0.00050	ND (	0.00050 0.00	053 0.00050	ND 0.	0.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050 N	ND 0.0005	50 ND 0.00	050 ND	0.00050	ND 0.00050	ND 0.0005	ND 0.000	5 ND 0	.0005 ND	0.0005	ND 0.000'	5 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	15 ND	0.0005 ND	0.0005	ND 0.0005 ND
Chloride	200.0	10 13	0 10	350	10 150	10 7	→ 10	120 50	410	10	190 10	130	10 130	0 10	200 10	300	10	210 10	110	10 27	50	780	10 17	0 10	140	50 4	10 10	270	10 130	2.0	70 10	190	10 300	2.0 0	69 2.0	67 1	0 270	10 2	280 10	180 10	120 10	85	10 200	10 .	310 10	270	10 70	10 23	30 10	370 10	160	10 180	10	230 40 450
Chromium	0.1	0.0050 N	D 0.0050	ND 0	0.025 ND	0.0050 N	D 0.0050	ND 0.005	50 ND	0.0050	ND 0.0050	ND 0	0.0050 ND	0.0050	ND 0.00	50 ND	0.0050	ND 0.0050	) ND	.0050 NE	0.0050	ND 0	0050 NI	0.0050	ND	0.0050 N	D 0.0050	ND 0	0.0050 ND	0.0050	ND 0.005	50 ND	0.0050 ND	0.0050 N	ND 0.0050	0 ND 0.00	150 ND	0.0050	ND 0.0050	ND 0.005	ND 0.005	ND 0	1.005 ND	0.005 7	ND 0.005	5 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	6 ND	0.005 ND	0.005	ND 0.005 ND
Cobalt	1.0	0.0010 N	D 0.0010	ND 0.	.0050 ND	0.0010 N	D 0.0010	ND 0.001	10 ND	0.0010	ND 0.0010	ND 0	0.0010 ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.0010	) ND	.0010 NE	0.0010	ND 0	0010 NI	0.0010	ND	0.0010 0.	13 0.0010	0.0018 0	0.0010 ND	0.0010	ND 0.001	10 ND	0.0010 ND	0.0010 N	ND 0.0010	0 ND 0.00	010 ND	0.0010	ND 0.0010	ND 0.001	ND 0.001	ND (	001 ND	0.001	ND 0.001	1 ND	0.001 ND	0.001 N	D 0.001	ND 0.00	1 ND	0.001 ND	0.001	ND 0.001 ND
Copper	0.65	0.0020 N	D 0.0020	ND 0	0.010 ND	0.0020 N	D 0.0020	ND 0.002	20 ND	0.0020	ND 0.0020	ND 0	0.0020 ND	0.0020	ND 0.00	20 ND	0.0020	ND 0.0020	) ND	.0020 NE	0.0020	0.012 0	0020 NI	0.0020	ND	0.0020 0.0	060 0.0020	0.0039 0	0.0020 ND	0.0020	ND 0.002	20 ND	0.0020 ND	0.0020 N	ND 0.0020	0 ND 0.00	020 ND	0.0020 N	D^ 0.0020	ND 0.002	ND 0.002	ND 0	1.002 ND	0.002 7	ND 0.002	2 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	2 ND	0.002 ND	0.002	ND 0.002 ND
Cyanide	0.2	0.010 N	D 0.010	ND 0	0.010 ND	0.010 N	D 0.010	ND 0.01	10 ND	0.010	ND 0.010	ND (	0.010 ND	0.010	ND 0.01	0 ND	0.010	ND 0.010	ND	0.010 NE	0.010	ND (	.010 NI	0.010	ND	0.010 0.0	12 0.010	ND (	0.010 ND	0.010	ND 0.01	10 ND	0.010 ND	0.010 N	ND 0.010	) ND 0.0	10 ND	0.010	ND 0.010	ND 0.01	ND 0.01	ND	0.01 ND	0.01 ?	ND 0.01	ND	0.01 ND	0.01 N	D 0.01	ND 0.00	6 0.0062	0.01 ND	0.005	ND 0.005 0.007.
Fluoride	4.0	0.10 0.5	51 0.10	0.36	0.10 0.45	0.10 0.	5 0.10	0.31 0.10	0 0.38	0.10 0	0.41 0.10	0.40	0.10 0.33	3 0.10	0.29^ 0.1	0 0.34	0.10	0.34 0.10	0.36	0.10 0.2	0.10	0.34	0.10 0.3	6 0.10	0.36	0.10 0.	51 0.10	0.44	0.10 0.39	0.10	0.32 0.10	0 0.36	0.10 0.42	0.10 0	0.33 0.10	0.32 0.1	10 0.30	0.10 0	.31 0.10	0.31 0.1	0.31 0.1	0.3	0.1 0.34	0.1	0.4 0.1	0.28	0.1 0.26	0.1 0.2	33 0.1	0.34 0.1	0.3	0.1 0.27	7 0.1	0.26 0.1 0.27
Iron	5.0	0.10 N	D 0.10	ND	0.50 ND	0.10 N	D 0.10	ND 0.10	0 ND	0.10	ND 0.10	0.24	0.10 ND	0.10	ND 0.1	0 0.23	0.10	ND 0.10	ND	0.10 0.1	0.10	ND	0.10 NI	0.10	ND	0.10 1	0 0.10	ND	0.10 ND	0.10	ND 0.10	0 ND	0.10 ND ^	0.10 N	ND 0.10	ND 0.1	10 ND	0.10	ND 0.10	0.14 0.1	ND 0.1	ND	0.1 ND	0.1 7	ND 0.1	ND	0.1 ND	0.1 N	D 0.1	ND 0.1	ND	0.1 ND	0.1	ND 0.1 ND
Lead	0.0075	0.00050 N	D 0.00050	ND 0.	00050 ND	0.00050 N	D 0.00050	ND 0.000	150 ND	0.00050	ND 0.00050	ND 0.	0.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	0 ND (	00050 NE	0.00050	0.0036 0.	00050 NI	0.00050	ND (	0.00050 0.0	0.00050	ND 0.	0.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050 N	ND 0.0005	50 ND 0.00	050 ND	0.00050	ND 0.00050	ND 0.0005	ND 0.000	5 ND 0	.0005 ND	0.0005 7	ND 0.000'	5 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005	ND 0.0005 ND
Manganese	0.15	0.0025 0.00	0.0025	0.0026 0	0.013 0.017	0.0025 N	D 0.0025	ND 0.002	25 0.0042	0.0025 0	0.016 0.0025	0.023 0	0.0025 0.004	44 0.0025	ND 0.00	25 0.0065	0.0025	ND 0.0025	5 ND	.0025 0.00	9 0.0025	ND 0	0025 0.0	17 0.0025	0.0069	0.0025 1	1 0.0025	0.0044 0	0.0025 0.002	9 0.0025	ND 0.002	25 0.0034	0.0025 0.023	0.0025 0.0	.0043 0.0025	5 ND 0.00	025 ND	0.0025 5	ND 0.0025	0.0039 0.0025	ND 0.002	0.0027 0	.0025 ND	0.0025	ND 0.002	5 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.00	25 ND	0.0025 ND	0.0025	0.006 0.0025 ND
Mercury	0.002	0.00020 N	D 0.00020	ND 0.0	00020 ND	0.00020 N	D 0.00020	ND 0.0003	20 ND	0.00020	ND 0.00020	ND 03	0.00020 ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.0002	0 ND (	00020 NE	0.00020	ND 0:	10020 NI	0.00020	ND (	0.00020 N	D 0.00020	ND 0.	1.00020 ND	* 0.00020	ND 0.000	120 ND	0.00020 ND	0.00020 N	ND 0.0002	20 ND 0.00	020 ND	0.00020 5	ND 0.00020	ND 0.0002	ND 0.000	2 ND 0	.0002 ND	0.0002 7	ND 0.000*	12 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.00	02 ND	0.0002 ND	0.0002	ND 0.0002 ND
Nickel	0.1	0.0020 0.00	0.0020	ND 0	0.010 ND	0.0020 0.0	12 0.0020	ND 0.002	20 ND	0.0020	ND 0.0020	0.0021 0	0.0020 ND	0.0020	ND 0.00	20 0.0034	0.0020 0.	0040 0.0020	) ND	.0020 NE	0.0020	0.0020 0	0020 0.00	29 0.0020	0.0036	0.0020 0.	19 0.0020	0.0033 0	0.0020 0.002	0 0.0020	ND 0.002	20 ND	0.0020 0.0035	0.0020 N	ND 0.0020	0 ND 0.00	0.0027	0.0020 0.0	0.0020	0.0054 0.002	ND 0.002	ND 0	0.002 ND	0.002 ?	ND 0.002	2 ND	0.002 ND	0.002 0.0	0.002	0.0024 0.00	2 ND	0.002 0.002	2 0.002 0	.10023 0.002 ND
Nitrogen/Nitrate	10.0	0.10 0.3	3 0.10	2.2	0.10 1.9	0.10 0.1	6 0.10	0.86 0.10	0 ND	0.10 0	0.44 0.10	4.0	0.10 2.0	0.10	2.2 0.1	0 2.8	0.10	1.2 0.10	1.2	0.10 1.6	0.10	5.9	0.10 0.5	4 0.10	1.3	0.10 N	D 0.10	1.7	0.10 0.72	0.10	1.0 0.10	0 0.82	0.10 1.2	0.10 1	1.3 0.10	0.46 0.1	10 1.3	0.10 1	1.4 0.10	0.74 0.1	0.49 0.1	0.63	0.1 0.89	0.1	2.3 0.1	0.76	0.1 0.94	0.1	0.1	3.6 0.1	1.4	0.1 1.4	0.1	1.5 0.1 1.3
Nitrogen/Nitrate, Nitri	NA	0.10 0.3	33 0.20	2.2	0.10 1.9	0.10 0.1	6 0.10	0.86 0.10	0 ND	0.10 0	0.44 0.50	4.0	0.50 2.0	0.20	2.2 0.2	0 2.8	0.10	1.2 0.10	1.2	0.10 1.6	0.50	6.2	0.10 0.5	4 0.10	1.3	0.10 N	D 0.10	1.7	0.10 0.72	0.10	1.0 0.10	0 0.82	0.10 1.2	0.10 1	1.3 0.10	0.46 0.1	10 1.3	0.10 1	1.4 0.10	0.74 0.1	0.49 0.1	0.63	0.1 0.89	0.1	2.3 0.1	0.76	0.1 0.94	0.1	0.1	3.6 0.1	1.4	0.1 1.4	0.1	1.5 0.1 1.3
Nitrogen/Nitrite	NA	0.020 N	D 0.020	ND 0	0.020 ND	0.020 N	D 0.020	ND 0.02	10 ND	0.020	ND 0.020	ND (	0.020 ND	0.020	ND 0.02	10 ND	0.020	ND 0.020	ND	1.020 NE	0.040	0.33 0	:020 NI	0.020	ND	0.020 N	D 0.020	ND (	0.020 ND	0.020	ND 0.02	20 ND	0.020 ND	0.020 N	ND 0.020	) ND 0.0	20 ND	0.020	ND 0.020	ND 0.02	ND 0.02	ND	0.02 ND	0.02 7	ND 0.02	ND	0.02 ND	0.02 N	D 0.02	ND 0.0	2 ND	0.02 ND	0.02	ND 0.02 ND
Perchlorate	0.0049	NR N	R NR	NR	NR NR	NR N	R NR	NR NR	t NR	NR	NR NR	NR (	0.004 ND	0.0040	ND 0.00	40 ND	0.0040	ND 0.0040	) ND	.0040 NE	0.020	ND 0	0040 NI	0.0040	ND	0.040 N	D 0.0040	ND 0	0.0040 ND	0.0040	ND 0.004	40 ND	0.0040 ND	0.0040 N	ND 0.0040	0 ND 0.00	140 ND	0.0040 5	ND 0.0040	ND 0.004	ND 0.004	ND 0	0.004 ND	0.004 7	ND 0.004	4 ND	0.004 ND	0.004 N	D 0.004	ND 0.00	4 ND	0.004 ND	0.004	ND 0.004 ND
Selenium	0.05	0.0025 N	D 0.0025	ND 0	0.013 ND	0.0025 N	D 0.0025	ND 0.002	25 ND	0.0025	ND 0.0025	0.0079 0	0.0025 ND	0.0025	ND 0.00	25 ND	0.0025	ND 0.0025	5 ND	:0025 NE	0.0025	ND 0	0025 NI	0.0025	ND	0.0025 0.0	134 0.0025	ND 0	0.0025 ND	0.0025	ND 0.002	25 ND	0.0025 ND ^	0.0025 N	ND 0.0025	5 ND 0.00	125 ND	0.0025 5	ND 0.0025	ND 0.0025	ND 0.002	5 ND 0	.0025 ND	0.0025 7	ND 0.002*	5 ND	0.0025 ND	0.0025 N	D 0.0025	0.0043 0.00	25 ND	0.0025 ND	0.0025	ND 0.0025 ND
Silver	0.05	0.00050 N	D 0.00050	ND 0.	.0025 ND	0.00050 N	D 0.00050	ND 0.000	150 ND	0.00050	ND 0.00050	ND 0.	0.00050 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	0 ND (	00050 NE	0.00050	ND 0.	10050 NI	0.00050	ND (	0.00050 N	D 0.00050	ND^ 0.	1.00050 ND	0.00050	ND 0.000	150 ND	0.00050 ND	0.00050 N	ND 0.0005	50 ND 0.00	050 ND	0.00050 5	ND 0.00050	ND 0.0005	ND 0.000	5 ND 0	.0005 ND	0.0005 7	ND 0.000*	5 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	15 ND	0.0005 ND	0.0005	ND 0.0005 ND
Sulfate	400.0	50 21	0 25	87	10 52	50 12	0 50	170 25	130	20	110 50	180	50 130	0 50	150 25	99	25	72 20	74	20 54	100	460	10 55	20	73	100 6	0 5.0	25	10 31	10	41 10	48	20 70	10 2	23 10	50 1	0 43	20	57 20	110 20	43 20	31	20 26	20	39 20	16	20 29	20 6	3 20	89 25	83	15 140	100	260 25 190
Thallium	0.002	0.0020 N	D 0.0020	ND 0.	.0020 ND	0.0020 N	D 0.0020	ND 0.002	20 ND	0.0020	ND 0.0020	ND 0	0.0020 ND	0.0020	ND 0.00	20 ND	0.0020	ND 0.0020	) ND	:0020 NE	0.0020	ND 0	0020 NI	0.0020	ND	0.0020 N	D 0.0020	ND 0	0.0020 ND	0.0020	ND 0.002	20 ND	0.0020 ND	0.0020 N	ND 0.0020	0 ND 0.00	120 ND	0.0020 5	ND 0.0020	ND 0.002	ND 0.002	ND 0	1.002 ND	0.002 7	ND 0.002	2 ND	0.002 ND	0.002 N	D 0.002	ND 0.00	2 ND	0.002 ND	0.002	ND 0.002 ND
Total Dissolved Solids	1,200	10 67	0 10	990	10 580	10 65	0 10	800 10	1000	10	740 10	710	10 730	0 10	830 10	860	10	740 10	560	10 74	13	2100	10 61	0 10	560	10 20	00 10	760	10 540	10	470 10	740	10 810	10 4	450 10	450 1	0 810	10 8	800 10	780 10	520 10	480	10 560	10 5	930 10	420	10 470	10 7	80 10	1100 30	650	30 800	10	990 10 1300
Vanadium	0.049	NR N	R NR	NR	NR NR	NR N	R NR	NR NR	t NR	NR	NR NR	NR 0	0.0050 ND	0.0050	ND 0.00	50 ND	0.0050	ND 0.0050	) ND	.0050 NE	0.0050	ND 0	0050 NI	0.0050	ND	0.0050 N	D 0.0050	ND 0	0.0050 ND	0.0050	ND 0.005	50 ND	0.0050 ND	0.0050 N	ND 0.0050	0 ND 0.00	150 ND	0.0050	ND 0.0050	ND 0.005	ND 0.005	ND ⁴ (	1.005 ND	0.005	ND 0.005	5 ND	0.005 ND	0.005 N	D 0.005	ND 0.00	6 ND	0.005 ND	0.005	ND 0.005 ND
Zinc	5.0	0.020 N	D 0.020	ND	0.10 ND	0.020 N	D 0.020	ND 0.02	10 ND	0.020	ND 0.020	ND 0	0.020 ND	0.020	ND 0.02	0 ND	0.020	ND 0.020	ND	0.020 NE	0.020	0.080 0	.020 NI	0.020	ND	0.020 0.0	26 0.020	ND (	0.020 ND	0.020	ND 0.02	20 ND	0.020 ND	0.020 N	ND 0.020	ND 0.0	20 ND	0.020 5	ND 0.020	ND 0.02	ND 0.02	ND	0.02 ND	0.02 7	ND 0.02	ND	0.02 ND	0.02 N	D 0.02	ND 0.0	2 ND	0.02 ND	0.02	ND 0.02 ND
Benzene	0.005	NR N	R NR	NR	NR NR	NR N	R NR	NR NR	t NR	NR	NR NR	NR 0	0.0005 ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.0005	0 ND (	00050 NE	0.0005	ND 0	0005 NI	0.0005	ND	0.0005 0.0	02 0.0005	0.002 0	0.0005 ND	0.0005	ND 0.000	05 ND	0.0005 ND	0.0005 N	ND 0.0005	5 0.00059 0.00	05 ND	0.0005 5	ND 0.0005	ND 0.0005	0.0022 0.000	5 ND 0	.0005 ND	0.0005 7	ND 0.000'	6 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.00	15 ND	0.0005 ND	0.0005	ND 0.0005 ND
BETX	11.705	NR N	R NR	NR	NR NR	NR N	R NR	NR NR	t NR	NR	NR NR	NR 0	0.0025 NS	6 0.0025	ND 0.00	25 ND	0.0025	ND 0.0025	5 ND	:0025 NE	0.002	ND (	:002 NI	0.002	ND	0.002 0.0	02 0.002	0.002 0	0.002 ND	0.002	ND 0.00	12 ND	0.002 0.0016	6 0.002 N	ND 0.002	2 0.02269 0.0	02 ND	0.002 5	ND 0.0025	ND 0.0025	0.0249 0.002	0.0016 0	.0025 ND	0.0025 7	ND 0.002*	5 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.00	25 ND	0.0025 ND	0.0025	ND 0.0025 ND
pH	6.5 - 9.0	NA 7.3	15 NA	7.29	NA 7.70	NA 7.	12 NA	7.38 NA	7.49	NA 1	7.64 NA	6.80	NA 7.40	0 NA	7.46 NJ	7.17	NA	7.28 NA	7.22	NA 9.1	NA	7.17	NA 7.2	8 NA	7.19	NA 7.	58 NA	7.26	NA 7.47	7 NA	6.95 NA	L 7.08	NA 7.05	NA 6	6.88 NA	7.04 N	A 6.95	NA 7	.37 NA	7.56 NA	7.41 NA	7.47	NA 7.45	NA 7	7.38 NA	7.41	NA 7.01	NA 7.	25 NA	7.10 NJ	6.97	NA 7.14	4 NA	7.10 NA 7.14
Temperature	NA	NA 12	70 NA	13.06	NA 13.15	NA 12	20 NA	12.71 NA	14.64	NA 1	16.68 NA	15.09	NA 12.82	2 NA	11.10 N/	11.95	NA 1	3.86 NA	13.43	NA 10.8	9 NA	11.71	NA 20.4	9 NA	15.79	NA 9.	48 NA	17.90	NA 22.15	9 NA	14.00 NA	7.88	NA 14.82	NA 21	1.32 NA	19.47 N	A 11.98	NA 1	7.31 NA	11.55 NA	18.27 NA	14.62	NA 14.20	NA 1	13.80 NA	12.40	NA 11.31	NA 13.	30 NA	12.80 N/	13.20	NA 12.90	0 NA	11.70 NA 12.90
Conductivity	NA	NA 1.1	17 NA	1.80	NA 0.99	NA 0.	0 NA	0.88 NA	1.40	NA 1	1.05 NA	0.95	NA 0.91	1 NA	1.05 NJ	1.031	NA (	0.97 NA	0.83	NA 0.9	NA	2.71	NA 1.0	8 NA	1.01	NA 2	80 NA	1.57	NA 0.98	NA	0.86 NA	0.81	NA 1.28	NA 1	1.16 NA	0.69 N	A 0.98	NA 1	.14 NA	0.804 NA	0.854 NA	0.691	NA 1.062	NA 2	2.200 NA	0.850	NA 8.020	NA 1.1	12 NA	1.860 NJ	1.297	NA 1.880	0 NA	1.570 NA 2.151
Dissolved Oxygen	NA	NA N	M NA	7.82	NA 8.00	NA 6.	16 NA	6.57 NA	7.68	NA 1	7.22 NA	8.19	NA 9.83	3 NA	7.73 NJ	5.33	NA 4	1.75 NA	3.69	NA 4.9	i NA	4.72	NA 5.9	1 NA	3.52	NA 1	00 NA	3.82	NA 3.84	4 NA	3.86 NA	۱ 5.38	NA 5.09	NA 4	4.83 NA	3.68 N	A 5.62	NA 7	.88 NA	5.69 NA	5.48 NA	5.97	NA 5.22	NA (	6.50 NA	48.30	NA 6.97	NA 7.	14 NA	9.68 NJ	6.97	NA 3.88	8 NA	5.92 NA 7.60
ORP	NA	NA N	M NA	192.6	NA 196.0	NA 4	.0 NA	119.0 NA	130.0	NA 1	132.0 NA	211.0	NA 101.0	.0 NA	136.1 N/	6.2	NA 3	80.5 NA	-49.3	NA -64.	9 NA	85.2	NA 76.	5 NA	28.8	NA -11	4.1 NA	-9.9	NA -19.0	0 NA	146.3 NA	41.1	NA -15.4	NA 2	22.7 NA	65.0 N	A 100.1	NA S	9.2 NA	33.5 NA	85.3 NA	83.5	NA 112.6	NA -7	291.4 NA	190.0	NA -24.4	NA 17	7.6 NA	139.8 N/	185.2	NA 189.0	0 NA	70.4 NA 186.7
Notes	tradical charlend for	10 20 20 20	ter I Bert (20) Solare		DL- Detection limit		NR - Not Required			Terr	perature 'C	Anness Coloine																																										

Sample: MW-09	Date	12/6/201	0 3/23/20	6/14/2	2011 9/1	4/2011	12/7/2011	3/15/2012	2 6/1	9/2012	9/19/2012	12/20/2	2012	3/5/2013	5/23/20	3 7/2	2/2013	10/15/2013	2/17/2	014 5	1/2014	8/18/20	14 1	/23/2014	2/10/20	15 5	/27/2015	8/4/2015	10/27	7/2015	2/9/2016	5/11/2016	8/30/201	16 11	/1/2016	2/8/2017	4/25/201	7 2/20	2018 8/1/	2018 10/	16/2018	2/5/2019	5/7/20	19 8/7/2	2019 1	1/7/2019	2/12/2020	5/20/2020	8/5/2020	10/22/2	2020 3/	/2/2021 5	/17/2021
Parameter	Standards	DL R	sult DL H	Result DL	Result DL	Result	DL Result	DL Res	sult DL	Result I	DL Resu	ult DL	Result D	L Result	t DL F	esult DL	Result	DL Result	DL	Result DL	Result	DL	Result DI	Result	DL I	Result DL	Result	DL Res	ult DL	Result D	L Result	DL Res	ult DL R	Result DL	Result D	)L Result	DL R	esult DL	Result DL	Result DL	Result	DL Result	DL I	Result DL	Result Di	L Result	DL Result	DL Result	DL Re	sult DL	Result DI	L Result DL	L Result
Antimony	0.006	0.0030	D 0.0030	ND 0.0030	ND 0.0030	ND 0	0.0030 ND	0.0030 NE	D 0.0030	ND 0.0	.0030 ND	0.0030	ND 0.00	030 ND	0.0030	ND 0.0030	ND	0.0030 ND	0.0030	ND 0.003	ND	0.0030	ND 0.00	30 ND	0.0030	ND 0.003	0 ND	0.0030 NI	D 0.0030	ND 0.0	130 ND	0.0030 N	0.0030	ND 0.0030	ND 0.0	030 ND ^	0.0030	ND 0.0030	ND 0.003	ND 0.003	8 ND	0.003 ND	0.003	ND 0.003	ND 0.00	03 ND 0	003 ND	0.003 ND	0.003 N ^r	D 0.003	ND 0.00	J3 ND 0.0	J3 ND
Arsenic	0.010	0.0010	4D 0.0010	ND 0.0050	ND 0.0010	ND 0	0.0010 ND	0.0010 NE	D 0.0010	0.0010 0.0	.0010 ND	0.0010 C	ND 0.00	010 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.001	ND	0.0010	ND 0.00	10 ND^	0.0010	ND 0.001	10 ND	0.0010 NI	D 0.0010	ND 0.00	0.0014	0.0050 ND	^ 0.0010 0	0.0021 0.0010	0.0013 0.0	010 0.0011 F1	0.0050	ND 0.0010	0.0025 0.001	0.0013 0.001	0.0013	0.001 0.0023	0.001 0	0.001	0.0016 0.00	01 0.0047 0	001 0.0038	0.001 0.0062	0.001 0.0	.01 0.001	0.034 0.00	JI 0.0043 0.0°	J1 0.0025
Barium	2.0	0.0025 0.	031 0.0025	0.029 0.0025	0.032 0.0025	0.029 0	0.0025 0.030	0.0025 0.02	0.0025	0.021 0.0	.0025 0.02	22 0.0025	0.021 0.00	025 0.016	0.0025	.017 0.0025	0.017	0.0025 0.019	0.0025	0.022 0.002	0.021	0.0025	0.018 0.00	25 0.017	0.0025	0.029 0.002	5 0.018	0.0025 0.01	13 0.0025	0.014 0.00	0.013	0.0025 0.0	17 0.0025 0	0.015 0.0025	0.014 0.0	025 0.012	0.013 0	1014 0.0025	0.017 0.0025	0.0083 0.002	5 0.011	0.0025 0.011	0.0025	0.012 0.0025	0.0084 0.00	125 0.012 0.0	0025 0.01	0.0025 0.013	0.0025 0./	.01 0.0025	0.086 0.005	/25 0.015 0.0f	.25 0.012
Beryllium	0.004	0.0010	D 0.0010	ND 0.0010	ND 0.0010	ND 0	0.0010 ND	0.0010 NI	D 0.0010	ND 0.0	.0010 ND	0.0010 C	ND 0.00	010 ND	0.0010	ND 0.0010	ND	0.0010 ND	0.0010	ND ^ 0.001	ND	0.0010	ND 0.00	10 ND	0.0010	ND 0.001	10 ND	0.0010 NI	D 0.0010	ND 0.0	010 ND ^	0.0010 N	0.0010 2	ND ^ 0.0010	ND 0.0	010 ND ^	0.0010	ND 0.0010	ND 0.001	ND 0.001	ND ^A	0.001 ND	0.001	ND 0.001	ND 0.00	01 ND 0	001 ND	0.001 ND ^	0.001 N ^r	D 0.001	ND ^ 0.00	J1 ND 0.0	J1 ND
Boron	2.0	0.050 0	.36 0.050	0.32 0.050	0.29 0.050	0.35 (	0.050 0.31	0.050 0.3	38 0.050	0.34 0.	0.050 0.59	9^ 0.050	0.44 0.0	150 0.36	0.050	0.050	0.29	0.050 0.29	0.050	0.30 0.050	0.27	0.050	0.29 0.02	0 0.24	0.050	0.30 0.05	0 0.37	0.050 0.3	8 0.050	0.33 0.0	60 0.36	0.050 0.4	0 0.050	0.72 0.050	0.47 0.0	050 0.34	0.050	0.30 0.050	0.65 0.05	0.29 0.05	0.27	0.05 0.35	0.05	0.45 0.05	0.33 0.0	15 0.73 0	.05 0.33	0.05 0.3	0.05 0.*	29 0.05	0.37 0.05	.5 0.47 0.f	.5 0.29
Cadmium	0.005	0.00050	D 0.00050	ND 0.0025	ND 0.0005	) ND 0.	.00050 ND	0.00050 0.000	0.00050	0 ND 0.0	00050 0.000	065 0.00050	ND 0.00	1050 ND	0.00050	ND 0.00050	ND (	00050 ND	0.00050	ND 0.0005	) ND	0.00050	ND 0.000	50 ND	0.00050 (	0.0019 0.000	50 ND	0.00050 NI	D 0.00050	ND 0.00	050 ND	0.00050 N	0.00050	ND 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.0005	ND 0.000	5 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	05 ND 0.	005 ND	0.0005 ND	0.0005 N ^r	D 0.0005 /	0.0021 0.00f	.05 ND 0.07	.05 ND
Chloride	200.0	10 1	40 10	230 10	290 10	190	10 190	10 17	70 10	250	10 160	0 10	150 10	190	10	290 10	280	10 280	10	270 10	340	10	270 10	230	50	390 10	340	10 23	0 10	220 1	0 170	2.0 2	3 2.0	19 10	110 1	10 150	10	180 2.0	16 10	210 10	210	10 140	10	57 10	180 10	23	10 75	10 6.1 F1	10 14	40 10	190 2	7 10	/ 180
Chromium	0.1	0.0050	4D 0.0050	ND 0.025	ND 0.0050	ND 0	0.0050 ND	0.0050 NI	D 0.0050	ND 0.0	.0050 ND	0.0050	ND 0.00	050 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050	ND 0.005	ND	0.0050	ND 0.00	90 ND	0.0050	ND 0.005	10 ND	0.0050 NI	D 0.0050	ND 0.0	150 ND	0.0050 N	0.0050	ND 0.0050	ND 0.0	050 ND	0.0050	ND 0.0050	ND 0.005	ND 0.005	5 ND	0.005 0.005	0.005	ND 0.005	ND 0.00	05 ND 0	005 ND	0.005 ND	0.005 N?	D 0.005	0.028 0.00'	15 ND 0.0'	15 ND
Cobalt	1.0	0.0010 0.0	0047 0.0010 0	0.0034 0.0050	0.0062 0.0010	0.011 0	0.0010 0.0075	0.0010 0.00	021 0.0010	0.0021 0.0	.0010 0.002	22 0.0010	0.002 0.00	010 0.0024	4 0.0010 0	0.0010	0.0063	0.0010 0.0056	0.0010	0.0044 0.001	0.0035	0.0010	0.0063 0.00	0.0045	0.0010	0.047 0.001	0 0.017	0.0010 0.01	11 0.0010	0.016 0.00	010 0.034	0.0010 0.0	50 0.0010 0	0.034 0.0010	0.016 0.0	010 0.0089	0.0010 0	1023 0.0010	0.057 0.001	0.021 0.001	0.022	0.001 0.033	0.001	0.059 0.001	0.031 0.00	01 0.065 0	001 0.032	0.001 0.04	0.001 0.0	J16 0.001	0.046 0.00	JI 0.044 0.0°	J1 0.024
Copper	0.65	0.0020	4D 0.0020	ND 0.010	ND 0.0020	0.0026 0	).0020 ND	0.0020 NE	D 0.0020	ND 0.0	.0020 ND	0.0020	ND 0.00	020 ND	0.0020	ND 0.0020	0.0025	0.0020 ND	0.0020	ND 0.002	ND	0.0020	ND 0.00	30 ND	0.0020	0.011 0.002	0 0.0023	0.0020 NI	D 0.0020	ND 0.0	020 ND	0.0020 N	0.0020	ND 0.0020	ND 0.0	020 ND ^	0.0020	iD^ 0.0020	ND 0.002	ND 0.002	2 ND	0.002 ND	0.002	ND 0.002	ND 0.00	02 ND 0	002 ND	0.002 ND	0.002 N?	D 0.002	0.041 0.00'	J2 ND 0.0'	/2 ND
Cyanide	0.2	0.010	4D 0.010	ND 0.010	ND 0.010	ND (	0.010 ND	0.010 NE	D 0.010	ND 0.	0.010 ND	D 0.010	ND 0.0	010 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND	0.010	ND 0.0	0 ND	0.010	ND 0.01	0 ND	0.010 NI	D 0.010	ND 0.0	10 ND	0.010 N	0.010	ND 0.010	ND 0.0	010 ND	0.010	ND 0.010	ND 0.01	ND 0.01	ND	0.01 ND	0.01	ND 0.01	ND 0.0	11 ND 0	.01 ND	0.01 ND	0.005 0.00	353 0.01	ND 0.00'	15 ND 0.0'	15 ND
Fluoride	4.0	0.10 0	.61 0.10	0.52 0.10	0.47 0.10	0.39	0.10 0.50	0.10 0.4	45 0.10	0.48 0	0.10 0.48	8 0.10	0.45 0.1	10 0.46^	0.10	0.10	0.47	0.10 0.53	0.10	0.56 0.10	0.50	0.10	0.56 0.1	0.55	0.10	0.51 0.10	0.44	0.10 0.2	7 0.10	0.35 0.1	10 0.45	0.10 0.3	1 0.10	0.26 0.10	0.30 0.	.10 0.36	0.10	0.31 0.10	0.54 0.1	0.38 0.1	0.43	0.1 0.46	0.1	0.57 0.1	0.41 0.1	1 0.63	0.1 0.52	0.1 0.71	0.1 0.6	36 0.1	0.66 0.1	0.62 0.1	. 0.46
Iron	5.0	0.10 ?	5D 0.10	0.18 0.50	7.3 0.10	3.8	0.10 1.5	0.10 5.5	.5 0.10	8.0 0	0.10 4.7	7 0.10	13 0.1	10 15	0.10	160 0.10	50	0.10 25	0.10	12 0.10	8.4	0.10	130 0.1	45	0.10	23 0.10	140	0.10 NI	D 0.10	170 0.1	10 ND	2.0 34	0 0.10	ND 1.0	900 1	.0 250	0.50 1	000 2.0	3700 1	750 1	530	1 1200	1 1	2,700 1	630 1	1800	1 960	1 1900	10 40'	.0 0.5	970 10	2000 ^ 10	, 620
Lead	0.0075	0.00050	D 0.00050	ND 0.00050	ND 0.0005	) ND 0.	.00050 ND	0.00050 NE	D 0.00050	0 ND 0.0	00050 ND	0.00050	ND 0.00	1050 ND	0.00050	ND 0.00050	ND (	00050 ND	0.00050	ND 0.0005	) ND	0.00050	ND 0.000	50 ND	0.00050 0	0.0010 0.000	50 ND	0.00050 NI	D 0.00050	ND 0.00	050 ND	0.00050 N	0.00050	ND 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.0005	ND 0.000	5 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	05 ND 0.	005 ND	0.0005 ND	0.0005 N7	D 0.0005	0.036 0.000	05 ND 0.00	.15 ND
Manganese	0.15	0.0025	1.1 0.0025	1.6 0.013	0.95 0.0025	0.82 0	0.0025 0.66	0.0025 1.3	.3 0.0025	1.2 0.0	.0025 0.68	8 0.0025	0.44 0.00	025 0.43	0.0025	1.6 0.0025	0.81	0.0025 0.52	0.0025	0.34 0.002	0.30	0.0025	0.72 0.00	25 0.38	0.0025	0.54 0.002	5 0.66	0.0025 1.4	4 0.0025	0.79 0.00	125 2.3	0.050 64	0.0025	3.7 0.0025	1.6 0.0	025 0.61	0.0025	1.9 0.050	5.8 0.0025	1.3 0.002	5 0.96	0.0025 2.1	0.0025	4.2 0.0025	1.4 0.00	125 4.4 0.	025 2.2	0.0025 3	0.0025 0.9	36 0.0025	2.3 0.002	25 3.5 0.00	25 1.4
Mercury	0.002	0.00020	5D 0.00020	ND 0.00020	ND 0.0002	) ND 0.	.00020 ND	0.00020 NE	D 0.00020	0 ND 0.0	00020 ND	0.00020	ND 0.00	1020 ND	0.00020	ND 0.00020	ND (	.00020 ND	0.00020	ND 0.0002	) ND	0.00020	ND 0.000	20 ND	0.00020	ND 0.000	20 ND	0.00020 ND	* 0.00020	ND 0.00	020 ND	0.00020 0.00	0.00020 0.	0.00096 0.0002	0 ND 0.00	0020 ND	0.00020	ND 0.00020	0.00021 0.0002	ND 0.000	2 ND	0.0002 ND	0.0002	ND 0.0002	ND 0.00	02 ND 0.	0002 ND	0.0002 ND	0.0002 N/	D 0.0002	ND 0.000	02 ND 0.00	J2 ND
Nickel	0.1	0.0020 0.0	0094 0.0020 0	0.0072 0.010	0.013 0.0020	0.014 0	0.0020 0.011	0.0020 0.00	054 0.0020	0.0070 0.0	.0020 0.01	10 0.0020	0.0059 0.00	020 0.0065	5 0.0020	.014 0.0020	0.012	0.0020 0.0090	0.0020	0.0057 0.002	0.0057	0.0020	0.013 0.00	30 0.0079	0.0020	0.039 0.002	0 0.026	0.0020 0.03	21 0.0020	0.025 0.00	020 0.071	0.0020 0.1	7 0.0020	0.14 0.0020	0.045 0.0	020 0.015	0.0020 0	1060 0.0020	0.22 0.002	0.046 0.002	2 0.03	0.002 0.077	0.002	0.2 0.002	0.051 0.00	02 0.22 0	002 0.084	0.002 0.13	0.002 0.0'	.36 0.002	0.1 0.00*	.2 0.15 0.0/	/2 0.051
Nitrogen/Nitrate	10.0	0.10 ?	4D 0.10	ND 0.10	0.97 0.10	0.36	0.10 0.22	0.10 NE	D 0.10	ND 0	0.10 0.22	2 0.10	0.22 0.1	10 0.75	0.10	ND 0.10	0.24	0.10 0.11	0.10	0.34 0.10	0.12	0.10	0.11 0.1	) ND	0.10	ND 0.10	) ND	0.10 NI	D 0.10	ND 0.1	10 ND	0.10 N	0.10	ND 0.10	ND 0.	10 ND	0.10	ND 0.10	ND 0.1	ND 0.1	ND	0.1 ND	0.1	ND 0.1	ND 0.1	1 ND	).1 ND	0.1 ND	0.1 N/	D 0.1	ND 0.1	ND 0.1	. ND
Nitrogen/Nitrate, Nitr	NA	0.10 N	D [*] 0.10	ND 0.10	0.97 0.10					ND 0	0.10 0.22	2 0.10	0.22 0.1	10 0.75	0.10	ND 0.10			0.10	0.34 0.10	0.12	0.10	0.11 0.1	) ND	0.10	ND 0.10	) ND	0.10 NI	D 0.10	ND 0.1	10 ND	0.10 N	0.10	ND 0.10	ND 0.	.10 ND	0.10	ND 0.10	ND 0.1	ND 0.1	ND	0.1 ND	0.1	ND 0.1	ND 0.1	1 ND	).1 ND F1	0.1 ND	5 N/	D 0.1	ND 0.1	ND 0.1	. ND
Nitrogen/Nitrite	NA	0.020 ?	D 0.020	ND 0.020	ND 0.020	ND (	0.020 ND	0.020 NE	D 0.020	ND 0.	0.020 ND	0.020	ND 0.0	120 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020	ND 0.03	0 ND	0.020	ND 0.02	0 ND	0.020 0.03	20 0.020	ND 0.0	20 ND	0.020 N	0.020	ND 0.020	ND 0.0	020 ND	0.020	ND 0.020	ND 0.02	ND 0.02	ND	0.02 ND	0.02	ND 0.02	ND 0.0	12 ND 0	.02 ND	0.02 ND	0.02 N/	D 0.02	ND 0.02	2 ND 0.0	2 ND
Perchlorate	0.0049	NR ?	vR NR	NR NR	NR NR	NR	NR NR	NR NF	IR NR	NR ?	NR NR	R 0.004	ND 0.0	120 ND	0.0040	ND 0.0040	ND	0.0040 ND	0.0040	ND 0.004	ND	0.0040	ND 0.00	40 ND	0.0040	ND 0.004	10 ND	0.0040 NI	D 0.0040	ND 0.0	80 ND	0.040 N	0.0040 N	ND F1 0.0040	ND 0.0	040 ND	0.0040 2	šD^ 0.020	ND 0.004	ND 0.004	4 ND	0.004 ND	0.004	ND 0.004	ND 0.00	04 ND 0	004 ND	0.004 ND	0.004 N7	D 0.004	ND 0.02	2 ND 0.0	4 ND
Selenium	0.05	0.0025	D 0.0025	ND 0.013				0.0025 NE		i ND 0.0		D 0.0025			0.0025					ND 0.002	ND	0.0025	ND 0.00	5 ND	0.0025	ND 0.002	J .42	0.0025 NI	0.0025	ND 0.00		0.0025 ND	^ 0.0025	ND 0.0025	ND 0.0	025 ND	0.013	ND 0.0025	ND 0.0025	ND 0.002	5 ND	0.0025 ND	0.0025	ND 0.0025	ND 0.00	125 ND 0.0	025 ND	0.0025 ND	0.0025 N/	D 0.0025 f	0.0027 0.002	25 ND 0.00	25 ND
Silver	0.05	0.00050	4D 0.00050	ND 0.0025	ND 0.0005	) ND 0.	.00050 ND	0.00050 NE	D 0.00050	0 ND 0.0	00050 ND	D 0.00050	ND 0.00	1050 ND	0.00050	ND 0.00050	ND (	.00050 ND	0.00050	ND 0.0005	) ND	0.00050	ND 0.000	50 ND	0.00050	ND 0.000	50 ND^	0.00050 NI	D 0.00050	ND 0.00	050 ND	0.00050 N	0.00050	ND 0.0005	0 ND 0.00	0050 ND	0.00050	ND 0.00050	ND 0.0005	ND 0.000	5 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	05 ND 0.	005 ND	0.0005 ND	0.0005 N/	D 0.0005	ND 0.000	d5 ND 0.00	J5 ND
Sulfate	400.0	250 1	900 250	1100 100	580 130	750	50 130	500 160	900 500	1500 2	250 160	0 250	1100 25	50 700	500	300 250	1000	130 680	100	560 130	560	250	880 25	960	250	820 500	1100	500 190	0 500	1100 10	00 3600	2500 120	00 2500 1	8100 500	3600 50	00 1200	1000 4	1700 2500	16000 500	2500 500	1900	500 3400	500	8900 500	2800 50	0 7100	00 ND	500 6800	250 200	.00 250	1500 1000	.0 7400 100	J 3300
Thallium	0.002	0.0020	4D 0.0020	ND 0.0020	ND 0.0020	ND 0	0.0020 ND	0.0020 NE	D 0.0020	ND 0.0	.0020 ND	D 0.0020	ND 0.00	020 ND	0.0020	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.002	ND	0.0020	ND 0.00	30 ND	0.0020	ND 0.002	10 ND	0.0020 NI	D 0.0020	ND 0.0	120 ND	0.0020 N	0.0020	ND 0.0020	ND 0.0	020 ND	0.0020	ND 0.0020	ND 0.002	ND 0.002	2 ND	0.002 ND	0.002	ND 0.002	ND 0.00	02 ND 0	002 ND	0.002 ND	0.002 N/	D 0.002	ND 0.00*	/2 ND 0.0/	/2 ND
Total Dissolved Solid	1,200	10 2	10	2400 10	1500 10	1700	10 2400	10 260	900 10	2800	10 290	10 10	2000 1	10 1700	13	000 10	2300	10 1700	10	1600 10	1700	10	2100 10	1700	10	2400 17	3100	10 390	10 10	2600 1	3 4700	50 190	00 100 1	15000 17	6100 1	10 2800	25 6	300 50	20000 13	4900 10	3700	10 5900	10 1	5000 10	5000 10	11000	10 6600	10 11000	150 29/	30 150	3000 50	12000 2.	5600 H
Vanadium	0.049	NR ?		NR NR	NR NR	NR	NR NR	NR NF	IR NR	NR ?	NR NR	R 0.0050	ND 0.00	050 ND	0.0050	ND 0.0050	ND	0.0050 ND	0.0050	ND 0.005	ND	0.0050	ND 0.00	80 ND	0.0050	ND 0.005		0.0000 14	D 0.0050	ND 0.0	150 ND	0.0050 N	0.0050	ND 0.0050	ND 0.0	050 ND	0.0050	ND 0.0050	ND 0.005	ND 0.005	5 ND ^A	0.005 ND	0.005	ND 0.005	ND 0.00	05 ND 0	005 ND	0.005 ND	0.005 NJ	D 0.005	0.026 0.00*	.6 ND 0.07	.5 ND
Zinc	5.0	0.020 ?	D 0.020	ND 0.10	ND 0.020	ND (	0.020 ND	0.020 NE	D 0.020	ND 0.	0.020 ND	0.020	ND 0.0	0.023	0.020	.049 0.020	ND	0.020 ND	0.020	ND 0.020	ND	0.020	0.021 0.02	0 ND	0.020	0.072 0.02	0 0.028	0.020 0.1	7 0.020	0.050 0.0	20 0.70	0.020 2.	3 0.020	1.8 0.020	0.45 0.0	020 0.092	0.10	0.73 0.020	3.0 0.02	0.56 0.02	0.3	0.02 0.74	0.02	4.1 0.02	0.6 0.0	12 2.6 0	.02 1	0.02 2.4	0.02 0.4	42 0.02	1.2 0.02	2 1.8 0.0	2 0.47
Benzene	0.005	NR ?	KR NR	NR NR	NR NR	NR	NR NR	NR NF	IR NR	NR ?	NR NR	R 0.0005	ND 0.00	1050 ND	0.00050	ND 0.00050	ND (	00050 ND	0.00050	ND 0.0002	ND	0.0005	ND 0.00	15 ND	0.0005	ND 0.000	15 ND	0.0005 NI	D 0.0005	ND 0.0	05 ND	0.0005 N	0.0005	ND 0.0005	ND 0.0	005 ND	0.0005	ND 0.0005	ND 0.0005	0.0039 0.000	5 ND	0.0005 ND	0.0005	ND 0.0005	ND 0.00	005 ND 0.0	005 ND	0.0005 ND	0.0005 NJ	D 0.0005	ND 0.000	d5 ND 0.00	J5 ND
BETX	11.705	NR ?	KR NR	NR NR	NR NR	NR	NR NR	NR NF	IR NR	NR ?	NR NR	k 0.0025	NS 0.00	025 ND	0.0025	ND 0.0025	ND	0.0025 ND	0.0025	ND 0.002	ND	0.002	ND 0.00	2 0.0006	0.002 0	0.0006 0.00	2 0.0006	0.002 NI	D 0.002	0.00093 0.0	02 ND	0.002 0.00	062 0.002	ND 0.002	0.00823 0.0	002 ND	0.002	ND 0.0025	0.00066 0.0025	0.0252 0.002	5 0.0011	0.0025 ND	0.0025	ND 0.0025	ND 0.00	025 ND 0.0	0025 ND	0.0025 ND	0.0025 NF	D 0.0025	ND 0.002	25 ND 0.00	25 ND
pH	6.5 - 9.0	NA 7	.03 NA	7.19 NA	7.01 NA	6.90	NA 7.19	NA 6.8	86 NA	6.85	NA 6.8.	2 NA	6.80 N.	IA 7.05	NA	i.34 NA	6.6	NA 6.69		8.83 NA	6.71	NA	6.62 NJ	6.93	NA	6.92 NA	6.59	NA 6.5	2 NA	6.37 N	A 6.03	NA 5.1	3 NA	3.36 NA	6.19 N	ia 5.74	NA	5.13 NA	6.19 NA	7.30 NA	6.47	NA 6.16	NA	5.70 NA	6.07 N	A 5.53	NA 5.74	NA 5.41	NA 6.2	26 NA	5.73 NA	s 5.92 N/	. 6.03
Temperature	NA	NA 1	1.94 NA	12.78 NA	15.68 NA	15.90	NA 11.94		29 NA	15.10 ?	NA 16.2	23 NA	15.41 N.	IA 12.20	NA	2.19 NA	14.92	NA 15.21		8.4 NA	9.84	NA	21.87 NJ	15.35	NA	10.12 NA	19.34	NA 22.1	72 NA	13.47 N	A 7.31	NA 13.	73 NA 2	22.44 NA	18.36 N	(A 9.03	NA 1	5.44 NA	11.22 NA	22.20 NA	14.34	NA 12.60	NA	12.40 NA	13.10 N	A 12.17	NA 12.60	NA 12.10	NA 13.9	.90 NA	17.70 NA	12.50 N/	. 12.80
Conductivity	NA	NA 2	.97 NA	3.30 NA	2.25 NA	1.88	-	NA 2.3	31 NA	2.50 ?	NA 2.50	6 NA	1.93 N.	IA 1.59	NA	.522 NA	2.17	NA 1.81	NA	1.02 NA	1.89	NA	2.91 N/	2.51	NA	2.50 NA		NA 4.0	4 NA	3.53 N	A 3.29	NA 9.4	9 NA	8.79 NA	4.93 N	iA 2.14	NA -	4.95 NA	7.519 NA	3.619 NA	2.920	NA 4.982	NA I	13.650 NA	4.050 N	A 7.426	NA 4.789	NA 7.209	NA 3.0	.80 NA	4.030 NA	. 8.104 N/	4.881
Dissolved Oxygen	NA	NA N	M NA	7.49 NA	0.49 NA		NA 0.43					5 .44		IA 4.86		1.40 NA	1.22	NA 1.81		1.24 NA	1.49	NA	0.41 N/	0.76	NA	1.26 NA	0.81	NA 1.0	0 NA	0.95 N	A 0.60	NA 1.5	0 NA	1.55 NA	0.52 N	iA 3.13	NA -	4.22 NA	1.35 NA	1.32 NA	2.45	NA 1.58	NA	0.48 NA	0.36 N	A 1.18	NA 5.13	NA 1.17	NA N	.S NA	0.47 NA	. 0.12 N/	. 0.09
ORP	NA	NA N	M NA	102.2 NA	-43.5 NA	-114.0	NA -40.0	NA 2.0	.0 NA	-32.0 ?	NA -22.	.0 NA	-39.0 N	IA -30.3	NA	85.9 NA	-61.5	NA -78.4	NA	-125.7 NA	25.7	NA	-108.7 N/	-85.1	NA	-82.0 NA	-96.9	NA -108	8.0 NA	-24.9 N	A -19.6	NA -12	9 NA 3	332.9 NA	-94.2 N	iA 34.9	NA -	51.1 NA	50.1 NA	35.8 NA	39.2	NA -41.8	NA -	402.4 NA	-25.1 N	A 35.2	NA 24.8	NA 25.9	NA -44	15 NA	-91.4 NA	-28.2 N/	-34.6
Notes	Standards obtained	from LAC Title 35 Ch	apter I. Part 620. Submart I	D DL-1	Detection limit	NR - Not	Required			Temperature	°C demon	Colvina																																									

Sample: MW-10	Date	12/6/	5/2010	3/23/2011	6/14/201	11 9/14	/2011	12/7/2011	3/15/201	12 6/1	9/2012 9	/19/2012	12/20/2012	2 3/5/2	2013 5/	22/2013	7/23/201	3 10/1	5/2013	2/17/2014	5/1/2014	8/1	8/2014	10/23/2014	2/11/2	015	5/28/2015	8/4/201	5 10/2	2015 2	2/10/2016	5/12/2016	8/31/2016	5 11/2	2/2016 2/	/7/2017	4/26/2017	2/21/2018	8/1/2018	10/17/2018	2/5/2019	9 5/7/2	2019 8/€	6/2019	11/7/2019	2/12/2020	5/20/2020	7/30/202/	0 10/22/2	020 3/2	2/2021 5/18/2021
Parameter	Standards	DL	Result I	DL Resu	h DL R	esult DL	Result	DL Result	DL R	Result DL	Result Di	L Result	DL Res	sult DL	Result DL	Result	DL Re	sult DL	Result 1	L Result	DL Re	suit DL	Result	DL Resu	t DL	Result I	DL Result	DL R	esult DL	Result DI	L Result	DL Result	DL Res	sult DL	Result DL	Result	DL Result	DL Res	alt DL Res	ult DL Rest	lt DL Res	sult DL	Result DL	Result I	DL Result I	DL Result	DL Result	DL Re	sult DL F	Result DL	Result DL Result
Antimony	0.006	0.0030	ND 0.0	.0030 ND	0.0030						) ND 0.00									030 ND	0.0030	D 0.0030	ND	0.0030 ND	0.0030	ND 0.0	0030 ND	0.0030	ND 0.0030	ND 0.00	130 ND	0.0030 ND	0.0030 N	D 0.0030	ND 0.003	0 ND (	1.0030 ND	0.0030 NE	0.003 NI	0.003 ND	0.003 N	D 0.003	ND 0.003	ND 0.0	003 ND 0	.003 ND	0.003 ND	0.003 N	D 0.003	ND 0.003	ND 0.003 ND
Arsenic	0.010	0.0010	ND 0.0	.0010 ND	0.0050	ND 0.0010	ND (	0.0010 0.0012	0.0010	ND 0.0010	) ND 0.00	0.0012	0.0010 0.00	0.0010	0.0012 0.00	0.0011	0.0010 N	D 0.0010	ND 0.0	010 ND	0.0010	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.00	010 ND	0.0050 ND ^	0.0010 NI	D 0.0010	ND 0.0010	0 ND (	0.0010 ND	0.0010 NE	0.001 NI	0.001 ND	0.001 N	D 0.001	ND 0.001	ND 0.0	001 ND 0	.001 ND	0.001 ND	0.001 N	D 0.001	ND 0.001	ND 0.001 ND
Barium	2.0	0.0025	0.050 0.0	.0025 0.05	0.0025 0	0.0025	0.039 (	0.0025 0.036	0.0025 0.	0.040 0.0025	5 0.043 0.00	125 0.040	0.0025 0.04	041 0.0025	0.040 0.003	25 0.041	0.0025 0.0	042 0.0025	0.044 0.0	025 0.047	0.0025 0.	043 0.0025	0.038	0.0025 0.04	0.0025	0.050 0.0	0025 0.046	0.0025 0	0.0025	0.041 0.00	025 0.042	0.0025 0.055	0.0025 0.0	0.0025	0.034 0.002	5 0.046 0	0.0025 0.038	0.0025 0.04	2 0.0025 0.04	42 0.0025 0.04	0.0025 0.0	044 0.0025	0.05 0.002*	5 0.037 0.0	025 0.033 0.0	0025 0.044	0.0025 0.045	0.0025 0.0	0.0025	0.04 0.0025	0.053 0.0025 0.064
Beryllium	0.004	0.0010	ND 0.0	.0010 ND	0.0010	ND 0.0010	ND (	0.0010 ND	0.0010	ND 0.0010	) ND 0.00	10 ND	0.0010 NI	D 0.0010	ND 0.00	10 ND	0.0010 N	D 0.0010	ND 0.0	010 ND ^	0.0010	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.00	010 ND ^	0.0010 ND	0.0010 NE	D^ 0.0010	ND 0.0010	0 ND^ (	0.0010 ND	0.0010 NE	0.001 NI	0.001 ND	0.001 N	D 0.001	ND 0.001	ND 0.0	001 ND 0	.001 ND	0.001 ND ^	0.001 N	D 0.001	ND 0.001	ND 0.001 ND
Boron	2.0	0.050	0.50 0.	0.54	0.050 0	0.54 0.050	0.41	0.050 0.52	0.25 0	0.52 0.050	0.53 0.0	50 0.43^	0.050 0.4	49 0.050	0.49 0.05	0 0.25	0.050 0.	30 0.050	0.42 0.	50 0.40	0.050 0	39 0.050	0.48	0.050 0.56	0.050	0.52 0.0	050 0.35	0.050	0.050	0.44 0.02	50 0.43	0.050 0.32	0.050 0.3	34 0.050	0.49 0.050	0.39	0.050 0.29	0.050 0.3	1 0.05 0.2	7 0.05 0.6	0.05 0.1	25 0.05	0.49 0.05	0.35 0.	05 0.29 0	0.05 0.29	0.05 0.7	0.05 0.	24 0.05	0.29 0.05	0.36 0.05 0.36
Cadmium	0.005	0.00050	ND 0.0	00050 ND	0.0025	ND 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	0 ND 0.00	050 ND	0.00050 NI	D 0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND 0.0	050 ND	0.00050	D 0.00050	ND (	100050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	ND 0.000	050 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	50 ND 0	100050 ND	0.00050 NE	0.0005 NI	0.0005 ND	0.0005 N	D 0.0005	ND 0.000*	5 ND 0.0	005 ND 0.	0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005 ND
Chloride	200.0	10	200	10 300	2.0	7.1 10	170	10 180	10	180 10	290 10	230	10 20	00 10	210 10	240	10 2	10 10	220	0 240	10 3	00 10	200	10 170	10	210 1	10 320	10	180 10	210 10	0 200	10 290	10 15	50 10	120 10	200	10 210	10 170	0 10 24	0 10 170	10 21	10 10	410 10	200 1	10 130	10 180	10 250	2 1'	70 10	230 40	290 40 350
Chromium	0.1	0.0050	ND 0.0	.0050 ND	0.025	ND 0.0050	ND (	0.0050 ND	0.0050	ND 0.0050	) ND 0.00	50 ND	0.0050 NE	D 0.0050	ND 0.003	50 ND	0.0050 N	D 0.0050	ND 0.0	150 ND	0.0050	D 0.0050	ND	1.0050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.0050	ND 0.00	150 ND	0.0050 ND	0.0050 N	D 0.0050	ND 0.005	0 ND 0	0.0050 ND	0.0050 NE	0.005 NI	0.005 ND	0.005 N	D 0.005	ND 0.005	ND 0.0	005 ND 0	.005 ND	0.005 ND	0.005 N	D 0.005	ND 0.005	ND 0.005 ND
Cobalt	1.0	0.0010	ND 0.0	.0010 ND	0.0050	ND 0.0010	ND (	0.0010 ND	0.0010	ND 0.0010	) ND 0.00	10 ND	0.0010 NE	D 0.0010	ND 0.00	10 ND	0.0010 N	D 0.0010	ND 0.0	010 ND	0.0010	D 0.0010	ND	0.0010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND 0.0010	ND 0.00	010 ND	0.0010 ND	0.0010 NI	D 0.0010	ND 0.0010	0 ND (	0.0010 ND	0.0010 NE	0.001 NI	0.001 ND	0.001 N	D 0.001	ND 0.001	ND 0.0	001 ND 0	.001 ND	0.001 ND	0.001 N	D 0.001	ND 0.001	ND 0.001 ND
Copper	0.65	0.0020	ND 0.0	.0020 ND	0.010	ND 0.0020	ND (	0.0020 ND	0.0020	ND 0.0020	) ND 0.00	120 ND	0.0020 NE	D 0.0020	ND 0.003	20 ND	0.0020 N	D 0.0020	ND 0.0	020 ND	0.0020	D 0.0020	ND	0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020 0	0027 0.0020	ND 0.00	120 ND	0.0020 ND	0.0020 N	D 0.0020	ND 0.002	0 ND 0	0.0020 ND ^	0.0020 NE	0.002 NI	0 0.002 ND	0.002 N	D 0.002	ND 0.002	ND 0.0	002 0.0029 0	.002 ND	0.002 ND	0.002 N	D 0.002	ND 0.002	ND 0.002 ND
Cyanide	0.2	0.010	ND 0.	0.010 ND	0.010	ND 0.010	ND	0.010 ND	0.010	ND 0.010	ND 0.0	10 ND	0.010 NE	D 0.010	ND 0.01	0 ND	0.010 N	D 0.010	ND 0.	10 ND	0.010	D 0.010	ND	0.010 ND	0.010	ND 0.	010 ND	0.010	ND 0.010	ND 0.0	10 ND	0.010 ND	0.010 NI	D 0.010	ND 0.010	) ND	0.010 ND	0.010 NE	0.01 NI	0.01 ND	0.01 N	D 0.01	ND 0.01	ND 0.	.01 ND 0	1.01 ND	0.01 ND	0.005 N	D 0.01	ND 0.005	ND 0.005 ND
Fluoride	4.0	0.10	0.43 0	0.10 0.39	0.10 0	0.42 0.10	0.41	0.10 0.45	0.10 0	0.41 0.10	0.46 0.1	0 0.50	0.10 0.4	47 0.10	0.49^ 0.10	0.50	0.10 0.	.48 0.10	0.50 0	10 0.47	0.10 0	43 0.10	0.49	0.10 0.46	0.10	0.41 0.	.10 0.43	0.10	0.10	0.41 0.1	10 0.45	0.10 0.46	0.10 0.4	44 0.10	0.43 0.10	0.36	0.10 0.35	0.10 0.3	8 0.1 0.3	9 0.1 0.4	0.1 0.4	41 0.1	0.4 0.1	0.35 0	0.1 0.37	0.1 0.44	0.1 0.42	0.1 0.	42 0.1	0.41 0.1	0.41 0.1 0.39
Iron	5.0	0.10	ND 0	0.10 ND	0.50	ND 0.10	ND	0.10 ND	0.10	ND 0.10	ND 0.1	0 ND	0.10 NI	D 0.10	ND 0.10	0 0.32	0.10 N	D 0.10	ND 0	10 ND	0.10	D 0.10	ND	0.10 ND	0.10	ND 0.	.10 ND	0.10	ND 0.10	ND 0.1	10 0.13	0.10 ND ^	0.10 NI	D 0.10	ND 0.10	ND	0.10 ND	0.10 0.2	4 0.1 NI	0 0.1 ND	0.1 N	ID 0.1	0.44 0.1	ND 0	0.1 0.25	0.1 ND	0.1 1.8	0.1 N	D 0.1	ND 0.1	ND 0.1 ND
Lead	0.0075	0.00050	ND 0.0	00050 ND	0.00050	ND 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	0 ND 0.00	050 ND	0.00050 NE	D 0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND 0.0	050 ND	0.00050	D 0.00050	ND (	100050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0.00050	ND 0.000	050 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	50 ND 0	100050 ND	0.00050 NE	0.0005 NI	0.0005 ND	0.0005 N	D 0.0005	ND 0.000*	5 ND 0.0	005 ND 0.	0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	5 ND 0.0005 ND
Manganese	0.15	0.0025	0.12 0.0	.0025 0.007	6 0.013	ND 0.0025	ND (	0.0025 ND	0.0025	ND 0.0025	5 ND 0.00	125 ND	0.0025 NE	D 0.0025	ND 0.003	25 0.010	0.0025 N	(D 0.0025	ND 0.0	025 ND	0.0025	D 0.0025	ND	0.0025 ND	0.0025	0.0049 0.0	025 ND	0.0025	ND 0.0025	ND 0.00	0.0037	0.0025 ND	0.0025 NI	D 0.0025	ND 0.002	5 ND (	0.0025 ND	0.0025 0.00	57 0.0025 NI	0.0025 0.002	8 0.0025 N	D 0.0025	ND 0.0025	5 ND 0.0	0.0029 0.0029 0.0	0025 ND	0.0025 0.0034	0.0025 N	D 0.0025	ND 0.0025	ND 0.0025 ND
Mercury	0.002	0.00020	ND 0.0	00020 ND	0.00020	ND 0.00020	ND 0	0.00020 ND	0.00020	ND 0.0002	0 ND 0.00	020 ND	0.00020 NE	D 0.00020	ND 0.000	20 ND	0.00020 N	D 0.00020	ND 0.0	020 ND	0.00020	D 0.00020	ND 0	100020 ND	0.00020	ND 0.0	0020 ND	0.00020 2	D* 0.00020	ND 0.000	020 ND	0.00020 ND	0.00020 N	D 0.00020	ND 0.0002	20 ND 0	100020 ND	0.00020 NE	0.0002 NI	0.0002 ND	0.0002 N	D 0.0002	ND 0.000*	2 ND 0.0	002 ND 0.	0002 ND	0.0002 ND	0.0002 N	D 0.0002	ND 0.0002	. ND 0.0002 ND
Nickel	0.1	0.0020	0.0052 0.0	.0020 0.002	9 0.010 1	ND 0.0020	0.0087 (	0.0020 0.0024	0.0020	ND 0.0020	) ND 0.00	120 0.0021	0.0020 0.00	024 0.0020	0.0022 0.003	30 ND	0.0020 0.0	0.0027 0.0020	0.0024 0.0	0.0020	0.0020 0.0	023 0.0020	ND	0.0020 0.002	0 0.0020	0.0037 0.0	0020 0.0023	0.0020	ND 0.0020	ND 0.00	120 ND	0.0020 0.0032	0.0020 N	D 0.0020	ND 0.002	0 ND (	1.0020 ND	0.0020 NE	0.002 NI	0.002 0.002	1 0.002 N	D 0.002	ND 0.002	ND 0.0	002 ND 0	.002 0.0023	0.002 ND	0.002 N	D 0.002	ND 0.002	ND 0.002 0.0027
Nitrogen/Nitrate	10.0	0.10	0.39 0	0.10 2.3	0.10	2.7 0.10	2.6	0.10 1.4	0.10	ND 0.10	1.8 0.1	0 1.5	0.10 1.	.5 0.10	1.6 0.10	2.8	0.10 3	5.0 0.10	2.3 0	10 2.2	0.10 2	1.8 0.10	0.72	0.10 1.7	0.10	2.4 0.	.10 2.9	0.10	1.5 0.10	2.4 0.1	10 2.2	0.10 2.6	0.10 1.	.4 0.10	2.3 0.10	1.9	0.10 2.3	0.10 1.4	0.1 1.1	7 0.1 0.9	0.1 1.	.3 0.1	2.4 0.1	ND 0	0.1 1.8	0.1 1.7	0.1 1.4	0.1 2	8 0.1	3.8 0.1	2.2 0.1 2.7
Nitrogen/Nitrate, N	tri NA	0.10	0.39 0	0.20 2.3	0.20	2.7 0.20	2.6	0.10 1.4	0.10	ND 0.10	1.8 0.1	0 1.5	0.10 1.	.5 0.10	1.6 0.2	2.8	0.50 3	5.0 0.50	2.3 0	50 2.2	0.50 1	1.8 0.10	0.72	0.10 1.7	0.20	2.4 0.	20 2.9	0.10	1.5 0.20	2.4 0.2	20 2.2	0.20 2.6	0.10 1.	.4 0.50	2.3 0.10	1.9	0.20 2.3	0.10 1.4	0.1 1.	7 0.1 0.94	0.1 1.	.3 0.1	2.4 0.1	2.3 0	1.1 1.8	0.1 1.7	0.1 1.4	0.5 2	8 0.5	3.8 0.5	2.2 0.5 2.7
Nitrogen/Nitrite	NA	0.020	ND 0.	1.020 ND	0.020	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0.0	20 ND	0.020 NE	D 0.020	ND 0.02	0 ND	0.020 N	D 0.020	ND 0.	20 ND	0.020	D 0.020	ND	0.020 ND	0.020	ND 0.	020 ND	0.020	ND 0.020	ND 0.00	20 ND	0.020 ND	0.020 N	D 0.020	ND 0.020	) ND	0.020 ND	0.020 NE	0.02 NI	0.02 ND	0.02 N	D 0.02	ND 0.02	ND 0.	.02 ND 0	1.02 ND	0.02 ND	0.02 N	D 0.02	ND 0.02	ND 0.02 ND
Perchlorate	0.0049	NR	NR ?	NR NR	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NI	R NR	0.004 NI	D 0.0040	ND 0.004	40 ND	0.0040 N	D 0.0040	ND 0.0	140 ND	0.0040	D 0.0040	ND	1.0040 ND	0.0040	ND 0.0	0040 ND	0.0040	ND 0.0040	ND 0.00	40 ND	0.0040 ND	0.0040 NI	D 0.0040	ND 0.004	0 ND (	1.0040 ND	0.0040 NE	0.004 NI	0.004 ND	0.004 N	D 0.004	ND 0.004	ND 0.0	004 ND 0	.004 ND	0.004 ND	0.004 N	D 0.004	ND 0.004	ND 0.004 ND
Selenium	0.05	0.0025	ND 0.0	.0025 ND	0.013	ND 0.0025	ND (	0.0025 ND	0.0025	ND 0.0025	5 ND 0.00	125 ND	0.0025 NE	D 0.0025	ND 0.003	25 ND	0.0025 N	D 0.0025	ND 0.0	025 ND	0.0025 N	D 0.0025	ND	0.0025 0.002	5 0.0025	ND 0.0	0025 ND	0.0025	ND 0.0025	ND 0.00	125 ND	0.0025 ND ^	0.0025 N	D 0.0025	ND 0.002	5 ND (	0.0025 ND	0.0025 NE	0.0025 NI	0.0025 ND	0.0025 N	D 0.0025	0.0041 0.002*	5 ND 0.0	025 ND 0.	0025 ND	0.0025 0.0035	0.0025 N	D 0.0025	ND 0.0025	ND 0.0025 ND
Silver	0.05	0.00050	ND 0.0	00050 ND	0.0025	ND 0.00050	ND 0	0.00050 ND	0.00050	ND 0.0005	0 ND 0.00	050 ND	0.00050 NE	D 0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND 0.0	050 ND	0.00050	D 0.00050	ND (	100050 ND	0.00050	ND 0.0	0050 ND^	0.00050	ND 0.00050	ND 0.000	050 ND	0.00050 ND	0.00050 N	D 0.00050	ND 0.0005	50 ND 0	100050 ND	0.00050 NE	0.0005 NI	0.0005 ND	0.0005 N	D 0.0005	ND 0.000*	5 ND 0.0	005 ND 0.	0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005 ND
Sulfate	400.0	50	130	50 130	25	89 25	100	50 190	50 2	250 50	170 50	) 110	25 12	20 25	84 25	120	50 1	30 50	140	5 55	20 1	20 20	73	50 110	25	93 2	20 50	25	97 25	86 25	5 110	25 120	25 8	0 20	92 25	88	25 89	50 100	25 11	0 25 120	25 8	85 25	100 25	95 1	25 ND	25 110	25 170	25 8	8 15	94 25	150 25 210
Thallium	0.002	0.0020	ND 0.0	.0020 ND	0.0020	ND 0.0020	ND (	0.0020 ND	0.0020	ND 0.0020	) ND 0.00	120 ND	0.0020 NE	D 0.0020	ND 0.003	20 ND	0.0020 N	D 0.0020	ND 0.0	020 ND	0.0020	D 0.0020	ND	0.0020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND 0.0020	ND 0.00	120 ND	0.0020 ND	0.0020 N	D 0.0020	ND 0.002	0 ND 0	0.0020 ND	0.0020 NE	0.002 NI	0 0.002 ND	0.002 N	D 0.002	ND 0.002	ND 0.0	002 ND 0	.002 ND	0.002 ND	0.002 N	D 0.002	ND 0.002	ND 0.002 ND
Total Dissolved So	ds 1,200	10	860	10 110	10 10	980 10	730	10 890	10 8	890 10	1100 10	) 870	10 86	60 10	830 10	850	10 9	10 10	880	0 870	10 8	90 10	910	10 740	10	810	10 1100	10	710 10	810 10	0 800	10 920	10 67	70 10	690 10	810	10 750	10 820	0 10 100	00 10 750	10 91	10 10	1000 10	810 1	10 660	10 810	10 1000	30 7	20 30	850 10	1100 10 1100
Vanadium	0.049	NR	NR ?	NR NR	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NI	R NR	0.0050 NI	D 0.0050	ND 0.003	90 ND	0.0050 N	D 0.0050	ND 0.0	150 ND	0.0050	D 0.0050	ND	1.0050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND 0.0050	ND 0.00	150 ND	0.0050 ND	0.0050 N	D 0.0050	ND 0.005	0 ND (	0.0050 ND	0.0050 NE	0.005 NI	0.005 ND	0.005 N	D 0.005	ND 0.005	ND 0.0	005 ND 0	.005 ND	0.005 ND	0.005 N	D 0.005	ND 0.005	ND 0.005 ND
Zinc	5.0	0.020	ND 0.	1.020 ND	0.10	ND 0.020	ND	0.020 ND	0.020	ND 0.020	ND 0.0	20 ND	0.020 NE	D 0.020	ND 0.02	0 ND	0.020 N	D 0.020	ND 0.	20 ND	0.020	D 0.020	ND	0.020 ND	0.020	ND 0.	020 ND	0.020	ND 0.020	ND 0.00	20 ND	0.020 ND	0.020 N	D 0.020	ND 0.020	) ND	0.020 ND	0.020 NE	0.02 NI	0.02 ND	0.02 N	D 0.02	ND 0.02	ND 0.	.02 ND 0	1.02 ND	0.02 ND	0.02 N	D 0.02	ND 0.02	ND 0.02 ND
Benzene	0.005	NR	NR ?	NR NR	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NI	R NR	0.0005 NE	D 0.00050	ND 0.000	50 ND	0.00050 N	D 0.00050	ND 0.0	050 ND	0.0005 5	D 0.0005	ND	1.0005 ND	0.0005	ND 0.0	005 ND	0.0005	ND 0.0005	ND 0.00	05 ND	0.0005 ND	0.0005 N	D 0.0005	0.00076 0.000	5 ND (	1.0005 ND	0.0005 NE	0.0005 NI	0.0005 ND	0.0005 N	D 0.0005	ND 0.000'	5 ND 0.0	005 ND 0.	0005 ND	0.0005 ND	0.0005 N	D 0.0005	ND 0.0005	ND 0.0005 ND
BETX	11.705	NR	NR ?	NR NR	NR	NR NR	NR	NR NR	NR 1	NR NR	NR NI	R NR	0.0025 NS	4S 0.0025	ND 0.003	25 ND	0.0025 N	D 0.0025	ND 0.0	025 ND	0.002 N	D 0.002	ND	0.002 ND	0.002	ND 0.	002 ND	0.002	ND 0.002	0.00075 0.00	02 ND	0.002 0.00065	0.002 N	D 0.002	0.02226 0.002	2 ND	0.002 ND	0.0025 0.00	12 0.0025 0.00	124 0.0025 ND	0.0025 N	D 0.0025	ND 0.002'	5 ND 0.0	025 ND 0.	0025 ND	0.0025 ND	0.0025 N	D 0.0025	ND 0.0025	ND 0.0025 ND
pH	6.5 - 9.0	NA	7.65	NA 7.20	NA 1	7.40 NA	7.34	NA 7.51	NA 7	7.35 NA	7.20 N	A 7.38	NA 7.3	38 NA	7.55 NA	7.11	NA 7	26 NA	7.11 ?	A 4.39	NA 7	.07 NA	6.74	NA 7.12	NA	7.26 N	iA 7.27	NA	5.92 NA	7.04 N/	A 7.17	NA 7.02	NA 65	95 NA	6.99 NA	6.99	NA 7.27	NA 7.6	2 NA 7.3	5 NA 7.3	) NA 7.3	31 NA	7.17 NA	7.4 N	NA 7.4 1	NA 7.28	NA 6.9	NA 6	95 NA	7.11 NA	7.19 NA 7.16
Temperature	NA	NA	9.26	NA 12.4	) NA 1	2.05 NA	11.23	NA 11.26	NA 1	13.08 NA	14.44 N	A 13.53	NA 12.0	.60 NA	10.40 NA	12.70	NA 14	1.21 NA	13.04 ?	A 11.47	NA 11	23 NA	16.85	NA 13.7	NA NA	6.83 N	iA 15.02	NA 1	7.42 NA	12.90 N/	A 7.17	NA 13.60	NA 19.	.33 NA	15.66 NA	11.40	NA 16.65	NA 8.0	3 NA 17.	55 NA 14.6	2 NA 12	2.5 NA	11.8 NA	12.3 N	A 11.89 1	NA 12.9	NA 12.5	NA L'	2.3 NA	12.7 NA	12.2 NA 14
Conductivity	NA	NA	1.51 2	NA 1.88	NA 1	1.58 NA	0.98	NA 0.99	NA 1	1.04 NA	1.35 N.	A 1.13	NA 1.0	07 NA	1.04 NA	0.964	NA 1	LI NA	1.09 2	A 0.84	NA 1	18 NA	1.14	NA 1.18	NA	0.92 N	iA 1.37	NA	1.19 NA	1.40 N/	A 0.85	NA 1.29	NA 1.2	25 NA	0.95 NA	0.98	NA 1.09	NA 0.76	0 NA 1.14	47 NA 1.11	3 NA 1.3	39 NA	2.74 NA	1.45 N	A 1.085 1	NA 1.133	NA 1.61	NA 1/	105 NA	1.51 NA	1.747 NA 1.95
Dissolved Oxygen	NA	NA	NM ?	NA 7.18	NA 8	8.70 NA	7.42	NA 7.12	NA 7	7.08 NA	7.13 N.	A 6.93	NA 8.7	74 NA	9.16 NA	6.14	NA 4	59 NA	4.27	A 4.82	NA 6	31 NA	6.99	NA 6.16	NA	6.50 N	iA 7.41	NA	5.39 NA	6.49 NJ	A 7.45	NA 6.76	NA 7.1	13 NA	5.97 NA	6.48	NA 8.46	NA 8.8	4 NA 7.0	0 NA 8.7	NA 5.6	.60 NA	7.18 NA	5.45 N	A 9.30 1	NA 7.73	NA 8.65	NA 7	68 NA	4.79 NA	4.70 NA 6.87
ORP	NA	NA	NM ?	NA 191.	5 NA 2	10.0 NA	-37.0	NA 143.0	NA 2	210.0 NA	147.0 N	A 146.0	NA 112	2.0 NA	129.5 NA	35.6	NA 3	0.2 NA	-48.9 ?	A 201.1	NA 10	9.8 NA	87.8	NA 77.3	NA	135.3 N	iA 134.8	NA	15.3 NA	113.8 N/	A 121.8	NA 54.2	NA 90	0.4 NA	86.8 NA	127.9	NA 28.7	NA 47.	9 NA 89.	1 NA 34.	5 NA 121	7.7 NA	-231.3 NA	167.5 N	NA -12.2 1	NA 166.3	NA 133.9	NA 13	8.6 NA	172.5 NA	41.8 NA 147.7
					DL- Dete		NR - No												· · · · ·									· · · · ·								1		L						- L L				تصليحهم			<u> </u>
											Temperature 'C																																								

Sample: MW-11	Date	12/6/201	10 3/23/	2011	6/14/2011	9/14/20	011 1	12/7/2011	3/15/20	012 é	6/19/2012	9/19/2	2012 1	2/20/2012	2 3/5/	/2013	5/23/201	3 7/2	3/2013	10/15/2	013 2	/21/2014	5/1/2	014	8/19/20	4 1	0/23/2014	2/11	/2015	5/28/201	5	8/4/2015	10/29	2015	2/11/2016	5/11/2	2016	9/1/2016	11/2	2016	2/7/2017	4/26/	2017	2/21/2018	8/1/2018	8 10/17	7/2018	2/5/2019	5/	7/2019	8/6/2019	11/7/	2019 2/	13/2020	5/20/2020	0 7/30	/2020 1	J/22/2020	3/2/202	1 5/18/2021
Parameter	Standards	DL Re	esult DL	Result	DL Result	DL	Result D	IL Result	DL I	Result D	X. Result	DL	Result D	DL Resul	alt DL	Result	DL Re	suit DL	Result	DL	Result Di	Result	DL	Result	DL I	tesult D	E Resul	DL	Result	DL R	sult D	L Result	DL	Result I	DL Resul	ik DL	Result	DL Result	t DL	Result DI	DL Resu	it DL	Result	DL Resu	DL Re	sult DL	Result	DL Rest	ult DL	Result	DL Resu	ılt DL	Result DI	. Result	DL Res	sult DL	Result D	A. Result	DL B	esult DL Result
Antimony	0.006	0.0030 N	ND 0.0030	ND	0.015 ND	0.0030	ND 0.00	030 ND	0.0030	ND 0.0	030 ND	0.0030		0030 ND	0.0030	ND	0.0030 N	D 0.0030	ND	0.0030	ND 0.00	30 ND	0.0030	ND	0.0030	ND 0.0	030 ND	0.0030	ND	0.0030	D 0.00	190 ND	0.0030	ND 0.0	0030 ND	0.0030	ND (	1.0030 ND	0.0030	ND 0.00	030 ND	^ 0.0030	ND 0	.0030 ND	0.003 N	D 0.003	ND	0.003 ND	D 0.003	3 ND 0.	0.003 ND	0.003	ND 0.00	13 ND	0.003 N	D 0.003	ND 0.0	.03 ND	0.003	ND 0.003 ND
Arsenic	0.010	0.0010 0.0	0013 0.0010	0.0016	0.0050 ND	0.0010	0.0016 0.00	010 0.0019	0.0010 0	0.0017 0.00	010 0.0017	0.0010	0.0018 0.0	0.001 0.001	18 0.0010	0.0018	0.0010 0.0	017 0.0010	0.0014	0.0010	0.0015 0.00	10 ND	0.0010	0.0017	0.0010 0	0.0016 0.0	010 0.0012	0.0010	ND	0.0010 0.0	0015 0.00	0.0026	0.0010	ND 0.0	0010 0.001	18 0.0010	0.0015 0	0.0010 0.0017	7 0.0010	0.0016 0.00	010 0.001	4 0.0010	0.0014 0	.0010 0.002	0.001 0.0	012 0.001	0.0015	0.001 0.003	013 0.001	0.0019 r	0.001 0.00!	11 0.001	ND 0.00	0.0014	0.001 0.0	023 0.001	0.0011 0.0	.01 ND	0.001 0	0013 0.001 ND
Barium	2.0	0.0025 0.	.064 0.0025	0.076	0.013 0.051	0.0025	0.054 0.00	025 0.057	0.0025	0.067 0.0	025 0.046	0.0025	0.060 0.0	0.063	63 0.0025	0.060	0.0025 0.0	45 0.0025	0.040	0.0025	0.060 0.00	0.090	0.0025	0.053	0.0025	0.048 0.0	0.059	0.0025	0.10	0.0025 0.	059 0.00	125 0.062	0.0025	0.099 0.0	0.074	4 0.0025	0.066 (	0.0025 0.056	6 0.0025	0.062 0.00	0.07	8 0.0025	0.051 0	.0025 0.084	0.0025 0.0	046 0.0025	0.064 (	0.0025 0.06	63 0.002	5 0.058 0	3.0025 0.05	0.0025	0.033 0.00	25 0.065	0.0025 0.0	0.0025	0.051 0.0	025 0.055	0.0025 0	.089 0.0025 0.07
Beryllium	0.004	0.0010 N	ND 0.0010	ND	0.0010 ND	0.0010	ND 0.00	010 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND	0.0010 N	D 0.0010	ND	0.0010	ND 0.00	10 ND ^	0.0010	ND	0.0010	ND 0.0	010 ND	0.0010	ND	0.0010 2	D 0.00	010 ND	0.0010	ND 0.0	0010 ND '	^ 0.0010	ND (	0.0010 ND ^	0.0010	ND 0.00	010 ND	^ 0.0010	ND 0	.0010 ND	0.001 N	D 0.001	ND ⁴	0.001 NE	D 0.001	ND r	0.001 ND	0.001	ND 0.00	01 ND	0.001 NI	D ^ 0.001	ND 0.0	.01 ND	0.001	ND 0.001 ND
Boron	2.0	0.050 0	0.47 0.050	2.6	0.050 2.2	0.050	1.1 0.0	1.2	0.25	1.4 0.0		0.050		050 0.57		1.1	0.050 0.	34 0.050	0.88	0.050	0.49 0.1	) 1.2	0.050	1.3	0.25	1.6 0.0	50 2.0	0.050	1.1	0.050	1.0 0.0	50 1.4	0.050	0.78 0.	050 1.4	0.050	1.5	0.050 1.6	0.050	1.6 0.0	050 1.3	0.050	1.1 (	0.050 2.4	0.05 1.1	2 V 0.05	1.2	0.05 2.7	7 0.05	0.98 0	0.05 1.1	0.05	0.29 0.0	5 1.4	0.05 0.3	51 0.05	0.86 0.1	.05 0.44	0.05	1.2 0.05 0.67
Cadmium	0.005	0.00050 N	ND 0.00050	ND	0.0025 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 ND	0.00050	) ND	0.00050 N	D 0.0005	ND	0.00050	ND 0.00	50 ND	0.00050	ND (	0.00050	ND 0.00	050 ND	0.00050	0.0077	0.00050	(D) 0.00	050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	ND 0.	00050 ND	0.0005 N	D 0.0005	ND (	0.0005 ND	D 0.000	5 ND 0	0.0005 ND	0.0005	ND 0.00	05 ND	0.0005 N	D 0.0005	ND 0.0	.005 ND	0.0005	ND 0.0005 ND
Chloride	200.0	10 1	160 10	270	10 280	10	86 1	0 140	10	240 1	10 150	10	150 1	10 140	0 10	190	10 1	90 10	91	10	140 50	430	10	340	10	120 1	0 84	10	270	10 2	90 1	0 150	10	120	10 230	10	240	10 110	10	93 10	10 240	10	150	10 260	10 11	20 10	160	10 170	0 10	290	10 130	) 10	130 10	200	10 52	20 10	170 1	.0 170	40	320 40 420
Chromium	0.1	0.0050 N	ND 0.0050	ND	0.025 ND	0.0050	ND 0.00	050 ND	0.0050	ND 0.0	050 ND	0.0050	ND 0.0	0050 ND	0.0050	ND	0.0050 N	D 0.0050	ND	0.0050	ND 0.00	90 ND	0.0050	ND	0.0050	ND 0.0	050 ND	0.0050	ND	0.0050 2	D 0.00	150 ND	0.0050	ND 0.0	0050 ND	0.0050	ND (	1.0050 ND	0.0050	ND 0.00	050 ND	0.0050	ND 0	.0050 ND	0.005 N	ID 0.005	ND	0.005 ND	D 0.005	, ND f	0.005 ND	0.005	ND 0.00	15 ND	0.005 N	D 0.005	ND 0.0	.05 ND	0.005	ND 0.005 ND
Cobalt	1.0	0.0010 N	ND 0.0010	ND	0.0050 ND	0.0010	ND 0.00	010 ND	0.0010	ND 0.0	010 ND	0.0010	ND 0.0	0010 ND	0.0010	ND	0.0010 N	D 0.0010	ND	0.0010	ND 0.00	10 ND	0.0010	ND	0.0010	ND 0.0	010 ND	0.0010	0.033	0.0010 0.0	0016 0.00	010 0.0015	0.0010	ND 0.0	0010 ND	0.0010	ND (	0.0010 ND	0.0010	ND 0.00	010 ND	0.0010	ND 0	.0010 ND	0.001 N	D 0.001	ND	0.001 NE	D 0.001	1 ND 0.	0.001 ND	0.001	ND 0.00	01 ND	0.001 N	D 0.001	ND 0.0	.01 ND	0.001	AD 0.001 ND
Copper	0.65	0.0020 N	ND 0.0020	ND	0.010 ND	0.0020	ND 0.00	020 ND	0.0020	ND 0.0	1020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND	0.0020 N	D 0.0020	0.017	0.0020	ND 0.00	30 ND	0.0020	ND	0.0020	ND 0.0	020 ND	0.0020	0.16	0.0020 0.0	0.00	120 0.0022	0.0020	ND 0.0	0020 ND	0.0020	ND (	0.0020 ND	0.0020	ND 0.00	020 ND	^ 0.0020	ND ^ 0	.0020 ND	0.002 N	ID 0.002	ND	0.002 NE	D 0.002	ND (	0.002 ND	0.002	0.0029 0.00	02 ND	0.002 N	D 0.002	ND 0.0	.02 ND	0.002	ND 0.002 ND
Cyanide	0.2	0.010 N	ND 0.010	ND	0.010 ND	0.010	ND 0.0	010 ND	0.010	ND 0.0	010 ND	0.010	ND 0.0	010 ND	0.010	ND	0.010 N	D 0.010	ND	0.010	ND 0.0	0 ND	0.010	ND	0.010	ND 0.0	10 ND	0.010	ND	0.010 2	D 0.0	10 ND	0.010	ND 0.	010 ND	0.010	ND	0.010 ND	0.010	ND 0.0	010 ND	0.010	ND (	0.010 ND	0.01 N	D 0.01	ND	0.01 NE	D 0.01	ND	0.01 ND	0.01	ND 0.0	1 ND	0.01 N	D 0.005	ND 0.1	.01 ND	0.005	AD 0.005 0.005
Fluoride	4.0	0.10 0	0.34 0.10	0.31	0.10 0.36	0.10	0.32 0.1	10 0.31	0.10	0.30 0.	.10 0.37	0.10	0.32 0.	.10 0.34	4 0.10	0.29^	0.10 0.	38 0.10	0.37	0.10	0.31 0.1	0 0.29	0.10	0.32	0.10	0.37 0.	10 0.38	0.10	0.33	0.10 0	.35 0.1	10 0.38	0.10	0.30 0	10 0.34	4 0.10	0.39	0.10 0.34	0.10	0.31 0.1	.10 0.30	0.10	0.28	0.10 0.29	0.1 0.1	29 0.1	0.27	0.1 0.2	.7 0.1	0.34 (	0.1 0.24	4 0.1	0.37 0.1	0.3	0.1 0.1	34 0.1	0.3 0.	.1 0.28	0.1	.28 0.1 0.28
Iron	5.0	0.10 N	ND 0.10	ND	0.50 ND	0.10	ND 0.1	10 ND	0.10	ND 0.	.10 0.23	0.10	ND 0.	.10 0.42	2 0.10	0.15	0.10 N	D 0.10	ND	0.10	ND 0.1	) ND	0.10	ND	0.10	ND 0.	10 ND	0.10	0.17	0.10	D 0.1	10 ND	0.10	ND 0	10 0.12	2 0.10	ND	0.10 ND	0.10	ND 0.1	.10 ND	0.10	ND	0.10 ND	0.1 N	ID 0.1	ND	0.1 ND	D 0.1	ND	0.1 ND	0.1	0.25 0.1	ND	0.1 0.1	23 0.1	ND 0.	.1 ND	0.1	ND 0.1 ND
Lead	0.0075	0.00050 N	ND 0.00050	ND	0.00050 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 0.000	0.00050	) ND	0.00050 N	D 0.0005	ND	0.00050	ND 0.00	50 ND	0.00050	ND (	0.00050	ND 0.00	050 ND	0.00050	0.023	0.00050 2	4D 0.00	050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	ND 0.	00050 ND	0.0005 N	ID 0.0005	ND (	0.0005 ND	D 0.000	5 ND 0	3.0005 ND	0.0005	ND 0.00	05 ND	0.0005 N	D 0.0005	ND 0.0	005 ND	0.0005	ND 0.0005 ND
Manganese	0.15	0.0025 0.	.052 0.0025	0.0047	0.013 ND	0.0025	0.0053 0.00	025 0.0047	0.0025	ND 0.0	0.014	0.0025	ND 0.0	0.0425 0.042	12 0.0025	0.016	0.0025 N	D 0.0025	ND	0.0025	ND 0.00	5 ND	0.0025	ND	0.0025	ND 0.0	025 ND	0.0025	0.27	0.0025 2	VD 0.00	125 0.49	0.0025	0.040 0.0	0.003	34 0.0025	ND (	1.0025 ND	0.0025	ND 0.00	025 ND	0.0025	ND 0	.0025 ND	0.0025 N	ID 0.0025	ND (	0.0025 ND	D 0.002	5 ND 0	3.0025 ND	0.0025	0.0029 0.00	25 ND	0.0025 N	D 0.0025	ND 0.0	.)25 ND	0.0025	ND 0.0025 ND
Mercury	0.002	0.00020 N	ND 0.00020	ND	0.00020 ND	0.00020	ND 0.00	0020 ND	0.00020	ND 0.00	0020 ND	0.00020	ND 0.00	0020 ND	0.00020	) ND	0.00020 N	D 0.0002	ND	0.00020	ND 0.00	20 ND	0.00020	ND (	0.00020	ND 0.00	020 ND	0.00020	ND	0.00020 2	0.00	020 ND *	0.00020	ND 0.0	0020 ND	0.00020	ND 0	.00020 ND	0.00020	ND 0.000	0020 ND	0.00020	ND 0.	00020 ND	0.0002 N	ID 0.0002	ND (	0.0002 ND	D 0.000	2 ND 0	3.0002 ND	0.0002	ND 0.00	02 ND	0.0002 N	D 0.0002	ND 0.0	002 ND	0.0002	ND 0.0002 ND
Nickel	0.1	0.0020 0.0	0022 0.0020	ND	0.010 ND	0.0020	ND 0.00	020 ND	0.0020	ND 0.0	1020 ND	0.0020	ND 0.0	0.002	25 0.0020	0.0020	0.0020 N	D 0.0020	ND	0.0020	ND 0.00	30 ND	0.0020	ND	0.0020	ND 0.0	020 0.002	0.0020	0.16	0.0020 0.0	0.00	120 0.0099	0.0020	0.0028 0.0	0.002 0.002	28 0.0020	0.0031 0	0.0020 0.0020	0 0.0020	ND 0.00	020 ND	0.0020	ND 0	.0020 ND	0.002 N	ID 0.002	ND	0.002 NE	D 0.002	ND f	0.002 ND	0.002	ND 0.00	02 ND	0.002 N	D 0.002	ND 0.0	.02 ND	0.002	ND 0.002 ND
Nitrogen/Nitrate	10.0	0.10 0	0.39 0.10	1.1	0.10 0.92	0.10	0.31 0.1	10 0.60	0.10	0.30 0.	.10 ND	0.10	0.36 0.	.10 0.46	6 0.10	1.1	0.10 1	4 0.10	0.28	0.10	0.79 0.1	0 1.4	0.10	1.3	0.10	0.25 0.	10 0.59	0.10	ND	0.10	1.1 0.1	10 0.15	0.10	0.48 0	10 1.8	0.10	1.4	0.10 0.69	0.10	0.58 0.1	.10 1.2	0.10	1.1	0.10 1.5	0.1 0.4	.41 0.1	0.66	0.1 0.93	2 0.1	1.4	0.1 0.34	4 0.1	1.8 0.1	0.79	0.1	2 0.1	0.85 0.	.1 0.59	0.1	1.1 0.1 1.4
Nitrogen/Nitrate, Nitr	NA	0.10 0	0.39 0.10	1.1	0.10 0.92	0.10	0.31 0.1	10 0.60	0.10	0.30 0.	.10 ND	0.10	0.36 0.	.10 0.46	6 0.10	1.1	0.10 1	4 0.10	0.28	0.10	0.79 0.1	0 1.4	0.10	1.3	0.10	0.25 0.	10 0.59	0.10	ND	0.10	1.1 0.1	10 0.15	0.10	0.48 0	10 1.8	0.10	1.4	0.10 0.69	0.10	0.58 0.1	.10 1.2	0.10	1.1	0.10 1.5	0.1 0.4	.41 0.1	0.66	0.1 0.93	2 0.1	1.4	0.1 0.34	4 0.1	1.8 0.1	0.79	0.1	2 0.1	0.85 0.	.1 0.59	0.1	1.1 0.1 1.4
Nitrogen/Nitrite	NA	0.020 N	ND 0.020	ND	0.020 ND	0.020	ND 0.0	020 ND	0.020	ND 0.0	020 ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 N	D 0.020	ND	0.020	ND 0.0	0 ND	0.020	ND	0.020	ND 0.0	20 ND	0.020	ND	0.020 2	D 0.0	20 ND	0.020	ND 0.	020 ND	0.020	ND	0.020 ND	0.020	ND 0.03	020 ND	0.020	ND 0	0.020 ND	0.02 N	ID 0.02	ND	0.02 NE	D 0.02	ND (	0.02 ND F	F1 0.02	ND 0.0	2 ND	0.02 N	D 0.02	ND 0.1	.)2 ND	0.02	ND 0.02 ND
Perchlorate	0.0049	NR N	NR NR	NR	NR NR	NR	NR N	R NR	NR	NR N	IR NR	NR	NR 0.0	004 ND	0.0040	ND	0.0040 N	D 0.0040	ND	0.0040	ND 0.00	10 ND	0.0040	ND	0.0040	ND 0.0	040 ND	0.0040	0.027	0.0040 2	(D) 0.00	140 ND	0.0040	ND 0.0	0040 ND	0.0040	ND	0.20 ND	0.0040	ND 0.00	040 ND	0.0040	ND 0	.0040 ND	0.004 N	ID 0.004	ND	0.004 ND	D 0.004	, ND r	0.004 ND	0.004	ND 0.00	14 ND	0.004 N	D 0.004	ND 0.0	.04 ND	0.004	ND 0.004 ND
Selenium	0.05	0.0025 N	ND 0.0025	0.0054	0.013 ND			025 0.0033													ND 0.00			0.0043		1.0069 0.0		0.0025		0.0025 0.0			0.0025	ND 0.0		40 0.0025	0.0033 (	0.0025 0.0046	6 0.0025	ND 0.00					0.0025 0.003			0.0025 0.003	156 0.002	5 0.0056 0.0	3.0025 0.00'	13 0.0025	ND 0.00	25 0.0029	0.0025 0.0	039 0.0025	ND 0.0	.)25 ND	0.0025 0	0035 0.0025 0.0025
Silver	0.05	0.00050 N	ND 0.00050	ND	0.0025 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 ND	0.00050	ND 0.00	0050 ND	0.00050	) ND	0.00050 N	D 0.0005	ND	0.00050	ND 0.00	50 ND	0.00050	ND (	0.00050	ND 0.00	050 ND	0.00050	ND	0.00050 N	D^ 0.00	050 ND	0.00050	ND 0.0	0050 ND	0.00050	ND 0	.00050 ND	0.00050	ND 0.000	0050 ND	0.00050	ND 0.	00050 ND	0.0005 N	D 0.0005	ND (	0.0005 ND	D 0.0002	5 ND 0	.10005 ND	0.0005	ND 0.00	05 ND	0.0005 N	D 0.0005	ND 0.0	.005 ND	0.0005	ND 0.0005 ND
Sulfate	400.0	50 1	140 50	150	25 110	25	110 5	0 160	25	140 5	50 150	50	100 5	50 150	0 50	110	25 1	0 25	100	25	110 24	130	25	100	25	91 5	0 120	100	290	25	84 5	0 110	50	170	50 140	50	150	50 120	25	130 25	25 90	25	100	50 190	25 8	50 50	93	50 91	1 50	81	50 78	50	ND 50	110	50 8	2 25	100 1	.5 89	25	60 25 140
Thallium	0.002	0.0020 N	ND 0.0020	ND	0.0020 ND	0.0020	ND 0.00	020 ND	0.0020	ND 0.0	020 ND	0.0020	ND 0.0	0020 ND	0.0020	ND	0.0020 N	D 0.0020	ND	0.0020	ND 0.00	30 ND	0.0020	ND	0.0020	ND 0.0	020 ND	0.0020	ND	0.0020 2	D 0.00	120 ND	0.0020	ND 0.0	0020 ND	0.0020	ND (	1.0020 ND	0.0020	ND 0.00	020 ND	0.0020	ND 0	.0020 ND	0.002 N	ID 0.002	ND	0.002 ND	D 0.002	ND f	0.002 ND	0.002	ND 0.00	02 ND	0.002 N	D 0.002	ND 0.0	.02 ND	0.002	ND 0.002 ND
Total Dissolved Solid	1,200	10 7	770 10	1000	10 710	10	590 1	0 790	10	850 1	10 760	10	740 1	10 730	0 10	770	10 6	70 10	570	10	690 10	1100	10	850	10	720 1	0 580	10	1300	10 8	60 1	0 700	10	740	10 880	10	920	10 660	10	640 10	10 830	10	620	10 1100	10 72	20 10	740	10 780	0 10	810	10 590	) 10	660 10	710	10 14	400 30	670 3	.0 710	10	000 10 1200
Vanadium	0.049	NR N	NR NR	NR	NR NR	NR	NR N	R NR	NR	NR N	R NR	NR	NR 0.0	0.0050 0.005	50 0.0050	ND	0.0050 N	D 0.0050	ND	0.0050	ND 0.00	90 ND	0.0050	ND	0.0050	ND 0.0	050 ND	0.0050	ND	0.0050 2	D 0.00	150 ND	0.0050	ND 0.0	0050 ND	0.0050	ND (	1.0050 ND	0.0050	ND 0.00	050 ND	0.0050	ND 0	.0050 0.005	0.005 N	ID 0.005	ND ⁴	0.005 ND	D 0.005	5 ND 0.	0.005 ND	0.005	ND 0.00	15 ND	0.005 N	D 0.005	ND 0.0	.05 ND	0.005	ND 0.005 ND
Zinc	5.0	0.020 N	ND 0.020	ND	0.10 ND	0.020	ND 0.0	020 ND	0.020	ND 0.0	020 ND	0.020	ND 0.0	020 ND	0.020	ND	0.020 N	D 0.020	ND	0.020	ND 0.0	0 ND	0.020	ND	0.020	ND 0.0	20 ND	0.020	0.056	0.020 ?	4D 0.0	20 ND	0.020	ND 0.	020 ND	0.020	ND	0.020 ND	0.020	ND 0.03	020 ND	0.020	ND (	0.020 ND	0.02 N	ID 0.02	ND	0.02 ND	D 0.02	ND (	0.02 ND	0.02	ND 0.0	2 ND	0.02 N	D 0.02	ND 0.1	J2 ND	0.02	ND 0.02 ND
Benzene	0.005	NR N	NR NR	NR	NR NR	NR	NR N	R NR	NR	NR N	R NR	NR	NR 0.0	0005 ND	0.00050	) ND	0.00050 N	D 0.0005	ND	0.00050	ND 0.00	50 ND	0.0005	ND	0.0005	ND 0.0	005 ND	0.0005	ND	0.0005 2	ND 0.00	05 ND	0.0005	ND 0.0	0005 ND	0.0005	ND (	1.0005 ND	0.0005	0.0016 0.00	005 ND	0.0005	ND 0	.0005 ND	0.0005 0.0	0.0005	ND	0.0005 NE	D 0.000	5 ND 0	3.0005 ND	0.0005	ND 0.00	05 ND	0.0005 N	D 0.0005	ND 0.0	.005 ND	0.0005	ND 0.0005 ND
BETX	11.705	NR N	NR NR	NR	NR NR	NR	NR N	R NR	NR	NR N	R NR	NR	NR 0.0	0025 NS	6 0.0025	ND	0.0025 N	D 0.0025	ND	0.0025	ND 0.00	25 ND	0.002	ND	0.002	ND 0.0	02 ND	0.002	ND	0.002 2	ND 0.0	02 ND	0.002	0.00094 0.	002 ND	0.002	0.0023	0.002 ND	0.002	0.0394 0.00	002 ND	0.002	ND 0	.0025 0.001	0.0025 0.0	0.0025	ND	0.0025 NE	D 0.002	5 ND 0	3.0025 ND	0.0025	ND 0.00	25 ND	0.0025 N	D 0.0025	ND 0.0	.025 ND	0.0025	ND 0.0025 ND
pH	6.5 - 9.0	NA 7	1.72 NA	7.23	NA 7.60	NA	7.38 N.	A 7.46	NA	7.38 N	IA 7.37	NA	7.36 N	A 7.36	6 NA	7.60	NA 7.	11 NA	7.33	NA	7.16 N	9.25	NA	7.17	NA	6.78 N	A 7.29	NA	7.16	NA 7	.42 N	A 7.40	NA	7.26 8	NA 7.15	5 NA	7.24	NA 7.20	NA	7.18 N/	iA 7.21	NA	7.47	NA 7.55	NA 7.	39 NA	7.37	NA 7.3	13 NA	7.45	NA 7.42	2 NA	7.4 NJ	7.3	NA 7.	12 NA	7.13 N	A 7.11	NA	.33 NA 7.22
Temperature	NA	NA 11	1.97 NA	13.49	NA 11.69	NA	12.18 N.	A 13.15	NA	14.22 N	IA 15.30	NA	13.23 N	A 12.83	13 NA	10.60	NA 12	.10 NA	14.41	NA	15.41 Na	10.38	NA	10.97	NA	16.58 N	A 15.17	NA	8.04	NA I	1.77 N.	A 17.05	NA	12.34 N	NA 6.49	9 NA	14.15	NA 18.10	) NA	16.36 N/	IA 12.9	1 NA	17.52	NA 9.05	NA 18	1.04 NA	14.41	NA 13.	.1 NA	10.9	NA 12.3	3 NA	11.89 N/	13.7	NA 12	2.2 NA	12.1 N	.A 12.7	NA	2.5 NA 13.2
Conductivity	NA	NA 1	1.32 NA	1.69	NA 1.14	NA	0.79 N	A 0.92	NA	1.12 N	IA 0.97	NA	0.97 N	A 0.89	9 NA	0.96	NA 0.	74 NA	0.68	NA	0.95 N	1.20	NA	1.25	NA	0.90 N	A 0.95	NA	1.32	NA 1	.45 N.	A 1.08	NA	1.13 3	A 0.87	7 NA	1.19	NA 1.03	NA	0.88 N/	(A 1.04	NA NA	0.98	NA 0.953	NA 0.5	965 NA	0.866	NA 1.21	12 NA	2.24	NA 1.05	5 NA	1.085 NJ	1.138	NA 2.3	323 NA	1.332 N	A 1.51	NA I	.702 NA 2.02
Dissolved Oxygen	NA		NM NA		NA 8.65	NA		A 6.74	NA					A 8.66			NA 5.				3.26 N			6.31	NA	5.14 N	A 3.80	NA	2.98	NA 5	.44 N.	A 1.52	NA	8.45 N	4A 8.32	2 NA	8.21	NA 6.22	NA	4.89 NJ			6.50	NA 7.72	NA 53	84 NA	8.17	NA 7.0	10 NA	10.94	NA 7.00	0 NA	9.30 N/	8.76	NA 11.	.05 NA	9.19 N	A 4.79	NA	.97 NA 10.3
ORP	NA	NA N	NM NA	194.3	NA 200.8	NA	-31.0 N	A 136.0			IA 172.0						NA 2	.4 NA	26.5	NA	-58.4 Na	-51.0	NA	106.7	NA	87.8 N	A 69.4	NA	108.2	NA E	21.5 N.	A -25.7	NA	86.5 3	A 139.1	1 NA	48.6	NA 53.3	NA	73.7 N/	IA 133.	0 NA	25.2	NA 47.6	NA 88	8.9 NA	30.5	NA 122	10 NA	-234.2	NA 163/	.4 NA	-12.2 N/	156.1	NA 13	9.8 NA	140.8 N	.A 172.5	NA	.7.7 NA 152.
Notes	Standards obtained fr				DI Detection	india	NR - Not Re	and and			Terrenter	- 'C 4																																																

Attachment 9-4 – IL PE Stamp

#### CERTIFICATION 35 Ill. Adm. Code 845.630

In accordance with Section 35 Ill. Adm. Code 845.630(g), I hereby certify based on review of the information contained within the Initial Operating Permit Application for Joliet #29 Station dated October 29, 2021, the groundwater monitoring system has been designed and constructed to satisfy the requirements of 35 Ill. Adm. Code 845.630. For this site the minimum number of wells required is deemed sufficient based on the following: 1) The number of wells, placement and screened intervals are based on a hydrogeologic assessment performed for the site; 2) hydrogeologic considerations included aquifer characteristics affecting flow velocity and physical transport processes; 3) available historical groundwater flow data indicate consistent flow conditions over time; 4) Illinois Environmental Protection Agency (IEPA) approved the overall hydrogeologic assessment as part of a larger study.

Certified by:

Date:

10/29/21

Joshua Davenport, P.E. Professional Engineer Registration No.: _____062.061945_____ KPRG and Associates, Inc.



Attachment 9-5 – CCR Compliance Statistical Approach



KPRG and Associates, Inc.

# ILLINOIS STATE CCR RULE COMPLIANCE STATISTICAL APPROACH FOR GROUNDWATER DATA EVALUATION

# Midwest Generation, LLC Joliet #29 Generating Station 1800 Channahon Road Joliet, Illinois

**PREPARED BY:** 

KPRG and Associates, Inc. 14665 West Lisbon Road, Suite 1A Brookfield, WI 53005

August 19, 2021

14665 West Lisbon Road, Suite 1A Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478

## TABLE OF CONTENTS

#### SECTION/DESCRIPTION

#### PAGE

1.0	INTRODUCTION	1
2.0	STATISTICAL METHOD SELECTION and BACKGROUND DATA	
	LUATION	
2.1	Outlier Testing	2
2.2	Spatial Variability	2
2.3	Temporal Variability	
2.4	Trend Testing	
2.5		
2.6	Non-Detects	
2.7	Prediction Limit Calculation for Normally Distributed Data	4
2.8	Prediction Limit Calculation for Non-Normally Distributed Data	
3.0	GROUNDWATER MONITORING	6
4.0	CERTIFICATION	

## **FIGURE**

Figure 1 – Monitoring Well Location Map

#### TABLE

Table 1 – Section 845.600 Parameters

#### **1.0 INTRODUCTION**

On April 21, 2021, the Illinois Pollution Control Board (IPCB) and Illinois Environmental Protection Agency (Illinois EPA) enacted a final rule regulating coal combustion residuals (CCR) as part of Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule). The State CCR Rule specifically requires that the owner or operator of a CCR unit must develop an Operating Permit that will specify a sampling and analysis program that includes procedures and techniques for sample collection, sample preservation and shipment, analytical procedures, chain of custody (COC) control, and quality assurance and quality control. As a result, each regulated facility must develop a program that meets the State CCR Rule. At the Joliet #29 facility, Ash Pond 2 requires monitoring under the State CCR Rule. The monitoring well network around this pond consists of four monitoring wells (MW-3, MW-4, MW-5 and MW-10 [upgradient]) as shown on Figure 1.

Section 845.640(f) of the State CCR Rule requires the development of the statistical approach that will be used for assessing the data and determining whether a statistically significant increase over background concentrations in groundwater has occurred at identified downgradient monitoring points. Potential statistical methods that can be applied to the data are listed in Section 845.640(f) and performance standards are provided in 845.640(g).

This narrative of the statistical approach that will be used for the Joliet #29 facility's groundwater monitoring data is intended to fulfill certification requirements under Section 845.640(f)(2). The professional engineer's certification of this statistical approach is provided in Section 4.0 of this document.

## 2.0 STATISTICAL METHOD SELECTION and BACKGROUND DATA EVALUATION

Section 845.640(f)(1) identifies five statistical data evaluation methods that can be used for assessing site groundwater data. Relative to the subject site, the prediction interval procedure identified in 845.640(f)(1)(C) will be used. This approach is robust and conforms to varying data distributions and facilitates various non-detect frequencies. U.S. EPA identifies this method as preferred over establishment of tolerance intervals (Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, March 2009 [Unified Guidance]).

Total recoverable metals groundwater data has been collected for this site since 2015 as part of Federal CCR Rule requirements. Under the Federal CCR Rule, the initial eight rounds of quarterly data generated were used to develop a representative background concentration with which to develop applicable prediction limits for subsequent statistical downgradient monitoring well data comparisons. Since additional data has been generated since the initial eight rounds of groundwater monitoring under the Federal CCR Rule, the full, currently available data set through the second quarter 2021 will be evaluated for potential use in developing a representative background dataset. If appending this additional data to the original eight rounds of background sampling is determined to be not statistically appropriate, then the background calculations. The established, representative background concentration for the upgradient well location (in this case well MW-10) will be used to develop prediction limits for the regulated unit for each constituent listed in Section 845.600(a) and (b) as provided in Table 1.

Statistical evaluations will be performed with the assistance of the SanitasTM software package.

#### 2.1 Outlier Testing

The background dataset will be first checked for potential outliers for each constituent. Potential causes of outliers can be, but are not limited to:

- Changes in sampling technique;
- Changes in analytical methods;
- Data transcription errors;
- Unnatural localized event such as a spill; or
- Natural but extreme variations in constituent concentration.

The Unified Guidance does not recommend removing an outlier from the data set unless it can be shown that the outlier is not caused by extreme natural variation. If the outlier can be traced to other than natural causes, the data set will be adjusted appropriately.

#### 2.2 Spatial Variability

If more than one background well is being used for the monitored unit, an evaluation of spatial variability will be performed to determine whether the mean concentration of a constituent varies statistically between the background points. This is generally accomplished by performing an Analysis of Variance (ANOVA). If statistically significant spatial variation is determined to be

present, the background points will not be combined between the wells. If the spatial variability is determined to be natural, an intrawell data evaluation approach may be considered for both upgradient and downgradient wells.

## 2.3 Temporal Variability

Temporal variability in groundwater data from a specific monitoring point occurs when a consistent fluctuation of constituent concentrations occurs over time. The most common example is seasonal variation. If such a variation is noted in the data, the dataset should be corrected to account for the trend; however, any such corrections must be applied judiciously and would be completed in accordance with the Unified Guidance recommended procedures.

## 2.4 Trend Testing

As discussed above, it is intended to expand the initial background dataset collected under the Federal CCR Rule which consisted of eight rounds of quarterly sampling, with any additional data collected for a specific well since that time to facilitate a larger background data set upon which to develop subsequent interwell, and if necessary intrawell, prediction limits. The expanded background dataset for each upgradient well, for each constituent listed in Table 1, will undergo trend analysis to determine if there may be a potential statistically significant trend in the data. Linear regression will be the primary trend analysis tool, however, other methods such Sen's Slope Estimator may also be used. If a statistically significant trend is identified in the larger combined background dataset, the new data cannot be added to the initial background dataset, and only the original eight rounds of data can be used for that well in background development and associated subsequent calculations.

## 2.5 Test of Normality

The main underlying assumption in parametric data evaluations, such as establishing prediction limits, is that the underlying data distribution is normal. A quick approximation can be made by calculating the Coefficient of Variance (CV) which is the quotient of the standard deviation divided by the sample mean. In general, if this quotient is greater than 1, the underlying data distribution is probably not normal. The new Unified Guidance is more conservative and suggests that if this quotient is greater than 0.5, the dataset may not be normal and a more robust distribution evaluation should be performed. Therefore, for any CV value greater than 0.5 for a specific dataset, normality will be evaluated using the Shapiro-Wilk Test with an alpha ( $\alpha$ ) value of 0.05 (or 95%).

If the dataset does not pass this initial test, the data will undergo a log transformation and the test will be repeated for the natural log values of the dataset. If it is determined that this dataset is log-normal, statistical evaluations will be completed on those values and the result converted back to the standard value. If the underlying distribution is also determined not to be log-normal, the Unified Guidance provides for a number of other data transformations that can be performed to evaluate whether those underlying distributions may be normal at which point the entire dataset would be transformed for subsequent calculations.

If a normal underlying distribution can not be determined, non-parametric statistical evaluations will need to be considered which do not rely on a specific underlying distribution.

## 2.6 Non-Detects

It is not uncommon in environmental datasets to have parameters being detected at low concentrations during one sampling event and being not detected in other sampling events. Having a consistent approach to the handling of non-detect values is an important part of the statistical evaluation process. The handling of non-detect values will be accomplished as follows:

- 100 Percent Non-Detects Assumed that the constituent is not present and no statistical evaluations will be performed. The upper prediction limit will be set at the Reporting Limit (RL) established by the analytical laboratory.
- 50 Percent or Greater Non-Detects A non-parametric evaluation will be performed where the confidence interval will be constructed using the highest detected concentration as the upper prediction limit.
- 15 to 50 Percent Non-Detects Aitchison's Adjustment will be used with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 0 to 15 Percent Non-Detects The non-detect values will be replaced with RL/2 and the dataset will be evaluated for distribution normality with subsequent parametric or non-parametric evaluations, as appropriate, based on underlying distributions.
- 2.7 Prediction Limit Calculation for Normally Distributed Data

For datasets where the distribution or underlying transformed distribution is normal, a parametric statistical approach will be used for establishing the prediction limit at the required 95% statistical confidence. In accordance with Unified Guidance, the following equation will be used:

95% Prediction Limit = 
$$\bar{x} + t_{1-0.05/m,n-1}s \sqrt{1 + \frac{1}{n}}$$

Where:

\$\vec{x}\$ = the sample mean of the detected or adjusted results
 \$\vec{s}\$ = sample standard deviation of the detected or adjusted results
 \$t_{1-0.05/m,n-1}\$ = the students t-coefficient for degrees of freedom (n-1) and confidence level (1-0.05/m)
 \$n\$ = the number of samples
 \$m\$ = the number of future samples

The number of future sampling events (m) will be set at 2 which will account for one sampling event and a confirmation resampling. This will assist in limiting the potential number of false

positives. An acceptable site-wide false positive (SWFP) rate of 10% or less is acceptable under the Unified Guidance.

## 2.8 Prediction Limit Calculation for Non-Normally Distributed Data

If the dataset distribution or underlying distribution is determined not to be normal, a nonparametric approach will need to be used for the establishment of the prediction limit. The nonparametric evaluation will use the highest detected concentration as the upper prediction limit for the specific constituent.

## **3.0 GROUNDWATER MONITORING**

The State CCR Rule does not distinguish between detection monitoring or assessment monitoring as was defined under the Federal CCR Rule. To meet the requirements set forth in Section 845.650(b), a minimum of eight rounds of groundwater data need to be collected for establishing background. As noted above, if more than eight rounds of data are available, then the larger dataset will be evaluated to determine whether the background dataset can be expanded to provide a more robust statistical assessment. At that point, statistical evaluation of the background dataset will be performed to establish the upper prediction limits for each Section 845.600(a) and (b) constituent. It is noted that in the case of pH, a lower prediction limit will also be established since this parameter has an established upper and lower value range for compliance.

Site specific Groundwater Protection Standards (GWPSs) will be developed in accordance with Section 845.600(a)(2) as follows:

- If the constituent has an established State standard listed in Section 845.600(a)(1) and the standard is greater than the calculated background upper prediction limit, then the standard will serve as the GWPS. If the background upper prediction limit is greater than the standard, the upper prediction limit will serve as the GWPS.
- If the constituent does not have an established standard (i.e., calcium and turbidity) then the calculated upper prediction limit will serve as the GWPS.

Once the proposed GWPSs are determined and approved by Illinois EPA, subsequent downgradient well concentrations will be compared against the upper prediction limit (and lower prediction limit in the case of pH), and the GWPSs. If an exceedance of the GWPS is identified during a quarterly sampling event, an immediate resampling of the specific well(s) will be completed for those specific parameters. If the exceedance is confirmed by the resampling, the Illinois EPA will be notified of the exceedance(s) and the notification will be placed in the facilities operating record in accordance with 845.800(d)(16). It is noted that there are some constituents that historically may have had no detections (i.e., 100% non-detects). In this case, in accordance with the Unified Guidance, if there is a detection of such a constituent, then the Double Quantification Rule will be applied. Under this rule, a confirmed exceedance is registered if any well-constituent pair in the 100% non-detect group exhibits quantified measurements (i.e., at or above the Reporting Limit in two consecutive sample and resample events.

If an exceedance of the GWPS is recorded and reported to Illinois EPA, an Alternate Source Demonstration (ASD) may be completed within 60-days of the confirmed exceedance in accordance with Section 845.650(e) and submitted to the Illinois EPA as well as placing the ASD on the facility's publically accessible CCR website. Illinois EPA will review and approve or disapprove the ASD.

If it is decided not to complete an ASD or if Illinois EPA does not concur with and approve the ASD, a characterization of the nature and extent of the potential release must be completed in

accordance with Section 845.650(d)(1) as well as meeting the requirements of Sections 845.660, 845.670 and 845.680.

#### 4.0 CERTIFICATION

In accordance with Section 845.640(f)(2) of the State CCR Rule, I hereby certify based on a review of the information contained within this Illinois State CCR Rule Compliance Statistical Approach for Groundwater Data Evaluation dated August 19, 2021, the statistical procedures developed and selected for evaluation of groundwater data associated with the Midwest Generation Joliet #29 Station CCR Unit are adequate and appropriate for evaluating the groundwater data.

Certified by: Date: 8/19/21

Joshua Davenport, P.E.

Professional Engineer Registration No. <u>062.06194</u>5

KPRG and Associates, Inc.



# **FIGURE**

# MW-10

POND 2 MW-

MW-5

LEGEND

EXISTING CCR MONITORING WELL

MW-1

MW-3

	ENVIRO	О  М  В  М  Т  А	LCONSU	LTATION	& REMEDIATION		CR MONITO		ELLS SITE MAP
						Ŭ			
	Κ		R	G	KPRG and Associates, inc.		••	9 GENERA DLIET, ILLI	TING STATION NOIS
0100' <i>N</i>	414 Plaza	Drive, Suite 106 Wes	tmont, <b>illi</b> nols 60559	Telephone 630-325-	-1300 Facsimile 630-325-1593	Scale:	1" = 100'	Date: D	ecember 27, 2017
APPROXIMATE SCALE	14665 West Lis	bon Road, Suite 2B Br	ookfield, Wisconsin 5	53005 Telephone 262	-781-0475 Facsimile 262-781-0478	KPRG	Project No. 1	12313.0	FIGURE 1

# **TABLE**

Parameter	Section 845.600 Standards
Antimony	0.006
Arsenic	0.01
Barium	2
Beryllium	0.004
Boron	2.0
Cadmium	0.005
Chloride	200
Chromium	0.1
Cobalt	0.006
Combined Radium 226 + 228 (pCi/L)	5.0
Fluoride	4.0
Lead	0.0075
Lithium	0.04
Mercury	0.002
Molybdenum	0.10
pH (standard units)	6.5-9.0
Selenium	0.05
Sulfate	400
Thallium	0.002
Total Dissolved Solids	1200
Calcium	NE
Turbidity	NE

Table 1. Section 845.600 Groundwater Monitoring Parameter List
----------------------------------------------------------------

All vaues in mg/l unless otherwise specified. NE- Not Established Attachment 9-6 – Statistical Evaluation Summary

## ATTACHMENT 9-6

## BACKGROUND STATISTICAL EVALUATION SUMMARY STATE RULE CCR GROUNDWATER MONITORING JOLIET #29 GENERATING STATION

The newly enacted Ill. Adm. Code Title 35, Part 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (State CCR Rule) requires development of proposed Groundwater Protection Standards (GWPSs) for inclusion within the Operating Permit for the regulated surface impoundments at the facility. Upon Illinois Environmental Protection Agency (EPA) review, concurrence and approval of these site-specific proposed GWPSs, subsequent quarterly downgradient groundwater monitoring data will be compared against these standards to determine whether standard quarterly monitoring is to continue or whether additional evaluations need to occur to in accordance with Section 845.650(d), 845.650(e), 845.660 and 845.670. The overall statistical approach to be used for the development of the proposed GWPSs is provided in Attachment 9-5 of the Operating Permit.

The proposed site-specific GWPSs for the Joliet #29 Generating Station are summarized in Table 9-7 in Section 9 of this Operating Permit. The background Prediction Limit values presented in that table were developed, where possible, by combining or "pooling" as many background data points as possible. This includes evaluating whether the initial eight rounds of data generated as part of Federal CCR Rule compliance that was completed between 2015 and 2017 can be combined with subsequent available data from ongoing groundwater monitoring since that time at the upgradient monitoring well location (MW-10). If the combined dataset (original eight rounds of data generated since the initial background sampling) at a specific well location (intrawell evaluation) for a specific parameter does not show a statistically significant trend in the data is noted to exist, only the original eight rounds of background sampling can be used for subsequent calculations. Ten rounds of turbidity measurements were collected this calendar year (2021) since this was a new state requirement that was not part of the Federal CCR Rule.

#### Outlier Testing

Outlier tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. Well MW-10 is the upgradient well. Wells MW-03 through MW-05 are the downgradient monitoring wells. The following statistically significant outliers (dates in parentheses) were noted:

- Barium MW-03 (5/18/21) and MW-04 (5/18/21)
- Combined Radium MW-04 (10/28/2015 and 2/10/16)
- Lead MW-04 (11/2/16)
- Lithium MW-03 (11/2/16) and MW-10 (4/26/17)

- Molybdenum MW-04 (5/18/21)
- pH MW-04 (5/10/16)

Since the outliers cannot be attributed to either lab error, transcription error or field sampling error, the outlier values were not removed from the datasets at this time but may be considered during subsequent data evaluations.

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

#### Seasonality/Temporal Variability Testing

Seasonality/temporal variability tests were performed for all monitoring wells (upgradient and downgradient) in the proposed State CCR monitoring well network for all data available since the start of Federal CCR monitoring. No statistically significant seasonal/temporal variations were noted in any of the wells for any of the parameters. A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion. The turbidity database to date is insufficient to evaluate potential seasonal/temporal variability at this time.

## Trend Analysis

To determine whether data generated since the initial eight rounds of background groundwater sampling since the enactment of the Federal Rule can potentially be pooled at the upgradient monitoring well location (MW-10), trend analysis for each constituent at each upgradient well location was performed. The results are summarized as flows:

• MW-10 – Statistically significant trends were noted for calcium, chloride and total dissolved solids (TDS).

A statistical run summary which includes the specific statistical method used for each parameter for each well is provided at the end of this discussion.

#### Spatial Variability Testing

Since only one upgradient monitoring well is being used for establishing a statistical background, spatial variability testing for the purposes of background calculations is not applicable at this time.

#### Test of Normality

The Shapiro-Wilk Normality Test with an alpha ( $\alpha$ ) value of 0.05 (or 95%) was used to evaluate the distribution of the full background dataset for each constituent, which includes all available data through the second quarter 2021, at upgradient well location MW-10. A Test of Ladders was also run to evaluate other potential underlying transformational distributions in the case that the non-transformed dataset was found not to be normally distributed. For all constituents the data distribution or underlying transformed data distribution, were found to be normal with the exception of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, mercury, selenium and thallium. The various distributions or underlying transformed distributions for these parameters were found not to be normal due to the large number of non-detect values and will need to be handled through non-parametric analysis methods. The statistical run summary is at the end of this discussion.

## Prediction Limits

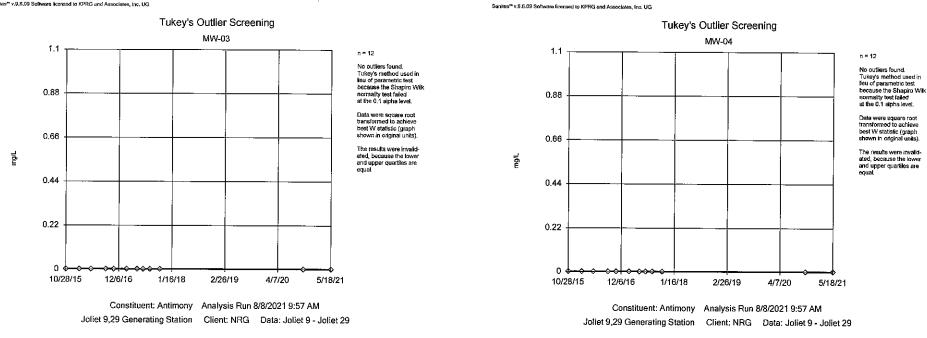
Based on the various statistical evaluations discussed above, the following background data sets were used for background prediction limit calculations:

- Upgradient well MW-10 all parameter values pooled for all constituents through the second quarter 2021 except calcium, chloride and TDS. These datasets did not show any statistically significant trends or temporal variation in the expanded datasets.
- Upgradient well MW-10 original eight background values were used for calcium, chloride and TDS since there were noted statistically significant trends in the expanded datasets.
- Upgradient well MW-10 all ten turbidity measurements were used since no statistically significant trend was noted in the data.

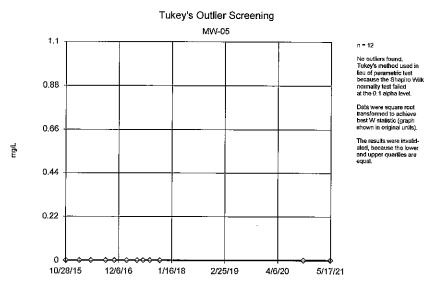
The calculated prediction limits (PLs) under the above background dataset selection scenarios are summarized in Table 9-7 in Section 9 of this permit application. A prediction limit statistical run summary which includes the specific statistical method used for each parameter is provided at the end of this discussion.

# Outlier Analysis - Joliet #29 - All CCR Wells

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 8/8/2021, 9:59 AM

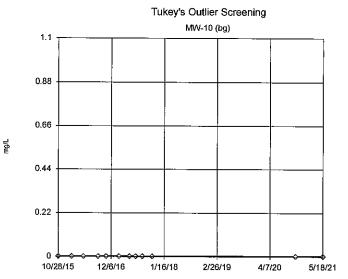

O	Well	Outlier	Value(s)	Date(s)	Method	Alpha	N	Mean	Std. Dev.	Distribution	Normality Test
Constituent	MW-03	n/a	<u>value(s)</u> n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.003	0	unknown	ShapiroWilk
Antimony (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	12	0.0016	0.0003015	normal	ShapiroWilk
Arsenic (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	12	0.001658	0.0003825	ln(x)	ShapiroWilk
Arsenic (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	12	0.001608	0.0005869	normal	ShapiroWilk
Arsenic (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	12		0.0002598	unknown	ShapiroWilk
Arsenic (mg/L)	MW-03	Yes	0.14	5/18/2021	Dixon`s	0.05	12	0.09942	0.01466	normal	ShapiroWilk
Barium (mg/L)	MW-03		0.14	5/18/2021	Dixon`s	0.05	12	0.08867	0.01203	normai	ShapiroWilk
Barium (mg/L)	MW-04	Yes No	n/a	n/a	EPA 1989	0.05	12	0.06733	0.01459	normal	ShapiroWilk
Barium (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	12	0.04258	0.00709	normal	ShapiroWilk
Barium (mg/L)	MW-10 (bg) MW-03			n/a	NP (nrm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)		n/a	n/a n/a	n/a	NP (nrm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-04	n/a =/a		n/a	NP (nm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-05	n/a n/a	n/a n/o		NP (nm)	NaN	12	0.001	0	unknown	ShapiroWilk
Beryllium (mg/L)	MW-10 (bg)	n/a	n/a m/a	n/a z/a	EPA 1989	0.05	17	0.4006	0.08555	normal	ShapiroWilk
Boron (mg/L)	MW-03	No	n/a	n/a n/a	EPA 1989	0.05	19	0.3926	0.1551	ln(x)	ShapiroWilk
Boron (mg/L)	MW-04	No	n/a n/a	n/a n/o	EPA 1989	0.05	17	0.4776	0.197	ln(x)	ShapiroWilk
Boron (mg/L)	MW-05	No	n/a n/a	n/a n/a	EPA 1989	0.05	19	0.4374	0.1443	in(x)	ShapiroWilk
Boron (mg/L)	MW-10 (bg)	No 	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-03	n/a	n/a m/a	n/a n/a		NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0005	0	unknown	ShapiroWilk
Cadmium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	17	101.7	10.75	unknown	ShapiroWilk
Calcium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	17	101.1	10.55	unknown	ShapiroWilk
Calcium (mg/L)	MW-04	No	n/a	n/a	NP (nrm)	0.05	18	114.8	27.05	normal	ShapiroWilk
Calcium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	18	114.0	18.78	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	17	213.5	42.56	normal	ShapiroWilk
Chtoride (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	18	215.5	49.96	normal	ShapiroWilk
Chloride (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	19	210.1	49.50 113.2	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	19	221.5	86.77	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	NaN	12	0.005008		unknown	ShapiroWilk
Chromium (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.007917		unknown	ShapiroWilk
Chromium (mg/L)	MW-04	n/a	n/a	n/a	NP (nm)	NaN	12		0.000345	unknown	ShapiroWilk
Chromium (mg/L)	MW-05	n/a	n/a	n/a	NP (nm)	NaN	12	0.005	0.000343	unknown	ShapiroWilk
Chromium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.001008		unknown	ShapiroWilk
Cobalt (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm) EPA 1989	0.05	12	0.0076	0.003815	normal	ShapiroWilk
Cobalt (mg/L)	MW-04	No	n/a	n/a		NaN	12	0.00105	0.0001168	unknown	ShapiroWilk
Cobalt (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)		12	0.00105	0.0001100	unknown	ShapiroWilk
Cobait (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN NaN	11	0.6191	0.4393	unknown	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-03	No	n/a	n/a	NP (nm)	0.05	11	0.5169	0.3544	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-04	Yes	0.741,1.52	10/28/201	Dixon's			0.5354	0.2161	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-05	No	n/a	n/a	EPA 1989	0,05 0.05	11 11	0.5354	0.08566	normal	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	17	0.4169	0.02348	normal	ShapiroWilk
Fluoride (mg/L)	MW-03	No	n/a	n/a _/_	EPA 1989	0.05 NaN	17	0.4155	0.02348	unknown	ShapiroWilk
Fluoride (mg/L)	MW-04	No	n/a	n/a	NP (nm)			0.4359	0.06727	unknown	ShapiroWilk
Fluoride (mg/L)	MW-05	No	n/a	n/a =/-	NP (nrm) EPA 1989	NaN	17 17	0.3759	0.03145	normal	ShapiroWilk
Fluoride (mg/L)	MW-10 (bg)	No	n/a	n/a		0.05 NaN		0.0005	0.03143	unknown	ShapiroWilk
Lead (mg/L)	M₩-03	n/a	n/a	n/a Mananake	NP (nm)		12 <b>12</b>		0.000207	unknown	ShapiroWilk
Lead (mg/L)	MW-04	Yes	0.0012	11/2/2016	NP (nrm)	NaN	14	0.000030	0.000207	MILITARO MIL	Shaphorath

. . . . . . . . . . . . .


## Outlier Analysis - Joliet #29 - All CCR Wells

Constituent	Well	Outlier	Value(s)	Date(s)	Method	Alpha	N	Mean	<u>Std. Dev.</u>	Distribution	Normality Test
Lead (mg/L)	MW-05	No	n/a	n/a	NP (nrm)	NaN	12	0.00115	0.0007799	unknown	ShapiroWilk
Lead (mg/L)	MW-10 (bg)	No	п/а	n/a	NP (nrm)	NaN	12	0.000	0.0003144	unknown	ShapiroWilk
Lithium (mg/L)	MW-03	Yes	0.005	11/2/2016	Dixon's	0.05	12	0.01117	0.00225	normal	ShapiroWilk
Lithium (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	12	0.01258	0.001165	normal	ShapiroWilk
Lithium (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.01408	0.005583	normal	ShapiroWilk
Lithium (mg/L)	MW-10 (bg)	Yes	0.005	4/26/2017	Dixon`s	0.05	12	0.0115	0.002505	normal	ShapiroWilk
Mercury (mg/L)	MW-03	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-04	n/a	n/a	n/a	NP (nm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Mercury (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nm)	NaN	12	0.0002	0	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	12	0.005733	0.002192	unknown	ShapiroWilk
Molybdenum (mg/L)	MW-04	Yes	0.0025	5/18/2021	Dixon`s	0.05	12	0.007017	0.001743	normal	ShapiroWilk
Molybdenum (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	12	0.00605	0.002842	normal	ShapiroWilk
Molybdenum (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	12	0.006342	0.0008898	normal	ShapiroWilk
pH (n/a)	MM-03	No	n/a	n/a	EPA 1989	0.05	17	7.243	0.1543	normal	ShapiroWilk
pH (n/a)	MW-04	Yes	6.71	5/10/2016	Dixon's	0.05	17	7.223	0.1744	normal	ShapiroWilk
pH (n/a)	MW-05	No	n/a	n/a	EPA 1989	0.05	17	7.183	0.1793	normal	ShapiroWilk
pH (n/a)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	17	7.151	0.1617	normal	ShapiroWilk
Selenium (mg/L)	MW-03	No	n/a	n/a	NP (nrm)	NaN	12	0.00355	0.001102	unknown	ShapiroWilk
Selenium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002575	0.0001765	unknown	ShapiroWilk
Selenium (mg/L)	MW-05	No	n/a	n/a	NP (nm)	NaN	12	0.0064	0.006791	unknown	ShapiroWilk
Selenium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.0025	0	unknown	ShapiroWilk
Sulfate (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	20	113.7	38.23	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	19	116.8	37.08	normal	ShapiroWilk
Sulfate (mg/L)	MW-05	No	n/a	n/a	EPA 1989	0.05	18	128.7	60.87	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	18	109.8	37.14	ln(x)	ShapiroWilk
Thallium (mg/L)	MW-03	n/a	n/a	n/a	NP (nm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-04	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-05	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Thallium (mg/L)	MW-10 (bg)	n/a	n/a	n/a	NP (nrm)	NaN	12	0.002	0	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-03	No	n/a	n/a	EPA 1989	0.05	19	879.5	153.5	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-04	No	n/a	n/a	EPA 1989	0.05	20	866	138.9	ln(x)	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-05	No	n/a	n/a	NP (nrm)	NaN	20	875.5	207.8	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-10 (bg)	No	n/a	n/a	NP (nrm)	NaN	20	856.5	160.7	unknown	ShapiroWilk

Sanitas" v.9.5.09 Software licensed to KPRG and Associates, Inc. UG



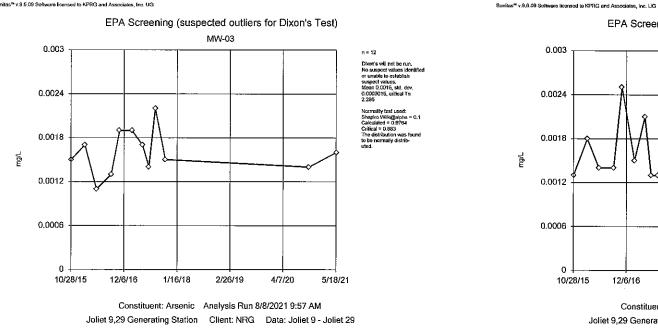

Sanitas14 v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

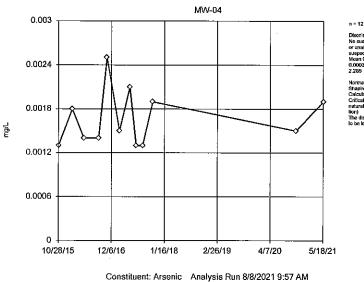


Constituent: Antimony Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29






n = 12


No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level

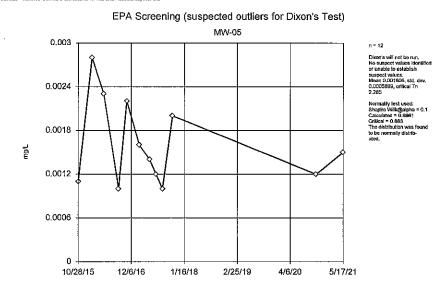
Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal

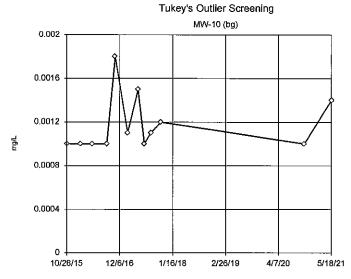
Constituent: Antimony Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG






Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

EPA Screening (suspected outliers for Dixon's Test)


Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.001658, sld. dov. 0.0003825, critical Tn 2.285

Normality tost used: Shapiro Wilk@alpha = 0,1 Calculated = 0.8891 Calculated = 0.8891 Critical = 0.883 (after natural log transforma-tion) The distribution was found to be tog-normal.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Arsenic Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senites** v.9.6.09 Software licensed to KPRG and Associates. Inc. UG

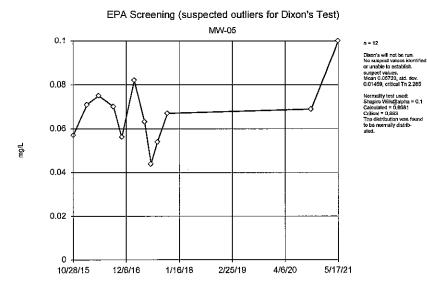


n = 12

No outliers found. Tukey's method used in lieu of parametric test because the Shaniro Wilk normality test failed at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

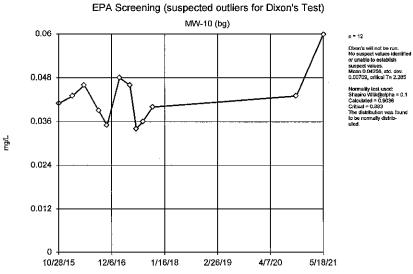
High cutoff = 0.002822, low cutoff = 0.0004592, based on IQR multiplier of 3.


Constituent: Arsenic Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

mg/L

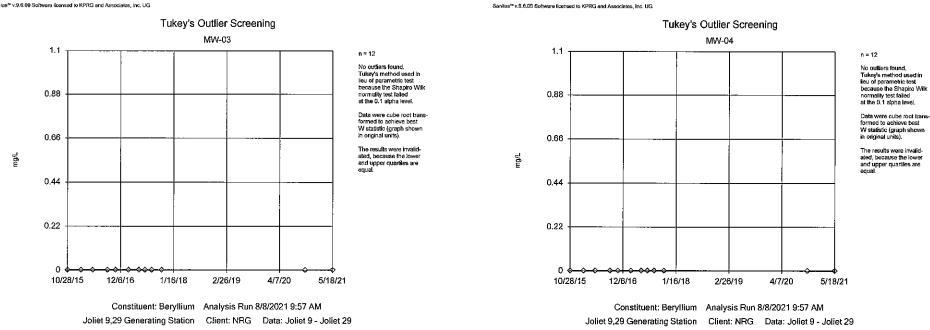
**Dixon's Outlier Test** Dixon's Outlier Test MW-03 MW-04 0.2 0.2 n = 12 n = 12 Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 0.09942. Statistical outlier is drawn as solid. Testing for 1 high outlier. Mean = 0.08867. 0.16 Std. Dev. = 0.01466. 0.14: c = 0.7692 0,16 Std. Dev. = 0.01203. 0.12: c = 0.5952 tabl = 0.546. tabl = 0.546. Alpha = 0.05. Alpha = 0,05. Normality test used: Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9358 Shapiro Wilk@alpha = 0.1 Calculated = 0.9563 0.12 0.12 Critical = 0.876 Critical = 0.876 The distribution, after The distribution, after removal of suspect valmg/L 0 removal of suspect val-ue, was found to be norue, was found to be nor-maily distributed. mally distributed. 0,08 0,08 0.04 0.04 0 0 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21 Constituent: Barium Analysis Run 8/8/2021 9:57 AM Constituent: Barium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sunitaa^m v.9.6.09 Software liconsod to KPRG and Associatos, Inc. UG

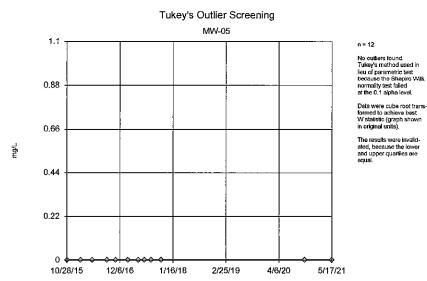


Constituent: Barium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



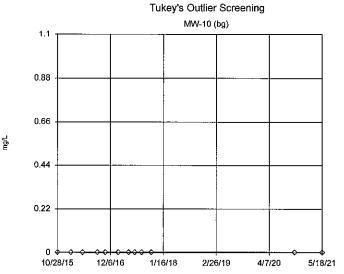

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Constituent: Barium Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sunitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Beryllium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

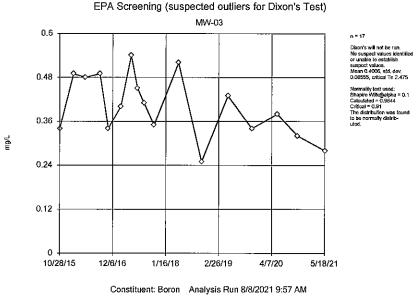




Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Beryllium

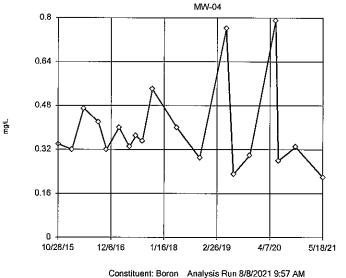

п = **12** 

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were cube root transformed to achieve best W statistic (graph shown

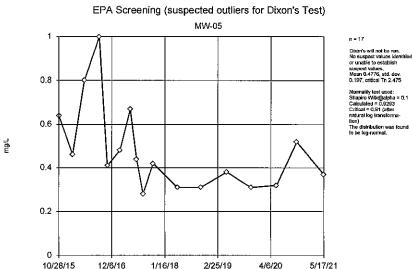
in original units). The results were invalid-ated, because the lower and upper quartiles are equal.

### Sanitas** v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG

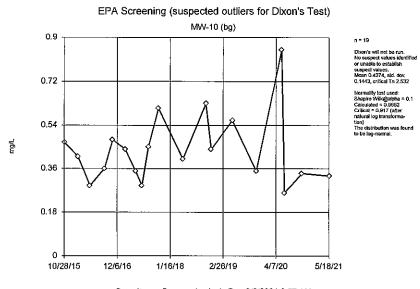



Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


### EPA Screening (suspected outliers for Dixon's Test)

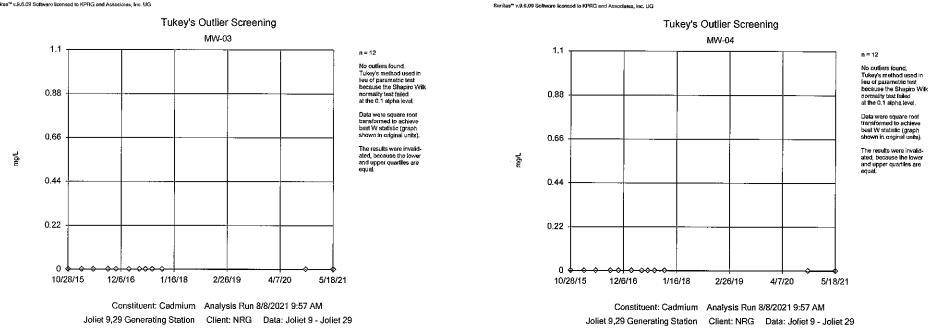
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



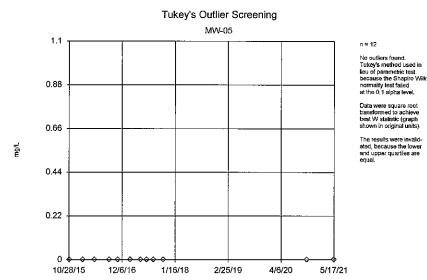

n = 19 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Man D.3928, std. dev. 0.1551, critical Tn 2.532

Normality lost used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9189 Critical = 0.917 (after natural log transformation) The distribution was found to be lose-normal.



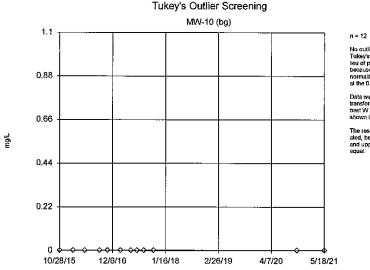

Constituent: Boron Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sonitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Constituent: Boron Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitos** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

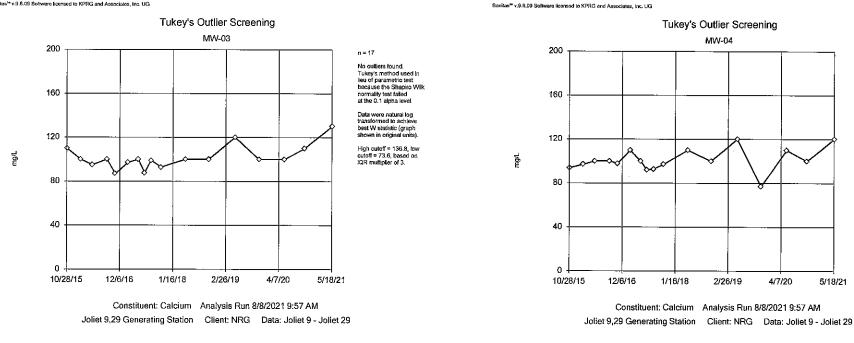


Constituent: Cadmium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

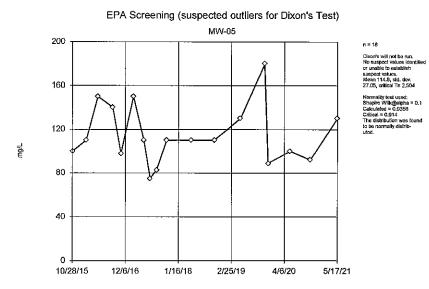
### Senitas^{III} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



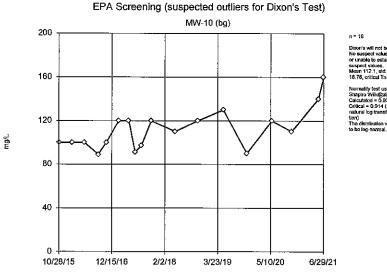
Analysis Run 8/8/2021 9:57 AM Constituent: Cadmium Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


No outliers found, Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph


shown in original units).

The results were invalid-ated, because the lower and upper quartiles are equal


Sanitas'" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Calcium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



n = 17

No outliers found,

Tukey's method used in lieu of parametric test

normality test failed at the 0.1 alpha level.

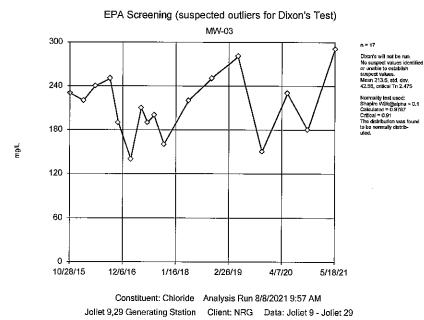
because the Shapiro Wilk

Ladder of Powers trans-

formations did not im-

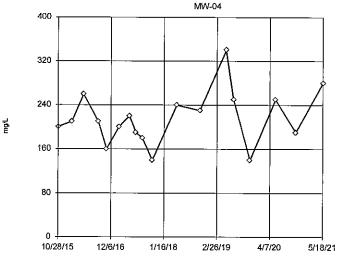
prove normality; analy-

High cutoff = 153.5. low


cutoff = 52, based on IQR multiplier of 3.

sis run on raw data.

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 112.1, std. dcv. 18.78, critical Tn 2.504


Normality test used: Shapiro Wilk@alpha = 0.1 Calculatod = 0.9362 Critical = 0.914 (after natural log transforma-tica) tion) The distribution was found

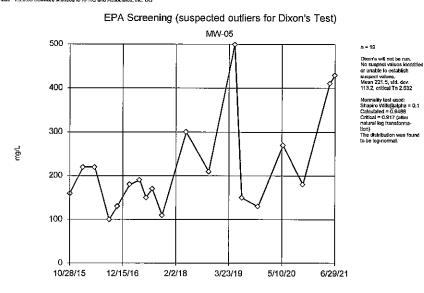
Constituent: Calcium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas'* v.9.5.09 Software licensed to KPRG and Associates, Inc. UG



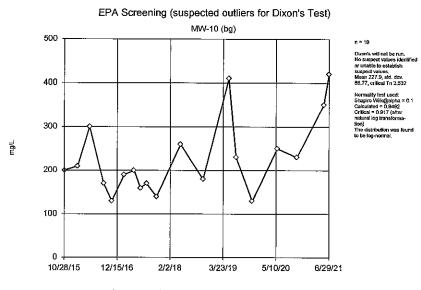
Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### EPA Screening (suspected outliers for Dixon's Test)



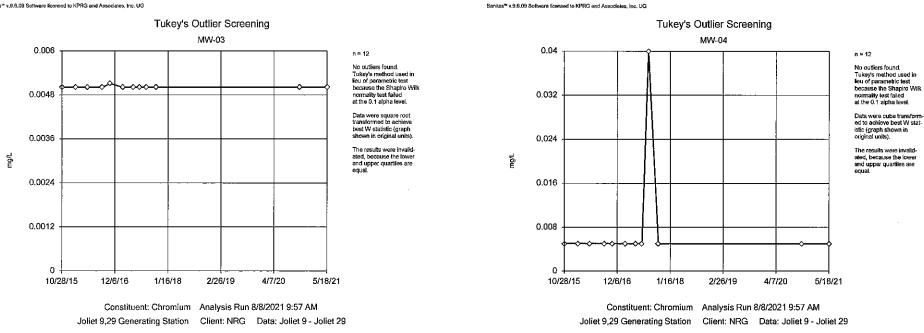

Constituent: Chloride Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

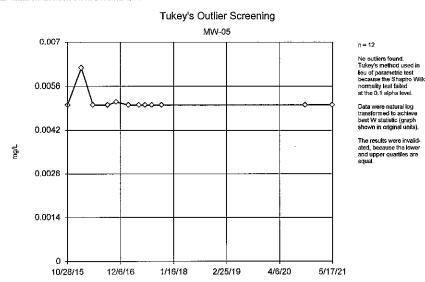

n = 18 Dixon's will not be run. No suspect values identified or unable to astablish suspect values. Maan 216.1, std. dev. 49.98, oritical Tn 2.504

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9616 Crificia = 0.914 The distribution was found to be normally distributed.

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

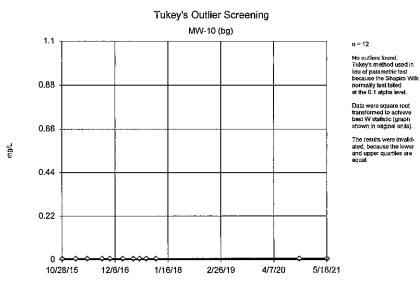



Constituent: Chloride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



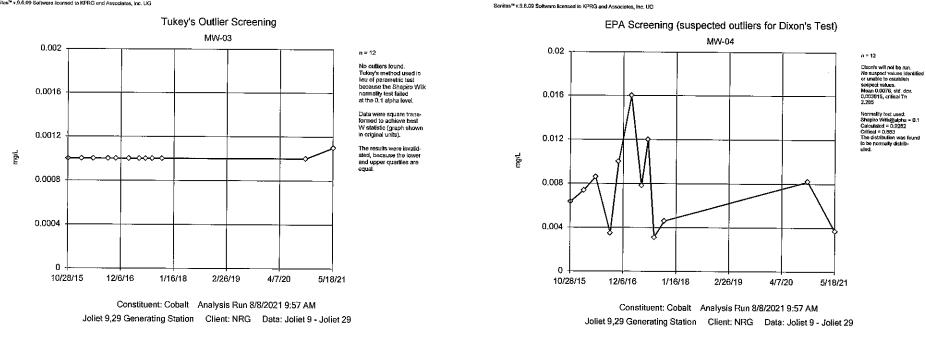

Constituent: Chloride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** v.9.6.09 Software ficensed to KPRG and Associates, Inc. UG

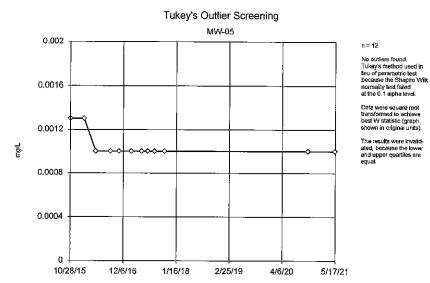



Sanitas** v.9.6.09 Software ficensed to KPRG and Associates, Inc. UG



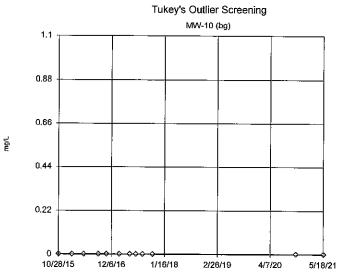

Constituent: Chromium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29






Constituent: Chromium Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Sanitas™ v.9,6.09 Software licensed to KPRG and Associates, Inc. UG



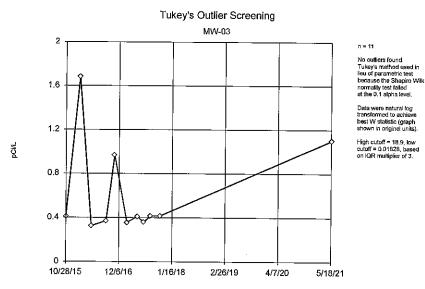

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



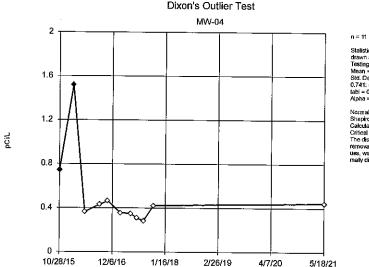
Constituent; Cobalt Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Sanites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




n = 12 No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk

normality test failed at the 0.1 alpha level

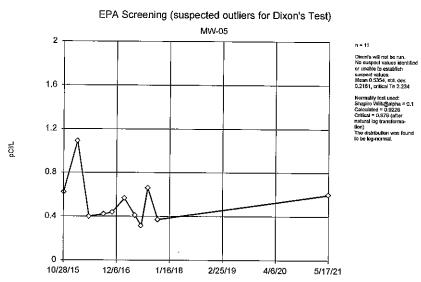

Data were cube root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Cobalt Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanites** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

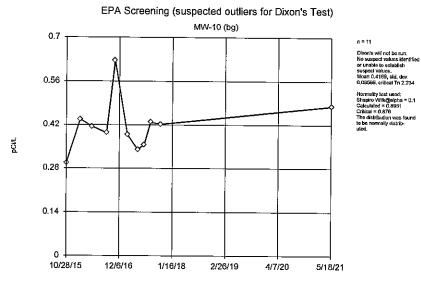


Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

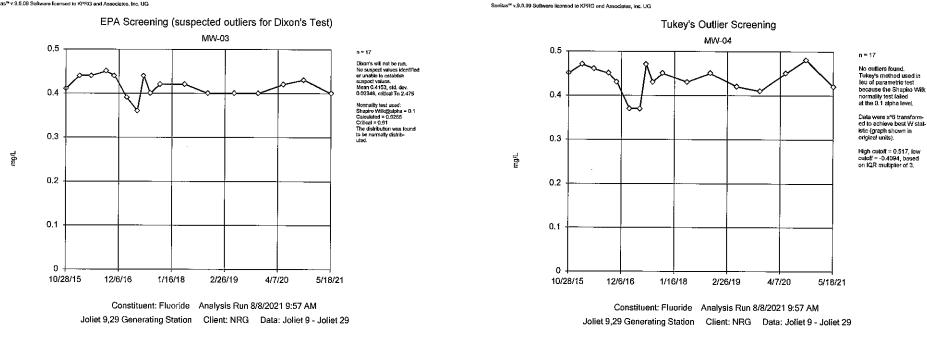



Statistical outliers are drawn as solid. Testing for 2 high outliers. Mean = 0.5169. Std. Dex. = 0.3544. 0.741: c = 0.6852 tabl = 0.576. Apha = 0.05. Normality test used:

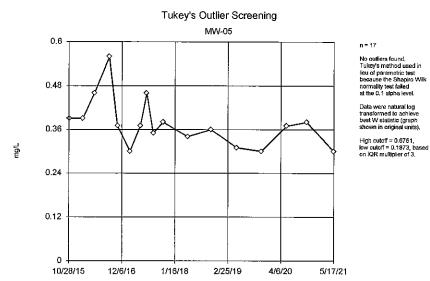
Shapiro Wilk@alpha = 0.1 Calculated = 0.9376 Critical = 0.859 The distribution, after removal of suspect values, was found to be normally distributed.


Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas^{es} v.9.6,09 Software licensed to KPRG and Associates, Inc. UG


Senites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG



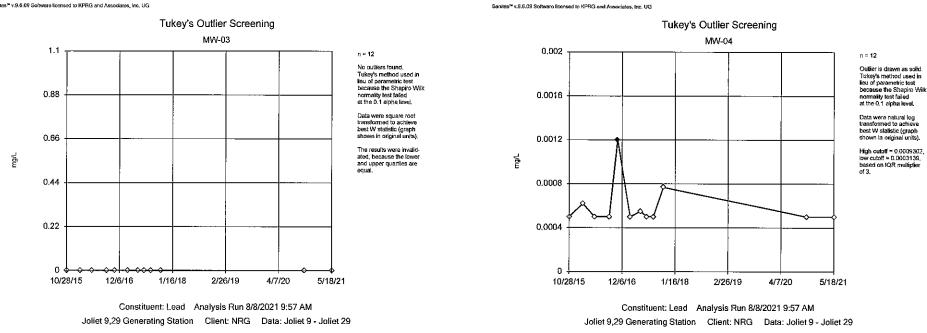
Sanitas^m y.9.6.09 Software licensed to KPRG and Associates. Inc. UG



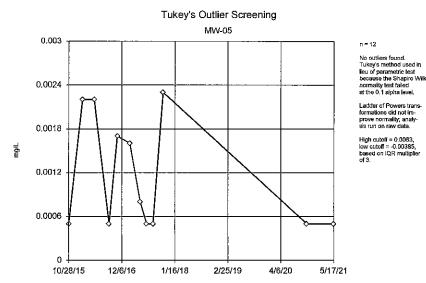
Constituent: Fluoride Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



EPA Screening (suspected outliers for Dixon's Test) MW-10 (bg) 0.5 0.4 0.3 ղցո 0.2 0.1 n 10/28/15 12/6/16 1/16/18 2/26/19 4/7/20 5/18/21

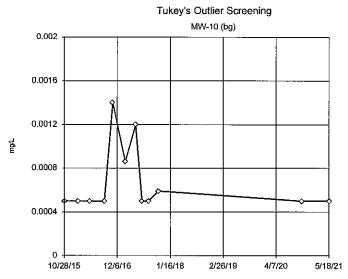

Constituent: Fluoride Analysis Run 8/8/2021 9:57 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


n = 17 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 0.4047, std. dev. 0.03145, critical Tn 2.475

Normality lest used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9672 Critical = 0.91 The distribution was found to be normally distrib-

Senites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Sanitas¹⁴ v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG

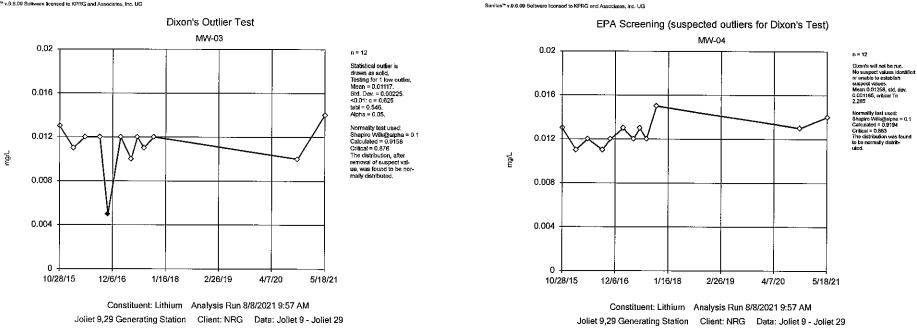


Constituent: Lead Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

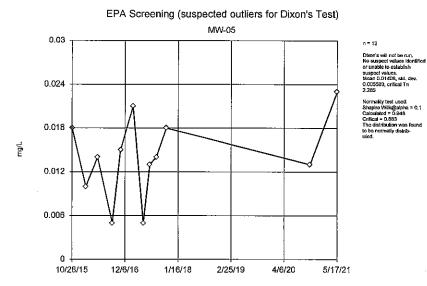




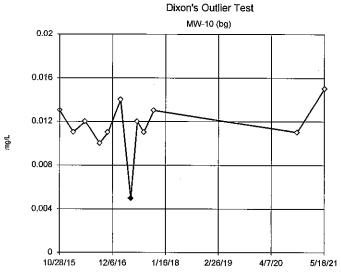
n = 12


No outliers found. Tukev's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level,

Data were natural log transformed to achieve best W statistic (graph


shown in original units). High cutoff = 0.00206, low cutoff = 0.0001729, based on IQR multiplier of 3.

Constituent: Lead Analysis Run 8/8/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas¹⁹ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

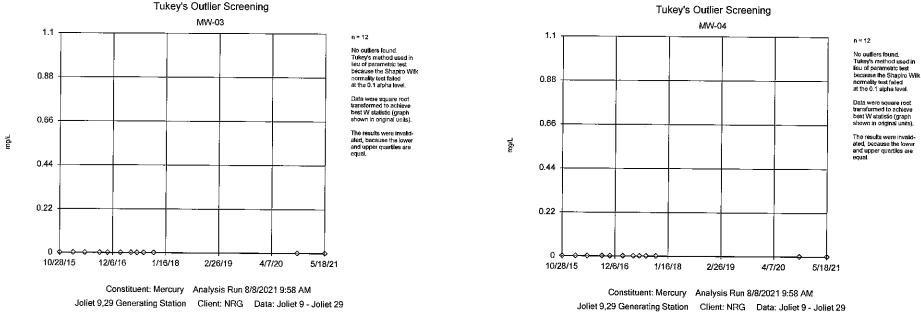


Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

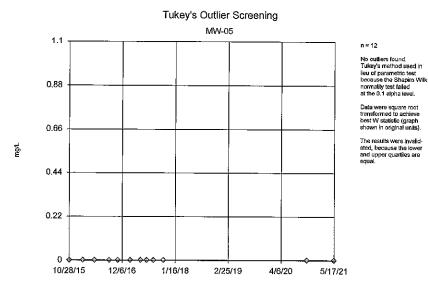


Constituent: Lithium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




n = 12

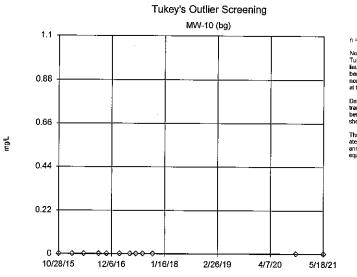
Statistical outlier is drawn as solid. Testing for 1 low outlier, Mean = 0.0115. Std. Dev. = 0.002505. <0.01: c = 0.6667 tabl = 0.546. Alpha = 0.05.


Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9246 Critical = 0.876 The distribution, after removal of suspect value, was found to be nor-mally distributed.

Constituent: Lithium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Senites" v.9.6.09 Softwure licensed to KPRG and Associates, Inc. UG




Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Mercury Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

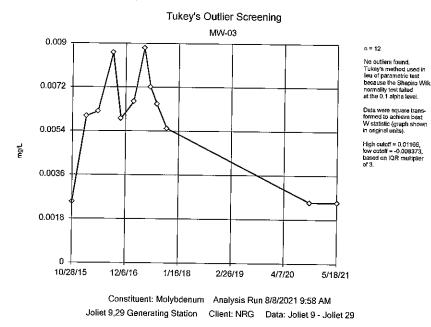


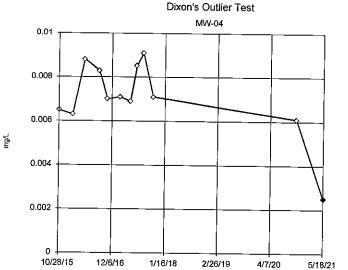
Sanitas's v.9.5.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Mercury Analysis Run 8/8/2021 9:58 AM

Joliet 9,29 Generating Station Client; NRG Data: Joliet 9 - Joliet 29


n = 12 No puttiers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk

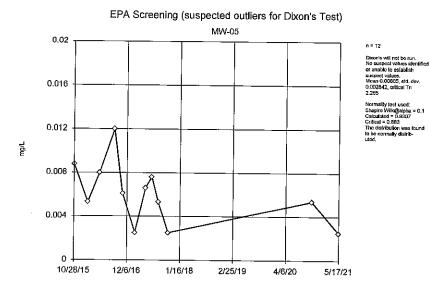

normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph shown in original units)

The results were invalidated, because the lower and upper quartiles are equal.

Sanitas^M v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

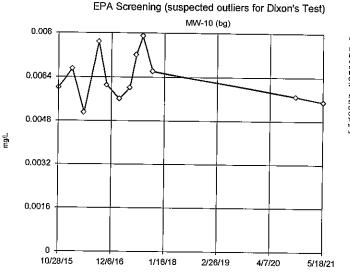





n = 12 Statistical outlier is drawn as solid. Testing for 1 low outlier. Mean = 0.007017. Std. Dev. = 0.0017143. <0.005: c = 0.6032 tabl = 0.546. Alpha = 0.05.

Normality test used; Shapiro Wik@alpha = 0.1 Calculated = 0.6992 Critical = 0.876 The distribution, after removal of suspect valte, was found to be normally distributed.

Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

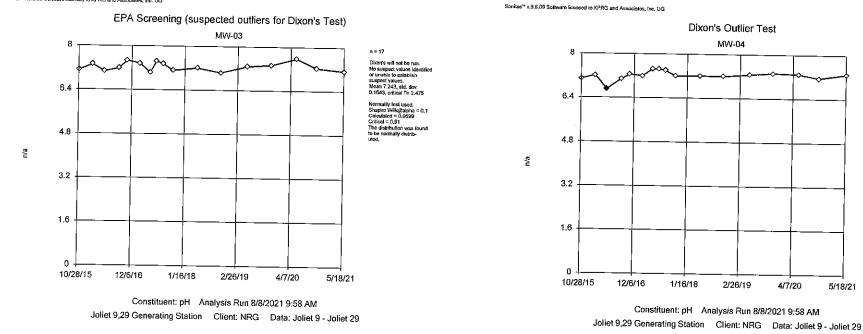

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




n = 12 Dixon's will not be run. No suspect values idonfilied or unable to establish suspect values. Mean 0.006342, eld. dev. 0.0008858, entical Tn 2.2865

Normality test used: Shapiro Wik@alpha = 0.1 Calculated = 0,9372 Critical = 0.883 The dislibution vas found to be normally distributed.

Constituent: Molybdenum Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

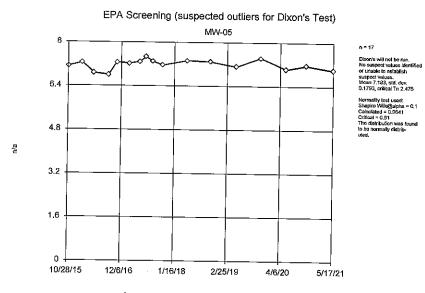
### Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



MW-04

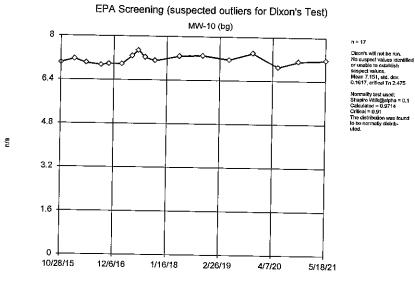
2/26/19

4/7/20


5/18/21

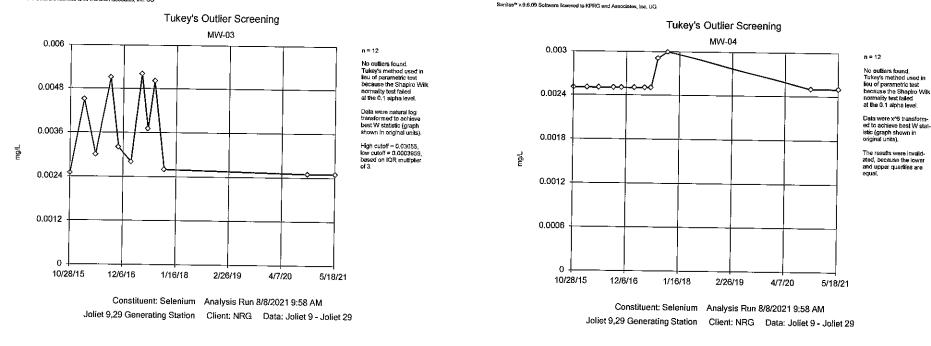
Statistical outlier is drawn as solid. Testing for 1 low outlier. Mean = 7,223. Std. Dev. = 0.1744. 6.71: c = 0.5143 tabl ≈ 0.49, Alpha = 0.05,

n = 17

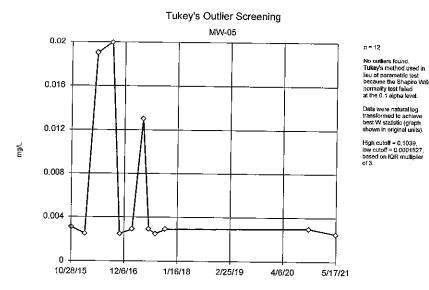

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9505 Critical = 0.906 The distribution, after removal of suspect val-ue, was found to be nor-mally distributed.

Sanitas** v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG



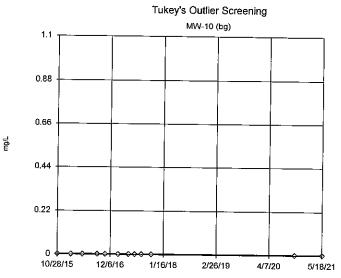

Constituent: pH Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29






Constituent: pH Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6,09 Software licensed to KPRG and Associates, Inc. UG




Sanitas³⁸ v.9.6.03 Software licensed to KPRG and Associates, Inc. UG

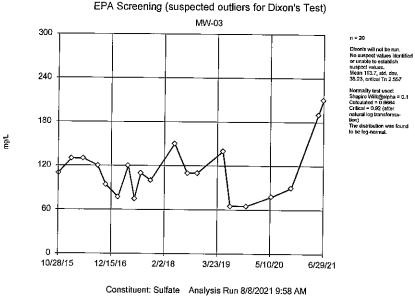


Constituent: Selenium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29





Constituent: Selenium Analysis Run 8/8/2021 9:58 AM


Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

n = 12 No outliers found. Tukey's method used in fieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

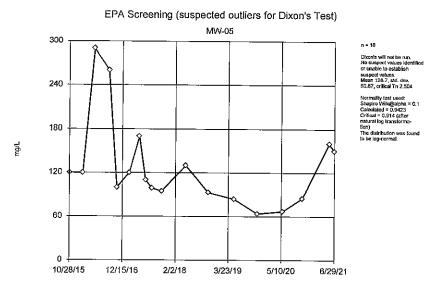
Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

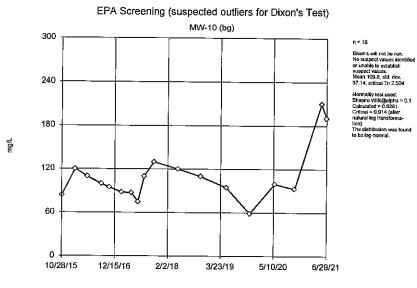
Sanitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### MW-04 200 n = 19 160 120 uted. лgЛ 80 40 n 10/28/15 12/15/16 2/2/18 3/23/19 5/10/20 6/29/21


EPA Screening (suspected outliers for Dixon's Test)

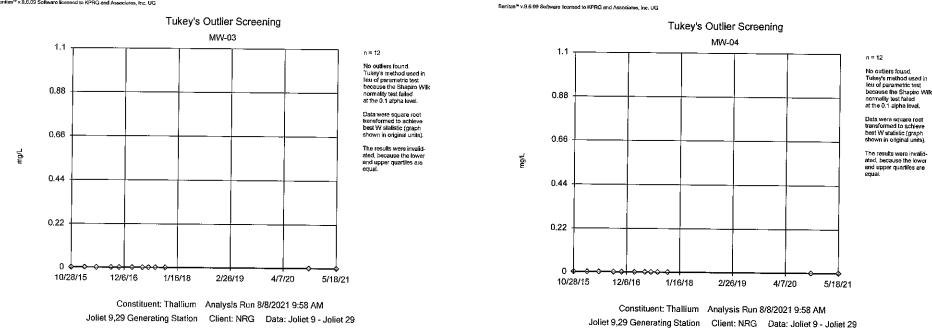
n – 19 Dixon's will not be run. No suspect values identified or unable to establish suspect values, Mean 116.8, std. dev. 37.06, critical Tr. 2.532

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.947 Critical = 0.917 The distribution was found to be normally distrib-

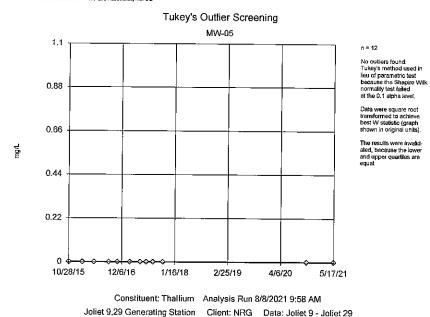

Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

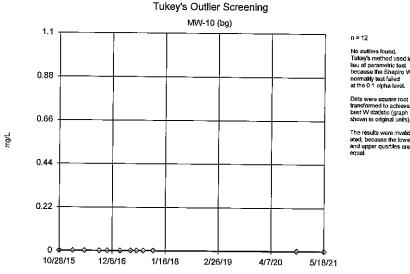



Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29






Constituent: Sulfate Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


### Sanitas** v.9,6.09 Software licensed to KPRG and Associates, Inc. UG



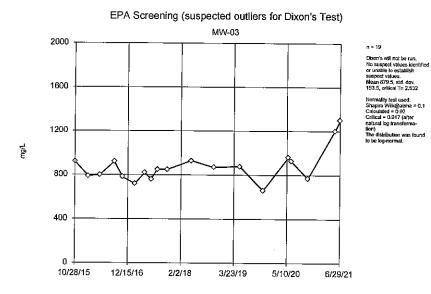
Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



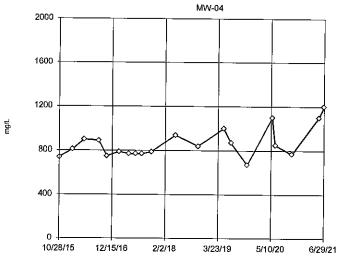
n = 12


No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were square root transformed to achieve best W statistic (graph

The results were invalidated, because the lower and upper guartiles are

Constituent: Thallium Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas™ v.9.6.09 Solfware licensed to KPRG and Associates, Inc. UG

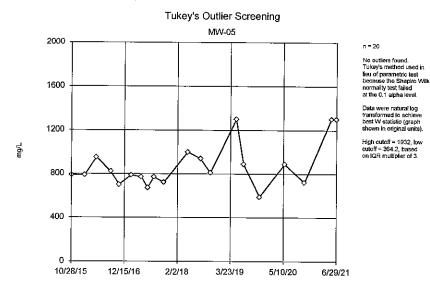


Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^m v.9,6.09 Software licensed to KPRG and Associates, Inc. UG

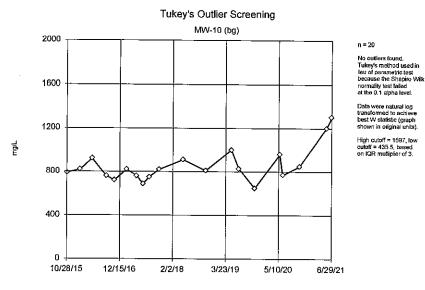
### EPA Screening (suspected outliers for Dixon's Test)




n = 20 Dixon's will not be run. No suspect values Identified or unable to ostablish suspect values. Mean 666, std. dov, 138.9, critical Tn 2.557

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9241 Critical = 0.92 (after natural log transformation)

tion) The distribution was found to be log-normal.


Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



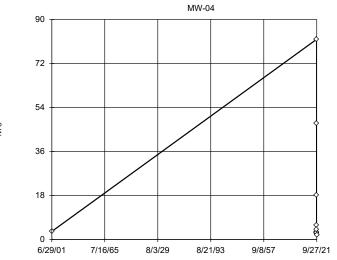
Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29





Constituent: Total Dissolved Solids Analysis Run 8/8/2021 9:58 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

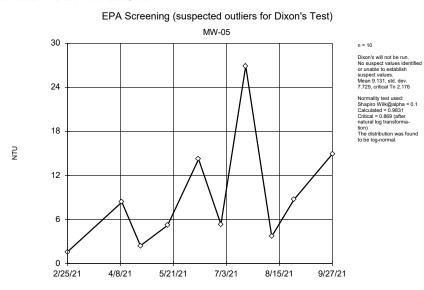
# Outlier Analysis - Joliet 29 - All Wells All Values


Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:37 PM

<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Turbidity (NTU)	MW-03	No	n/a	n/a	EPA 1989	0.05	10	8.956	11.98	ln(x)	ShapiroWilk
Turbidity (NTU)	MW-04	No	n/a	n/a	NP (nrm)	NaN	10	17.11	26.77	unknown	ShapiroWilk
Turbidity (NTU)	MW-05	No	n/a	n/a	EPA 1989	0.05	10	9.131	7.729	ln(x)	ShapiroWilk
Turbidity (NTU)	MW-10 (bg)	No	n/a	n/a	EPA 1989	0.05	10	10.86	6.601	normal	ShapiroWilk

NTU

#### EPA Screening (suspected outliers for Dixon's Test) MW-03 40 90 n = 10 Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 8.956, std. dev 32 11.98, critical Tn 2.176 72 Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9265 Critical = 0.869 (after natural log transformation) The distribution was found 24 54 to be log-normal. NTU 16 36 8 18 Ω Ω 3/2/21 4/12/21 5/24/21 7/5/21 8/16/21 9/27/21 6/29/01


Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



Tukey's Outlier Screening

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



NTU

## EPA Screening (suspected outliers for Dixon's Test) MW-10 (bg) 24 18 12 6 0 3/2/21 3/2/21 4/12/21 5/24/21 7/5/21 8/16/21 9/27/21

n = 10 No outliers found. Tukey's method used in

lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 40144, low cutoff = 0.001949, based on IQR multiplier of 3.

n = 10

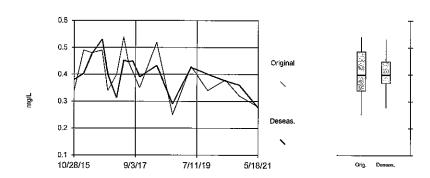
Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 10.86, std. dev. 6.601, critical Tn 2.176

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.8725 Critical = 0.869 The distribution was found to be normally distributed.

Constituent: Turbidity Analysis Run 10/7/2021 2:36 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

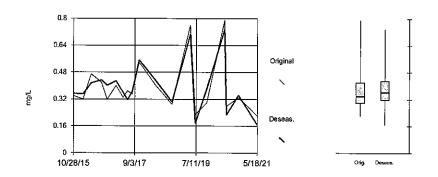
# Seasonality - Joliet #29 - All CCR Wells

	Joliet 9,29 Generating Station	Client: NRG	Data: Jolie	et 9 - Joliet 29	Printed 8/8/2021, 10:19 AM			
Constituent	Well		Sig.	<u>KW.</u>	<u>Chi-Sq.</u>	df	<u>N</u>	<u>Alpha</u>
Boron (mg/L)	MW-03		No	0	0	0	17	0.05
Boron (mg/L)	MW-04		No	0	0	0	19	0.05
Boron (mg/L)	MW-05		No	0	0	0	17	0.05
Boron (mg/L)	MW-10 (bg)		No	2.541	7.815	3	19	0.05
Calcium (mg/L)	MW-03		No	2.541	7.815	3	17	0.05
Calcium (mg/L)	MVV-04		No	2.541	7.815	3	17	0.05
Calcium (mg/L)	MVV-05		No	1.353	7.815	3	18	0.05
Calcium (mg/L)	MW-10 (bg)		No	1.353	7.815	3	18	0.05
Chloride (mg/L)	MVV-03		No	1.353	7,815	3	17	0.05
Chloride (mg/L)	MW-04		No	1.353	7.815	3	18	0.05
Chloride (mg/L)	MVV-05		No	1.353	7.815	3	19	0.05
Chloride (mg/L)	MW-10 (bg)		No	1.353	7.815	3	19	0.05
Fluoride (mg/L)	MVV-03		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MVV-04		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MW-05		No	1.353	7.815	3	17	0.05
Fluoride (mg/L)	MW-10 (bg)		No	1.353	7.815	3	17	0.05
pH (n/a)	MVV-03		No	1.353	7.815	3	17	0.05
pH (n/a)	MW-04		No	1.353	7.815	3	17	0.05
pH (n/a)	MW-05		No	1.353	7.815	3	17	0.05
pH (n/a)	MW-10 (bg)		No	1.353	7.815	3	17	0.05
Sulfate (mg/L)	MW-03		No	1.353	7.815	3	20	0.05
Sulfate (mg/L)	MVV-04		No	1.353	7.815	3	19	0.05
Sulfate (mg/L)	MVV-05		No	1.353	7.815	3	18	0.05
Sulfate (mg/L)	MW-10 (bg)		No	1.353	7.815	3	18	0.05
Total Dissolved Solids (mg/L)	MW-03		No	1.353	7.815	3	19	0.05
Total Dissolved Solids (mg/L)	MVV-04		No	1.353	7.815	3	20	0.05
Total Dissolved Solids (mg/L)	MW-05		No	1.353	7.815	3	20	0.05
Total Dissolved Solids (mg/L)	MW-10 (bg)		No	1.353	7.815	3	20	0.05


Sanitas^{III} v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04

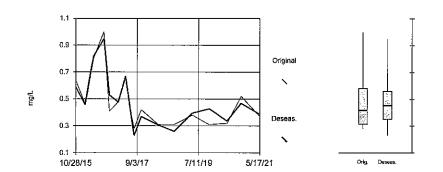

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Seasonality: MW-03



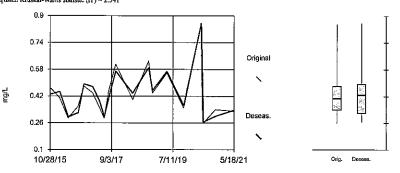

Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).




Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG.

Seasonality: MW-10 (bg)

For the selected data, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 2.541 Tabulated Chruskal-Wallis statistic = 2.541 There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H) was utilized to determine if

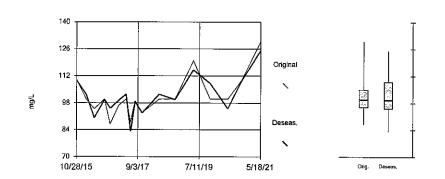
the medians were equal.

Kruskal-Wallis statistic (H) = 2.534 Adjusted Kruskal-Wallis statistic (H) = 2.541

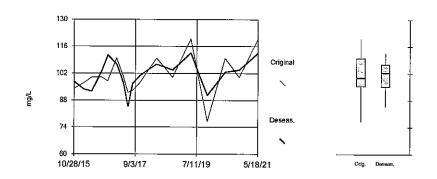


Constituent: Boron Analysis Run 8/8/2021 10:17 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Senitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas[™] v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### Seasonality: MW-04


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

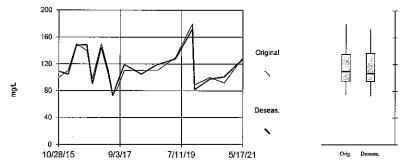


Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas** y.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### Seasonality: MW-05

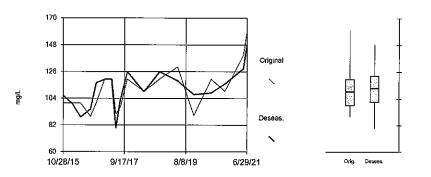
For the selected data, the Kruskal-Wallis test indicates NO SEASONALITYAt the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season.


Calculated Kruskal-Wallis statistic = 1,353

Tabulated Chi-Squared value = 7.815 with 3 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H) was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 1.321


Adjusted Kruskal-Wallis statistic (H') = 1.353



Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client; NRG Data: Joliet 9 - Joliet 29 Sanitus¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

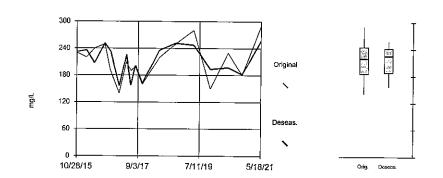
Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

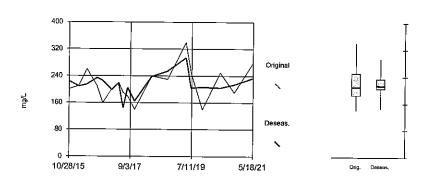


Constituent: Calcium Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Sanitas¹⁴ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas" v.9.6.09 Software liconsed to KPRG and Associates, Inc. UG

### Seasonality: MW-04

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

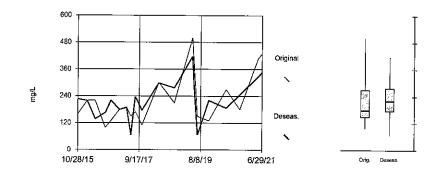


Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

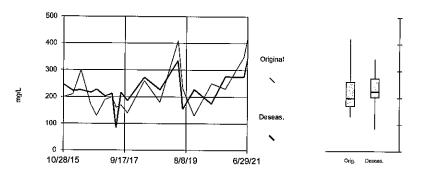


Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas^a v.9.6.09 Softwara licensed to KPRG and Associates, Inc. UG

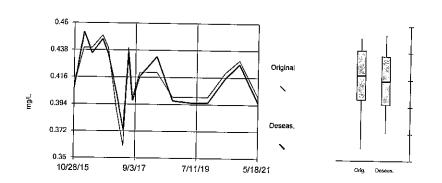
Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



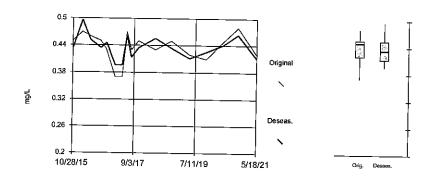
Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29




Constituent: Chloride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Sanitas¹⁶ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### Seasonality: MW-04


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



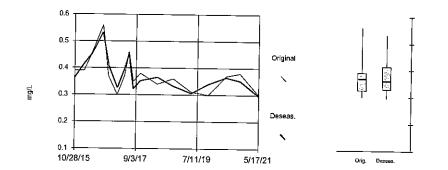
Seasonality: MW-03

Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

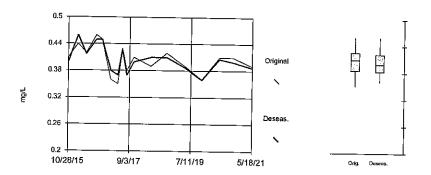


Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas[®] v.9.6.09 Software licensed to KPRG and Associates, Inc. LIG


Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

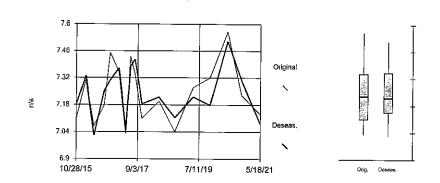

Sanitas^a v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



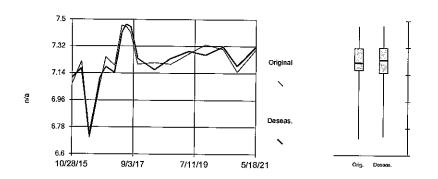
Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29




Constituent: Fluoride Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Sanites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-04


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

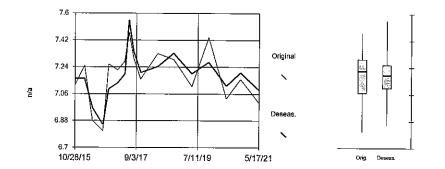
Seasonality: MW-03

Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

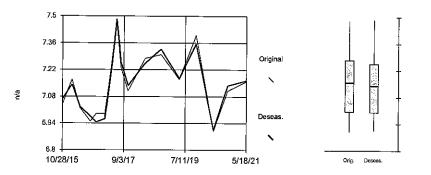


Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas^{te} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanites^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

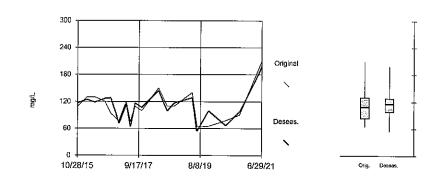
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

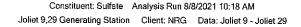


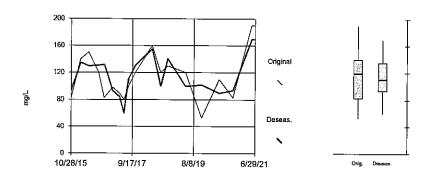
Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



Constituent: pH Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Senites™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


### Seasonality: MW-04


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

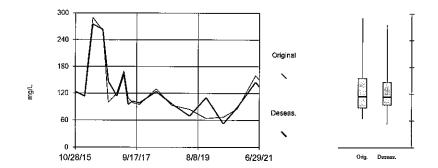


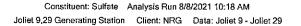


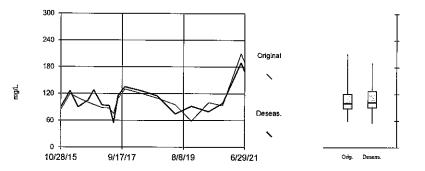


Constituent: Sulfate Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sonites" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG


Seasonality: MW-05


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).


Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

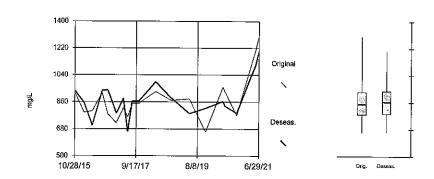




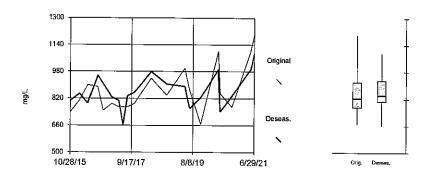


Constituent: Sulfate Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

### Sanilas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

### Seasonality: MW-04


Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

Seasonality: MW-03

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

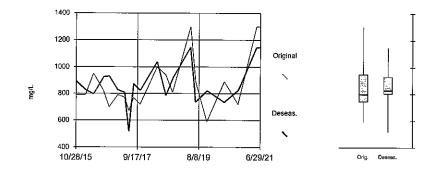


Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

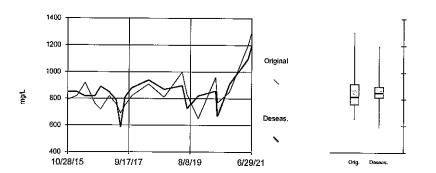


Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


Seasonality: MW-05

Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).

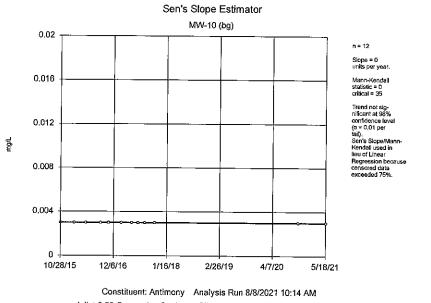

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Seasonality: MW-10 (bg)

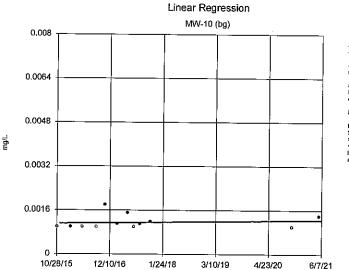
Data set is of insufficient size to test for seasonality (non-parametric ANOVA requires a minimum of three observations per group, i.e. season).



Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29




Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:18 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


## Trend Test Joliet #29 MW-10 UG

	Joliet 9,29	Generating Sta	tion Client:	NRG Data: J	oliet 9 - Joli	et 29	Printed 8/8/20:	21, 10:15 AM			
Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<b>Critical</b>	<u>Sig.</u>	N	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0,02	NP (NDs)
Arsenic (mg/L)	MW-10 (bg)	0.02072	0.5843	2.359	No	12	41.67	Yes	natura	0.02	Param.
Barium (mg/L)	MW-10 (bg)	0.002143	1.955	2,359	No	12	0	Yes	no	0.02	Param.
Beryllium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Boron (mg/L)	MW-10 (bg)	0.008327	0.4069	2.224	No	19	0	Yes	no	0.02	Param.
Cadmium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Calcium (mg/L)	MW-10 (bg)	6.638	3.416	2.235	Yes	18	0	Yes	no	0.02	Param.
Chloride (mg/L)	MW-10 (bg)	25.19	2.539	2.224	Yes	19	0	Yes	no	0.02	Param.
Chromium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Cobalt (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Combined Radium 226 + 228 (pCi/L)	MW-10 (bg)	0.0149	0.8027	2.398	No	11	72.73	Yes	no	0.02	Param.
Fluoride (mg/L)	MW-10 (bg)	-0.00	-1,303	2.249	No	17	0	Yes	no	0.02	Param.
Lead (mg/L)	MW-10 (bg)	0	D	35	No	12	66.67	n/a	n/a	0.02	NP (Nor
Lithium (mg/L)	MW-10 (bg)	0.000	0.7936	2.359	No	12	8.333	Yes	no	0.02	Param.
Mercury (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Molybdenum (mg/L)	MW-10 (bg)	-0.00	-0.8336	2.359	No	12	0	Yes	no	0.02	Param.
pH (n/a)	MW-10 (bg)	0.01492	0.6175	2.249	No	17	0	Yes	no	0.02	Param.
Selenium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Sulfate (mg/L)	MW-10 (bg)	9.656	2.174	2.235	No	18	0	Yes	no	0.02	Param.
Thallium (mg/L)	MW-10 (bg)	0	0	35	No	12	100	n/a	n/a	0.02	NP (NDs)
Total Dissolved Solids (mg/L)	MW-10 (bg)	49.54	2.873	2.214	Yes	20	0	Yes	no	0.02	Param.

Sanitas^w v.9.6.09 Soltware licensed to KPRG and Associates, Inc. UG Hollow symbols indicate consored values.



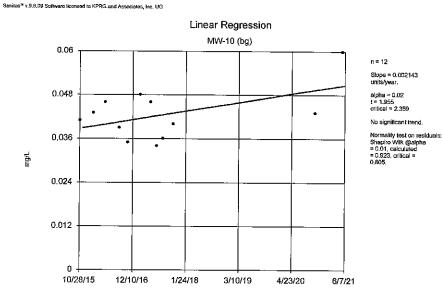
Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



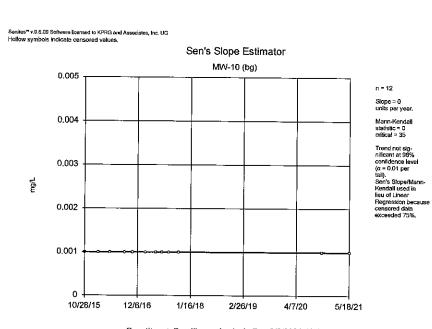
Constituent: Arsenic Analysis Run 8/8/2021 10:14 AM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanites" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

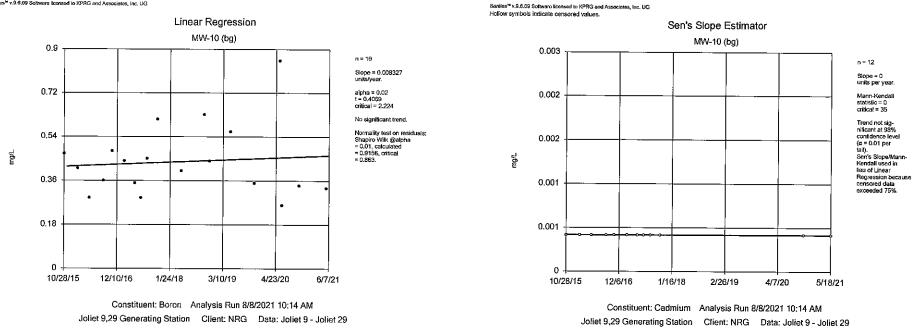

Hollow symbols indicate censored values.

n = 12 41.67% NDs Slope = 0.02072 natural log units/year.

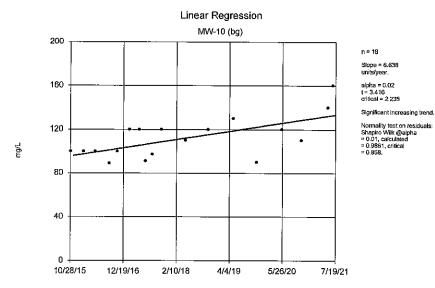

alpha = 0.02 t = 0.5843 critical = 2.359

No significant trend.

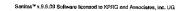
Normality test on residuals; Shapiro Wilk @alpha = 0.01, calculated = 0.8359 after natural log transformation, critical = 0.805,

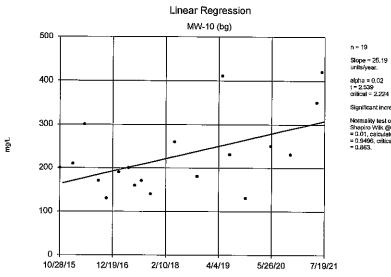



Constituent: Barium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29




Constituent: Beryllium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


Sanitas^{ter} v.9.6,09 Software licensed to KPRG and Associates, Inc. UG




Sanitas^{ar} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

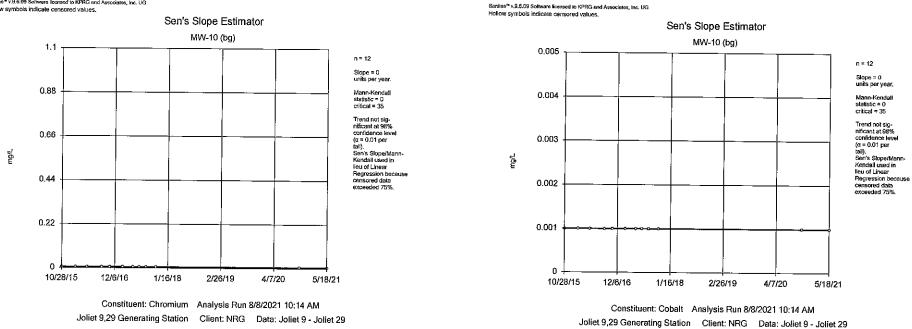


Constituent: Calcium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29





Slope = 25,19 units/year,




Significant increasing trend,

Normality test on residuals: Shapiro Wilk @alpha = 0.01, calculated = 0.9496, critical = 0.863.

Constituent: Chloride Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG Hollow symbols indicate censored values.



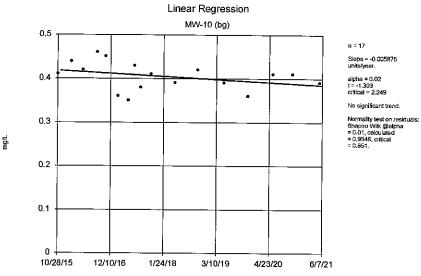
n = 11 72.73% NDs

Slope = 0.0149 units/year.

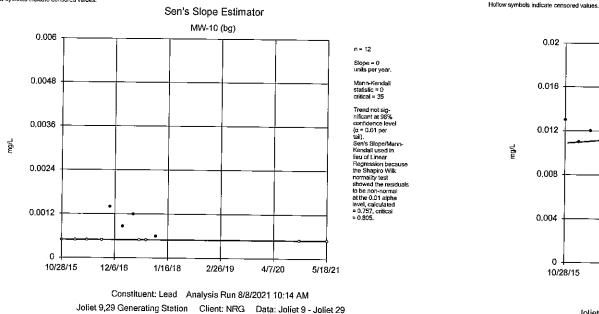
alpha = 0.02 t = 0.8027 critical = 2.398

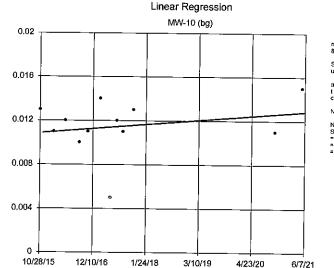
No significant trend.

= 0.8148, critical = 0.792.


Normality test on residuals: Shapiro Wilk @alpha = 0.01, calculated

Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.


Linear Regression MW-10 (bg) 0.7 0.56 0.42 • pCiVL ° ° 0.28 0.14 0 10/28/15 12/10/16 1/24/18 3/10/19 4/23/20 6/7/21


Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



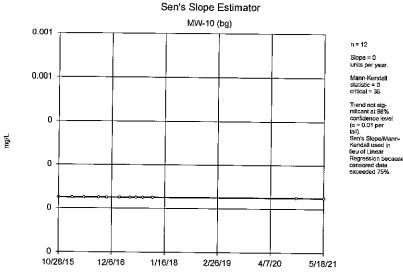


Constituent: Fluoride Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29





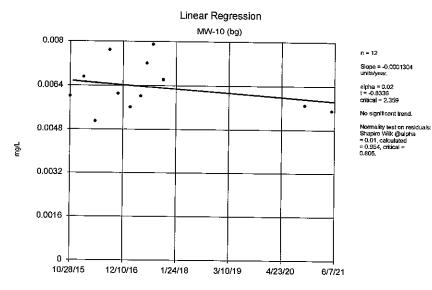
n = 12 8.333% NDs Slope = 0.0003505 units/year.


alpha = 0.02 t = 0.7936 critical = 2.359

No significant trend.

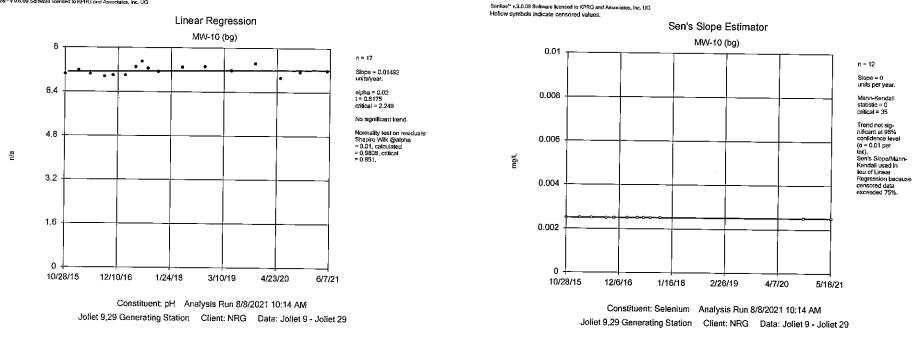
Normality test on residuals: Shapiro Wilk @atpha = 0.01, calculated = 0.8517, critical = 0.805,

Constituent: Lithium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

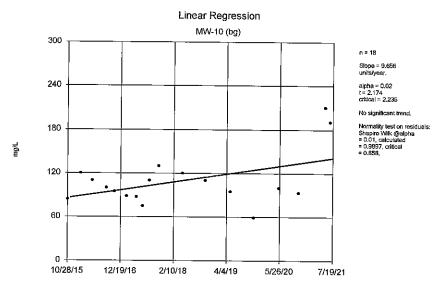

Sanitas^w v.9.6.09 Software licensed to KPRG and Associates, Inc. UG Hollow symbols indicate censored values.



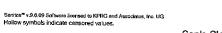
Constituent: Mercury Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

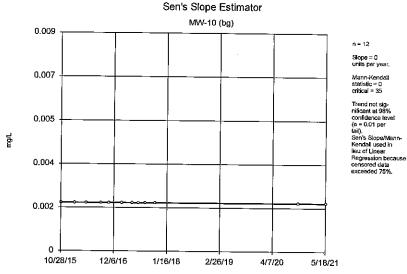



Senitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

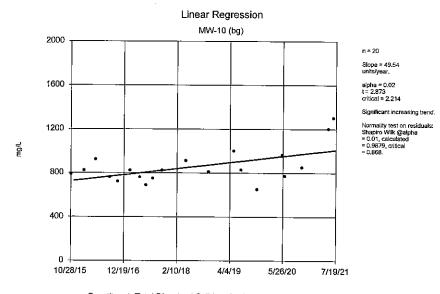



Constituent: Molybdenum Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29


### Sanitas* v.9,6.09 Software licensed to KPRG and Associates, Inc. UG




Sanitas* v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG

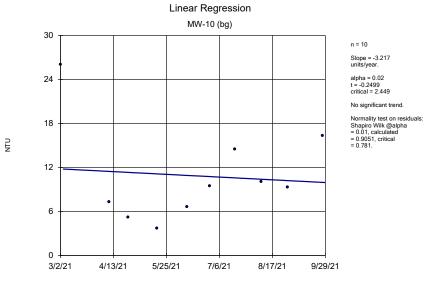



Constituent: Sulfate Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29





Constituent: Thailium Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Senitas" v.9.6.09 Software licensed to KPRG and Associatos, Inc. UG




Constituent: Total Dissolved Solids Analysis Run 8/8/2021 10:14 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

# Trend Test Joliet #29 MW-10 Turbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:47 PM

Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	N	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Turbidity (NTU)	MW-10 (bg)	-3.217	-0.2499	2.449	No	10	0	Yes	no	0.02	Param.



Constituent: Turbidity Analysis Run 10/7/2021 2:45 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Antimony Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha $=$ 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	<b>x^</b> 5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Arsenic Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well Tra	insformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12, alpha	a = 0.05)			
по		0.7417	0.859	NO
squ	are root	0,7553	0.859	No
squ	lare	0.709	0.859	No
cub	be root	0.7594	0.859	No
cub	e	0.6705	0.859	No
nat	ural log	0.7669	0.859	No
x^4		0.6288	0.859	No
x^5	5	0.5868	0.859	No
x^6	5	0.5469	0.859	No

Constituent: Barium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Vell	Transformation	Calculated	Critical	Norma
4W-10 (bg) (n =	12, $alpha = 0.05$ )			
	no	0.9036	0.859	Yes
	square root	0.9268	0.859	Yes
	square	0.8453	0.859	No
	cube root	0.9336	0.859	Yes
	cube	0.7769	0.859	No
	natural log	0.9454	0.859	Yes
	x^4	0.7058	0.859	No
	x^5	0.6383	0.859	No
	x^6	0.5782	0.859	No

Constituent: Beryllium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
MW-10 (bg) (n	= 12, alpha = 0.05			
	no	-1	0.859	No
	square root	-1	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
x^4	x^4	-1	0.859	No
	<b>x</b> ^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Boron Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n =	= 19, alpha = 0.05)			
	no	0.8874	0.901	No
	square root	0.9339	0.901	Yes
	square	0.7655	0.901	No
	cube root	0.9464	0.901	Yes
	cube	0.6355	0.901	No
	natural log	0.9662	0.901	Yes
	x^4	0.5242	0.901	No
	x^5	0.4401	0.901	No
	x^6	0.3805	0.901	No

-----

------

Constituent: Cadmium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 12,	= 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	x^6	-1	0.859	No

Constituent: Calcium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	ı = 18, alpha = 0.05)			
	no	0.9087	0.897	Yes
	square root	0.9244	0.897	Yes
	square	0.866	0.897	No
	cube root	0.9288	0.897	Yes
	cube	0.8107	0.897	No
	natural log	0.9362	0.897	Yes
	x^4	0.7474	0.897	No
	x^5	0.6816	0.897	No
	x^6	0.6183	0.897	No

Constituent: Chloride Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 19, alpha $=$ 0.05)			
	no	0.8777	0.901	No
	square root	0.9191	0.901	Yes
	square	0.7794	0.901	No
	cube root	0.9306	0.901	Yes
	cube	0.6854	0.901	No
	natural log	0.9492	0.901	Yes
	x^4	0.6097	0.901	No
	<b>x^</b> 5	0.5532	0.901	No
	х^б	0.5122	0.901	No

Constituent: Chromium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No

Constituent: Cobalt Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma
MW-10 (bg) (n = 12,	= 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	-1	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No

Constituent: Combined Radium 226 + 228 Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

We <u>ll</u>		Transformation	Calculated	Critical	Normal
MW~10 (b	MW~10 (bg) (n = 11	l, alpha = 0.05)			
		no	0.8951	0.85	Yes
		square root	0.928	0.85	Yes
		square	0.8127	0.85	No
		cube root	0.9372	0.85	Yes
		cube	0.7228	0.85	No
		natural log	0.9527	0.85	Yes
		x^4	0.6393	0.85	No
		x^5	0.5689	0.85	No
		х^б	0.513	0.85	No

Constituent: Fluoride Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n = 1)	= 17, alpha = 0.05)			
	no	0.9672	0.892	Yes
	square root	0.9655	0.892	Yes
	square	0.9683	0.892	Yes
	cube root	0.9648	0.892	Yes
	cube	0.9663	0.892	Yes
	natural log	0.963	0.892	Yes
	x^4	0.9612	0.892	Yes
	x^5	0.9531	0.892	Yes
	x^6	0.9424	0.892	Yes

Constituent: Lead Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha = 0.05)			
	no	0.6248	0.859	No
	square root	0.6354	0.859	No
	square	0.598	0.859	No
	cube root	0.6385	0.859	No
	cube	0.5677	0.859	No
	natural log	0.6439	0.859	No
	x^4	0.5377	0.859	No
	x^5	0.5103	0.859	No
	x^6	0.4864	0.859	No

Constituent: Lithium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma	
MW-10 (bg) (n = 12,	12, $alpha = 0.05$ )				
	по	0.8624	0.859	Yes	
	square root	0.8009	0.859	No	
	square	0.9403	0.859	Yes	
	cube root	0.7781	0,859	No	
	cube	0.9555	0.859	Yes	
	natural log	0.7307	0.859	No	
	x^4	0.9304	0.859	Yes	
	x^5	0.8884	0.859	Yes	
	x^6	0.8422	0.859	No	

Constituent: Mercury Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (r	n = 12, alpha = 0.05)			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	0	0.859	No
	cube	-1	0.859	No
	natural log	-1	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.859	No
	х^б	-1	0.859	No

Constituent: Molybdenum Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma	
MW-10 (bg) (n	= 12, alpha = 0.05)				
	no	0.9372	0.859	Yes	
	square root	0.9461	0.859	Yes	
	square	0.916	0.859	Yes	
	cube root	0.9488	0.859	Yes	
	cube	0.8913	0.859	Yes	
	natural log	0.9537	0.859	Yes	
	x^4	0.8644	0.859	Yes	
	x^5	0.8366	0.859	No	
	x^6	0.8087	0.859	No	

Constituent: pH Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 17, alpha $= 0.05$ )			
	no	0.9714	0.892	Yes
	square root	0.9723	0.892	Yes
	square	0.9693	0.892	Yes
	cube root	0.9726	0.892	Yes
	cube	0.9671	0.892	Yes
	natural log	0.9732	0.892	Yes
	x^4	0.9645	0.892	Yes
	x^5	0.9617	0.892	Yes
	х^б	0.9587	0.892	Yes

Constituent: Selenium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Norma	
MW-10 (bg) (n	= 12, alpha = 0.05)				
	no	-1	0.859	No	
	square root	0	0.859	No	
	square	-1	0.859	No	
	cube root	-1	0.859	No	
	cube	-1	0.859	No	
	natural log	0	0.859	No	
	x^4	-1	0.859	No	
	x^5	-1	0.859	No	
	х^б	-1	0.859	No	

Constituent: Sulfate Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Fransformation Calculated		Normal
MW-10 (bg) (n	= 10, alpha = 0.05)			
	no	0.8207	0.897	No
	square root	0.8813	0.897	No
	square	0.6916	0.897	No
	cube root	0.8989	0.897	Yes
	cube	0.5848	0.897	No
	natural log	0.9281	0.897	Yes
	x^4	0.5095	0.897	No
	x^5	0.4593	0.897	No
	х^б	0.4261	0.897	No

Constituent: Thallium Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

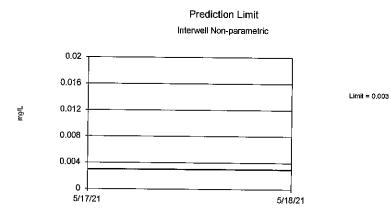
Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 12, alpha $= 0.05$ )			
	no	-1	0.859	No
	square root	0	0.859	No
	square	-1	0.859	No
	cube root	-1	0.859	No
	cube	-1	0.859	No
	natural log	0	0.859	No
	x^4	-1	0.859	No
	x^5	-1	0.659	No
	x^6	-1	0.859	No

•

Constituent: Total Dissolved Solids Analysis Run 8/12/2021 9:57 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Well	Transformation	Calculated	Critical	Normal
MW-10 (bg) (n	= 20, alpha = 0.05)			
	no	0.849	0.905	No
	square root	0.8818	0.905	No
	square	0.7774	0.905	No
	cube root	0.892	0.905	No
	cube	0.7043	0.905	No
	natural log	0.9111	0.905	Yes
	x^4	0.6359	0.905	No
	x^5	0.5759	0.905	No
	x^6	0.5252	0.905	No

Constituent: Turbidity Analysis Run 10/7/2021 2:42 PM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

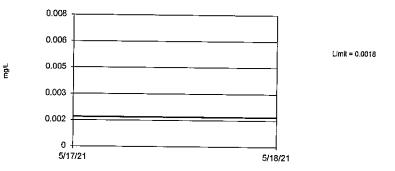

Well	Transformation	Calculated	Critical	Norma
MW-03 (n = 10,	alpha = 0.05)			
	no	0.6987	0.842	No
	square root	0.8252	0.842	No
	square	0.5517	0.842	No
	cube root	0.8704	0.842	Yes
	cube	0.4778	0.842	No
	natural log	0.9265	0.842	Yes
	x^4	0.4348	0.842	No
	x^5	0.4084	0.842	No
	x^6	0.3921	0.842	No
4W - 04 (n = 10,	alpha = 0.05)			
	no	0.6444	0.842	No
	square root	0.7365	0.842	No
	square	0.5248	0.842	No
	cube root	0.7711	0.842	No
	cube	0.4592	0.842	No
	natural log	0.8401	0.842	No
	x^4	0.4208	0.842	No
	x^5	0.398	0.842	No
	x^6	0.3846	0.842	No
1W - 05 (n = 10,	alpha = 0.05)			
	no	0.8561	0.842	Yes
	square root	0.9502	0.842	Yes
	square	0.6485	0.842	No
	cube root	0.97	0.842	Yes
	cube	0.5159	0.842	No
	natural log	0.9831	0.842	Yes
	x^4	0.4452	0.842	No
	x^5	0.4082	0.842	No
	x^6	0.3887	0.842	No
4W-10 (bg) (n =	10, alpha = 0.05)			
	no	0.8725	0.842	Yes
	square root	0.9473	0.842	Yes
	square	0.6983	0.842	No
	cube root	0.9654	0.842	Yes
	cube	0.5657	0.842	No
	natural log	0.9871	0.842	Yes
	x^4	0.4837	0.842	No
	x^5	0.4356	0.842	No
	x^6	0.4075	0.842	No

# Joliet #29 Interwell PL MW-10 All Values

		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet	9 - Jolie	t 29 F	rinted 8/8/	2021, 11:41 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bq N</u>	%NDs	Transform	Alpha	<u>Metho</u> d
Antimony (mg/L)	n/a	0.003	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	
Arsenic (mg/L)	n/a	0.0018	n/a	n/a	3 future	n/a	12	41.67	n/a	0.009156	NP (normality) 1 of 2
Barium (mg/L)	n/a	0.0628	n/a	n/a	3 future	n/a	12	0	No	0.000399	Param 1 of 2
Beryllium (mg/L)	n/a	0.001	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Boron (mg/L)	n/a	0.8306	n/a	n/a	3 future	n/a	19	0	sqrt(x)	0.000399	Param 1 of 2
Cadmium (mg/L)	n/a	0.0005	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Chromium (mg/L)	n/a	0.005	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Cobalt (mg/L)	n/a	0.001	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Combined Radium 226 + 228 (pCi/L)	n/a	0.626	n/a	n/a	3 future	n/a	11	72.73	n/a	0.01058	NP (NDs) 1 of 2
Fluoride (mg/L)	n/a	0.486	n/a	n/a	3 future	n/a	17	0	No	0.000399	Param 1 of 2
Lead (mg/L)	n/a	0.0014	n/a	n/a	3 future	п/а	12	66.67	n/a	0.009156	NP (NDs) 1 of 2
Lithium (mg/L)	n/a	0.01864	n/a	n/a	3 future	n/a	12	8.333	No	0.000399	Param 1 of 2
Mercury (mg/L)	n/a	0.0002	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Molybdenum (mg/L)	n/a	0.008878	n/a	n/a	3 future	n/a	12	0	No	0.000399	Param 1 of 2
pH (n/a)	n/a	7.569	6.733	n/a	3 future	n/a	17	0	No	0.000	Param 1 of 2
Selenium (mg/L)	n/a	0.0025	n/a	n/a	3 future	n/a	12	100	n/a	0.009156	NP (NDs) 1 of 2
Sulfate (mg/L)	n/a	214.7	n/a	n/a	3 future	n/a	18	0	x^(1/3)	0.000399	Param 1 of 2
Thallium (mg/L)	n/a	0.002	n/a	n/a	3 future	л/а	12	100	n/a	0.009156	NP (NDs) 1 of 2
											111 (1120) 1012

. .

#### Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

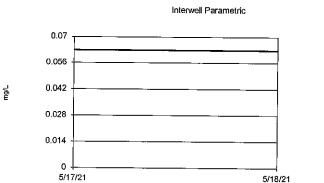



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.



Prediction Limit

Interwell Non-parametric



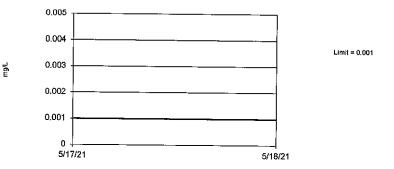

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 12 background values. 41.67% NDs. Annual perconstituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Antimony Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Arsenic Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG




Background Data Summary: Mean=0.04258, Std. Dev.=0.00709, n=12. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9036, critical = 0.859. Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

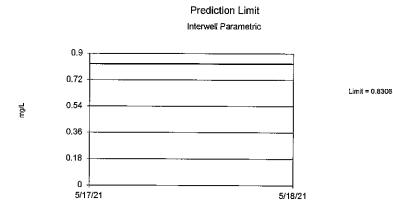
Constituent: Barium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

#### Sanitas^{es} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Interwell Non-parametric




Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

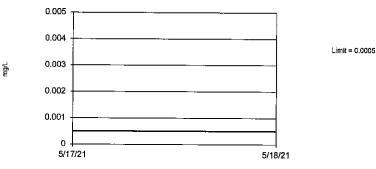
Constituent: Beryllium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit



٢

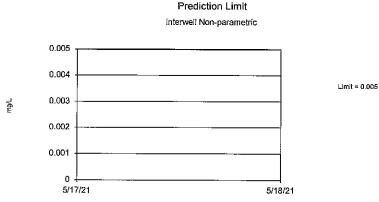



Background Data Summary (based on square root transformation): Mean=0.6538, Std. Dev.=0.1026, n=19. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9339, critical = 0.901. Kappa = 2.511 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

#### Constituent: Boron Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



Prediction Limit

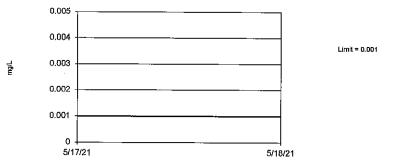

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cadmium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

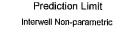
Sanitas^{re} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

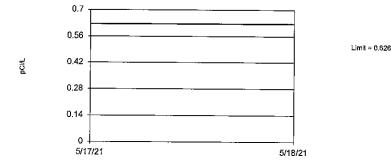



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanilas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit


Interwell Non-parametric

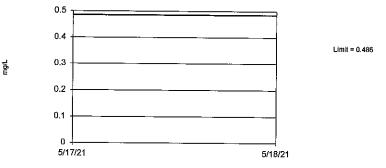



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chromium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Cobalt Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



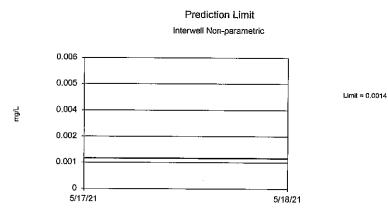



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 11 background values. 72.73% NDs. Annual per-constituent alpha = 0.1199. Individual comparison alpha = 0.01058 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

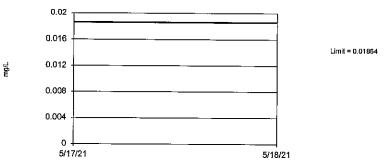
Interwell Parametric




Background Data Summary: Mean=0.4047, Std. Dev.=0.03145, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9672, critical = 0.892. Kappa = 2.586 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Combined Radium 226 + 228 Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29



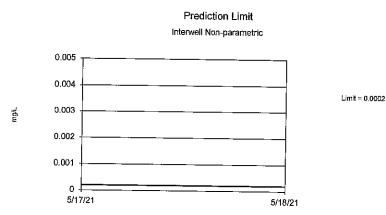

Sanitas^{ne} v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Sanitas" v.9.6.09 Software licensed to KPRG and Associates, Inc. UG





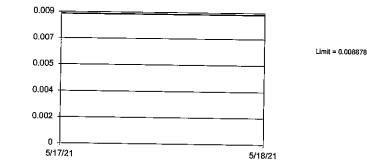

Background Data Summary: Mean=0.0115, Std. Dev.=0.002505, n=12, 8.333% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8624, critical = 0.859, Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Lead Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

#### Constituent: Lithium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

¢,

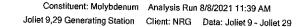



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.09156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

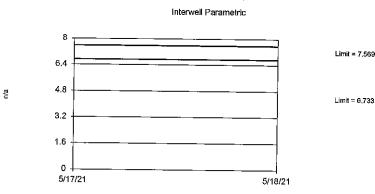
Sanitas™ v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

"Лg/Г

#### Prediction Limit


Interwell Parametric



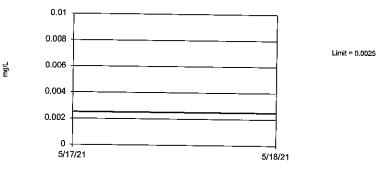

Background Data Summary: Mean=0.006342, Std. Dev.=0.0008898, n=12. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9372, critical = 0.859. Kappa = 2.851 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Mercury Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Prediction Limit



Sonitas** v.9.6.09 Software licensed to KPRG and Associates, Inc. UG



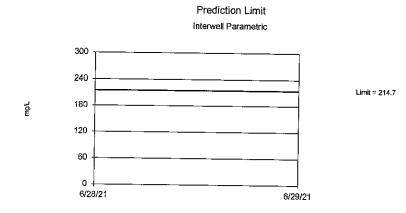

Background Data Summary: Mean=7.151, Std. Dev.=0.1617, n=17. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9714, critical = 0.892. Kappa = 2.586 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.0001995. Assumes 3 future values.



Prediction Limit

Interwell Non-parametric

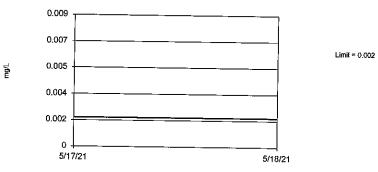



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored, limit is most recent reporting limit. Annual per-constituent alpha = 0.1045. Individual comparison alpha = 0.009156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

#### Constituent: pH Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Selenium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

#### Senitas^m v.9.6.09 Software licensed to KPRG and Associates, Inc. UG


. .



Sonitas* v.9.5.09 Software licensed to KPRG and Associates, Inc. UG

Prediction Limit

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Annual per-constituent alpha = 0.09156 (1 of 2). Assumes 3 future values. Insufficient data to test for seasonality; data will not be deseasonalized.

Background Data Summary (based on cube root transformation): Mean=4.739, Std. Dev.=0.4901, n=18. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8989, critical = 0.897. Kappa = 2.549 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

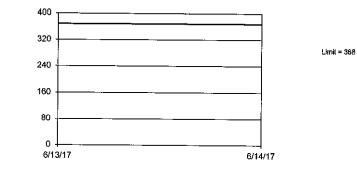
#### Constituent: Sulfate Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Constituent: Thallium Analysis Run 8/8/2021 11:39 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

#### 

# Joliet #29 Interwell PL MW-10 Original 8

		Joliet 9,29	Generating Station	Client: NRG	Data: Joliet	9 - Jolie	t 29 F	rinted 8/8/2	2021, 11:34 AM		
Constituent	<u>W</u> ell	Upper Lim.	Lower Lim.	<u>Date</u>	<u>Observ.</u>	Sig.	Bg N	<u>%NDs</u>	Transform	Alpha	Method
Calcium (mg/L)	n/a	143	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2
Chloride (mg/L)	n/a	368	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2
Total Dissolved Solids (mg/L)	n/a	1031	n/a	n/a	3 future	n/a	8	0	No	0.000399	Param 1 of 2




Prediction Limit

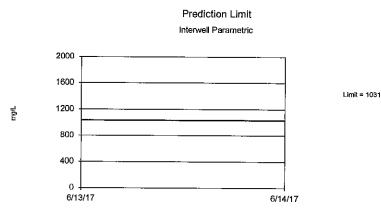
Sanitas™ v.9.6.09 Software licensod to KPRG and Associatos, Inc. LIG

ng/L





Background Data Summary: Mean=195, Std. Dev.=49.86, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8907, critical = 0.818. Kappa = 3.469 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values,


Constituent: Calcium Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

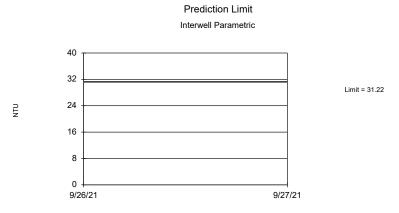
(c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399.

Constituent: Chloride Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

Sanitas* v.9.6.09 Software licensed to KPRG and Associates, Inc. UG

Assumes 3 future values.




Background Data Summary: Mean=785, Std. Dev.=70.91, n=8. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9512, critical = 0.818. Kappa = 3.469 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

> Constituent: Total Dissolved Solids Analysis Run 8/8/2021 11:32 AM Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

# Interwell Prediction Limit Joliet #29 MW-10 Turbidity

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29 Printed 10/7/2021, 2:48 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Turbidity (NTU)	n/a	31.22	n/a	n/a	3 future	n/a	10	0	No	0.000399	Param 1 of 2



Background Data Summary: Mean=10.86, Std. Dev.=6.601, n=10. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8725, critical = 0.842. Kappa = 3.084 (c=22, w=3, 1 of 2, event alpha = 0.026). Report alpha = 0.001197. Individual comparison alpha = 0.000399. Assumes 3 future values.

Constituent: Turbidity Analysis Run 10/7/2021 2:47 PM

Joliet 9,29 Generating Station Client: NRG Data: Joliet 9 - Joliet 29

# **ATTACHMENT 10 WRITTEN CLOSURE PLAN**

### CLOSURE PLAN ASH POND 2 JOLIET #29 STATION OCTOBER 2016

This closure plan has been prepared in accordance with Ill. Adm. Code Title 35 Part 845.720(a) for Ash Pond 2 at the Joliet #29 Station, operated by Midwest Generation, LLC (Midwest Generation) in Joliet, IL. This closure plan describes the schedule and steps necessary for closure and methods for compliance with closure requirements for final closure of Ash Pond 2.

### 1.0 Closure Narrative [845.720(a)(1)(A)]

The closure of Ash Pond 2 will be by removal of the CCR in accordance with Ill. Adm. Code Title 35 Part 845.740(a). Midwest Generation plans to keep the structure of the pond intact for use for non-CCR material.

# 2.0 CCR Removal and Decontamination [845.720(a)(1)(B)]

Closure of Ash Pond 2 will be through removal of CCR. The pond will be dewatered to allow for the excavation of the CCR. First, the pond will be allowed to naturally dewater to a water level equal with the elevation of the existing outlet structure. At this point, the water will be pumped into the existing outlet structure.

The CCR will be removed through mechanical excavation once the pond has been sufficiently dewatered. A mechanical excavator will excavate the CCR from the pond and load it into dump trucks. Once the CCR has been mechanically loaded it will be hauled to Lincoln Stone Quarry or other regulated facility for disposal. Any CCR remnants will be removed through washing/rinsing and/or vacuuming.

In addition, all CCR will be removed from the pond inlet and outlet structures through mechanical means and also by washing/rinsing any remaining CCR remnants. The CCR that is removed from the inlet and outlet structures will be taken to Lincoln Stone Quarry or other regulated facility for disposal.

CCR removal and decontamination will be considered complete when CCR has been removed from the pond and from any areas that may have been affected by releases from the pond and groundwater monitoring concentrations do not exceed the groundwater protection standards established in Ill. Adm. Code Title 35 Part 845.650(a) for two consecutive sampling events using the statistical procedures in §845.640(g).

# 3.0 Closure with CCR Left in Place [845.720(a)(1)(C)]

Closure of Ash Pond 2 will be through removal of CCR and decontamination of areas affected by CCR. Therefore this requirement is not applicable.

### 4.0 Maximum Inventory of CCR [845.720(a)(1)(D)]

The estimated maximum inventory of CCR on-site contained in Ash Pond 2 is approximately 15,000 cubic yards based upon the 2015 annual inspection, conducted on September 30, 2015.

### 5.0 Largest Area of CCR Requiring a Final Cover [845.720(a)(1)(E)]

Ash Pond 2 will be closed by removing the CCR in accordance with 845.740; therefore, this section is not applicable to this closure plan.

### 6.0 Closure Schedule [845.720(a)(1)(F)]

Implementation of closure through removal of CCR is estimated to require 7 months. Closure is anticipated to begin in 2017 or 2018 and estimated to be completed by the end of 2018. Prior to initiation of closure, a notice of intent to close will be prepared in accordance with §845.730(d). If necessary, closure design documents will be prepared to support applications for required local, state, and federal permits. Closure construction design documents may include construction drawings for closure, technical specifications, and adequate CCR removal confirmation procedures. The permits required for closure construction will be evaluated at the time of closure, and may include permits from the Illinois Environmental Protection Agency (IEPA), Illinois Department of Natural Resources (IDNR), and Will County. A preliminary schedule of anticipated closure activities is included below.

ciosure senedure						
Activity No.	<b>Closure Activity</b>	Schedule				
1	Dewater	1 month				
2a	Excavate CCR	5 months				
2b	Decontaminate Pond Liner	5 months				
2c	Decontaminate Pond Inlet & Outlet Structures	5 months				
3	Closure Certification	1 month				

**Closure Schedule** 

#### 7.0 Closure Activities Initiation [845.730]

Closure activities will commence when one or more of the following conditions have occurred:

- No later than 30 days after the date on which the CCR unit received the known final receipt of CCR or non-CCR waste;
- No later than 30 days after the removal of the known final volume of CCR for the purpose of beneficial use;
- Within two years of the last receipt of waste for a unit that has not received CCR or non-CCR waste; or
- Within two years of the last removal of CCR material for the purposes of beneficial use.

In accordance with \$/845.760(f), notification of closure of a CCR unit will be made within 30 days of the completion of closure of the CCR unit. The notification will include certification from a qualified professional engineer, as required by \$/845.760(e)(2).

#### 8.0 Closure Plan Amendments [845.720(a)(3)]

This Closure Plan will be amended in accordance with \$845.720(a)(3). If a change in the operation of Ash Pond 2 would substantially affect the content of this Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Closure Plan, the plan will be amended no later than 60 days prior to the change in operation being implemented. If an unexpected event occurs that requires amendment of the Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after closure activities have commenced. Amendments to this Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with \$845.720(a)(4).

#### 9.0 Professional Engineer's Certification [845.720(a)(4)]

This Closure Plan has been prepared to meet the requirements of Ill. Adm. Code Title 35 845.720(a).

10/14/16

Joshua⁴D. Davenport, P.E. Illinois Professional Engineer

SEAL



# ATTACHMENT 11 POST-CLOSURE PLAN

### POST-CLOSURE PLAN POND 2 JOLIET 29 STATION SEPTEMBER 2021

This post-closure plan has been prepared in accordance with Ill. Adm. Code 845.780(d) for Pond 2 at the Joliet 29 Generating Station, operated by Midwest Generation, LLC (Midwest Generation), in Joliet, IL. This post-closure plan describes the steps necessary for post-closure and methods for compliance with post-closure requirements for Pond 2. The post-closure care period will begin once the construction completion report documenting the closure of Pond 2 has been approved by the Illinois Environmental Protection Agency (IEPA) and Midwest Generation has placed the certified notification of closure as required by 845.780(f) in Joliet 29's operating record.

# 1.0 POST-CLOSURE MONITORING AND MAINTENANCE DESCRIPTION [845.780(d)(1)(A)]

The post-closure monitoring and maintenance activities will be performed in compliance with 845.780(b). The post-closure care will consist of the following:

- Maintaining the integrity and effectiveness of the geomembrane liner, including making repairs as necessary; and
- Maintaining the groundwater monitoring system and monitoring the groundwater in accordance with 845.600 through 845.680.

In accordance with 845.780(b)(1), the geomembrane liner will be inspected annually for settlement/subsidence that could damage the geomembrane liner. The liner will be repaired in accordance with the manufacturer's recommendations if any of the above conditions are observed. If settlement or subsidence is observed, the potential for leaking through the liner should be evaluated. If it is determined that the potential for leaking through the liner will be detrimental to the proper function of the liner, then it will be repaired as necessary. This should be done based upon guidance from the manufacturer. If the settlement or subsidence does not detrimentally affect the functionality of the liner, then the engineered turf and geomembrane will be inspected for rips/tears. If rips/tears to the geomembrane are noted, then they will be repaired by an approved geomembrane installer.

Groundwater monitoring will be performed in accordance with 845.600 through 845.680 for the duration of the post-closure period. The groundwater monitoring plan for Pond 2 in the Joliet 29 Operating Permit's Section 9 details how the groundwater monitoring will comply with 845.600 through 845.680.

This post-closure care plan is based upon the regulatory requirement to maintain and monitor the site for 30 years after closure. If at the end of the 30-year post-closure care period, the groundwater monitoring activities are still conducting "assessment monitoring" in accordance with Ill. Adm Code 845.640, the post-closure care monitoring and maintenance will continue

until the groundwater monitoring can return to detection monitoring in accordance with Ill. Adm. Code 845.640.

#### 2.0 POST-CLOSURE CARE CONTACT INFORMATION [845.780(d)(1)(b)]

Mr. William Naglosky Station Director Joliet 29 Generating Station 1800 Channahon Road, Joliet, IL 60436 815-207-5412 william.naglosky@nrg.com

### 3.0 PLANNED USES OF THE PROPERTY [845.780(d)(1)(c)]

Pond 2 will be used to manage low-volume wastewater that does not contain CCR material. Pond 2 will be accessed to perform groundwater monitoring or inspections, as noted above. The groundwater monitoring will not involve access onto the liner. Access onto the liner for inspections will be kept to a minimum.

#### 4.0 CLOSURE PLAN AMENDMENTS [845.780(d)(3)]

This Post-Closure Plan may be amended in accordance with Section 845.780(d)(3) if a change in the operation of Pond 2 would substantially affect the content of this Post-Closure Plan or if unanticipated events necessitate revision of the plan. If a change in operation requires amendment to the Post-Closure Plan, the plan will be amended within 60 days before the change in operation being implemented. If an unexpected event occurs that requires amendment of the Post-Closure Plan, the plan will be amended within 60 days of the unexpected event or within 30 days of the unexpected event if the event occurs after post-closure activities have commenced. Amendments to this Post-Closure Plan will be certified by a professional engineer registered in the State of Illinois in accordance with Ill. Adm. Code 845.780(d)(4).

# 5.0 PROFESSIONAL ENGINEER'S CERTIFICATION [845.780(d)(4)]

This Post-Closure Plan has been prepared to meet the requirements of 35 Ill. Adm. Code 845.780(d)(1).

9/21/21

Joshua D//Davenport', P.E. Illinois Professional Engineer

SEAL



# **ATTACHMENT 12 LINER CERTIFICAITON**

# Attachment 12: Liquid Flow Rate through Alternative Composite Liner Joliet 29 Pond 2

Darcy's Law for Gravity Flow through Porous Media

Q/A = q = k((h/t)+1)

- Q= flow rate (cubic centimeters/second)
- A = Surface area of the liner (squared centimeters)
- q = flow rate per unit area (cubic centimeters/second/squared centimeter)
- k = hydraulic conductivity of the liner (centimeters/second)
- h = hydraulic head above the liner (centimeters)
- t = thickness of the liner (centimeters)

Section 845.400(c) Comparison Flow Rate

Q/A = q = k((h/t)+1)

O= calculated

Q= ca	alculated			
A =	85245.5917 ft ²	=	$79195746.16 \text{ cm}^2$	Based on surface area at toe of embankment
q = ca	alculated			
k =	1.00E-07 cm/s	5		
h =	15.85 ft	=	483.108 cm	
t =	2 ft	=	60.96 cm	
Q =	1.00E-07	483.108 +1	l * 79,	195,746.16
		60.96		

Q = 70.68 cm³/s Compare to Surface Impoundment Flow Rate

Pond Profile

						Layer	Layer	Product of
		Elevatio	on@ft msl)		Permeability	Thickness	Thickness	Permeability &
Layers	Depth (ft)	From	То	Layer Description	(cm/s)	(inch)	(cm)	Layer Thickness
Pond	0	535	517	Pond embankment crest				
Fond	18'	517	517	Pond bottom				
Upper Liner								
Component	18'-17.94'	517	516.94	60-mil HDPE geomembrane	1E-11	0.06	0.1524	1.524E-12
	18'-19'	516.94	515.94	Poz-O-Pac	3.12E-05	12	30.48	9.51E-04
Lower Liner Component		545.04	540.04	Gravelly sand, some fine grained sand, trace clay and gravel,			452.4	
	19'-24'	515.94	510.94	some gray lean clay	2.74E-02	60	152.4	4.16814

182.88 4.17E+00 Totals Permeability (weighted) = 2.28E-02 Pond 2 Flow Rate Calculation Q/A = q = k((h/t)+1)Q= calculated 85245.5917 ft² A = = 79,195,746.16 cm² Based on surface area at toe of embankment q = calculated2.28E-02 cm/s k = 15.85 ft 483.108 cm h = = 5 ft 152.4 cm t = = * 79,195,746.16 Q = 2.28E-02 483.108 +1 152.4 7,528,579.99 cm³/s Q = Compare to Section 845.400(c) Comparison Flow Rate

Comparison of Surface Impoundment Flow Rate vs Section 845.400(c) Flow Rate

Is the Surface Impoundment Flow Rate of 7,528,579.99 less than the Section 845.400(c) Comparison Flow Rate of 70.68 NO

# **ATTACHMENT 14 FINANCIAL ASSURANCE**

#### <u>CERTIFICATION</u> 35 Ill. Adm. Code 845 Subpart I

In accordance with Section 35 Ill. Adm. Code 845.230(a)(17), Midwest Generation, LLC meets the financial assurance requirements of 35 Ill. Adm. Code 845 Subpart I: Financial Assurance for the Joliet 29 Generating Station. The performance bond is attached, note the bond covers both the Joliet 9 and Joliet 29 Generating Stations.

# PERFORMANCE BOND

Date bond execute	ed:	06/21/2021	North Street Str
Effective date:	5	21/2021	

Principal:	NRG Energy, Inc. on behalf of Midwest Generation, LLC
2011010-0010000000000000000000000000000	

Type of organization:	Corporation	

State of incorporation:	Delaware

Surety:	Arch Insurance Company
Site Jolie	t
Name	Joliet Generating Station

Address	1800 Channahon Road	

City	Joliet, IL 6043	6				
	1					
Amoun	t guaranteed by thi	s bond:	\$26,417,78	81.96		 
Name						
Address						
Address						
City						
Amoun	t guaranteed by thi	s bond:	\$			
Please a	attach a separate pa	ge if more	space is need	led for all	sites.	
Total pe	enal sum of bond:		\$ 26,417,78	31.96		
Surety's	bond number:	SU1174	4125			

The Principal and the Surety promise to pay the Illinois Environmental Protection Agency ("IEPA") the above penal sum unless the Principal or Surety provides closure and post-closure care for each site in accordance with the closure and post-closure care plans for that site. To the payment of this obligation the Principal and Surety jointly and severally bind themselves, their heirs, executors, administrators, successors and assigns.

Whereas the Principal is required, under Section 21(d) of the Environmental Protection Act [415 ILCS 5/21(d)], to have a permit to conduct a waste disposal operation;

Whereas the Principal is required, under Section 21.1 of the Environmental Protection Act [415 ILCS 5/21.1], to provide financial assurance for closure and post-closure care;

Whereas the Surety is licensed by the Illinois Department of Insurance or is licensed to transact the business of insurance, or approved to provide insurance as an excess or surplus lines insurer, by the insurance department in one or more states; and

Whereas the Principal and Surety agree that this bond shall be governed by the laws of the State of Illinois;

The Surety shall pay the penal sum to the IEPA or provide closure and post-closure care in accordance with the closure and post-closure care plans for the site if, during the term of the bond, the Principal fails to provide closure or post-closure care for any site in accordance with the closure and post-closure care plans for that site as guaranteed by this bond. The Principal fails to so provide when the Principal:

a) Abandons the site;

b) Is adjudicated bankrupt;

c) Fails to initiate closure of the site or post-closure care when ordered to do so by the Illinois Pollution Control Board or a court of competent jurisdiction;

d) Notifies the IEPA that it has initiated closure, or initiates closure, but fails to close the site or provide post-closure care in accordance with the closure and post-closure care plans; or

e) Fails to provide alternate financial assurance and obtain the IEPA written approval of the assurance provided within 90 days after receipt by both the Principal and the IEPA of a notice from the Surety that the bond will not be renewed for another term.

The Surety shall pay the penal sum of the bond to the IEPA or notify the IEPA that it

intends to provide closure and post-closure care in accordance with the closure and post-closure care plans for the site within 30 days after the IEPA mails notice to the Surety that the Principal has met one or more of the conditions described above. Payment shall be made by check or draft payable to the State of Illinois, Landfill Closure and Post-Closure Fund.

If the Surety notifies the IEPA that it intends to provide closure and post-closure care, then the Surety must initiate closure and post-closure care within 60 days after the IEPA mailed notice to the Surety that the Principal met one or more of the conditions described above. The Surety must complete closure and post-closure care in accordance with the closure and post-closure care plans, or pay the penal sum.

The liability of the Surety shall not be discharged by any payment or succession of payments unless and until such payment or payments shall amount in the aggregate to the penal sum of the bond. In no event shall the obligation of the Surety exceed the amount of the penal sum.

This bond shall expire on the  $21^{st}$  day of June , 2022 [date]; but such expiration date shall be automatically extended for a period of <u>One</u> [at least one year] on  $21^{st}$  day of June, 2022 [date] and on each successive expiration date, unless, at least 120 days before the current expiration date, the Surety notifies both the IEPA and the Principal by certified mail that the Surety has decided not to extend the term of this surety bond beyond the current expiration date. The 120 days will begin on the date when both the Principal and the IEPA have received the notice, as evidenced by the return receipts.

The Principal may terminate this bond by sending written notice to the Surety; provided, however, that no such notice shall become effective until the Surety receives written authorization for termination of the bond from the IEPA in accordance with 35 Ill. Adm. Code 807.604.

In Witness Whereof, the Principal and Surety have executed this Performance Bond and have affixed their seals on the date set forth above.

The persons whose signatures appear below certify that they are authorized to execute this surety bond on behalf of the Principal and Surety and that the wording of this surety bond is identical to the wording specified in 35 Ill. Adm. Code 807.Appendix A, Illustration D as such regulation was constituted on the date this bond was executed.

Principal: NRG Energy, Inc. on behalf of Midwest Generation, LLC	Corporate Surety				
Signature & Chatgarthe	Name: Arch Insurance Company				
Typed Name Edward Christopher Krupa	Address: Harborside Street, Suite 300, Jer 1107				
Title Vice President	State of Incorporation: Missourt				
Date 6/21/2021	Signature M/C	zhe	WAD -		
	Typed Name: Mark	W. Edv	vards, II		
	Title-Attorney-in-Fa	ct			
Corporate seal	Corporate seal				
	Bond premium:	\$	184,924.00		

(Source: Amended at 35 Ill. Reg. 18867, effective October 24, 2011)

Section 807. APPENDIX A Financial Assurance Forms

This Power of Attorney limits the acts of those named herein, and they have no authority to bind the Company except in the manner and to the extent herein stated. Not valid for Note, Loan, Letter of Credit, Currency Rate, Interest Rate or Residential Value Guarantees. POWER OF ATTORNEY

#### Know All Persons By These Presents:

That the Arch Insurance Company, a corporation organized and existing under the laws of the State of Missouri, having its principal administrative office in Jersey City, New Jersey (hereinafter referred to as the "Company") does hereby appoint:

Alisa B. Ferris, Anna Childress, Jeffrey M. Wilson, Mark W. Edwards II, Richard H. Mitchell, Robert R. Freel and William M. Smith of Birmingham, AL (EACH)

#### R. E. Daniels and Shelby E. Daniels of Pensacola, FL (EACH)

its true and lawful Attorney(s)in-Fact, to make, execute, seal, and deliver from the date of issuance of this power for and on its behalf as surety, and as its act and deed: Any and all bonds, undertakings, recognizances and other surety obligations, in the penal sum not exceeding <u>Ninety Million</u> Dollars (<u>\$90,000,000,000</u>). This authority does not permit the same obligation to be split into two or more bonds In order to bring each such bond within the dollar limit of authority as set forth herein.

The execution of such bonds, undertakings, recognizances and other surety obligations in pursuance of these presents shall be as binding upon the said Company as fully and amply to all intents and purposes, as if the same had been duly executed and acknowledged by its regularly elected officers at its principal administrative office in Jersey City, New Jersey.

This Power of Attorney is executed by authority of resolutions adopted by unanimous consent of the Board of Directors of the Company on December 10, 2020, true and accurate copies of which are hereinafter set forth and are hereby certified to by the undersigned Secretary as being in full force and effect:

"VOTED, That the Chairman of the Board, the President, or the Executive Vice President, or any Senior Vice President, of the Surety Business Division, or their appointees designated in writing and filed with the Secretary, or the Secretary shall have the power and authority to appoint agents and attorneys-in-fact, and to authorize them subject to the limitations set forth in their respective powers of attorney, to execute on behalf of the Company, and attach the seal of the Company thereto, bonds, undertakings, recognizances and other surety obligations obligatory in the nature thereof, and any such officers of the Company may appoint agents for acceptance of process."

This Power of Attorney is signed, sealed and certified by facsimile under and by authority of the following resolution adopted by the unanimous consent of the Board of Directors of the Company on December 10, 2020:

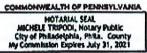
**VOTED**, That the signature of the Chairman of the Board, the President, or the Executive Vice President, or any Senior Vice President, of the Surety Business Division, or their appointees designated in writing and filed with the Secretary, and the signature of the Secretary, the seal of the Company, and certifications by the Secretary, may be affixed by facsimile on any power of attorney or bond executed pursuant to the resolution adopted by the Board of Directors on December 10, 2020, and any such power so executed, sealed and certified with respect to any bond or undertaking to which it is attached, shall continue to be valid and binding upon the Company. In Testimony Whereof, the Company has caused this instrument to be signed and its corporate seal to be affixed by their authorized officers, this <u>23rd</u> day of <u>April</u>, 20<u>21</u>.

CORPORATE

SEAL 1971

LO'L

Attested and Certified


Ren A. Sr Regan A. Shulman, Secretary

# STATE OF PENNSYLVANIA SS

#### COUNTY OF PHILADELPHIA SS

I, Michele Tripodi, a Notary Public, do hereby certify that Regan A. Shulman and Stephen C. Ruschak personally known to me to be the same persons whose names are respectively as Secretary and Executive Vice President of the Arch Insurance Company, a Corporation organized and existing under the laws of the State of Missouri, subscribed to the foregoing instrument, appeared before me this day in person and severally acknowledged that they being thereunto duly authorized signed, sealed with the corporate seal and delivered the said instrument as the free and voluntary act of said corporation and as their own free and voluntary acts for the uses and purposes therein set forth.

Missouri



de Michele Tripodi, Notary Public

Stephen C. Ruschak, Executive Vice President

Arch Insurance Company

My commission expires 07/31/2021

CERTIFICATION

I, Regan A. Shulman, Secretary of the Arch Insurance Company, do hereby certify that the attached Power of Attorney dated <u>April 23, 2021</u> on behalf of the person(s) as listed above is a true and correct copy and that the same has been in full force and effect since the date thereof and is in full force and effect on the date of this certificate; and I do further certify that the said Stephen C. Ruschak, who executed the Power of Attorney as Executive Vice President, was on the date of execution of the attached Power of Attorney the duly elected Executive Vice President of the Arch Insurance Company. IN TESTIMONY WHEREOF, I have hereunto subscribed my name and affixed the corporate seal of the Arch Insurance Company on this 21⁵ day of J1/2.

Ren A. M A. Shulman, Secretary

This Power of Attorney limits the acts of those named therein to the bonds and undertakings specifically named therein and they have no authority to bind the Company except in the manner and to the extent herein stated.

PLEASE SEND ALL CLAIM INQUIRIES RELATING TO THIS BOND TO THE FOLLOWING ADDRESS: Arch Insurance – Surety Division 3 Parkway, Suite 1500 Philadelphia, PA 19102



To verify the authenticity of this Power of Attorney, please contact Arch Insurance Company at SuretyAuthentic@archinsurance.com Please refer to the above named Attorney-in-Fact and the details of the bond to which the power is attached.

# ATTACHMENT 15 HAZARD POTENTIAL CLASSIFICATION ASSESSMENT



Midwest Generation, LLC Joliet 29 Generating Station

# 2021 Hazard Potential Classification Assessment for Ash Pond 2

Revision 0 October 14, 2021 Issue Purpose: Use Project No.: 12661-121

55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com



Midwest Generation, LLC Joliet 29 Generating Station Project No.: 12661-121

# TABLE OF CONTENTS

Table		ontents			
1.0	Purp	ose & Scope	.1		
	1.1	Purpose	1		
	1.2	Scope	1		
2.0	Input	S	.2		
3.0	Assu	mptions	.3		
4.0		odology			
5.0					
	5.1	Summary of Initial Hazard Potential Classification Assessment	5		
	5.2	Changes in Bases for Initial Hazard Potential Classification	5		
		2021 Hazard Potential Classification Assessment			
6.0	Conc	lusions	.7		
7.0	Certi	fication	.8		
8.0	Refe	rences	.9		
Appe	ndix A	A: 2016 Ash Pond 2 Hazard Potential Classification Assessment			

# 1.0 PURPOSE & SCOPE

#### 1.1 PURPOSE

Ash Pond 2 at Midwest Generation, LLC's (MWG) Joliet 29 Generating Station ("Joliet 29" or the "Station") is an existing coal combustion residual (CCR) surface impoundment that is regulated by the Illinois Pollution Control Board's "Standards for the Disposal of Coal Combustion Residuals in CCR Surface Impoundments." These regulations are codified in Part 845 to Title 35 of the Illinois Administrative Code (35 III. Adm. Code 845, Ref. 1) and are also referred to herein as the "Illinois CCR Rule." Pursuant to 35 III. Adm. Code 845.440(a)(1), MWG must conduct and complete a hazard potential classification assessment that assigns a hazard potential classification to Ash Pond 2 in accordance with the hazard potential classifications defined in 35 III. Adm. Code 845.120.

Ash Pond 2 is also regulated by the U.S. Environmental Protection Agency's "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," 40 CFR Part 257 Subpart D (Ref. 2), also referred to herein as the "Federal CCR Rule." Pursuant to 40 CFR 257.73(f)(3), the Federal CCR Rule requires MWG to conduct and complete a hazard potential classification assessment in accordance with 40 CFR 257.73(a)(2) for Ash Pond 2 every five years.

This report documents the 2021 hazard potential classification assessment conducted and completed in accordance with the Illinois and Federal CCR Rules by Sargent & Lundy (S&L) on behalf of MWG for Ash Pond 2 at Joliet 29. This report:

- Lists the inputs and assumptions used in the 2021 hazard potential classification assessment,
- Discusses the methodology used to conduct the 2021 hazard potential classification assessment,
- Lists and compares the definitions for the hazard potential classifications for CCR surface impoundments promulgated by the Illinois and Federal CCR Rules,
- Summarizes the results from the initial hazard potential classification assessment completed for Ash Pond 2 that was conducted in accordance with the Federal CCR Rule,
- Evaluates potential changes to the factors used as the bases for the initial federal hazard potential classification assigned to Ash Pond 2 to determine whether a revised federal hazard potential classification is warranted, and
- Provides the 2021 hazard potential classifications for Ash Pond 2 in accordance with 35 III. Adm.
   Code 845.440(a)(1) and 40 CFR 257.73(a)(2).

## 1.2 SCOPE

Per the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act, Ash Pond 2 will continue to be subject to both the Illinois and Federal CCR Rules until the U.S. EPA approves the Illinois EPA's CCR permit

program. The Illinois EPA has yet to publish a timeline for submitting its proposed CCR permit program to the U.S. EPA for approval, and so MWG must provide hazard potential classifications pursuant to both sets of regulations at this time.

# 2.0 INPUTS

#### **Hazard Potential Classifications**

The Illinois CCR Rule (Ref. 1, § 845.120) defines "hazard potential classification" as "the possible adverse incremental consequences that result from the release of water or stored contents due to failure of the diked CCR surface impoundment or mis-operation of the diked CCR surface impoundment or its appurtenances." The Illinois CCR Rule (Ref. 1, § 845.440(a)(1)) requires a CCR surface impoundment be designated as either a Class 1 CCR surface impoundment or a Class 2 CCR surface impoundment. Per 35 Ill. Adm. Code 845.120, the two Illinois hazard potential classifications are defined as follows:

- *Class 1 CCR surface impoundment* means a diked surface impoundment where failure or misoperation will probably cause loss of human life.
- *Class 2 CCR surface impoundment* means a diked surface impoundment where failure or misoperation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

The Federal CCR Rule (Ref. 2, § 257.53) has the same definition for "hazard potential classification" as the Illinois CCR Rule. However, the Federal CCR Rule has three hazard potential classifications instead of the two designations promulgated by the Illinois CCR Rule. Per 40 CFR 257.53, the three federal hazard potential classifications are defined as follows:

- *High hazard potential CCR surface impoundment* means a diked surface impoundment where failure or mis-operation will probably cause loss of human life.
- Low hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life and low economic and/or environmental losses. Losses are principally limited to the surface impoundment owner's property.
- Significant hazard potential CCR surface impoundment means a diked surface impoundment where failure or mis-operation results in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or impact other concerns.

Per the preceding sets of definitions for the federal and Illinois hazard potential classifications, a high hazard potential CCR surface impoundment per the Federal CCR Rule is the same as a Class 1 CCR surface impoundment per the Illinois CCR Rule. Similarly, a CCR surface impoundment that is classified as a low or significant hazard potential per the Federal CCR Rule is considered to be a Class 2 CCR surface impoundment per the Illinois CCR Rule.

#### Site Topography

Topographic data for Ash Pond 2 and the surrounding areas was obtained from an aerial survey performed by Aero-Metric, Inc. in 2008 (Ref. 4).

#### **Impacted Areas**

Areas impacted by a hypothetical failure at Ash Pond 2 were obtained from the pond's initial hazard potential classification assessment (Ref. 3), the dike breach analysis conducted in 2016 for the pond's southern dike (Ref. 5), and the dike breach inundation map prepared for Ash Pond 2's Emergency Action Plan (Ref. 6). The inputs, assumptions, and methodology utilized to identify areas impacted by failures at each of the pond's dikes were evaluated to determine whether any updates to these analyses were warranted.

Appendix A provides the initial hazard potential classification assessment conducted by Geosyntec Consultants in 2016 for Ash Pond 2.

#### Aerial Images

Historical and recent aerial images of the Station and surrounding areas were obtained from Google Earth Pro (Ref. 7).

#### **Property Boundaries**

Boundaries for the Station's property and adjacent properties were obtained from the geographic information system (GIS) for Will County, Illinois (Ref. 8).

#### 100-Year Floodway & Floodplain

Delineations for the floodway and floodplain for the 1% annual chance flood ("100-year flood") at and downstream from the Joliet 29 site were obtained from the Federal Emergency Management Agency's (FEMA) Flood Insurance Rate Map (FIRM) for the subject area (Ref. 9).

#### Ash Pond Conditions

The operating and physical conditions for Ash Pond 2 were based on discussions with MWG personnel and on the annual inspection reports prepared for the CCR surface impoundment in accordance with 40 CFR 257.83(b) (Refs. 10 through 14).

#### 3.0 ASSUMPTIONS

There are no assumptions in this document that require verification.

# 4.0 METHODOLOGY

The bases for Ash Pond 2's initial hazard potential classification as documented within the pond's initial hazard potential classification assessment were reviewed to determine if any changes have occurred since the initial assessment was completed. Identified changes were then evaluated to determine if the pond's previous hazard potential classification warrants an adjustment. Where no changes were noted for a given input, or where identified changes were determined to have no impact to the results and conclusions of the initial hazard potential classification assessment, the previous evaluation of that input was considered to still be valid for this 2021 assessment.

In instances where changes to one or more factors used as the bases for the initial hazard potential classification were identified (*e.g.*, downstream development that was not present in 2016), hypothetical dike breaches were considered at the CCR surface impoundment to evaluate the impacts that a release of CCR and CCR wastewater would have on the identified factor(s). These hypothetical dike breaches were evaluated regardless of potential causes and/or apparent dike stability. When evaluating a hypothetical dike breach at Ash Pond 2, the solid waste materials in the CCR surface impoundment were conservatively considered as an equivalent volume of liquid, and the CCR surface impoundment was assumed to be entirely filled with liquid.

When evaluating the downstream impacts from a hypothetical dike breach at Ash Pond 2, the first consideration examined was whether a loss of human life is probable under the given hypothetical failure scenario. Loss of human life is the critical aspect of a federal high hazard potential classification. If a loss of human life is unlikely to occur, then Ash Pond 2 was not considered to be a federal high hazard potential. In that case, the next consideration examined was the extent of environmental and economic losses resulting from the hypothetical dike breach. If the losses are low and principally contained to MWG's property, then Ash Pond 2 was considered to be a federal and/or economic losses extend beyond MWG's property, then Ash Pond 2 was considered to be a federal significant hazard potential.

After assigning a federal hazard potential classification to Ash Pond 2, an Illinois CCR Rule hazard potential classification (either Class 1 or Class 2) was assigned based on the assigned federal hazard potential classification. An Illinois Class 1 hazard potential classification was assigned to Ash Pond 2 if the pond was classified as a federal high hazard potential. Alternatively, Ash Pond 2 was classified as an Illinois Class 2 hazard potential if the pond was classified as either a federal significant or low hazard potential.

# 5.0 ASSESSMENT

#### 5.1 SUMMARY OF INITIAL HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

The initial hazard potential classification assessment for Ash Pond 2 was completed in October 2016 and is included in its entirety in Appendix A. This assessment evaluated the potential consequences of hypothetical dike failures for the pond. A quantitative dike breach analysis was also conducted for the pond's southern dike which was determined to pose the most risk to human life due to its height, its proximity to occupied buildings, and the adjacent topography sloping towards occupied buildings and the Des Plaines River. The 2016 dike breach analysis also assumed Ash Pond 2 was at capacity at the time of the hypothetical failure.

Per Figures 2 and 3 in Appendix A, the 2016 dike breach analysis concluded that the flood released through a hypothetical breach in Ash Pond 2's southern dike could impact six Station buildings, of which three are considered to be occupied buildings and the remaining three are considered to be unoccupied buildings. The 2016 dike breach analysis also concluded that the combination of the estimated flood velocity and depth at each occupied building is within the U.S. Department of the Interior, Bureau of Reclamation's (USBR) "Low Danger Zone" (see Figure 4 in Appendix A). In its "Downstream Hazard Classification Guidelines" (Ref. 15), the USBR states that if the depth-velocity combination of a hazard (e.g., flood) for a given area plots within the "Low Danger Zone," "the number of lives-in-jeopardy associated with possible downstream hazards is assumed to be zero." In other words, floods plotting within the USBR's "Low Danger Zone" are unlikely to cause a probable loss of human life. Therefore, the initial hazard potential classification assessment concluded that a failure of Ash Pond 2's southern dike would not result in a probable loss of human life.

Although a hypothetical failure Ash Pond 2 was determined to not cause a probable loss of human life, it was also determined that wastewater released from such a breach would flow into the Station's Intake Canal, thereby impacting the Des Plaines River. Therefore, Ash Pond 2 was classified as a significant hazard potential CCR surface impoundment.

#### 5.2 CHANGES IN BASES FOR INITIAL HAZARD POTENTIAL CLASSIFICATION

#### 5.2.1 CHANGES IN ASH POND OPERATIONS & EMBANKMENT GEOMETRY

Ash Pond 2 was originally designed to manage CCR and miscellaneous non-CCR wastestreams from the Station. Following the conversion of Joliet 29's coal-fired units to natural gas, the pond was no longer used to manage CCR wastestreams and was eventually taken out of service. In accordance with the Station's ash pond maintenance practices, the Station then began dewatering and removing CCR from the pond. As documented in the pond's annual inspection reports since 2019 (Refs. 13 and 14), minimal CCR remains in Ash Pond 2. During a site visit in September 2021, no CCR and only a few feet of stormwater were visually observed in Ash Pond 2. In April 2021, MWG filed a notice of intent to close Ash Pond 2 in accordance with

the Federal CCR Rule's closure criteria (Ref. 2, § 257.102). Closure construction activities will commence at the pond upon receipt of a closure construction permit from the Illinois EPA in accordance with Subpart B of the Illinois CCR Rule.

As previously mentioned in Section 5.1, Ash Pond 2's 2016 hazard potential classification assessment examined hypothetical breach scenarios assuming the pond was at capacity; therefore, the assumed operating condition used for the initial assessment is conservative for the pond's current operating condition. Therefore, there is no basis to reevaluate the surface water elevation used to conduct the initial hazard potential classification assessment for Ash Pond 2.

Based on reviews of the annual inspection reports (Refs. 10 through 14) and Google Earth aerial images (Ref. 7), there have been no significant modifications to Ash Pond 2 (mass excavations, major embankment modifications, *etc.*) since the initial hazard potential classification assessment was completed. Therefore, there is no basis to reevaluate the embankment geometry for this 2021 assessment.

#### 5.2.2 CHANGES IN SITE TOPOGRAPHY

Based on reviews of the annual inspection reports (Refs. 10 through 14) and Google Earth aerial images (Ref. 7), there have been no significant modifications to the ground surfaces (mass excavations, mass fill placement, *etc.*) adjacent to Ash Pond 2 or within the dike breach impact areas since the initial hazard potential classification assessment was completed. Therefore, the topographic data collected for the site in 2008 (Ref. 4) remains valid for use in this 2021 assessment.

#### 5.2.3 CHANGES IN DOWNSTREAM PROPERTY DEVELOPMENTS

Based on reviews of Google Earth aerial images (Ref. 7) and the Will County, Illinois GIS (Ref. 8), no new buildings or transport corridors (roads, rail lines, *etc.*) have been constructed in the past five years within the dike breach impact areas identified in the initial hazard potential classification assessment. Thus, there is no basis to reevaluate the potential impacts to the areas downstream of Ash Pond 2 for this 2021 assessment.

#### 5.2.4 CHANGES IN USBR DEPTH-VELOCITY FLOOD DANGER LEVELS

The USBR has not updated the depth-velocity flood danger level relationships presented in its "Downstream Hazard Classification Guidelines" (Ref. 15) since the initial hazard potential classification assessment for Ash Pond 2 was completed in 2016. Therefore, there is no basis to reevaluate the danger levels assigned to the occupied buildings identified within the inundation area downstream of Ash Pond 2's southern dike following a hypothetical breach.

#### 5.3 2021 HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

Other than the change in the operational status of Ash Pond 2, there have been no significant modifications to Ash Pond 2; no significant modifications to the topography adjacent to and downstream of the CCR surface impoundment; and no significant buildings or transport corridors that have been constructed in the areas downstream of the CCR surface impoundment that would be impacted by a hypothetical dike breach. There have also been no changes to the USBR's depth-velocity flood danger level relationships, which were used in the 2016 hazard potential classification assessment. Moreover, the Federal Energy Regulatory Commission's Engineering Guidelines for the Evaluation of Hydropower Projects, which references FEMA's Federal Guidelines for Dam Safety (Ref. 17), states that "the consequences of failure are not expected to cause a probable loss of human life when incremental effects on downstream structures are approximately two feet or less." FEMA's Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures (Ref. 18) also states that an incremental rise in flood depth of two feet or less caused by a dike breach is not considered to be a concern to human life. These two federal guidelines further support the conclusion that the loss of human life at the three occupied buildings is not probable given the initial breach analysis results show the estimated flood depths at these buildings are less than two feet. Therefore, the initial hazard potential classification assessment completed in 2016 for this CCR surface impoundment remains valid. In addition, the 2016 dike breach analysis for Ash Pond 2's southern dike still represents the worst-case failure scenario amongst the pond's three dikes.

Based on the preceding observations, the initial federal significant hazard potential classification assigned to Ash Pond 2 in accordance with 40 CFR 257.73(a)(2) and the bases for this assignment remain valid for 2021. A loss of human life is unlikely to result from a hypothetical failure at this CCR surface impoundment, but potential offsite environmental damage could occur to the Des Plaines River. As discussed in Section 2.0, a CCR surface impoundment classified as a significant hazard potential per the Federal CCR Rule is considered to be an Illinois Class 2 CCR surface impoundment. Therefore, Ash Pond 2 was classified as a Class 2 CCR surface impoundment pursuant to 35 Ill. Adm. Code 845.440(a)(1).

#### 6.0 CONCLUSIONS

This evaluation reviewed the factors and design inputs used as the bases for the initial hazard potential classification assessment completed in accordance with the Federal CCR Rule for Joliet 29's Ash Pond 2. It was determined that no significant operational or physical changes to the CCR surface impoundment and no new downstream developments have occurred within the last five years that would necessitate changing the pond's initial hazard potential classification. Therefore, the initial federal hazard potential classification assigned to Ash Pond 2 and the bases for this assignment remain valid for this 2021 assessment. This federal hazard potential classification was then used to determine the hazard potential classification pursuant

to the Illinois CCR Rule based on the similarities between the Federal and Illinois CCR Rules' hazard potential classifications for CCR surface impoundments.

Table 6-1 presents the 2021 hazard potential classifications assigned to Ash Pond 2 at Joliet 29 in accordance with 35 III. Adm. Code 845.440(a)(1) and 40 CFR 257.73(a)(2).

Table 6-1 – 2021 Illinois & Federal Hazard Potential Classifications for
Ash Pond 2 at the Joliet 29 Generating Station

CCR Surface Impoundment	Illinois Hazard Potential Classification	Federal Hazard Potential Classification	
Ash Pond 2	Class 2	Significant	

# 7.0 CERTIFICATION

I certify that:

- This hazard potential classification assessment was prepared by me or under my direct supervision.
- The work was conducted in accordance with the requirements of 35 III. Adm. Code 845.440 and with the requirements of 40 CFR 257.73(a)(2).
- I am a registered professional engineer under the laws of the State of Illinois.

Certified By: Thomas J. Dehlin Date: October 14, 2021

<u>Seal:</u>



## 8.0 REFERENCES

- Illinois Pollution Control Board. "Standards for Disposal of Coal Combustion Residuals in CCR Surface Impoundments." 35 III. Adm. Code 845. Accessed October 13, 2021.
- U.S. Environmental Protection Agency. "Standards for Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments." 40 CFR Part 257 Subpart D. <u>https://www.ecfr.gov/current/title-40/chapter-l/part-257/subpart-D</u>. Accessed October 13, 2021.
- Geosyntec Consultants. "Hazard Potential Classification Assessment, Ash Pond 2, Joliet 29 Station." October 2016.
- 4. Aero-Metric, Inc. Aerial Survey of Joliet 29 Generating Station Dated June 17, 2008.
- 5. Geosyntec Consultants. "Joliet 29 Station, Ash Pond 2, Hazard Potential Classification Assessment Embankment Breach Analysis." October 17, 2016.
- Civil & Environmental Consultants, Inc. "Emergency Action Plan, Ash Pond 2, Joliet 29 Station." April 2017.
- 7. Google Earth Pro v7.3.0.3832. Accessed October 13, 2021.
- 8. Will County GIS Data Viewer. <u>https://www.willcountyillinois.com/County-Offices/Administration/GIS-Division/GIS-Data-Viewer</u>. Accessed October 13, 2021.
- Federal Emergency Management Agency. "Will County, Illinois and Incorporated Areas." Map No. 17197C0280G. Effective February 15, 2019.
- 10. Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." January 18, 2016.
- 11. Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 16, 2017.
- 12. Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2018.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2019.
- 14. Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 9, 2020.
- 15. U.S. Department of the Interior, Bureau of Reclamation. "Downstream Hazard Classification Guidelines." ACER Technical Memorandum No. 11. December 1988.
- Federal Energy Regulatory Commission. Engineering Guidelines for the Evaluation of Hydropower Projects. "Chapter II – Selecting and Accommodating Inflow Design Floods for Dams." August 2015.
- 17. Federal Emergency Management Agency. Federal Guidelines for Dam Safety. April 2004.
- 18. Federal Emergency Management Agency. *Federal Guidelines for Inundation Mapping of Flood Risks* Associated with Dam Incidents and Failures. FEMA P-946. First Edition. July 2013.

## APPENDIX A: 2016 ASH POND 2 HAZARD POTENTIAL CLASSIFICATION ASSESSMENT

# ATTACHMENT 16 STRUCTURAL STABILITY ASSESSMENT



Midwest Generation, LLC Joliet 29 Generating Station

# 2021 Structural Stability Assessment for Ash Pond 2

Revision 0 October 14, 2021 Issue Purpose: Use Project No.: 12661-121

55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com



Midwest Generation, LLC Joliet 29 Generating Station Project No.: 12661-121

# TABLE OF CONTENTS

Table	of Co	ntents	.i.			
1.0	Purpose & Scope1					
	1.1	Purpose	1			
	1.2	Scope	1			
2.0	Asses	sessment1				
	2.1	Inputs & 2021 Ash Pond Conditions				
	2.2	Stable Foundations & Abutments	2			
	2.3	Slope Protection	2			
	2.4	Dike Compaction	3			
		Spillways	3			
		Embedded Hydraulic Structures				
	2.7	Low Pool & Rapid Drawdown Stability	4			
3.0		mmended Corrective Measures				
4.0	•••••••••••••••••••••••••••••••••••••••					
5.0	0 References					
Appendix A: 2016 Ash Pond 2 Structural Stability Assessment						

# 1.0 PURPOSE & SCOPE

#### 1.1 PURPOSE

Ash Pond 2 at Midwest Generation, LLC's (MWG) Joliet 29 Generating Station ("Joliet 29" or the "Station") is an existing coal combustion residual (CCR) surface impoundment that is regulated by the Illinois Pollution Control Board's "Standards for the Disposal of Coal Combustion Residuals in CCR Surface Impoundments." These regulations are codified in Part 845 to Title 35 of the Illinois Administrative Code (35 III. Adm. Code 845, Ref. 1) and are also referred to herein as the "Illinois CCR Rule." Pursuant to 35 III. Adm. Code 845.450(a), MWG must conduct and complete a structural stability assessment that documents whether the design, construction, operation, and maintenance of Ash Pond 2 are consistent with recognized and generally accepted engineering practices for the CCR surface impoundment's storage capacity.

Ash Pond 2 is also regulated by the U.S. Environmental Protection Agency's (EPA) "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," 40 CFR Part 257 Subpart D (Ref. 2), also referred to herein as the "Federal CCR Rule." Pursuant to 40 CFR 257.73(f)(3), the Federal CCR Rule requires MWG to conduct and complete a structural stability assessment in accordance with 40 CFR 257.73(d) for Ash Pond 2 every five years.

This report documents the 2021 structural stability assessment conducted and completed in accordance with the Illinois and Federal CCR Rules by Sargent & Lundy (S&L) on behalf of MWG for Ash Pond 2 at Joliet 29.

#### 1.2 SCOPE

Per the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act, Ash Pond 2 will continue to be subject to both the Illinois and Federal CCR Rules until the U.S. EPA approves the Illinois EPA's CCR permit program. The Illinois EPA has yet to publish a timeline for submitting its proposed CCR permit program to the U.S. EPA for approval, and so MWG must conduct structural stability assessments pursuant to both sets of regulations at this time.

## 2.0 ASSESSMENT

#### 2.1 INPUTS & 2021 ASH POND CONDITIONS

The findings documented in this 2021 structural stability assessment for Ash Pond 2 are based on visual observations made during a site visit by S&L on September 14, 2021; discussions with MWG personnel; historical and recent aerial images obtained from Google Earth Pro (Ref. 3); and Ash Pond 2's initial structural stability assessment (Ref. 4), annual inspection reports (Refs. 5 through 9), and history of construction (Ref. 10). The initial structural stability assessment for Ash Pond 2, which was completed in October 2016, is included in its entirety in Appendix A.

Ash Pond 2 was originally designed to manage CCR and miscellaneous non-CCR wastestreams from the Station. Following the conversion of Joliet 29's coal-fired units to natural gas, the pond was no longer used to manage CCR wastestreams and was eventually taken out of service. In accordance with the Station's ash pond maintenance practices, the Station then began dewatering and removing CCR from the pond. As documented in the pond's annual inspection reports since 2019 (Refs. 8 and 9), minimal CCR remains in Ash Pond 2. During the September 2021 site visit, no CCR and only a few feet of stormwater were visually observed in Ash Pond 2. In April 2021, MWG filed a notice of intent to close Ash Pond 2 in accordance with the Federal CCR Rule's closure criteria (Ref. 2, § 257.102). Closure construction activities will commence at the pond upon receipt of a closure construction permit from the Illinois EPA in accordance with Subpart B of the Illinois CCR Rule. After closing Ash Pond 2, MWG currently plans on subsequently repurposing the area as a new service water basin for the Station.

#### 2.2 STABLE FOUNDATIONS & ABUTMENTS

#### (35 III. Adm. Code 845.450(a)(1); 40 CFR 257.73(d)(1)(i))

Ash Pond 2 is comprised of three earthen dikes and does not have any abutments. Detailed information on the soils supporting Ash Pond 2's dikes is provided in the pond's initial structural stability assessment in Appendix A. Based on reviews of the pond's annual inspection reports (Refs. 5 through 9) and Google Earth aerial images (Ref. 3), there have been no significant modifications to Ash Pond 2's geometry since its initial structural stability assessment was completed. Therefore, the details of the soils supporting Ash Pond 2's dikes and corresponding conclusions documented in the pond's initial structural stability assessment remain valid for this 2021 assessment (see Appendix A). Thus, the soils supporting Ash Pond 2's dikes are considered to be stable for the maximum volume of CCR and CCR wastewater which can be impounded therein.

#### 2.3 SLOPE PROTECTION

#### (35 III. Adm. Code 845.450(a)(2) & (4); 40 CFR 257.73(d)(1)(ii) & (iv))

The upstream slopes of Ash Pond 2 are lined with high-density polyethylene (HDPE) geomembrane. This form of cover protects the upstream slopes of the pond's dikes against surface erosion, wave action, and adverse effects of sudden (rapid) drawdown.

Slope protection for the downstream slopes of Ash Pond 2 consists of either the HDPE geomembrane liner of Pond 1 (western dike) or vegetative cover (eastern and southern dikes). The gravel, sand, and cobble surfacing noted in the pond's initial structural stability assessment was also observed along the downstream slopes of the pond's eastern and southern dikes during the September 2021 site visit. These forms of cover protect the downstream slopes of the pond's dikes against surface erosion, wave action, and adverse effects of sudden (rapid) drawdown.

During the September 2021 site visit, vegetation greater than 12 inches was observed along portions of the pond's downstream slopes and dike crests. Some woody vegetation was also observed. Pursuant to the Illinois CCR Rule (Ref. 1, §§ 845.430(b)(4) and 845.430(b)(5)), the Station should remove the woody vegetation and mow the areas where the height of vegetative cover exceeds 12 inches.

It should be noted that the Federal CCR Rule requirement that vegetation on slopes of dikes and surrounding areas not exceed a height of six inches (Ref. 2, § 257.73(d)(1)(iv)) was vacated by the U.S. Court of Appeals, District of Columbia Circuit after the provision was challenged following publication of the Federal CCR Rule in April 2015. See *USWAG et al.* v. *EPA*, No. 15-1219 (D.C. Circ. 2015). The U.S. EPA has yet to finalize a rule that re-establishes federal limitations for the height of vegetation above the surfaces of CCR surface impoundment dikes.

#### 2.4 DIKE COMPACTION

#### (35 III. Adm. Code 845.450(a)(3); 40 CFR 257.73(d)(1)(iii))

As documented in Ash Pond 2's initial and 2021 safety factor assessments (Refs. 4 and 11), the pond's dikes are sufficiently compacted to withstand the range of loading conditions in the CCR surface impoundment.

#### 2.5 SPILLWAYS

#### (35 III. Adm. Code 845.450(a)(5); 40 CFR 257.73(d)(1)(v))

Ash Pond 2 does not have spillways. As documented in the pond's 2021 inflow design flood control system plan, the pond is capable of managing the design flood event (1000-year, 24-hour storm) without a spillway.

#### 2.6 EMBEDDED HYDRAULIC STRUCTURES

#### (35 III. Adm. Code 845.450(a)(6); 40 CFR 257.73(d)(1)(vi))

Portions of the discharge pipes from Pond 1 and from Ash Pond 2 underlie the latter's southern dike. The locations of these two pipes are shown on Figure 2 of the pond's initial structural stability assessment in Appendix A. As documented in the initial assessment, visual surveillance of these pipes was performed in May 2016 by a third party that specializes in video camera pipe inspections. No significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, or debris that may negatively affect Ash Pond 2 were identified during this surveillance program. It is noted that a portion of Pond 1's discharge pipe passes under Ash Pond 2's northern crest, but this portion of Ash Pond 2 is effectively incised and, thus, is not considered to be at risk if the discharge pipe's integrity was to become compromised.

No similar pipe surveillance programs have been performed since the initial video camera inspection in May 2016. However, no visual signs of distress at the dike surfaces that could be indicative of pipe deterioration, failure, deformation, *etc.* were observed (*e.g.*, soft spots caused by leaking water, distortions in dike alignment) during the September 2021 site visit. Moreover, since Ash Pond 2 has been taken out of service and had minimal surface water remaining in it as of the September 2021 site visit, the pond's discharge pipe is not expected to convey water again until the pond is closed and subsequently repurposed as a new low volume waste pond. Therefore, it is recommended that the Station conduct a visual surveillance program to confirm the discharge pipes for Pond 1 and (the current) Ash Pond 2 are in good, working condition and are free of significant material defects that could impact the pipes' integrities prior to repurposing Ash Pond 2 as a new service water basin.

#### 2.7 LOW POOL & RAPID DRAWDOWN STABILITY

#### (35 III. Adm. Code 845.450(a)(7); 40 CFR 257.73(d)(1)(vii))

As documented in Ash Pond 2's initial safety factor assessment (Ref. 4), the results of which were revalidated in its 2021 safety factor assessment (Ref. 11), the structural stability of the pond's downstream slopes is maintained during a low pool condition in Pond 1. Because Pond 1 is lined with an HDPE geomembrane, a sudden (rapid) drawdown condition was determined to not be an applicable loading condition for Ash Pond 2 since Pond 1's liner precludes the infiltration of water into Ash Pond 2's western dike.

Based on reviews of Ash Pond 2's annual inspection reports (Refs. 5 through 9) and Google Earth aerial images (Ref. 3), there have been no significant modifications to Pond 1 since Ash Pond 2's initial structural stability assessment was completed. Therefore, the conclusions documented therein regarding the stability of Ash Pond 2's western dike during low pool and sudden (rapid) drawdown conditions at Pond 1 remain valid for this 2021 assessment (see Appendix A).

## 3.0 RECOMMENDED CORRECTIVE MEASURES

(35 III. Adm. Code 845.450(b)(1); 40 CFR 257.73(d)(1)(2))

Based on the findings documented in this 2021 structural stability assessment, the following corrective measures are recommended:

- Mow vegetation that is greater than 12-inches tall along Ash Pond 2's downstream slopes and dike crests,
- Remove woody vegetation in accordance with 35 III. Adm. Code 845.430(b)(4), and
- Conduct a visual surveillance program to verify that the discharge pipes for Pond 1 and Ash Pond 2 are in good, working condition and are free of significant material defects that could compromise the pipes' integrities prior to repurposing Ash Pond 2 as a new service water basin.


# 4.0 CERTIFICATION

I certify that:

- This structural stability assessment was prepared by me or under my direct supervision.
- The work was conducted in accordance with the requirements of 35 III. Adm. Code 845.450 and with the requirements of 40 CFR 257.73(d).
- I am a registered professional engineer under the laws of the State of Illinois.

Certified By:	Thomas J. Dehlin	Date:	October 14, 2021
-			

<u>Seal:</u>



Th. Dehl

10/14/2021 Exp. 11/30/2021

## 5.0 REFERENCES

- Illinois Pollution Control Board. "Standards for Disposal of Coal Combustion Residuals in CCR Surface Impoundments." 35 III. Adm. Code 845. Accessed October 12, 2021.
- U.S. Environmental Protection Agency. "Standards for Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments." 40 CFR Part 257 Subpart D. <u>https://www.ecfr.gov/current/title-40/chapter-l/part-257/subpart-D</u>. Accessed October 12, 2021.
- 3. Google Earth Pro v7.3.0.3832. Accessed October 12, 2021.
- 4. Geosyntec Consultants. "Structural Stability and Factor of Safety Assessment, Ash Pond 2, Joliet 29 Station." October 2016.
- Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." January 18, 2016.
- Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 16, 2017.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2018.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2019.
- 9. Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 9, 2020.
- 10. Geosyntec Consultants. "History of Construction, Ash Pond 2, Joliet 29 Station." October 2016.
- 11. Sargent & Lundy. "2021 Safety Factor Assessment for Ash Pond 2." S&L Project No. 12661-121. October 2021.

## APPENDIX A: 2016 ASH POND 2 STRUCTURAL STABILITY ASSESSMENT

# **ATTACHMENT 17 SAFETY FACTOR ASSESSMENT**



Midwest Generation, LLC Joliet 29 Generating Station

# 2021 Safety Factor Assessment for Ash Pond 2

Revision 0 October 15, 2021 Issue Purpose: Use Project No.: 12661-121

55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com



Midwest Generation, LLC Joliet 29 Generating Station Project No.: 12661-121

# TABLE OF CONTENTS

	of Contents	
1.0	Purpose & Scope	1
	1.1 Purpose	1
	1.2 Scope	1
2.0	Inputs	2
3.0	Assumptions	3
4.0	Methodology	3
5.0	Assessment	4
	5.1 Summary of Initial Safety Factor Assessment	4
	5.2 Changes in Bases for Initial Factors of Safety	4
6.0	2021 Safety Factor Assessment Conclusions	6
	Certification	
8.0	References	8
	ndix A: 2016 Ash Pond 2 Safety Factor Assessment	

# 1.0 PURPOSE & SCOPE

#### 1.1 PURPOSE

Ash Pond 2 at Midwest Generation, LLC's (MWG) Joliet 29 Station ("Joliet" or the "Station") is an existing coal combustion residual (CCR) surface impoundment that is regulated by the Illinois Pollution Control Board's "Standards for the Disposal of Coal Combustion Residuals in CCR Surface Impoundments." These regulations are codified in Part 845 to Title 35 of the Illinois Administrative Code (35 Ill. Adm. Code 845, Ref. 1) and are also referred to herein as the "Illinois CCR Rule." Pursuant to 35 Ill. Adm. Code 845.460(a), MWG must conduct and complete a safety factor assessment that documents whether the critical cross section at Ash Pond 2 achieves the minimum safety factors specified in 35 Ill. Adm. Code 845.460(a).

Ash Pond 2 at Joliet is also regulated by the U.S. Environmental Protection Agency's "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," 40 CFR Part 257 Subpart D (Ref. 2), also referred to herein as the "Federal CCR Rule." Pursuant to 40 CFR 257.73(f)(3), the Federal CCR Rule requires MWG to conduct and complete a safety factor assessment in accordance with 40 CFR 257.73(e) for the Ash Pond 2 every five years.

This report documents the 2021 safety factor assessment conducted and completed in accordance with the Illinois and Federal CCR Rules by Sargent & Lundy (S&L) on behalf of MWG for Ash Pond 2 at the Joliet 29 Station. This report:

- Lists the inputs and assumptions used in the 2021 safety factor assessment,
- Discusses the methodology used to conduct the 2021 safety factor assessment,
- Lists and compares the safety factor acceptance criteria for CCR surface impoundments promulgated by the Illinois and Federal CCR Rules,
- Summarizes the results from the initial safety factor assessment completed for Ash Pond 2 that was conducted in accordance with the Federal CCR Rule,
- Evaluates potential changes to the inputs used in the initial safety factor assessment to determine whether new or updated liquefaction and/or structural stability analyses are warranted, and
- Provides the 2021 factors of safety for Ash Pond 2 in accordance with 35 III. Adm. Code 845.460(a) and 40 CFR 257.73(e).

#### 1.2 SCOPE

Per the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act, Ash Pond 2 will continue to be subject to both the Illinois and Federal CCR Rules until the U.S. EPA approves the Illinois EPA's CCR permit program. The Illinois EPA has yet to publish a timeline for submitting its proposed CCR permit program to

the U.S. EPA for approval, and so MWG must conduct safety factor assessments pursuant to both sets of regulations at this time.

## 2.0 INPUTS

#### Safety Factor Acceptance Criteria for CCR Surface Impoundments

The Illinois CCR Rule (Ref. 1, § 845.460) requires all existing CCR surface impoundments to achieve four minimum safety factors at the impoundment's critical cross section, which is defined by the Illinois CCR Rule as "the cross section anticipated to be the most susceptible of all cross-sections to structural failure based on appropriate engineering considerations, including loading conditions." The Federal CCR Rule (Ref. 2, § 257.73(e)) has the same safety factor acceptance criteria as the Illinois CCR Rule. Table 2-1 presents the safety factor acceptance criteria promulgated by both sets of regulations for existing CCR surface impoundments.

Loading Condition	Minimum Allowable Factor of Safety	Illinois CCR Rule Reference	Federal CCR Rule Reference
Long-Term, Maximum Storage Pool	1.50	§ 845.460(a)(2)	§ 257.73(e)(1)(i)
Maximum Surcharge Pool	1.40	§ 845.460(a)(3)	§ 257.73(e)(1)(ii)
Seismic	1.00	§ 845.460(a)(4)	§ 257.73(e)(1)(iii)
Liquefaction	1.20	§ 845.460(a)(5)	§ 257.73(e)(1)(iv)

Table 2-1 – Safety Factor Acceptance Criteria for Existing CCR Surface Impoundments

#### **Initial Safety Factor Assessment**

Appendix A provides the initial safety factor assessment conducted by Geosyntec Consultants in 2016 for Ash Pond 2 (Ref. 3). The inputs, assumptions, and methodology utilized in this initial safety factor assessment were evaluated to determine whether any updates to this analysis are warranted.

#### Site Topography & Aerial Images

Topographic data for Ash Pond 2 and the adjacent areas was obtained from an aerial survey flown at the site in June 2008 (Ref. 4). Historical and recent aerial images of Ash Pond 2 and adjacent areas were obtained from Google Earth Pro (Ref. 5).

#### **Groundwater**

Groundwater data for Ash Pond 2 and the surrounding areas was obtained from annual groundwater monitoring reports prepared by KPRG and Associates, Inc. for the CCR surface impoundment in accordance with 40 CFR 257.90(e) (Refs. 11 through 14).

#### Ash Pond Conditions

The operating and physical conditions for Ash Pond 2 were based on discussions with MWG personnel and on the annual inspection reports prepared for the CCR surface impoundment in accordance with 40 CFR 257.83(b) (Refs. 6 through 10).

#### Horizontal Seismic Coefficient

Pursuant to 35 III. Adm. Code 845.460(a)(4) and 40 CFR 257.73(e)(1)(iii), Ash Pond 2 must have a minimum factor of safety of 1.00 when analyzed under a seismic loading condition. This loading condition is represented by a horizontal seismic coefficient that is based on a peak ground acceleration (PGA) with a 2 percent probability of exceedance in 50 years in accordance with the definition of "[m]aximum horizontal acceleration in lithified earth material" promulgated by 35 III. Adm. Code 845.120 and 40 CFR 257.53. The design horizontal seismic coefficient is also based on the mapped spectral response acceleration at a period of 1 second ( $S_1$ ) and on a site correction factor ( $F_v$ ) that accounts for the impacts of site-specific soil conditions on the mapped PGA and spectral response acceleration. Table 2-2 presents the seismic response parameters obtained from ASCE 7-16 (Ref. 15) on which Ash Pond 2's seismic loading condition was based.

Parameter	Symbol	Value
Peak Ground Acceleration	PGA	0.113
Mapped Spectral Response, 1-Second Period	S1	0.069
Site Correction Factor for 1-Second Period	Fv	2.4

Table 2-2 – Horizontal Seismic Coefficient Inputs

#### 3.0 ASSUMPTIONS

There are no assumptions in this document that require verification.

# 4.0 METHODOLOGY

The inputs for Ash Pond 2's initial safety factor assessment were reviewed to determine if any changes have occurred since the initial assessment was completed. Identified changes were then evaluated to determine if updates to the pond's previous structural stability and/or liquefaction analyses were warranted. Where no

changes were noted for a given input, or where identified changes were determined to have no impact on the results and conclusions of the initial safety factor assessment, the previous evaluation of that input was considered to still be valid.

# 5.0 ASSESSMENT

#### 5.1 SUMMARY OF INITIAL SAFETY FACTOR ASSESSMENT

The initial safety factor assessment for Ash Pond 2 was completed in October 2016 and is included in its entirety in Appendix A. The results of this assessment indicated that the pond's critical cross-section is stable and meets the factor of safety requirements presented in 40 CFR 257.73(e)(1)(i) through 257.73(e)(1)(iv). Because the Illinois and Federal CCR Rules have the same safety factor acceptance criteria, it is noted that the factors of safety calculated in the initial safety factor assessment also comply with the factor of safety requirements prevents promulgated under 35 Ill. Adm. Code 845.460(a)(2) through 845.460(a)(5).

In addition to evaluating the pond's earthen dikes, the initial safety factor assessment also evaluated a reinforced concrete cantilever retaining wall located along the southwest portion of Ash Pond 2's southern dike. This wall section was analyzed to confirm it meets or exceeds the minimum factors of safety for bearing capacity, overturning, and sliding that are generally accepted industry standards.

#### 5.2 CHANGES IN BASES FOR INITIAL FACTORS OF SAFETY

The following subsections summarize the evaluation conducted to determine if changes to the design inputs used in Ash Pond 2's initial safety factor assessment have occurred since the assessment was completed, and to determine whether the initial structural stability and liquefaction analyses can be accepted as-is for this 2021 assessment or if further analysis is required.

#### 5.2.1 CHANGES IN GEOTECHNICAL DATA

Based on reviews of the annual inspection reports (Refs. 6 through 10) and Google Earth aerial images (Ref. 5), there have been no significant changes to the embankments or underlying soils that would require updating the geotechnical parameters used in the 2016 analysis (Ref. 3).

#### 5.2.2 CHANGES IN TOPOGRAPHY ADJACENT TO ASH POND 2

Based on reviews of the annual inspection reports (Refs. 6 through 10) and Google Earth aerial images (Ref. 5), there have been no significant modifications to the ground surfaces adjacent to Ash Pond 2 (mass excavations, mass fill placement, *etc.*) since the initial safety factor assessment was completed. Therefore, the topographic data collected for the site in 2008 (Ref. 4) remains valid for use in this 2021 assessment.

#### 5.2.3 CHANGES IN GROUNDWATER TABLE

Based on reviews of the annual groundwater monitoring and corrective action reports for Ash Pond 2 (Refs. 11 through 14), no significant variations in the groundwater were noted. Because Ash Pond 2 is lined with a geomembrane, the embankments are not hydraulically connected to the water levels within the pond, and a typical phreatic surface normally associated with seepage through an earthen embankment is not applicable. The reported static groundwater elevation is valid for this analysis, and there have been no significant changes in the surface water conditions near the site that would impact the site's groundwater levels.

#### 5.2.4 CHANGES IN EMBANKMENT GEOMETRY

Based on reviews of the annual inspection reports (Refs. 6 through 10), Google Earth aerial images (Ref. 5), and visual observations made in September 2021, there have been no significant modifications to the embankments for the pond since the initial safety factor assessment was completed. Therefore, there is no basis to reevaluate Ash Pond 2's embankment geometry for this 2021 assessment.

#### 5.2.5 CHANGES IN EARTHQUAKE DESIGN BASIS

The design horizontal seismic coefficient utilized in the existing technical analysis (Ref. 3) was based on published data in ASCE 7-10 (Ref. 16). Since the existing technical analysis was developed, an updated publication of the reference material has been produced (ASCE 7-16 (Ref. 15)), which provides updated values for the parameters used to determine the design horizontal seismic coefficient (see Tables 2-2 and 5-1). Based on the reduction in the site seismic loading parameters from ASCE 7-10 to ASCE 7-16, the horizontal seismic coefficient for Ash Pond 2's seismic loading condition will be less than the value used in the initial safety factor assessment. Therefore, the horizontal seismic coefficient used for the 2016 analysis is conservative. Thus, it is not necessary to change the earthquake design basis used to conduct the initial safety factor assessment for Ash Pond 2.

Parameter	Symbol	2016 Values per ASCE 7-10	2021 Values per ASCE 7-16	
Peak Ground Acceleration	PGA	0.132	0.113	
Mapped Spectral Response, 1-Second Period	S1	0.069	0.069	
Site Correction Factor for 1- Second Period	Fv	2.4	2.4	

Table 5-1 – Seismic Loading Parameters Comparisor
---------------------------------------------------

#### 5.2.6 CHANGES IN ASH POND OPERATIONS

Ash Pond 2 was originally designed to manage CCR and miscellaneous non-CCR wastestreams from the Station. Following the conversion of Joliet 29's coal-fired units to natural gas, the pond was no longer used to manage CCR wastestreams and was eventually taken out of service. In accordance with the Station's ash pond maintenance practices, the Station then began dewatering and removing CCR from the pond. As documented in the pond's annual inspection reports since 2019 (Refs. 9 and 10), minimal CCR remains in Ash Pond 2. During a site visit in September 2021, it was noted that no CCR and only a few feet of stormwater were visually observed in Ash Pond 2. In April 2021, MWG filed a notice of intent to close Ash Pond 2 in accordance with the Federal CCR Rule's closure criteria (Ref. 2, § 257.102). Closure construction activities will commence upon receipt of a closure construction permit from the Illinois EPA in accordance with Subpart B of the Illinois CCR Rule.

The decrease in surface water elevation in Ash Pond 2 decreases the driving forces in the embankment; therefore, the surface water elevation used for the 2016 analysis is conservative for the pond's current operating condition. Therefore, there is no basis to reevaluate the surface water elevations used to conduct the initial safety factor assessment for Ash Pond 2.

#### 6.0 2021 SAFETY FACTOR ASSESSMENT CONCLUSIONS

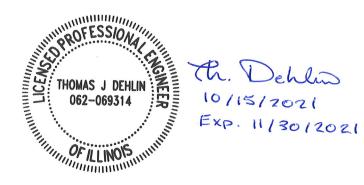
The initial safety factor analysis for Ash Pond 2 (Ref. 3) was reviewed and validated for compliance with the Illinois and Federal CCR Rules' safety factor acceptance criteria for existing CCR surface impoundments. No changes that would invalidate the conclusions of the initial safety factor assessment were identified in reviews of available information and reports completed for the CCR surface impoundment since the initial assessment was completed in 2016. Therefore, the results reported in the initial safety factor assessment for Ash Pond 2's earthen dikes and retaining wall remain valid for this 2021 assessment.

Table 6-1 presents the 2021 factors of safety for Ash Pond 2's earthen dikes as determined in accordance with 35 III. Adm. Code 845.460(a) and 40 CFR 257.73(e).

for Ash Pond 2 at the Joliet 29 Station					
Loading Condition	Ash Pond 2	Min. Allowable Factor of Safety			
Long-Term, Maximum Storage Pool	≥ 1.50	1.50			
Maximum Surcharge Pool	≥ 1.40	1.40			
Seismic	≥ 1.00	1.00			
Liquefaction	Note 1	1.20			

# Table 6-1 – 2021 Illinois & Federal CCR Rule Factors of Safety for Ash Pond 2 at the Joliet 29 Station

Notes: 1) The embankment soils for Ash Pond 2 are not considered susceptible to liquefaction because saturation of the embankment soils is unlikely based on the installed geomembrane liner system and depth to groundwater. Thus, liquefaction safety factors are not reported.


# 7.0 CERTIFICATION

I certify that:

- This safety factor assessment was prepared by me or under my direct supervision.
- The work was conducted in accordance with the requirements of 35 III. Adm. Code 845.460 and with the requirements of 40 CFR 257.73(e).
- I am a registered professional engineer under the laws of the State of Illinois.

Certified By:	Thomas J. Dehlin	Date:	October 15, 2021

<u>Seal:</u>



## 8.0 REFERENCES

- Illinois Pollution Control Board. "Standards for Disposal of Coal Combustion Residuals in CCR Surface Impoundments." 35 III. Adm. Code 845. Accessed October 15, 2021.
- U.S. Environmental Protection Agency. "Standards for Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments." 40 CFR Part 257 Subpart D. <u>https://www.ecfr.gov/current/title-</u> <u>40/chapter-l/subchapter-l/part-257/subpart-D</u>. Accessed October 15, 2021.
- Geosyntec Consultants. "Structural Stability and Factor of Safety Assessment, Ash Pond 2, Joliet 29 Station." October 2016.
- 4. Aero-Metric, Inc.. Photogrammetric Survey, Joliet 29 Station. Flight Date: June 17, 2008.
- 5. Google Earth Pro v7.3.0.3832. Accessed October 15, 2021.
- 6. Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." January 2016.
- 7. Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 2017.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 2018.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 2019.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 2020.
- KPRG and Associates, Inc., CCR Compliance Annual Groundwater Monitoring and Corrective Action Report – 2017, Dated January 24, 201[8].
- KPRG and Associates, Inc., CCR Compliance Annual Groundwater Monitoring and Corrective Action Report – 2018, Dated January 31, 2019.
- KPRG and Associates, Inc., CCR Compliance Annual Groundwater Monitoring and Corrective Action Report – 2019, Dated January 31, 2020.
- KPRG and Associates, Inc., CCR Compliance Annual Groundwater Monitoring and Corrective Action Report – 2020, Dated January 31, 2021.
- 15. American Society of Civil Engineers. *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*. ASCE/SEI 7-16. 2016.
- 16. American Society of Civil Engineers. *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*. ASCE/SEI 7-10. 2010.

## APPENDIX A: 2016 ASH POND 2 SAFETY FACTOR ASSESSMENT

# ATTACHMENT 18 INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN



Midwest Generation, LLC Joliet 29 Generating Station

# 2021 Inflow Design Flood Control System Plan for Ash Pond 2

Revision 0 October 15, 2021 Issue Purpose: Use Project No.: 12661-121

55 East Monroe Street Chicago, IL 60603-5780 USA 312-269-2000 www.sargentlundy.com



Midwest Generation, LLC Joliet 29 Generating Station Project No.: 12661-121

# TABLE OF CONTENTS

	of Contents	
1.0	Purpose & Scope	1
	1.1 Purpose	1
	1.2 Scope	1
2.0	Inputs	2
3.0	Assumptions	3
4.0	Hydrologic & Hydraulic Assessment	3
	4.1 Changes Since Initial Inflow Design Flood Control System Plan	3
	4.2 Methodology	3
	4.3 Results	
5.0	Conclusions	4
6.0	Certification	5
7.0	References	6
Appe	ndix A: 2016 Ash Pond 2 Inflow Design Flood Control System Plan	

# 1.0 PURPOSE & SCOPE

#### 1.1 PURPOSE

Ash Pond 2 at Midwest Generation, LLC's (MWG) Joliet 29 Generating Station ("Joliet 29" or the "Station") is an existing coal combustion residual (CCR) surface impoundment that is regulated by the Illinois Pollution Control Board's "Standards for the Disposal of Coal Combustion Residuals in CCR Surface Impoundments." These regulations are codified in Part 845 to Title 35 of the Illinois Administrative Code (35 III. Adm. Code 845, Ref. 1) and are also referred to herein as the "Illinois CCR Rule." Pursuant to 35 III. Adm. Code 845.510(c)(1), MWG must prepare an inflow design flood control system plan that documents how the inflow design flood control system for Ash Pond 2 has been designed and constructed to meet the hydrologic and hydraulic capacity requirements for CCR surface impoundments promulgated by 35 III. Adm. Code 845.510.

Ash Pond 2 is also regulated by the U.S. Environmental Protection Agency's "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," 40 CFR Part 257 Subpart D (Ref. 2), also referred to herein as the "Federal CCR Rule." Pursuant to 40 CFR 257.82(c)(4), the Federal CCR Rule requires MWG to prepare a periodic inflow design flood control system plan in accordance with 40 CFR 257.82(c)(1) for Ash Pond 2 every five years.

This report documents the 2021 inflow design flood control system plan prepared in accordance with the Illinois and Federal CCR Rules by Sargent & Lundy (S&L) on behalf of MWG for Ash Pond 2 at Joliet 29. This report:

- Lists the inputs and assumptions used to determine whether Ash Pond 2 can manage the inflow design flood,
- Discusses the methodology used to determine whether Ash Pond 2 can manage the inflow design flood,
- Evaluates potential changes to the design inputs used in the initial hydrologic and hydraulic assessment completed for Ash Pond 2 that was conducted in accordance with the Federal CCR Rule, and
- Summarizes the results of the hydrologic and hydraulic calculations performed to support the conclusion of whether Ash Pond 2 meets the hydrologic and hydraulic requirements for CCR surface impoundments promulgated by both the Federal and Illinois CCR Rules.

#### 1.2 SCOPE

Per the 2016 Water Infrastructure Improvements for the Nation (WIIN) Act, Ash Pond 2 will continue to be subject to both the Illinois and Federal CCR Rules until the U.S. EPA approves the Illinois EPA's CCR permit program. The Illinois EPA has yet to publish a timeline for submitting its proposed CCR permit program to

the U.S. EPA for approval, and so MWG must prepare an inflow design flood control system plan pursuant to both sets of regulations at this time.

## 2.0 INPUTS

#### Inflow Design Flood Control System

The inflow design flood control system for Ash Pond 2 is documented in the pond's initial inflow design flood control system plan, which was prepared by Geosyntec Consultants in October 2016 (Ref. 3). This plan is provided in its entirety in Appendix A.

#### Inflow Design Flood Event

Per its 2021 hazard potential classification assessment (Ref. 4), Ash Pond 2 is classified as a Class 2 CCR surface impoundment pursuant to 35 III. Adm. Code 845.440(a)(1) and as a significant hazard potential CCR surface impoundment pursuant to 40 CFR 257.73(a)(2). Therefore, the inflow design flood event used in this hydrologic and hydraulic assessment of Ash Pond 2 was based on the 1,000-year storm (Ref. 1, § 845.510(a)(3); Ref. 2, § 257.82(a)(3)). Per the National Oceanic and Atmospheric Administration's (NOAA) Atlas 14 (Ref. 5), the precipitation depth for the 1,000-year, 24-hour storm event at the Joliet 29 site is 14.2 inches.

#### Site Topography

Topographic data for Ash Pond 2 and the surrounding areas was obtained from an aerial survey performed by Aero-Metric, Inc. in 2008 (Ref. 6).

#### Aerial Images

Historical and recent aerial images of the Station and surrounding areas were obtained from Google Earth Pro (Ref. 7).

#### Ash Pond Conditions

The operating and physical conditions for Ash Pond 2 were based on discussions with MWG personnel, the history of construction prepared for the CCR surface impoundment in accordance with 40 CFR 257.73(c) (Ref. 8), and the annual inspection reports prepared for the CCR surface impoundment in accordance with 40 CFR 257.83(b) (Refs. 9 through 13).

#### Mean Annual Precipitation Depth

The mean annual precipitation depth for the site was obtained from NOAA's "Summary of Monthly Normals" (Ref. 14) for a monitoring station at the Brandon Road Lock and Dam in Joliet, Illinois, which is approximately 1.5 miles northeast of the Station. Per this NOAA dataset, the mean annual precipitation depth at the site is 36.8 inches.

# 3.0 ASSUMPTIONS

There are no assumptions in this document that require verification.

# 4.0 HYDROLOGIC & HYDRAULIC ASSESSMENT

#### 4.1 CHANGES SINCE INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN

#### 4.1.1 CHANGES IN ASH POND OPERATIONS

Ash Pond 2 was originally designed to manage CCR and miscellaneous non-CCR wastestreams from the Station. Following the conversion of Joliet 29's coal-fired units to natural gas, the pond was no longer used to manage CCR wastestreams and was eventually taken out of service. In accordance with the Station's ash pond maintenance practices, the Station then began dewatering and removing CCR from the pond. Moreover, the Station isolated the pond by capping the inlet pipe from Pond 1. As documented in the pond's annual inspection reports since 2019 (Refs. 12 and 13), minimal CCR remains in Ash Pond 2. During a site visit in September 2021, no CCR and approximately 2 feet of stormwater were visually observed in Ash Pond 2. In April 2021, MWG filed a notice of intent to close Ash Pond 2 in accordance with the Federal CCR Rule's closure criteria (Ref. 2, § 257.102). Closure construction activities will commence at the pond upon receipt of a closure construction permit from the Illinois EPA in accordance with Subpart B of the Illinois CCR Rule.

Based on reviews of the annual inspection reports (Refs. 9 through 13) and Google Earth aerial images (Ref. 7), there have been no significant modifications to Ash Pond 2 (mass excavations, major embankment modifications, *etc.*) since the initial inflow design flood control system plan was completed. Therefore, there is no basis to reevaluate the embankment geometry for this 2021 assessment.

#### 4.1.2 CHANGES IN ASH POND TOPOGRAPHY

Based on reviews of the annual inspection reports (Refs. 9 through 13) and Google Earth aerial images (Ref. 7), there have been no significant modifications to Ash Pond 2's embankments (mass excavations, mass fill placement, *etc.*) since the initial inflow design flood control system plan was completed. Therefore, the topographic data collected for the site in 2008 (Ref. 4) and the area-capacity curves documented in Ash Pond 2's history of construction (Ref. 8) remain valid for use in this 2021 assessment.

#### 4.2 METHODOLOGY

As previously mentioned, approximately 2 feet of water was observed in Ash Pond 2 during a September 2021. Since the pond was taken out of service, the water level in the pond has fluctuated with the net precipitation rate into the pond (*i.e.*, inflow from direct precipitation and stormwater run-on less outflow from evaporation). For the purposes of this assessment, the design operating water level in Ash Pond 2 was

based on the 2 feet of water observed in September 2021 plus 1.5 years' worth of direct precipitation and stormwater run-on to account for a period of time until closure construction activities commence. Evaporation out of the pond was conservatively omitted. No rainfall abstraction was considered, which is also a conservative assumption (*i.e.*, the full design precipitation depth over Ash Pond 2's catchment area was assumed to enter the pond). Because Ash Pond 2 is perched, stormwater entering the pond during storm events is limited to direct precipitation and stormwater run-on from the access roads on the pond's dikes.

After determining the design operating surface water elevation in Ash Pond 2 for this assessment, the inflow flood volume into Ash Pond 2 from the 1000-year, 24-hour storm event was then calculated to determine the rise in the pond's water level. The new surface water elevation was then compared to the pond's outlet weir elevation (EL. 532.85 feet) and berm elevation (EL. 535.00 feet) to verify that Ash Pond 2 could manage direct precipitation and stormwater run-on from the 1000-year, 24-hour storm event without water discharging through the pond's outlet weir or overtopping the pond's dikes.

#### 4.3 RESULTS

Table 4-1 summarizes the results from the hydrologic and hydraulic calculations performed for Ash Pond 2 (Ref. 15). Based on these results, water entering Ash Pond 2 during the inflow design flood event will not discharge through the pond's outlet weir or overtop the pond's dikes. The surface water elevation in the pond during the design event was estimated to be 2.30 feet below the pond's outlet weir and 4.45 feet below the pond's dike.

CCR Surface Impoundment	Illinois Hazard Potential Classification	Federal Hazard Potential Classification	Inflow Design Flood	Maximum Surface Water Elevation	Outlet Weir Elevation	Pond Crest Elevation
Ash Pond 2	Class 2	Significant	1,000 Year	530.55 feet	532.85 feet	535.00 feet

Table 4-1 – Summary of Hydrologic & Hydraulic Assessment Results for Ash Pond 2

# 5.0 CONCLUSIONS

Based on the hydrologic and hydraulic calculations performed for Ash Pond 2 (Ref. 15), the pond has adequate hydraulic capacity to retain the 1000-year flood event without water discharging from the pond or overtopping the pond's dikes. Therefore, Ash Pond 2 is able to collect and control the inflow design flood event specified in 35 III. Adm. Code 845.510(a)(3) and 40 CFR 257.82(a)(3).

# 6.0 CERTIFICATION

I certify that:

Seal:

- This inflow design flood control system plan was prepared by me or under my direct supervision.
- The work was conducted in accordance with the requirements of 35 III. Adm. Code 845.510 and with the requirements of 40 CFR 257.82.
- I am a registered professional engineer under the laws of the State of Illinois.

Certified By: _____ Thomas J. Dehlin _____ Date: ____ October 15, 2021 ____

THOMAS J DEHLIN 062-069314 062-069314 062-069314 062-069314 062-069314 Exp. 11/30/2021

# 7.0 REFERENCES

- Illinois Pollution Control Board. "Standards for Disposal of Coal Combustion Residuals in CCR Surface Impoundments." 35 III. Adm. Code 845. Accessed October 14, 2021.
- U.S. Environmental Protection Agency. "Standards for Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments." 40 CFR Part 257 Subpart D. <u>https://www.ecfr.gov/current/title-</u> <u>40/chapter-l/subchapter-l/part-257/subpart-D</u>. Accessed October 14, 2012.
- Geosyntec Consultants. "Inflow Design Flood Control System Plan, Ash Pond 2, Joliet 29 Station." October 2016.
- Sargent & Lundy. "2021 Hazard Potential Classification Assessment for Ash Pond 2." Rev. 0. S&L Project No. 12661-121. October 2021.
- 5. National Oceanic and Atmospheric Administration. "Point Precipitation Frequency Estimates." NOAA Atlas 14, Volume 11, Version 3.
- 6. Aero-Metric, Inc. Aerial Survey of Joliet 29 Generating Station Dated June 17, 2008.
- 7. Google Earth Pro v7.3.0.3832. Accessed October 14, 2021.
- 8. Geosyntec Consultants. "History of Construction, Ash Pond 2, Joliet 29 Station." October 2016.
- Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." January 18, 2016.
- 10. Geosyntec Consultants. "Annual Inspection Report, Ash Pond 2, Joliet 29 Station." October 16, 2017.
- 11. Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2018.
- 12. Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 16, 2019.
- Civil & Environmental Consultants, Inc. "Annual Inspection Report, Ash Pond 2, Joliet Station." October 9, 2020.
- National Oceanic and Atmospheric Administration. "Summary of Monthly Normals, 1981-2010." Station: Joliet Brandon Rd Dm, IL US USC00114530.
- Sargent & Lundy. "Ash Pond 2 Hydraulic Capacity Calculation." S&L Calc. No. MG-JS-C001, Rev. 0. S&L Project No. 12661-121. October 2021.

## APPENDIX A: 2016 ASH POND 2 INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN

0

# **ATTACHMENT 19 SAFETY AND HEALTH PLAN**

#### 1.0 **SAFETY REQUIREMENTS**

1.1 The entire performance of the Work shall comply with the standards authorized by the latest issue of the U.S. Department of Labor Occupational Safety and Health Act (OSHA), as well as state and local jurisdictional requirements.

#### 1.2 CONTRACTORS SAFETY MANUAL

- A. The Contractor shall have on file with the Midwest Generation corporate safety office a copy of the most current Safety and Industrial Hygiene Manual. As a minimum, this Manual must address the following items when applicable to their trade: OSHA Compliance, Accident Investigation, Corrective Action, First Aid Treatment, Inspections and Reporting of Deficiencies, Material Handling and Rigging, Performance and Accountability, Personal Safety Equipment, Safety Guidelines, Safety Meetings, Training, Housekeeping, Hearing Protection, Respiratory Protection, Fire Prevention, Grounding Program, Confined Space Entry, Hazard Communication, Fall Protection, Working on or near water and Trenching and Shoring.
- B. The Contractor's superintendent or other responsible person must have a copy of the Contractor's most current Safety and Industrial Hygiene Manual available at the job site.

#### 1.3 PRE-MOBILIZATION MEETING

- A. The Contractor shall meet with the Purchasers Representative(s) for a premobilization meeting. The pre-mobilization meeting will include a review of safety requirements, job hazard identification, a job specific safety plan (to be developed by the Contractor and provided to Midwest Generation), submittal requirements for health & safety records, scope and schedule. Hazard identification and assessment will include all chemical constituents found present in the analyses of the CCR and/or other waste streams within the impoundment(s). Recommendations within the NIOSH Pocket Guide to Chemical Hazards will be reviewed and considered. Applicable safety data sheets will be provided, as necessary.
- B. Prior to the start of the work at the job site. Contractor shall contact Purchaser's Representative to arrange to receive Purchasers site safety orientation. This session will last approximately 2 hours. The Contractor will be provided with information on the potential hazardous constituents of the CCR
- C. Contractor shall provide his employees with orientation in all Contractor, and job specific safety requirements related to their work area. Contractor shall provide Purchaser with completed training documents showing date of training and each employees craft related training as it relates to OSHA requirements. (i.e. competent person, scaffold builder, fork truck and crane operators)
- D. The Contractor Shall provide proof of training for all on site personnel in the following:
  - HAZWOPER 29CFR1910.120/29CFR1926.65

- OSHA 10 Hour or 30 Hour Voluntary Compliance Training for Construction
- Hazard Communication 29 CFR 1910.1200
- Contractor's Safety Plan
- E. A Competent Person shall be identified by name for Excavations, Fall Protection ,etc. if applicable.

## 1.4 FITNESS FOR DUTY

- A. The Contractor/Sub-Contractor/Supplier is required to have a drug and alcohol screening program for all employees assigned to work on Purchaser's property. The program must provide screening for pre-access testing, "for cause" testing and random testing. The Contractor/Sub-Contractor/Supplier shall certify that their employees have passed the appropriate screening test in accordance with their programs.
- B. Personnel covered by this program shall be denied access to, or may be required to leave the Purchaser's location if there are reasonable grounds to believe that the individual is:
  - 1. Under the influence of using, possessing, buying, selling, or otherwise exchanging (whether or not for profit) controlled substances or drug paraphernalia.
  - 2. Under the influence of consuming, possessing, buying, selling, or otherwise exchanging (whether or not for profit) alcoholic beverages.

#### 1.5 PERSONNEL PROTECTIVE EQUIPMENT (PPE)

- A. Prior to starting work, the contractor shall perform a Hazard assessment for PPE
  - 1. The Contractor will conduct a walk-through survey of each work area to identify sources of work hazards. Each survey will be documented in which it will identify the work area surveyed, the relevant task, the person conducting the survey, findings of potential hazards, control measures, and date of the survey.
  - 2. The Contractor will conduct, review, and update the hazard assessment for PPE whenever:
    - A job changes
    - New equipment or process is installed
    - There has been an accident
    - Whenever a supervisor or employee requests it
    - Or at least every year
    - Any new PPE requirements that are developed will be added into the Contractors written safety program.
- B. Head Protection/ Hard Hats: Hard hats shall be worn in all work areas.
  - 1. Hard hats must not be more than 5 years old, and the harness shall not be more than 1 year old.

- 2. Hard hats must be worn with brim forward
- 3. Hard hats must be assigned and used in accordance with ANSI/ISEA Z89.1-2014(R2019)
- 4. Hard Hats must be cleaned and maintained in accordance with the manufacturer's instruction.
- C. Eye Protection: Eye protection shall be worn in all work areas.
  - 1. At a minimum, ANSI Z87-1-2020 compliant Safety Glasses shall be worn.
  - 2. Goggles and face shields shall be used for splash hazards.
  - 3. Fogging potential shall be considered for humid conditions and appropriate anti-fog materials may be used.
  - 4. Detachable side protectors (e.g. clip-on or slide on side shields) that meet OSHA Rule 29 CFR Part 1910.133 and ANSI Z87.1 specifications are also acceptable to wear with prescription glasses. Prescription glasses used with detachable side shields must conform to ANSI Z87.1
  - 5. Employees must keep eyewear in clean condition and fit for use at all times.
  - D. Protection Foot Wear
    - 1. All foot wear must be compliant with ASTM F2413-18: Performance Requirements For Protective (Safety) Toe Cap Footwear
    - 2. For work on or near the CCR impoundments, consideration shall be given to traction and slip issues.
    - 3. Safety shoes must be maintained and cleaned in accordance with the manufacturer's guidelines.
    - 4. Boot covers or Rubber boots shall be used in all areas that do or may contain CCR. These covers or boots must be cleaned or disposed of prior to leaving the work area.
  - E. Hand Protection
    - 1. Employers shall base the selection of the appropriate hand protection on an evaluation of the performance characteristics of the hand protection relative to the task(s) to be performed, conditions present, duration of use, and the hazards and potential hazards identified.
    - 2. Impervious disposable gloves shall be used when working with CCR. Leather, Cotton or other readily absorbable gloves shall not be used.
  - F. Personal Flotation Devices
    - 1. When working with 10 feet of the water in the impoundments the following shall apply:
      - a. All personnel shall wear a Coast Guard Approved PFD
        - Type I: Off-Shore Life Jacket; effective for all waters or where rescue may be delayed.
        - Type II: Near-Shore Buoyant Vest; intended for calm, inland water or where there is a good chance of quick rescue.
        - Type III: Flotation aid; good for calm, inland water, or where there is a good chance of rescue.

- Type IV: PFD's are throwable devices. They are used to aid persons who have fallen into the water.
- Type V: Flotation aids such as boardsailing vests, deck suits, work vests, and inflatable PFD's marked for commercial use.
- 2. Serviceable condition: A PFD is considered to be in serviceable condition only if the following conditions are met.
  - a. No PFD may exhibit deterioration that could diminish the performance of the PFD, including:

1. Metal or plastic hardware used to secure the PFD on the wearer that is broken, deformed, or weakened by corrosion;

2. Webbings or straps used to secure the PFD on the wearer that are ripped, torn, or which have become separated from an attachment point on the PFD; or

3. Any other rotted or deteriorated structural component that fails when tugged;

4. Rips, tears, or open seams in fabric or coatings, that are large enough to allow the loss of buoyant material;

5. Buoyant material that has become hardened, non-resilient, permanently compressed, waterlogged, oil-soaked, or which shows evidence of fungus or mildew; or

6. Loss of buoyant material or buoyant material that is not securely held in position.

# 1.6 EXISTING PLANT FACILITIES

- A. Contractor shall be aware that Work may be performed in and around operating equipment.
- B. The Contractor shall give proper notices, make all necessary arrangements, and perform all other services required to avoid damage to all utilities, including gas mains, water pipes, sewer pipes, electric cables, fire hydrants, lamp posts, etc., for which Purchaser could be held liable.
- C. The Contractor shall barricade or cover any opening created during the course of work for excavations, or grating removal. Barricades shall be a "hard" barrier such as cable or pipe and clamp, safety barrier tape is unacceptable. In addition, any openings creating a fall hazard of 4 feet or more must have a permit authorized before the barrier can be removed. See section 11.4 below for permit requirements.
- D. Housekeeping, walkways and tripping hazards

All equipment and material must be kept in an orderly manner. Aisles exits stairways and emergency equipment must never be obstructed. Hoses and welding cables must be tied above walkways so as to not pose as a trip hazard. Barricades, signs and notifications provided by the contractor when required. The owner and contractor will conduct periodic housekeeping audits to assure compliance.

- E. Contractor's personnel shall observe all safety, warning, equipment identification instructional signs and tags. Do not remove any tag without prior consent of Purchaser's Representative.
- F. When work has been completed, and Contractor decides equipment is ready to be returned to service, Contractor employees shall have all of their employees (working party members) sign off the permit. Contractor shall notify Purchaser's Representative in whose name the outage is being held.
- 1.7 WELDING, CUTTING and BURNING PERMITS
  - A. Contractor shall not start welding or cutting operations without a "Welding and Cutting Permit". Permits shall be obtained from Purchaser and posted in accordance with Station site-specific Safety Training requirements.
  - B. Contractor shall use non-asbestos, fire retardant blankets as required to protect Purchaser's equipment, cable trays, coal transport and storage areas, etc. and to cover gratings (for personnel safety) when welding, grinding and flame cutting processes are used overhead or in such close proximity as to pose a hazard.
  - C. Contractor shall supply appropriate portable fire extinguishers in welding and cutting areas.
  - D. Contractor shall furnish a designated "Fire-watch" employee to monitor the area above to the sides and below the cutting and burning area. The fire-watch is to extinguish fires started by sparks from the acts of cutting or welding. The fire-watch employee is to continue monitoring on the job 30 minutes after cutting or burning has been completed.

#### 1.8 SAFETY DATA SHEETS

- A. The Purchaser shall make Safety Data Sheets (SDS's) readily available to the Contractor for those substances to which the Contractor's employees may be exposed during normal working conditions and which are under the Purchaser's control.
- B. The Contractor shall make Safety Data Sheets (SDS's) readily available to the Purchaser for those substances which are furnished by and under the control of the Contractor. These are to be available at the time of delivery of the substance to the Purchaser's Premises.
- C. It is the responsibility of the Contractor to train their employees on SDS's.

# 1.9 CHEMICALS, SOLVENTS AND GASES

- A. Contractor shall comply with all federal, state and local regulations and codes pertaining to handling and storage of flammable liquids and gases.
- B. Cleaning agents, solvents, or other substances brought by Contractor onto any of Purchaser's properties by Contractor shall be stored, handled and used in accordance with applicable standards.

- C. Contractor shall ensure that liquids or solids will not be poured (disposed of) into Purchaser's drain, sewer systems, lake (where applicable), or onto ground. Contractor shall be liable for any damage and cleanup of improperly disposed liquids or solids.
- D. The Contractor is to provide the Purchaser with the name and quantity of usage of any listed Section 313 Toxic Chemical of the Emergency Planning and Community Right-to-Know Act of 1986 (40CFR372).
- E. Signage must be posted detailing the presence of and hazards of CCR.

#### 1.10 DISTURBANCE OF DUST

Contractor's work practices shall minimize dust generated while working with CCR. A fugitive dust mitigation plan shall be submitted to the facility prior to activities beginning.

#### 1.11 FALL PROTECTION

Mandatory fall protection is required when working near and area where a fall hazard of **4** feet or more exits.

#### 1.12 BARRIERS AND WARNING SYSTEMS

- A. Warning and barricade systems shall be used to divert personnel from a work area. All warning barriers shall be tagged with yellow "Caution Cards". The caution card shall state the hazard, the date erected and a contact name, company and phone number. There are 2 levels of barricade systems. The barricade systems shall be taken down immediately when the hazard has been removed or at the end of the work shift.
- B. A <u>conditional warning</u> is designated with 'Yellow" safety warning tape. This is used to warn workers of a hazard such as wet floors, welding and cutting in an area, or other hazards that with an awareness and proper PPE can be approached.
- C. An <u>Unconditional warning</u> is designated with "Red" safety warning tape. This is used to worn workers of a hazard such as a crane lift or overhead work. Red safety tape barriers cannot be access or removed until permission is granted from the person responsible for installing it.
- D. Fire and Evacuation warning sirens. Each plant has a siren for fire notification and evacuation notification. The response location and procedure will be addressed in the pre-mobilization meeting and plant site-specific orientation.
- 1.13 For Contractor's and subcontractor's employees, visitors and any other individuals: Smoking is prohibited on the work site.
- 1.14 The Contractor is expected to pre-arrange medical emergency services for on-site and off-site treatment. This includes, but is not limited to, first aid and confined space rescue.

#### 1.15 WORKING ON OR NEAR WATER:

- A. Life jackets and work vests shall be inspected before and after each use.
- B. Ring buoys or Class IV rescue device with at least 90 feet of line shall be provided and readily available for employee rescue operations.
- C. The distance from ring buoys to each worker shall not exceed 200 feet.
- D. At least one lifesaving skiff shall be immediately available at locations where employees are working over water and/or the local coast guard shall be notified when working in navigable waterways.
- E. Under no circumstances will team members enter water bodies without protective clothing (e.g.; waders, wet suit)
- F. At least one person should remain on shore as a lookout if other methods of rescue are not available.

#### 1.16 EXCAVATIONS

- A. A Competent person shall determine the proper slope or identify engineering controls for all excavations in the CCR area.
- B. An inspection of the banks shall be made and documented at least daily to determine any impact of the excavation.

#### 2.0 **CONTRACTOR'S FACILITIES**

- 2.1 Temporary chemical toilet accommodations shall be furnished and maintained by Contractor for the use of his employees. Location shall be as directed by Purchaser's Representative. Use of Purchaser's toilet facilities by Contractor's employees is not permitted.
- 2.2 Contractor shall provide his own storage vessels, coolers, ice, water containers, etc., as required for his own drinking water use. Contractor shall supply a trash can with each drinking water container to receive used paper cups. Contractor shall maintain drinking water container, supply suitable water cups and dispose of trash as required. Open drinking cups and containers in the plant areas are not permitted.
- 2.3 Each Contractor is expected to pre-arrange medical emergency services for onsite and off site treatment. This includes, but is not limited to, first aid and confined space rescue.

#### 2.4 FIRE PROTECTION FACILITIES

A. Contractor shall provide his own temporary fire protection facilities for the equipment and materials furnished by him or by Purchaser and for his temporary construction buildings and structures. This equipment shall be maintained and inspected in accordance with applicable NFPA codes.

- B. Furnish a suitable quantity and type of portable fire extinguishers and equipment, to meet OSHA and applicable codes.
- 2.5 Purchaser will not furnish any additional illumination of aisles, passages in the buildings, floodlighting of outdoor areas or lighting inside equipment other than that which is existing. Any additional lighting required by the Contractor shall be provided by the Contractor.
- 2.6 Contractor shall provide and maintain suitably located distribution centers with fused switching equipment and Ground Fault Interruption protection. The equipment supplied shall comply with OSHA regulations and standards.
- 2.7 Contractor shall supply all adapters and equipment required to connect to station air, water, and electrical systems. All air hoses shall be safety clipped together.
- 2.8 Any heating facilities required for the performance of the Work shall be furnished, maintained, and removed by Contractor. Open fires WILL NOT BE PERMITTED at any time. Heating equipment shall be as approved by Purchaser's Representative.

# 3.0 CONTRACTOR'S TOOLS AND EQUIPMENT

- 3.1 TOOLS AND EQUIPMENT
  - A. Contractor shall maintain, inspect and store tools and equipment for safe and proper use. This includes guards, shields, safety switches and electrical cords.
  - B. Contractor shall provide hoisting equipment as required to perform the Work. Provide all the necessary guards, signals, and safety devices required for its safe operation. Construction and operation of hoisting equipment shall comply with all applicable requirements of ANSI A10.5, the AGC Manual of Accident Prevention in Construction, and to all applicable federal, state, and local codes. Hoisting equipment shall not be used to transport personnel.

# 3.2 RIGGING

- A. Contractor shall design, furnish, and maintain rigging required for the Work. All rigging plans must be designed by an Illinois licensed structural engineer.
- B. Purchaser reserves the right to examine Contractor's design calculations, engineering data, plans, and procedures. Contractor shall submit any documentation requested by the Purchaser for the purpose of this review, including, but not limited to, calculations, diagrams and documents associated with computer-aided analyses and programs. If requested information is considered proprietary by Contractor, Contractor shall allow the Purchaser to review the information at Contractor's offices with the understanding that no copies of proprietary information will be given to the Purchaser. Purchaser's review and approval of submitted information is for general detail only and will not relieve the Contractor of responsibility for meeting all requirements and for accuracy.

- C. Lifting and rigging areas shall have the target area and corresponding personnel access landings barricaded with "red" safety tape or hard barriers. No one is allowed under the load or in the target area during lifts.
- D. All cranes, hoists, or derricks shall be operated in compliance with existing State and Federal regulations or orders. Cranes and hoists shall be inspected in accordance with OSHA and ANSI requirements. Cranes and hoists shall not be operated near high voltage lines or equipment until a safe operating clearance plan has been established.

# ATTACHMENT 20 CLOSURE PRIORITY CATEGORIZATION

# Attachment 20-No Attachment